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ABSTRACT: Modeling with Non Uniform Rational B-Splines (NURBS) surfaces has become a standard in CAD/CAM systems 
due to its stability, fl exibility, and local modifi cation properties. The advantage of fi tting with NURBS surfaces is well known, but it 
is also known that NURBS surfaces have several defi ciencies. A NURBS surface cannot be fi tted over an unorganized and scattered 
set of points and the representation of sharp features like edges, corners, and high curvatures is poor. This paper presents a new 
method for fi tting a NURBS surface over an unorganized and scattered cloud of points, preserving its sharp features. In contrast 
with other methods, ours does not need either to construct a network of NURBS patches or polygon meshes. By reducing the 
dimensionality of the point cloud using ISOMAP algorithms, our method detects both regions with lacking points, and regions 
where the cloud is too dense. Then, the cloud is regularized by inserting and removing points, and it is approximated by a NURBS 
surface. An evolutionary strategy obtains the weights of the NURBS surface in order to improve the representation of sharp features.

KEYWORDS: NURBS, ISOMAP, evolutionary strategies.

RESUMEN: El modelamiento con Superfi cies B-Splines Racionales no Uniformes (NURBS) se ha convertido en un estándar en los sistemas 
CAD/CAM debido a su estabilidad, fl exibilidad y propiedades de modifi cación local. Las ventajas de ajustar con superfi cies NURBS son bien 
conocidas, aunque también son conocidas las limitaciones que éstas presentan. Una superfi cie NURBS no puede ser ajustada sobre un conjunto 
de puntos dispersos no ordenados. Adicionalmente, la representación de detalles fi nos como aristas, esquinas y altas curvaturas, es pobre. 
Este artículo presenta un nuevo método para ajustar superfi cies NURBS sobre conjuntos de puntos dispersos no ordenados, preservando los 
detalles fi nos. A diferencia de otros métodos, el nuestro no necesita construir una red de parches NURBS ni mayas poligonales. Para reducir 
la dimensionalidad de la nube de puntos usando el algoritmo ISOMAP, nuestro método detecta regiones con carencia de puntos y regiones 
donde la nube es muy densa; luego, la nube es regularizada por inserción y  remoción de puntos, para fi nalmente ser ajustada  por una única 
superfi cie NURBS. Para mejorar la representación de los detalles fi nos, una estrategia evolutiva obtiene los pesos de la superfi cie NURBS.

PALABRAS CLAVE: NURBS, ISOMAP, estrategias evolutivas.

1.  INTRODUCTION 

NURBS is one of the most employed surface fi tting 
models, provided that it is a standard representation 
of curves and surfaces [1]; and is widely supported by 
modern standards like OpenGL and IGES, which are 
used for graphics and geometric data exchange [2]. 
In addition, the NURBS surface model has stability, 
fl exibility, local modifi cation properties; and is robust 
to noise. However, NURBS surfaces models has some 
disadvantages: the input data points should be mapped 
on a regular grid structure [3] and the representation   
of   sharp   features  is  poor [14].

In the 3D reconstruction process, the registration 
and integration stages produce massive scattered and 
unorganized point clouds that cannot be mapped on 
a regular grid structure. Such point clouds cannot be 
fi tted by a NURBS surface and are not suitable for 
usage in computer-aided design (CAD) systems [4].

In order to fi t a NURBS surface to an unorganized 
and scattered point cloud, several approaches have 
been presented [3, 4, 5, 6, 7, 8]. Such approaches 
fi t to the cloud a network of NURBS patches with 
some degree of continuity between them. The 
construction of the network requires constructing 
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polygon meshes and complicated procedures of 
refi nement, reparameterization, and maintainability 
of the continuity between the patches, which is 
computationally expensive in terms of memory and 
processing.

Surface fi tting is very important in fi elds like medicine, 
engineering, and scientific visualization, among 
others. However, to fi t a surface to a set of sampled 
data, possibly noisy, always has the underlying 
problem of a lack of precision in the representation 
of sharp features like edges and peaks. Therefore, 
surface fi tting processes must be followed in order for 
an optimization process to improve the representation. 
Several approaches for optimizing NURBS surfaces 
have been presented [15, 16, 17, 18].

