Zeta functions of singular curves over finite fields

W. A. Zúñiga-Galindo
Universidad Autónoma de Bucaramanga Bucaramanga, COLOMBIA

Abstract

Let X be a complete, geometrically irreducible, algebraic curve defined over a finite field \mathbb{F}_{q} and let $\zeta(X, t)$ be its zeta function [Ser1]. If X is a singular curve, two other zeta functions exist. The first is the Dirichlet series $Z(\mathrm{Ca}(X), t)$ associated to the effective Cartier divisors on X; the second is the Dirichlet series $Z(\operatorname{Div}(X), t)$ associated to the effective divisors on X. In this paper we generalize F. K. Schmidt's results on the rationality and functional equation of the zeta function $\zeta(X, t)$ of a non-singular curve to the functions $Z(\mathrm{Ca}(X), t)$ and $Z(\operatorname{Div}(X), t)$ by means of the singular Riemann-Roch theorem.

Key words and phrases. Zeta functions, finite fields, singular curves, generalized Jacobians, compactified Jacobians.
1991 AMS Mathematics Subject Classification. Primary 14H25. Secondary 14H05.

In [G] Galkin introduced a zeta function for orders in global fields which coincides with Schmidt's zeta function in the case of a non-singular curve but satisfies a functional equation only in the Gorenstein case. Green [Gr] obtained a functional equation by slightly modifying the definition of the zeta function of Galkin. However, this new zeta function is not uniquely determined by the curve. Finally, Stöhr [Sto] defines the zeta function $Z(\operatorname{Div}(X), t)$ which coincides with the zeta function of Galkin in the Gorenstein case and always satisfies a functional equation ([Sto, p. 133]). In [Z] we studied the local factors of the zeta function $Z(\mathrm{Ca}(X), t)$ using an adelic approach a lá Tate. As a consequence we obtained the rationality and a global functional equation of
$Z(\mathrm{Ca}(X), t)([\mathrm{Z}$, thm. 5.3$])$. In this paper we generalize F. K. Schmidt's results on the rationality and functional equation of the zeta function $\zeta(X, t)$ of a non-singular curve to the zeta functions $Z(\mathrm{Ca}(X), t)$ and $Z(\operatorname{Div}(X), t)$ using an approach based on the singular Riemann-Roch theorem. This allows us to find the residue at $s=0$ of the zeta function $Z\left(\mathrm{Ca}(X), q^{-s}\right)$ and $Z(\operatorname{Div}(X), t)$ (see thms. 2.1, 2.2, 3.1).

1. Preliminaries

In this section we present the basic facts about singular curves and zeta functions (cf. e.g. [Ros1], [Ros2], [Ser2], [Sto]).

Let X be a complete, geometrically irreducible, algebraic curve defined over a field k. We denote by $K=k(X)$ the function field of X over k, g will stand for its arithmetic genus, \tilde{g} for its geometric genus, \tilde{X} will be the normalization of X over k (also named the non-singular model of X) and $\pi: \tilde{X} \longrightarrow X$ will denote the normalization map. The regular surjective map π is birational. In particular, the function field of the smooth curve \tilde{X} is K / k.

By a divisor of X we mean a coherent fractional ideal sheaf or, equivalently, a formal product

$$
\mathcal{A}=\prod_{P \in X} \mathcal{A}_{P}
$$

where for each point P the P-component \mathcal{A}_{P} (i.e. the stalk of \mathcal{A} at P) is a non-zero fractional ideal of \mathcal{O}_{P} and $\mathcal{A}_{P}=\mathcal{O}_{P}$ for all but finitely many points. Given two divisors \mathcal{A} and \mathcal{B}, we define pointwise the product divisor $\mathcal{A B}$ and the quotient divisor $\mathcal{A}: \mathcal{B}$ by

$$
(\mathcal{A B})_{P}:=\mathcal{A}_{P} \mathcal{B}_{P}
$$

and

$$
(\mathcal{A}: \mathcal{B})_{P}:=\left\{z \in K \mid z \mathcal{B}_{P} \subseteq \mathcal{A}_{P}\right\} .
$$

We denote by $\operatorname{Div}(X)$ the set of divisors of X. A divisor \mathcal{A} is called a locally principal or a Cartier divisor if each \mathcal{A}_{P} is a principal fractional ideal. The Cartier divisors form a multiplicative group having the structure divisor

$$
\mathcal{O}:=\prod_{P \in X} \mathcal{O}_{P}
$$

as the identity. We denote by $\mathrm{Ca}(X)$ the group of the Cartier divisors. We define a partial order on $\operatorname{Div}(X)$ by

$$
\mathcal{A} \leqslant \mathcal{B} \Leftrightarrow \mathcal{A}_{P} \subseteq \mathcal{B}_{P} \quad \text { for all } P \in X .
$$

A divisor \mathcal{A} is called effective if $\mathcal{A} \geq \mathcal{O}$. For our purposes, it is more convenient to work with the above ordering than with the usual one.

