
Dyna, year 79, Nro. 173, pp. 81-88. Medellin, june, 2012. ISSN 0012-7353

EXAMPLES IN THE CLASSROOM: PATTERN CLASSIFICATION
USING THE R LANGUAGE

EJEMPLOS EN EL AULA DE CLASE: CLASIFICACIÓN DE
PATRONES USANDO EL LENGUAJE R

JUAN DAVID VELÁSQUEZ HENAO
Ph.D,Universidad Nacional de Colombia, jdvelasq@unal.edu.co

JOHN WILLIAN BRANCH BEDOYA
Ph.D, Universidad Nacional de Colombia, jwbranch@unal.edu.co

Received for review: October 10th, 2011, accepted: February 06th, 2012, final version: March 26th, 2012

ABSTRACT: In many courses with a strong mathematical background, students often experience difficulties when concepts are put
into practice to solve problems. In our teaching experience, the R language for statistical computing is a powerful tool for exemplifying
algorithms, solving numerical problems, and illustrating concepts by using complex graphics. This paper presents some non-trivial examples
of the application of the R language from our instruction of the pattern classification course in our school of engineering.

KEYWORDS: computer graphics, teaching, algorithms, pattern recognition.

RESUMEN: En muchos cursos con un fuerte contenido matemático, los estudiantes usualmente experimentan dificultades cuando los
conceptos son puestos en práctica para resolver problemas. En nuestra experiencia docente, el lenguaje R para la computación estadística es
una poderosa herramienta para ejemplificar algoritmos, resolver problemas numéricos y para ilustrar conceptos usando gráficos complejos
En este artículo, se presentan algunos ejemplos no triviales de la aplicación del lenguaje R en la enseñanza del curso de clasificación de
patrones en nuestra facultad de ingeniería.

PALABRAS CLAVE: gráficos por computador, enseñanza, algoritmos, reconocimiento de patrones.

1. INTRODUCTION

There is a significant trend towards the use of
computational tools in the teaching of courses with
significant mathematical content; these tools promote
learning, motivate students in a different way, and help
students to develop practical skills. Examples of these
tools are: The Geometer’s Sketchpad [1,2] and Cabri
Geometry II [3] in the field of geometry, Mathematica
[4] and Maple in the area of ​​computer algebra, and
Matlab in the field of numerical computation (mostly
in engineering).

Moreover, in the teaching of courses in the area of
computational intelligence such as

•	 Artificial neural networks

•	 Fuzzy and neuro-fuzzy systems

•	 Pattern recognition and pattern classification

•	 Statistical learning

•	 Evolutionary computing

•	 Swarm intelligence, and

•	 Bio-inspired algorithms,

the instructor needs to illustrate algorithms, solve
numerical problems, and explain concepts and
examples using complex graphics. In addition, it is
necessary to do practical work with the aim of getting
deeper into the concepts presented and to develop
specific skills.

This problem is common to the teaching of many
academic courses in mathematics, engineering,
and economics, and the successful incorporation of
computational tools as an integral part of the teaching
strategy has been reported. For example, Gorjanc
[5,6] presents specific examples of the application
of Mathematica in the teaching of geometry in the
curriculum of a civil engineering program, and describes

Velásquez & Branch 82

the benefits of using this computational tool. Balkin [7]
discusses the experiences on the use of Mathematica
in the classroom and offers some lessons from their
experience in order to improve teaching. Allenby and
Rossi [8] describe their teaching experiences and the
benefits perceived by students in teaching Bayesian
statistics in a doctoral program in business.

The R programming language for statistical computing
is an environment, originally developed by Ihaka and
Gentleman [9], which implements a programming
language that is a clone of the S language developed
at AT&T Laboratories [10–12] and S-Plus (which
is the commercial version of S); S is a language
designed specifically for data visualization and
exploration, statistical modeling, and programming
with data [13]. The R language is commonly used
for teaching and researching in the fields of statistics,
forecasting, and econometrics; however, it is almost
completely unknown in the academic and research
community dedicated to computational intelligence.
The first objective of this paper is to contribute to
the popularization of R inside of the computational
intelligence community.

In our academic experience, we found that the R
language is suitable for teaching some courses in
the area of computational intelligence due to its
characteristics, particularly in teaching a pattern
classification and recognition course. The second
objective of this paper is to present specific examples
of the use of the R language for illustrating algorithms
and for building complex graphics.

This paper is organized as follows: In Section 2, we
present a short introduction to the R language. In
Section 3, several examples are presented. Finally, we
conclude in Section 4.

