M-IDEALS IN BANACH SPACES

by

Roshdi KHALIL

Abstract

Let X and Y be given Banach spaces, and $L(X, Y)$ be the space of bounded linear operators from X into Y. Compact operators are denoted by $\mathrm{K}(\mathrm{X}, \mathrm{Y})$. It is shown that under certain conditions if $K(X, Y)$ is an M-ideal of $L(X, Y)$, then Y is an M-ideal of $Y^{* * *}$. Further it is shown that if X and Y are reflexive and $K(Y, Y)$ is an M-ideal of $\mathrm{L}(\mathrm{Y}, \mathrm{Y})$, then $\mathrm{K}(\mathrm{X}, \mathrm{Y})^{* *}$ is isometric to $\mathrm{L}(\mathrm{X}, \mathrm{Y})$.

RESUMEN. Sean X y Y espacios de Banach y $L(X, Y)$ el espacio de operadores lineales acotados de X en Y. El subespacio de operadores compactos se denota $K(X, Y)$. Se demuestra que bajo ciertas condiciones, si $K(X, Y)$ es un M-ideal de $L(X, Y)$ entonces Y es un M-ideal de $Y * *$. Además, si X y Y son reflexivos $y ~ K(Y, Y)$ es un M-ideal de $L(Y, Y)$, entonces $K(X, Y) * *$ es isométrico a $L(X, Y)$. Esto generaliza resultados análogos de A. Lima y P. Harmand.
§0. Introducción. Let X and Y be given Banach spaces. The space of bounded linear operators from X into Y is denoted by
$\mathrm{L}(\mathrm{X}, \mathrm{Y})$. We let $\mathrm{K}(\mathrm{X}, \mathrm{Y})$ be the compact elements in $\mathrm{L}(\mathrm{X}, \mathrm{Y})$. Lima, [5], showed that if $K(X, X)$ is an M-ideal of $L(X, X)$, then X is an M-ideal in $X * \%$. In a subsequent paper, Harmand and Lima, [4], have shown that if X is reflexive and $K(X, X)$ is an M-ideal of $L(X, X)$, then $K(X, X) * *$ is isometric to $L(X, X)$.

The object of this paper is to generalize the above mentioned results to $L(X, Y)$. In section 2 we show that if the pair (X, Y) satisfies the so called E-property, and $\mathrm{K}(\mathrm{X}, \mathrm{Y})$ is an M-ideal of $L(X, Y)$, then Y is an M-ideal of $Y * *$. Further, we show that if X and Y are reflexive, and $K(Y, Y)$ is an M-ideal of $L(Y, Y)$, then $K(X, Y) * *$ is isometric to $L(X, Y)$. Some other results are given. All Banach spaces are assumed to be real.
§1. Preliminaries on M-ideals. A closed subspace J of a Banach space X is called an L-summand of X if there exists a closed subspace $J^{\prime} \subseteq X$ such that $X=J \nexists J^{\prime}$ and for $X_{1} \in J$ and $x_{2} \in J^{\prime}$ one has $\left\|x_{1}+x_{2}\right\|=\left\|x_{1}\right\|+\left\|x_{2}\right\|$. The subspace J is called an M-ideal of X if J^{\perp} is an L-summand of X^{*}, where $J^{+}=$ $\left\{\psi \in X^{*}: \psi(J)=0\right\}$.

Another equivalent definition of M-ideals is given via the intersection properties of balls: let $B(x, r)=$ $\{y \in x:\|x-y\| \leqslant r\}$. Then J is an M-ideal of X if and only if given any three balls $B\left(a_{i}, r_{i}\right), i=1,2,3$, in X such that

$$
\bigcap_{i=1}^{3} B\left(a_{i}, r_{i}\right) \neq \phi \quad \text { and } J \cap B\left(a_{i}, r_{i}\right) \neq \phi, \quad i=1,2,3,
$$

then

$$
J \cap\left(\bigcap_{i=1}^{3} B\left(a_{i}, r_{i}\right)\right) \neq \phi
$$

We refer to [1] and [6] for more on M-ideals in Banach spaces.
§2. M-Ideals and compact operators. A pair of Banach spaces (X, Y) is said to satisfy the E-property if for every $\mathrm{y} \in \mathrm{Y} * *$, there exists a non-compact $\mathrm{T} \in \mathrm{L}(\mathrm{X}, \mathrm{Y})$ and an $\mathrm{x} \in \mathrm{X} * *$ such that $\|T\| \leqslant 1,\|x\| \leqslant 1$ and $T * *(x)=y$.

