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ABSTRACT: In many courses with a strong mathematical background, students often experience difficulties when concepts are put 
into practice to solve problems. In our teaching experience, the R language for statistical computing is a powerful tool for exemplifying 
algorithms, solving numerical problems, and illustrating concepts by using complex graphics. This paper presents some non-trivial examples 
of the application of the R language from our instruction of the pattern classification course in our school of engineering.
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RESUMEN: En muchos cursos con un fuerte contenido matemático, los estudiantes usualmente experimentan dificultades cuando los 
conceptos son puestos en práctica para resolver problemas. En nuestra experiencia docente, el lenguaje R para la computación estadística es 
una poderosa herramienta para ejemplificar algoritmos, resolver problemas numéricos y para ilustrar conceptos usando gráficos complejos  
En este artículo, se presentan algunos ejemplos no triviales de la aplicación del lenguaje R en la enseñanza del curso de clasificación de 
patrones en nuestra facultad de ingeniería.

PALABRAS CLAVE: gráficos por computador, enseñanza, algoritmos, reconocimiento de patrones.

1.  INTRODUCTION

There is a significant trend towards the use of 
computational tools in the teaching of courses with 
significant mathematical content; these tools promote 
learning, motivate students in a different way, and help 
students to develop practical skills. Examples of these 
tools are: The Geometer’s Sketchpad [1,2] and Cabri 
Geometry II [3] in the field of geometry, Mathematica 
[4] and Maple in the area of ​​computer algebra, and 
Matlab in the field of numerical computation (mostly 
in engineering).

Moreover, in the teaching of courses in the area of 
computational intelligence such as

•	 Artificial neural networks

•	 Fuzzy and neuro-fuzzy systems

•	 Pattern recognition and pattern classification

•	 Statistical learning

•	 Evolutionary computing

•	 Swarm intelligence, and

•	 Bio-inspired algorithms,

the instructor needs to illustrate algorithms, solve 
numerical problems, and explain concepts and 
examples using complex graphics. In addition, it is 
necessary to do practical work with the aim of getting 
deeper into the concepts presented and to develop 
specific skills.

This problem is common to the teaching of many 
academic courses in mathematics, engineering, 
and economics, and the successful incorporation of 
computational tools as an integral part of the teaching 
strategy has been reported. For example, Gorjanc 
[5,6] presents specific examples of the application 
of Mathematica in the teaching of geometry in the 
curriculum of a civil engineering program, and describes 
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the benefits of using this computational tool. Balkin [7] 
discusses the experiences on the use of Mathematica 
in the classroom and offers some lessons from their 
experience in order to improve teaching. Allenby and 
Rossi [8] describe their teaching experiences and the 
benefits perceived by students in teaching Bayesian 
statistics in a doctoral program in business.

The R programming language for statistical computing 
is an environment, originally developed by Ihaka and 
Gentleman [9], which implements a programming 
language that is a clone of the S language developed 
at AT&T Laboratories [10–12] and S-Plus (which 
is the commercial version of S); S is a language 
designed specifically for data visualization and 
exploration, statistical modeling, and programming 
with data [13]. The R language is commonly used 
for teaching and researching in the fields of statistics, 
forecasting, and econometrics; however, it is almost 
completely unknown in the academic and research 
community dedicated to computational intelligence. 
The first objective of this paper is to contribute to 
the popularization of R inside of the computational 
intelligence community.

In our academic experience, we found that the R 
language is suitable for teaching some courses in 
the area of computational intelligence due to its 
characteristics, particularly in teaching a pattern 
classification and recognition course. The second 
objective of this paper is to present specific examples 
of the use of the R language for illustrating algorithms 
and for building complex graphics.

This paper is organized as follows: In Section 2, we 
present a short introduction to the R language. In 
Section 3, several examples are presented. Finally, we 
conclude in Section 4.

2.  THE R PROGRAMMING ENVIRONMENT 
AND THEIR LANGUAGE

The R environment is a free software under the GNU 
license given by the Free Software Foundation, which 
can be downloaded directly from the site http://www.r-
project.org/.

Advanced users can interact with the system through 
a command line, but several packages provide the 

environment with a graphical user interface based on 
menus and dialog boxes [14,15].

The programming language is based heavily on the 
paradigms of functional programming and object-oriented 
programming [16,17], although it has some similarity with 
the syntax of the C and C++ languages [18].

Some language features are as follows:

•	 Mechanisms for handling large amounts of 
information

•	 An extensive collection of statistical tools for data 
analysis

•	 A system for creating and manipulating complex 
graphics

•	 More than 2000 packages to extend the functionality 
of the environment

•	 An elegant, simple, and effective programming 
language

•	 A system for debugging and exception handling

Several studies have demonstrated the versatility of 
the R language. For example, the main routines of the 
R language for the analysis and time series prediction 
in energy markets are described in [19]; in [20], the 
implementation of a linear associative memory (a type 
of artificial neural network) is discussed. 

