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ON REGULARLY VARYING FUNCTIONS WITH
APPLICATIONS TO FUNCTIONS THEORY

by

0.P. JUNEJA and G.S. SRIVASTAVA

RESUMEN. Se estudia el comportamiento
asintdtico de funcicnes positivas no de-
crecientes de orden p, con respecto a fun
ciones de variacidn regular de indice p,
es decir funciones p-homogéneas en el 1
mite ‘esto es , R(ax)/R(x) » a~ cuando
x-2)., Se dan aplicaciones a la teoria de
series enteras de Taylor y Dirichlet.

- »

§1. Introduccidn. A function R{(x) is said to be

negulanly varying at infinity if it is real valued,
positive and measurable on [a,e) for some a > 0

and if for each a > C,
1im- = o (1.1)
for some fixed p in the interval (-®,0). The num-

ber p is called the {ndex of regulan vardiation of

well known (see, e.g.

@

the function R(x). It 1

[17]) that if R(x) is a function of regular varia-
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tion of index p then the following hold true:

; :

1imi§gk(x) _— (1.2)
log x

x-»cn

For each 0 < p,
x »

. 1 [~ -o i1 1
LiMe———— | t R(1)=— = 50 - (1.3)

It is obvious that R(x) 1is regulary varying 1f and

. i 3 . o
if it can be written in the form R{x) = x"L{x)

only
where L(x) is slewly varying, i.e., for each
o > 0
. L(ax) 1
le—;TiT = 1. (1.4)
e LX

The basic properties of regularly varying func
tions were first studied by Karamata ([9], [10])
and later, important contributions were made by a
number of mathematicians including Bojanic [?T, Se
neta [16] and others. The aim of the present paper
is to study the asymptotic behavior of a positive,
non-decreasing functinn of order o0 (0 < p < ®) as
defined by Hayman [u] relative to a regularly var
ying function of iIndex p (as defined above). The
results thus obtained have been applied to get re-
finements, sharpenings and generalizations of var
ious known results in function thecry. Furthermore,
the techniques used by us are, in most of the cases,

different from those employed by earlier workers.

To obtain the results in a general setting, we



first consider the behavior of these functions
with respect to another increasing continuous func

tion m(x).

§2. Results. Let m(x) be a real valued, indefi-
nitely increasing, continuous function of x, de-
fined in the interval (b,®), where -® & b < ® and
m(b+) = -, and let ¢(x) be a positive, non-de-
creasing function defined on [a,w) such that ¢(x)
is of order p (0 < p < @) with respect to m(x),
i.e.

logd(x)

o = p (2.1)

limsup
X+

Let R(x) be a regularly varying function of index p
such that ¢(x) is of 'Mean Type' with respect to

R(em(X)), that is, 0 < § £ Y < =, where

sup Y
i d 4’"(") = (2.2)
x*“infR(em % ) 6

For X > 0, we put

¥Y(x)

X
e ) [Ty (1)er ™ Van (e, (2.3)
a

and define

sup
lim ¥ x) . (2.4)

x"*°°infR(em x5y

SUPy(x) _
r 163 0 . (2.5)

lim
-0 ,
X7 inf
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Now we prove

THEOREM 1. For the constants as defined above,

we have ]
§ Y
§ £ (p+A)t <€ (p+A)T < Y. (2.7)

Proof. We shall prove only (2.6), the proof of
(2.7) being analogous. For a given € > 0, there

exists Xq such that for all x > Xg s
(5-e)R(e™ %)) < p(x) < (yreIr(e™ ¥y, (2.8)
By (2.3), we have

X
v(x) < 0(1)+e MM (yieyetm (P p(e™ (V) yan(e)
X
0
-Am(x)]e

em(xo)

m(x)

0(1)+(y+e)e uAR(u)g-1

i

(y+e)

0(1)+—3;X—R(em(X))

e

L]

the last assertion being a consequence of (1.3).
Hence, dividing by ¢(x) and passing to the limit,
Y .t
<
we get C £ ICT LN Similarly, use of the left hand

inequality of (2.8) gives

D > $
> BRI

This proves Theorem 1.

