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ON REGULARLY VARYING FUNCTIONS WITH
APPLICATIONS TO FUNCTIONS THEORY

by

O.P. JUNEJA and G.S. SRIVASTAVA

RESUMEN, Se estudia e1 comportamiento
asint6tico de funciones posi ivas no de-
crecientes de orden p~ con respecto a fun
ciones de variaci6n regular de indice p,-
es decir f~nciones p-hom g~neas en el li-
mite 'esto es • R(ax)/R(x) ~ aP ua do
x 00), Se dan aplicaciones a 1a teoria de
ser"as enteras de Taylor y Dirichlet.

§1. l n t r oduc c l dn . A f unct ion R(x) is said to be
~egula~ly va~ying at infinity if it is real valued,
posit"ve and measurable on [a,oo) for some a > 0
and if for each a > O~

"R(ax) aP
1J.m-R(x) =
x-+-oo

(1.1)

f or some fixed p in the .in t e r- 'a1 (_00,00)" The n m-
ber p '5 called the index 06 ~egula~ va~iation of
the function R(x). It is well known ( ae, e.g.
[17J) that if R( x ) is a function of r-e guLa n va 1. -
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ion 0, .index then the 0,1 wing h Id true:

1. log. (x)
1m------- " f.J

X~OO log x
(1. 2)

\,' .. '-

Fc r a c f)' (J < o ,

1
p-a (

I~ is obvious that R(x) is regulary varying if and
oo .IV if it c a be written .in the form R{x) :;0 x L(x)

where L( x ) '. is -6lowilJ vaJtIj.{,ng, I, e., for each

a :> 0
. L( ax

l.tlTl L(x) : 1.
X-+OO

(L tj )

T~e ba~ic properties of regularly vary' g fun~
.Lons were fi r-st st ud.i d by Karamata ([(I, [10J)
and late~,important contrib~tions were made by a
n umb e r f mathemat'cian~ inclUding Bojani~ [2], S~
~"'- [i sln e t a '" "J and others, The aim of the present paper
is to ~tudy the asymptor'c behavio~ o~ a pos~tjve,
~on-deerea_ lng fu ct'on of order ~ (0 < p < 00) a'

defined by Hayman [4] elative t6 a regularly var
ying £u.ction of index p (a~ defined above). Thp

resulta thus ob aZned hve ~eeriapplied to get re-
f"nemen St sharpenings and generalizations of var
Lo u s known results in function .b e or-y, F'urt her-mo r e ,
the techn"ques used by s are, in most of the cases,
differ n from those employed by earlier workerso

To o~ ain t, e res Its ~n a general settlng, we
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first consider rhe behavior of these functions
with respect to another increasing continuous func
tion m Cx )",

§2. Results. Let m(x) be a real valued, indefi-
nitely increasing, continuous function of x, de-
fined in the interval (b,oo), where _00 ~ b < 00 and
m(b+) = _00, and let .(x) be a positive, non-de-
creasing function defined on [a,oo)such that .(x)
is of order p (0 < p < 00) with respect to m(x),

1
, 10g.(x)lmsup m(x) = p

x+oo
( 2 .1)

Let R (x ) be a regularly vary ing function-of index p

such that .(x) is of 'Mean Type' with respect to
R(em(x», that is, 0 < 0 ~ y < 00, where

,sup ~(x) y
11m ~- =
x+OO iof R ( em(x ))0

( 2 • 2 )

For A ~ 0, we put
x

~(x) = e-Am(x)! .(t)eAm(t)dm(t),
a

(2.3)

and define

(2.4)

( 2.5 )
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Now we prove

THEOREM 1. F04 the eon~tant~ a~ de6ined above,
we have

~ Y
-:"(-p-+T-)\"7)-Y·~ D ~ C ~ (pt)\) 6 ( 2 .6)

( 2. 7 )

P4oo6. We shall prove only (2.6), the proof of
(2.7) being analogous. For a given E > 0, there
exists xo such that for all x > xo '

( 2 .8)

By (2.3), we have
x

,(x) < O(l)te-Am(x)! (Y+E)eAm(tlR(em(t»dm(t)
Xo m(x)

= O(l)+(Y+E)e-Am(x)J
e

UAR(U)~U
m(xo)e

the last assertion being a consequence of (1.3),

Hence, dividing by ~(x) and passing to ~he limit,
ywe get C ~ (ptX)S' Similarly, use of the left hand

inequality of (2.8) gives

s
D ~ (P+X)y •

This proves Theorem 1.

