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LANGUAGES EXTENDING L(Q)

Jerome Malitz

ABSTRACT. We present a survey of the model theory of the
quantifiers Qn and Qm,n, where M FKQQx¢xmeans that there
is a K-powered subset X of Msuch that M FK¢a whenever a ,
... a e:: X, and M"k Qm,nxy¢xy means that there is a K poweiedn _
subset X of Msuch that MF¢ao whenever al"" ,am e:: X and
bj,. oo,bn ¢ X. Somerecent results are announced and sever-
al open problems are given.

1. INTRODUCTION.

Over the past several years, there has been considerable work done in the

model theory of languages more expressive than the first order predicate calcu-
lus L. Our interests have centered about the languages Ln and Lm,n introduced
in [MM],. The first adds the quantifier Qn to L, where M FKQnj(¢means that

there is K powered subset X of ~1 such that M F ¢a whenever a
1

, ... ,an e:: X. The
second adds Qm,n to L, with M FKQm,nxy¢xy meaning that some K powered subset

X of Mexists such that M FK¢ab for all a" ... ,am e:: X and all b1, ... ,bn l X.
While considerable progress has been made in the study of these languages over

the past few years, many fW1damental questions remain open. Our intention here
is to present a survey of known results, some recent unpubl ishcd results, and

some of the open problems.

Section 2 is devoted to preliminaries, notation and definitions that will

be used throughout the paper.
Section 3 is concerned with compactness questions for the Ln languages.
Section 4 considers the relative expressive pONer of these languages.

Section 5 is concerned with decidability questions arising in the context

of the Ln languages.
Some recent results for Lm,n are presented in section 6.

Some open problems are described in section 7.

This survey is in no way comprehensive, either in the results stated or the

problems,mentioned. Rather, the material represents the personal interests of

the author.
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2. PRELIMINARIES.
We use i,j ,k,i,m,n to denote natural numbers; a,S, y, c to denote ordinals; K,

A, JJ, v to denote uncountable cardinals; K + is the cardinal successor of K, cX

is the cardinality of X, and nX = {(xl""'~): xi EO X for'i = 1, ... .nl ,
n tenned sequences (x , ... , x ) will be denoted by x.n
In [J], Jensen introduced the conbinatorial principle Ok: there is set of

subsets of K, {Sa: a < K} such that for al.l. X S K, {a EO K: xn a = Sa} is sta-
t.ionaru (i .e , meets every closed bounded subset of K). He proved that if V = L

then <> K holds for every regular K. 0K will appear in the hypotheses of several

of the theoren5 we shall mention.
~, and ill will be used to denote structures. tM is the type of M. 1 MI is the

universe of M. If s is a type then MIs is the reduct of M to s. If A E tM, A a

unary relation symbol, then MIAis the relativization of Mto A.

Let Q be a set of quantifiers, L the first order predicate calculus. L(Q)
is the language obtained by adjoiningthe quantifiers in Q to L, i .e , to the def-

inition of fm for L we add the clause:
i. f Q EO Q and Q binds n variables and v is a sequence of n variables and

1.(0.) then Qv¢ EO L(Q).

l-or Q = {Q} we wr i te L(Q).
The Language Ln is L(Qn) where Qn binds n variables. For each K, MFQnV¢

is given a K interpretation: there is a K powered subset X of IMI such that
M F ¢~ for all a EO nX.

Lm,n is L(Qm,n) where cln,n binds m-n variables. The K interpretation of

"' F QII1,nClv is that for some K powered proper subset X of 1 MI and all a E mx,
f; EO nx we have M F ¢a,S. (The restriction that X be proper is necessary to

avoid vacuous satisfaction of Qm,nuv¢).
L<w= L(Q) whe re Q = {Ql,QZ, ... }.

\lie nn y w r i te L~, ci~, F K' etc. when the K interpretarion is intended.
If Z is a set of sentences then ~bd Z is the set of models of Z. ThZM=

{o E Z: ~1 F c}, ThzK = (o EO Z: M F 0 for all MEO K}. M =Z N means that ThzM=
ThZ:-.l·

(;ivon two languages L, and LZ we write L1 .( LZ if for all Z1s L1 there is

some Zz s LZ such that ~bd 1 = WvbdZZ) IA) ItL,. L, < L2 neans L1 .( L2 but
LZ -1; L1. If the Z2 can always be chosen to be of type tL1 we write L1 ,:::-LZ-

