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COHOMOLOGY THEORIES IN SYNTHETIC DIFFERENTIAL GEOMETRY

by

Ieke MOERDIJK and Gonzalo E. REYES

One way of formulating De Rham's theorem 'smoothly in
parameters' is to construct the De Rham cohomology groups,
and the (duals of the) singular homology groups as sheaves
of smooth modules over the space of parameters, and then to
assert that these sheaves are canonically isomorphic.

In the last two sections 5 and 6 of this paper we will
derive such a version of De Rham's theorem (see p.257), as
well as similar isomorphisms of sheaves of smooth modules
for some other variants of De Rham's theorem (p. 260, 264).
These theorems will follow from more general results asser-
ting the validity of De Rham's theorem in the smooth Grothen-
dieck topos G described e.g. in Moerdijk & Reyes (1983).

The plan of this paper is as follows. In the first two
sections,we will give a synthetic description of the De Rham
cohomology and the singular homology of an arbitrary smooth
‘space M. In the third section, we prove a synthetic version
of De Rham's theorem, and in section 4 we show that results
of Moerdijk & Reyes (1983) enable us to interpret this syn-
thetic theorem in the topos G. As a by-product, we will ob-
tain some 'comparison theorems' which essentially tell us
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that the cohomology of a manifold in G is in a sense the same
as its cohomology in sets, i.e. its cohomology as defined in
classical differential topology. This interpretation of the
results of section 3 in the topos G immediately yields the

'smoothly in parameters' theorems of section 5 and 6 which we

mentioned above.

This paper is an extended version of our paper ''De Rham's

theorem in a smooth topos', (1984).

§1. The De Rham cohomology. In classical differential geome-
try the De Rham complex of a manifold is built up from dif-
ferential forms and exterior differentiation. In the context
of synthetic differential geometry, these building blocks can
be defined for any object M, since all objects are 'smooth
spaces'. Thus, to defined these notions, let M be any smooth
space. An infinitesimal n-cube on M is an element of MDHXDn,
i.e. n+1-tuple (y,h],...,hn).

The object of intinitesimal n-chains, Cn(M), is the free
R-module generated by the infinitesimal n-cubes on M. So an

element of C (M) is a formal linear combination
i i
E ai(yi,h1,...,hn)

i=1

i i n o n
where a; €R and (Yi,h1 ...,hn) e MP xp™,
An n-form on M is a map

n
MD xp™ & R

(y,h,...,h )~ I
1 " byt

assigning a number (a 'size', like length, area, volume, etc.)

to every infinitesimal n-cube, subject to the following con-
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ditions:

1.

homogeneity: w(ai'Y,h1,...,hn) = a-w(y,h1,...,hn), where
ai-y:Dn + M is defined by

ai-y(x1,.",xi,.",xn) = y(x1,.",ax-

1,...,xn),

for every a « R and infinitesimal n-cube (y,h1,.",hn).

. alternance: w(oy,h1,...,hn) = sgn(o)-m(y,ho(1),.",ho(n)),

where o is any permutation of {1,...,n}, and oy is y com-
posed with the co-ordinate permutation induced by o, i.e.

oy(x1,...,xn) = y(x0(1),...,xc(n)) H
sgn(o) is the signature of o.

degeneracy: w(y,h1,...,o,...,h ) = 0.
The object of n-forms on M is denoted by An(M).

Note that by the Kock-Lawvere axiom, RD = RxR, and the

degeneracy condition, each n-form w on M can be written as

neity condition (&(ai-y)

'm(Y7h1)"')hn) h‘l.'--'hn.a(Y)

for a unique map G:MD™ 5 R. This map o satisfies the homoge-

a-w(y)) and is alternating

(@(oy) = sgn(o)a(y)). Thus we obtain a 1-1 correspondence

between elements w e A{M) and alternating homogeneous maps
&:MD" o R, and we will often identify the two.

If w:MP"xD" » R is an n-form on M, we will write

[ w:C_ (M) > R
) W

"for the unique R-linear map extending w.

Taking the boundary of an infinitesimal n-cube defines

an R-linear boundary operator

3:C_, (M) + C_(M)

given by the formula
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n P
a(v,hypeesh ) = T GDYOF (v,hy, e R,
i=1 a=o0,l

where Fia(Y’h1""’hn+1) is the infinitesimal n-cube

([(x1,p..,xn)r+ Y(xl""’“'hi’"ﬁxn)]’h1""’hi""’hn+1)'

2

Thus, for example, if y:D” - R2 is the embedding, then

3(Y,h1,h2) = (v(-,0) vh1) * (Y(h1)')yh2) - (v(- xhz) ’h1) F (Y(Or_):hz)

We observe that spelling out the definition of 3 yields that
303 = 0.

If we put Cn(M) = (0) for n < 0 then we obtain a so-called
(differential) complex. In general, a complex A (of R-modu-

les) is a sequence

_ 3+1 3
o R —"»An —LAn_1+... (n e 2)
or ,
d +1
cer A A A . (0= 2)
of R-module and R-linear maps, such that 3n3n+1 = 0, or
dn+1dn = 0. (Usually, the subscripts on 3 and d are omitted).

If A and B are complexes, a map of complexes, Oor a chain map
f:A ~ B is a sequence of R-linear maps fn:An - Bn which pre-
serve the structure of the complex, i.e. commute with the
9's, or the d's. (Again, we suppress subscripts on f).

Given this terminology, the construction of the complex
C-(M) = {Cn(M)} is (covariantly) functorial in M: a map M-ﬁN

induces R-linear maps
f*:Cn(M) - Cn(N)

defined on generators by composition, i.e. f*(y,h1,...,hn) =
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(foy,h1,...,hn), and since
f*(a(Y’h-‘)""hn+1)) = a(f*(Ysh]"";hn+1))

this yields a map of complexes.
The boundary operator Cn+1(M) ! Cn(M) enables us to

n+1

define an R-linear map A" (M) 4 a (M), called the exterior

differentiation map, by putting for each n-form w:MD"xD™ + R,
(v,h ho,)% " acy,l J A bk
Y 12°° > n+1) Y’11,'*" n+1)

This is well-defined, since as is easily checked,
dw:MDn+1XDn+1 + R is indeed homogeneous and alternating, and
satisfies the degeneracy condition. Moreover, since 82 =0,
we find that d2 = 0. Observe that the defining equation for
d is 'Stokes' theorem' for infinitesimal n-chains. Below, we
will see how to prove the usual form of Stokes' theorem for
big n-chains.

Again, the construction of An(M) is (contravariantly)
functorial in M: a map f:M » N induces R-linear maps

£ A" (N) - AT (M)

by composition: if w is an n-form on N and (y,h],...,hn) is

an infinitesimal n-chain on M, then

*
f (w)(Y’h«‘y--"hn) = m(on)h1)"~’hn))

and we extend to An(N) by linearity. Thus by definition,

5 = f -’hn)f*(“’)'

f*(Y’h1"":hn) (Y’h])°'

*
The f* together (for each n) give a chain map £ : A(N) » A'(M),

since

ACE ) = £ (aw) .

We remark here that ifbdisRn®rmore generally a mani-
fold in the classical sense) we obtain the usual notions of

form and exterior differentiation. This point will be proved
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in section 4 below, where a comparison is made between the
classical approach and the (model theory of the) synthetic

aproach.
The De Rham complex of R-modules (and R-linear maps) of

and arbitrary object M is the sequence
oty Aty A Ty s

where An(M) is defined above for n > 0, and An(M) = (0)
for n < 0. The De Rham cohomology R-modules of M are defined,

as in the classical case, by

H* M) = F*M) 7/ EM(M)

where

I

FP(M) = Ker (A"(M) $ AP*1(M)) ("the closed n-forms")
and

(A" 'm) € AP(M)) ("the exact n-forms").

EM (M)

(Note that En(bU = Fn(M) since d2 = 0). If £f:M > N, then by
naturality of d, f*:An(N) o An(M) maps closed forms on N to
closed forms on M, and exact forms on N to exact ones on M,
so we obtain a map £ = Hn(f):Hn(N) + H' (M), making H (-)
into a contravariant functor.

In the terminology of the De Rham cohomology, the in-
tegration axiom of Kock-Reyes (1981) can be stated as

n'([o,11) = (0)

where I = [0,1] = {x & R|0 < x ¢ 1} is the unit interval
defined by a preorder relation < which is compatible with
the ringstructure on R (0 € 1; X £ y = Xx+z < y+z ; and x <Yy,
0 ¢ t =>xt ¢ yt) as well as with the infinitesimal structure
(x nilpotent » 0 < x < 0). Using the integration axiom, we
can define integration of a form along a finite n-cube
y:1™ + M by the formula
1 T
{w =(j) (j)' B((hy,. .. b)) > y(ty+hy,. .., t +h))de .. .dt .
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Just as for the infinitesimal chains, we define the object
of finite n-chains, I'y(M), as the free R-module generated
by the set of maps I" » M, and an R-linear boundary operator
8:Fn+1(M) > Fn(M). These definitions are again functorial in
an obvious way, and the integral

[:T (M)xA_(M) + R

is R-linear in each variable separately, while moreover again
by definition

*
[ =] f (w) (where f,y = foy).
£y Y
Less trivial is the extension of Stokes' identity, used to
define exterior differentiation, from infinitesimal n-chains
to finite n-chains:

PROPOSITION. (Stokes' theorem) For any y = Fn+1(M)’

we A(M, [do = [ w.
n
Y 3y
Proof. See Kock-Reyes-Veit (1980), or Kock (1981). A

We now check the three 'axioms' for a cohomology theory,
namely the homotopy invariance (or Poincaré lemma), the Mayer-

Vietoris sequence, and the disjoint-union lemma.

POINCARE LEMMA. The De Rham cohomology of R™ is the
same as that of a one-point space {*}:
R if q =0

HA(R™) = H({#}) =
(0) if q # 0.