2. THE R PROGRAMMING ENVIRONMENT
AND THEIR LANGUAGE

The R environment is a free software under the GNU
license given by the Free Software Foundation, which
can be downloaded directly from the site http://www.r-
project.org/.

Advanced users can interact with the system through
a command line, but several packages provide the

environment with a graphical user interface based on
menus and dialog boxes [14,15].

The programming language is based heavily on the
paradigms of functional programming and object-oriented
programming [16,17], although it has some similarity with
the syntax of the C and C++ languages [18].

Some language features are as follows:

•	 Mechanisms for handling large amounts of
information

•	 An extensive collection of statistical tools for data
analysis

•	 A system for creating and manipulating complex
graphics

•	 More than 2000 packages to extend the functionality
of the environment

•	 An elegant, simple, and effective programming
language

•	 A system for debugging and exception handling

Several studies have demonstrated the versatility of
the R language. For example, the main routines of the
R language for the analysis and time series prediction
in energy markets are described in [19]; in [20], the
implementation of a linear associative memory (a type
of artificial neural network) is discussed.

3. EXAMPLES

In this section, we present some non-trivial cases on
the preparation of examples in the area of ​​pattern
recognition and classification using the R language.

3.1. 3-D SURFACES

The plotting of surfaces in three dimensions (3-D) is one
of the main tasks performed in the exemplification of
many problems in the fields of pattern recognition [21],
artificial neural networks [21], and neuro-fuzzy systems
[22]. While the R language has several primitive
functions for visualizing datasets of two variables in
3-D, there is no function that can build this type of
graphic directly for a function. In this first example, we
write and use a new function called surface.3D. This
new function has the following parameters: the function

Dyna 173, 2012 83

to be plotted, limits for the and axes, and plots for
the resulting 3-D surface. The code of the Surface.3D
function is listed in the Appendix. A typical example
of the function usage is presented below, and the plot
of the function is presented the in Fig. 1.

> bowl <-
+ function(x , y)
+ {
+ cx1 = 1.5
+ cy1 = -1.0
+ z1 = 1/(1 + 2 * (x - cx1)^2 + (y -
cy1)^2)
+ cx2 = -1.0
+ cy2 = 1.5
+ z2 = 1/(1 + (x - cx2)^2 + (y - cy2)^2)
+ return(-(z1 + 0.6 * z2) + 5)
+ }
>
> surface.3D(fn = bowl, xlim = c(-3, 3),
+ ylim = c(-3, 3), N = 40, theta = -25,
+ phi = 35, col = ‘gray’, ltheta = -120,
+ shade = 0.45)
>

Figure 1. 3-D plot obtained using the surface.3D function

3.2. Bayesian classifier for normal distribution

The fundamental problem addressed in the area of ​​
pattern classification is determining to which class, ,
belongs an element . Depending on the assumptions

made about the problem, different methodologies are
used for answering this question.

In the simplest case, it is assumed [23]: firstly, that
there are only two classes; and secondly, that the
probability of the membership of to each class follows
a multivariate normal distribution whose parameters
are known. The classification rule is expressed using
a discriminant function that measures the probability
of . Thus, the classification rule can be expressed as:

Decide that x∈C1 when g1 (x)>g2 (x);
otherwise, decide that x∈C2

where:

gk (x)=p(x│Ck)×P(Ck)

As a first numerical problem, we want to find the decision
boundary for the presented case. That is, the point at
which g1 (x)=g2 (x), when g1 (x)=p(x│C1) P(C1)=0.3×
N [-0.5,1] and g2 (x)=p (x│C2) P(C2)=0.7×N[0.5,1].
The notation N [c,σ] represents a normal probability
distribution centered at c and with standard deviation σ.

To solve the problem, the function [g1 (x)-g2 (x)]2

is minimized numerically using the optim function,
which is implemented in the R language distribution.
The decision boundary corresponds to the vertical line
in Fig. 2(a). The code used to perform calculations and
generate Fig. 2(a) is as follows:

> par(mfrow = c(2,1))
> PC1 = 0.3
> PC2 = 0.7
> zz1 = function (x){PC1 * dnorm(x, -0.5,
1.0)}
> zz2 = function (x){PC2 * dnorm(x, +0.5,
1.0)}
> zz3 = function (x) { (zz1(x) - zz2(x))^2 }
> s0 = optim(par = 0, fn = zz3, method =
+ “L-BFGS-B”, lower = -3, upper = 3)$par
> curve(expr = zz2, from = -4, to = 4,
+ lwd = 2, ylab = ‘’)
> curve(expr = zz1, from = -4, to = 4, lwd
= 2,
+ add = TRUE)
> abline(h=0,lty=3)
> abline(v=0,lty=3)