Va.!(L1) .is the set of valid L1 sentences. L1 is axiomatizable if Val(L,)

is recursively emnnerabIe .
i\ Language L1 is x-cornpact if whenever Z ~ L1, cz < K, and ~d Z= 0 then

there is sono finite subset f::, s Z such that ~d6 = 0. We say L1 is countably

COIlIJl;ICtif it i s W 1-compact.
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3. COMPACTNESS, AXIOMATIZABILITY, AND LOWENHEIM-SKOLEM RESULTS
FOR L <W. ,
Clearly, LK is not fully compact. Indeed if L: = {-,~v(v = v)} u {co: of c13:

0: < 13< K} then every subset of L: of power < K has a model but L: does not.
In [K], Keisler proves that L~ is K compact for all uncount.ab Ie K and axi o-

matizable for regular uncountable K. His proof for K = w, provided a starting
. f ~poant or our proof of compactness of Lw . Recently, considerable progress has

, n
been made in the study of compactness for the L languages but many fundamental.
questions are still open.

THEOREM 3. ,. , . (0 W1) L~~ is countob l.e compact and axiomatizable.
3.' .2. (0 +,0 H) L<~ is K++ compact and axiomatizable.

KKK +

The first resuIt was proved in [~~],. The K++ compactness of L<w is assert-K++
ed in [S]. The axiomatizability of L<~+ is not found in the literature but can

K
be obtained as in Theorem 9.5 of [MM],.

The assumption Ow, in 3.1 is not necessary as was shown in [~1M], p.257,

and similar arguments show that it is not necessary for 3. '.2 either.

THEOREM 3.2.'. (Ow,)
<to <wIf a e:: Val(Lw,) then a e:: Val (LK ) for every regular

K.

3.2.2. (0 , 0 ) If a e:: Val (L~w) then a e:: Val (L<w ) for all regular A.
K+ K++ I\. K++

This first clause is found in [MM], the second is a consequence of [S] but

is not found there.

THEOREM

zable.

3.3. If K is weakly compact then L <w is K compact and axiomati-
K

In fact if A

L( {Q~ : n e:: W, 0:
0:

of 3.3 which appears in

< Ko: for ali 0: e:: A and each Ko: is weakly compact then
LA}) is A compact. This is a straightforward generali~ation

[MM] ,.

<w <w
THEOREM 3.4. If K is weakly compact then Val(LK ) :::! Val.(LA ) for all A.

This is found in [MM],. Notice that the sentence

lJuv[Ruv -> Rvu] -> [Q2uVRUVv Q2UV'1RUV]

is in Val(L;2) just in case K is weakly compact.

\~le~ K is a limit cardinal there is a natural alternative interpretation

for Qn: M ~K Qnv¢ means that for all A < K there is a A powered subset X c::; IMI
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such that ~1F
K

epa for all a c "x. In [~\'VI], we prove

TI iEORH'I 3.5. If K is a strong limit cardinal and if A < K then L~ in the

l imi t interpretation is A compact.

'111C problem of compactness for languages of the form L(ci;,Q'~) has for the

most pa rt been int ractable to date. However, the following result appears in

[~b]t

<W
TH 1.:0RI.:,\1 3.6. Let: A < K iai.t.h. K weakly compact and LA A-compact. Let: Q =

{Q:: n = 1. z , ... } u {Q~: n = ',Z, .. r. Then L(Q) is A-compact and =iomatizahle.

In [,\II<J the rt quantifiers are generalized to higher order suggested by

w r it i.ng 3\\lV1, ... ,vn E: X instead of Qnv" ... ,vn. We let:

P ~(R) R

P;(R) {S:S s R and cS ~ K}

p~+n(R) = P;(P~+' (R)) n 1,2, ...

Let x1
i\ i = 0,1,2, ... be variabl es ranging over ~(I MI) in the K interpretation

[or n > 1. An n-order properly descending quantifier is one of the form

B is 3Xn for some
n J

:UlU for 1II < n

Emis a sequence B " ... ,E km, m, In

occurring in Em+,. We identify X~ with the first order variable

,3 .2.2 3 2 2
3Xo \lAO' Xl E: Xo \IVa, v1 E: Xo \/VZ c XI[RvoV1 A --, RvoV2]

.rssc rt s the cx i s t ence of a subset of the universe partitioned into K many K

JJO\vered cqui va lcncc c Iasses by R,

Let Q* he the collection of all n-th order properly descending quantifiers
* * [[or :111 n. Let L = L(Q). In fvIRJit is shown that

