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INTR ODUCT/ON •

In [31 Co HUIZ gave a definition for "fibration" on the category Anno of

Banach rings which is closely related to a functor

GR : Al1tlb ... L'l0 Gr

* Work portially supported by a grant of "Colciencias".
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which takes its values on the category of the simplicial groups. It was assumed that

the fibration / of Annb ,are the Banach ring homomorphisms such that the homo-

morp h isms GR(/) of simpl ic ia] groups, are Kan [Ibr ati on s. This notion happened

to be equivalent (Cf. [3; p. 169]) to the notion of Serre fibration given by KAROU-

BI and VILLM1A YOR [41 .

More generally, let F: Annb -+ Gr be a functor of Mayer-Vietoris [5] , and let

R : Annb -+ II°A'1nb

be thc functor defined in [3] , p. 140. We say that a homomorphism / of Annb is

a Kan F-fibration if the morph ism of simplicial groups Ro(110 F) (f) associated

to / (wllere lloF : llo A'1nJ --> llo Gr is the functor that prolongates F dimension

by dimension) is a Kan fibration. The foregoing case is obtained by taking F = Gl ,

the linear group.

In [61 it was proved that, in the discrete.case , this not ion of fibration and the one

of F-fibration due to GERSTEN con c ide [5J . In order to get those equivalences, it

was necessary to characterize the Kan fibrations which are homom orph ism s of sim- ,

pl ici a l groups. The results in this paper complete those of QUILLEN [21 and C.

RUIZ SALGUERO [31 , proposition C.201.2.

We procee? as follows: by reducing the problem to study a Kan homomorphism

we work the problem in the case of simplicial sets and we show the equivalence

between "Kan's relative property" and the notion of "cohereditary se t'", The

consequences are sumarized in theorem 1.601. In § 2 these results are applied to

Simplicial groups and completed with a study on "cohereditary equivalence relations".

The main results are given in theorems 202.2,2.3.4, 203.50
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1. KAN'S RELATIVE PROPERTY

1,1. E pimorphisms of simplic ial groups.

1.1.1. LEMMA [1]. Every simplicial group satisfies Kan's extension con-

dition.

1.1.2. LEMMA. If f: G .... H is an e pim opb ism of simplicial sets in which

H satisfies the Kan extension condition, then every box

of elements of H in dimension n, is lifted into a box of elements of G. That is to

say, there exist

where d,g,=d'lg· for i<j, i,j±k, and j(gz·)=hz'·z z J- z I

Proof: Since we have assumed that H satisfies Kan's condition there exist

a "filler" h (Hn+1 of the given box: d/h) = hi (i i k). On the other hand, sin-

ce f is surjective in each dimension, there exist g (Gn+1 such that f(g) = h.

The faces g. = d.(g) , i. k, provide the desired box.
t z

1.1,3. LEMMA. Every epimorphism of simplicial groups is a Kan fibration.

Proof. Let N be the kernel of a given epimorphism f: G ....H. Let us take

a box go"'" £k' ..• , gn+1 in dimension n, with image ho =f(go)"'" hn+1 =

= f(gn+1)' and suppose that this last one is filled with h ( Hn+1: d/h) = hi r

i i k. We will prove that there is g (Gn+1 such that

i) j(g) = h
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Let x (Gn+1 be such that j(x) = h. Then there exist ei (Nn (i 1- k) such

that gi = ei· d/x). The box eo"'" ek' ...• en+1 is filled by an element

e (Nn+l' We take g = e. x and this concludes the proof of lemma.

The condition of surj ect ivity can be weakened, and one of our purposes is to

exhibit a sequence of equ iv ale n t conditions on an homomorphism of simplicial groups

which are also equivalent to Kan's condition.

1.2. The decomposition 0/ a morphism and Kan's condition.

1.2.1. We begin by decomposing a given homomorphism f : G -. H in an

ep imorphi sm and a rnonomoc.ph ism

/G -. H

p~ /.
K

where K = im(j). According to Lemma LL3, p/ is a Kan fibration. Therefore,

in order to / be a Kan fibration a sufficient condition is that i/ satisfies Kan's

condition. More precisely:

PROPOSITION. In order that a homomorphism 0/ simplicial groups [: G-.H

to satisfy K/;71;'s condition. a necessary and sufficient condition is that the injection

associated to [, satisfies Kan's condition.

