HOMEOMORPHISMS, FUNCTIONAL EQUATIONS

AND LINEAR INDEPENDENCE

by

Gordon G. JOHNSON*

RESUMEN. Se estudian las soluciones f de la ecuaciôn funcional $f=b(f \circ h)+g$, donde $b \in \mathbb{R}, h$ es un homeomorfismo del intervalo $[0,1]$ en si mismo $\mathrm{y} \mathrm{g} \in \mathrm{C}[0,1]$. El caso $|b| \neq 1$ se resuelve con toda generalidad. El caso $|b|=1$ se resuelve bajo ciertas hipótesis de crecimiento para h, cuando g es un límite especial de funciones de la forma $t^{n}=1^{n} a t^{h^{t}}$, donde h^{t} es la iterada de h, t veces. Además se demuestra que si h es creciente y distinto de la identidad entonces los h^{t} son linealmente independientes.

In all that follows we shall assume that h is a homeomorphism of the number interval $[0,1]$ onto $[0,1], \mathbb{R}$ is the set of real numbers, and ${ }^{C}[0,1]$ is the real linear space of all continuous function on $[0,1]$, with sup norm denoted by $\|\cdot\|$.

[^0]We here determine solutions to the functional equation

$$
f=b f(h)=g
$$

where $b \in \mathbb{R}$, and $g \in C[0,1]$, see [1]. We then establish that if h is increasing, and distinct from the identity funcion, then $\left\{\mathrm{h}^{\mathrm{n}}: \mathrm{n}\right.$ is an integer\} is linearly independent where h^{n} is the nth iterate of h.

THEOREM 1. Suppose $b \in \mathbb{R},|b| \neq 1$ and $g \in C[0,1]$. There is a unique $f \in C[0,1]$ such that $f=b f(h)+g$.

Proof. ${ }^{C}[0,1]$ is a Banach space. Let T denote the bounded linear transformation from ${ }^{C}[0,1]$ into ${ }^{C}[0,1]$ defined by

$$
T f=b f(h),
$$

and observe that $|\mathrm{T}|=|\mathrm{b}|$. Suppose $|\mathrm{b}|<1$. Then $|\mathrm{T}|<1$ and hence $(I-T)^{-1}$ is a bounded linear trnasformation from $C[0,1]$ into $C[0,1]$, see [2]. Hence if $g \in C[0,1]$ and $f=(I-T)^{-1} g$, then $f=b f(h)+g$. Suppose now that $|b|>1$. Define $G=$ $-(1 / b) g\left(h^{-1}\right)$. From the above it follows that there is a unique $f \in C[0,1]$ such that $f=(1 / b) f\left(h^{-1}\right)+G$ and hence $f=$ $b f(h)+g$.

Let us now turn our attention to the indeterminate case when $|b|=1$, see [1]. We state without proof, three remarks:

REMARK 1. If each of f and g is in $C[0,1]$ and $f=$ $f(h)+g$ then for each number $c,(f+c)=(f+c)(h)+g$, and hence if there is a solution to $f=f(h)+g$, then there is a solution f such that $f(0)=0$.

REMARK 2. If $h(x)<x$ for $0<x<1$, $f \in C[0,1]$ and
$f=f(h)$, then $f \equiv f(0)$, and if $f=-f(h), f \equiv 0$.

REMARK 3. If $h(x)<x$ for $0<x<1$ and each of f and g is in $C[0,1]$ such that $f(0)=0$ and $f=f(h)+g$, then

$$
f=\sum_{t=0}^{\infty} g\left(h^{t}\right) \text { on }[0,1)
$$

and

$$
f=f(1)-\sum_{t=1}^{\infty} g\left(h^{-t}\right) \text { on }(0,1]
$$

THEOREM 2. Suppose $g=\sum_{t=0}^{n} a_{n} h^{t}$ where for each $t, a_{t} \in \mathbb{R}$. 1. If $\sum_{t=0}^{n} a_{t}=0,(g(1)=0)$, then there is $f \in C[0,1]$ such that $f=f(h)+g$.
2. If $\sum_{t=0}(-1)^{t} a_{t}=0$, then there is $f \in C[0,1]$ such that $f=$ $-f(h)+g$.