Velásquez & Branch 84

> text(x=-2.8, y=0.09,
+ expression(p(x/C[1])*P(C[1])))
> text(x=+2.6, y=0.23,+
+ expression(p(x/C[2])*P(C[2])))
> segments(x0=s0, y0=0.0, x1=s0, y1=zz1(s0),
lwd=5)
> title(main = ‘(a)’)
>
A related concept is the probability of error when
making a decision, which can be expressed as:

P(error│x)

For the numerical example presented, the error
probability corresponds to the shaded areas in Fig. 2(b),
which were obtained with the following code:

Figure 2. Example of a Gaussian classifier: (a) decision
boundary, (b) classification error regions

> zz4 = function (x){dnorm(x, -0.5, 1.0)}
> zz5 = function (x){dnorm(x, +0.5, 1.0)}
> curve(expr = zz4, from = -4, to = 4,
+ lwd = 2, ylab = ‘’)
> curve(expr =zz5, from= -4, to = 4, lwd= 2,
+ add = TRUE)
> segments(x0=s0, y0=0.0, x1=s0, y1=zz4(s0),
lwd=5)
> abline(h=0,lty=3)
> abline(v=0,lty=3)
> text(x=-3.0, y=0.20, expression(p(x/C[1])))
> text(x=+3.0, y=0.20, expression(p(x/C[2])))
> #
> s1.x = c(s0, seq(s0, 4, 0.01), 4)
> s1.y = c(0, zz4(seq(s0, 4, 0.01)), 0)
> polygon(s1.x,s1.y,density=15, angle = 0)
> #
> s2.x = c(-4, seq(-4, s0, 0.01), s0)
> s2.y = c(0, zz5(seq(-4, s0, 0.01)), 0)
> polygon(s2.x,s2.y,density=15, angle = 90)
> title(main = ‘(b)’)
>
The above example can be easily extended to plot the
decision regions for several bivariate normal distributions
of probability, by using the surface.3D function. Unlike
the previous example, we need to assign a different colour
to every square of the final surface in order to distinguish
the occupied region for each probability distribution. This
is done through one of the options of the surf function. To
facilitate data entry of the problem, and so that the user
may define the amount of bivariate normal distributions
used, we write the discriminant.bivariate function,
whose code is listed in the Appendix. An example of its
use is as follows:

> mean = rbind(c(1, 1), c(7, 7), c(9, 0))
> sigma = rbind(c(0.5, 0, 0, 0.5),
+ c(1, 0, 0, 1), c(0.75, 0, 0,
0.75))
> discriminant.bivariate(mean = mean,
+ sigma = sigma, xlim = c(-3, 12),
+ ylim = c(-3, 12), col = c(2, 7, 3), N
= 40,
+ threshold = 0, theta = -20, phi = 20,
+ ltheta = -120, shade = 0.65)
>
which generates the graph shown in Fig. 3.

Additionally, we consider the case when the element
does not belong to any class. To do this, we include a

Dyna 173, 2012 85

lower limit for the value of the discriminant function,
below which the element is not assigned to any class.
Figure 4 presents the same example as above, but
including a lower limit of 0.10. The code is as follows:

> discriminant.bivariate(mean = mean,
+ sigma = sigma, xlim = c(-3,12),
+ ylim = c(-3,12), col = c(2,7,3),
+ N = 40, threshold = 0.1, theta = -20,
+ phi = 20, ltheta = -120, shade 0.65)
>

Figure 3. Decision regions for three bivariate normal
distributions

Figure 4. Decision regions for three bivariate normal
distributions with a lower limit of 0.010

3.3. Data classification in 2-d

The R language has no direct functions to plot classification
plots in 2-D patterns. In this case, we write the classify.2D.
plot function with the aim of facilitating the visualization
of these problems. The function takes as input an n × 2
matrix representing the coordinates x1 and x2 of n points.
Additionally, the parameter d is a binary matrix of n rows
by the number of classes in the data; each element of d
takes the value 1 when the current pattern belongs to the
class, and 0 otherwise.