THEOREM 2. We have fon X > 0 ,
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» [ )(D*A)/A ¢(X) {1 ‘!’(x)}

pT = pTx xizﬁupR(em(x)) Y6 ; (2f9)
and fon A = 0O,
epT = llmbup———ET;—— xp{pzéi%} (2.10)

X->

Proof. First let 0 < A < o and let {xn} be any
increasing sequence of positive numbers tending to
infinity. It is easy to see that for x > a and
n = 1,2,...

M) 5y (x et M) g (i) (AP _Amixn)y
so that
Y(x) > X‘P(xn)ekm(xn)+¢(xn){e)\m(x)_ekm(xn)}
4
R(PT*T) Rl (x), () &
(2.11)
Let {yn} be another sequence defined by
Am(y,) _ §+X Y(xn)  am(x.) .
e n — ( 0 )(1 A—-————S-) n’, (2‘11)

Since, from (2.6) we have 0 < D & C < o it fol-
lows that there exist constants A1 and A2 such
that

A e <

) m(x, ) myn) A?'em(x,,)

for all large n. It follows thut Y *® &8 0 *

Further, by (1.4), R(x) = x L(x), then

154
(a3}

L(em(yn)) ~ L(em(xn))
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an n + o, Thus (2,11) leads to

¥(yn) o_,(p+r)/A b(x,) £ WF(xp)y-p/0

1
m(va)) BB R(em(*n)) T 8(xy)

Taking limits as n > ©, we get

oT 2> plimsup wi%ﬁi——
z 11mSsSu
X+ R(e™ yn))
5 ( ? )(m)\)/kumﬁlp ¢;?:)) {1_A$::n;}"DfA
P nr®  R(e" D7) n

Since the above inequality holds for any increas-

ing sequence {xr} tending tec Infinity, we get
L]

e (p+tr)/A . ¢(x) ¥(x),-0/X
pT 2> (—=%) Limsup {1-A -}
p+A xeo  R(eM(XT ¢(x)
{2.,13)

To c¢btain the reverse inequality, we use the fact
u ~(1+u) . ¢
that (1-pu)p < (1+u) for p, u satisfying
0 £ py, u<eo (pand u not simultaneously zeroc).
. . Y(x)
Substituting v = A/ and = A we get
g e ¢ p (x) 24

Y(x) ¢ (L_)(PtA)/X_o(x) o, Axy(x)}-o/x_

o < i-
m(x)) p+A R(em(x)) o(x)

R(e _
(2.14)

Proceeding to limits, this leads to

o(x) Y(x),-p/A
m(x)){1-k¢(x)} :

(_g_)(p+l)/k

otX limsup

pT £
(2.15)

Combining (2.13) and (2.15), we get (2.9). The

proof of (2.10) is similar (or else it can be ob-
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tained from (2.9) by letting 6§ - 0).

We now obtain a chain of inequalities between
the constants defined earlier. Later on, using
these inequalities, we obtain relations that throw
intrinsic light or the relative asymptotic behavior
of ¢(x), ¥Y(x) and R(x).

THEOREM 3. (i) For X > 0 we have

§ t 1 o) Y A/p T
Gy € v € P < xlpabmnrt Ul < 5

1 Ad 1 P § A/p T Y
¢ <7< cs xlighlmmmtl] S5 maw

(2.16)
(ii) Fon X = 0, we have

§ t 1 s T 1 t

37 3 Y £ D K< 3[1+log(pT/y)] < Y < = < 3
€ C < —[1+1og(pT/5)] % -—%—. (2.17)

Proog. (i) From (2.9), we have
§ ;p+A -p/A
T > ——X{———(i-AC)}

it (2.18)

T > Y { Ac1-apy} P72,

The above inequalities, in view of the obvious re-

lation t € min(é8C,yD), lead to

+ 1 A/p T
L opg gf1-=E¢ Lr——xy—} ] <=
Y AL7 otk Lo+ b (2.19)
t 1 P § A/p T
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(2.19) combined with (2.6) and (2.7) yields (2.16).
The inequalities (2.17) follow in a similar manner
on using the particular cases of (2.6) and (2.7)

for A = 0. This proves Theorem 3.