The degree of a divisor is uniquely defined by the following properties:
(i) $\operatorname{deg}(\mathcal{O})=0$.
(ii) $\operatorname{deg}(\mathcal{B})-\operatorname{deg}(\mathcal{A})=\sum_{P \in X} \operatorname{dim}_{k}\left(\mathcal{B}_{P} / \mathcal{A}_{P}\right)$ whenever $\mathcal{B} \geq \mathcal{A}$.

We observe that in general $\operatorname{deg}(\mathcal{A B}) \neq \operatorname{deg}(\mathcal{A}) \operatorname{deg}(\mathcal{B})$ (cf. [Ha, sect. 1]). However, if at least one of the divisors \mathcal{A} or \mathcal{B} is a Cartier divisor then the equality holds.

For each non-zero rational function $z \in K^{*}, \operatorname{let} \operatorname{div}(z)$ be its principal divisor, i.e.,

$$
\operatorname{div}(z):=\prod_{P \in X} z^{-1} \mathcal{O}_{P}
$$

We denote by $\operatorname{Prin}(X)$ the subgroup of principal divisors of X.
Let

$$
L(\mathcal{A}):=\bigcap_{P \in X} \mathcal{A}_{P}=\{z \in K \mid \operatorname{div}(z) \mathcal{A} \geqq \mathcal{O}\}
$$

be the k-vector space of global sections of \mathcal{A} (also denoted by $H^{0}(X, \mathcal{A})$). We denote the dimension of the above k-vector space by $\ell(\mathcal{A})$ (also denoted by $h^{0}(X, \mathcal{A})$).

The Riemann-Roch theorem for function fields was generalized by Rosenlicht to curves with singularities (cf. e.g. [Ros1], [Sto]).
Theorem 1.1. (Riemann-Roch theorem for singular curves). Each divisor \mathcal{A} of X satisfies

$$
\ell(\mathcal{A})=\operatorname{deg}(\mathcal{A})+1-g+\ell(\mathcal{C}: \mathcal{A})
$$

where \mathcal{C} denotes the canonical divisor of X.
The local duality theorem also generalizes to singular curves (cf. e.g. [Sto, thm. 1.5])
Theorem 1.2. (Local duality). Let \mathcal{A}, \mathcal{B} be divisors of X such that $\mathcal{A} \geqq \mathcal{B}$. Then for each point P we have the k-isomorphism

$$
\left(\mathcal{C}_{P}: \mathcal{B}_{P}\right) /\left(\mathcal{C}_{P}: \mathcal{A}_{P}\right) \longrightarrow \operatorname{Hom}_{k}\left(\mathcal{A}_{P} / \mathcal{B}_{P}, k\right) .
$$

As a consequence of the theorem of local duality, we get the reciprocity formula (cf. e.g. [Sto, sect. 1.7]).
Corollary 1.3. (Reciprocity formula). For each divisor \mathcal{A},

$$
\mathcal{C}:(\mathcal{C}: \mathcal{A})=\mathcal{A} .
$$

From now on, we understand point to mean closed point. Let P be a point of X and \mathcal{O}_{P} be the local ring of X at P. Let $Q_{1}, Q_{2}, \ldots, Q_{d}$ be the points of \tilde{X} lying over P, i.e., $\pi^{-1}(P)=\left\{Q_{1}, \ldots, Q_{d}\right\}$, and let $\mathcal{O}_{Q_{1}}, \ldots, \mathcal{O}_{Q_{d}}$ be the
corresponding local rings at these points. Since the function fields of X and \tilde{X} are the same and \tilde{X} is a non-singular curve, the local rings $\mathcal{O}_{Q_{1}}, \ldots, \mathcal{O}_{Q_{d}}$ are valuation rings of K / k over \mathcal{O}_{P}. The integral closure of \mathcal{O}_{P} in K is $\widetilde{\mathcal{O}}_{P}=$ $\bigcap_{Q \in \pi^{-1}(P)} \mathcal{O}_{Q}$.