We shall derive this lemma from the following

PROPOSITION. Let F:IxM + N be a homotopy from F, to Fy.
Then §on each n there 4is an R-Linear map

1

K = Kn:An(N) + A" T
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such that fon everny w = An(N),

{[F’;(w) - Fa(w) - (Kp,qdo+dKw)] = 0

fon all t:1" > M.

Proof. (For a proof in 'classical lenguage', see
appendix 2). Define for y e mpn - !

1
Ka@) (1) = [ 0y, yhy) = oy (1(hg, e i) dt.

It is trivial to check that K, (w): :MDR” P . R is homogeneous
and alternating, so this def1nes an n-1-form K (w) = A" 1(M).
For notational purposes, let us assume that n = 2, and take
any ‘r:I2 + M. Then

{dKZ(w) =8{K2w =T{K2w +‘!K2w - szw - szw

2 T3 4

where T, = (-,0), T, = (1,-), T5 = (-,1), Ty'= 7(0,-)

-1z

-Ty

9
Now define a 3-cube p:I3 + M by
p(X.l ’XZ ,X3) = Fx] (T(XZ,XSJ) »

and compute f[dw in two ways.
P

On the one hand, by definition of [,
111

Id” Jgg dw[(h1» hs)"* Ft1+h1(T(t2+h2,t +h3))]dt dt dt

B }ng,(dw) [(hy,hy) = Tty +h,, to+hy) ]dt dt
00

= /Ks(dw).
T
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On the other hand, by Stokes' theorem,

Jdw = [ w=fo - fu+ fo- o+ fo- fo
P ap f ba L £ { g;
(where 3p = (f-ba) + (2-r) + (t-bo), f refers to the restric-

tion of p to the front of the cube below, ba to the back,
etc.)

X3

X2

Now [w = *f(u =IF:m, and [ w = fF;w. We claim that
b

fw = j sz’ fw= [ sz’ fu) =[ sz’ Iw=f](m.
'3 T4 T TZ t T3 bo T1

'
[ Xuw = (f) K, () [h > 1(0,t,+h)]dt,

1

1
({Ef)w[(hw hy) + Fti+hq(r(0,t,+hy))] dt dt,
= fw,
L
and the other three identities are similar. By putting the

derived equalities together, one completes the proof of the

‘proposition. A

In the above proposition, it would be more natural to
conclude that F:w'-F;»=Kdm-¥de. Unfortunately we do not

know whether in general, for w c}\n(M), fw = 0 for all
T
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I > M implies that w = 0. However, this is the case if M

has the following extension property.

; DR r pn . :
(E) The canonical map M 2 + M induced by the inclu-
sion D » D, = {x «R| x> = 0} is a retraction (i.e.
there is a section i, rei = 1).

Every R" has property (E), and more generally, so do
all formal manifolds (in any of the senses proposed). More-
over, if an object M has property (E), so do all exponentials
MY and all retracts of M.

COROLLARY 1. I§ M has propenty (E), then the conclu-
sion of the above proposition can be strengthened to

F* *
10 -Fow = Kdw + dKw

Proof. As just claimed, it suffices to show that if M
has property (E) then for any w = A" (M), fw = 0 for every
I > M implies that w = 0. We do the cage n =1 only. To
show that w = 0, choose an infinitesimal 1-cube (Y,ho) =
MDXD, and extend y to a map ?:DZ + M by an application of
property (E). For notation, let ¢h0:I + I be the function
tr> hyt, and define f:D » R by f(t) = w[h » J(t+h)]. It suf-
fices to show that

Q- f w .
(sh) Yoo,

since then by assumption on w, it follows that [ w = 0.

Now (Y,ho)

1
[ w= [ w[h~ y(¢>ho(t+h))]dt (by definition)
Yothot 1 9
1 .
[ w[h~ (h +¥) (h t+h)]dt

o

1
ho-w[h w J(hyt+h)]dt (by homogenei ty)

H
Ot~—

"n
£ of(th )dt
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ho
g f(t)dt (substitution)

h - £(0) (Kock-Lawvere axiom)

£0 W . A
(v,hy)
f

COROLLARY 2. Assume that M has propenty (E). T4 Mii?N
are homotopic, then H(f) = H(g) :HN)— HM). In partic-
ulan, 4§ M and N are homotopy equivalent, then H'(M) = H'(N)
(whence the Poincaré lemma). A

Let us now turn to the Mayer-Vietoris sequence. Re-
call that a partition of unity subordinate to a cover {U,V}
of M is a pair of maps pU,pv:M + R such that for all x = M,

pU(x) +pv(x) = 1, and moreover, for all xe M

x € U or pU(x) = 0, and x= V or pv(x) = 0.

PROPOSITION. Assume that M =U UV, where U and V axre
Etale subjects of M (i.e., if ¢:D1 » M and ¢(0) = U, then
im(¢) = U; similarly for V). 1§ {U,V} has a parntition of uni-
ty subondinate to it, then the sequence

0— AdTM) » A%(U) @ AY(V) » AY(UnvV) » 0
e (ig(), iy(®)
@,V 1) = gy ()

is exact (the i-denote the inclusions).
Proof. The fact that the first map is monic follows

from the fact that {U,V} is an étale cover.
To show exactness in the middle, let (u,v) « Aq(U) YN

: L ,
be such that ial1v(v) =iy av.(u). Define
w = OU-u + pvu\)
where {pU,pv] is a partition of unity subordinate to {U,V},
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and
-yt (0)-u(e) if ¢(0) = U

(o 1) (4) _
if py(6(0)) = 0

and similarly for Py V- (Notice that since U and V are étale,
this definition makes sense). Then

% % % .
1Uw'u ™ 1u(pu'u) +1u(pv'U) = (pulu'u +pv|U°U)

But 1U(pU u) = pUIU M, and by def1n1t10n of a partltlon of
unity and the fact that. lUﬂV(U) Unv(v), also 1U(pv-v)
ple u. Hence 1Uw M. Similarly it follows that 1v(m) = v,
so the sequence is exact in the middle.

To show that the right hand map is epic, we show simi-
larly that any w Aq(U NV) comes from the pair (—pv-w,pu-m}

This short exact sequence is called the Mayer-Vietoris
sequence, and it induces a long exact sequence, as in the

following
COROLLARY. Unden the hypothesis of the preceding phro-
position, therne L4 a Long exact sequence
CoHA) > HYU) e HA(V) > HI(U AV) > HY T (M) > ..

The tin%gn map a*:n4(u nv) - Hq+1(M), the s0-called Bockstein

homomonphism, may be described by

[-d(pv-w)] on U
*
d [w]

[d(pyrw)] on V.

Proof. This is some simple homological algebra. The
general situation is that we are given a short exact se-

quence

f .
of complexes (i.e. each level 0 - A9 > BA § ¢l + 0 is exact).
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5 *
To define d :Hq(C) - Hq+1(A), consider the commutative dia-
gram

0 > Aq_1
N L
£
O*Aq —+Bq —gycq > 0
ld d d
£
ges AR ot sp9t) 8 Y1) w0

and take [c] Hq(C), so dc 0. Write c = g(b) for some

b = Bq, and observe that dc dg(b) = g(db) = 0, whence ab =
q+1 < * . .

f(a) for some a = A" . Define d [c] to be this [a]. This all

looks 1like a horrible application of the axiom of choice

n

(which is not available in the synthetic context), but it is
not, and moreover d* is well-defined on equivalence classes.
Both assertions follow from the fact that d*[c] is the unique
equivalence class [a] such that for some b = Bq, f(a) = db
and [g(b)] = [c]. To see this, assume that both a and a' are

candidates, i.e.

f(a) = db, [g(b)] = [c], some b
f(a') = db', [g(b')] = [c], some b'.

Then since [g(b)] = [g(b')], g(b-b') = dc, for some c . g is
epi, so ¢, = g(bo) for some b, . But then g(b-b'-dbo) =

dc, - dcy = 0, hence b-b'-db, = f(a,) for some a,.

Thus f(dagy) = db-db'-dzb0 = f(a)-f(a'), and since f is
mono, da, = a-a', i.e. [a] = [a']. Linearity of d* is now
obvious. It remains to show that the long sequence is exact,
which is easy and can safely be left to the reader. A

(o)

As a final remark, we note the following proposition,

the proof of which is obvious.

PROPOSITION. I§ M = lk M, 44 a disjoint union, then
HI(M) = m MM ). 4
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§2. Singular homology.

Let M be a smooth space. A singular q-simplex of M is
a map Aq S M, where Aq(q > 0) is the standard q-simplex

+1
= {(xo,...,xq)c R |0<x. ¢1 and in = 1}

[egs---se i

q]
({eo,...,eq} denotes the standard base of Rq+1). We let
Sq(M) be the free R-module generated by the singular g-sim-
plices; the elements of Sq(M) are called singular q-chains.
There is an R-linear boundary operator.

2 = 2,:S (M) > 5, (M)

defined on generators Aq 9 M by

® ol
3q(0) = J'Zo(-U oeey

a: q-1 - Aq is the j-th face of Aq, i.e.(eg(xo,””xq_1)
= (xo,...,xj_1,0,x.,...,x ). Since 303 = 0 (as is easily
checked), this defines a complex S (M) if we agree that
Sq(M) = (0) for q < 0. Notg that this definition of S_(M) is
functorial in M: a map M + N induces R-linear maps f*ﬂa(M)
+ S (N) for each q, defined on generators by composition, i.
e. fo(0) = foo, and this yields a chain map f4:S_(M) + S (M)
because 3 (f,0) = £,(90).

A; usual, we define submodules Bq(M) - Im(aQ+1) (" bound-
daries') and Zq(M) = Ker(aq) ('eyecles') of Sq(M), and since
32 = 0, Bq(M) c Zq(M) so we can define the q-dimensional sin-

where €7 :A

gular homology R-module of M by
H (M;R) = Z (M)/B_(M).
q(MiR) qt )/ q( )

Clearly, Hq(-;R) is a covariant functor.
We proceed now as in the case of the De Rham cohomology

by proving the three key properties, viz. the Poincaré lemma
or homotopy invariance, the existence of the (longexact) Ma-
yer-Vietoris sequence, and the disjoint union lemma.
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PROPOSITION. Let F:IxM + N be a homotopy §rom F, %o

F,. Then forn each q there is an R-Linear map

P="P :S (M »

a'q q+1(N)

such that for eveny c:Aq + M

F]*(o)-Fo*(o) = 3Pq(c)+Pq_1(3c).