Next we have
THEOREM 4. (i) fonr X > 0, we have

-m(w) sup m(w)
e £ Lin ¥(x) . e

x*“inf¢(X) < S5 2 (2.20)

c+A

whenre, for X > 0, w £8 the noot Lying 4in the 4in-
terval [m'l(o),m) 04 the equation

Am(x)/p
(p+\)TE ut te(p+k)m(X)/p—T 3 (2.21)

A

and for A = 0, w L8 the root Lying 4in the interval
[m'l(o),w) 04 the equation

Tm(x) = te™(X)_T (2.22)

The inequalities Ain (2.20) anre Shanp.
(ii) T4 ¥Y(x) = TR(em(X)), then - C 5 D = E%X and

o(x) = (p+A)TR(e™(X)),

(iii) T4 ¢(x) = yR(e™ X)), then c = D = E%T dnd

¥(x) = y(p+A) TR(e™(¥)),
Proog. (i) For A > 0, we consider the function

P(x) = te(p+l)m(x)/p_%e(p+l)m(x)/gem(x)

It is easy to check that for all x, we have
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P(x) €

3 " pb __]D/)\
p+tA (p+A)(8+Xt) '
The above result, on combination with (2.16),

gives
P(x) < T. (2.23)

If w is the root of the equation (2.21) lying in
: : -1
the interval [m (0),»), then (2.23) for x = w

gives : em(w)

e D+A

Hence, from (2.16), we have
m{w)
& £ .
D+A
To prove the left hand inequality of (2.20), we

consider the function

.

s 2 :
atx) = L (PHAI(x)/p_tlosh) [ (ordIn(x)/p_ mix)y

Again, it follows that for all x

a(x) g (p+r)e[RICOEA) qp/A

(p+A)2-Ay

Using (2.16), this easily leads to
Qlx) < v

wchich, for x = w gives

E-m(w)

s <
pt

<frt
A
(]

This proves (2.20). When X = 0, the inequalities
(2.20) can be obtained in an analogous fashion by

using (2.17). To see that the inequalities in
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(2.20) are sharp, it is enough to take ¢(x) =
epm(x)

m(x))’ then from (2.4) we

(ii) If ¥(x) = TR(e

have T = t and so by (2.21) or (2.22), the root w

satisfies em(w) = 1. Hence, from (2.20), we have

C =D = E%T . Also (2.16) or (2.17) implies that

D = % and C = g- i.e. y = 6§ = (p+A)T. Thus ¢(x) =
(p+2)TR(e™*)).

(iii) When ¢(x) = YR(e
From (2.6) we have C = D = E%X and (2.7) implies

that T = t = a}r , i.e. ¥(x) = Y(p+A)'1R(em(X))

m(X)),

we have Yy = 6.

as x * @

This completes the proof of Theorem 4.

§3. Applications. In this section, we give a few

applications of the above results to function the

ory.

(i) ENTIRE TAYLOR SERIES. Let f, defined by

i : .
f(z) = Z anzn, z = re e, be an entire function.