,
THEOREM 2. We have 604 A > 0 ,
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"'T (p )(PfA)!). . ~ <P(x.) {1 AIjI(X)}-P/~
tJ - -pIT ..lm;,;up-=-r-)- - ;j;-( )

x~~ R(em\x) ~ x

and 60!l. .it '" 0,

epT = ". <P(x) { ljI(x)}
L'i.m s u p (. ) e x p P~TXT.x~~ R(em x ) ~ x

(2,10)

P!l.oa{. First let 0 < ). < 00 and let {x } be any
. n

increasing s.equence of ~ositive numbers tending to
infinity. It is easy to s~e that 'for x > a and
n = 1, 2 , 0 • 8 . ~

s o that

~ AIjI(Xn)e~m(xn)+<p(xn){eAm(X)_eAm(xn)}
, AR(em(~)~eXm(~)

(2,11)

Lei {y } be another sequence defin~d byn

(2,1L)

Since" from (2,6) we have 0 < D ~ C < 00, it fo1":

lows that there exist constants A1 and A2 such
that

for all large n. It follows that Yn • ~ as n + 00

Further, by (1.4), if R(x} = xPL(x), then
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an n ~ 00. Thus (2.11) leads to

Taking Lim Lt s as n+ oo~ we get

, ' 'I!(Yn)
or ~ o; a ms u p m(')

X~OO R( e Y n )

( _p_) ( ptA) / Aj, • _~,( x rrl_{ 1- \I 'I! ( x n ) } - o / A
~ +A ~lmsup . m(x ) " A~(X )P n~oo R(e n ) ~ n

c .s a n c e the above inequality holds f o r any i creas-
'og sequence {xn} tending to 'nfinity, we get

P T >, ( P )' ( p +A ),0." ,. <P( x ) { "" 'I! ( x ) } - P I A
v ptA ~~msuPR(, m(x» ~-A~TXT

x<+(X) e
(2.13)

o obtain the reverse inequality, we use the fact
that (l_pu)pu $ (ltu)-(l+U) for p~ u satisfying
0$ p , u < 00 (p and u not: simultaneously zero)",

Sub s t I t ut f ng u ::;'Alp and p - A:i:+ ' we get

(_0_, )(ptA)O. <P(x) " {l_A'I!(x)}-P!A.
ptA R(em(x»' ~(x)

(2.14)
Proceeding to limits, this leads to

pT ~ (_p_) (ptA) !'Al.imsup--~l~._) ,{1-A ill (x)} -p /A •
ptA x~oo R(em(x» ~(x)

(2.15)

Combining (2.13) od (2.15), we get (209). The
proof of (2.10) is similar (or else it can be ob-
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�ained from (~.~) by_letting ~ + 0).
" .

We ~6wobtain a chain of inequ~litie~ between
the constants defined earl{e~. Lat~r on, using

-' - .":

these inequalities, we obtiin relations that throw
intrinsic light or the relative as ymp t o.t Lc behavior
of </>(x), 'i'(x) and R(x).