Proof. We will define a triangulation P_ of IXAq, 1.0
a sum Pq < Sq(IXAq) of maps Aq+1 + IXAq, and then for
o:Aq + M we let Pq(c) < Sq+1(N) be the composition (= sum of

compositions)

P
A ——ﬂ.Iqu Ll ISR N

q+1
Each of the maps involved in the definition of Pq will be af-
fine, and it is useful to introduce some notation. Recall
that a singular q-simplex 0 on a convex subset M < R" is
called affine if there are points mo,...,mq e M such that

o(x

0" .,xq) = X m +. +xqmq

such an affine simplex is denoted by [m Y B P
3[mg,-omg] = ‘{(1) [y, -, k,...,m] 1£ 5= [ng,...,m]
is an affine q- s1mp1ex, the k-th q-1- 51mp1ex occurring in as
will be denoted by S(k), i.e.

sck) = [mgseeeofiyseeom].

In IxA , we distinguish the points el = (a,e.) for o« = 0,1,
j =0,...,q. Let us write Sj for the affine q+1-simplex

1 o o : .
[e LAY ..,ej] on IXAq (j =0,...,q9). We now define Pq
by % 5
& P = - s s . .
4 3ue j is q is even

§ (- 1)Js , if q is odd.
q j=o

Let us verify that indeed
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BPq(o) —Pq_1(30) = F1*(o) —FO*(O)

for every o:A_ + M. From the definition of Pq(o) given above
it is clear that it sufficies to consider the 'generic' case
where o = [eo,...,eq] = id:4q » Aq, and F:IxM » N is the
identity IXAq -+ IXAq. Thus, we verify that for each q,

an([eo,...,eq]) - kzo( 1) Pq 1([ ,ek,...,eq])
[e;; ’e;] (3 [eg’ » € ]

Indeed, if q is even,

D--3 % enks

P ([e.,...,e
q ° a j=o k=o

while

Py1(legs. e8]y = ? (-1)kPq_1([eo,...,'ék,...,eq])

% (- 1) | { 1N J[ ..,3;,...,eg,...3§,...,e?]

k=0 j=o
k#k

PEad < ks p’j‘ = j-1if j > k. Note that only

= i
one of e;, eg is omitted, depending on whether j < k or

? [ 2 CINCILE ‘s @51y + Z ORI 5; (3]
j=o k=0 k=j+1

; : P pir A
P o eient s @ ¢ T entIenis o)
J=0 2=q- J+1 2=1

]

2 [? (- 1) S (1)] since q is even.
j=o 2=1

W ks, (0 11 Cnks
H 3P +P 3 = - + : :
gtel Wl T J =0 k=o j=o k=1 J

[S.(ﬁtﬁ)-s.(ﬁ)] (q es even)
j=o ] J
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1, _ 0 o
.,eq] = [eo,...,eq],

since everthing else cancels because of Sj(&:T) = Sj_1(6).

And if q is odd,

+

q

jTo k=

.q+1
Pllegreeniegh = 1 1 (-n¥s;y,
(6]

while

D

o
1
&
~~
[o%]
| < |
o)
IS
2
©
S
p—
n

k A
-1)°P Ve i
q kgo( ) (1_1([(30, 'ek’ »eq

il

% (-n* % [el e el e? 20 ]

k=0 J=0 j’--., k,-.-;q’ 02" k,...,ej
ik

? bl k+l.  — q s N

j=o k=0 k=541 j

T ; q-j \

- A R
0L 0V Ms @+ 3 (n*Its @)
j=o0 2=q-j+1 ) =1 j

q (] 2*.4’1 R
I I I*1s. (@), since q is odd,
j=o 2=1 J

li

n

and from this is immediately follows as in the case where q
’ 1 1
is even that an([eO,...,eq])-Pq_](a[eo,...,eq]) = [eo,.“,eq]
-[eg,...,eg]. This completes the proof. A

f
COROLLARY 1. (Homotopy invariance) I§ M zgirq ane homo-
topic maps, then H_ (£f3;R) = H_(g;R):H (M;R)+HN;R). In particular, if
M and N are homotopy equivalent, then H_ (M;R) = H_(N;R). A

COROLLARY 2. (Poincaré Lemma) Let M < R" be convex and
inhabited. Then
R 4i§q=20

H.(M;R) =
1 (0) 4§ q>0

Proof. If M is a single point, this is clear; and if
M is arbitrary convex, inhabited, it is contractible, hence
by corollary 1 it has the same singular homology as a single

point. A
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We now turn to the exactness of the Mayer-Vietoris se-
quence. Things are considerably more difficult here than in
the case of the De Rham cohomology. Let M = UUV, and let
S {U’V}(M) be the submodule of Sq(M) generated by
Sq(U)lJSq(V). Then from the short exact sequence

05 (uav) »s (es, (v) »s UVay 5o

we obtain (as usual) a long exact sequence which is just
like the one of Mayer-Vietoris but for the fact that the
homology H.{U’V}(M;R) of the complex S.{U’V}(M) appears
instead of H_ (M;R). What is the connection between the two?

To answer this question, we shall from now on assume that

1. R is Archimedean
2. A is compact, for each q > 0
3. Every finite cover of Aq has a (finite) open refine-

ment (each q > 0).
(As for the consistency of these assumptions relative to SDG,

see section 4 below).

PROPOSITION. The canonical map H.{U’V}(M;R) + H_(M;R)
Ainduced by the inclusion S,{U’V}(M) — S, (M) {8 an Lisomon-
phism.

Proof. We apply assumptions 1.-3. to a special chain

map

sd':is () -~ s (M),

viz the barycentric subdivision. de is natural in M, and
hence completely determined by the chains (squ)q(id)€=

S (A ), which are defined as follows. Slightly more general,
we define for each affine complex Aq § M into a convex M =R

a chain sdg(o) < Sq(M) by induction on q:

sdh([m]) = [m,]

sdu(mg,.-om]) = (-1 [sd(3[my,...,m]),b],
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where b = 'zoa}ij is the barycenter of [mo,...,mq], and
the outer brackets [ ] are interpreted as: if T =_% ai[n;,
i . . . : ol
"nq-I] is a chain of affine q-1-simplices, then [t,b] is

the chain _E ai[né,...,nl_],b] of affine q-simplices.
1=0 q

s . a A
Thus in particular, we have defined (sd q)q(id)c
S§§Aq) for each q > 0, and as just said this determines
S q(o) for every q-simplex Aq g M by

A
sdg(o) = 0a((sd° N (1))

(Note that in case o happens to be affine, this definition
of sdg(o) coincides with the one already given). One easily
checks that each de:S.(M) + S,(M) is a chain map. The proof
is now completed by noting the properties of sd stated in

the following three lemmas.

A
LEMMA 1. Every singularn simplex in (sd q)qm(id) has
diameten < (q/q+l)mdiam(Aq).

Proof. trivial induction on q.

LEMMA 2. Let M = UUV. For each singufar q-simplex
oqu + M thene 48 an m > 0 such that every simplex Ln sd™(0)
(where sd = (de) ) factors through edithen U on V, 4L.e.
sd"(0) = SéU’V}(M).

Proof. Since Aq = 0‘](U) Uo::(V), we a%?o have (by as-
sumption 3 on A ) that Aq = Into (U) UInto (V). From com-
pactness of A (assumption 2) we obtain a Lebesgue number
A > 0 for this cover. Since R is Archimedean (assumption 1),
there is an m > 0 such that (q/q+1)mdiam(A ) < XA. Then every
simplex in sd™(id) factors through Int(o'1?U)) or through
Int(o'l(V)), and this implies that every simplex in sd™(0)
factors through U or V.

LEMMA 3. For every M there are R-Linear maps

M
= * M
Ry = Rg:Sq(M) + Sqyq( )
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(natural in M) such that for every o= Sq(M),
M _
sdq(o)-o = aRq(o) +Rq_1(ac).

Conbequently, the map H (M;R) H (M;R) 4induced by the chain
map saM is Zhe LdQﬂtLty

Proof. As in the definition of de, because of natu-
rality in M all of Rx is determined by fixing Réq(id). This
will be done by induction on q: For q = 0, there is only one
choice A] - A for RAo(ld) And 1f R q11 is defined as is

required by the lemma, consider sd q(1d) id S (A ): Since

a(squ(id)-id-Rqu}(a(id)))

sd, q Va(id))-a(id)- aqu T(5id)

0}

qu Z(aald) (by induction hypothesis)

= 0 5

it follows from the contractibility of Aq that there exists
aoe Sq+](Aq) such that

A Ay -
30 = sdqq(id)—id—qu Taid)

(by the Poincaré lemma). Thus for Réq we can takeAthis 0.
(The reader may suspect that in order to obtain qu(Aq) as
a function of q we have to apply the axiom of dependent
choices (on q), which is not available in the synthetic con-
text. But this is not so, since the Poincaré lemma does not
merely yield the existence of a o as above: by applying the
proposition preceding the Poincaré lemma (p.237) to a fixed
contraction of A_ we obtain an explicit description of o!)
Putting these three lemmas together, we complete the proof

of the proposition. A

COROLLARY. (Mayer-Vietoris sequence). Assume that
M = UUV. Then there 48 a Long exact sequence
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84 §
*
g () — H @AY — H W) @ H, (V) > 1 (M) —.

deduced grom the shoxnt exact sequence

05 (UnV) »s, es, (v) »sUVay 5 0. a

As a final property of singular homology that we need,

we have

PROPOSITION. 1§ M = LI M s a désjoint union of a
family (Ma)a Lindexed by a decidable set {a}, then

H,(M;R) = @ H (M ;R)

whene &, denotes the coproduct of the family {H_(Ma;R)}cl

Proof. This follows immediately from the fact that Aq
is indecomposable (because of the integration axiom) (i.e.
if Aq = AUB, A, B disjoint, then Aq = A or Aq = B), and

thus any map Aq $ M factors through some Ma' A

§3. A synthetic version of the Rham's theorem.

