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Resumen 
 

El patosistema modelo Colletotrichum higginsianum- Arabidopsis thaliana ha permitido 

avanzar en el entendimiento de las interacciones planta patógeno. Se ha establecido que 

durante la fase de infección biotrófica hay un conjunto de proteínas efectoras secretadas 

que le permiten al patógeno evadir el reconocimiento o modular las respuestas de 

defensa de la planta favoreciendo la infección. La expresión de los proteínas candidatas 

efectoras de C. higginsianum (ChECs) fue inducida por el hospedero y específica a 

particulares estados de infección. El objetivo de este estudio fue localizar y caracterizar 

la función de ChEC3, CHEC6, ChEC36 and CHEC89. En el caso de CHEC6 y CHEC36 

fueron secretadas de manera focalizada desde el poro de penetración del apresorio, 

sugeriendo una nueva función para esta estructura de penetración, la secreción 

localizada de proteínas efectoras. CHEC89 y CHEC3 se acumularon en estructuras 

formadas en la interface entre las hifas bitróficas y las células del hospedero, implicando 

a este tipo de hifas en la secreción de efectores. Adicionalmente se evidencio que 

CHEC3 y CHEC89 incrementaron el crecimiento de bacterias fitopatógenas.  

Se estableció que ChEC3, ChEC36, ChEC6 suprimieron la muerte celular causada por 

las proteínas NLP1 (Necrosis and Ethylene-inducing Peptide1-like proteins), sugiriendo 

que son capaces de intervenir en la inmunidad modulada por patrones moleculares 

asociados a patógenos (PTI). Además, estos efectores fueron capaces de bloquear la 

respuesta hipersensible causada por el reconocimiento de la proteína efectora AvrRps4 

de Pseudomonas syringae por el gen de resistencia RPS4 de Arabidopsis, sugiriendo 

que estas proteínas efectoras actúan en la supresión de la inmunidad elicitada por 

efectores (ETI). Es posible que estas proteínas interfieran con componentes corriente 

abajo en la vía de señalización comunes a las dos vías de defensa de las plantas. 

 

Palabras clave: Colletotrichum higginsianum, Proteínas efectoras 
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Abstract 
The model pathosystem Colletotrichum higginsianum - Arabidopsis thaliana has allowed 

advances in the understanding of plant pathogen interactions. It has been established 

that during the biotrophic phase of infection there are a set of secreted effector proteins 

that may allow the pathogen to evade host recognition or modulate host defense 

responses to favor the fungal infection. It was found that the expression of Colletotrichum 

higginsianum Effector Candidates (ChECs) was host-induced and specific to particular 

infection stages. The aim of this study was the localization and functional characterization 

of ChEC3, CHEC6, ChEC36 and CHEC89 . It was found that CHEC6 and CHEC36 were 

focally secreted from appressorial penetration pores, showing a new function for this 

fungal penetration structure, the local secretion of effector proteins. CHEC89 and CHEC3 

were accumulated in structures formed at the interface between biotrophic primary 

hyphae and living host cells, implicating these hyphae in effector delivery. In addition it 

was shown that CHEC3 and CHEC89 improved the growth of plant pathogenic bacteria. 

It was established that ChEC3, ChEC36, ChEC6 are able to suppress plant cell death 

caused by Necrosis and Ethylene-inducing Peptide1-like proteins, suggesting that they 

are able to interfere in Pathogen-associated molecular pattern triggered immunity (PTI). 

Moreover, these effectors suppressed the hypersensitive response caused by recognition 

of the AvrRps4 effector protein from Pseudomonas syringae by the RPS4 resistance 

protein from Arabidopsis, suggesting these effector proteins are involved in suppressing 

effector triggered immunity (ETI). It is possible these effectors interfere with downstream 

signaling pathway components that are common to both plant defense pathways. 

Key words: Colletotrichum higginsianum, effector proteins 
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1. Introduction 

1.1  Colletotrichum higginsianum  

 

Colletotrichum is a genus of Ascomycete fungi (class Sordariomycetes), which contains 

680 species (Crous et al., 2004). Members of the genus cause anthracnose leaf spot 

diseases, blights and post-harvest rots on numerous crop plants in both tropical and 

temperate regions, including cereals (e.g. maize, sorghum), cassava, yam, grain legumes 

(e.g. beans, cowpea), vegetables and fruits (Bailey and Jeger, 1992). Yield and economic 

losses can be very severe, for example C. graminicola causes annual losses on maize of 

approximately 1 billion dollars in the USA alone (Frey et al., 2011). According to the 

strategies used to obtain nutrients from their host, phytopathogenic fungi can be classified 

as biotrophs, necrotrophs or hemibiotrophs (Mendgen and Hahn, 2002). Biotrophic fungi 

keep their host plant alive to obtain nutrients, manipulating the host through molecular 

mechanisms that are still poorly understood. In contrast, necrotrophic fungi take nutrients 

from dead tissues, killing host cells immediately after infection and eventually 

decomposing the plant tissue (Van Kan, 2006). Most Colletotrichum species are classified 

as hemibiotrophic pathogens, combining both biotrophic and necrotrophic lifestyles. 

Initially, intracellular biotrophic hyphae are developed, which invaginate the plasma 

membrane of living host cells. Later the fungus switches to necrotrophic growth when 

secondary intercellular hyphae are produced which destroy the infected cells (O´Connell 

et al., 2000, O´Connell et al., 2004).  

 

C. higginsianum has a wide host range including members of the Brassicaceae such as 

Brassica, Raphanus and Arabidopsis (Narusaka et al., 2004; O'Connell et al., 2004). 

During the process of infection the conidia of C. higginsianum initially adhere to the plant 

surface, and germinate to produce a germ-tube. Surface cues such as hydrophobicity 
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induce the germ-tube to differentiate a specialized penetration structure called an 

appressorium. Mature appressoria have darkly melanized cell walls and generate high 

turgor pressure required for mechanical penetration of the plant cuticle/cell wall (Deising 

et al., 2000). Studies on M. oryzae appressoria have shown that the turgor pressure 

results from the accumulation of glycerol inside the melanized appressoria, generating 

turgor pressures as high as 8 MPa (Money and Howard, 1996). Colletotrichum 

appressoria also have a glycerol-dependent mechanism for turgor generation. C. 

graminicola appressoria produce a turgor pressure estimated in 17 μN, comparable to the 

force excerted by an eight-ton school bus on the palm of a human hand (Money, 1999, 

Bechinger et al., 1999). A needle-like infection peg emerges from a pore in the base of 

the appressorium and penetrates the plant cuticle and cell wall. After penetration 

(approximately 24 hours after inoculation), the fungus produces bulbous biotrophic 

hyphae inside the host epidermal cell, which invaginate the plasma membrane of the 

penetrated host cell. This initial biotrophic phase is confined to only one epidermal cell. 

Subsequently (approximately 48 hours after inoculation), the biotrophic hyphae produce 

narrower, filamentous secondary hyphae, which invade the surrounding epidermal and 

mesophyll cells. At this necrotrophic stage, all the infected cells, and many uninfected 

cells, are dead. Eventually the fungus completes its life-cycle by producing sporulating 

structures (acervuli) on the surface of the dead tissue (O´Connell et al., 2004).  

1.2 Arabidopsis thaliana 

 

Arabidopsis thaliana is a member of the Brassicaceae distributed in Asia, Europe, North 

America, Australia and Japan (Mitchell-Olds and Schmitt, 2006). It is a relatively small 

plant, with fast growth, high fertility and high seed production and a short generation time. 