The degree of singularity of X at P is defined as

$$
\delta_{P}=\operatorname{dim}_{k}\left(\tilde{\mathcal{O}}_{P} / \mathcal{O}_{P}\right)
$$

By Theorem. 1 in $[\operatorname{Ros} 1], \delta_{P}<\infty$. The total degree of singularity of X is defined as

$$
\delta=\sum_{P \in X} \delta_{P}
$$

The degree of singularity δ_{P} remains invariant under completion. The total degree of singularity δ remains invariant under separable constant extensions (cf. [Ros1, thm. 12]).

We recall that the genus formula of a complete, geometrically irreducible, algebraic curve X is (see $[\mathrm{H}]$)

$$
g=\tilde{g}+\sum_{P \in X} \delta_{P}
$$

where \tilde{g} is the geometric genus of X.
The conductor ideal \mathcal{F}_{P} of $\widetilde{\mathcal{O}}_{P}$ in \mathcal{O}_{P} is defined as

$$
\mathcal{F}_{P}=\left\{x \in K \mid x \widetilde{\mathcal{O}}_{P} \subseteq \mathcal{O}_{P}\right\}
$$

This ideal is the largest common ideal of $\widetilde{\mathcal{O}}_{P}$ and \mathcal{O}_{P}. Furthermore, since $\delta_{P}<\infty$, then $\mathcal{F}_{P} \neq 0$. On the other hand, $\widetilde{\mathcal{O}}_{P}$ is a Dedekind domain with a finite number of maximal ideals. Thus, \mathcal{F}_{P} is an $\widetilde{\mathcal{O}}_{P}$-principal ideal. The degree of the conductor ideal \mathcal{F}_{P} is defined as

$$
\operatorname{deg} \mathcal{F}_{P}:=\operatorname{dim}_{k}\left(\widetilde{\mathcal{O}}_{P} / \mathcal{F}_{P}\right)
$$

The degree of \mathcal{F}_{P} is also invariant under completions and under separable constant extensions.

We say that a local ring \mathcal{O}_{P} is Gorenstein if $\operatorname{deg} \mathcal{F}_{P}=2 \delta_{P}$. An algebraic curve is called a Gorenstein curve if all its local rings are Gorenstein.

The dualizing sheaf ω_{X} is locally free of rank 1 if and only if X is a Gorenstein curve (cf. [A-K, chap. VIII, prop. 1.16]). We denote by \mathcal{C} the canonical divisor of a complete, geometrically irreducible, algebraic curve X. Then \mathcal{C}_{P} is a principal ideal if and only if $\omega_{X, P}$ is free of rank 1 . Summarizing, we have the following result of Rosenlicht.

Theorem 1.4. Let X be a complete, geometrically irreducible, algebraic curve defined over k. The curve X is Gorenstein if and only if its canonical divisor is a Cartier divisor.
We denote by $\mathrm{Ca}^{0}(X)$ the subgroup of degree zero divisors of $\mathrm{Ca}(X)$, by $\operatorname{Pic}(X)$ the quotient group $\mathrm{Ca}(X) / \operatorname{Prin}(X)$ and by $\operatorname{Pic}^{0}(X)$ the quotient group

$$
\mathrm{Ca}^{0}(X) / \operatorname{Prin}(X) .
$$

Let \bar{k} be an algebraic closure of $k . \operatorname{Pic}^{0}\left(X \otimes_{k} \bar{k}\right)$ is the generalized Jacobian of $X \otimes_{k} \bar{k}$ (see [Ser2], $\left.[\operatorname{Ros} 2]\right)$.If k is a finite field $\operatorname{Pic}^{0}(\tilde{X})$ is the group of rational points of $\operatorname{Pic}^{0}\left(X \otimes_{k} \bar{k}\right)$. The generalized Jacobian can be enlarged to a projective algebraic scheme, called the compactified Jacobian, which parametrizes the equivalence classes of zero degree divisors of $X \otimes_{k} \bar{k}$. The rational points of the compactified Jacobian correspond bijectively to equivalence classes of zero degree divisors of X.

