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WEAK APPROXIMATION OF MINIMAL NORM SOLUTIONS OF
FIRST KIND EQUATIONS BY TIKHONOV'S METHOD

by
Julio E. GUACANEME

ABSTRACT. Tikhonov's regularization method is
considered to find conditions that guarantee orders
of weak convergence of approximate solutions of lin-
ear ill-posed problems to the true solution. We es-
tablish orders of convergence by requiring smoothness
conditions on the functional and the true solution,
and we establish a converse result to the main
theorem.

RESUMEN. Se establecen Ordenes de convergencia
débil para las soluciones aproximadas obtenidas por
el método de regularizacidn de Tikhonov en el caso
de problemas lineales "ill-posed" (es decir, aquellos
para los cuales las soluciones exactas pueden depen-
der discontinuamente de los parametros). Para ello
se exigen condiciones de suavidad tanto al funcional
como a la solucidn exacta. Esto se hace para la ver-
sidn clédsica infinito-dimensional del método de Tik-
honov y también para la versidn con elementos fini-
tos. Ademds, se obtiene un converso al teorema prin-
cipal, en el cual la suavidad resulta del orden de
convergencia.

263



1. Introduccidén. In this article we shall be concerned with

the integral equation of the first kind

1
Kx(s) = f k(s,t)x(t)dt = g(s) (1)
o
where k(s,t) = L2([0,1]X[O,1]) and g(s) L2[0,1]. Bt JlAs
well known that K is a compact linear operator from the Hil-

bert space H, = L2[0,1] into the Hilbert space H2 = LQ[O,l}

1
Solving (1) thenmeans finding an x satisfying (1), given

g e H2.

This problem can have solutions x (we do not assume
uniqueness; by solution we mean '"minimal norm solution")
which depend discontinuously on the '"data" g, i.e., this is
not a well-posed problem (see e.g. [6]). This lack of con-
tinuity can have serious numerical consequences since the
data g is usually the result of measurements and hence is
only imprecisely known.

Regarding the discontinuous dependence upon data,

instead of solving (1) we solve a new equation close to (1)
which is well posed. This approach is called "regulariza-

tion". In particular Tikhonov [6] suggests the minimizer

Xy of the functional
F_(w,g) = |lx-g] > + ] (2)

to indicate the

as a regularized solution of (1); we use

norm in each of the space H, and H2 and <e¢,*> to denote the

i
corresponding inner product. The minimizer xo£ of this func-

tional is the solution of the equation

(OtI-fK)xOC = %,
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where K* denotes the adjoint of K and & K*K, see e.g. [4].

When the approximation x, is defined, we would like

o
to estimate how far it is from the minimum norm solution x.
This can be done in the strong sense by looking at the norm
of the difference "x—xa” between the approximate and the
true solutions, or in the weak sense by considering the
functional <x—xa,z>, where z H1.
In many applications all we want to know about solutions
is the value of some functional <x,z> (see e.g. [2]). In
such cases we will be concerned with <x,z> and <x,
than x and Xy respectively. That is, our interest is inweak

,2> rather

rather than strong approximation. In this paper we will
derive estimates for X=X 52> under various assumptions on

x and z for both the classical infinite dimensional version
of Tikhonov regularization and for a finite element version.

We consider both the cases of exact data and inaccurate data.

2. Infinite Dimensional Tikhonov Approximation.

For fixed z H1 we consider whether
<x—xa,z> +0 as a >0,

i.e., the weak convergence of the Tikhonov approximations
to the true solution.

Sufficient conditions for convergence in the weak
topology have already been studied by Tikhonov [7], and for
more general methods of regularization, by H.W. Engl [1].

Our goal is to establish orders of convergence by

imposing conditions on x and the functional z. Since X as
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well as x_ are members of R(K¥), the closure of the range of

K*, and every z in H has an orthogonal decomposition z =

- 1
z,+2, € R(K*) + R(K*) , we have

<X-X ,2> = <X=-X ,2_.>
a’ o’ il

We therefore may restrict our attention to funcionals
z « R(K¥); however to obtain convergence rates we need to

impose stronger conditions on z.

THEOREM 2.1. I (a) x e R(K) 01 (b) ze R(K)
on (c) x and z « R(K*), then <x-X,2> = o(a).