Many well-characterized Arabidopsis mutants are available and it is easily genetically 

transformed. Microarrays are available for genome-wide gene expression profiling. It has 

also been considered a model plant in plant pathology because it is a host for several 

pathogens with different taxonomic origins and lifestyles. Obligate biotrophic pathogens, 

such as Hyaloperonospora parasitica, Albugo and Erisyphe, necrotrophic pathogens, 

such as Botrytis, Alternaria and Rhizoctonia, and hemibiotrophic pathogens, such as 

Phytophthora and Colletotrichum, have all been reported (Adam et al., 1999, Holub et al., 
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1995, Koch and Slusarenko 1990, Roetschi et al., 2001, Thomma et al., 1999, O´Connell 

et al., 2004). 

1.3 The Colletotrichum higginsianum – Arabidopsis 
interaction 

The infection of Arabidopsis thaliana by C. higginsianum was first described by O´Connell 

and collaborators (2004). C. higginsianum causes hemibiotrophic infection on Arabidopsis 

plants, which facilitates the study of both biotrophic and necrotrophic lifestyles. Through 

the evaluation of 37 Arabidopsis ecotypes, it was possible to detect a single dominant 

allele, called RCH-1, which confers resistance against anthracnose caused by C. 

higginsianum in ecotype Eil-0 (Narusaka et al., 2004, Birker et al., 2009). In addition, two 

resistance proteins with nucleotide binding site and leucine-rich repeats (NBS-LRR) 

encoded by RRS1 and RPS4 in tandem, confer resistance to C. higginsianum. 

Remarkably, these two genes also confer resistance to two bacterial pathogens; thus 

RRS1 confers resistance to a strain of Ralstonia solanacearum, while RPS4 confers 

resistance to Pseudomonas syringae pv. tomato carrying the avirulence gene AvrRps4 

(Narusaka et al., 2009).  

 

On the pathogen side, it is possible to stably transform C. higginsianum with high 

efficiency by T-DNA transfer mediated by Agrobacterium tumefaciens. This allows 

random insertional mutagenesis (Huser et al., 2009), targeted mutagenesis (Ushimaru et 

al., 2010) and expression of transgenes such as fluorescent proteins (O´Connell et al., 

2004). Also the fungal genome was recently sequenced and annotated (Broad Institute 

(http://www.broadinstitute.org/annotation/fungi/). It is a significant advantage that in this 

interaction both host and pathogen can be manipulated genetically and genome 

sequences are available.  

1.4 The Plant-Pathogen Arms Race 

Fossil records show that the adaptation of plants to life on land was facilitated by 

symbiotic fungal interactions, suggesting that coevolution of plants and microbes is very 

ancient (Gehrig et al., 1996). Jones and Dangl (2006) have proposed the so-called ‘zig-

zag’ model to describe the evolutionary arms race between plants and pathogens, which 
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will be discussed in detail below. This model explains how pathogens try to avoid 

recognition and activation of plant defenses, while plants try to advance in recognition and 

establish stronger defense responses. Plants are exposed to numerous pathogens, and 

have developed two major lines of recognition and immune responses, namely pathogen-

associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered 

immunity (ETI). 

1.4.1 PAMP-triggered immunity (PTI)  

Initially plants evolved the ability to detect highly conserved molecules present in all 

pathogens. These components are called pathogen-associated molecular patterns 

(PAMPs). PAMPs are recognizing by cell surface receptor proteins called pattern 

recognition receptors (PRRs). In addition, plants are able to recognize cuticular or plant 

cell wall fragments that are released during pathogen infection. Those molecules are 

called damage-associated molecular patterns (DAMPs).  

 

The classical example of a PAMP is the N-terminal domain of the bacterial flagellin 

protein called flg22 (Zipfel and Felix 2005, Gomez-Gomez and Boller, 2000). Other 

examples include lipopolysaccharide (LPS), a major constituent of the outer membrane in 

Gram-negative bacteria (Newman et al., 2007), and peptidoglycan (PGN), the most 

abundant compound in the cell wall of Gram-positive bacteria (Gust et al., 2007). In the 

case of oomycetes, the cellulose-binding elicitor lectin (CBEL) of Phytophthora parasitica 

var. nicotianae was shown to be triggering plant defense responses in Arabidopsis and 

tobacco (Gaulin et al., 2006). Very common PAMPs in fungi are the polysaccharide chitin 

present in the cell wall and ergosterol in the fungal membrane (Nurnberger et al., 2004, 

Boller and Felix et al., 2009). 

 

When PAMPs are perceived by PRRs, the first line of defense is activated, which is called 

PAMP-triggered immunity (PTI). PRRs can be classified as transmembrane receptor 

kinases (RLK) and transmembrane receptor-like proteins. FLS2 and EFR are two RLKs 

which recognize flagellin and EF-tu, a bacterial elongation factor, respectively. CERK1, is 

an RLK containing the lysine motif (LysM), that is necessary to perceive chitin 
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oligosaccharides in Arabidopsis. The extracellular domain of CERK1 mediates recognition 

on the cell surface but transduction of the signal to the cytoplasm is mediated by its 

serine/threonine kinase domain (Miya et al., 2007). The chitin elicitor-binding protein 

(CEBiP) is a plasma membrane glycoprotein with LysM motifs which functions as a cell 

surface receptor for the chitin elicitor in rice. In this case, CEBiP does not have any 

transmembrane domain, and it needs a co-receptor to interact with chitin, which is called 

OsCERK1 (Shimizu et al., 2010).  

 

After recognition of PAMPs, PTI responses include production of reactive oxygen species 

(ROS), transcriptional activation of pathogen-responsive genes, ethylene production, 

deposition of callose and activation of MAPK kinases (MAPK). MAPK kinases are 

involved in transducing signals from extracellular receptors into cellular responses in 

eukaryotes (Pitzschke et al., 2009). However, treatment of Arabidopsis cell cultures with 

different elicitors such as flagellin and EF-tu independently induces expression of very 

similar sets of genes (Zipfel et al., 2006). This suggests that PAMP recognition involves 

overlapping signalling pathways (Jones and Dangl, 2006). 

 

Necrotrophic and hemibiotrophic pathogens secrete toxins which favor virulence by 

provoking host cell death. Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) 

have been identified as toxins presents in oomycetes, bacteria and fungi (Pemberton and 

Salmond, 2004). All of them have a necrosis-inducing protein 1 (NPP1) domain, 

containing a common heptapeptide motif “GHRHDWE” (Fellbrich et al., 2002). These 

proteins are able to enhance virulence and microbial growth through disintegration of the 

plant plasma membrane and consequent cytolysis (Ottmann et al., 2009). These authors 

proposed that this cell disruption may release host-derived molecules that act as DAMPs. 

Alternatively plants perceive the physiological changes caused by NLPs to activate 

defense responses, for example the influx of Ca2+ and H+. Similar ion fluxes can be 

mimicked in plant cells by application of synthetic ionophores, which themselves were 

shown to trigger plant defense-associated responses in a non-receptor-mediated manner 

(Jabs et al., 1997). A protein homolog to Phytophthora sojae NIP (Qutob et al., 2002) was 

identified in C. higginsianum and is called ChNLP1 (Kleemann, 2010).  
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1.4.2 Effector-triggered susceptibility (ETS) 

Successful pathogens overcome the first line of plant defense by producing effector 

proteins that are able to suppress PTI. This is called effector-triggered susceptibility 

(Jones and Dangl, 2006). Effectors are defined by Kamoun (2006) as: “molecules that 

manipulate host cell structure and function, thereby facilitating infection (virulence factors 

or toxins) and/or triggering defense responses (avirulence factors or elicitors)”. Effector 

proteins are produced by bacterial, fungal and oomycete pathogens, but the bacterial 

effectors are the best-characterized. Gram-negative bacteria produce many effectors, 

which are secreted by the type III secretion system (TTSS), a molecular “syringe” that 

allows bacteria to deliver effectors inside the plant cell (Chisholm et al., 2006).  

 

Suppression of PAMP-triggered transcriptional responses has been demonstrated directly 

through the use of strains of pathogenic bacteria that are deficient in their TTSS, which is 

indispensable to inject effector proteins into the plant cytoplasm (Thilmony et al., 2006). 