The pair (X, X) clearly satisfies the E-property, by taking $T=I=$ identity operator. However, since $L\left(\ell^{P}, \ell^{q}\right)=$ $K\left(\ell^{P}, l^{q}\right), \quad 1 \leqslant q<p<\infty,[7]$, the pair $\left(\ell^{p}, l^{q}\right)$ does not satisfy the E-property.

THEOREM 2.1. Let X and Y be given Banach spaces such that the pair (X, Y) satisfies the E-property. If $\mathrm{K}(\mathrm{X}, \mathrm{Y})$ is an M-ideal of $L(X, Y)$, then Y is an M-ideal of $Y * \%$.

Proof. By Lima [6], it is enough to prove that for every $\mathrm{y} \in \mathrm{Y} * *$ and $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}$ in Y with $\|\mathrm{y}\|=1$ and $\left\|\mathrm{y}_{\mathrm{i}}\right\| \leqslant 1$, and for every $\varepsilon>0$, there exists $z \in Y$ such that

$$
\left\|y+y_{i}-z\right\| \leqslant 1+\varepsilon, \quad i=1,2,3 .
$$

Thus, let $\varepsilon, y, y_{1}, y_{2}, y_{3}$ be given as above. Since (X, y) satisfied the E-property, there exists a non-compact operator $T \in L(X, Y)$ with $\|T\| \leqslant 1$ and an $x \in X^{* *},\|x\| \leqslant 1$ such that $T * *(x)=y$. Choose $x^{*} \in X^{*}$ such that $1-\varepsilon \leqslant x *(x)<1$. Define the compact operators $S_{i} \in K(X, Y)$:

$$
s_{i}=x^{*} \otimes y_{i}, \quad i=1,2,3 .
$$

Since $K(X, Y)$ is an M-ideal in $L(X, Y)$, there exists $U \in K(X, Y)$ such that

$$
\left\|T+S_{i}-U\right\| \leqslant 1+\varepsilon, \quad i=1,2,3 .
$$

Hence

$$
\left\|\left(T+S_{i}-U\right) * *\right\|=\| T * *+S_{i}^{* *-U * * \| \leqslant 1+\varepsilon, ~}
$$

for $i=1,2,3$. Consequently

$$
\left\|\left(T * *+S_{i}^{* *}-U * *\right)(x)\right\| \leqslant 1+\varepsilon .
$$

Since U is compact, then, $[3, p .624], U * *(x)=z \in Y$. Thus

$$
\left\|y+x *(x) y_{i}-z\right\| \leqslant 1+\varepsilon
$$

But $1-\varepsilon \leqslant x *(x) \leqslant 1$. Hence

$$
\left\|y+y_{i}-z\right\| \leqslant 1+2 \varepsilon
$$

This completes the proof of the theorem.

COROLLARY 2.2. If the pair (X, Y) satisfies the E-property, and $K(X, Y)$ is an M-ideal of $L(X, Y)$, then $Y *$ has the R a-don-Nikodym property.

Proof. This follows from [4, Theorem 2.6] and the previous theorem.

For the Banach spaces X and Y, let $X \hat{\otimes} Y$ be the complete projective tensor product of X with Y, [8]. Let $Y *$ or $X * *$ have the Radon-Nikodym property. Collins and Ruess, [2], showed that the map

$$
V: X^{*} * \hat{\otimes} Y * \rightarrow K(X, Y) *
$$

defined by

$$
\langle V(\phi), T\rangle=\sum_{i=1}^{\infty}\left\langle T * *\left(x_{i}^{* *}\right), y_{i}^{*}\right\rangle,
$$

for every $\phi=\sum_{i=1}^{\infty} x_{i}^{* *} \otimes y_{i}^{*}$ in $X^{* *} \hat{\otimes} Y *$, is a quotient map. Hence,

$$
K(X, Y)^{*} \simeq X^{* *} \hat{\boldsymbol{\theta}} \mathrm{Y}^{*} / \mathrm{N},
$$

where $\mathrm{N}=$ ker V . Consequently,

$$
K(X, Y) * * \simeq N^{+}=\{Q \in(X * * \hat{\otimes} Y *) *: Q(N)=0\} .
$$

THEOREM 2.3. Let $K(Y, Y)$ be an M-ideal of $L(Y, Y)$. Then $\mathrm{L}(\mathrm{X}, \mathrm{Y}) \subseteq \mathrm{K}(\mathrm{X}, \mathrm{Y}) * * \subseteq \mathrm{~L}(\mathrm{X} * *, \mathrm{Y} * *)$.

