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WEAK APPROXIMATION OF MINIMAL NORM SOLUTIONS OF
FIRST KIND EQUATIONS BY TIKHONOV/S METHOD

by

Julio E. GUACANEME

ABSTRACT. Tikhonov's regularization method is
considered to find conditions that guarantee orders
of weak convergence of approximate solutions of lin-
ear ill-posed problems to the true solution. We es-
tablish orders of convergence by requiring smoothness
conditions on the functional and the true solution,
and we establish a converse result to the main
theorem.

RESUMEN. Se establecen ordenes de convergencia
debil para las soluciones aproximadas obtenidas por
el metodo de regularizacion de Tikhonov en el caso
de problemas lineales "ill-posed" (es decir, aquelios
para los cuales las soluciones exactas pueden depen-
der discontinuamente de los parametros). Para ello
se exigen condiciones de suavidad tanto al funcional
como a la solucion exacta. Esto se hace para la ver-
sion clasica infinito-dimensional del metodo de Tik-
honov y tambien para la version con elementos fini-
tos. Ademas, se obtiene un converso al teorema prin-
cipal, en el cual la suavidad resulta del orden de
convergencia.
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1. I nt ...oducc i6n. In this article we shall be concerned with
the integral equation of the first kind

1
Kx(s) = f k(s,t)x(t)dt = g(s)

o

(1)

where k(s,t) E L2([0,lJx[0,1]) and g(s) E L2[0,1]. It lS

well known that K is a compact linear operator from the Hil-
bert space Hi = L2[0,1] into the Hilbert space H2 = L2[0,1].
Solving (1) then means finding an x satisfying (1), given
g E H2•

This problem can have solutions x (we do not assume
uniqueness; by solution we mean "minimal norm solution")
which depend discontinuously on the "data" g, i. e., this is
not a well-posed problem (see e.g. [6]). This lack of con-
tinuity can have serious numerical consequences since the
data g is usually the result of measurements and hence is
only imprecisely known.

Regarding the discontinuous dependence upon data,
instead of solving (1) we solve a new equation close to (1)
which is well posed. This approach is c_alled "regulariza-
tion". In particular Tikhonov [6] suggests the minimizer
x of the functional

Ci

(2)

as a regularized solution of (1); we use II-II to indicate the
norm in each of the space Hi and H2 and <-,-> to denote the
corresponding inner product. The minimizer x of this func-

Ci

tional is the solution of the equation
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where K* denotes the adjoint of K and K = K*K, see e.g. [4].
When the approximation xa is defined, we would like

to estimate how far it is from the minimum norm solution x.
This can be done in the strong sense by looking at the norm
of the difference II x-x II between the approximate and thea
true solutions, or in the weak sense by considering the
functional <x-xa,z>, where z E Hi'

In many applications all we want to know about solutions
is the value of some functional <x,z> (see e.g. [2]). In
such cases we will be concerned with <x,z> and <x ,z> rathera
than x and xa respectively. That is, our interest is in weak
rather than strong approximation. In this paper we will
derive estimates for <x-xa'z> under various assumptions on
x and z for both the classical infinite dimensional version
of Tikhonov regularization and for a finite element version.
We consider both the cases of exact data and inaccurate data.

2. Infinite Dimensional Tikhonov Approximation.
For fixed z E Hi we consider whether

<x-x ,z> ~ 0 as a ~ 0,a

i.e., the weak convergence of the Tikhonov approximations
to the true solution.

Sufficient conditions for convergence in the weak
topology have already been studied by Tikhonov [7], and for
more general methods of regularization, by H.W. Engl [1].

Our goal is to establish orders of convergence by
imposing conditions on x and the functional z. Since x as
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well as x are members of R(K*), the closure of the range ofex
K*, and every z in H has an orthogonal decomposition z =

.!.zl+z2 E: R(K~':)+R(K~':) , we have

<x-x z> = <x-x z > .ex' ex' 1

We therefore may restrict our attention to funcionals
z E: R(K*); however to obtain convergence rates we need to
impose stronger conditions on z.

ott (c)

-
THEOREM 2.1. In (a) XE: R(K) ott (b) ZE: R(K)

x and Z E: R(K*), th~n <x-x ,z> = O(a).ex
Pnoo]: (a) If x E: R(lO, then I<x-x ,z>l~ IIx-x 1IIIz\Iex ex

by [4,Corollary 3.1.1J. (b) For this case let= O(ex)
z = Ku, then

/<x-x ,z>1 = I<K(x-x), u>1 = 1<[I-K(exI+K)-lJK~':g, u>1ex ex
- 1-

= exl«exI+~)- Kx,u>1 ~ exllxlillull,

since II (exI+K)-lKII _":: 1. (c) Let Z = K~':v,x = K~':w,then,
setting K:= KK*, we have

I I I I A A -1'"<x-xex' z> = <K(x-xex), v> = <Kw-K(exI+K) Kw, v>1

which completes the proof. •

The best order of weak convergence is O(ex) as the
following theorem establishes.

THEOREM 2. 2. In
th~n x = o.

