L. G. SANIN et al.

invoke three-level or multiple-level involvement. The ${}^{31}P(\alpha, p_0){}^{34}S$ reaction also demonstrated a strong parity selectivity exhibited by an order-of-magnitude cross-section difference for $J \ge \frac{5}{2}$. This reaction proved therefore to be a far better testing ground for the analysis procedure and established empirically that only a single normalization factor independent of energy, spin and parity was required to bring the theoretical cross sections into agreement with the experimental data.

Within our energy resolution ($\approx 10 \text{ keV}$), the single-level and two-level approach is supported by a recent high-resolution 4π detector experiment of Balakrishnan *et al.*³) which established that $\langle \Gamma \rangle = 5.2 \pm 1 \text{ keV}$ and $\langle \Gamma \rangle / \langle D \rangle \approx 0.25$ at these excitation energies. The Gilbert-Cameron high-energy level-density formula⁴) estimates level densities as 91.6, 152.2 and 247.0 MeV⁻¹ for $E^* = 10$, 11 and 12 MeV, respectively, in complete accord with our analysis.

Since little is known of the optical potential of the α -particle at these low energies, a considerable effort was made to find a set of potential parameters which would apply in a consistent manner to all reactions under study, i.e., the three aforementioned reactions and ${}^{19}F(\alpha, p_0)^{22}Ne$. To that end elastic scattering from ${}^{19}F$, ${}^{29}Si$ and ${}^{31}P$ was measured and the ${}^{13}C(\alpha, \alpha){}^{13}C$ data of Kerr, Morris and Risser ⁵) were included to establish such an optical potential. The resulting consistent set of potential parameters for the α -particle are incorporated in the present analysis.

As the single- or two-level theory incorporated in code MIA has been thoroughly expounded elsewhere 1,2,6), we refer the reader to these publications.

2. Experimental details

Thin (\approx 10 keV) silicon dioxide targets enriched to 92.0 % in ²⁹Si were bombarded by the α -beam of the Lowell Technological Institute 5.5 MeV Van de Graaff accelerator to measure excitation functions for the ²⁹Si(α , n_0)³²S reaction at 0° and 160° in the incident energy range between 3.5 and 5.5 MeV. These excitation functions measured in steps of 5 keV exhibited 45 well-defined resonances. An on-resonance angular distribution for the outgoing neutrons was measured for 42 of the above mentioned resonances using NE-213 liquid scintillators to detect the neutrons and γ -rays produced in the reaction. An n- γ pulse shape discriminator circuit of the Goulding-Ortec type ⁷) was employed to eliminate counts due to the γ -ray background.

To discriminate against neutrons leaving the residual nucleus in an excited state, three discrimination levels were used during these measurements as follows: from $E_x = 3.50-4.45$ MeV the discrimination level was set at the ⁵⁷Co 0.122 MeV γ -ray Compton edge ($E_n \approx 0.3$ MeV); from 4.40-5.00 MeV the discrimination level was set at $\frac{1}{3}$ of the ¹³⁷Cs 0.662 MeV γ -ray Compton edge ($E_n \approx 0.8$ MeV), and from 4.96-5.50 MeV the discrimination level was changed to the ²²Na 0.511 MeV γ -ray Compton edge ($E_n \approx 1.5$ MeV). The neutron background which typically was less than 20 % of the on-resonance value of a moderately strong peak was also measured

29Si(x, n)

over the energy range of interest and subtracted from all ground state neutron measurements. The energy-dependent neutron detection efficiencies of the scintillators were determined by means of the ${}^{3}H(p, n){}^{3}He$ reaction, normalized to an absolute flux by a proton recoil telescope counter whose absolute efficiency is known. The target chamber 8) and three detector systems t) are discussed elsewhere.

3. Target thickness and absolute cross-section determination

Targets of ²⁹Si were prepared by evaporating 2-5 mg of enriched silicon dioxide onto tantalum backings by electron bombardment. To determine the thickness of the targets used in this experiment, the 0° and 160° excitation functions for the ²⁹Si (α , n)³²S reaction were measured over a nearly isolated resonance at $E_x = 4.020$ MeV with two targets, one of which was thicker than the other. Consider the experimental width at half maximum for a sharp resonance as expressed by Richards⁹)

$$W^{2} = \Gamma^{2} + d^{2} + \Delta T^{2} + \iota^{2}, \tag{3}$$

where Γ is the natural width of the resonance; d is the Doppler broadening due to thermal motion of target nuclei; ΔT is the energy spread of the incident beam, and t is the average energy loss in the target. Since accelerator settings were identical for the "thin" and the "thick" target measurement it can be assumed that Γ , d and ΔT remain constant. Therefore, the difference between the experimental widths of the resonances determined by the thick target (W_1) and those determined by the thin target (W_2) is given by

$$W_1^2 - W_2^2 = t_1^2 - t_2^2.$$
⁽⁴⁾

The thin target measurements also displayed a resonance at 3.865 MeV that had the smallest width at half maximum of any resonance and which was assumed to be approximately equal to t_2 . From the 160° data the following values were obtained: $W_1 = 25 \text{ keV}, W_2 = 18 \text{ keV}, t_2 = 10 \text{ keV}, \text{ giving } t_1 = 20 \text{ keV}$. This result means that the energy loss in the thick target can be as much as 20 keV (if $t_2 = 10 \text{ keV}$) and not less than 17.5 keV (if $t_2 = 0$). Comparison of integrated thin and thick target yields for the 4.020 MeV resonance gives a calculated value of t_2 within 11 % of the 10 keV estimate. This target thickness was converted to the number N of ²⁹Si nuclei/ cm² establishing the on-resonance laboratory differential cross section at $E_x = 4.020$ MeV,

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\Big|_{12b} = \frac{Y}{\Delta\Omega\varepsilon IN},$$

where Y is the experimental yield previously corrected for background, ε the neutron detection efficiency, I the total number of impinging particles and $\Delta\Omega$ the solid angle subtended by the effective center of the scintillator detector. The 0° and 160° excitation functions were thus normalized to an absolute cross-section scale from an averaged value of t_2 incorporating both 0° and 160° data.