For the data used in the example above, the call to
classify.2D.plot without specifying the classes

> classify.2D.plot(x = cbind(x1, x2))

generates the graph shown in Fig. 5. When we specify
a single class, it is assumed that we have a dichotomous
classification dataset, and the function generates a
graph indicating the specified class for each element
in the dataset. The call

> classify.2D.plot(x = cbind(x1, x2),
+ d = cbind(d1+d2))

Figure 5. Use of the classify.2D.plot function without
specify the classes of the inputs

generates the graph in Fig. 6. When we specify more
than one class, each point is displayed with a number
indicating to which class it belongs. In Fig. 7, we
present the output obtained for

> classify.2D.plot(x = cbind(x1, x2),
+ d = cbind(d1,d2,d3))

Velásquez & Branch 86

In addition, classify.2D.plot is able to receive the
parameters of one or more linear classifiers with the
aim of plotting the decision boundaries. In Fig. 8,
we present the graphic obtained using the following
commands:

> classify.2D.plot(x = cbind(x1, x2), d =
+ cbind(d1,d2,d3), intercept = obj$b, coefs
= obj$w,
+ density = 20, col = ‘gray’)

where the coefs and intercept parameters were obtained
using the perceptron rule (not illustrated here).

Figure 8, in addition to displaying data and decision
boundaries, can illustrate two very important concepts
in the field of linear classifiers. Firstly, the empty
region in the center of the graph, corresponding to the
points not belonging to any class, is easily visualized.
Secondly, it is easy to see the regions of points which
belong to more than one class; these regions are filled
with two or more line patterns.

Figure 6. Plot for a classification problem with two
classes

3.4. Nonlinear decision boundary

Finally, we exemplify how to plot the decision
boundary of a nonlinear classifier. The R language has
no primitive function that allows the user to plot the
contour of a function. In order to meet this need, the
contour.2D function was written. The levels parameter
is used to specify which contour lines to be plotted

are. In order to obtain the contour lines of the decision
boundary, it is necessary to set the parameter to an
appropriate value depending on the classifier.

Figure 7. Plot for a classification problem with several
classes

Figure 8. Plot for a classification problem with several
classes and decision boundaries

The procedure for obtaining the decision boundary
will be exemplified for a bipolar XOR function. In this
case, the nonlinear classifier is specified as the function
g(x1,x2)=0.667x1

2-x1 x2+0.667x2
2-1.333. The decision

boundary is obtained for g(x1,x2)=0. The commands
used to obtain Figs. 9 and 10 are the following:

Dyna 173, 2012 87

> xor.x = rbind(c(-1, -1), c(-1, +1),
+ c(+1, -1), c(+1, +1))
> xor.d = cbind(c(0, +1, +1 , 0))
> zz <- function(x1, x2) {return (+ 0.667 *
+ x1^2 - 1 * x1 * x2 + 0.667* x2^2 - 1.333)}
> classify.2D.plot(x = xor.x, d = xor.d, xlim
+ = c(-3, 3), ylim = c(-3, 3))
> abline(h = 0, v = 0)
> contour.2D (fn = zz, xlim = c(-3, 3), ylim =
+ c(-3, 3), N = 50, nlevels = 60, levels = 0,
+ col = NULL, add = TRUE, lwd = 2)
>
> surface.3D(fn=zz, xlim=c(-3,3),
+ ylim=c(-3,3), N=40, theta=-25, phi=35,
+ col=’gray80’, ltheta=-120, shade=0.45)
>

Figure 9. Boundary decision for a nonlinear classifier
solving the bipolar XOR problem

4. CONCLUSIONS

In this article, we have presented several nontrivial
examples of plotting functions in order to illustrate key
concepts in the field of pattern classification using the R
language. The main objective of this paper is to provide
to the reader with practical guidance on building
advanced graphics using this computational tool. The
work presented is not exhaustive, but it demonstrates
the potential of R for the construction of advanced
graphics; in addition, it serves as a starting point for
the reader to explore other language features, and build
their own functions for illustrate problems in the areas
of pattern recognition and pattern classification.

5. APPENDIX

5.1. The surface.3D function

surface.3D <-
function (fn, fc = NULL, xlim = c(0, 1),
 ylim = c(0, 1), N = 20, col = “white”,
...)
{
 x = seq(xlim[1], xlim[2], length.out = N)
 y = seq(ylim[1], ylim[2], length.out = N)
 g = expand.grid(x = x, y = y)
 z = matrix(fn(gx, gy), N, N)
 if (!is.null(fc)) {
 x.c = x[-N] + 0.5 * (x[2] - x[1])
 y.c = y[-N] + 0.5 * (y[2] - y[1])
 g = expand.grid(x = x.c, y = y.c)
 col = matrix(fc(gx, gy), N-1, N-1)
 }
 persp(x = x, y = y, z = z, col = col, ...)
}