M(r) = max |f(z)],

z|=r
u(r) = max{lanlrn} R

n>0
v(r) = max{n:u(r) = Ian|rn} 5

then M(r), u(r) and v(r) are called respectively
the maximum modulos, the maximum term and the rank

of f(z) for |z| = r. Similarly the geometric mean
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G(r) and the weighted geometric mean gk(r) of

f(z) are defined as

G(r)

2n .
exp(%;l log|f(rele)|d9),
0

r
gk(r) = exp(§%1£ logG(x)xkdx), -1 < k < =

(a) It is well known (see, e.g., [1]) that if
f has at least one zero then logG(r) is an indefi-
nitely increasing function of r. If f is of order
P 5o AN el
loglogM(r)

limsup = p
F log r >

set

sup Y
1im logG(r) g g

r*®inf pP 8

sup A
lim logg (r) _ .

r+oinf rp B

Kamthan and Jain [8] showed that

§(k+1) p 6. (k+1)/p (3.1
o € B & Sligem(y :
p p/(k+1)
(P+k+1)A
Y{(p+k+1)-(k+1)(6/y)} < = <Y (3.2)

By taking m(r) = logr, ¢(r) = logG(r), A = k+1,

¥Y(r) = Lg&Ekiﬂl’ and R(r) = rp, it is easy to

k+1
check that our Theorem 3 leads to a sharpening of

the above inequalities. Further, Theorem 2 yields
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the following exact relation between the growths
of G(r) and gk(r) not obtained in [8], viz;

limsuplog gc(r) =

r—>00 r p

5 +k+1)/(k+1) /(k+1)
(k+1)(—P )(p+ +1)/ 1imsupl°5G(r){1-lgggk(P)Yp
p+k+1 P00 !‘p logG(r)

(3.3)

- Again, dif* we take'm(r) = .logr, ¢(r) = n(r), the
number of zeros of f(z) in the disc {z:|z| < r}, -
and R(r) = r’L(r), we get Theorem 5 of Jain [6]
from (ii) and (iii) of Theorem 4. Similarly, with
the above substitutions, while Theorem 4 (ii) and
(iii) give rise to Theorem‘2_of_[8], Theorem 4 (i)
leads to a new relation in this direction. It may
be noted that our techniques in all the above the-
orems are different and‘§implen-than those employ
ed by Kamthan and Jain.[é]. Fhffhermore, if p(r)
denotes the proximate order [11] of f, then it is

r . ) 7 ! - b e
p(‘) is a function of regular varia-

o

known that r
xionAdf index p. Thus, if dinstead of r
R(p) = r'p(r')

sharpened in a generalized form.

we cheose’

. |

then all the above results stand -

(b) Results éﬁélogous to those mentioned in
(a) have been obtained by Shah ([18], [19]), Gopa-
lakrishna.[3], S.K;Singh [21], etc. for tﬁe maxi-
mum term and rénk of thé entire function f. How-
ever, if we make the substitutions m(r) = logr,

A =0, ¢(r) = v(r), ¥(r) = logu(r) and R(r) = rPL()
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where L(x) is slowly increasing. then it is
easilv seen that all the results in [18], [21]
etc., are sharpened and generalized by our theo-
rems. Mention must be made of the following result
given by Theorem 4 (i) which yields an exact bound

not given by analogous result of Shah [19]:

1§ w denotes the noot, Lying in the interval
[1,2) o0f the equation Tlogx = xt-T, then

sup

1 > logu(r) w
£ lim ——%—7——-$ = (3.4)
P r+oinf V'T .
where, as usual,
SUP)oou(r) _ |
1im _.g.____. =
r*®inf rpL(r) t

(c) Forentire functions of slow growth, the
concept of logarithmic order p* is used [2010 For
this case also, analogous study of the properties
mentioned in (a) and (b) has been made by Srivas-
tava [22], Jain and Chugh f?} etc. However, it is
a simple matter to verify that if we choose m(r)
= 1oglogrs Rir) = (logr)P A¥850p%(7) bedng loga-
rithmic proximate order [22], ¢(r) = v(r) logr
for A = 0 and ¢(r) = logG(r) for X > 0 and ¥(r)
accordingly, then the results of the above mention
ed authors are sharpened and generalized by our

theorems.