*TIIEORHI 3.7. (OWl) L t.e count abl.u compact and axiomatizable in the w,
int...:Y'pY'" tut ion.
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The resul ts in [S] can be used to

whenOK+ and 0K++both hold, to give:
the K++interpretation. ~breover, the

*hold for L

generalize this to interpretations K ++
*. ++L lS K compact and axiomatizable .in

analogs of 3.2.1, 3.2.2, 3.3, 3.4. all

Fix a similarity type t with a \mary relation symbol B. Vaught defined the

two cardinal type of a structure M to be (cIMI,cBM). In [MJr] and [V] it is
proved that if for all n > 0 there is a K such that l: has a model Mof two car-

dinal type (2~,K), then l: has a model of any two cardinal type (A,)1) where
( K K A KA ~ u ~ cz + wHere 21 = K, 2n+1 = 2 where A = 2n). The following theorem

from [t¥M] 1 generalized this.

THEOREM3.8. Let l: SO L and let R be an n-ary relation symbol in TL Sup-

pose for each n there is a K and a model Mof l: such that clMI = 2~ and
n- -M F IQ~vRv. Then for every K > A ~ cl: + w there is a model Mof l: such that

clMI = K and M F IQ~VRV.

4. RELATIVE EXPRESSIVE POWER OF THE Ln LANGUAGES.
1 2In [~] 1 we showed that LK~ LK for all regular K. In an unpub l ished paper,

. n n+1 .S. Garavaglla proved that LK<. LK . Recently, us mg a forcing argument, it is

shown in [RS] that

THEO EM 4 1 1 . A Tn rn+1 ji iiR ... Asswmng v wp '-'W1< '1).)1 or a& n.

Combining this result with the techniques in [5] one easily obtains

THEOREM4.1.2. AsswningO + and 0 ++' L
n
++ < LnK:l·KKK

P. Rothmaler and P. Tuschi k [RT] give sufficient conditions for the elim-

ination of the Ln quantifiers for a countab Ie first order theory. So eIeirent a-

ry classes whose theories satisfy the conditions can not be split by means of

Ln sentences.

5. DECIDABLE QUESTIONS.
Here we mention a few results about the decidability of models, decidabil-

ity of theories, and the decidability of sentences with respect to theories.

In several of these instances one can view the results as showing the expres-
n 1

s ive strength of Lover L
It is easy to find structures whose L theories are decidable but whose L~
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theories are not, for example, take M ~ <A,Bn>n e; w where for some nonrecursi ve

set X, Bn is countably infinite iff n EO X. On the other hand, for n ~ 1 we do
not know of such structures whose Ln theory is decidable but whose L

n
+
1 theoryK v-

is not.
In [R] one finds an example of a "natural" class of structures whose L 1

w1
theory is decidable but whose L~ theory is not.

1

1THEOREM 5.1. (Rubin). The L theory of bool-ean algebras is decidable but
7the L- theory is not.

111edecidability of the L1 theory of boolean algebras was discovered inde-

pendently by ~1. lveese [II'J.

A nwnber of other decidability results of this nature are mentioned and an
extensive bibliography is given in D. Seese [SeJ. Many of the deci.dab i l i ty re-

sults can be foivid in [BSTII'J. In particular, the reader should see H. Tuschik
[TJ for re sul t s on the decidabi.li ty of Ln theories of linear orderings.

In another direction Macintyre [MaJ, MJrgenstern [/;bJz, and Schmerl and Sim-

son [SSJ turn thei r attention to L2 extensions of Peano' sari thmetic. The axi.o-
mati zat ion given in [~1j\1J1 (correct and, with Ow"!, complete for validities in the

w1 interpretation) is correct for the w interpretation. \IIhen the usual first

order version of the Peano arithmetic is enriched by adding all instances of the
induction schema involving L2 formulas we get the theory p2 (Morgenstern ob-

serves that the Q1 quantifier can be defined in arithmetic using L and that the

quantifiers Qn for n > 2 can be defined in arithmetic using L2). In [MJJz and
r~la] it is shown that truth for first order formulas in arithmetic can be de-

fined in 1'2, which leads to

TIIEOREM5.2. The Harrington Paris combinatorial principle is provable
in 1'2.

Simson and Schwed broaden this to show that even stronger combinatorial
principles considered by Friedman, McAloon and Gunison are also provable in p2.