5.2. The discriminant.bivariate function

discriminant.bivariate <-
function (mean, sigma, xlim = c(0, 1),
	 ylim = c(0, 1), col = “white”,
	 threshold = 0, ...)
{
 calc.prob <- function(x, y, flag = 0) {
 g = rep(0, times = length(x))
 n = rep(1, times = length(x))
 for (k in 1:nrow(mean)) {
 p = dmvnorm(
 x = cbind(x, y),
 mean = mean[k,],
 sigma=matrix(sigma[k,],2,2))
 n[p > g] = k
 g = pmax(p, g)
 }
 if (flag == 0) {
 return(g)
 }
 else {
 if (length(col) == 1)
 col = rep(col,
 times = nrow(x))
 c = col[n]
 c[g < threshold] = 8

Velásquez & Branch 88

 return(c)
 }
 }
 fn <- function(x, y) calc.prob(x, y, 0)
 fc <- function(x, y) calc.prob(x, y, 1)
 surface.3D(fn = fn, fc = fc, xlim = xlim,
 ylim = ylim, ...)
}

REFERENCES

[1] Jackiw, N., The Geometer’s Sketchpad [computer
software]. Key Curriculum Press: Emeryville, CA, 2001.

[2] Jackiw, N. Drawing Worlds: Scripted Exploration
Environments in The Geometer’s Sketchpad” in “Geometry
Turned On!: Dynamic Software in Learning, Visualizing
Complex Functions Teaching, and Research”, eds. James
R. King and Doris Schattschneider (Washington, D.C.: The
Mathematical Association of America): 179-184, 1997.

[3] Laborde, J.M.; Bellemain, F., Cabri Geometry II
computer software. LSD2- IMAG Grenoble and Texas
Instruments, 1992.

[4] Wolfram, S., The Mathematica book. Cambridge, UK:
Cambridge University Press, 1996.

[5] Gorjanc, S., Some Examples of Using Mathematica
and webMathematica in Teaching Geometry. Journal of
Geometry Graphics: 2(8), pp. 243-253, 2004.

[6] Gorjanc, S., Some Examples of Using Mathematica
in Teaching Geometry. Proc. 10th ICGG (International
Conference on Geometry and Graphics), Kiev (Ukraine),
July 28 - Aug. 3, Vol. 2, pp. 89-93, 2002.

[7] Balkin, S.D., Taking Calculus with Mathematica. The
Mathematica Journal: 4(2), pp. 52-53, 1994.

[8] Allenby, G.M. and Rossi, P.E. (2008), Teaching Bayesian
Statistics to Marketing and Business Students. The American
Statistician: 62(3), pp. 195-198, 2008.

[9] Ihaka, R. and Gentleman, R. (1996), R: A language for
data analysis and graphics. Journal of Computational and
Graphical Statistics: 5, pp. 299–314, 1996.

[10] Becker, R., Chambers, J.M. and Wilks, A., The (new) S
language: A programming environment for data analysis and
graphics. Pacific Grove: Wadsworth & Brooks/Cole, 1998.

[11] Chambers, J. M., Programming with data: A guide to
the S language. New York: Springer-Verlag, 1998.

[12] Chambers, J.M. and Hastie, T.J., Statistical Models in
S. Chapman & Hall, London, 1992.

[13] Insightful, S-Plus 8 for Windows. User’s Guide.
Insightful Corporation, Seattle, WA, 2007.

[14] Fox, J., The R commander: A basic statistics graphical
user interface to R. Journal of Statistical Software: 14(9),
2005.

[15] Sriplung, H., Integrated computing environment for R.
R package Version 1.0–1. URL: http://www.r-ice.org., 2006

[16] Chambers, J. M., Programming with data: A guide to
the S language. New York: Springer-Verlag, 1998.

[17] Chambers, J.M. and Hastie, T. J., Statistical Models in
S. Chapman & Hall, London, 1992.

[18] Grunsky, E.C., R: a data analysis and statistical
programming environment -- an emerging tool for the
geosciences. Computers Geosciences: 28 (10), pp. 1219-
1222, 2002.

[19] Velásquez, J.D., Olaya, Y. and Franco, C.J., Análisis
y predicción de series de tiempo en mercados de energía
usando el lenguaje R. DYNA: 78(165), pp. 287-296, 2011.

[20] Velásquez, J.D., Implementación de una memoria
asociativa lineal usando el lenguaje R. Revista Avances en
Sistemas e Informática: 7(2), pp. 97-103, 2010.

[21] Ripley, B.D., Pattern Recognition and Neural Networks.
Cambridge University Press, 1996.

[22] Jang, J.-S.R., Sun, C.-T. and Mizutani, E., Neuro-Fuzzy
and Soft Computing: A computational approach to learning
and machine intelligence. Prentice Hall, Upper Saddle River,
NJ, 1997.

[23] Duda, R.O., Hart, P.E. and Stork, D.G., Pattern
Recognition. John Wiley and Sons. 2001.