In this paper, a new method for constructing and 
optimizing NURBS surfaces from scattered and 
unorganized points is presented. In contrast with 
others, our method does not need to construct a 
network of NURBS patches. Furthermore, previous 
construction of polygon meshes, mesh refi nement, and 
data reparameterization are not required.

Our method fi rst uses ISOMAP algorithm for mapping 
the point cloud to a two-dimensional space to carry 
out an analysis of the regularity of the point cloud. 
The analysis consists of detecting regions with low 
point density and regions with high point density. 
By inserting and removing points, based on the two-
dimensional analysis, the point cloud is regularized. 
In order to reduce the fi tting error, an evolutionary 
strategy obtains the weights of the control points 
that belong to the cloud. Finally, the points inserted 
outside the cloud boundary are removed by trimming 
the NURBS surface. The main contribution of our 
work is that we proposed an automatic, effi cient, and 
simple method for constructing a complete NURBS 
surface from a point cloud.

The remainder of this paper is organized as follows: 
In section 2, related work dealing with reconstruction 
of NURBS surfaces from scattered and unorganized 
points is presented. In section 3, the fundamentals 
of NURBS surfaces are presented. In section 4, a 
summary of the ISOMAP algorithm is described. In 
section 5, a short overview of evolutionary strategies 
and SOM is presented. In section 6, the stages of our 
method are explained. In section 7, the results of our 
method are provided. In section 8, conclusions and 
future work are discussed. 

2.  RELATED WORK 

Point clouds are considered the main information 
source in the 3D reconstruction process; unfortunately, 
such point clouds are not suitable for integration into 
CAD systems [4]. Constructing NURBS surfaces from 
point clouds would allow for the incorporation of such 
information source in CAD systems.

Several approaches have been proposed for solving 
the problem of constructing NURBS surfaces from 
scattered and unorganized points. Eck and Hoppe 
[5] solved the problem by generating a network of 
B-Spline patches. They fi rst construct a triangular 
mesh over the cloud and project the points onto the 
mesh to obtain an initial parameterization. Then, 
a merging process from triangular mesh is carried 
out for constructing a quadrilateral mesh. Over 
the quadrilateral domain, a network of B-Spline 
patches is built. In order to reach a user-specifi ed 
error tolerance, a refi nement process takes place. 
This process adaptively subdivides the quadrilateral 
domain producing smaller quadrilateral subfaces. A 
new network of B-Spline patches is necessary to fi t the 
refi ned surface. Even though this is an effective method 
for reconstructing B-Spline surfaces, e.g. NURBS, from 
point clouds, it is computationally expensive in terms of 
memory and processing needed. Furthermore, only G1 
continuity between the patches is guaranteed. 

Krishnamurthy and Levoy [6] proposed an approach 
that constructs a polygon mesh which is resampled to 
produce a regular grid where NURBS surface patches 
can be fi tted. The performance of the approach is poor 
when it operates on complex surfaces, and it cannot 
be applied over surfaces with holes.

Park, Yun, and Lee [3] presented a two-stage algorithm. 
The initial stage, named model approximation, employs 
K-means clustering to obtain regions where polygon 
meshes are constructed, subdivided in triangular 
meshes, and blended in quadrilateral meshes. The 
meshes produced by the initial stage are represented by 
a hierarchical graph structure. The second stage takes 
the hierarchical graph structure to construct a NURBS 
patch network. This method, like Eck and Hoppe's 
method, is computationally expensive and only 
guarantees G1 continuity. Furthermore, it assumes that 
the point cloud represents a closed surface.

Gregorski, Hamann, and Joy [4] proposed an approach 
that subdivides the set of points into a strip tree 
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structure. This structure is used to fi t quadratic surfaces 
which are degree-elevated and blended into B-Spline 
patches. This approach cannot be applied either on 
closed surfaces or on occluded surfaces, like the surface 
shown in Figure 1.