We can prove that such condition is a necessary one in a less restrictive way.

In order to do so let g: X -e Y be a simplicial map, let K = l m (g) p : X -. K ,•. g .
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ig: K --> Y be as before. Then

1.2.2. PROPOSITION. If K and g satisfy Kan's condition so does '«:

Proof. Let k1, ••• , kq, •.. , kn+1, be a box of K whose image by ig is

filled with an dement y e Yn+1 '

d.(y)=i (k.) , i v s .
J g J

By lemma 1.1.2., there exist a lifting of the given box (k.) .
J J

In X. That is to

say. there exist a box xo"'" ;q' ... , xn+1' with xi c Xn+1, such that

Since by hypothesis g satisfies Kan's condition, there exist x e Xn+1 satisfying

the Iollowi ng two prope rti e s

••
• g(x) = y

d.(x)=x .
J J

j i q

The element k = Pix) satisfies the two desired properties:

ig(k) = ig Pg(x) = g(x) = y

diCk) = diPix) = Pgdi(x) = Pg(xi) = ki '

(i i q) .

1.3. Kan's relative prop erty .

The proposition above lead us to study monomorph isms which are Kan fibrations

and to extend the results so obtained to maps wich are not, in general, injective.

1.3.1. DEFINITION. A given simplicial subset X of a simplicial set Y
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is said to satisfy Kan condition relative to Y if the injection i: X -> Y is a

Kan fibration.

This means, of course, that if a box of X is filled in Y then the filIer

belongs necessarily to X.

There exist a close relation between Kan's relative condition and connected-

ness. In order to s tabl is h it, let us recall the definition and some properties of

"connected components".

1.3.2. Let X be a simpl ic ial set. Let x,y e Xo' We write x - y if there

exist z ( Xl' such that do(z) = x and d1 (z) = y. The equivalence relation

generated by this relation will be denoted again by -.

Recall that TTO(X) is the quotient of Xo by this relation. By definition, a

simplicial set X is said to be connected if 77 o(X) is a singleton. By the way,

it is also true, that if ! A,\ I is a collection of simplicial sub-sets, and xo( X

is such that i) A,\ is connected; u) xo (A,\ for every '\. then U A,\ is

also a connected simpl icial set.

DEFINITION. Let X a simplicial set, x (Xo. We call the connected

component of x in X and denote it by C(X, [x]) , the union of all connected

simplicial sub-sets of X containing x, It follows from the foregoing remark

that the connected component C(X, [x]) is the largest connected s impl icial sub-

set which contains x.

1.4. Cob ere di tary 5 e ts,

1.4.1. DEFINITION. A simplicial sub-set A of a simplicial set X is

said to be cohereditary if it satisfies the Iol lowing condition:
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(C) In order that an element x (Xn belong to An it is necessary and

sufficient that there exist a face

such that w*(x) ( Am'

1.4.2. Condition (C) is equivalent to the following one:

(C) In order that an element X(X (n>O)n - belongs to An a necessary

and sufficient condition is that there exist a face

for some i, 0.:s i.:s n , such that

Let us prove that (C) => (C). Let x e Xn. Assume that there exist a face

w*: X
n

.... X
m

such that w*(x) e An' According to McLane's descomposition of

w*. we have

with n + q. pm. Therefore

Applying coud ition (C) we get

Applying (C) successively we get
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104-3. It is clear that unions, as well as intersections of cohereditary sub-

sets, are cohered itary. As we will see in the next numeral, the set C(X, [x]) is

the smallest cohered itary sub-set of X containing x. Moreover every coheredita-

ry subset of X is a union of subsets of this kind.

On X' = 11 X ,the subsets
n> 0 n

reditary simplicial subset of X, form

A' = U A ,where A = IAn I is a cohe-
n>o n

a topology on X, to wich we will refer as

the cohereditary topology of X.