Pseudomonas syringae secretes 20 to 30 effectors, several of which have been shown to 

suppress host immunity through various mechanisms. The bacterial effectors studied so 

far are mostly involved in three main processes: protein turnover and secretion, RNA 

homeostasis and phosphorylation pathways (Block et al., 2008). The P. syringae effectors 

AvrRpt2 and AvrRpm1 inhibit PAMP-signaling due to their interaction with RIN4, a 

negative regulator of PAMP signaling (Kim et al., 2005). The largest effector family found 

in Xanthomonas species are the TAL (transcription activator-like) effectors, which 

includes AvrBs3 (Boch and Bonas, 2010). These effectors contain a nuclear localization 

signal and a modular DNA-binding domain, which allows them to act as transcriptional 

activators in the plant nucleus. TAL effectors bind to the promoter sequences of particular 

plant target genes to activate their expression to enhance bacterial colonization, symptom 

development, or dissemination (Boch and Bonas, 2010).  

 

Other effectors allow pathogens to overcome physical barriers developed in the pathogen 

infection site. For example, P. syringae AvrPto suppresses formation of callose wall-

thickenings called papillae, and both AvrE and Hop PtoM also suppress callose 

deposition (DebRoy et al., 2004). XopJ from Xanthomonas campestris pv. vesicatoria  

suppresses callose deposition and affects plant protein secretion (Bartetzko et al., 2009), 
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suggesting that the host secretory pathway can be interfered by the pathogen. Another 

method used by bacteria to modify the host is through the modulation of plant signaling 

that regulates plant defense, namely salicylic acid (SA), jasmonic acid (JA) and ethylene. 

This is the case for coronatine, which is produced during Pseudomonas syringae 

infection. SA and JA are antagonistic plant defense signaling pathways, and the 

production of coronatine mimics JA, inducing suppression of SA-mediated host responses 

and thereby contributing to bacterial virulence (He et al., 2004, Reymond and Farmer, 

1998).  

Fungal pathogens such as Cladosporium, Magnaporthe and Ustilago can also modify 

host gene expression during infection, thereby inducing defense-related genes at lower 

levels, or delaying their transcription, while host genes related to cell death suppression 

are induced (Doehlemann et al., 2008, van Esse et al., 2009, Mosquera et al., 2009). The 

oomycete effector ATR13, from Hyaloperonospora parasitica, suppresses PAMP-induced 

callose deposition and ROS accumulation (Sohn et al, 2007). Cladosporium fulvum 

evades PTI by secreting an effector called Ecp6, which acts in the plant apoplast to 

capture chitin oligosaccharides released from the fungal cell wall that would otherwise 

activate PTI (de Jonge et al., 2010). 

1.4.3 Effector-triggered immunity (ETI) 

The plant’s counter-defense against pathogen effectors is based on the evolution of 

protein receptors called resistance (R) proteins that are able to detect effectors directly, or 

indirectly by recognizing the activity of effectors. Recognition by R proteins provokes plant 

defense responses with a higher strength and durability than PTI, and this is called 

effector-triggered immunity (ETI). The R protein receptors are usually intracellular proteins 

with nucleotide binding site-leucine rich repeat (NBS-LRR) domains, the latter providing 

recognition specificity (Martin et al., 2003). A hallmark of ETI is the localized programmed 

cell death of infected cells, called the hypersensitive response (HR). This is typically 

associated with an increase in cytosolic calcium, depolarization of the plasma membrane, 

nitric oxide production and MAPK cascade activation (Dangl and Jones, 2001). 

Antimicrobial molecules such as phytoalexins, chitinases and glucanases are produced 

by the surrounding tissue, ultimately leading to the restriction of pathogen growth. 
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ETI provides the molecular basis for the so-called ‘gene-for-gene’ resistance (Flor, 1942), 

leading to either compatible or incompatible plant-pathogen interactions. In gene-for-gene 

resistance, a plant R gene matches with an effector-encoding avirulence (Avr) gene in the 

pathogen. To evade ETI, pathogens continuously evolve to lose, modify or create new 

effectors. Thus, the mutation or absence of an Avr gene prevents recognition by the 

corresponding R gene, leading to disease (i.e. gain of virulence, loss of avirulence) in a 

previously incompatible interaction. In turn, the host plant is then under selection pressure 

to evolve new R gene genotypes that favor ETI. 

Evidence for the direct recognition of effectors is not frequent. However, direct interaction 

between AvrPita, an effector from the rice blast fungus Magnaporthe oryzae, and Pi-ta, an 

R protein from rice, has been proven by yeast two-hybrid and in vitro-binding assays (Jia 

et al, 2000). PopP2 from Ralstonia solanacearum is recognized by the RRS1 resistance 

protein in Arabidopsis (Deslandes et al., 2003), which also confers resistance to C. 

higginsianum (Narusaka et al., 2009). One example of R gene and effector gene 

coevolution due to their direct interaction is the R gene RPP13 from Arabidopsis and the 

ATR13 effector gene from Hyalonospora parasitica. There is high diversity in ATR13 

alleles and also in RRP13. For the latter, sequencing 24 Arabidopsis accessions showed 

that the RRP13 locus has high levels of polymorphism (Rose et al., 2004). In the case of 

indirect recognition, the ‘guard model’ has been described, where the resistance gene 

perceives a change produced in another host protein by the activity of the effector protein, 

thereby eliciting plant defenses (van der Hoorn and Kamoun, 2008). An example is the 

resistance protein Cf-2 from tomato, which is activated when Avr2 from C. fulvum binds to 

the tomato protease Rcr3 (Rooney et al., 2005). 

1.4.4 Effector delivery by filamentous pathogens 

Effector proteins produced by filamentous pathogens (oomycetes and true fungi) typically 

have an N-terminal signal peptide for secretion via the endoplasmic reticulum and Golgi 

(exocytosis). According to their localization during infection, effectors can be classified as 

apoplastic, which are secreted into plant extracellular space and interact with extracellular 

targets or surface receptors, and cytoplasmic effectors, which are secreted into the plant 

cytoplasm, involving translocation across the plant plasma membrane (Kamoun et al., 

2006).  
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Many biotrophic and hemibiotrophic oomycetes and true fungi share a similar infection 

process, inserting into living host cells a special structure to obtain nutrients, known as the 

haustorium. This structure invaginates the plant plasma membrane, producing a highly 

modified extrahaustorial membrane (Koh et al., 2005) and induces reorganization of the 

plant cytoskeleton and endomembrane system (Kobayashi et al., 1994, Heath, 1997). The 

haustorium provides a site for intimate interaction, including uptake of nutrients and water 

into the pathogen and delivery of effectors into the plant cell (Voegle and Mendgen, 2011; 

Catanzariti et al., 2006). 

 

Most fungal effectors are considered to act in the plant cytoplasm but in the majority of 

cases there is no experimental evidence to prove their translocation into plant cells, and 

often their intracellular localization has only been inferred from the cytoplasmic location of 

their corresponding host R proteins (Stergiopoulos and Wit, 2009). In a few cases, 

effector secretion into host cells has been proven. For example, in the case of RTP1, rust 

transferred protein 1 from Uromyces fabae, immunogold labeling was used to localize the 

effector in the extrahaustorial matrix and in the plant nucleus (Kemen et al., 2005). Using 

immunofluorescence, it was also possible to detect the presence of AvrM from M. lini 

inside flax cells during late infection stages (Rafiqui et al., 2010). 