Proof. For case 1, let

$$
b_{t}=\sum_{i=0}^{t} a_{i} \quad 0 \leqslant t \leqslant n-1
$$

and for case 2, let

$$
c_{t}=(-1)^{t} \sum_{i=0}^{t}(-1)^{i} a_{i} \quad 0 \leqslant t \leqslant n-1
$$

Omitting the calculations we have the following. If

$$
f=\sum_{t=0}^{n-1} b_{t} h^{t}
$$

then $f=f(h)+g$, and if

$$
f=\sum_{t=0}^{n-1} c t^{t}
$$

then $f=-f(h)+g$.

We now extend the last result. Let

$$
H=\left\{g: g(x)=\sum_{t=1}^{n} a_{t} h^{t}(x), a_{t} \in \mathbb{R}, x \in[0,1], n=1,2 \ldots\right\},
$$

where $h(x)<x$ if $0<x<1$.

THEOREM 3. Suppose $\lim _{x \rightarrow 0} h(x) / x=0,1<L<(1-h(x)) /(1-x)$ $<U$ for $\frac{1}{2} \leqslant x<1, \quad\left\{g_{n}\right\}_{n=1}^{\infty}$ is a sequence in H which converges to a function g , and for each positive integer n

$$
g_{n}(x)=\sum_{t=1}^{n} n^{a} t^{h^{t}}(x)
$$

so that

1. $\sum_{t=1}^{n} n^{a} t=0$,
2. $\sum_{t=1}^{n}\left|{ }_{n} a_{t}\right| k^{-t} \leqslant A, \quad k>1, \quad A>0$,
3. $\left|\sum_{t=1}^{n}(n-t)_{n} a_{t}\right| \leqslant B, \quad B>0$, and
4. $\sum_{i=1}^{n-1} u^{i}\left|\sum_{t=i+1}^{n} n^{n}\right|<c, \quad c>0$.

Then there is $f \in C[0,1]$ such that $f=f(h)+g$.
Proof. From the last result we have for each positive interger n an $f_{n} \in C[0,1]$ such that

$$
f_{n}=f_{n}(h)+g_{n} \text { and } f_{n}(0)=0 .
$$

Let $\varepsilon>0$ and for each positive integer pair i, j

$$
\begin{aligned}
& G_{i j}=g_{i}-g_{j}, \\
& F_{i j}=f_{i}-f_{j},
\end{aligned}
$$

then

$$
F_{i j}=F_{i j}(h)+G_{i j}
$$

and by remark 3

$$
F_{i j}=\sum_{t=0}^{\infty} G_{i j}\left(h^{t}\right) \text { on }[0,1) .
$$

Choose positive numbers $\varepsilon_{1}, \varepsilon_{2}$ where $\frac{1}{2}>\varepsilon_{1}$ and $1>\varepsilon_{2}$, such that $\varepsilon>4 \mathrm{~A} \varepsilon_{1}$, and $\varepsilon_{1}>\mathrm{k}_{2}$. There is a $\delta>0$ such that if $0<x<\delta$, then

$$
h(x)<x \varepsilon_{2}
$$

and hence for each positive integer n

$$
h^{n}(x)<x \varepsilon_{2}^{n}
$$

Suppose n is a positive integer and $0<\mathrm{x}<\delta$ then

$$
\begin{aligned}
\left|g_{n}(x) / x\right| & \leqslant\left.\sum_{t=1}^{n}\right|_{n} a_{t} \mid h^{t}(x) / x \\
& \leqslant \sum_{t=1}^{n}\left|{ }_{n} a_{t}\right| \varepsilon_{2}^{t} \\
& \leqslant\left.\sum_{t=1}^{n}\right|_{n} a_{t} \mid k^{-t}\left(k \varepsilon_{2}\right)^{t} \\
& \leqslant \sqrt{\sum_{t=1}^{n}\left|n_{n}\right|^{2} k^{-2 t}} \sqrt{\sum_{t=1}^{n}\left(k \varepsilon_{2}\right) 2 t} \\
& \leqslant A \sqrt{\sum_{t=1}^{n} \varepsilon_{1}^{2 t}} \\
& <A \varepsilon_{1} \sqrt{2}<\varepsilon / 2
\end{aligned}
$$