2. Rationality and functional equation of $Z(\mathrm{Ca}(X), t)$

In this section we present a generalization of results of F. K. Schmidt on the rationality and on the functional equation of $\zeta(X, t)$ to the function $Z(\mathrm{Ca}(X), t)$ (cf. [Sti, chap. V]). The zeta function $Z(\mathrm{Ca}(X), t)$ is defined as follows:

$$
Z(\mathrm{Ca}(X), t):=\sum_{\mathcal{A} \geq \mathcal{O}} t^{\operatorname{deg}(\mathcal{A})},
$$

where \mathcal{A} runs through all Cartier divisors on X and $t=q^{-s}, s \in \mathbb{C}, \operatorname{Re}(s)>0$. We shall see later on that $Z(\mathrm{Ca}(X), t)$ converges analytically and uniformly on the semiplane $\operatorname{Re}(s)>0$. This zeta function decomposes formally into an Euler product

$$
\begin{equation*}
Z(\mathrm{Ca}(X), t)=\prod_{P \in X} Z\left(\mathcal{O}_{P}, t\right)=\prod_{P \in X}\left(\sum_{I \supseteq \mathcal{O}_{P}} t^{\mathrm{dim}_{k}\left(I / \mathcal{O}_{P}\right)}\right) \tag{2.1}
\end{equation*}
$$

and where I runs through all fractional principal ideals of \mathcal{O}_{P}, such that $I \supseteqq$ \mathcal{O}_{P}. By comparing product (2.1) with $\zeta(\tilde{X}, t)=Z(\mathrm{Ca}(\tilde{X}), t)$, we see that it converges on the semiplane $\operatorname{Re}(s)>0$. On the other side, the correspondence $I \longrightarrow I^{-1}$ is a bijection between the principal fractional ideals containing \mathcal{O}_{P} and the principal ideals contained in \mathcal{O}_{P}. Furthermore, this correspondence preserves degrees, therefore, we have that

$$
Z\left(\mathcal{O}_{P}, t\right)=\sum_{I \subseteq \mathcal{O}_{P}} t^{\operatorname{dim}_{k}\left(\mathcal{O}_{P} / I\right)}
$$

We observe that if P is a smooth point of X, then $Z\left(\mathcal{O}_{P}, t\right)=\left(1-t^{\operatorname{deg}(P)}\right)^{-1}$, where $\operatorname{deg}(P)$ is the cardinality of the residue field of P.

Theorem 2.1. Let X be a complete, geometrically irreducible algebraic curve over a finite field $k=\mathbb{F}_{q}$. Then the zeta function $Z(\mathrm{Ca}(X), t)$ is a rational function. More precisely,

$$
Z(\mathrm{Ca}(X), t)=\frac{L(\mathrm{Ca}(X), t)}{(1-t)(1-q t)}
$$

where $L(\mathrm{Ca}(X), t) \in \mathbb{Z}[t]$ is a polynomial of degree at most $2 g$, and $L(\mathrm{Ca}(X), 1)$ $=\# \operatorname{Pic}^{0}(X)$, i.e. $L(\mathrm{Ca}(X), 1)$ is the number of rational points of the generalized jacobian of $X \otimes_{k} \bar{k}$.

Proof.

In order to generalize the proof of F.K. Schmidt we need to prove the following three claims.

Claim 1.

$$
\begin{equation*}
\# \operatorname{Pic}^{0}(X)<\infty . \tag{2.2}
\end{equation*}
$$

Claim 2. There exists a Cartier divisor of degree 1.
Claim 3. For any integer d, the number of divisor classes in $\operatorname{Pic}(X)$ of degree d is independent of d and is equal to the cardinality of $\operatorname{Pic}^{0}(X)$.

After this, we can follow the argument of F.K. Schmidt as in [Sti, chap. V]. It is important to note that in this argument it is irrelevant to know whether a canonical divisor is a Cartier divisor or not. We denote by $[\mathcal{A}]$ the linear equivalence class of a divisor \mathcal{A} and by $\pi^{*}(\mathcal{A})$ the pullback of \mathcal{A}.