 

The translocation of cytoplasmic effectors has also been proven or inferred for other 

pathogens which do not produce haustoria. For example, AVR-Pita from Magnaporthe 

oryzae is a secreted protein, which is recognized inside rice host cells by the resistance 

protein Pi-ta (Jia et al., 2000). In M. oryzae, effector secretion has been related to their 

accumulation in the biotrophic interfacial complex (BICs), which is a structure formed on 

the surface of intracellular biotrophic hyphae into which fluorescently labeled effectors 

appear to be locally secreted (Mosquera et al., 2009, Khang et al., 2010). During 

biotrophic infection of rice cells by M. oryzae, fungal genes encoding several secreted 

proteins, including effector candidates and known Avr proteins, are up-regulated, and 

these biotrophy-associated secreted (BAS) proteins show different localization patterns. 

For example, PWL2 and BAS1 proteins accumulate in BICs and are translocated into the 

rice cytoplasm (Mosquera et al., 2009, Khang et al., 2010). In contrast, BAS4 was 
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localized uniformly over the surface of the intracellular hyphae but remained in the plant 

apoplast and did not enter into the plant cytoplasm (Mosquera et al., 2009). 

 

Many oomycete effector proteins contain the conserved amino acid domain RxLR, located 

60 amino acids downstream from the signal peptide. This domain is required for effector 

translocation into host cells (Whisson et al., 2007, Morgan and Kamoun 2007). In the 

case of Phytophthora, another motif dEER located 5-21 amino acids further downstream 

from the RxLR, is also implicated in effector translocation. The RxLR motif is similar in 

sequence to the PEXEL motif found in Plasmodium falciparum, the human malaria parasit 

that is required for targeting effectors into host red blood cells (Bhattacharjee et al., 2006). 

The PEXEL motif was interchangeable with the RxLR motif from the P. infestans effector 

Avr3a (Grouffaud et al., 2008). Recent studies have shown controversial results, which 

explain a possible association to the AVR1b RxLR from P. sojae motif with phosphatidyl 

inositol phosphates (PIPs) mediating its entrance into the host plant. It was explained by 

RXLR binding to the PIPs located on the plant plasma membrane surface, favouring the 

effector endocytosis into the plant cells (Kale et al., 2010). However, Yaneoa et al., 2011, 

working with AVR3a found that it contains a conserved patch, which is necessary to 

binding PIPs rather than the RXLR domain, besides it mutations affecting PIP binding do 

not abolish AVR3a recognition by the resistance protein R3a. Then is still unclear which is 

the mechanism mediating oomycetes effector translocation.  

Cladosporium fulvum is a fungal pathogen that colonizes plant intercellular spaces, where 

it delivers many apoplastic effectors. They are typically rich in cysteine residues, which 

form disulfide bridges, thereby generating structural stability to protect against attack by 

the plant proteases present in the apoplast (Stergiopoulos and Wit, 2009). For the 

apoplastic effectors Avr4 and Avr9 it was demonstrated that disulfide bridges formed 

between cysteine residues provide protein stability and are required for effector activity 

(Van den Burg et al., 2003, Van den Hooven et al., 2001). Some apoplastic effectors are 

able to inhibit the activity of plant proteases, chitinases and glucanases. Thus, Avr2 from 

C. fulvum is able to bind and inactivate the tomato protease Rcr3 (Rooney et al., 2005). 

Similarly, GIP1 and GIP2 are secreted effector proteins of P. sojae that inhibit the 

soybean endo-β-1,3 glucanase EGaseA (Rose et al., 2002). 
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Few effectors have been reported for Colletotrichum species. CgDN3 from C. 

gloeosporioides was described as a biotrophy-expressed effector involved in the 

suppression of plant defenses. CgDN3 knock-out mutants elicited a localized host cell 

death resembling the hypersensitive response in Stylosanthes guianensis (Stephenson et 

al, 2000). In C. lindemuthianum and C. higginsianum, an effector protein called CIH1 has 

been identified which is expressed exclusively during the biotrophic phase of infection in 

bean and Arabidospsis, respectively. CIH1 may prevent plant recognition by chitin 

camouflage during biotrophic infection (Perfect et al., 1998, Takahara et al., 2009), similar 

to Cladosporium Ecp6 (de Jonge et al., 2010). 

 





 

 
 

2. Objectives 

C. higginsianum is an intracellular hemibiotrophic fungus that initially penetrates into, and 

grows inside, living host cells (biotrophy) before later switching to destructive necrotrophic 

growth, when it feeds on dead tissues. We assume that during early infection phases it 

secretes effector proteins that allow the fungus to evade defense responses, keep the 

host cell alive, and reorganize the plant cytoplasm to accommodate invasion by fungal 

hyphae. To identify effector proteins expressed before or during biotrophic invasion, 

stage-specific cDNA libraries were generated previously. These included appressoria 

formed in vitro, biotrophic hyphae purified from infected plants using fluorescence-

activated cell sorting, epidermal strips containing plant-penetrating appressoria and the 

late necrotrophic stage (Kleemann et al., 2008; Takahara et al., 2009; Kleemann et al., 

2012). The resulting ESTs were then screened for genes encoding soluble secreted 

proteins using bioinformatic prediction tools, based on the presence of an N-terminal 

signal peptide and absence of transmembrane domains or predicted sites for 

glycophosphatidylinositol (GPI)-mediated anchoring to the fungal membrane/cell wall. C. 

higginsianum effector candidates (ChECs) were defined as secreted proteins without 

sequence similarity to known proteins, or resembling putative effectors from other fungi. 

By analyzing the EST composition of the contigs, a set of 102 ChECs appeared to be 

preferentially expressed at stages that are relevant to the establishment of biotrophy 

(appressoria) or maintenance of biotrophy (biotropic hyphae). These candidates were 

previously identified in the O’Connell laboratory at Max Planck Institute for Plant Breeding 

Research (Kleemann et al., 2010).  

 

From this repertoire, four effectors were selected for further characterization in the 

present study. ChEC3 and ChEC36 were selected due to their similarity to putative 

effectors identified from other fungi, namely CgDN3 from C. gloeosporioides and SIX6 

from Fusarium oxysporum f.sp. lycopsersici, respectively (Stephenson et al, 2000; 

Chakrabarti et al., 2011). ChEC6 and ChEC89 were chosen due to their very high 
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expression level during plant infection (abundant ESTs from appressoria and biotrophic 

hyphae but not necrotrophic hyphae). To better understand the functions of these proteins 

in fungal pathogenicity, my aim was to localize them during infection and experimentally 

test their ability to promote pathogen virulence and suppress plant cell death. 

 

Specific objectives were as follows: 

 

 To profile the expression patterns of genes encoding ChEC3, ChEC6, ChEC36 

and ChEC89 during different stages of plant infection and in vitro. Are the genes only 

expressed during in-planta infection? Are they only induced at particular stages or 

expressed constitutively? 

 To determine the destination of effector proteins ChEC3, ChEC36 and ChEC89 

after secretion into infected A. thaliana plants. Do they stay in the plant apoplast or enter 

into the plant cytoplasm? Are they uniformly distributed at the plant-fungal interface? Are 

they associated with particular fungal cell types/infection structures? 

 To evaluate the capacity of ChEC3, ChEC6, ChEC36 and ChEC89 to enhance the 

virulence of bacterial pathogens and non-adapted fungal pathogens. This would provide 

indirect evidence that they suppress or evade plant immunity in some way. 

 To evaluate the capacity of ChEC3, ChEC6, ChEC36 and ChEC89 to suppress 

plant cell death. The ability to keep host cells alive is likely to be important for biotrophic 

pathogens, and in the biotrophic phase of hemibiotrophs such as C. higginsianum. 

 



 

 
 

3. Materials and Methods 

3.1 Localization of C. higginsianum effector candidates 
(ChECs)  

3.1.1 Plant and fungal material and growth conditions 

A. thaliana accessions Landsberg erecta (Ler-0) and Columbia (Col-0) which are 

susceptible ecotypes to C. higginsianum were used for plant infection assays. Plants were 

grown in a peat-based compost. Arabidopsis seeds were stratified for two days at 4 °C in 

darkness to allow for synchronous germination. Germination was induced by transfer of 

the plants to controlled environment chambers under a regime of a 10-h light period at 

150 to 200 mE m-2s-1, 65% relative humidity, with 22 °C during the day and 20°C during 

the night.  