1.5. Cobere ditary sets and connectedness.

1.5.1. PROPOSITION. C(X, [xl) is a cohereditary subset of X.

Proof. 1) Let a £ Xl' and assume that di(a) - x , Then there exist a chain

where the arrows are either do or d1 •

It is clear that a simple process of induction reduces the proof of this pant to

show t hat ff an cl erne nt a£X1,do(a)=x (or d1(a)=x), then a belongs

to the connected component of x in X. In order to prove it let L be the

smalIest simplicial subset of X con ta in in g C(X, [xl) and a. Let's pruve that

7T0(L) is a singleton, which impl ies that C(X, [xl) = L and then a e C(X,[x])

In or.der to prove that L is connected recall that in dimension n, L is

the union of C(X,[x])n and the set fonned by the w*(a)'s where
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w*: X I

of w *

-> Xn is a face. Therefore, for n = 0, in the McLane's descomposition

there cannot be any degeneracies and moreover there can be only one face:.di. This

impl ies that

Lo = C(X, [x]) U I do(a) r dl(a) I;

sinc e it has been assumed that the faces of a are equal to x , then certainly

TT JL) is a singleton.

2) Suppose th at we have pro ved that for each a e Xn ' for which there exist

a face d.(a) e C(X, [xl I
1 n- it holds that a c C(X, [xl )n' And let us prove the

property for n+l: let b (: Xn+l, be such that d/b) (: C(X, [x ])n' fOTsome i ;

We will prove first, that for every i. d/b) e C(X, [x])n' In order to do this, and accor-

ding to the induction hypothesis, it is enough to prove that, for some k, did/b»(:C(X,[xJh_I'

For i < j we take k = i-I. For j ~ i we take k = i , Therefore every face

d. o , •• od. (b) e C(X,[x).
Ip 1

0

With a similar process to that in part 1).let L be the smallest simplicial subset

containing C(X, [xl) and b. We have

Iw*(b) I w* = di 0 ••• 0 di l.
o n

We get then, that Lo = C(X, [x] )0' Since L I J C (X, [xl) I we have the 1'0110-

wing diagram
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L1 2 c1

~l !!
Lo Co

! ~

"o(L) « "iCY

where C =: C (X, [vl ), From this we get that 17
0

(L) =: 17
0

(C) is a singleton.

Since L is connected and contains C(X, [x]) we have that L = C (X, [x]) and

therefore that b e C(X, [xl) •

1.5.2. PROPOSITION. Let A be a simplicial subset of X and x (A ,

If A is cobereditary, then C(X, [x] ) S; A .

Pro o]. By induction on n , let us prove that C(X, [x])n S; An .

For n = 0 it is enought to notice that if a chain

,

(where the dimensions of the x.'s
t

and also those of the a.'s
J

can be different)

has some element in A, then all of them are in A. Assume, then, the result for n ,

Let a e C(X, [x] )n+ i : Then do (a) e C(X, [x])n ~ An' Since A is coheredi-

1.5.3. COR OLLARY. The connected components of X are the smallest
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cobe redi tarv s ubs et s of X. Moreover: in order that A~X to be cobereditary it

is necessary and sufficient that A is a union of connected components of X.

Proof. Let us prove the last assertion. According to 1.5.2. if A is cohe-

red itary we have

u C (X, [x] ) C A
x(Ao

Ontheotherhand,foreach a(A, y=d; o ••• o d , (a)(A and y(C(X,[y]) .•1 tp 0

Since C(X, [y]) is cohereditary, then a e C(X, [y]). From it we get

1.6. Kan's relative condition and cohereditary sets.

1.6.1. THEOREM. Let X be a simplicial set and A C X. Then the

following conditions are eq uiualent:

i) A satisfies Kan's condition relative to X.

ii) A is cohereditary in X.

iii) A is a union of connected components of X •

iu) the set A' = .ll A
n;::o n

(ct. 1.4.3.).

is open for the c obe reditary topology of X

u) the complementary of A in X is a simplicial subset of X.