In section 1 we have seen how the integration axiom
allows us to define for any q-form w on M the integral fw
along an n-chain Y:Iq + M. From this, we can define theYin-

tegral

[w

o
for a simplicial q-chain O:Aq + M in any of the standard
ways. Let us quickly describe one version (which seems no-
tationally not too involved) in more detail. For this, we
temporarily replace the standard simplices A_ = [eo,.",eq]
by their isomorphic copies (also called Aq)

= q
Aq = {(x],...,xq) e R'|0 < xqs...sx1 < 1k,

Observe that the faces of this Aq are the maps el:Aq_1-»Aq,



= ;
€ (x1,...,xq_1) =(x1,...,xq_],0), el(xl,...,xq_1) = (x1,..
xi,xi,xi+1,...,xq_1) (1<i<q-1), and eq(x],...,xq_1)
(1,x],...,xq_1). There is an obvious (orientation preser-
ving) projection

'q+ >
nq.I Aq’ (xl,...,xq) (x1,x]x2,...,x1...xq),

by use of which we can define thé above integral f[w as
o

Writing out the boundary anq as a sum of maps Iq-1 - Aq im-
mediately gives that 3m_ = (aAq)onq_| modulo some degenerate
chains Iq-1 + A (these are affine chains whose image has a
dimension <q—1,qso the integral over any q-1-form vanishes).
Consequently, we obtain Stokes' theorem for simplices if w

is any q-1-form on M and y:Aq + M is a simplicial q-chain,

then
f w = f Y*(w) = f Y*(w) (by definition)
3y alhg ¥q° Ty 1
= [ ¥ W = [y*(dw) (by cubical Stokes')
3mq q
= [dw (again by definition).
Y

Héving defined [w for w = A%(M) and generators o = Sq(M), we

o
extend this to a map

v+

AY(M)xS (M) > R, (w,0) » [w
a g

which is R-linear in both w and o separately. Clearly, this

integration is natural in M, in the sense that

[ w=[f ().
f,(o) o]

Because of (the simplicial form of) Stokes' theorem the res-

triction of the integral to
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Fq(M)XZq(H)Vi R ,

sends exact forms as well as boundaries to 0, and thus we

may pass to quotients to obtain an R-linear map
~ 1 *
ntony = : - :
(M) lhl(hi,R) llo"”{(lhl(h1‘k) , R)

[/A)] — ({0] — (f)m ).

To formulate De Rham's theorem, let

* . . .
R = {M] lf‘(M) £ lhl(hl;R) is an isomorphism for every q}.
[f we assume as in scction 2 that R is Archimedean, each A
is compact and indecomposable, and every finite cover of A(l
has an open refinement, then we obtain the following synthet-

ic version of De Rham's theorem.

THEOREM. The cfass R has the followding closure prop-
enties:

(1) R contadins R" fon each n » 0 (and also inginitesimal

- B Aetel)

(2) Let {U,V} be an 6tale coven of M having a partition of
unity subondinated to (t. 14 U, V, and UNV belfong to R
then s0 does M.

(3) 14 M = llawxéé a disfoint union indexed by a decidable
set {a}, and each Ma betongs to R, then so does M.

(4) 1§ X <4 a netrnact of an object M in R, then X & R.

proof. (1) follows from the two Poincaré lemmas, for

De Rham cohomology and singular homology, (3) follows from

the two disjoint union lemmas. (4) is almost trivial: Let

spaces such as D, D

X %% M be given such that ri = idy, and consider the diagram
H4(r)

HA(M) ————= H1(X)
HA(1) 4
1

Iy Iy| 9
Hy (1) I

et et ATV I . *
H (M;R)*_______jr__, H, OGR)
4 Hy (1)

245



*
An inverse J:Hq(M;R) - Hq(X) is given by the composite
Hq(r)oIMqu(i)ﬂ since both squares commute and by functor-
iality
*
HY(1)oHY(r) = id, H_(i)*eH (r) = id.
q q

(2) is only slightly more involved: it follows from the 5-
lemma applied to the diagram obtained from the long Mayer-

Vietoris sequence for De Rham cohomology, and its dual for

singular homology:

*
o entv) » Hiuav) L oy - v Wy en®™ vy - 1 un vy
* * * * * * *
Lo (D o H (V)" 1 (UV) (S—*llqﬂ(l\f) » Ho 0T W) > H 00y

. . . N L
Indeed, this diagram is commutative : the only nontrivial
. . : . . *
square 1s the one involving the Bockstein homomorphisms d

and 6*, and for this case we have the following.

LEMMA. Let 0 » A £ B % C > 0 be an exact sequence 0§
compexes ... »AY $ AL ete., and Let 0> Cc 8 B F A0
be an exact sequence of complexes ...+Aq*1 3 Aq+... wpbet

¢2A:Aq > A;, ¢gB’ ¢gc be R-fLinean pairnings such that both

A4 _f4, pa

q q e
“)'¢AA1 . l¢33 , and simifarly for ¢pp and bce

a
A* .‘g_, B*
q q
and
g TRV 1a
q y:
) %(\{Al MA , and similarty for ¢y and o »
*

a5 *
Ay = At

commute, then the diagram.

# Provided that the dual of the Long Mayer-Vietoris sequence is exact.
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3 q +1
*
* 4 *
H () —— oy ()

also commutes, whene 8% s the duat 04 5"
Proof. RCLlll the definition of the Bockstein maps
d*:nhc) » 1% (a) and s,: e (A » 1 (0): given [c] e HY(©),
we find b = Bq a e A9 L such that f(a) = db and g(b) = ¢
and put d*[c] = [a], while given [a] = Hq+](A) we find
b e Bq+l and ¢ « C( such that a(b) = a and 3b = g(c), and
put S, fa] = [c].

Now we compute (in the computation, we only use com-
mutativity of 2 for B, B, but the others are used to define
3 ﬁhcxnnupt) let [c] e HY(C), with a and b as above, and
[g] e 4 (A) with b and ¢ as above. Then

34 (@ e ([a])

NX,:](H)(H(Q))]

= (035" (F(a)) ()] (by 1)
= (o33! (ab) ()]

= [oP5(b) (3D) ] (by 2)
= [odp(®) (BO)]

= [¢dc(gb) (9)] (by 1)

= [odc(IeD) (84[aD)].

§4. De Rham's theorem with parameters and the comparison

theorems.

In this section we obtain a version of De Rham's theorem
with parameters, simply by interpreting the result of section
3 in the topos G introduced by Dubuc (1981) as a model for SDG.

We recall (cf. Reyes (1982), Moerdijk & Reyes (1983))
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that we have a diagram

P TS S
Mc—— G BN LA Sets,

<«

where M is the category of manifolds (with a countable basis,
i.e. embeddable into some Rn), and G 1is Dubuc's topos of
sheaves over the site G of finitely generated germ-determined
Cm-rings. The embedding s factors through G, is full and faith-
ful, and preserves transversal pullbacks as well as open covers;
I is the global sections functor, A the constant functor, and

B is the right adjoint of T,

A — T — B.

G is a model for SDG; for example, the Koch-Lawvere axiom
is valid (Koch (1981)), and so is the integration axiom (Que §
Reyes (1982)).

As promised in section 1, we will begin by showing that
our notion of form does not differ from the usual one when-

ever the two make sense. Indeed,

PROPOSITION. For any manifold M= M, T maps a morphism
Asn) 29 (s()) in 6 to the map AAM) S A9t T (M), whene
the finst denotes the interpretation of the synthetic defini-
tion of form and externlorn differentiation Lin G, while the
second denotes the usual vector space of forms and extendion
differnentiation map from classical differential geometrny.
Moreoven, if M > N in M, then simifanly T maps s(f) :
AY(sN) » A9(sM) in G to the wsual pullback map £ :AA(N) > A%QM).

Proof. The global sections of A9(sM) are the maps
s(M)DY 5 R in G such that in G it holds that they are homo-
geneous and alternating. But s(MDT is just the q-th iterate
of the tangent bundle, s(M)Dq = s(Tq(M)), while R = s(R), so
these are the maps Tq(M) + R in M which are homogeneous and
alternating in G. Classically, on the other hand, ATM) is
defined as the set of maps T(M)XM...XMT(M) + R (q-fold fi-
bered product) all of whose fibers Tx(M)X...XTx(M) + R are
alternating and R-linear in each variable separately. Thus,
to show F(Aq(s(M))) = Aq(M) it suffices to prove synthetically
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(hence in G) that alternating homogeneous maps MDY 5 R are
in 1-1 correspondence with alternating maps MDXM...XMMD + R
which are (pointwise) R-linear in each coordinate separately
(where M is a manifold, so the fibers (MD)x = TX(M) have a
vector space structure). In fact by local parametrization it
suffices to consider the case M = Rn, and for ease of nota-
tion we will take q = 2. Suppose given a map (Rn)D2 ¢ R
which is homogeneous and alternating. By the Kock-Lawvere

- Z n . 3
axiom, each f:D” » R is given as

f(x,y) = a+x-b+y-c+xy-d

for unique vectors a,b,c,d R". To show that w is determined
by its restriction to (Rn)an(Rn)D (consisting of such f
with d = 0) we show that w(f) does not depend on d. Indeed,
writing w, for the restriction of w to the fiber over a,

ma(b,g,g)_for w(f), we get for all b,c,d e 5

(nq(b,g,g) = -uh‘(g,b,g) (alternating)

and hence

mg((_),(‘),a_l) =0

Moreover, for fixed ¢ and b respectively, ma(b,~,~) and

wa(—,g,v) are R-linear maps (R“)2 + R (R-linearity follows
from homogeneity, cf. Kock (1981), p.51), so

o
o
=%

)

)+w§(Q’Q"_i)

wg(byg)g)‘wg(brgyg) w

T

(
(
=0+

|

€
o
e
o

e

4 ’

o
o

The fact that T preserves exterior differentiation is now
immediate from the fact that both I'(d) and the 'classical'
d satisfy Stokes' theorem (since T trivially preserves the

boundary operator 3).
The case of £* is obvious. A

Thus, the classical representation theorem that every
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form on M is locally of the form Zf(;)dxi1A...Adxin holds in
G for all objects of the form s(M). (In fact this can also
be showndirectly by a synthetic argument).