THEOREM 3. (1) F04 A > 0 we have

<5 ,<.! < D s: 1 [1 _~( Y .} A /PJ' c T-(P+A)Y , y <, 'A P+A (P+A)T ..' .c" y

1 t" , 1'" . P <5'" A /p~ - ~ 7 s C ~ T" [1--=-:-T{ } J-$p+). u' A P+A (p+A)T .'
T Y
0" ~ -"C-p...;..+....X .....).,..O·

(2.16)

(ii) F04 A = 0, we have
cS . t- ~ - ~py Y D ~ ~T1+log CpT /y )]

~ C .s ~[1+l0g(PT/CS)J (2.17)

P4oo6. ( I ) From (2~9), we have

(2.18)

The a.bove inequalities, in view of the obvious re-
lation t ~ min(~C,yD), lead to

!. < D ~ 1 [ P { Y }A /PJ ~
T

Y --..: r1-p+). (p+X)T y (2.19)
t C ~ 1 [ P cS A /PJ T
iS~ r 1-p+>- (P+X)T} ~ -

<5
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(2.19) combined with (2.6) and (2.7) yields (2.16).
The inequalities (2.17) follow in a si~ilar manner
on using the particular cases of (2.6) and (2.7)
for A'= 6. This proves Theorem 3.

Next we have "

THEOREM 4. (i) 60~ A ~ 0, we have

-mew) sup_e_~ ......."1' 'l'(x)"~ ~m -- ~P+A x~~inf~(x)
mew)e
p+A (2.20)

whe~e, 60~ A > 0, w i~ the ~oot tying in the in-
te~vat [m~l(o),~) 06 the eq~ation

eAm(x)/P_1 -_te(p+A)m(x)/p_T(p+A)T-----
A

(2.21)

and 6o~ A.= 0, w i~ the ~oot lying in the inte~vat
[

-1
m (O),~) 06 the equation

'(2.22)

The inequalitie~ in (2.20)a~e~ha~p.
(ii) 16 'l'(x)~ TR(em(x», then C :;:D = P~A and
~(x) ~ (p+A)TR(em(x».
(iii) 16 ~(x) ~ yR(em(x», then C =D = _1_ andp+A
'l'(x)~ y(p+A)-lR(em(x».

P~006. (i) For A > 0, we consider the function
P(x) = te(P+A)m(x)/P_}e(P+A)m(x)/~em(x) .

It is easy to check that for all x, we have
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The above resultf< on combination with (2.16)~
gives

p{ x ) .~ T. (2.23)

If w is the root of the equation (2.21) lying in
the interval [m-1(O),ClC», then (2.23) for x := OJ

gives T mew)
< e(S... -p-+"'"">-_.

Hence, -f rom (2.16), we have
mew)

C < e" P+A- .

To prove the left hand inequality of (2.20)1 we
consider the function

Again, it follows that for all x

Q(x) _~ (P+A>t[PT(P+;) _]P!A .
(ptA) -AI'

Using (2.16), this easily leads to

Q(x) ~ y

wchich, for x = w gives

-mew) te
-ptI""~~ y ~ D.

This proves (2.20). When A = 0, the inequalities
(2.20) can be obtained i. an analogous fashion by

using (2.17). To see that the inequalities in
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(2.20) are sharp, it is enough to take ~(x) =
pm(x)

e
(ii) If ~(x) = TR(em(x)}, then from (2.4) we

have T = t and so by (2.21) or (2.22), the root w
satisfies em(W) = 1. Hence, from (2.20), we have

1C = D = ---A. Also (2.16) or (2.17) implies thatT p+ T. .
D = - and C = 0' ~.e. y = 0 = (p+A)T. Thus ~(x) ~
(P+),~TR( em(x».

(iii) When ~(x) = yR(em(x», we have y = o.
From (2.6) we have C = D = ~ and (2.7) impliesP+A

i.e. ~(x) = y(p+A)-lR(em(x»= t - Y- p:t"r ,that T
as x -+ 00

This completes the proof of Theorem 4.

§3. Appl ications. In this section, we give a few
applications of the above results to function the
ory.

(i) ENTIRE TAYLOR SERIES. Let f, defined by
00 iefez) = L a zn, z = re , be an entire function.
n=O nIf we set

M(r) = max If(z)l,
Izl=r

ll(r)

then M(r), u(r) and vCr) are called respectively
the maximum modulos, the maximum term and the rank
of fez) for Izi = r. Similarly the geometric mean
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G{r) and the weighted geometric mean gk(r) of
fez) are defined as

1 12lT
reG{r) = exp(~ loglf{re1 )Ide)~

lTo

k+1Ir k= exp(~ logG(x)x dx)~
o

-1 < k < 00

(a) It is well known (see~ e.g.~ [1]) that if
f has at least one zero then logGer) is an indefi-
nitely increasing function of r. If f is of order
P~ i.e.