Hence if each of i and j is a positive integer and $0<x<\delta$, then

$$
\left|G_{i j}(x)\right|<\varepsilon x .
$$

Select $x_{0} \in(0,1)$. There is an integer $N>4$ such that if $n>N$,
then $h^{n}\left(y_{0}\right)<\delta$ for all $0 \leqslant y_{0} \leqslant x_{0}$. Recall that for any i, j

$$
F_{i j}\left(y_{0}\right)=\sum_{t=0}^{\infty} G_{i j}\left(h^{t}\left(y_{0}\right)\right)
$$

and therefore

$$
\begin{aligned}
\left|F_{i j}\left(y_{0}\right)\right| & \leqslant \sum_{t=0}^{N}\left|G_{i j}\left(h^{t}\left(y_{0}\right)\right)\right|+\sum_{t=N+1}^{\infty}\left|G_{i j}\left(h^{t}\left(y_{0}\right)\right)\right| \\
& \leqslant \sum_{t=0}^{N}\left|G_{i j}\left(h^{t}\left(y_{0}\right)\right)\right|+\varepsilon \sum_{t=N+1}^{\infty} h^{t}\left(y_{0}\right) \\
& \leqslant \sum_{t=0}^{N}\left|G_{i j}\left(h^{t}\left(y_{0}\right)\right)\right|+\varepsilon y_{0} \sum_{t=N+1}^{\infty} \varepsilon_{2}^{t} \\
& \leqslant \sum_{t=0}^{N}\left|G_{i j}\left(h^{t}\left(y_{0}\right)\right)\right|+\varepsilon y_{0} \varepsilon_{2}^{N+1} /\left(1-\varepsilon_{2}\right) .
\end{aligned}
$$

Recall that $\left\{g_{n}\right\}_{n=1}$ converges to g, hence there is an integer M such that if i and j are greater than M, then

$$
\left\|G_{i j}\right\|<\varepsilon /(2(N+1)) .
$$

Hence

$$
\begin{aligned}
\left|F_{i j}\left(y_{0}\right)\right| & \leqslant(N+1) \varepsilon /(2(N+1))+\varepsilon \varepsilon_{2}^{N+1} /\left(1-\varepsilon_{2}\right) \\
& \leqslant \varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

Thus we have that if $x_{0} \in(0,1)$, then there is an integer M such that if each of $i, j>M$ and $0 \leqslant y_{0} \leqslant x_{0}$, then

$$
\left|F_{i j}\left(y_{0}\right)\right|<\varepsilon .
$$

It then follows that $\left\{f_{i}\right\}_{i=1}^{\infty}$ converges pointwise on $[0,1)$ to a function f, i.e.,

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x) \quad 0 \leqslant x<1
$$

and since we also have uniform convergence on $[0, a)$ for any $0<a<1$ we also have that f is continuous on $[0,1)$. For each positive integer n,

$$
f_{n}(x)=\sum_{t=0}^{\infty} g_{n}\left(h^{t}(x)\right) \quad 0 \leqslant x<1
$$

and

$$
g_{n}(x)=\sum_{t=1}^{n} n^{n} t^{h^{t}}(x) \quad 0 \leqslant x \leqslant 1 .
$$

After routine calculations we have that

$$
f_{n}(x)=\sum_{t=1}^{n-1} n^{a}\left[h^{t}+\ldots+h^{n-1}\right] \quad \text { if } 0 \leqslant x<1
$$

Since, for each n, f_{n} is continuous on $[0,1]$,

$$
f_{n}(1)=\sum_{t=1}^{n}(n-t)_{n} a_{t}
$$

and therefore,

$$
\left|f_{n}(1)\right| \leqslant B \quad \text { for } n=1,2, \ldots \text {. }
$$

Hence we may select a subsequence $\left\{f_{n}(1)\right\}_{i=1}^{\infty}$ which has a limit which we shall denote by $\mathrm{f}(1)$, and then notice that

$$
\lim _{i \rightarrow \infty} f_{n_{i}}(x)=f(x) \quad \text { for } x \in[0,1]
$$

and recall that this is a pointwise limit. We need to establish that f is continuous at 1 and that $f=f(h)+g$. From remark 3, we have that

$$
f_{n}(x)=f_{n}(1)-\sum_{i=1}^{\infty} g_{n}\left(h^{-i}(x)\right), \quad 0<x \leqslant 1,
$$

and therefore

$$
\begin{aligned}
\left|f_{n}(x)-f_{n}(1)\right| /|1-x| & =\left|\sum_{i=1}^{\infty} g_{n}\left(h^{-i}(x)\right) /(1-x)\right| \\
& =\left|\sum_{i=1}^{\infty} \sum_{t=1}^{n} n^{a} t^{h^{t-i}}(x) /(1-x)\right|, \quad 0<x<1 .
\end{aligned}
$$