(ii) ENTIRE DIRICHLET SERIES. Consider the

Dirichlet series
37



i s\
F(g)iatadd oy iq 010 (3.5)
n
n=1
where s = 0 +it, 0 < An < An+1,,,,,xn»m and
1in=28" = o, (a.60)
n-»+oc n

It is well known (see, e.g. |15|) that if the se-
ries (3.5) converges absolutely in the s-plane,

then F(s) represents an entire funcion. We set

M(o) = sup |f(o+it)]| ;
-0< t <o
oA
u(o) = max{|a e o 3
n>1
e
Av(o) max{An: n(a), 5= lanle } .

F(s) is said to be of Ritt-order p if

limsuploglogM(o)
0+ o

p . {3.7)

(a) For 0 < p < o, and L(x) a slowly increasing
function, define

sup T
1im logM(0)

U*“infepoL(eo) t

L]

sup A
lim ———Xigl— = 3
O*minfepoL(eo) §

Rahman [13] showed that if the constants involved
are non-zero, finite, then T = t if and only if

Yy = 6 and that if x = k is that root of the equa-
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tion eTx = e t-eT which lies in the interval (1,®)

then -, "
alasedifg) (19EMLD) opnl (3.8)
pe o+oinf “v(o) p

However, if we take m(x) = x, ¢(x) = A JAl'2 0,

v(x)
¥(x) = logu(x), and R(eX) = eoxL(ex), then Theorem

4 (ii) and (iii) lead to a simple proof of the
first result of Rahman, whereas Theorem 4 (1)
yields the following sharp result which is a con-

siderable refinement over (3.8).

14 w denotes the noot, Lyingin the Linterval
[o,w), 0f the equation Tx = tex-T, then

sup w
g :
e it e IRTEPT VR (3.9)

w >,

pe o*®ing " V(O) y

Further, Theorem 2, with the above substitu-
tions, gives the following exact relation between

the growths of u(o) and Av(o):

ep limsupiggﬂig%—
g+ ep L(e )

(8%10)
A
= limsup—agigla— exp(plogu(O)
g+ e L(e’) v(o)

(b) The geometric means and weighted geometric
means of an entire Dirichlet series F(s) are de-
fined as

1 A
G(o) = exp{lim——[ log|F(o+it)|dt}
T
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g
8 ()= exp{—§3 ekxlogG(x)dx}
T4 8

Results analogous to those in (ii) (a) hace also
been obtained, involving G(o) and gk(o), by Srivas
tava, Agrawal and Kumar [25]. If we take m(x) = x,
d(x) logG(x), A = k, V¥(x) = loggk(x)/k, and
R(x) eP*L(e*) where L(x) is slowly increasing,
then our Theorem 3 gives inequalities sharper than
those of Theorems 4 and 5 of [25]. Similarly, Theo

rem 4 (ii) and (iii) yields a simple alternative

procf of Theorem 6 of [25]. However, our Theorems

1 and 4 (i) lead to new results not obtained by

these authors.

(c) For entire Dirichlet series of zero order
also, the concept of logarithmic Ritt order is
used [1#]. In this case, one of the authors [23]
has made a parallel study connecting u(o), Av(o)’
etc. However, it is easily seen that his Theorems
1 to 3 of [23] can be obtained from our Theorems 3
and 4 by making appropriate substitutions. Further,
our Theorems 1 and 4 (i) lead to new results not
obtained in [23]. Analoguous relations for geome-

tric means can also be obtained from our results.

(iii) SUBHARMONIC AND MEROMORPHIC FUNCTIONS.
The concepts of order, mean values, etc. have also
been introduced for subharmonic functions (see e.g.
[5], [12], [2&]). Since our results above have
been obtained in a general setting, they can be ap
plied in this case also. Similar remarks apply to

meromorphic functions.
40



[13]

[14]
[15]

REFERENCES

Boas, R.P., Entine Functions, Academic Press,
New York, 1954,

Bojanié, R. and Seneta, E., SLowly vanrying
gunctions and asymptotic nelations, J.
Math. Anal. Appl. 34 (1971) 302-315,

Gopalakrishna, J., A type theorem fon
JXf(t)/tdt and applications to entine func
tions, J.Indian Math. Soc. 30 (1966) 73-78.