1. loglogM(r) =lmsup 1 P ,r-+- og r

set
sup () ylim logG r = t

r~~inf rP ~

sup () Alim loggk r =
r~~inf rP B

Kamthan and Jain [a] showed that
6(k+1) P 6 (k+1)/P}
p+k+l ~ B ~ 6{1-p+k+1(y)

(3.1)

P p/(k+1) (P+k+1)A
Y{(P+k+1)-(k+1)(6/y)} ~ k+l ~ y ( 3 • 2)

By taking mer) =
'P(r) = loglk(r)

k+1 '
check that our Theorem 3 leads to a sharpening of
the above inequalities. Further, Theorem 2 yields

logr, 4>(r) = logGer), ~ = k+1,
and R(r) = rP, it is easy to

35



the following exact relation between the growths

of G(r) and gk(r) not obtained in [8J, viz;

1.
0 log gk ( I' ). .
lmsup =

r....oo rp

p (p +k+l )/(k+i)' . 10gG-e'r >{ log gk(r)}-fJ/(k+l)
(k+l)( k 1) Li msup 1---

p+ + r~ I'p log G( I' ). ,.. "
( 3 .3)

-Ag aLn c : :i£'" we' t ak ev-mfr-) '::.:lb~r, 4>(r) = n Lr- )", the

number of zeros of fez) in the disc {z: Izi ~ r}, ..,

and R(r) = rPL(r), we -g et: Theor~m 5 of Jain [6J

from (ii) and (iii) of Theorem 4. Similarly, with

the above substitutions, while Theorem 4 (ii) a~d

(iii) give rise to Theorem '2 of<.[sJ, .Theorem 4 (i)

leads to a new relatiori in this~di~e~tion. It may

be noted that our techniques in all the above the-

orems are different and s ImpLe.r- than tho s e empl01.

ed by Kamthan and Ja'in. (8r~F~;the,rlJlore, if p Lr )

denotes the proximate order [llJ of f, then it is

known that rP(r) is l;i' f unc't Lo n b'£'. regular va'ria.;.f
" p

z Lon o-f index o . T;'hus',ir ;{nst~ad of I' we. c.hoo s e:

R(r) = rP(r) then all the above'results stan'd' :'.""

sharpened in a generalized form •
.' ; .~

~b) Res~l~~ ~~~lo~ous to ihos~ ment~~n~d in

(a) have been obtained by Shah ([1S], [19J), Gopa-
_, . , r- " I ., lo

Lak r Ls hna [3J, S.K.Singh (21J ,~tc. for th'e maxi-

mum term and r~nk of t~e eritire fu~~tioh f. How-

ever, if we' make the 'substitutions mfr-) = Logr- ,
A -=0, 4>(r) = vCr), 'l'(1") '= 10g\J(r) and R(r) = 1"PL(r)

. ,
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where L(x) is slowly increasing, then it is
ea s i Lv seen that a.l1 the results in [18J, [21J

etc., are sharpened and generalized by our theo-
rems. Mention must be made of the following result
given by Theorem 4 (i) which yields an exact bound
not given by analogous result of Shah [19]:

16 w denote~ the ~oot, lying in the inte~val
[1,00) 06 the equation Tlogx = xt-T, then

sup
_1_ -s lim 10flJ(r) <:: ~
PW r+ooin f v r) "p

( 3 • 4 )

wheILe, a.6 u.6ual,

sup, ()
1• Lo g u I'1m =
r+ooinf rPL(r)

T

t

(c) For em ire functions of slow growth, the
concept of logarithmic order P* is used [20J. For
this case also, analogous study of the properties
mentioned in (a) and (b) has been made by Srivas-
tava [22], J aina nd Chug h [7Jet c. Howe veI' , it is
a simple matter to verify that if we choose mer)
= loglogr, R(r) = (log!')pl"(r), p1'(r) being loga-
rithmic proximate order [22], <p(r) = vCr) logr
for A = 0 and <p(r) = logGer) for A > 0 and '(r)
accordingly, then the results of the above mention
ed authors are sharpened and generalized by our
theorems.