To establish claim 1, we first observe that $\operatorname{Pic}^{0}(\tilde{X})$ is a finite group (more precisely, the group of divisor classes of degree zero of K (cf. [Sti, chap. V]), so, it is sufficient to show that the kernel of the morphism

$$
\begin{aligned}
\pi_{0}^{*}: \operatorname{Pic}^{0}(X) & \longrightarrow \operatorname{Pic}^{0}(\tilde{X}) \\
\pi_{0}^{*}([\mathcal{A}]) & \longmapsto\left[\pi^{*}(\mathcal{A})\right],
\end{aligned}
$$

is a finite group.
We note that $[\mathcal{A}] \in \operatorname{ker}\left(\pi_{0}^{*}\right)$ if and only if $\pi^{*}(\mathcal{A})$ is a principal divisor of \tilde{X}, i.e.

$$
\begin{equation*}
\pi^{*}(\mathcal{A})_{Q}=z^{-1} \mathcal{O}_{Q}=\mathcal{A}_{P} \mathcal{O}_{Q} \tag{2.3}
\end{equation*}
$$

for some $z \in K^{*}$ and every point Q of \tilde{X} lying over P. Therefore

$$
\mathcal{F}_{P} \subseteq z \mathcal{A}_{P} \subseteq \tilde{\mathcal{O}}_{P}
$$

Since $\operatorname{deg} \mathcal{F}_{P}<\infty$, the above relation implies that the kernel of π_{0}^{*} contains only a finite number of linear equivalence classes. The equivalence class of an effective Cartier divisor \mathcal{A} contains $\frac{\ell^{(\mathcal{A})-1}}{q-1}$ linearly equivalent Cartier divisors. Therefore the kernel of π_{0}^{*} is a finite group.

The second claim can be reduced to the non-singular case using the fact that the morphism $\pi^{*}: \mathrm{Ca}(X) \longrightarrow \mathrm{Ca}(\tilde{X})$ is surjective and preserves degrees. The preservation of the degree of a Cartier divisor under π^{*} follows from the fact that $\operatorname{dim}_{k} \mathcal{O}_{P} / h \mathcal{O}_{P}=\operatorname{dim}_{k} \tilde{\mathcal{O}}_{P} / h \tilde{\mathcal{O}}_{P}$, for every non-zero rational function h of X. Thus, there exists a Cartier divisor of degree 1.
We observe that claim 1 and claim 2 imply that the number of effective Cartier divisors with a given degree is finite. Using the same argument as in the nonsingular case, we prove that $Z(\mathrm{Ca}(X), t)$ converges absolutely and uniformly on the semiplane $\operatorname{Re}(s)>0$ (cf. [Sti, chap. V, prop. 1.6]).
The last claim follows from claim 2 and the fact that $\operatorname{deg}(\mathcal{A B})=\operatorname{deg}(\mathcal{A})+$ $\operatorname{deg}(\mathcal{B})$, for any two Cartier divisors \mathcal{A} and \mathcal{B} (see [Ha, sect. 1]). $\quad \square$

Corollary 2.2. The quotient $\frac{Z\left(\mathcal{O}_{P}, t\right)}{Z\left(\tilde{\mathcal{O}}_{P}, t\right)}$ is a rational function of t.
Proof. By taking a partial resolution of singularities of X, we may assume that P is the only singular point of X. Then

$$
\frac{Z(\mathrm{Ca}(X), t)}{Z(\mathrm{Ca}(\tilde{X}), t)}=\prod_{Q \in \pi^{-1}(P)}\left(1-t^{\operatorname{deg}(Q)}\right) Z\left(\mathcal{O}_{P}, t\right)=\frac{Z\left(\mathcal{O}_{P}, t\right)}{Z\left(\tilde{\mathcal{O}}_{P}, t\right)}
$$

The result thus follows from the previous theorem. \quad -
Theorem 2.3. Let X be a complete, geometrically irreducible, algebraic curve defined over a finite field $k=\mathbb{F}_{q}$. Then the zeta function $Z(\mathrm{Ca}(X), t)$ satisfies the functional equation

$$
\begin{equation*}
Z(\mathrm{Ca}(X), t)=q^{g-1} t^{2 g-2} Z\left(\mathrm{Ca}(X), \frac{1}{q t}\right) \tag{2.3}
\end{equation*}
$$

if and only if X is a Gorenstein curve.
Proof. If X is a Gorenstein curve, the argument of Schmidt for the non-singular case, the reciprocity (Corollary 1.2), and the observations made in the proof of Lemma 2.1 imply the functional equation (2.3) (see [Sti, chap. V, prop. 1.13]). Conversely, if the zeta function $Z(\mathrm{Ca}(X), t)$ satisfies the functional equation (2.3) and $g \geqq 1$, then the Riemann-Roch theorem and (2.2) imply that