3.  EXAMPLES

In this section, we present some non-trivial cases on 
the preparation of examples in the area of ​​pattern 
recognition and classification using the R language.

3.1.  3-D SURFACES

The plotting of surfaces in three dimensions (3-D) is one 
of the main tasks performed in the exemplification of 
many problems in the fields of pattern recognition [21], 
artificial neural networks [21], and neuro-fuzzy systems 
[22].  While the R language has several primitive 
functions for visualizing datasets of two variables in 
3-D, there is no function that can build this type of 
graphic directly for a function. In this first example, we 
write and use a new function called surface.3D. This 
new function has the following parameters: the function 
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to be plotted, limits for the  and  axes, and plots for 
the resulting 3-D surface. The code of the Surface.3D 
function is listed in the Appendix. A typical example 
of the function usage is presented below, and the plot 
of the function is presented the in Fig. 1.

> bowl <-
+ function(x , y)
+ {
+     cx1 = 1.5
+     cy1 = -1.0
+     z1 = 1/(1 + 2 * (x - cx1)^2 + (y - 
cy1)^2)
+     cx2 = -1.0
+     cy2 = 1.5
+     z2 = 1/(1 + (x - cx2)^2 + (y - cy2)^2)
+     return( -(z1 + 0.6 * z2) + 5)
+ }
> 
> surface.3D( fn = bowl, xlim = c(-3, 3), 
+   ylim = c(-3, 3), N = 40, theta = -25, 
+   phi = 35, col = ‘gray’, ltheta = -120, 
+   shade = 0.45) 
>

Figure 1. 3-D plot obtained using the surface.3D function

3.2.  Bayesian classifier for normal distribution

The fundamental problem addressed in the area of ​​
pattern classification is determining to which class, , 
belongs an element . Depending on the assumptions 

made about the problem, different methodologies are 
used for answering this question.

In the simplest case, it is assumed [23]: firstly, that 
there are only two classes; and secondly, that the 
probability of the membership of  to each class follows 
a multivariate normal distribution whose parameters 
are known. The classification rule is expressed using 
a discriminant function  that measures the probability 
of . Thus, the classification rule can be expressed as:

Decide that x∈C1 when  g1 (x)>g2 (x);
otherwise, decide that x∈C2 

where: 

gk (x)=p(x│Ck )×P(Ck )

As a first numerical problem, we want to find the decision 
boundary for the presented case. That is, the point at 
which g1 (x)=g2 (x), when g1 (x)=p(x│C1) P(C1)=0.3× 
N [-0.5,1] and g2 (x)=p (x│C2) P(C2)=0.7×N[0.5,1]. 
The notation N [c,σ] represents a normal probability 
distribution centered at c and with standard deviation σ.

To solve the problem, the function [g1 (x)-g2 (x)]2 

is minimized numerically using the optim function, 
which is implemented in the R language distribution. 
The decision boundary corresponds to the vertical line 
in Fig. 2(a). The code used to perform calculations and 
generate Fig. 2(a) is as follows:

> par(mfrow = c(2,1))
> PC1 = 0.3
> PC2 = 0.7
> zz1 = function (x){PC1 * dnorm(x, -0.5, 
1.0)}
> zz2 = function (x){PC2 * dnorm(x, +0.5, 
1.0)}
> zz3 = function (x) { (zz1(x) - zz2(x))^2 }
> s0 =  optim(par = 0, fn = zz3, method = 
+ “L-BFGS-B”, lower = -3, upper = 3)$par
> curve( expr = zz2, from = -4, to = 4, 
+ lwd = 2, ylab = ‘’)
> curve( expr = zz1, from = -4, to = 4, lwd 
= 2,
+ add = TRUE)
> abline(h=0,lty=3)
> abline(v=0,lty=3)
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> text(x=-2.8, y=0.09,
+ expression(p(x/C[1])*P(C[1]))) 
> text(x=+2.6, y=0.23,+
+ expression(p(x/C[2])*P(C[2]))) 
> segments(x0=s0, y0=0.0, x1=s0, y1=zz1(s0), 
lwd=5)
> title(main = ‘(a)’) 
>
A related concept is the probability of error when 
making a decision, which can be expressed as:

P(error│x) 

For the numerical example presented, the error 
probability corresponds to the shaded areas in Fig. 2(b), 
which were obtained with the following code:

Figure 2. Example of a Gaussian classifier: (a) decision 
boundary, (b) classification error regions