Hayman, W.K., Meromonphic Functions, Oxford,
1964,

Heins, M., Entine functions with bounded mind
mum modulus; subharmonic functions analo-
gues, Ann. Math. 2 (1948) 200-213,

Jain, Pawan K., On the mean values of an en-
tine function Math. Nach. 44, N° 1-6
(1970) 305-312. e

Jain, P.K. and Chugh, V.L., Sur Les Moyennes
d'une fonction entiere d'ondre zéro, Bull,
Sc. Math. (2) 97 (1973) 5-15.

Kamthan, P.K. and Jain, P.K., The geometric
means o4 an entine function, Ann. Polon.
Math. 21 (1969) 247-255,

Karamata, J., Sur un mode de croissance regu-
Liére de fonctions, Mathematica (cluj.) 4
(1930) 38-53, =

, Sun un mode de croissance négu-
Liéne, theornemes fondamentaux, Bull. Soc.
Math. France, 61 (1933) 55-62,

Levin, B.Ja., Distnibution of zenos o4 entinre
functions, Vol. 5 Amer. Math. Soc. Trans-
lations, Providence, 1964.

Rado,T., Subharmonic Functions, Chelsea, New
York, 1949,

Rahman, Q.I., A note on entirne functions (de-
fined by Dinichlet senies) of pernfectly
negulan growth, Quart. J. Math. Oxford
(2) 6 (1955) 173-175.

— s, On the maximum modulfus and coe-

fgicients of an entine Dirnichlet sendies,
Tohoku Math. J. (2) 8 (1956) 108-113.

Ritt, J.F., On centain points in the theonry
04 Dinichlet sendies, Amer.J.Math. 50

(1928) 73-86.
41



[16] Seneta,E., Sequencial critenia for regularn va
niation, Quart. J.Math. Oxford (2) 22
(1972) 585-570.

[17] seneta,Eugene, Regulary Varying Functions,
Lecture Notes in Mathematics 508, Springer-

b Verlag, Berlin-Heidelberg-New York, 1976.

(18] 'shah, S.M., The maximum term of an entirne se-
nied 1171, Quart. J.Math. Oxford ser. 19
(1948) 220-223. I,

[19] —, A note on entine functions of per
fectly negular growth, Math.Z. 56 (1952)
254-257. il

[20] shah, S.M. and Ishaq, M., On the maximum mo-

dulus and the coefficients of an entirne se

nies, J. Indian Math. Soc. 16 (1952) 177-

182.

[21] Singh, S.K., On the maximum term and rank o4
an entine function, Acta Math. 94 (1855)
1-12.

[22] srivastava,G.S., On the Logarithmic proximate

i orndens, Ganita, 21 (2) (1970) 47-57.

[23] , On entine functions of sLow
growth neprnesented by Dinichlet sendies,
Ann. Polon. Math. 24 (1971) 149-158.

[24] , The mean values of a subhan-
mondic guncicon, to appear in Rev. Roum. de
Mat. Pures et Appl.

[25] Srivastava,S.N., Agrawal,A.K. and Kumar K.,
On the geometrnic means of an entine func-
tion nepresented by Dinichlet sendies, Math.
Z. 116 (1970) 359-364.

* k%

Depantment of Mathematics

Indian Institute of Technology
Kanpun 208016, U.P.

INDIA.
Depantamento de Matemditica
Centro de Ciencias Exatas
Univensidade Estadual de Londrina.
§6100-Londnina (PR), BRASIL.

(Recibido en Mayo de 1980)

42