$$
Z(\mathrm{Ca}(X), t)=Z_{1}(X, t)+Z_{2}(X, t)
$$

with

$$
\begin{equation*}
Z_{1}(X, t)=\frac{1}{q-1} \sum_{0 \leq \operatorname{deg}[\mathcal{A}] \leq 2 g-2} q^{\ell(\mathcal{A})} t^{\operatorname{deg}(\mathcal{A})}=\frac{1}{q-1} \sum_{j=0}^{2 g-2} a_{j} t^{j} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
Z_{2}(X, t) & =\frac{1}{q-1} \sum_{\operatorname{deg}[\mathcal{A}] \geqq 2 g-1} q^{\ell(\mathcal{A})} t^{\operatorname{deg}(\mathcal{A})}-\frac{1}{q-1} \sum_{\operatorname{deg}[\mathcal{A}] \geqq 0} t^{\operatorname{deg}(\mathcal{A})} \\
& =\frac{1}{q-1}\left(\# \operatorname{Pic}^{0}(X) q^{g} t^{2 g-1} \frac{1}{1-q t}-\frac{\# \operatorname{Pic}^{0}(X)}{1-t}\right) \tag{2.5}
\end{align*}
$$

By hypothesis, $Z(\mathrm{Ca}(X), t)$ satisfies the functional equation (2.3). A direct verification shows that the function $Z_{2}(X, t)$ also satisfies the functional equation (2.3). Therefore, $Z_{1}(X, t)$ satisfies the functional equation (2.3). This implies that

$$
a_{2 g-2-j}=a_{j} q^{g-1-j}, \quad j=0,1, \ldots, 2 g-2
$$

On the other hand, $a_{0}=1$. Thus, $a_{2 g-2}=q^{g-1}$. Since $g \geq 1$, a divisor class $[\mathcal{C}]$ with $\operatorname{deg}(\mathcal{C})=2 g-2$ and $\ell(\mathcal{C})=g$ must appear in the sum in (2.4). These properties characterize the canonical class. Hence, by theorem $1.4, X$ is Gorenstein. In the case $g=0$, the genus formula implies $\delta=0$, so that X is a non-singular curve. Thus, in this case, also X is Gorenstein. $\quad \square$

As a consequence of the functional equation (2.3), the degree of the polynomial $L(\mathrm{Ca}(X), t)$ is $2 g$.
Corollary 2.4. The zeta function $Z\left(\mathcal{O}_{P}, t\right)$ satisfies the functional equation

$$
\frac{Z\left(\mathcal{O}_{P}, t\right)}{Z\left(\widetilde{\mathcal{O}}_{P}, t\right)}=q^{\delta_{P}} t^{2 \delta_{P}} \frac{Z\left(\mathcal{O}_{P}, \frac{1}{q t}\right)}{Z\left(\widetilde{\mathcal{O}}_{P}, \frac{1}{q t}\right)}
$$

if and only if \mathcal{O}_{P} is Gorenstein.

3. Rationality and functional equation of $Z(\operatorname{Div}(X), t)$

In this section, we study the rationality and functional equation of the zeta function $Z(\operatorname{Div}(X), t)$ associated to the set of divisors $\operatorname{Div}(X)$. This zeta function is defined as follows:

$$
Z(\operatorname{Div}(X), t)=\sum_{\mathcal{A} \geq \mathcal{O}} t^{\operatorname{deg}(\mathcal{A})}
$$

where \mathcal{A} runs through all effective divisors on X and $t=q^{-s}, s \in \mathbb{C}, \operatorname{Re}(s)>0$. This zeta function decomposes formally into the following Euler product

$$
Z(\operatorname{Div}(X), t)=\prod_{P \in X} Z\left(\mathcal{O}_{P}, t\right)=\prod_{P \in X}\left(\sum_{I \supseteq \mathcal{O}_{P}} t^{\operatorname{dim}_{k}\left(I / \mathcal{O}_{P}\right)}\right)
$$

where I runs trough all \mathcal{O}_{P}-fractional ideals containing \mathcal{O}.