Proof. Let us see that i) => ii) • Let XI' Xn be such that di(x) (A. If we

have shown that di(x) (A for every i , then the d/x) r i =I k, form a box in A

for which x (X is a filler. Since A satisfies Kan's condition relative to X,

then x e A ,
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In order to prove that •• if there exist j such that d:(x) e A then d .
J ' z

di(x) (A for every i" , we use induction on the dimension of x, In fact, if

dim (x) = 1 it is clear that when x , = d . (x) e A these elements alone form a box
J J 0

in A ,which is filled in X, and this filler x is. by hypothesis, in A.

Now let dim (x) = n+l , dj(x) (A. Consider, without loosing generality,

i< j , The relation d. d itx) = d'l d s!») implies that the element y=dz'(x) ,z J J- z

whose dimension equals n, has the face «:J-
in A. An of its faces are in A,

by the induction hypothesis. Those faces conform a box because A satisfies

Kan's con di tion re lat ive to X.

It is obvious that ii) => i)

Proposition L5.3. states the equivale nce Ti) and Hi) •

By definition iii) => ii) (Cf. 1.4.3.). Conversely, let A be a simplicial

subset of x. A' = /I A • Assume that A' is open for the cohereditary topo-
nro n

logy of X', Then there exist a cohe.red itary simplicial subset B of x, such

that ,

B' = 11
n>o

B = A'n

it is clear now that B =A ,n>On n - and then A is cohered] tary.

ii) <=> i) is also evident, since in order that B = U Bn (Bn ~ Xn) to be a
n > o

simplicial subset of X it is necessary and sufficient that B to be stable rel ati-

vely to the faces; i.e.,

x e B~ <> w*(x) e Bn ' w : [n] .... [m] •

These facts been established, let A be a simplicial subset of X. Let
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Bn = Xn - An' Then in order that B = U Bn to be a simplicial subs et a ne-

cessary and sufficient condition is that for every co : [n] ... [m] and x e Xm '

which is equivalent to: A is coh cred it ary .

Simplicial Topologies. Lei 0 = ! A'\ I be a colleclion of simplicial

subsets of a sbnp l icia] set X. We say that 0 is a simplicial topology on X

1.6.2.

if the unions as well as finite intersections (both given dimension by dimension)

of dements of 0 are elements of 0 and if the emply set (dimension by dimen-

sion) and X itself belong to O. These topologies can be compared in the way

used for Top. If A e 0, th e graded set lB I B = X - An n2:0 n n n is said to be

closed for the topology 0 . IL is co-nv-enient to notice that B is not in general

a simplicial subset of X. Accord ing to the previous theorem, part v), we have

COROLLARY. The cohereditary simplicial topology on X is the finest of the

topologies on X which satisfy the condition: .. B is closed => B is a sim-

plicial subset of X".

1.6.3. COROLLARY. Let f: X ... Y be a simplicial map. Assume that in

the descomposition of f,

Pf and f(X) satisfy Kan's condition. Then the following conditions are equiva-

lent:
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a) f is a Kan fibration

b) if is a Kan fibration.

c) f(X) = Im(j) satisfies Kan's condition relatively to Y.

d) f(X) is cohereditary in Y.

e) j(X) is a union of connected components of Y,

2. COHEREDlTARY SIMPLICIAL GROUPS

2.1. Kan's relative condition and c ohereditary notion on L'l0 Gr .

2.1.1. We will say that a simplicial sub-group G of a simplicial group

H satisfies Kan's condition relativcly to H (respectively, is cohereditary in

H) iJ the underlying simplicial subset of G satisfies Kan's condition relatively

to (respectively, is cohereditary in ) the underlying Simplicial subset of H.