Bertram, Tricoche, and Hagen [7], and Yvart, 
Hahmann, and Bonneau [9] proposed approaches that 
use triangular B-Spline patches instead of NURBS 
patches to fi t point clouds. Their approaches, like 
the aforementioned ones, construct polygon meshes 
and use expensive processes for fi tting a triangular 
B-Spline network to the point cloud.

3.  RELATED WORK

NURBS, are parametric tensor product curves or 
surfaces   defi ned   by  the  following expression:
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where ji,w are the weights, ji,P are the control points, 
and (v)N(u),N qj,pi,

are the B-Spline basis functions of 
order p  and q  respectively, defi ned over the non 
periodic node support  ru u,,u=S ...0  and  rv v,,v=S ...0  
[10], which can be calculated in a recursive way by 
the Cox and de Boor formula [11] according to (2) 
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It is notable how the weighting factors affect the local 
geometry of the surface. Figures 2a to 2c show the 
effect over the NURBS curve of assigning the values 
0, 0.5, and 1, respectively, to control point 2.

Figure 1. Occluded surface

When fi tting data points using NURBS, we attempt 
to minimize:
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A NURBS surface is completely determined by 
its control points ji,P , i.e. the surface changes in a 
predictable way according to control points movement. 
This is known as the local support property and 
allows the surface to be affected, only locally, by 
the movement of a control point. The main diffi culty 
when fi tting NURBS surfaces is to obtain a suitable 
parameterization and automatically choose the number 
of control points and their positions to defi ne the 
surface topology.

The weighting factors ji,w  of NURBS surfaces 
play an important role in the fi tting process, since 
these factors determine how much a control point 
infl uences the shape of the surface locally. When the 
weighting factors of NURBS surfaces are assigned 
in a homogeneous way and their values are one, 
the NURBS model is reduced to a particular case 
known as B-Spline surfaces, which are limited in the 
representation of free-form and conic surfaces. If we 
want an approximately close enough set of data that 
represents free-form surfaces using NURBS, it is 
necessary to manipulate the NURBS parameters, but, 
as previously mentioned, such manipulation implies 
dealing with non-linear problems during the fi tting 
process.

Furthermore, negative values or zeros in the weighting 
factors can degenerate the construction of the surface.

Figure 2 illustrates the importance of the weighting 
factors in the NURBS model. The dots represent 
control points and the line represents a NURBS curve. 
It is notable how the weighting factors affect the local 
geometry of the surface. Figures 2a to 2c show the 
effect over the NURBS curve of assigning the values 
0, 0.5, and 1, respectively, to control point 2.

When fi tting data points using NURBS, we attempt 
to minimize:
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where np is the number of control points. If the 
number of knots and their positions are fi xed, the set 
of weighting factors is known and only the control
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Figure 2. Weighting factors effect.
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optimization of (3): we have a linear least-squares 
problem. But if the knots or the weights are unknown, 
it will be necessary to solve a non linear problem. In 
many applications, the knots location is not necessary; 
therefore, knots values are obtained using some 
heuristic techniques.

4.   ISOMAP

ISOMAP is an isometric mapping method that 
extends MDS by incorporating geodesic distances 
in a weighted graph. ISOMAP algorithm takes as 
input the distances dX(i, j) between all pairs i, j from 
N data points in the high-dimensional input space. 
The algorithm outputs coordinate vectors yi in a 
d-dimensional Euclidean space that best represents the 
intrinsic geometry of the data. The only free parameter 
is є (radii of neighborhood) or K (nearest neighbors).

ISOMAP algorithm steps are summarized in [13] as 
follows:

Step 1: Construct neighborhood graph

Defi ne the graph G over all data points by connecting 
points i and j if [as measured by dX(i, j)] they are closer 
than є (є-Isomap), or if i is one of K’s nearest neighbors 
of j (K-Isomap). Set edge lengths equal to dX(i, j).

Step 2: Compute shortest paths

Initialize dG(i, j) = dX(i, j) if i, j are linked by an edge; 
dG(i, j) = ∞ otherwise. Then for each value of k = 1, 2, 
. . ., N in turn, replaces all entries dG(i, j) by min{dG(i, 
j), dG(i,k) + dG(k, j)}. The matrix of fi nal values DG 
= {dG(i, j)} will contain the shortest path distances 
between all pairs of points in G.