> zz4 = function (x){dnorm(x, -0.5, 1.0)}
> zz5 = function (x){dnorm(x, +0.5, 1.0)}
> curve( expr = zz4, from = -4, to = 4, 
+ lwd = 2, ylab = ‘’)
> curve( expr =zz5, from= -4, to = 4, lwd= 2,
+ add = TRUE)
> segments(x0=s0, y0=0.0, x1=s0, y1=zz4(s0), 
lwd=5)
> abline(h=0,lty=3)
> abline(v=0,lty=3)
> text(x=-3.0, y=0.20, expression(p(x/C[1]))) 
> text(x=+3.0, y=0.20, expression(p(x/C[2]))) 
> #
> s1.x = c(s0, seq(s0, 4, 0.01), 4) 
> s1.y = c(0, zz4(seq(s0, 4, 0.01)), 0) 
> polygon(s1.x,s1.y,density=15, angle = 0) 
> #
> s2.x = c(-4, seq(-4, s0, 0.01), s0) 
> s2.y = c(0, zz5(seq(-4, s0, 0.01)), 0) 
> polygon(s2.x,s2.y,density=15, angle = 90) 
> title(main = ‘(b)’) 
>
The above example can be easily extended to plot the 
decision regions for several bivariate normal distributions 
of probability, by using the surface.3D function. Unlike 
the previous example, we need to assign a different colour 
to every square of the final surface in order to distinguish 
the occupied region for  each probability distribution. This 
is done through one of the options of the surf function. To 
facilitate data entry of the problem, and so that the user 
may define the amount of bivariate normal distributions 
used, we write the discriminant.bivariate function, 
whose code is listed in the Appendix. An example of its 
use is as follows:

> mean = rbind(c(1, 1), c(7, 7), c(9, 0))
> sigma = rbind( c( 0.5, 0, 0, 0.5),
+     c( 1, 0, 0, 1), c( 0.75, 0, 0, 
0.75))
> discriminant.bivariate( mean = mean, 
+     sigma = sigma, xlim = c(-3, 12), 
+ ylim = c(-3, 12), col = c(2, 7, 3), N 
= 40, 
+ threshold = 0, theta = -20, phi = 20, 
+ ltheta = -120, shade = 0.65) 
>
which generates the graph shown in Fig. 3. 

Additionally, we consider the case when the element 
does not belong to any class. To do this, we include a 
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lower limit for the value of the discriminant function, 
below which the element is not assigned to any class. 
Figure 4 presents the same example as above, but 
including a lower limit of 0.10. The code is as follows:

> discriminant.bivariate( mean = mean, 
+   sigma = sigma, xlim = c(-3,12), 
+   ylim = c(-3,12), col = c(2,7,3),
+   N = 40, threshold = 0.1, theta = -20, 
+   phi = 20, ltheta = -120, shade 0.65)
> 

Figure 3. Decision regions for three bivariate normal 
distributions

Figure 4. Decision regions for three bivariate normal 
distributions with a lower limit of 0.010

3.3.  Data classification in 2-d

The R language has no direct functions to plot classification 
plots in 2-D patterns. In this case, we write the classify.2D.
plot function with the aim of facilitating the visualization 
of these problems. The function takes as input an n × 2 
matrix representing the coordinates x1 and x2 of n points. 
Additionally, the parameter d is a binary matrix of n rows 
by the number of classes in the data; each element of d 
takes the value 1 when the current pattern belongs to the 
class, and 0 otherwise.

For the data used in the example above, the call to 
classify.2D.plot without specifying the classes

> classify.2D.plot(x = cbind(x1, x2))

generates the graph shown in Fig. 5. When we specify 
a single class, it is assumed that we have a dichotomous 
classification dataset, and the function generates a 
graph indicating the specified class for each element 
in the dataset. The call

> classify.2D.plot(x = cbind(x1, x2),
+ d = cbind(d1+d2))

Figure 5. Use of the classify.2D.plot function without 
specify the classes of the inputs

generates the graph in Fig. 6. When we specify more 
than one class, each point is displayed with a number 
indicating to which class it belongs. In Fig. 7, we 
present the output obtained for

> classify.2D.plot(x = cbind(x1, x2), 
+ d = cbind(d1,d2,d3))
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In addition, classify.2D.plot is able to receive the 
parameters of one or more linear classifiers with the 
aim of plotting the decision boundaries. In Fig. 8, 
we present the graphic obtained using the following 
commands:

> classify.2D.plot(x = cbind(x1, x2), d =
+ cbind(d1,d2,d3), intercept = obj$b, coefs 
= obj$w,
+ density = 20, col = ‘gray’)

where the coefs and intercept parameters were obtained 
using the perceptron rule (not illustrated here).