Theorem 3.1. Let X be a complete, geometrically irreducible algebraic curve over a finite field $k=\mathbb{F}_{q}$. Then the zeta function $Z(\mathrm{Ca}(X), t)$ is a rational function. More precisely,

$$
Z(\mathrm{Ca}(X), t)=\frac{L(\operatorname{Div}(X), t)}{(1-t)(1-q t)},
$$

where $L(\operatorname{Div}(X), t) \in \mathbb{Z}[t]$ is a polynomial of degree at most $2 g$, and $L(\mathrm{Ca}(X), 1)$ $=\# C l^{0}(X)$, the number of classes of divisors of degree zero, i.e. $L(\operatorname{Div}(X), 1)$ is the number of rational points of the compactified Jacobian of $X \otimes_{k} \bar{k}$.
Proof. The proof is similar to the proof of theorem 2.1. In order to prove that

$$
\# C l^{0}(X)=\operatorname{Div}^{0}(X) / \operatorname{Prin}(X)<\infty
$$

we observe that $\operatorname{Pic}^{0}(X)$ acts on $C l^{0}(X)$ by multiplication and the quotient set is isomorphic to

$$
\begin{equation*}
\left\{\prod_{P \in X_{\text {sing }}} \mathcal{A}_{P} \mid \mathcal{A}_{P} \text { is an ideal in } \mathcal{O}_{P} \text { and } \mathcal{F}_{P} \subseteq \mathcal{A}_{P} \subseteq \widetilde{\mathcal{O}}_{P}\right\} . \tag{3.1}
\end{equation*}
$$

Since $\operatorname{dim}_{k}\left(\tilde{\mathcal{O}}_{P} / \mathcal{F}_{P}\right)<\infty$ and $\# \operatorname{Pic}^{0}(X)<\infty$, we conclude from (3.1) that $\# C l^{0}(X)<\infty$. Now we can follow the proof of theorem 2.1. $\quad \square$

The zeta function $Z(\operatorname{Div}(X), t)$ satisfies the functional equation (2.3). The proof of this fact follows from the singular Riemann-Roch theorem and the reciprocity, by a similar reasoning to that of Schmidt (see [Sti, chap. V]). Stöhr defined $Z(\operatorname{Div}(X), t)$ and proved that $Z(\operatorname{Div}(X), t)$ satisfies the functional equation (2.4) (cf. [Sto, p. 133]).
The local factors of $Z(\operatorname{Div}(X), t)$ are rational functions (as in Corollary 2.2) and satisfy a functional equation (as in Corollary 2.4). The functional equation (2.3) implies that the degree of the polynomial $L(\operatorname{Div}(X), t)$ is $2 g$.

Acknowledgments

The author wishes to thank the support of the following institutions CNPq of Brazil, COLCIENCIAS of Colombia, Academia Colombiana de Ciencias Exactas, Fisicas y Naturales. The author also thanks to Prof. Karl-Otto Stöhr for all the clarifying conversations about this topic.

References

[A-K] A. Altman \& S. Kleiman, Introduction to Grothendieck duality theory, LNM 146, Springer-Verlag, 1970.
[G] V. Galkin, Zeta function for some one-dimensional rings, Izv. akad. Nauk. SSSR Ser. Math. 37 (1973), 3-19.
[Gr] B. Green, Functional equations for zeta functions of non-Gorenstein orders in Global fields, Manuscripta Math. 64 (1984), 485-502.
[Ha] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ., 26 (1986), 375-386.
[H] H. Hironaka, On the arithmetic genera and effective genera of algebraic curves, Mem. Kyoto 30 (1957), 177-195.
[Ros1] M Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. 56 (1952), 169-191.
[Ros2] M. Rosenlicht, Generalized jacobian varieties, Ann. of Math. 59 (1954), 503-530.
[Sch] F. K. Schmidt, Analytische zahlentheorie in körpern der characteristik p, Math. Z. 33 (1931), 1-32.
[Ser1] J. P. Serre, Zeta and L functions, Arithmetical algebraic geometry, Harper and Row, New York, 82-92, 1965.
[Ser2] J. P. Serre, Algebraic groups and class fields, Springer-Verlag, 1988.
[Sti] H. Stichtenoth, Algebraic function fields and codes, Springer-Verlag, 1993.
[Sto] K. О. Stöhr, On poles of regular differentials of singular curves, Bol. Soc. Bras. Mat 24 (1993), 105-136.
[Z] Zúñiga Galindo W. A., Zeta functions and Cartier divisors on singular curves over finite fields., Manuscripta Math. 94, (1997), 75-88.
(Recibido en noviembre de 1996; revisado en febrero de 1998)

Universidad Autónoma de Bucaramanga Laboratorio de Cómputo Especializado A.A. 1642, Bucaramanga, COLOMBIA
e-mail: wzuniga@bumanga.unab.edu.co