Recall that $\sum_{t=1}^{n} n^{a_{t}}=0$, therefore

$$
\begin{aligned}
& \left|f_{n}(x)-f_{n}(1)\right| /|1-x|=\mid \sum_{i=1}^{\infty} \sum_{t=1}^{n} n^{a} t^{\left(1-h^{t-i}(x)\right) /(1-x) \mid} \\
& =\mid \sum_{i=1}^{n} \sum_{t=1}^{n} n^{a_{t}\left(1-h^{t-i}(x)\right) /(1-x)+\sum_{i=n+1}^{\infty} \sum_{t=1}^{n} n^{a} a_{t}\left(1-h^{t-i}(x)\right) /(1-x) \mid} \\
& =\mid n_{n} a_{1} \sum_{t=0}^{\infty}\left(1-h^{-t}(x)\right) /(1-x)+n_{n} a_{2}\left[(1-h(x)) /(1-x)+\sum_{t=0}^{\infty}\left(1-h^{-t}(x)\right) /(1-x)\right] \\
& \quad+\ldots+_{n} a_{n}\left[\left(1-h^{n-1}(x)\right) /(1-x)+\ldots+(1-h(x)) /(1-x)+\sum_{t=0}^{\infty}\left(1-h^{-t}(x)\right) /(1-x)\right] \mid \\
& \quad 1<L<(1-h(x)) /(1-x)<u, \quad 0<x<1
\end{aligned}
$$

which implies that

$$
\left(1-h^{i+1}(x)\right) /\left(1-h^{i}(x)\right)<U \quad \text { for } \quad i=0,1,2, \ldots
$$

and hence

$$
\left(1-h^{i}(x)\right) /(1-x)<U^{i} \quad \text { for } \quad i=1,2, \ldots .
$$

Also

$$
1<L<(1-h(x)) /(1-x), \quad 0<x<1
$$

and therefore

$$
(1-x) /(1-h(x))<1 / L<1
$$

from which it follows that

$$
\left(1-h^{-t}(x)\right) /(1-x)<(1 / L)^{t} .
$$

Return now to

$$
\left|f_{n}(x)-f_{n}(1)\right| /(1-x)=\mid\left[n a_{1}+\ldots{ }_{n} a_{n}\right] \sum_{t=0}^{\infty}\left(1-h^{-t}(x)\right) /(1-x)+
$$

$$
\begin{aligned}
& { }_{n} a_{2}[(1-h(x)) /(1-x)]+\ldots+_{n} a_{n}\left[(1-h(x)) /(1-x)+\ldots+\left(1-h^{n-1}(x)\right) /(1-x)\right] \mid \\
\leqslant & \left|{ }_{n} a_{2}[1-h(x)]+\ldots+_{n} a_{n}\left[(1-h(x)) /(1-x)+\ldots+\left(1-h^{n-1}(x)\right) /(1-x)\right]\right| \\
\leqslant & \mid \sum_{t=2}^{n} n^{a_{t}}[(1-h(x)) /(1-x)]+\sum_{t=3}^{n} n^{n} a_{t}\left[\left(1-h^{2}(x)\right) /(1-x)\right] \\
& +\ldots{ }_{n} a_{n}\left[\left(1-h^{n-1}(x)\right) /(1-x)\right] \mid \\
\leqslant & \left|\sum_{i=1}^{n-1}\left(1-h^{i}(x)\right) /(1-x) \sum_{t=i+1}^{n} n^{n} a_{t}\right| \\
\leqslant & \sum_{i=1}^{n-1} U^{i}\left|\sum_{t=1+1}^{n} n_{t}\right| \\
\leqslant & C .
\end{aligned}
$$

Hence we have that

$$
\left|f_{n}(x)-f_{n}(1)\right|<c|1-x| \quad \text { if } 0<x \leqslant 1
$$

Recall that a subsequence $\left\{f_{n_{i}}\right\}_{i=1}^{\infty}$ was selected such that $\lim _{i \rightarrow \infty} f_{n_{i}}(1)$ existed.