2.1.2. Car acter ization of cohereditary subgroups.

PROPOSITION. Let G be a simplicial subgroup of H. In order that G

to be co hereditary in H a necessary and sufficient condition is that the equality

do i x) = 1 (in H) implies x e G. Or equivalently, that for every n e IN , n> 0

Proof. Let us see that the condition implies property (C) of 1.4.2 .. Let

h (Hn be such that for some i ~ 0, ii(h) (Gn_1. We will prove that

h (G, in two steps:

Step L Let us see that ker(d.) C G .
t -

It is_dear that Ker (d ) C G .
o - Sup-

pose that for every j, 1 < j < i K er (d.) C G- • J - and let us prove that Ker t d i) C G.
t -
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Let h e Ker (di). Let x = (si_1 (di_1 (h)r1) h. Then di_1 (x) = 1. Therefore

XfG, by the. induction hypothesis. So we have that di(x)fG. But d/x) =

(di-l (h) r1di(h) = di_1 in:", then di_1(h) e G and thus h = (si_1 di_1 (h) ).XfG.

Step 2. We will prove that if d/h) f. G then h e G. Again we use induc-

tion on i, For i=O, let h e Hn such that do (h) e G. Then the element

x = (so (do (hr1) ). h satisfies do(x) = 1. By hypothesis, x e G. Therefore

Assume now, for every t. 1 S. j < i, that "d.(x) e GJ 0 =>

X e G", where x f H. And let us prove that "di(x) f G => X e G '", Let

h e Hn+1, di(h) e Gn. Then the element x = (si_1 (di_1 (h»)"1).h is such that

di_1 (x) = 1. Therefore by step I, x e G and then di_1(h) = (dJ>;.-)"1), di(hJE G.

Induction guarantees that h e G •
2.1.3. In -v iew of the equivalence established in 1.6.1. between Kan's rela-

ti ve condition and cohe redltary subsets we can claim:

COROLLARY. Let G be a simplicial sub-group of H. In order that G to

satisfy Kan's condition re lative to H, a ne ces sary and sufficient condition is that

for every n ~ 1 ,

Or equivalently, if for every n ~ 0 , and every h e Hn ,and do'" do (h) 1 in

H, then h e G •

2.2. Cohe redit ary relations.

2.2.1. DEFINITION. A s implictal equivalence relations on a simplicial set

x is said to he cohereditary if for every pair of elements x,y e Xn and for

every co : [n] .... [m],
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w*(x)-w*(y) => x-yo

2.2.2. THEOREM. The following conditions are equivalent

a) R is a cohereditary relation on X.

b) The simplicial subset Rex x X (defining the relation) is co hereditary

in X x X .

c) The canonic injection. R -> XxX is a Kan fibration.

d) If

(where xi' zif Xn) are arbitrary boxes in X such that xi - zi' i i k, then the

fillers x (of the first one) and Z (of the second one) , whenever they exist, are

equivalent: x _z.

e) In the quotient simplicial set Y = X / R every face is an injection (and

thus a bijection ). That is to say Y is a simplicial set of the kind

K(A,O), where A is a set

K (A, 0) n = A , n > 0

with the faces equal to idA'

f) X/R is a minimal simplicial set (MOORE) such that

and
7T (X / R) = 0, n > 1

n

Proof. The equivalences a) <=> b) <=>c) (1.6.1.) and e) <=> d) are



evfdenr .

Let us prove that a) => e). Suposse that d.[x] = d.[y]. This means that. t t

[di(x)l=[di(y)] orequlvalently d;(x)_d.(y). Since R iscohereditary x_Yo
,t t

So [x] = (y] . Conversely c) => a) because if w*(x) - w*(y) • x , y (X, then

w*[x] = [w*(x)] = [w*(y) 1 = w*[y] • Since the faces in XIR are assumed to be

injections. Then [x] = [y] and thus x - y. Finally, the equivalence e) <=> f)

is a very well known fact (Cf. [7] ) .

2.2.3. Example: Let A a simplicial subset of X. In order that A to

be cohered ltary in X, a sufficient condition is that the relation defi ed by A

in X (where the cosets on X are of two kinds: the points of Xn - Anand

the coset An) is coh eredltary. We recall that the condition is not necessary one

(Cf. Proposition 2.3.1) .