 

C. higginsianum isolate IMI 349063A was used as background strain to obtain DNA 

templates for cloning ChECs, to generate transformants expressing fluorescent-tagged 

proteins, and for plant infection as a wild-type control. Fungal cultures were grown and 

brought to sporulation as described by O’Connell et al. (2004). Conidial suspensions were 

obtained by irrigation of 8- to 12-day-old cultures and the spore concentration was 

adjusted using a haemocytometer. Fungal transformants were grown on potato dextrose 

agar (PDA, Difco), supplemented with hygromycin (100 µg/mL), cefotaxime and 

spectinomycin (both 50 µg/mL) (Sigma-Aldrich). 

3.1.2 Cloning of fungal sequences 

All primers used in this study were designed with Primer3 program 

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi) (Annex 1). All preparative 

PCRs for fungal sequences cloning were carried out with the High-Fidelity DNA 

Polymerase Phusion Finnzymes (Biolabs). Final concentrations of dNTP, primer and 
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enzyme in 50 µL reactions were 0.3 mM, 0.2 µM and 0.02 U/µL, respectively. The thermal 

cycling conditions were 98 °C for 10 sec and 35 cycles of 98 ° for 10 sec, X °C for 30 sec, 

72°C for 15-30 sec/kb and final extension at 72 °C for 3 minutes with X being the 

predicted primer melting temperature.  Preparative PCR reactions were purified with 

NucleoSpin extract II Kit (Macherery&Nagel). Chemically-competent Escherichia coli 

DH5 cells (Top10, Invitrogen) were used for plasmid propagation  containing cloned 

inserts. Bacterial clones were checked by colony PCR with insert and vector-specific 

primers before plasmid isolation (NucleoSpin Plasmid Kit, Macherery&Nagel). Insert 

sequences were verified by in-house sequencing (Max Planck Genome Centre Cologne). 

For fungal transformation, verified constructs were introduced into A. tumefaciens C58C1 

strain transformed -competent cells, carrying a genomic rifampicin resistance (50 µg/mL).  

3.1.3  Cloning into expression vectors for fluorescent protein 
tagging 

To localize ChECs by fluorescent protein-tagging, ChEC genes including at least 1.5 kb or 

the entire upstream intergenic region and lacking stop codon, were amplified from cDNA 

derived from epidermal peels infested with penetrating appressoria or biotrophic hyphae. 

After TOPO cloning (Invitrogen) and sequence verification, cloned sequences were 

shuttled via Gateway recombination into pFPL-R, and pNLS binary destination vectors 

providing C-terminal translational fusions to monomeric red fluorescent protein (mRFP).  

A. tumefaciens strain C58C1 was used as recipient strain for fungal transformation. These 

binary destination vectors were created and kindly provided by Dr. Mark Farman 

(University of Kentucky, Lexington, KU). The plasmid pNLS was used to express ChECs 

with a nuclear localization signal and to determine whether ChECs were translocated into 

plant cells, in which case they should become concentrated in the plant nucleus (Khang et 

al., 2010). 

3.1.4 Fungal transformation and screening fungal transformants 

Transformation was done as described by Huser and co-workers (2009). To identify the 

positive transformants, it was necessary to screen at least 24 independent colonies. For 

this, mycelium of each transformant was obtained by growing it on PDA medium 

supplemented with hygromycin (50 g/ml). The transformants were incubated at least 

eight days at 25 ºC to obtain enough mycelium to inoculate Erlenmeyer flasks containing 
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Mathur’s agar medium (Tu, 1985). Sterile water (1.5 ml) was added to each flask and 

shaken to disperse conidia over the agar surface. Inoculated flasks were then incubated 

for 10 days at 25ºC to produce spores. 

3.1.5 Plant infection 

For ChEC localization, twelve-day-old seedlings (cotyledons and hypocotyls) of 

susceptible Arabidopsis accession Ler-0 were spray-inoculated with spore suspension 

(1×105 conidia/mL) from the positive fungal transformants using an atomizer. Inoculated 

plants were placed in sealed propagator boxes to maintain 100% humidity and incubated 

in a controlled environment chamber at 25 ºC (16-h light period) for 24-48 hai. To 

evaluate if ChECs were translocated into plant cells and mobilized to the nucleus, 

transgenic Col-0 plants expressing green fluorescent protein (GFP) targeted to the 

nucleus (Chytilova et al., 1999) were used for inoculations with fungal transformants 

expressing ChECs carrying nuclear localization signals.  

To evaluate the presence of mRFP-tagged effector proteins underneath appressoria, 

inoculated leaves of the Arabidopsis Col glabrous mutant (Herman and Marks, 1989) 

were used to obtain plant penetrating appressoria. The underside (abaxial surface) of 

excised leaves was inoculated with spore suspension (5 x 105 conidia ml-1), which was 

applied over nylon mesh (50 µm pore size) to disperse the spore suspension as a thin 

liquid film and to ensure uniform coverage of the hydrophobic leaf surface.  At 22 h after 

inoculation (hai) the leaves were brushed with a solution of 50% (w/v) cellulose acetate in 

acetone and when dry the cellulose acetate film containing the embedded appressoria 

was removed using fine forceps.  

To check effector expression in vitro, cellophane membrane pieces were placed on 

microscope slides and inoculated with spore suspension (5 x 105 conidia ml-1). The 

suspension was dispersed uniformly over the cellophane using nylon mesh as described. 

The microscope slides were incubated for 40h in a humid chamber at 25°C.  

3.1.6 Microscopy evaluations  

For examination by confocal microscopy, infected cotyledons were detached and 

mounted with the upper (adaxial) side facing upwards on microscope slides in water 

under a coverslip. Excised hypocotyl segments (3 mm long) were mounted on slides in 



18 Materials and methods

 
the same way. To determine whether mRFP-tagged proteins were located in the plant 

apoplast or inside the plant cytoplasm, infected hypocotyl samples were plasmolyzed 

using 0.85M KNO3 before examination. Light and confocal microscopy was done using a 

Zeiss LSM 700 confocal laser scanning microscope equipped with a 63X oil immersion 

objective. For imaging mRFP, excitation was at 555 nm and emission was detected at 

557-600 nm. To discriminate mRFP emission from autofluorescence, we used spectral 

imaging in the lambda mode of the Zeiss LSM 510 microscope. Using the Meta detector 

and 545 nm excitation line, image stacks with 558–648 nm emission were recorded. To 

separate mixed fluorescent signals and resolve the spatial distribution of mRFP 

fluorescence, linear unmixing was employed using the mRFP emission spectrum and 

several autofluorescence spectra as references. 

3.1.7 Electron microscopy 

For transmission electron microscopy immunogold labelling, infected plant material was 

fixed in 4% p-formaldehyde and 0.5% glutaraldehyde in 0.05 M sodium cacodylate buffer, 

pH 6.9, for 2 h. After progressive low-temperature dehydration in a graded water-ethanol 

series, samples were embedded in LR White resin (Plano GmbH, Wetzlar, Germany). 

Immunogold labelling of mRFP was described by Micali and co-workers (2011), except 

that anti-RFP primary antibodies (Invitrogen) and goat anti-rabbit IgGs conjugated with 10 

nm colloidal gold (British Biocell International) were used. 