To avoid complicating notation, and with no loss to the argument, let us assume that the original sequence converged pointwise on $[0,1]$ and uniformly on $[0, a)$ for each $0 \leqslant a<1$.

$$
\begin{aligned}
|f(1)-f(x)| & \leqslant\left|f(1)-f_{n}(1)\right|+\left|f_{n}(1)-f_{n}(x)\right|+\left|f_{n}(x)-f(x)\right| \\
& <\left|f(1)-f_{n}(1)\right|+C|1-x|+\left|f_{n}(x)-f(x)\right|
\end{aligned}
$$

in the limit,

$$
|f(1)-f(x)| \leqslant c|1-x|
$$

and hence f is continuous at 1 . Let us now show that $f=f(h)+g$ on $[0,1]$. Now, $f(0)=0, g(0)=0$ and $f(1)=f(h(1))+g(1)=$

```
f(1)+0 =f(1). Hence, suppose 0<x< 1:
```

$$
\begin{aligned}
&|f(x)-f(h(x))-g(x)|=\left|f(x)-f_{n}(x)\right|+\left|f_{n}(h(x))-f(h(x))\right| \\
&+\left|g_{n}(x)-g(x)\right|+\left|f_{n}(x)-f_{n}(h(x))-g_{n}(x)\right| \\
& \leqslant\left|f(x)-f_{n}(x)\right|+\left|f_{n}(h(x))-f(h(x))\right|+\left|g_{n}(x)-g(x)\right|
\end{aligned}
$$

Therefore $f(x)=f(h(x))+g(x)$ on $[0,1]$, which completes the argument.

THEOREM 4. Suppose $g \in C[0,1], G=g-g(h)$, and $h(x)<x$, for $0<x<1$. If $f \in C[0,1]$, then $f=f(h(h))+G$ and $f(0)=0$ if and only if $f=-f(h)+g-g(0)$.

$$
\begin{aligned}
& \text { Proo 6. If } f \in C[0,1], f(0)=0 \text { and } f=f(h(h))+G \text {, then } \\
& \qquad \begin{aligned}
f & =-f(h)+f(h)+f(h(h))+g-g(h) \\
& =-f(h)+g+[f+f(h)-g](h)
\end{aligned}
\end{aligned}
$$

Let

$$
L=f+f(h)-g
$$

and observe that $L=L(h)$ and $L(0)=-g(0)$. By remark 2, $L \equiv-g(0)$ and hence

$$
f=-f(h)+g-g(0)
$$

Suppose now that

$$
f=-f(h)+g-g(0)
$$

Then

$$
f(h)=-f(h(h))+g(h)-g(0)
$$

and hence

$$
\begin{aligned}
f & =f(h(h))+g-g(h) \\
- & =f(h(h))+G .
\end{aligned}
$$

Since $f=-f(h)+g-g(0)$, it follows that $f(0)=-f(0)$ and hence $f(0)=0$.

In Theorem 3, the set $H=\left\{g: g=\sum a_{t} h^{t}, a_{t} \in \mathbb{R}, n=1,2 \ldots\right\}$ was considered, which raises the question as to linear independence of the set $\left\{h^{n}: n\right.$ is an integer $\}$ when $h(h)$ is not the identity function.

THEOREM 5. If h is an increasing homeomorphism of $[0,1]$ onto $[0,1]$ distinct from the identity function, then the set $M=\left\{h^{n}: n\right.$ is an integer $\}$ is linearly independent.

Proof. Suppose that there is an increasing homeomorphis h of $[0,1]$ onto $[0,1]$ distinct from the identity function such that the set $M=\left\{h^{i}\right.$: is an integer $\}$ is not linearly independent. It then follows that the set $P=\left\{h^{i}\right.$:i is is a nonnegative integer\} is linearly dependent. Note that $\left\{h^{0}, h^{1}\right\}$ is a linearly independent set and therefore there is a least positive integer n such that $\left\{h^{i}: i=0,1, \ldots, n+1\right\}$ is linearly dependent. There is then a number sequence $\left\{A_{i}\right\}_{i=0}^{n+1}$ not all of whose elements are zero, such that

$$
\sum_{i=0}^{n+1} A_{i} h^{i}=0
$$

Since n is minimal, we have that $A_{0} A_{n+1} \neq 0$. For $j=0,1, \ldots, n$ let $B_{j}=-A_{j} / A_{n+1}$, then $B_{0} \neq 0$ and

$$
\sum_{j=0}^{n} B j^{j}=h^{n+1}
$$

Moreover for each integer k

$$
\sum_{j=0}^{n} B h^{j+k}=h^{n+1+k}
$$

Since $h(1)=1$ it follows that

$$
\sum_{j=0}^{n} B_{j}=1
$$

and hence

$$
B_{n}=1-\sum_{j=0}^{n-1} B_{j}
$$

For $t=0,1, \ldots, n-1$ let

$$
c_{t}=-\sum_{j=0}^{t} B_{j}
$$

and for each integer k let

$$
\Delta_{k}=h^{k}-h^{k+1}
$$

Then we have that

$$
\sum_{i=0}^{n-1} c_{i} \Delta_{i}=\Delta_{n}
$$

and for each positive integer k

$$
\sum_{j=0}^{k} \sum_{i=0}^{n-1} c_{i} \Delta_{i+j}=\sum_{j=0}^{k} \Delta_{n+j}
$$