Proog. (a) If x € R(K), then |<x— ,2>| < | x-x ”" I
= 0(a) by [4,Corollary 3.1.1]. (b) For thls case let

z = Ku, then

<X..Xa’z>| |<R(x—xa), u>| = |<[I—R(GI+E)—1]K‘¢'¢g, u>

a|<(aI+R_)_1Rx,u>| < ofx] |l

since "(aI+R)_1R" < 1. (c) Let z = K¥%v, x = K*w, then,

setting K:= KK*, we have
|<x-x,, z>| = [<K(x-x), v> = | <Ru-R(az+) " Rw, v>
= akk(az+i) v, v>| < olulllvl

which completes the proof. A

The best order of weak convergence is 0(a) as the

following theorem establishes.

THEOREM 2.2. I{ <X-% 52> = 0(a) fon every ze Hy,
then x = 0.
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Prwog. Since <x-X ,2> = 0(a), we have <(x,xa)/a,z>'*0
asa+0 YzeH;.In particular the sequence {(x—xa)/a} is
weakly convergent and hence bounded, i.e., ”x—xa” = 0(a).

By [4, Theorem 3.2.2] we have x e R(K*K), say x = K*Kv.
Now using the fact that 0 a(aI+R)—1Rv, (clearly we may
take v € N(l~()1 = N(K)ll we then have

- - ~. =1~ +
0 = 1im <(x-xa)/u, z> = 1im (aI+K) 1Kv, z> = <K Kv, 2z>
oo oo

for every ZE:PH} SO K+Kv = 0, where k" is the Moore-Pen-

rose inverse of K (see e.g. [4]). But

+
= iy =
K Kv PN(K) v v

and hence v = 0, i.e., X = Kv = 0. A

For the converse of Theorem 2.1 we will have, using

the same notation as above, the following

THEOREM 2.3. If <x-x , z> = 0(a) gorn all z « H
then x € R(K*K).

1’

Proof. Define Tyz = <(x-x,)/a, z>. This family of

linear functionals on Hl has the properties required by the

uniform boundedness theorem, that is,

T izl = <x—xa, z>| £ M(z) for all a > 0.
a (e}

M(z) is a bound depending of the element z, and thus there
exists a bound M independent of o and independent of z such

that T ]| < M, i.e.,

T2l = 1522, o] < ulel

267



for all o« > 0, and for all z e H In particular, for

.
= (x-a)/a,

[ R R TR e

and hence ”x—xal = 0(a). By [4 Theorem 3.2.2] we conclude
that x & R(K*K). A

Now that we have analyzed the error-free case we
turn our attention to the more realistic case of inexact
§ . :
data g , with a prescribed error bound § : ”g—géu <6

The Tikhonov regularized solution X5 is the mini-

mizer of
2
F (z,g ) = ||Kz-g N2 + o 2] %,

or, equivalently, xg = (GI+R)—1K*g6.

LEMMA 2.4. 14 z & R(K¥) then <x_-x., 2> = 0(8)
gfon any o > 0.
Proof. Let z = K*u, then

<xa—x2, z> = <K(xa-x§), u> = <ﬁ(al+ﬁ)-1(g—g6), u>
and hence
< -8, 21 < Ng-elllul < olul

since ”ﬁ(al+ﬁ)-1” < 1. A
THEOREM 2.5. Let a=0(8). I (a) z € R(K), on (b)
z and x «R(K¥*), then <x—xg, z> = 0(8).

Proof. (a) By Theorem 2.1 and the preceding lemma
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§ [
|<x—xa, z>| < |<x-xa, z>| + |<xa—xa, z>| = 0(a)+0(8) = 0(8)
(b) Let z = K*w and x = K%*v, then
A, =1
<x—xa, z> = <K(x—xa), w> = a<(al+K) Rv, w>

and hence

|<x-x,5 2>| < afvllv] = o).

Using the Lemma again we find that <x—x§, z> = 0(a) +0(8). A

In the final theorem of this section, we make no

assumption on the true solution x.

THEOREM 2.6. If z eR(K*), then <x-x_, z> = 0(Va).
Proog. Suppose z = K*u, then

X=X, 2> = <K(x—xa), u>.