3.2 Profiling ChEC gene expression  

3.2.1 Quantitative real-time PCR 

RNA samples representing different stages of C. higginsianum development in vitro and 

in planta were collected as follows. Ungerminated spores were harvested from cultures on 

Mathur’s medium (Tu, 1985), after eight days of incubation at 25°C. Saprophytic 

mycelium was harvested from potato dextrose broth culture which was in constant 

agitation for 2 days at 25°C. In vitro appressoria were obtained by germinating spores on 

polystyrene (Kleemann et al., 2008). Inoculated leaves of the Arabidopsis Col glabrous 

mutant (see Section 3.1.5) were used to obtain plant-penetrating appressoria and 

biotrophic hyphae by collecting epidermal strips at 22 and 40 hai, respectively. The 

correct stage of the samples was verified by microscopic evaluations before collecting the 



Materials and methods 19

 

epidermal strips, which were obtained using fine forceps to remove the infected epidermal 

cells. Samples representing the switch from biotrophy to necrotrophy were obtained by 

cutting pieces of leaf tissue showing the first water-soaked lesions at 60 hai. Samples 

representing the late necrotrophic stage were obtained from heavily infected, macerated 

leaves at 4 days after inoculation.  

 

Three biological replicates were obtained for each sampled fungal stage. cDNA was 

obtained from 1 µg total RNA using the iScript cDNA synthesis kit (Bio-Rad) in a volume 

of 20 µL. Two µL of cDNA (5 ng/µL) were amplified in 1X iQ SYBR Green Supermix (Bio-

Rad) with 1.6 µM primers using the iQ5 Real-time PCR detection system (Bio-Rad). 

Specific primers (Annex 2.) amplified fragments ranging from 106 to 329 bp with 

efficiencies ranging from 97 and 123%. GeNorm 

(http://medgen.ugent.be/wjvdesomp/genorm/) was used to assess expression stability of 

five commonly used reference genes of which -tubulin and actin were most stable 

(stability value 0.047 and 0.051, respectively) and used to normalize gene expression 

values. 

3.3 Functional assays  

3.3.1 Enhancement of bacterial virulence assay 

 3.3.1.1 Cloning effectors for delivery to plant cells through the bacterial 
type III secretion system 

To clone versions of ChEC3, ChEC6, ChEC36 and ChEC89 without their signal peptides, 

codons following the predicted signal peptide cleavage site were fused to an artificial start 

codon and included the stop codon (Annex 1). Following TOPO cloning (Invitrogen) and 

sequence verification, cloned sequences were shuttled via Gateway recombination into 

the ‘Effector Detector Vector’ plasmid pEDV6 (Sohn et al., 2007) using E. coli competent 

cells (TOP10, Invitrogen) as recipient. The positive transformants were selected by 

resistance to gentamycin (25 g/ml) and detection by colony PCR using insert and vector-

specific primers. Insert sequences were verified by in-house sequencing (Max Planck 

Genome Centre Cologne). 
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 3.3.1.2 Triparental mating for assaying enhanced bacterial virulence  

Triparental mating utilized Pseudomonas syringae pv. tomato DC3000, E. coli HB101 

pRK2013 (helper strain) (Sohn et al., 2007) and one of the E. coli strains obtained above. 

E. coli strains carrying pEDV6 with the H. parasitica ATR13 effector or the yellow 

fluorescent protein (YFP). During bacterial conjugation, Pst DC3000 becomes 

transformed with pEDV. Upon plant inoculation or infiltration, pEDV uses the bacterial 

TTSS to release proteins inside host cells. This is possible because the fungal effector is 

fused to the N-terminal part of the Pst AvrRPS4 effector, which naturally is cleaved  inside 

plant cells to release the fungal effector protein (Sohn et al., 2009). ATR13 effector from 

H. parasitica was shown to increase growth of Pst DC3000 (Sohn et al., 2007) and was 

used here as a positive control, while YFP was included as a negative control. The mating 

was done by mixing small portions of fresh bacterial cultures from Pst (Rifampicin 100 

g/ml, Kanamycin 25 g/ml), Helper strain (Kanamycin 50 g/ml), E. coli carrying pEDV 

(Gentamycin 25 g/ml) in the proportions 2:1:1. The mix was resuspended in water, 

plated on LB 1% agar plates (without antibiotics) and incubated overnight at 28 ºC. 

Arising bacterial colonies were streaked onto nutrient yeast glycerol agar (NYGA) 

solidified medium (5 g/L bactopeptone, 3 g/L yeast extract, and 20 ml/L glycerol, with 15 

g/L agar, containing antibiotics (Rifampicin 100 g/ml, Kanamycin 25 g/ml, Gentamycin 

25 g/ml) to obtain single Pst colonies, which were then analyzed by colony PCR to verify 

that the effector gene was present. 

 3.3.1.3 Selection of positive transformants by colony PCR 

A small quantity of bacteria from the selection plates was taken using a pipet tip and 

transferred to a PCR tube by touching the bottom. PCR reactions were carried out using 

Taq DNA polymerase. Final concentrations of dNTP, primer and enzyme in 20 µL 

reactions were 0.5 mM, 0.2 µM and 0.4 U/µL, respectively. The thermal cycling conditions 

were 95 °C for 2 min with 35 cycles of 95°C for 10 sec, X °C for 30 sec, 72°C for 1 min/kb 

and final extension at 72 °C for 3 min with X being the predicted primer melting 

temperature. Positive transformants were selected using a plasmid-specific primer 

combined with an effector-specific primer. 
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 3.3.1.4 Inoculation of plants with bacteria 

Four week-old Col-0 plants, which are susceptible to Pst DC3000, were spray-inoculated 

with bacterial suspension adjusted to OD=0.2 (measured at 600 nm) in 10 mM MgCl2 with 

0.04% (v/v) Silwet detergent. In addition, four week-old plants of Col-0 were spray-

inoculated with P. syringae carrying YFP as a control. For each treatment, at least 18 

plants were inoculated  (two pots, each containing nine plants).  

 3.3.1.5 Sampling for bacterial colony counting 

Leaf samples were collected at two time points: day zero (i.e. the same day, 3 hours after 

inoculation) and day 3 after inoculation. Samples for day zero comprised three replicates 

per treatment. Each replicate had nine leaf discs (6mm diameter) which were disinfected 

with 70% ethanol for 10 seconds and then collected in 1.5 ml 10 mM MgCl2 containing 

0.01% Silwet, and agitated at 650 rpm for 1h at 28ºC. After agitation, 20 l aliquots were 

plated onto NYGA medium supplemented with antibiotics (rifampicin 100 g/ml 

kanamycin 25 g/ml, gentamycin 25 g/ml), and incubated over night at 28ºC before 

counting bacterial colonies. After taking the first sample, plants were incubated in a 

climatic chamber at 20ºC for three days. Samples from day three comprised four 

replicates per treatment. Each replicate had nine leaf discs (6mm diameter), which were 

collected in 0.5 ml 10mM MgCl2 containing 0.01% Silwet, and agitated as described 

above. After agitation, serial dilutions 10-1- 10-5 were prepared, plated onto NYGA medium 

supplemented with antibiotics, prior to colony counting (cfu/cm2).  

3.3.2 ETI suppression assay 

 3.3.2.1 Triparental mating for assaying ETI suppression  

Pseudomonas fluorescens is a soil bacterium which has no effectors of it own and as a 

consequence it is not able to cause HR in Arabidopsis accession Ws-0. For this assay, a 

strain of P. fluorescens engineered to contain the TTSS was used (Thomas et al., 2009). 

Triparental mating utilized P. fluorescens (chloramphenicol 50 g/ml and tetracycline 20 

g/ml), E. coli HB101 pRK2013 (helper strain) (kanamycin 50 g/ml) and E. coli 

containing plasmid pEDV6 carrying inserts with individual ChECs (gentamycin 25 g/ml), 

or yellow fluorescent protein (YFP) (chloramphenicol 50 g/ml, tetracycline 20 g/ml, 
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gentamycin 25 g/ml). During mating, P. fluorescens is transformed by the pEDV system, 

as described in Section 3.3.1.1. After mating, single bacterial colonies were obtained on 

selective medium supplemented with chloramphenicol 50 g/ml, tetracycline 20 g/ml and 

gentamycin 25 g/ml. P. fluorescens harbouring AvrRps4 was used as a positive control. 