2.3. Fundamental Theorem.

2.3.1. Subgroups and cohereditary relations.

PROPOSITION. Let G be a simplicial subgroup of a simplicial group H.

In order that G to be cobereditary in H a necessary and sufficient condition is

that the equivalence relation given by" x _ Y <=> y-1 x e G" is cobe reditary .

2.3.2. COROLL ARY. Let G be a simplicial subgroup of H. Assume that

the inclusion i: G 4 H is a Kan fibration. Then: 1) the complementary of G

in H is a simplicial subset of H ,. 2) The homogeneous quotient set HIG is

lsomor]ic. to the space of Eilemberg-McLane. K(A,O) where A = Hoi Go' Mo-

reover each one of the conditions 1),2) is sufficient in order that G to satisfy

Kant s condition relative to H.
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2.3.3. PROPOSITION. If G satisfies Kan's condition relatively to H,

then the inclusion map induces an isomorphism

and furthermore "o(G) f "0 (H) . Also the homogeneous quotient set "/H)/"o(G)

is precisely Hoi Go' Moreover (if G is cohereditary in H) Go is a normal

subgroup. of Ho' if and only if "o(G) is a normal subgroup of "o(H).

Proof. IL is enough to consider the homotopy sequence for the Kan fibration

H -> HI G = K(A, 0) with fiber and group G. Let us show that if "o(G) is nor-

mal in "o(H) then Go is normal in Ho' Let h (Ho and g (Go' Then

[h g h-/] = [hI [g] [hl-I e "0 (G) f" 0 (H) .

[g']=[hgh-/] in "o(G)). There exist

h g h-I• Since G is co he red it ary in

Then, there exist g' e Go such that

h e HI such that doCk) = g' , dl (k)

H, k e G and then h g h-I e G .

2.3.4. Recall that a simplicial map K(A,O) -> Y (s completly determined

by a function fo: A -> Yo' This means that

Hom (K(A,O), Y) '" Hom (A ,Yo);

in particular, if Yo is a singleton, as it is the case when Y= W (G) (the clas-

sifying set of MacLane for G) then Homi K (A, 0), Y) is a singleton.

As a consequence there exist one, and only one principal fibering with group G

on K(A, 0) which corresponds to the unique map

K(A,O) -> W(G)

Then the principal fibering
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G -+ H -+ K (A, 0) ,

with group G, is trivial, and then

H", K (A, 0) x G

as simplicial sets. In parti cular,

That is to say. from the set theoretical point of view the subgroup G differs from

H only by a set K(A,O) of Eilenberg-MacLane.

2.3.5. In this paper we have obtained the following informations.

THEOREM. 1/ /: K ... L is a homomorphism 0/ simplicial groups. Then the

[ol louilng conditions are equivalen t :

a) / is a Kan [ibr ati on

b) for every i and for every n,

c) [a every n ,

d) In the decompos ition 0/ /

K
/

L...

1m (/)
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by an epimorphism and a monomorphism, if is a Kan fibration (or equivalently

1m(f) satisfies Kan's condition relativelly to L).

e) lm (f) is cohereditary in L (or equivalently the equivalence relation

defined in L by its subgroup 1m(f) is a cohereditary one) .

f) The homogeneous quotient simplicial set L/lm(f) is minimal and of the

kind K(A, 0) where A is a set (Cf. [2: p. 38 s prop. 11 ).

Notice that in such a case A = Lo/ lm (fo) , and that L/lm(f) satisfies

Kan's condition (Cf. 2.3.2. (2) ).

g) 1m (f) is a union of connected components of L.

h) For every If L (dim 1= n) if do'" do(/) = 1 in Lo' then

I e 1m (f). On the other hand, when f: K ....L is a Kan fibration, then

1) The simplicial sets L and 1m (/) x K (V, 0) are isomorphic

(V = L/ lm fo)' in particular,

2) The injection 1m(/) ....L induces a monomorphism

and we get an isomorphism

3) if fo: Ko .... Lo is surjective then f is an epimorphism.

4) if L is connected then every homomorphism f: K .... L satisfying

Kan's condition is an epimorph ism.
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