To pave the way for some results to be formulated in
section 5, we remark here that a similar analysis yields
that if X is a locally closed subspace of some RrR", regarded as
an object of G (cf. Moerdijk § Reyes (1983)), the sections
of the sheaf Aq(s(M)) over X correspond to the usual q-forms
on M which are smoothly varying in X, i.e. gq-forms on XxM
which are locally of the form
(where f is smooth), while the X-component of d, dxﬂﬂ(ﬂn(x)
> Aq+1(sM)(X) comes from pointwise (for points of X) apply-
ing the usual d:Aq(M) > Aq+](M).

In order to interpret the result of section 3 in G, let

us check that the assumptions made there hold in G:

LEMMA 1. The f§ofllowing hotd <in G
1) R 48 Arnchimedean
2) each Bq 44 compact
3) 8 = AUB =8 = Int (A) UInt(B).

Proof. (1) was proved in Moerdijk § Reyes (1983)).(2)
and (3) were also proved there, but for the case with Aq re-
placed by I = [0,1] « R. The same proofs, however, apply to
any object of the form s(M) (M compact for (2) ), in partic-
ular to Aq. A

LEMMA 2. 1) If in M, U= M is open, then in G the 4in-
clusion s(U) » s(M) s étale.
2) 14 {py,py} 44 a partition of unity subondinate to an open
cover {U,V} of M in M, then the same holds in G gor {s(py),s (py)]
with nespect to the étafe coven {s(U),s(V)} of s(M).
3) For every M 4in M, s > s(mDY (s an epimonphism in G.

Proof: easy and omitted. A
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THEOREM. (De Rham's theorem 'with parameters'). For any

M e M, the canonical map

I

HA(sM) L, Hq(sM;R)*

[0] = (Y] [ w
Y
L5 an Lsomorphism in G.

Proof. We have to show that s(M) « R, where R is as in
the formulation of De Rham's theorem given in section 3.

Let 0 = {Ue« M open | s(U) e R}. M has a basis of sets
diffeomorphic to some Rk, hence 0 contains a basis for M by
1) of De Rham's theorem (section 3). Also by the same theo-
rem, 0 is closed under finite unions and disjoint countable
unions (since in G, the natural number object has decidable
equality). But then 0 contains all the open subsets of M,
and in particular M itself, for if U is any open subset of
M, we may write U = nBov“ with each V| relatively compact.
Now construct by induction an open cover {W“) of U such that
cach Wn is a finite union of relatively compact basic open

sets (sets diffeomorphic to some Rk), hence Wn e (0, such that

B k k+1_ k+1
Vk = | Wn < 9 Wn < Q W
n=o n=o =0
and WoanW =¢ for each k < n. Then U = U W == Uddwn u
U W 0. & no

n
n even

COROLLARY. (Classical De Rham) For any manifold M e M,

the canonical map
*
HY(M) » Hq(M;]R) = Homp (H, (M;R) ,R)
[w] > ([¥] = [w)
Y

is an Lsomprphism.
Proof. We have already observed that the global sections
functor T 'preserves' the notions of form and exterior de-

rivative (cf. the proposition above), and also, trivially,

# See note at the end of the paper. . e



I' preserves the notion of gq-simplex and boundary of such.
Thus by exactness of T (I' has both adjoints) T also preserves
HA(M) and Hq(M;R)*, ice. T(HI(sM) = HI(M), T(Homp(ll, (MR),R) =
HomR(Hq(M;R),RJ. So the corollary follows by applying I' to
the preceding theorem. A

A similar argument allows us to conclude

THEOREM. (First Comparison) Fox any M e M and any set
X, Hq(M;R) = FreqR(X) 66 Hq(s(M) = FreeR(AX) in G.
Proof. T preserves free module, so < follows by ap-

plying ' to the exact sequence
0 - Zq(sM) + Bq(sM) - FreeR(AX) + 0.

For =, we need two lemmas:

LEMMA 1. 1§ F, $ F, 44 a homomonphism Lin G of free R-
modules with constant bases, then Im(a), Ker(a) and Cok(a)
are also free with constant bases.

LEMMA 2. 14§ F (4 a free module in G with constant ba-
544, then eveny epimorphism M + F of R-modules in G splits.

As for the proof of lemma 2, let F = FreeR(AX). By ap-
plying T we obtain a split diagram of vector spaces over R

in Sets,
I'(a
r (M) FregR(X).
S

But we have canonical bijections

FregR(X) Ji»F(M) in MOQR(Sets)

X ii~F(M) in Sets

AX 2+ M in G

FreeR(AX)-—+ M in ModR(G)
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and clearly aes = id. The proof of lemma 1 is similar.

To complete the proof of the theorem, we now apply an
induction argument on open subsets of M, just as in the proof
of De Rham's theorem with parameters on p.251 above, using the
long Mayer-Vietoris sequence and the coproduct lemma from
section 2, with A(N) as the index set. For example, as the
induction step for finite unions we need to conclude from

the Mayer-Vietoris sequence:
N - e =
> H UAV) > H (U 8U (V) > 1 () > Ho (UAV) > Ho (D) 8 U (V).

that Hq(M) is free with constant basis if H,(U), H.(V) and
H,(UNV) are. But more generally, if

+ A F, » Fyoai..

- 3 4

1 Z

1s an exact sequence of R-modules with the F's being free on
a constant basis, then so is A: just apply lemmas 1 and 2 to
the diagram

F

1 Fy

> FZ »/A\» ]73 >
Fy  Fy

Observe that, as a consequence of the classical De

*
Rham theorem, HY(M) is always of the form (Freep (X)) = RrX.

COROLLARY. (Second Comparison Theorem) For any manifold
Me M and any set X, HI(M) = RX ig6 nd(sm)) = X

Proof. Just notice that (FreeR(AX))* = R X, and combine
the first comparison theorem with the version of De Rham's

in G.

theorem proved on p.251. A
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§5. Applications.

On hearing the expression 'De Rham's theorem with pa-
rameters' the classically minded reader probably has in mind
something quite different from our theorem of section 4. Pre-
sumably, he is thinking of construing the De Rham cohomology
groups, as well as the (duals of the) singular homology
groups, as sheaves of smooth modules over the space of param-
eters, and then asserting that these sheaves are canonically
isomorphic. In this section, we derive such a theorem from
the main result of section 4. For unexplained notations, the
reader is referred to Godement (1958).

Let the manifold X & M be our space of parameters, and
let R, be the sheaf on X of smooth real-valued functions,
i.e. R (U) = Cc”(U,R) for each open U = X, with obvious re-
strictions. Starting from this ringed space (X,R_ ), we shall
construct, for each M= M, several R_-Modules on X.

First of all, there is the sheaf_Aq(M) on X of (smooth)

q-forms on M depending (smoothly) on parameters from X:

Aq(M)(U) = the set of q-forms on UxM which locally areof

the form ) fi]_._iq(u,m)dmiIA...Admiq
1y<...<i
(with all the functions fi]...iq smooth). Clearly, Aq(M) is
indeed a sheaf on X, with obvious restrictions. Furthermore,
exterior differentiation (with respect to the m-variables

only) defines natural transformations
da+] +1 1 _ +1
RV ARV AR RE - i

for each q, thus giving rise to a sheaf complex.
We now wish to form the sheaf cohomology of this sheaf

complex~4°(M). So let us define, for each open U < X,

FA(M) (U) = Ker(ad'h

EY(M) (U) = Im(dp)
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HA) () = FM) (u) 7ES (M) (U).

Fortunately, to define the sheaf cohomology we do not have to

pass to the associated sheaves of E or H, since

PROPOSITION. FA(M), EV(M), and HY(M) are sheaves on
X, and carrny a natural R,-Module structure.

Proof._Aq(M) is a sheaf for each q, and it has an ob-
vious R -Module structure. This structure is inherited by
Fq(M), Eq(M) and Hq(M), so we only need to show that these
are sheaves. For Fq(M), this is obvious from the fact that
Aq(M) is a sheaf.

And EY is a sheaf, essentially because a form which
is locally exact is globally so by the existence of parti-
tions of unity. More explicitly, if {Ua}a is an open cover
of U and we arec given a compatible family {mu},

W, a_Aq(M)(Ua), such that each Wy is of the form di, for
some A e AQ_](H)(UQ), then if {pa} is a partition of unity

subordinate to {Ua}’ we may put
w =7 0w e AW
ata o -

-1
P N e ALYV )
and it trivially follows that d\ = w.

Finally, to show that Hq(M) is a sheaf, choose a com-
patible family [wa]]z Hq(M)(Ua) for a cover {U } of U, i.e.
for some xaB = v4q (M) (Uy N UB)

dkas.

Oo|Uy N Ug ~ “BlUgN Ug ™
Again take a partition of unity {pa} as above, and let
w =Y p cw We complete the proof by showing that for each
- a o o _
B, q
[w]IUB = [wB] in H (M) (Ug)

Indeed, since E1(M) has been shown to be a sheaf, it sufficies

= i € each element of
to check that qquan Ug uﬁanﬂ Ug is exact on
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the cover {U NU,} of U,. But
a B a
“oug N Uy “Bu, NUg T 14Pq° “alU, N Ug - LgPa’ “8lugn Ug
B Z(:L"m'(‘*’mlumrl Ug “BlUg N Ug)

N Zapadxas

) aPoltap: 4
We now define the singular homology R_-Modules, start-
ing from the sheaf Sq(M) of (smooth) simplicial q-chains
which vary smoothly along the parameterspace X; Sq(M) is de*
fined to be the associated sheaf of the presheaf which as-
signs to an open U < X the free R (U)-module generated by
the C,-maps UXAq + M. Thus, elements of Sq(M) locally look

like formal expressions of the form
n
iZ]ai(u)oi(u,t)

with both ay :U > R and o UXAq + M smooth.