But

2— - - % — —
”K(x—xa)ﬂ = <K(X_Xa)’ K(x Xu)> = <K(x Xa)’ X=X >

But R(x—xa) = K*g—R(K+aI)-1K*g = aK(K+ I)_lK*g = uixa. There-

fore,

ﬂK(x—xa)"2 = a<ixa, x-x > = 0(a),
since x > x (see |4]|). Therefore,
XX gy B> (& O(HK(x—xa)") = 0(v/a),

completing the proof. A

Combining this with Lemma 2.4 we obtain:
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COROLLARY 2.7. I§ z € R(K*) and O = 0(62), then
<, z> = 0(8). A

3. Finite Element Approximations. Groetsch and Guaca-

neme [3] have proved weak convergence of certain finite ele-
ment Tikhonov approximation to the minimal norm solution of
(1). These approximations are formed by using a sequence of
finite dimensional subspaces V that increase and are even-

tually dense in Hl’ i.e.,

V, cV = H

1 c ... and

2 e i W

The finite element Tikhonov approximations x and xi -

2 2
are the minimizers of Fa(-;g) and Fa(°;g6) (see [2]),res-
pectivley, over the finite dimensional space Vm, or equiv-

§
alently xm,a, Xm,a c:Vm and

< - > < > =
me i Ky> + a Mooy X 0

b b

$ $
& - > < D =
me,a g 5, Ky> + axm,a, V2 0

respectively, for all y € Vm. These conditions are in turn

equivalent to

X
|

ES -1 %
(KmKm + ol) K 8

and
% =1.% §
(Kme + ol) ng

X
1l

where Km is the restriction of K to Vm. The number

v = Ixel = - x|
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where Pm is the orthogonal projector of H, onto Vm, plays

a prominent role; it tell us how well 1the spaces
Vm support the operator K. Note that Ym ~0as m>> (see
EdEs [4]).

To study the approximations x .a and xi,a we assume
the regularization parameter is a function of m, say
a = a(m) 0 as m + o,

Before going into the order of convergence we define
the inner product [u,v] = <Ku,Kv> + a<u,v> and the norm
]u|2 = [u,u] = IKuﬂ2 + a"u"2 in the Hilbert space Hl' Under
this inner product Xm,a is orthogonal projection of Xy onto
Vm’ (see [5]), i.e.

[x -X 5 V] = <K(x_ -x ), v>+o0<x -x , v> =0
a “m,o o “m,o a “m,o

for all ve Vm'
We now give a weak order of convergence result for

X For ease of notation below we will replace o by o

m,o”
and A by Y, respectively.

THEOREM 3.1. Assume that y = O(OL%). (a) I§ x
and z € R(K*) then <x-x > 2> = 0(@). (b) If z €R(K¥),
then ERRL il R B 0(Va).

Proog. (a) Let z = K*w and let x = K*v. Then,

z> = <x-X z> + <X -X z>
o’ o “m,n’

o <K( X=X . w> + <K X .-X 'Y W> .
NOW,

K(x-xa) = ﬁv-—ﬁ(a1+ﬁ)_1ﬁv = a(a1+ﬁ)_1ﬁv;

therefore
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|<K(x—xa), w>| < a]v]|Jw] = o(a).

Also

2 2 2
Gy N2 € IKCrgmy JIP # oz, ]

m,Q

and remembering that x is the projection of x_ onto V
m,o o m

under the inner product [w,v] = <Kw,Kv> + o<w,v>, we have

2

ZN

2 2 2
Ity M el o> < TGt )1+l P |

N

2 2 2
k(1) |+ of (1P, ) |

/A

(Y2+a)||(I—Pm)xa||2

(Y2+a)|](I—Pm)K*(aIJr}?)_lﬁv"2

(Y2+a)y2ﬂvﬂ2.

A

Therefore

X
< (Vo) Hyv] vl = o).