<x-x ,z>ex = O(ex) nott~v~tj ZE:H1,
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PfWo6. Since <x-xa'z> = 0(0.), we have «x,xa)/a, z> +0
asa+O "\tze:H1.In particular the sequence {(x-xa)/a} is
weakly convergent and hence bounded, i.e., Ilx-x II = 0(0.).a
By [4, Theorem 3.2.2] we have x e:R(K*K), say x = K*Kv.
Now using the fact that x-x = a(aI+K)-1Kv, (clearly we maya

- .l .l-.take v e:N(K) = N(K) ),we then have

o = 11m «x-x )/0., z>a
0.+0

- -1- += 11m (aI+K) Kv, z> = <K Kv, z>
0.+0

for every z e: Hi' so K+Kv =

rose inverse of K (see e.g.
+0, where K is the Moore-Pen-

[4J ). But

+K Kv = PN(K)~v = v

and hence v = 0, i.e., x = Kv = o. A

For the converse of Theorem 2.1 we will have, using
the same notation as above, the following

THEOREM 2. 3. 16
then x e:R(K~'<K) .

P~oo6. Define Taz = «x-Xa)/a, z>. This family of
linear functionals on Hi has the properties required by the
uniform boundedness theorem, that is,

<x-xa'

[r zll = I<X-Xa, z>1 ~ M(z) for all a > O.a a

M(z) is a bound depending of the element z, and thus there
exists a bound M independent of a and independent of z such
i:hat II Tall~ M, i.e.,

= I <x-Xa, z>1 ~ Mlizila
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for all a > 0, and for all z E Hi' In particular, for
z = (x-a)/a,

liTx-xall= II x-Xa1l2 ~ Mil x-Xall,a a a

and hence Ilx-xal= or«) . By [4 Theorem 3.2.2J we conclude
that x E R(K*K). ,

Now that we have analyzed the error-free case we
turn our attention to the more realistic case of inexact
data g8, with a prescribed error bound 8 : II g_g811 ~ 8.

°The Tikhonov regularized solution x is the mini-a
mizer of

F (z,g8) = IIKz_g811
2 + allzl12

,a

equivalently, x8 = (aI+K)-lK*g8.aor,

8LEMMA 2.4. 11 z E R(K":)the.n <x -x z> = 0(8)n a a'
60ft anu a > o.

Pftoo6. Let z = K*u, then

8<x -x z> =a a'
8 A A--i 8<K(x -x ), u> = <K(aI+K) (g-g), u>a a

and hence

THEOREM 2.5. Let a=O(o). 16 (a) z e: R(K), Oft (b)
z and x ER(K":), the.n <x-xo, z> = 0(0).- a

Pftoo6. (a) By Theorem 2.1 and the preceding lemma
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(b) Let z = K*w and x = K*v, then

A -1t><x-x z> = <K(x-x ), w> = a«aI+K) KV, w>a' a

and hence

I<x-x , z>1 ~ allvllllwil= O(a).a

oU3ing the Lemma again we find that <x-xa' z> = O(a)+O(o). &

In the final theorem of this section, we make no
assumption on the true solution x.

THEOREM 2.6. 16 z E:R(K~':),the» <x-xa' z> = O(/a).
P~oo6. Suppose z = K*u, then

<x-xa' z> = <K(x- x
a

), u>,

But

IIK(x-x )112 = <K(x-x) K(x-x» = <K(x-x ), x-x >.all a' a a a

But K(x-x )a
fore,

-aKxa There-

IIK(x-x )112 =a
-u<Kx , x-x> =a a a (a) ,

since x ~ x (see 141). Therefore,a

completing the proof. &

Combining this with Lemma 2.4 we obtain:
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COROLLARY 2.7. 16 z e:: R(K~':) and a = 0(02), .the.n
o<x-x z> = 0(0). ,a'

3. Finite Element Approximations. Groetsch and Guaca-
neme [3J have proved weak convergence of certain finite ele-
ment Tikhonov approximation to the minimal norm solution of
(1). These approximations are formed by using a sequence of
finite dimensional subspaces Vm that increase and are even-
tually dense in H1, i.e.,

V1 S V2 S •.. and u V = H1m m

The finite element Tikhonov approximations
are the minimizers of F (o'g) and F (o.gO)a' a'
pectivley, over the finite dimensional space V , or equiv-o m
alently x , x ~ V andm,a m,a m

xm,a
(see

oand xm,a
[2J ), res-

<Kx -g Ky> + a<x , y> = 0m ,« ' m,a
s 0<Kx -g, Ky> + <ax , y? = 0m,a m,a

respectively, for all y E V These conditions are in turnm
equivalent to

.'. -1 ~';x = (K"K + aI) K gm,a m m m
and

0 ~t: 1 s, 0
x = (K K + aI)- K"g
m,a m m m

where K is the restriction of K to V . The numberm m

= II (I-P )K~':II
m
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where Pm is the orthogonal projector of H1 onto Vm, plays
a prominent role; it tell us how well the spacEjs
V support the operator K. Note that y + 0 as m + 00 (seem m
e.g. [4J).

d h .. 0To stu Y t e approxlmatlons x and x we assumem,a m,a
the regularization parameter is a function of m, say
a = a(m) + 0 as m + 00.