Observe that since every (open) subspace of M is para-
compact, the process of passing from the given presheaf
(which is separated) to its associated sheaf coincides with
the process of closing off under partitions of unity. Thus,
for example, if {U,} covers U and for each o we are given
formal expressions 2 aq(u)OQ(u t) as elements of the pre-
sheaf over Uy, then é (M) (U) contains an element which we

may denote by
Ra

Ta B ng P17, (ul¥e; 0,63

for a partition of unity {p,} subordinated to {U,}.

At the presheaf level there is an obvious natural
transformation induced by composition with the boundary
chain a:Aq_1 -+ Aq, and this yields a sheaf complex

g+
»SqH(M) _ﬁJ.sq(M) Sq, Sq(M)*--- A {(aq)U}U
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To define the singular homology sheaves, we define presheaves
Zn 1 (M)iyniB: 4 (M Y 4
q M qM) and Hq (M) by

Zq(M)(U) Ker(aq)U

1}

Bq(M)(U) Im(3

q+1)U

I

Hqa M) (V) Zq(M)(U)/Bq(M)(U)-

By the remark on closure under partitions of unity that we
just made, we can almost literally copy the proof of the

preceding propositions to show that

PROPOSITION. Zq(M), 8q(M) and Hq(M) are sheaves on X,
and carny a natural Ry-Module structure.

Now we are ready to formulate the more conventional
form of De Rham's theorem hinted at in the beginning of this

section:

THEOREM. (De Rham's theorem with parameters) The canon

{cal Ry-Linean map
whomy L, Hq(M)*

0f R,-Modules on the ninged space (X,R,) given by the compo-
nents

LA (V) > H 007 (V), Tyl ([¥]) - £w

{5 an Lisomorphism of sheaves. (Here (—)* denotes the dual in
the category of R, -modules. So Hq(M)*(U) is the set of natural
transformations from Hq(M)lU to RWIU)‘

Proof. Restrict everything in the version of De Rham
with parameters proved in section 4 for the topos of sheaves
on the site € to the subcategory of G consisting of open sub-
spaces of X, and read off the different notions involved. A

COROLLARY. Let w be a smooth X-form on M, L.e.
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w g_lq(M)(X). 1§ forn each parametern value x = X, the form
w(x,-) = Aq(M) L8 exack, then thene is an X-f§orm
o e AT (M (X)) such that w = da.

Proof. The previous theorem tells us that

0+ Y » FIM) ~ Hq(M)*

is exact in Sh(X). Since Jw = 0 for all ye Z (M)(X), w is
locally in Eq(M), i.e. w e Eq(M)(X) since th1s is a sheaf. A

Recently, this corollary was independently proved in
Glass (1983). Both Glass and I we were unaware of the exis-
tence of an earlier proof using the method of carapaces,
which was pointed out to us by W. van Est (cf. van Est (1958)).

As another corollary, we derive that the De Rham coho-
mology Ry,-modules are vectorbundles, provided we ensure that

their dimension is finite:

COROLLARY. Let T +~ M be a netract of a manifold M e M
0f finite homology type (L.e. (M) (s finite dimensional
gon each q > 0. Then for each X e M, the R,-Module Hq(T) ==
Sh(X) 4s locally free, {L.e. thene (5 an open covern {Uy}l of
X such that for each o there {5 an Ra |y, - tinear Lso0morphism
0f sheaves

¢a:Hq(T)|Ua ;;-Rwaan’ some ny, e N.

Proof. Hq(T) is a retract of Hq(M), which is free and
of finite type, by the comparison theorems. Since R_ is local,
the result now follows from Swan's theorem (see for example
Reyes (1978) ). A

§6. Some remarks on other cohomologies.

Now that we have established the validity of De Rham's
theorem for the topos G (section 4) and (consequently) for

smooth R_-Modules ever a space of parameters (section 5), it
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is natural to ask whether De Rham's theorem holds in G for
other cohomologies. We will briefly consider two examples of
this question: the case of Cech cohomology, and the case of
singular cohomology.

We quickly recall the classical version of De Rham's
theorem for Cech cohomology: Let M « M be a manifold, and
let U = {U,} be a good cover of M, that is, an open cover
such that all monempty finite intersections Uaon coe N Ugy
are diffeomorphic to some R". Assume that the indexset {o}
is linearly ordered. The Cech complex (with coefficients in

R) is the complex
cCur) dclum ¢ ury ... ,

n < N .0
where C EH,R) is the vector space a0<IT;an F* (Ugg. . .apsR)
over R U’(Uao...an,m) denotes the vector space of locally
constant functions “aoﬂ <% N Uu“ + R), and the boundary
operator G:Cn(U,R) > Cn+](u,R) is defined as follows: if
n

f = {f“o---“n} « C (u,R), then

n+1

i A
(68 ag. . capet * iz (-1 " foo...0i-..an+]

O

The cohomology of this complex is called the Cech cohomology
of the good cover U, and is denoted by H® (U,R).
De Rham's theorem for Cech-cohomology says that in that

situation there is a canonical isomorphism
H* (M) =» H'(U,R). (*)

Consequently, H (U,R) does not depend on the good cover U.
Another immediate corollary is that since compact manifolds
have finite good covers, the De Rham cohomology of such is
finite dimensional. The proof of the existence of the iso-
morphism (*) given by A. Weil (cf. Weil (1952)) is completely
constructive and explicit, and hence is valid in the synthe-
tic context: (cf. Appendix 1). Consequently, since the embedding
s:M »G preserves the ingredients of Weil's proof (notably goof open
covers, and partitions of unity; preservation of the latter
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is proved as proposition 5.9 of Moerdijk § Reyes (1983)), we

obtain the analogs of our theorems from sections 4 and 5:
THEOREM. For any M e M and any good cover U of M, the
canonical map

HY(sM) » HY(s(u),R)

{5 an LAomorphism in the Zopos G. A

COROLLARY. (De Rham's theorem with parameters, for
Cech cohomology). Let U and M be as above, and Let X € M be
a space of smooth parametens. Then the canonical homomon-

phism of R -Modules
HAM) — HYU(U,R))

oven the ninged space (X,R,) <4 an {somorphism. A

Here Hq(u,Rm) is the cohomology of the complex Cq(UJgJ
vf sheaveson X, cq(u,R ) being the sheafproductaogir<aq
Fo(Uao__.aq,]Rw) of the Ra-Modules FO(Uy .. .q. R ), defined
by setting for open W <« X:

.G.q

FO(U%,_‘aq,R,,,) (W) = smooth functions £(x,u):Wly,. . .aq * R

which locally do not depend on u

(i.e. there are covers {Wg} of W and {Un} of Uao...aq such
that each f(x,u) IWEXU°° does not depend on u).

Notice that if U is finite, Hq(U,Rw) is a vector bun-
dle, thus giving us the last corollary of the previous sec-

tion.

Turning to singular cohomology, we have to admit that
we do not know whether De Rham's theorem holds synthetically
(or in G), at least, when we interpret singular cohomology

as the cohomology of the complex
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*
9
g +Ime(Sq(M),R) —_— HomR(Sq+1(M),R)+.

which is the dual of the complex ... +SQ+1(M) > Sq(M)+ o vl OF
section 2. In this case, some form of the axiom of choice
seems to be needed to establish the result. The problem here
is that the dual of the short exact sequence

{u,v}

q M)=~0

0 -~ Sq(UﬂV) > Sq(U) OSq(V) + S

of section 2, which is

A
0 » M, pUlacpVia , pUNV)Aa | o

A
is not necessarily exact: an arbitrary function (UN V) R R,
cannot in general be extended to a function U2 +VAd 5 R, so

the sequence is not epic on the right.

A way of circumventing this problem in the topos G is
to replace the sheaf s(M)Aq e G by the constant sheaf A(MAq)
(recall that A:Sets » G is the constant functor). Thus, let
SA,q(SM) be the free R-module in G generated by A(MAq).

SA q(sM) has a constant basis, so (from lemmas 1,2 of sectior

4) we get a split exact sequence in G,

< {u,v} R
0~ SA’q(s(Un V)) » SA,q(SU)@SA,q(SV) + SA,q (sM) - 0
and therefore its dual in G,

0~ SX?AV}(SM)* = (SA’q(sU)GBSA’q(sV))* +> 5y (s )  +0

is exact as well. Consequently, if we let Hg(sM) denote the

cohomology of the complex
a*
..»SA’q(SM) —_— SA,q+1(SM)*...
we obtain a long Mayer-Vietoris sequence.

LEMMA. Let M = UUV 4in M as before. Then in G therne 4is

a Long exact sequence

; +H‘Al*‘(sm +H(sh) +HIGsW) o H] (sv) ~ HY(sunv)) » ...
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Proof. As before we need to show that the restriction
to S{UqV}(sM) instead of S (sM) in the complex still gives
the same cohomology. For thls we only need to observe that
the proof for singular homology by barycentric subdivision
dualizes, since if K is a homotopy between chain maps, then
trivially so is its dual. (Recall that if f,g:A - B are chain
maps, say with Al S g Aq+1, a homotopy K:f = g is a sequence
of maps it K4 25 B9 such that £9-g9 = k44 + ak?” Lk

Now we obtain exactly as before,

THEOREM. Let Me M be a mandifold. Then the canondical

R-Linean map

HY (sM) — Hg(shi)
(0] — ([¥] = [uw)
.

is an Lsomorphim. A

The schizophrenic character of the isomorphism is ap-
parent: we integrate internal (variable, in G) forms w over
external (constant, from Sets) chains y. This was reflected
in the proof: the splitting in the lemma above comes from
Sets, and similarly the homotopy equivalence

{U v}(M) -+ SA q(M)* was brought into G by dualizing the
’

s A s
usual constant homotopy equivalence SiU’ } - SA q coming

b b

'from outside', from Sets.