Th is leads nat ura l Ly to the problem of finding a "ireaningful" statement of p2

or Pcanos a r ithne t i c that is undecidable in p2 (of course by GOdeYs2nd theo-
rem there are undecidable L statements in 1'2). /;brgenstern has noticed that

Kruskals theorem [KJ is statable in 1'2 and this is a candidate.

6. THE Lm,n LANGUAGES.
The languages Lm,n were introduced in [~1I'.'I] l' being called L# there. It was

shown there that even L1,1 is not countably compac in any infinite power. The
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purpose of presenting this language there was to show that the Ln Langua ge s
could not be generalized in this direction without losing compactness proper-
ties. Iioweve r , in [Ma] we began to investigate the model theory of Lm,n. Regard-
ing the relative expressive power of these languages we have

THEOREM 6.1. Lm~'Lm,n ~ L2,2 [o» all m,n , When i" is count.abl.u tKKK K'~ compa
then t'" < Lm,n.

K K

All questions about re lati ve expressive power not answered by 6.1 are open.
The only other bit of infonnation on these languages is

THEOREM 6.2 Let a €: L1,1 and suppose there is a model. of a in the K in-
terpretation where K is regular and K > w. Then there is a model of a in the w
in terpret at ion,

The expressive st rength of Lm,n makes a generalization of this theorem de-

sirable. For example, the sentence ...,et1
, \Jv[fu " v] asserts that f is not dosed

on a K powered subset of the universe. It follows that in a finite funct ionaI

type one can express the property of a Jonsson algebra. A strengthening of the
theorem above would yield results such as: if there is a Jonsson algebra in
MadKL:then there is one inMadA L:.

7. OPEN PROBLEMS.
This list of problems is by no means comprehensive, instead it represents

the author's particular interests. In many of these problems only relative con-

sistency resQlts can be hoped for.
Is L<w<K-compact in the K interpretation when the cofinality of K ~ w1?

At the monent we do not know if L2 is count.ab Iy compact in the ~w1 inter-

pretation or in the first strongly inaccessible interpretation.

In the cases where compactness is knovm, completeness is also, at least in
the sense that the validities are recursively enurre rab Ie . Positive answers to

any of the above should yield completeness results also.
Let Val be the set of validities of L<to in the K interpretation. Let K and

K

K'. be successor cardinals and let A and A' be of cofinali ty strictly between w

and K. Let II and u ' be inaccessible but not weakly compact, v and v' weakly
compact. Wesuspect that ValK = ValKI c: ValA = ValA, c Val

ll
Val

ll
, c Valv

Valv' (It is easy to see that ValK iJ ValA ;/; Valll it ValvJ .
A purely set theoretic combinatorial statement equivalent to the cOlll1table

~ b . . . f tthcompactness of L might e an mte re st mg new axi om or se , eory.
n+1 . . I Ln ( t 1Wehave mentioned that L 1S more express ive than even up 0 re a-



tivised reducts). Can this be sharpened in the following way? Let M= <A,Ifl, ... >

whe re RM is a symnetric n+1-ary relation and the cardinality of A is K > w. Is
there some N equivalent to M with respect to the language Ln such that N F
,.,n+1- - n+l- -
'-< xRx v Q x rt Rx?

Regarding the Lm,n languages, there are two obvious questions. In view of

Theorem 6. 1 it is natural to investigate the relative expressive power of L1, 1,
L 1, 2, L2, 1, and L2,2.

Theorem 6.2 raises the following questions. For what m ,n e:: W,K, A will sat-
isfiability in the K interpretation of 0 e:: Lm,n imply satisfiability of 0 in

the A interpretation? In particular, we do not know if satisfiability of 0 e::

L1,1 in the K interpretation, K uncountable, regular and > A implies satisfia-

bility of 0 e:: L1, 1 in the w~ interpretation. Nor do we know if satisfiability
of 0 E L1,2 or L2,1, or L2, in the K interpretation, K uncountable and regular

implies the satisfiability of 0 in the w1 interpretation.
Theorem 5.2 presents an R.E. extention p2 of Peano' sari thmetic in which

one can prove the combinatorial principles of Harrington and Paris which are in-
dependent of Peano's arithmetic. At the moment there is no 'natural' sentence in-

dependent of L2 that is known. In particular, it is not known if Kruskal's theo-

rem [K] is decidable in p2.
For each n ~ 1 is there a (natural) structure whose Ln theory is decidable

but whose Ln+1 theory is not?
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