Figure 8, in addition to displaying data and decision 
boundaries, can illustrate two very important concepts 
in the field of linear classifiers. Firstly, the empty 
region in the center of the graph, corresponding to the 
points not belonging to any class, is easily visualized. 
Secondly, it is easy to see the regions of points which 
belong to more than one class; these regions are filled 
with two or more line patterns.

Figure 6. Plot for a classification problem with two 
classes

3.4.  Nonlinear decision boundary 

Finally, we exemplify how to plot the decision 
boundary of a nonlinear classifier. The R language has 
no primitive function that allows the user to plot the 
contour of a function. In order to meet this need, the 
contour.2D function was written. The levels parameter 
is used to specify which contour lines to be plotted 

are. In order to obtain the contour lines of the decision 
boundary, it is necessary to set the parameter to an 
appropriate value depending on the classifier.

Figure 7. Plot for a classification problem with several 
classes

Figure 8. Plot for a classification problem with several 
classes and decision boundaries

The procedure for obtaining the decision boundary 
will be exemplified for a bipolar XOR function. In this 
case, the nonlinear classifier is specified as the function 
g(x1,x2 )=0.667x1

2-x1 x2+0.667x2
2-1.333. The decision 

boundary is obtained for g(x1,x2 )=0. The commands 
used to obtain Figs. 9 and 10 are the following:
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> xor.x = rbind(c(-1,  -1), c(-1, +1), 
+ c(+1, -1), c(+1, +1))
> xor.d = cbind(c(0, +1, +1 , 0))
> zz <- function(x1, x2) {return (+ 0.667 * 
+ x1^2 - 1 * x1 * x2 + 0.667* x2^2 - 1.333)}
> classify.2D.plot(x = xor.x, d = xor.d, xlim
+ = c(-3, 3), ylim = c(-3, 3)) 
> abline(h = 0, v = 0)
> contour.2D (fn = zz, xlim = c(-3, 3), ylim =
+ c(-3, 3), N = 50, nlevels = 60, levels = 0,
+ col = NULL, add = TRUE, lwd = 2)
>
> surface.3D( fn=zz, xlim=c(-3,3), 
+ ylim=c(-3,3), N=40, theta=-25, phi=35,
+  col=’gray80’, ltheta=-120, shade=0.45 )
>

Figure 9. Boundary decision for a nonlinear classifier 
solving the bipolar XOR problem

4.  CONCLUSIONS

In this article, we have presented several nontrivial 
examples of plotting functions in order to illustrate key 
concepts in the field of pattern classification using the R 
language. The main objective of this paper is to provide 
to the reader with practical guidance on building 
advanced graphics using this computational tool. The 
work presented is not exhaustive, but it demonstrates 
the potential of R for the construction of advanced 
graphics; in addition, it serves as a starting point for 
the reader to explore other language features, and build 
their own functions for illustrate problems in the areas 
of pattern recognition and pattern classification.

5.  APPENDIX

5.1.  The surface.3D function

surface.3D  <-
function (fn, fc = NULL, xlim = c(0, 1), 
    ylim = c(0, 1), N = 20, col = “white”, 
...) 
{
    x = seq(xlim[1], xlim[2], length.out = N)
    y = seq(ylim[1], ylim[2], length.out = N)
    g = expand.grid(x = x, y = y)
    z = matrix(fn(g$x, g$y), N, N)
    if (!is.null(fc)) {
        x.c = x[-N] + 0.5 * (x[2] - x[1])
        y.c = y[-N] + 0.5 * (y[2] - y[1])
        g = expand.grid(x = x.c, y = y.c)
        col = matrix(fc(g$x, g$y), N-1, N-1)
    }
    persp(x = x, y = y, z = z, col = col, ...)
}

5.2.  The discriminant.bivariate function

discriminant.bivariate  <-
function (mean, sigma, xlim = c(0, 1), 
	 ylim = c(0, 1), col = “white”, 
	 threshold = 0, ...) 
{
    calc.prob <- function(x, y, flag = 0) {
        g = rep(0, times = length(x))
        n = rep(1, times = length(x))
        for (k in 1:nrow(mean)) {
            p = dmvnorm(
                  x = cbind(x, y),
                  mean = mean[k, ],
                  sigma=matrix(sigma[k,],2,2))
            n[p > g] = k
            g = pmax(p, g)
        }
        if (flag == 0) {
            return(g)
        }
        else {
            if (length(col) == 1) 
                col = rep(col, 
                      times = nrow(x))
            c = col[n]
            c[g < threshold] = 8
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            return(c)
        }
    }
    fn <- function(x, y) calc.prob(x, y, 0)
    fc <- function(x, y) calc.prob(x, y, 1)
    surface.3D(fn = fn, fc = fc, xlim = xlim, 
               ylim = ylim, ...)
}
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