Just as before we can restrict this isomorphism of
sheaves in G to the category Sh(X) for X = M, to obtain a
result with a more classical appearance, by defining a 'hi-
brid' cohomology sheaf Hg(M) on X carrying an R, -Module
structure. First, we define a sheaf SA,q(M) on X whose sec-
tions are locally of the form

n
iZ1ai(u)oi(t)
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where ai:U + R and o.l(t):UXAq > R are smooth maps. (Just as
in the definition of Sq(M) given in section 5, but now with
the additional requirement that oi(u,t) locally does not de-
pend on u). Alternatively SA,q(M) is the associated sheaf of
the presheaf

U free R_(U) module generated by Cm(A ,M) .

q

This gives a sheaf complex, of which we can take the dual
(in the category of R -Module over X)

* 1 &
S iy ‘4.5 \ >
> Sy g () A, qe 1)

As before, we then show that to obtain the cohomology of
this sheaf complex we may define sheaves (not just presheaves,
by a partition of unity argument) Zq(M), BY(M) and Hq(M) by
setting for open U < X

29M) (U) = Ker(3H)
A qQ’u

BA(M) (U) = Im(3 )
A q-1’u

"

ug(M)(U) z}(M)(U)/Bg(M)(U)

If we unravel the definitions, it turns out that we obtain a

result familiar in classical differential geometry (cf. van
*

Est (1958)): for elements 0 « S, q(M) (T), T an open sub-

space of X, we have

* {
T3 Sy q M in G

—

T -
SA,q(M).+ R in ModR(G)

AMBYy & RT in 6

q

MO F(RT) in Sets

MAq.» Co(T,R) in Sets

SA(M).» ¢”(T,R) in ModR(Sets) .
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That is, a T-element*of HomR(SA’q(M),R) e G, or equivalently
a section of SA,q(M) over T, is precisely an RT-valued sin-
gular cochain on M in the sense of van Est (1958). Further-
more, a T-element of Aq(M) € G is precisely a differential
T-form on M of degree q in van Est's sense, i.e. an element

of.Aq(M)(T). Thus we have:

COROLLARY. Let M M be a manifold, and X &« M be the
space of parametens. Then the canonical homomorphism

q q
HED) — HE ()

[w] = ([¥]+= Jw)
3

of R -Modules overn the ninged space (X,R_) <4 an Lsmorphism. A

And hence by taking the section over T of this iso-

morphism,

COROLLARY. (van Est (1958)) The integhation I {48 a ho-
momorphism of the complex Q of T-foams Lnto the complex % of
RT-vatued singulan co-chains on M. Furntheamone,

*
I :H(Q) + H(D)

i& an Lsomorphism. A

Note that, as van Est points out in his paper, we can
deduce the corollary of section 5,p. 237, form this simpler

result.
As a final remark, we note that we could have develop-

ed a 'continuous' singular homology of manifolds, completely
parallel to the 'smooth' singular homology of section 2,
Every manifold M lives in G not only as the smooth space

s(M) but also as the continuous space c(M),

c(M) (A) = Cts(YA,M).

Using the same arguments as for the earlier comparison

264



theorems, we may derive another comparison theorem.

THEOREM. For any manifold M e M and any set S, HqGAJU
& FregR(S) in Sets L4§4 Hq(M,R) o FregR(AS) in G (on the
righthand side, R denotes the Dedekind reals in G, i.e. the
objet c(R), Moerdijk & Reyes (1983) ). A

On applying p*, which preserves the singular homology
groups by the general arguments of Moerdijk & Reyes (1983) .

we obtain:

THEOREM. (De Rham's theorem in G, for continuous homo-
logy). For any manifold M e M, and any set S,

AS

BS¥it L ; *_ LAS
in G L4 Ilq(d\l,]{) =R in G, A

H(sM,R) = R

(Note that in the definition of H (cM,R), the notion of 'con-
tinuous simplex' Aq + ¢(M) does not occur. We take all sim-
plices, just as with Hq(s(M),R), and by definition of c(M)

these are automatically the continuous ones).

Reinterpreting this in Sh(X), X a manifold, we obtain
a result saying that the "De Rham cohomology smooth in X-
parameters' agrees with the "singular homology continuous in
X-parameters'. This is a version of De Rham's theorem 'in
parameters' which is closest to what seems to be De Rham's
original theorem, saying that in Sets (X is one point),

*
HA(M,R) = H;tS(M,R)

Having returned at our starting point, there is nothing left

to say.
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APPENDIX 1. Weil's version of De Rham's theorem.

Let M be a smooth space. A good cover of M is a cover
{U,}, such that all the finite nonempty intersections Uy N
s ot ﬂUan are isomorphic to some R™. Fix one such cover U and
assume that the index set {a} is linearly ordered (in the
synthetic/intuitionistic sense). What follows will be a syn-
thetic argument. Thus, intuitively, every object hasa smooth
structure and every function is smooth, so we do not need to
assume that M is a manifold. Neither does U necessarily have
to consist of ‘'open' subsets of M in some sense, but we do
need one assumption on U, namely that there is a partition
of unity subordinate to it (or to a refinement of U). In par-
ticular, we assume that U is pointfinite (not necessarily
neighbourhood finite, since we work synthetically) or at
least that U has a pointfinite refinement. Thus, if QﬁUa->V
are maps into some R-module V, and {pa} is a partition of
unity subordinate to U = {U,}, then Zapa-fa makes senses as
a function M » V.

The De Rham cohomology H (M) of M was defined in section
1, and the Cech cohomology H' (U,R) in section 6 (classically,
but it is obvious how to define the synthetic analogue).
Weil's idea for proving that H (U,R) = H (M) is to embed
both the De Rham complex {A"(M)} and the Cech complex c"(u,R)
into a bigger complex (denoted...+Ln - Ln+1+... below) and
show that both cohomologies are isomorphic to this bigger

third cohomology.

Let U4 . .aq. " Ugo M +- - N Vg, for each sequence a <...<a,
. Y = ol
of indices, and let 3; = 3;:Ug .. .oy ~ o POapy { il be the
inclusion . Then we have a diagram

S
q q L 2O q —_— q
A aoH A (Uy,) .yl A (Uyyaq) __,%<a]| [aZA (Uygaqap) «--
where the first map is the obvious restriction of forms, and
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. q >
61 % 0’0<H<°‘n A (Uao. . .U.n) °o<-

from pulling back a form along 82,

q 4 X34
TInn+1A (Uao...an+]) comes

*
n

= .29 ~ q
61 ai tA (Uao...ai...an+1) > A (Uao...an+1L
From this, we obtain a complex
q q § q 6 q
ALM) + EI A (U“o) I all&] A (Uuoal) " ao<1¥<a2A (U“oa1“2)""'

gl SiAl, q q
by defining § = & -%JI_(%A (Vg o) * o e e N (Vg - <o

as the alternating sum i (- )ié.. Thus, § maps a sequence
l:
w = {mao,_,un} of forms to the sequence 8w = {(&ﬂao.”an+ﬂ ,
where
n+1
(6w)a0...an+| i X (-1 s, (wao )'

1=

Indeed, precisely as in the case of the boundary operator

of the singular homology complex, S, (M) we can show that

62 = 0. So we could form its cohomology, but this is not of

much use, since

LEMMA. every sequence
§ q
0+ A%n + IT 29U, 3 ad Lo M Wagap) + -

{4 exack.
Proof. Let {p } be a partition of unity subordinate

to the open cover U and define Kn o< e <O, ]A (U an+1) -+
GO<IT.<anAp(UGo---UGn) by putting for w = {w“o'~-an+1}’

w o w
Kn( )ao...an g Da aao...an :

where w is interpreted according to the following
aao- . -an
convention: if Bo"'Bn is a sequence of indices (not neces-
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sarily increasing and possibly with repretitions, and o is
a permutation of {0,...,n} then wg . . g = sgn(o)-

(So By Ve = 0). Then an easy cal-

"“Bg(0)---Ba(n) Qs

culation shows that
6Kn(w) + Kn+1(6m) = w,

whence the lemma. A

Now consider the diagram

-

Td td td
0> a'on s JTH (u,) Hag% M (Ugaq) 2
o Jo Ja
) 02000 I JTR W) S ol A0 Wagay)
0 + BAGM) o CT(U,R)  pidecin C](U,R) £
0 0 0

By the lemma, all the rows except the first are exact, and
by the Poincaré lemma, so are all the columns except the

first (U is a good cover). Let us write

-0
a0<...<(),p p

U(p’q}p)0 430 has the structure of a 'double complex': we
have maps 6:KP»4 » kP*1,4 and d:kP°9 - kP>a*1 sych that

82 =0 = d2 and 8§d = dé. From such a double complex we can
construct an ordinary complex by summing up the codiagonals:
let

nee P,q

En = p+g=nK . n >0

where ® denotes the direct sum of R-modules. Then the £

form a complex with boundary operator
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p:LM L, Lnt!

defined as foll 02 P,q Psd ¢ ge i3 e
efined as follows: D $p+q=nK > ep+q=n+1K is determined

by its components I)p:l(p’q > 8 KP>49 (p=0,...,n) which

p,q=n+1
are given by

qu+ 1 { . Ln+ 1

b, = o+ (-1)Pd T ]
kP.a _8 _ yxptl,q

After a quick look it will be clear that D2 = 0.

Let us write HE(M) for the cohomology of this complex,

D

HE (M) = Ker(L" = v Yy w2

> L.

TIEOREM. HL(M) (5 (somonphic to both the De Rham coho-
mology H (M) and the Cech cohomoloay H'(u,R).