This Pst avirulence protein is recognized by resistance gene Rps4 in Arabidopsis 

accession Ws-0, provoking hypersensitive cell death (Narusaka et al., 2009).  

 3.3.2.2 Inoculation of plants with bacteria 

Four week-old plants of Arabidopsis ecotype Ws-0 were infiltrated with a 1:1 mixture of P. 

fluorescens harbouring individual ChECs (final OD600=0.3) and P. fluorescens carrying 

AvrRps4 (final OD=0.3). The mixture of P. fluorescens carrying AvrRps4 (final OD600=0.3) 

and P.fluorescens secreting YFP (final OD600=0.3) was used as a control to induce cell 

death. P. fluorescens secreting only YFP at OD600=0.6 was used to verify not cell death 

induction. For each treatment at least 18 leaves were pressure-infiltrated until the entire 

leaf area was covered. Infiltration was done manually using a 1 ml needle-less syringe. 

 3.3.2.3 Sampling for ETI suppression assay 

After infiltration, 18 leaf discs were taken from each treatment, and washed in sterile 

water with constant agitation for 1h at room temperature. Leaf discs from the same 

treatment were distributed in a multi-well plate, three-leaf discs per well. Immediately 

afterwards, ion leakage was measured using a conductivity meter (Horiba Twin). The 

background conductivity of the water used in these experiments was 2-3 µS/cm.  The 

measurements were obtained by adding to the conductivity meter 30 µl from the water in 

which the leaf discs were submerged. The conductivity meter was cleaned between 

treatments, using distillated water, until obtaining background conductivity.  Conductivity 

measurements were taken during three days. During this time the multi-well plates 

containing the samples were kept at room temperature and continuous light. Increased 

conductivity indicates electrolyte leakage, which is a marker for plant cell death (Rizhsky 

et al., 2004). 
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3.4 Cloning fungal coding sequences for transient 
expression assays  

To evaluate the capacity of ChECs to suppress plant cell death, effector proteins were 

cloned without signal peptide, adding an artificial start codon and omitting a stop codon, 

into the pENTR vector (Invitrogen). A C. higginsianum homolog of ethylene-inducing 

Peptide1-Like Protein (ChNLP1) and YFP were similarly cloned. Following sequence 

verification, cloned sequences were shuttled via Gateway recombination into the binary 

plant expression vector pB7WG2, providing expression from the CaMV 35S promotor 

(VIB Gent, Gent university). The A. tumefaciens strain C58C1 pGV2260 was used as 

recipient strain (selection on rifampicin, carbenicillin, spectinomycin and streptomycin, all 

at 50 l/mg) for transient expression in N. benthamiana leaves. 

3.5 Transient expression in N. benthamiana 

Bacterial cells were collected in the stationary phase to maximize the transformation 

efficiency (Marion et al., 2008). pelleted and resuspended in infiltration buffer (10 mM 

MgCl2, 5 mM MES (pH 5.6) supplemented with 200 µM acetosyringone) before infiltration 

into the abaxial side of N. benthamiana leaves using a needle-less syringe. N. 

benthamiana was grown under long day conditions in a greenhouse with an ambient 

temperature of 22-25°C and high light intensity. Agroinfiltration experiments were 

conducted with 4-6-week-old plants. To evaluate possible suppression of cell death 

caused by ChNLP1, infiltration mixtures containing bacterial strains harbouring constructs 

for co-expression of cell death inducer (ChNLP1) together with ChECs or YFP as control 

were prepared. In these bacterial mixtures, ChECs were used at OD600=1, ChNLP1 was 

used at OD600=0.1 and p19 at OD600=0.5. p19 is a protein of Tomato bushy stunt virus that 

suppresses gene silencing and was used to prevent the onset of post-transcriptional gene 

silencing in the infiltrated tissues, allowing high levels of transient expression (Voinnet et 

al., 2003). Infiltration mixtures were kept at room temperature for 2 h before infiltration into 

full-expanded leaves of N. benthamiana plants (4 weeks old). To allow pair-wise 

comparisons, infiltration mixtures containing ChEC/cell death inducer constructs and 

YFP/cell death inducer constructs were infiltrated side-by-side into the same leaf. Plants 

were incubated in a controlled environment chamber (19°C/21°C day/night temperature 

cycles and 16-h-light/8-h-dark cycles) to which they were adapted at least 24 h before 

infiltration. Six to eight days after infiltration, infiltration site pairs were inspected in a 
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blinded manner to determine whether the site co-expressing ChECs with cell death 

inducer showed reduced necrosis compared to corresponding control site on the same 

leaf expressing YFP with cell death inducer. 

 



 

 
 

4.  Results  

4.1 Sequence analysis of the selected effector candidates 
and their homology to other proteins  

ChEC36 encodes a protein of 224 amino acids (predicted size 24.8 kDa) that is cysteine-

rich (9 cysteines) and includes an N-terminal signal peptide for secretion. This protein 

does not have homology to any protein from other Colletotrichum species but resembles 

SECRETED IN XYLEM6 (SIX6), an effector of unknown function that is secreted into the 

tomato xylem by Fusarium oxysporum f. sp. lycopersici (Chakrabarti et al., 2011). 

ChEC36 and SIX6 share 40% amino acid identity, and 8 cysteines are conserved 

between the two proteins (Figure 1). 

 

After sequencing ChEC36 PCR products amplified from cDNA generated from infected 

leaves 20 hours post inoculation (hai) with C. higginsianum, three splice variants were 

found: ChEC36, ChEC36-1 and ChEC36-2. Fungal introns have been described as being 

short introns, and the majority (98%) correspond to the canonical splice site 5´GT----AG 

3´ in cDNA (Kupfer et al, 2004). We found that ChEC36-1 has a canonical splice site but 

not ChEC36-2 (5’GA----TG3’, Figure 2). The original ChEC36 does not have any introns. 

The corresponding protein sequences are identical except at the C terminus, where the 

splice variants lacked an amino acid motif that was later shown to be required for 

suppression of ChNLP1-induced cell death (Figure 3). 

ChEC3 encodes a protein of 70 amino acids (predicted size 7.7 kDa), with 3 cysteines. 

This protein has a paralog in C. higginsianum, called ChEC3a (51% amino acid identity), 

and an ortholog in Colletotrichum gloeosporioides, called CgDN3 (39% identity). The 

three versions have 24 amino acids in common (Figure 4). In C. gloeosporioides this gene 

is required for virulence: CgDN3 mutants were unable to infect and reproduce on intact 

host leaves, because they elicited a localized host cell death resembling the 

hypersensitive-like response (Stephenson et al, 2000). This result suggests that CgDN3 



26 Results

 
may function to suppress plant cell death or defense responses. Thus, ChEC3 represents 

a good candidate for a cell death suppressor and was selected for further 

characterization. 

 

Figure 1. Amino acid alignment of ChEC36 and the homologous SIX6 effector of Fusarium 
oxysporum f.sp. lycopersici. The two effector proteins share 40% identical amino acids. The 
predicted signal peptide cleavage site is marked with a triangle. Identical amino acids are labelled 
(*). (:) indicates conservation between groups of amino acids with strongly similar chemical 
properties (.) indicates conservation between groups of amino acids with weakly similar chemical 
properties. Conserved cysteine residues are highlighted in red. 

 

 

Figure 2. Nucelotide sequences of ChEC36 splice variants. Three different splice variants of 
ChEC36 were found, called ChEC36, ChEC36-1 and ChEC36-2. ChEC36 has no splice site, 
ChEC36-1 has a canonical splice site, and ChEC36-2 has a non-canonical splice site. Identical 
nucleotides are labelled (*).  
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Figure 3. Alignment of protein sequences encoded by ChEC36 splice variants. The three 
different predicted proteins differ at their C-termini (highlighted in red). Amino acids conserved 
between variants appear in bold. The predicted signal peptide cleavage site is marked with a 
triangle. 