Before going into the order of convergence we define
the inner product [u,v] = <Ku,Kv> + a<u,v> and the norm
lul2 = [u,uJ = ~Ku1l2 + allul12 in the Hilbert space H1. Under

this inner product x is orthogonal projection of x ontom,a a
Vm' (s ee [~J), i. e.

[x -x v] = <K(x -x ), v> + o<x -x , v> = 0a m,a' a m,a a m,a

for all v e: V .
m

We now give a weak order of convergence result for
x for ease of notation below we will replace a by am,a m
and y by y, respectively.m

k
THEOREM 3.1. AMume that y = O(a 2). (a) 16 x

and z e:: R(K;'t)then <x-x z> = O(a). (b) 11 z e:: R(K,'t),m,a' U
z> = 0(/&).then <x-x m,a'

P~o6. (a) Let z = K*w and let x = K~'tv.Then,

<x-x z> = <x-x z> + <x -x z>
m,a ' a' a m,a '

= <K(x-x ), w> + <K(x -x ), w>.a a m,a
Now,

A A A -lA A -1A
= Kv - K(aI+K) Kv = a(aI+K) Kv;

therefore
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I<K(x-x ), w>1 ~ a~vllllwil= O(a).a

Also

and remembering that x is the projection of x onto Vm,a a m
under the inner product [w,vJ = <Kw,Kv> + a<w,v>, we have

~IK(I - P ) 2x II 2 + all(I -P ) x II 2m a m a

~ ('/+a)11(I-Pm)xaI1
2

2 A -lA 2= (y +a)II(I-P )K~':(aI+K) Kvll
m

Therefore

I<x -x ,z>! ~ IIK(x -x )IIIlwlla m,a a m,a

~ (y2+a)~yllvllIlwll= O(a).

(b) Let z = Ku, using the same decomposition as in
part (a) we have

<x-x z> = <x-x z> + <x -x z>m,a' a' a m,a'

and <x-x, z> = O(!<i), by Theorem 2.6. Now <x -x ,z> =a a m,a
<K(x -x ,ex), u> , anda m

2 12 2IIK(x -x )11 ~ IIK(x -x )1 +allx -x IIa m,a a m,a a m,a .

Using the characterization of x as the projection of xam,a
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onto V , we have as above
m

2 2 2 112" K (x - x ) " ~ (y -c ) II (I-P ) x" = 0 ( a )" (I-P ) x = 0 ( a ) ,a m,a m a m a

thus
<x -x z> = O(Iii) .a m,a'

We therefore find that

<x-x z> = ( Iii)
m ,« '

for case (b). .i

We see that under suitable conditions the finite
element approximations attain the order O(a) of weak conver-
gence, which we now show does not allow improvement.

THEOREM 3.2. 16
z e:H

1
, then x = o.

Phoo6. In particular for z = K(u+w) with u e:VN and
.J..w e: VN' we have

<x-xm,a' z> = o(a) 60h all

<x-x z> = O(a).m,a'

By the definition of x we havem,a

<K(x-x ), u> + a<x , u> = 0 for m > N.m,a m,a

Therefore

<x-x K(u+w» =m,a'
~
K(x-x ), u+w>m,a

= -a<x u> + <K(x-x ), w>m,a' m,a

and hence
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� <x-Xm a,K(u+w)> Kf x-.» )o = llm' = -llm<x ,u> + 11m< m,a w>a m,« a'm m m

= -llm<x ,m,a u> ,
m

x-~
for u ~ VN. To see this note that by hypothesis a ,a con-
verges weakly to zero and K is a compact operator, therefore
~ x-Xm wK( ,a) converges to zero. Using the fact that x + x,a 00 m,a
we then have 0 = <x,u> for all u E VN• Since U V is densen=l n
in Hi we have x = O. A

Finally, we consider the weak convergence of the
. " 0 b"d'" "d 0 happroxlmatlon x 0 talne uSlng lmpreClse ata g , wereo m,a

IIg-g I < s.

LEMMA 3.3. I!K(x - xO )11 < s.m,a m,a
PJWo6. Since

°Kf x -x ) =m,a m,a
~ -1 l': °K (aI+K) K (g-g )

m- m m

" A -1 0= K (aI+K) (g-g)m m
and

we get that

We now show that under appropiate conditions an op-
timal orde of weak convergenc2 obtains.

1
THEOREM 3.4. A-6-6ume that y = O(a~). 16 wheA

(a) x and z E R(Kl':) and 0.= 0(0) Oft (b) Z ~R(Kl':) and
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a=0(02), then. <x-x ,z> = 0(0).. m,a
PJl..006. By Theorem 3.1, in both cases (a) and (b):

<x-x ,z> = 0(0).m,a

Now set z = K*w, then by Lemma 3.3 we have

oI <x -xm,a m,a' z>1 = I<K(x _xO ),w>l~ollwll,m,a m,a

oi.e., <x -x ,z> = 0(0), and hence <x-x z> = 0(0),m,a m a m,a'
completing the proof. •
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