Step 3: Construct d-dimensional embedding

The fi nal step applies classical MDS to the matrix 
of graph distances DG = {dG(i, j)}, constructing an 
embedding of the data in a d-dimensional Euclidean 
space Y that best preserves the manifold’s estimated 
intrinsic geometry. The coordinate vectors yi for 
points in Y are chosen to minimize the cost function, 
represented by (4).

 L
2       (4)

 where DY denotes the matrix of Euclidean distances 
  a L

2
  the  L2  matrix 

norm  . The operator  converts distances 
to inner products.

Let λp be the p-th eigenvalue (in decreasing order) of 
the matrix (DG), and  the i-th component of the 
p-th eigenvector. Then set the p-th component of the 

d-dimensional coordinate vector yi equal to = 

5. evolutionary strategies and som

In this section, a brief background of Evolutionary 
Strategies and Self Organizing Maps is provided.

5.1 Evolutionary strategies 

Evolutionary Strategies (ES) were developed in 1964 
by Rechenberg and Schwefel at the University of 
Berlin as an experimental optimization technique [12]. 
ES try to imitate, in contrast with Genetic Algorithms, 
the effects of the genetic procedures in the phenotype. 
ES belong to a kind of probabilistic numerical 
optimization algorithm, which include Evolutionary 
Programming (EP), Genetic Algorithms (GAs) and 
Genetic Programming (GP), which are known as 
Evolutionary Algorithms.

The fi rst variant of ES, called  1 1+ ES , works based 
on only two individuals: a parent and a descendant 
per generation. The descendant is created by applying 
variations, called mutations, binomially distributed 
(with mean equal to zero and variance 2ó ) to the 
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parent. The descendant can be the parent in the next 
generation if it is better than the parent; if the opposite 
is true, the parent will be the survivor for the next 
generation. 

   ES+ 11  was replaced by and 
variants, with  parents and  descendants per 
generation. In these new variants, the recombination 
concept was introduced in order to create individuals 
as the crossing of parent attributes. After mutation and 
the individual’s evaluation, the descendants replace 
the parents if the former are better than the latter. 
Depending on the selection type,  new individuals 
are selected only from the descendant population 

 or new individuals are selected from 
the parents and the descendants . Beside 
mutation and recombination,  and  
control the size of the mutation step by an auto-
adaptation process that learns the mutation step size, 
and optionally the covariance, during the evolutionary 
searching process [12]. ES use three main operators for 
changing the population until a stop criterion is reached.

Recombination: new individuals are produced by 
crossing the information contained in the parents. 
Depending on the individual variable representation, 
some algorithms can be applied for recombination 
purposes: discrete recombination, local intermediate 
recombination, global intermediate recombination, 
point crossover, and n-point crossover. The 
recombination operator allows for the exploration of 
the searching space.

Mutation: After recombination, the descendants are 
changed with a probability p,  by introducing small  
variations  known  as mutations. Mutation 

allows for the introduction of new possible solutions and 
the exploitation near to a given solution (individual). 
Mutation follows the scheme given in (5) and (6).

Selection: choose the best individuals of the population 
according to a fi tting criterion.

 )1,0()1,0(0' ii NN
ii e   (5)

)1,0('' iiii Nxx   (6)

where 0,1N( ) is a random variable normally 
distributed with mean 0 and variance 1, and  are constants that control the mutation step. 

5.2  Som

Artifi cial neural networks generally consist of simple 
computational elements called neurons which are 
highly interconnected to each other. The neurons are 
arranged in layers that interconnect to other layers. 
A neuron can receive connections from neurons of 
other layers and even from neurons of the same layer 
to which it belongs. SOM (Self Organizing Map, also 
known as Kohonen network) is a one single layer 
neural network, denoted by where, 
in its basic confi guration, neurons are arranged two-
dimensionally, and have some neighboring neurons.