Proof. It is enough to show that if $T \in L(X, Y)$ then $\mathrm{T} * * \in(\operatorname{ker} \mathrm{~V})^{+}=\mathrm{N}^{+}$. Since $K(\mathrm{Y}, \mathrm{Y})$ is an M -ideal of $\mathrm{L}(\mathrm{Y}, \mathrm{Y})$, then, [4], there exists a net $\left(T_{\alpha}\right)$ in $K(Y, Y)$ such that
(i) $\left\|T_{\alpha}\right\| \leqslant 1$ for all α
(ii) $\left\|\mathrm{T}_{\alpha}^{*}\left(\mathrm{y}^{*}\right)-\mathrm{y} *\right\| \rightarrow 0$ for all $\mathrm{y}^{*} \in \mathrm{y}^{*}$.
(iii) $\left\|I-T_{\alpha}\right\| \rightarrow 1$.

Now, let $T \in L(X, Y)$, and $\phi \in$ ker V, with $\phi=\sum_{i=1}^{\infty} x_{i}^{* *} \otimes y_{i}^{*}$. Clearly $T_{\alpha} T \in K(X, Y)$ and

$$
\begin{aligned}
0 & =\left\langle\mathrm{T}_{\alpha} \mathrm{T}, \mathrm{v}(\phi)\right\rangle \\
& =\sum_{i=1}^{\infty}\left\langle\mathrm{T}_{\alpha}^{* *} \mathrm{~T}_{\mathrm{T}}^{* *}\left(\mathrm{x}_{i}^{* *}\right), \mathrm{y}_{i}^{*}\right\rangle \\
& =\sum_{i=1}^{\infty}\left\langle\mathrm{T} * *\left(\mathrm{x}_{i}^{* *}\right), \mathrm{T}_{\alpha}^{*}\left(\mathrm{y}_{i}^{*}\right)\right\rangle .
\end{aligned}
$$

By property (ii) of the net $\left(T_{\alpha}\right)$ and for $\phi \in X^{* *} \widehat{\otimes} Y^{*}$, we have

$$
\begin{aligned}
0 & =\left\langle\mathrm{T}_{\alpha} \mathrm{T}, \mathrm{~V}(\phi)\right\rangle \vec{\alpha} \quad\langle\mathrm{T}, \mathrm{~V}(\phi)\rangle \\
& =\sum_{i=1}^{\infty}\left\langle\mathrm{T} * *\left(\mathrm{x}_{i}^{* *}\right), \mathrm{y}_{\mathrm{i}}^{*}\right\rangle
\end{aligned}
$$

However, it is well know that $L(X * *, Y * *) \simeq(X * * \hat{\theta} Y *)$ via the trace functional. Consequently $T * * \in N^{\perp} \simeq(K(X, Y)) * *$. This completes the proof of the theorem.

As a corollary to the previous theorem we get:

THEOREM 2.4. Let X and Y be reflexive Banach spaces and $K(Y, Y)$ be an M-ideal of $L(Y, Y)$. Then $K(X, Y) * * \simeq L(X, Y)$.

Proof. By Theorem 2.3, $\mathrm{L}(\mathrm{X}, \mathrm{Y}) \subseteq \mathrm{K}(\mathrm{X}, \mathrm{Y}) * * \subseteq \mathrm{~L}(\mathrm{X} * *, \mathrm{Y} * *)$. Since $X * *=X, Y * *=Y$, the result follows.

THEOREM 2.5. Let $K(X, Y *)$ be an M-ideal of $K(X, Y *) * *$. Then X and Y are reflexive.

Proof. The Banach spaces X^{*} and Y^{*} can be embedded isometrically in $K\left(X, Y^{*}\right)$. But then the result follows from [4 , Corollary 3.7.]

REFERENCES

[1] Alfsen, E. and Effros, E., Structure in real Banach spaces, Ann. of Math. 96(1972), 98-173.
[2] Collins, H.S. and Ruess, W., Duals of spaces of compact operators. Studia Math. LXXIV (1982), 213-245.
[3] Edwards, R.E., Functional analysis, Halt, Rinehart and Winston, New York, 1965.
[4] Harmand, P. and Lima, A., Banach spaces which are M-ideals in their biduals. To appear.
[5] Lima, A., On M-ideals and bestapproximation, Indiana Univ. Math. J., 31 (1982), 27-36
[6] Lima, A., Intersection properties of balls and subspaces in Banach spaces, Trans. A.M.S. 227 (1977), 1-62.
[7] Pitt, H.R., A note on bilinear forms, J. Lond. Math. Soc. 11 (1936), 174-180.
[8] Wong, Y.C., Schwartz spaces, nuclear spaces and tensor products, Springer-Verlag, New York, 1979.

Kuwait University Department of Mathematics P.O. BOX 5969 KUWAIT.
(Recibido en Septiembre de 1983).