Proof. Using the exactness of the rows (except the bot
tom one) of the diagram (*) we will show that the maps

r:A"(M) & ET An(Ua ) induce isomorphisms H™ (M) % Hn(M). But
o) 0 L

the definition of the complex {L"™(M)} is symmetric in p and
q, so by 'reflecting (*) in the diagonal' a completely sim-
ilar argument will yield that the maps

)

R (¢]
i:cC"(u,R) & a0<IT<%1A oy . .y

induce isomorphisms H™(U,R) = “E(M)-
So to prove the first isomorphism, define a chainmap
r:A° (M) >~ L° by
n
SR I AR TN A S i
®o

: Sue, o,n
(r is indeed a chainmap, since the restriction of D to f ’
n+

d

is just 6+d, so D(r'w) = § (r"w)+dr(w) = {dwluao} =i w,

because Grn(w) = 0 by exactness of the rows).
Thus r induces a map r:Hn(M) -+ HE(M) at the level of
cohomology. We claim that at this level, T is an isomorphism.
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r is surjective: take # < L", say § = ] @ with

p+q=n P-4
ﬂp q « kP»9, such that DF = 0. We have to show that # dif-
’
fers b boundary DX £ tis ! th =0
ers by a y rom some @ p+§ nﬁp . wi Gp,q
for all p,q except p = 0, q = n. We do this in n steps,
using the induction step which reduces a ¢§ = L™ with ﬂp a 0
’

for p = k+1,...,n to a @' with ¢' =0 for p = k,...,n.
Indeed, since for § = I o '

p,q=n P,q’

Dg = 8 +(-1Pa

p+(§=n g TRl S
it follows that éﬂn a5 0 (in i UYLl g 0 = 0 (in
o,n+1, H u+1 A +1 +1
K ) and Gﬂu,v+1+(-l) d¢u+1,v =0 (in Ku Y for
u+v+1l = n). So if @p’q = 0 for p > k then 6¢k,n—k = 0. Hence

by exactness of the rows, #, _ , = Sy for some ¥ = gk-1,n-k

Let #' = ¢-D¥. Then ﬂb,q = 0 for p > k.

r is injective: Take w & Fn(M) such that r(w) = D@ for
some # = LM 1. As shown above, there is a ¥ = k01 0]
such that [#] = [y] in HE_1(M), so rw = D@ = Dy. But ¢ is a
sequence {y } of n-1-forms on U, such that W]y, = dy,, and
moreover 8y = 0 (since rw = DY), so by exactness of rows
there is a global form A with ¥, = Xan for each a, and we

conclude that dX = w, i.e. [w] = 0 in H*(M). A

APPENDIX 2. A classical proof of the homotopy
invariance of De Rham cohomology.

By 'translating' the synthetic argument given in sec-
tion 1, we give a purely classical proof of the homotopy in-
variance, which seems to be more direct than the proofs giv-

en in the standard texts.
Let M be a (smooth) manifold, and let Ap(M) denote the
(real) vector space of smooth p-forms on M. So an element

w < Ap(M) is a map
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T(M) Xy - - %y T (M) 4 R (p-fold fibered product)

satisfying the usual conditions. AO(M) is the set of smooth
maps M > R, and we put Ap(M) = the zero vector space, for
p < 0. Exterior differentiation gives a complex

apr-1
—

; P
AP T APy 4 APt Ty

th

and the p De Rham cohomology space of M is the vector

space

HP (M) = Ker(dP)/Im(aP™ 1)

of 'closed p-forms modulo exact p-forms'. We write H (M) for
the sequence {HP (M)} of vector spaces.

A smooth map M- N of manifolds induces a linear map
f = (f*)p:Ap(N) -+ Ap(M) (by composing with the obvious map

dfxy. . . yxdf
T(M) Xy . . Xy T(M) ————M——>T(N)>< X T(N)),

which commutes with exterior differentiation d. So we get a
map Hp(f):Hp(N) + Hp(M) for each p, i.e. a sequence of maps
H (f):H (N) » H.(M). The following well-known theorem, usual-
ly refered to as the homotopy invariance of De Rham cohomolo-
gy, or as the Poincaré lemma, says that H (f) only depends

on the homotopy class of f:

THEOREM. I§ f and g:M + N are homotopic maps, then
H (f) = H (g). It has an immediate consequence: <if M and N
ane homotopy equivalent, then H™ (M) = H'(N).

The theorem is proved by showing that if F:MxI + N is
a (smooth) homotopy form f = F  to g = F,, we can find for
every closed p form w on N a p-1-form A on M such that
dx = Fh (w) F (w). As usual, this immediately follows from
the ex1stence of a chain-homotopy K from F to FI’ i.e. a
sequence of linear maps Kp.Ap(N) - Ap (M) such that for all
p, all w =pP(N),
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F’:(w)-F; (w) = dP TkPyu+kP*1(aPu) )

Such a map K is defined as follows. For a p-form
w:TNxg... X\ TN + R on N, Ko = KPu will be a map TMx...qxTM>R
(p-1-fold fibered product). Now choose (x,v],...,vp_1) =

TMx ™, v. = Tx(M)’ and let

.o X
1

M* M

gx,v:I > TNXN...XNTN

be the map

gx,y () = (FX(t), (dF) (1), @F) (v;),.-.,(dFy), (v 1))

(Here FX:I » N is the map FX(t) = F(x,t)). Indeed, the right-
hand side is an element of TNx .. %N (p times): y = F*(t)
= N, and (de)t is a linear map Tt(I) > Ty(N), i.e.

R -+ Ty(N), which corresponds to a vector (de)t(1) = Ty(N);
also Ft:M + N defines a linear map (dFt)x:Tx(M) -+ Ty(N), so

(dFt)x(vi)e: Ty(N). Now put 1

Ko(x,v) = £ m(gx,y(t))dt.
For fixed x, Kw(x,-) is alternating and separately linear
in v, so Kw defines a p-1-form on N, and from the explicit
definition we have given it is clear that Kw is smooth, i.
e. kn<= AP T(M).
We will now verify that (1) holds. For notational con-
venience, we assume that p = 2. Let T:I2 + M be any 2-chain

on M, and write
.’[‘3

dew=wa=wa+wa-wa—me (2)

x T il L e b gE 4 r72

Aav
——

(where Ty (-, 00, T, = ©(1,-), Tin® a(=451)4 Ty =1(0,-)).
We now define a 3-chain p:I3 + M by

D(x1 » Xy ,X3) = FX] (T(XZ ,X3)) ’
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and compute édw in two ways. On the one hand, by definition

SR 1 - (3p 9p p
(ertlng E (t1’t2)t3)’ and Jg(p) - (S—t—](t) ’Wz’(t) )Wz—(t)))
considered as an element of Tp(t)(N)S)

111

{)dw =Oj({(j) [te dw(p(t), .]E(p))] dt dt,dty (3)

11 1
:({g [(tzyts)"’oj {11"dw)(g1’(t2,t3) ’J(tZ’ts) (t1))}dt] ]dtzdt3

11
L1 at g Bla) (el €00 ¢ o ()] dty2e

i}

[K(dw).
T

On the other hand, by Stokes theorem,

fdm=}'u)=fu)-fu)ffw—fw+fu)-fu) (4)
p 3p f ba & r t bo

(where 3p = (f-ba)+(%-r)+(t-bo), f refers to the restriction

of o to the front of the cube in the picture p.199, ba to the

back, ‘etc.). Now clearly,

w = = [F¥*w), and [w= [F (v). (5)
1 0
¢ For T ba T
We claim that also
Jw = [Ke, [fw = [Kuo, Jo = [Kuo, [w= [Ko . (6)
L T4  § T2 t T3 bo T

Note that from (2)-(6) we get that

fK(dw) f w = IF*(m)-F;(w)- wa g
T T 9T

ap

[}

or [(K(dw)+dKw) fF?(m) - F;(w); and since T is arbitrary,
FT(é)-F;(m) = de—éxm.So to complete the proof, we only need
to verify (6). We will do the first equality, the others

are, of course, analogous.
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g = "left part of ap":I2 > N is the 2-chain (s,t)k&

Fs(r(O,t)), so by definition

1) 9% 9L
Jo=If [(s,8) » w(Fs(x(0,8)), 35(s,t), 5g(s,t))]ds dt.
(o]

But by the chain rule,

(s,t):= (42) (g £3(0,1) = (dF) (o (ydT g y(0,1).

Put x = T(0,t), v = (dt) (g +1(0,1) = 3T(0,t) = (d14)(D);

then
1
Tf4x ({ [t Ko(t,(t), (dt4)t(1))]dt
1 1
= g [t~ g {s w(gx’v(s))}ds]dt.
So from the definition of g

dl.s
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E
W
J.P.
R
A

x.ys it is clear that [w = [A.
) [} T4
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NOTE (pag.251)

In G, the long exact Mayer-Vietoris sequence for homology
consists of free R-modules on constant bases, as can be shown
by induction (using lemmas 1 and 2 of page 252). Hence 1its
dual is also exact. I?deed, a sequence F1~* Fz—» Fq is exact
1f and only if 0— F1 + FZ—» F;-+ 0 1is exact, where F‘~H
F] s Fz--wF3 F3. But by %emma 1: of F], FZ’ F3 are free
on constant bases, so are F1 and F3. By Lemma 2, the exaet-
ness of the latter sequence is equivalent to FS =~ FZ ® Fq.
Obviously, it then follows that F; = F;* 0 F;*, so it suf-
fices to show that the epi-mono factorization is preserved
bu dualization, more precisely, that the dual of an epi is a
mono (which is clear), and that the dual of a mono is an epi.
So let FI—g FZ in G. Where Fi = FreeR(AXi). Then in Sets
there is a linear map X: FFZ-ﬂ+FFl, i.e. A: FreeR(Xz) —
FreeR(X1), such that Aelu = id, and this map can be lifted
to G, 1 e. there is an R-linear map F, LN F, with vy = id
(so F s F is epic). More generally, if F is a free R-mod-
ule in G, then an R-linear map ¢:TF;— 'M can be lifted u-
niquely to an R-linear map ¢:F— M with Té = ¢, as follows

immediately from A T.
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