The last expression telescopes to

$$
\sum_{i=0}^{n-1} c_{i}\left(h^{i}-h^{i+1+k}\right)=h^{n}-h^{n+k+1}
$$

and therefore

$$
\sum_{i=0}^{n-1} c_{i} h^{i}-h^{n}=\sum_{i=0}^{n-1} c_{i} h^{i+1+k}-h^{n+k+1}
$$

If there is a number $a, 0<a<1$, such that $h(a)=a$, then there is a subinterval $[c, d]$ of $[0,1]$ such that either h or h^{-1} is bellow the identity between c and d. If it is h, then procede, if it is h^{-1} then let $k=h^{-1}$ and procede considering the set $\left\{k^{n}: n\right.$ is an integer $\}=\left\{h^{n}: n\right.$ is an integer $\}$, in any event we would have a homeomorphism of $[c, d]$ onto $[c, d]$ which is below the identity between c and d. If now the set $\left\{h^{n}: n\right.$ is an integer \}
is linearly independent when restricted to $[c, d]$, then it is linearly independet on $[0,1]$. Hence the problem is to show that if $[c, d]$ is an interval and h is a homeomorphism of $[c, d]$ onto $[c, d]$ such that $h(x)<x$ for $c<x<d$, then $\left\{h^{n}\right.$: n is an integer $\}$ is linearly independent on $[c, d]$. Hence, without loss of generality assume $[c, d]=[0,1]$ and notice that

$$
\lim _{j \rightarrow \infty} h^{j}(x)=0 \text { for } 0 \leqslant x<1
$$

and indeed, if $0<a<1$, then the convergence is uniform on $[0, a]$. Thus for $0 \leqslant x<1$

$$
\lim _{k \rightarrow \infty} \sum_{i=0}^{n-1} c_{i} h^{i+1+k}-h^{n+k+1}=0,
$$

and therefore

$$
\sum_{i=0}^{n-1} c_{i} h^{i}(x)=h^{n}(x)
$$

for $0 \leqslant x<1$. Each of h^{n} and $\sum_{i=0}^{n-1} c_{i} h^{i}$ is continuous on $[0,1]$ and therefore

$$
\sum_{i=0}^{n-1} c_{i} h^{i}=h^{n}
$$

on $[0,1]$, which is a contradiction to the minimality of n, and hence the result is established.

REMARK 4. If H_{t} is a flow on $[0,1]$, see [3], then $\left\{\mathrm{H}_{\mathrm{t}}: \mathrm{t}\right.$ is a rational number\} is linearly independent.

REMARK 5. If $h(x)=x^{2}$ for x in $[0,1]$, then $h^{n}(x)=x^{2 n}$. Let $H=\left\{h^{n}: n\right.$ is a positive integer\}. By Muntz' theorem [4] the linear subspace of ${ }^{C}[0,1]^{\text {jconstant }}$ functions generated by H is not dense in $C[0,1]$ /constant functions.

REFERENCES

[1] Kuczma, M., Functional equations in a single variable, Polish
Sci. Pub. Tom. 46, Warsaw, Poland, 1968.
[2] Lorch, E., Spectral Theory, Oxford Univ. Press, Oxford and New York, 1962.
[3] Fort, M.K. Jr., The embedding of homeomorphisms in flows, Proc. Amer. Math. Soc. 6 (1955) 960-967.
[4] Davis, P.J., Interpolation and Approximation, Blaisdell Pub. Co., New York, 1965.

* *

Department of Mathematics
University of Houston
Central Campus
Houston, Texas 71004
U. S. A.
(Recibido en enero de 1982, de versión revisada en octubre de 1982).

[^0]: * This research was conducted in part while the author was a Senior Research Associate of the National Research Council at the National Aeronautics and Space Administration (NASA) Headquarters.