The input patterns to the network is a set of 
n-dimensional vectors denoted by . 
Each neuron of the network has a weight vector   which 
has the same dimensionality the input patterns have. 
Basically, SOM is an unsupervised neural network, 
even though there are several supervised variants 
known as Learning Vector Quantization (LVQ). The 
unsupervised SOM is employed for clustering. go to 
[19] for details.

6.   NURBS FITTING TO UNORGANIZED    
      POINTS 

Our method for constructing NURBS surfaces from 
scattered and unorganized point clouds is roughly 
made up of two stages. The fi rst one regularizes and 
fi ts the NURBS surface. The second one optimizes the 
NURBS surface fi tting and trims the surface in order 
to eliminate points inserted outside the cloud during 
the regularization process. The following subsections 
explain each of these stages

6.1  Point cloud regularization

The regularity analysis of the point cloud takes place 
in a two-dimensional space. Such space is given by 
ISOMAP. The regularization process consists of the 
following steps:

1.  Run ISOMAP algorithm on a point cloud and obtain 
the extreme points.

2. Construct a grid from the extreme points with 
density  calculated according to (7)

                                                         (7)

where P  is the number of points and  A is the area of 
the ellipse determined by the extreme points.
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Figure 3.  Insertion of a point in the cloud

Once P  is clustered, an evolutionary strategy 
   ES+ 11  will optimize the local fi tting of the NURBS 
in each cluster. The evolutionary strategy confi guration 
is as follows:

Individuals: the individuals of the strategy are 
conformed by the weights of the cluster points and the 
mutation steps , as shown in Figure 5 (where iw  
are the control point weights and  are the mutation 
step sizes).

Figure 4. Regions found by SOM.

3.   For each grid element, do steps 4 to 5.

4.    If no point is present, insert one point in its centroid 
as follows: choose the four closest points to the centroid 
of the cell and compute the equivalent location on the 
point cloud, using the four correspondent points on the 
cloud, like Figure 3 shows.

5.   If there are two or more points in the element, 
remove the points located farthest from the centroid.

Once the regularization process has been fi nished, a 
NURBS surface can be fi tted to the entire cloud. In 
order to reduce the fi tting error of the surface, due to 
the smoothing properties of NURBS, an optimization 
process is carried out for preserving the sharp features 
of the original point cloud.

6.2  Surface optimization

The surface optimization process is devised to maintain 
the infl uence of the original point cloud stronger than 
the points inserted, so that the topology of the cloud 
is not affected. Our optimization process is carried out 
by    ES+ 11  It can be described as follows:

Let   n2 p,,p,p=P ...1  be a set of 3D points sampled 
from a real object, e.g. the regularized points, 
and  m2 s,,s,s=S ...1  be a NURBS surface that 
approximates P . Our problem consists of minimizing 
the approximation error given by (8).

     (8)

where SP,d  is the total distance between P  and the 
NURBS approximation surface S . The parameter 

 is a given user error tolerance. The evolutionary 
strategy obtains the control point weights of S , so 
that (8) is true.

Figure 5.  Individual of the evolutionary strategy

The evolutionary strategy will only obtain the weights 
of the points that belong to the point cloud. The 
weights of the inserted points will be assigned as 
follows: i) if the point was inserted inside the cloud, its 
weight will be the mean of the weights of the neighbor 
points. ii) If the point was inserted outside the cloud, 
its weight will be zero.

Since the infl uence of the NURBS surface control 
points is only local, the sampled points P  will be 
divided into clusters in which a local optimization 
process will be carried out, in order to reduce the 
computational cost of the proposed method.

The optimization process starts with a clustering of 
the set of points P,  such clustering will be achieved 
by a SOM. The objective of the SOM is to find 
homogeneous regions where the optimization process 
can be run without distorting the local shape of the 
surface. Figure 4 shows   an   example   of regions 
found by SOM.

Mutation operator: uncorrelated mutation with n  
mutation step sizes  is applied to the individuals, 
according to (5) and (6). 
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Recombination operator: the recombination operator 
is different for object variables iw  and parameters 

  a global intermediary recombination is applied 
to object variables, according to (9), whereas a local 
intermediary recombination is applied to mutation step 
sizes   according to (10).