(ii) ENTIRE DIRICHLET SERIES. Consider the
Dirichl~t seri~s
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F(s) =

where s = 0 + i t ~ ~O < A < A 1 ' II .. • , A +00n n+ n and

L'i log n = 0~m--r-'- .
n-+oo n

( 3.6 )

It is well known (see, e.g. 1151) that if the se-
ries (3.5) converges absolutely in the s-plane,
then F(s) represents an entir~ funcion. We set

M(o) = sup If(O+it)1
_oo<t<oo

u(O)
OAn= ma x ] Ia Ie}nn~l

F(s) is said to be of Ritt-order p if

1. loglogM(O)~ms up = p .
0-+00 0

( 3 .7)

(a) For 0 < P < 00 , and L(x) a slowly increasing
function, define

Rahman [13J showed that if the constants involved
are non-zero, finite, then T = t if and only if
y = 0 and that if x = K is that root of the equa-
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tion eTx x= e t-eT which lies in the interval (1,00)
then

1 sup. .
< .1° 10gM(a)~m X
a-+-ooinf v(a)

K< e
P

( 3 .8)
Kpe

However, if we take m(x) = x, ~(x) = AV(x) ,A = 0,
~(x) = log~(x), and R(ex) = epxL(ex), then Theorem
4 (ii) and (iii) lead to a simple proof of the
first result of Rahman, whereas Theorem 4 (i).

yields the following sharp result which is a con-
siderable refinement over (3.8).

16 w deno t e.s the «o ot , lying in the in-teJtval
[0,00), 06 the equation Tx = teX-T, then

1-.-~wpe
( 3.9 )

Further, Theorem 2, with the above substitu-
tions, gives the following exact relation between
the growths of ~(a) and Av(a):

1'. Lo gu Cc )ep lmsup ~ a
a-+-oo ePaL(e)

(3.10)

o Av(a) ( log~(a)= llmsup pa a exp P X
a-+-oo e L(e) v(a)

(b) The geometric means and weighted geometric
means of an entire Dirichlet series F(s) are de-
fined as

T
G(o) = eXP{lim2~f logIF(O+it)ldt}

T-+-oo-T
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o
gk(O) = exp{ ~oJ ekXlogG(x)dx}

e 0
Results analogous to those in (ii) (a) hace also
been obtained, involving G(O) and gk(O)' by Srivas
tava, Agrawal and Kumar [25J. If we take m Ix ) = x ,
<P ( x ) = log G (x ), A = k, 'l' ex) = log gk(x )/k, and
R(x) = epxL(ex) where L(x) is slowly increasing,
then our Theorem 3 gives inequalities sharper than
those of Theorems 4 and 5 of [25J. Similarly, Theo
rem 4 (ii) and (iii) yield~ a simple alternative
proof of Theorem 6 of [25J. However, our Theorems
1 and 4 (i) lead to new results not obtained by
these authors.

(c) For entire Dirichlet series of zero order
als6, the concept of logarithmic Ritt order is
used [14J. In this case, one of the authors [23J
has made a parallel study. connecting lJ(o), \'(0)'
etc. However, it is easily seen that his Theorems
1 to 3 of [23J can be obtained from our Theorems a
and 4 by making appropriate substitutions. Further,
our Theorems 1 and 4 (1) lead to new results not
obt~ined in [23J. Analoguous relations for geome-
tric means can also be obtained from our results.

(iii) SUBHARMONIC AND MEROMORPHIC FUNCTIONS.
The concepts of order, mean values, etc. have also
be~n intro~uced for sqbbarmonic functions (see e.g.
[5J, [12J, [2·4 ] ). Sin ce 0u I" res uIts abo ve have
been obtained in a ge~eral setting, they can be a£
plied in this case also. Similar rem,arks apply to
meromorphic functions.
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