(b) Let z = Ku, using the same decomposition as in

part (a) we have

<X-X z> = <x-X ZP i LXK =30 z>
m,o’ o’ m,a’
and <x-x_, z> = 0(Y/&), by Theorem 2.6. Now <x -X , Z> =
o ¢ o “m,0
<K(xa—xm,a), u> , and

2 2 2
Kty 2 € DGy 7w olxx,

Using the characterization of S as the projection of x
2

o
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onto Vm’ we have as above

2 2 2 2
IIK(xa—xm,a)" < (Y| (1-P )x | =O(oc)||(I—Pm)xa|| = 0(a)»

thus
<x_-x , z> = 0(Yo).
o “m,o
We therefore find that
<x-X , 2> = (Vo)

for case (b). 4

We see that under suitable conditions the finite
element approximations attain the order 0(a) of weak conver-

gence, which we now show does not allow improvement.

THEOREM 3.2. I oS R o(a) gon all
z cHl, then x = 0.
Proof. In particular for z = K(utw) with u €V, and

i
W e VN, we have

<x-X 217> .= 0a):.

By the definition of x we have
m,o

<K(x-x_ ), u> +a<x__, uw =0 form > N.
m,o m,0

>

Therefore

<X-X K +w)> = K(x-x utw>
m,0 K(utw) ( m,a)’

= -0<x u> + <R X-X w>
m,o’ ( m,a)’

and hence
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~

K(x-xp, o)
(6]

9w>

R Ot,K(u+w)> & 9
0 = 11m 2 =-11m<x , W+ 11m<
a m,0

m m m

= -1Im<x 5 Py
M0

X—
for u VN' To see this note that by hypothesis ——§m49-con—

verges weakly to zero and K is a compact operator, therefore

4

~ XX n h e
K(—22Q) converges to zero. Using the fact t - i i
b

we then have 0 = <x,u> for all u VN. Since |J Vn is dense
n=1

in H1 we have x = 0. A

Finally, we consider the weak convergence of the

. " 8 . i » ;
approximation x obtained using imprecise data g , where

le-£%] < 6.

§
LEMMA 3.3. ||K(xm,a-xm,u)|| < 8.

Proog. Since
S

-X
m,0 ~m,o

)

A U §
K(x K _(aI+K ) K (g-g")

o n sl A
Km(aI+Km) (g-g)

and
A A=
[l K (aI+K ) | <1

we get that

We now show that under appropiate conditions an op-

timal orde of weak convergence obtains.

THEOREM 3.4. Assume that y = o(al"i). 1§ eithen
(a) x and z € R(K*) and a= 0(8) on (b) z e R(K*¥) and
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a=0(8?), then <x-x_ . 2> = 0(8).
Prnoof. By Theorem 3.1, in both cases (a) and (b):

<X-X , 2> = 0(8).
m,o

2

Now set z = K*w, then by Lemma 3.3 we have

5
< X o 2| = KOy e 0, w] < ol

" 8
N T L > = <x- > =
1aeh's xm,a X0 o 2 0(8), and hence <x X, 2 0(s),

completing the proof. A

REFERENCES

[1] Engl, H.W., Necessary and sufficient conditions gorn con-
vergence of regularization methods forn s0lving
Linear operatonr equations of the st kind.
Numer. Funct. Anl. & Optimiz. 3 (1981), 201-222.

[2] Golberg, M.A., A method of adjoints for s0fving iLL-
posed problems. Appl. Math. & Comp., 5 (1979),
123-130.

[3] Groetsch, C.W. and Guacaneme, J., On regulaized Ritz
approximations gor Fredholm equations o4 the
st kind. Rocky Mountain Journal of Mathemat-
ics, 15 (1985), 33-39.

[4] Groetsch, C.W., The theohy of Tikhonov regularization
gon Fredholm equations of the §irst kind., Pit-
man, London, 1984.

[5] Groetsch, C.W., King, J.T. and Murio D., Asymptotic anal-
ysis of a ginite element method forn Fredholm
equations of the §4nst kind. In Treatment of
Antegnal equations by numerical methods, (C.T.
H. Baker and G.F. Miller, Eds.) Academic Press,
London, 1982,

[6] Tikhonov,A.N. and Arsenin, V.Y., Sofutions of i&L-posed
problems,Wiley, New York, 1977.

[7] Tikhonov, A.N., Regularization of incorrectly posed
probLems. Soviet Math. Doklady 4 (1963), 1624-
1627.

278



Department of Mathematics
University of Puerto Rico
R{o Piednas, Puerto Rico, 00931

(Recibido en octubre de 1984; versidn revisada en mayo de

1985).

276