Selection operator: the best individuals are selected 
according to the aptitude function given in (8). In order 
to perform a fast computation of the distance between 
the points P  and the NURBS surface S , the points of 
S are stored in a kd-tree structure, so that the searching 
process for fi nding the nearest points between P  and 
S  is of  nlog  order.

      (9)

             ikiikii bubub ,, 21
1'    (10)

where i  is the allele of the individual, ib  is the value 
of the allele, P,  is the size of the recombination pool 
and  is a random number uniformly distributed in [0, 1].

The algorithm in Table 1 summarizes the optimization 
process. After the optimization process, the optimized 
surface is trimmed to eliminate   the   points inserted 
outside the cloud.

Table 1. Optimization process

7.    Experimental results

The method was implemented in a 1.4GHZ Pentium 
M with 512MB of RAM. The fi rst stage, point cloud 
regularization, takes seven seconds to process 15K 
points. We fi rst run ISOMAP algorithm on the point 
cloud to project the cloud on a two-dimensional space, 

as shown in Figure 6(b); then, the two-dimensional 
analysis takes place for inserting and removing points 
where necessary. The two-dimensional regularization 
is shown in Figure 6(c), inserted points are shown in 
red and green color-respectively, whereas the three-
dimensional (point cloud) regularization is shown in 
Figures 6(d) and 7(a). The NURBS surface fi tted to the 
regularized point cloud is shown in Figures 6(e) and 
7(b). Finally, the trimmed NURBS surface is shown 
in fi gures 6(f) and 7(c).

The second stage, surface optimization, takes 
3 minutes for processing 15K points. After 10 
generations average, the evolutionary strategy reached 
the minimum, i.e. the distance between P  and the 
optimized NURBS surface S  reached an average 
of 14% less than the distance between P  and the 
non-optimized NURBS surface. Figure 8 shows 
the effectiveness of the application of the proposed 
method over complex surfaces.

To verify that the shape of the original point cloud was 
not distorted, two metrics were defi ned: i) The relative 
error bdlE  between the diagonal length of the bounding 
box of P and the diagonal length of the bounding box of 
S . ii) The normalized modeling error avgE , according 
to (11), is given in [3]. In our tests, the relative error was 
0.031% and the modeling error was 0.01,

    (11)

where id  and N  denote the signed distance from the 
data ix  and the number of the total data, respectively. 
L  is the bounding box length.

In Table 2, some statistics of the optimization process 
are presented.

Table 2. Statistics of the optimization process
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Figure 6. Stages of the proposed method. (a) Original 
point cloud, (b) Point cloud fl atted by ISOMAP, (c) 

Regularized projection, (d) Regularized point cloud, (e) 
NURBS surface constructed from the regularized point 

cloud, (f) Trimmed and optimized NURBS surface

Figure 7. Bird model. (a) Original model, (b) 
Regularized point cloud, (c) NURBS surface, (d) 

Trimmed NURBS

Figure 8. NURBS fi tted over a complex surface (a) 
Original dataset. (b) Non optimized NURBS surface. (c) 

Optimized NURBS surface

8. CONCLUSIONS AND FUTURE WORK

An automatic method for constructing NURBS 
surfaces from scattered and unorganized point clouds 
was presented. Both our method applicability in 
regular and irregular surfaces and the effectiveness of 
the method improving NURBS surface sharp feature 
representation were shown. It was demonstrated 
that it is possible to fi t complete NURBS surfaces 
to point clouds, without previous construction of 
either polygon meshes or NURBS patch networks; 
as a result, the proposed method is computationally 
effi cient.

The optimization method could be used for optimizing 
approaches that use NURBS patches. In those 
approaches, the clustering process would not be 
necessary, since the optimization process would be 
carried out for each NURBS patch.

Our method cannot be applied over closed surfaces, 
due to the fact that ISOMAP cannot operate on closed 
manifolds. In order to apply our method   over  closed  
surfaces, future works 

Can  point  in  that direction. An additional work 
could focus on: i) detecting holes in the cloud 
before regularizing and then trimming them after  
the regularization process, and ii)  improving  the 
optimization process by automatically establishing 
the number of clusters where the evolutionary strategy 
is run.
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