 

 

Figure 4. ChEC3 paralogs and orthologs. Alignment of ChEC3, ChEC3a and C. gloeosporioides 
CgDN3 protein sequences. Identical amino acids are labelled (*). The predicted signal peptide 
cleavage site is marked with a triangle. (:) indicates conservation between groups of amino acids 
with strongly similar chemical properties (.) indicates conservation between groups of amino acids 
with weakly similar properties. 

 

ChEC89 encodes a protein of 83 amino acids (predicted size 9.2 kDa), with 4 cysteines. 

This protein showed 38% amino acid identity to a hypothetical protein of Magnaporthe 

oryzae (NCBI accession number XB001409354.1), which includes 3 conserved cysteine 

residues. Three further paralogs were also found in the C. higginsianum genome with one 

cysteine conserved in all of them (Figure 5). 
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Figure 5. Alignment of ChEC89 homologs and paralogs. ChEC89 shares a conserved cysteine 
with three paralogous proteins in C. higginsianum (PP1, PP2, PP3) and a homolog in Magnaporthe 
oryzae. Identical amino acids are labelled (*). The predicted signal peptide cleavage site is marked 
with a triangle. (:) indicates conservation between groups of amino acids with strongly similar 
chemical properties (.) indicates conservation between groups of amino acids with weakly similar 
properties. 

 

ChEC6 encodes a protein of 89 amino acids (predicted size 9.7 kDa) and does not have 

homology to any known proteins in the NCBI non-redundant protein database but it has a 

homolog in Glomerella graminicola, the sexual stage of C. graminicola (NCBI accession 

number EFQ24895.1), with which it shares 51% amino acid identity (Figure 6). 

  

Figure 6. Alignment of ChEC6 and a homologous protein from G. graminicola. Identical 
amino acids are labelled (*). The predicted signal peptide cleavage site is marked with a triangle. 
(:) indicates conservation between groups of amino acids with strongly similar chemical properties. 
(.) indicates conservation between groups of amino acids with weakly similar properties. 
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4.2 Expression profiles of genes encoding effector 
candidates  

Although the four selected ChECs were identified from infection stage-specific EST 

libraries, expression profiling by quantitative real-time PCR (qPCR) was necessary to 

determine more precisely their expression in vitro and in planta and to confirm the EST 

predictions. In this way, it could be determined whether ChECs are constitutively 

expressed in all stages and cell types or only at specific infection stages, e.g. biotrophy-

relevant stages (penetrating appressoria, biotrophic hyphae) or during the necrotrophic 

stage. A further aim was to establish whether ChECs are exclusively expressed in planta 

or if they are expressed also under in vitro conditions. The following RNA samples were 

collected for analysis: ungerminated spores (SP), saprophytic mycelium (MY), 

appressoria formed in vitro (VA), unpenetrated appressoria formed in planta (PA), 

penetrating appressoria with young biotrophic hyphae (BH), the switch from biotrophy to 

necrotrophy (SW) and the late necrotrophic stage (LN). Internal control genes (C. 

higginsianum α -tubulin and actin) were used to normalize the data and to compensate for 

variation in fungal biomass between the different stages. 

 

The qPCR analysis confirmed the unique expression of the four ChECs in unpenetrated 

appressoria formed in planta and during the biotrophic stage. Transcripts were not 

detectable during necrotrophic stages or under any in vitro conditions, confirming that 

expression of the four ChECs only occurs in planta. However, different levels of ChEC 

gene expression were found, relative to the control genes. The ChEC36 expression 

profile showed that this gene was most highly expressed in unpenetrated appressoria in 

planta. ChEC89 was most highly expressed in the biotrophic hyphae stage, while ChEC3 

was highly expressed in both penetrating appressoria and biotrophic hyphae. ChEC6 

showed a similar expression profile to ChEC3 and had the highest level of expression of 

all the effector genes, relative to the two controls, indicating very strong gene induction in 

planta (Figure 7). 
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Figure 7. Expression profiling of ChEC genes during fungal development in planta and in 
vitro. qPCR expression profiles of effector candidates ChEC3, ChEC6, ChEC36 and ChEC89. 
Data show ChEC gene expression relative to the control genes α-tubulin and actin, which were 
used to normalize the data and compensate for the variation in fungal biomass between the 
different stages. The samples correspond to: SP: ungerminated spores, MY: saprophytic 
mycelium, VA: unpenetrated appressoria formed in vitro, PA: unpenetrated appressoria formed in 
planta, BH: penetrating appressoria with biotrophic hyphae, SW: switch from biotrophy to 
necrotrophy, LN: Late necrotrophic stage. 
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4.3 Localization of effector candidates in planta  

In order to characterize ChECs, their localization during plant infection was one of the 

major aims in my study. To localize ChECs, fungal transformants were generated that 

expressed effector proteins as C-terminal fusions with the monomeric Red Fluorescent 

Protein (mRFP) under the native promoter (~1.5 kb upstream sequence). Fusion proteins 

were localized during infection of Arabidopsis seedlings (cotyledons or hypocotyls) by 

confocal laser scanning microscopy. At least three independent transformants were 

analysed per gene. 

4.3.1 Localization of effector candidate ChEC36 

Confocal microscopy of transformants expressing ChEC36:RFP revealed that only 

unpenetrated appressoria on the plant surface showed fluorescent labelling. The 

fluorescent signal was localized at the base of the appressoria, in the penetration pore 

(Figure 8 A-F). This suggests ChEC36 accumulates in the pore before host penetration. A 

side-view projection computed from the recorded image stack of a penetrating 

appressorium showed that the fluorescence signal was also present in the penetration 

peg emerging from the base of penetrating appressorium (Figure 8, G). In addition to the 

penetration pore and peg, a weak fluorescence signal was also detected as a spotty 

labeling pattern in the appressorial cytoplasm (Figure 9 A-C). These structures may 

represent fungal vacuoles (see below). Mature, expanded biotrophic hyphae developing 

from appressoria did not show mRFP fluorescence (Figure 10 A, B).  

 

Gene expression profiling by qPCR (Section 3.2) indicated that ChEC36 is specifically 

induced in planta and not in appressoria formed in vitro. To test whether expression may 

be linked to morphogenesis of the appressorial penetration peg, transformants expressing 

ChEC36:RFP were germinated on cellophane membranes, where they form appressoria 

which penetrate and form pseudo-biotrophic hyphae inside the membrane. Neither 

appressoria penetrating cellophane nor pseudo-biotrophic hyphae formed inside the 

membrane showed any detectable mRFP labeling (Figure 10 C, D), indicating that 

ChEC36 protein expression is specifically induced during plant penetration only. 
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Figure 8. ChEC36 co-localizes with the appressorial penetration pore. Confocal microscopy 
images of appressoria of C. higginsianum expressing RFP-tagged ChEC36. A. Bright field image, 
showing the penetration pore (arrow) in the base of the darkly melanized, unpenetrated 
appressorium, viewed from above B. Red fluorescence channel (RFP). C. Overlay of bright field 
and fluorescence channel. D, E, F side-view of an unpenetrated appressorium showing the 
fluorescence signal in the basal penetration pore. G. Side-view 3D projection of a penetrating 
appressorium, showing fluorescence signal localized in the infection peg (arrow) emerging from 
base of the appressorium. Bars = 5 µm. Images were recorded at 24 hpi. 
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Figure 9. ChEC36  localizes  to  the appressorial penetration pore and  fungal vacuoles. Confocal 
microscopy images of C. higginsianum appressoria expressing RFP-tagged ChEC36. (A-F) An appressorium 
viewed in two different focal planes. A) First focal plane showing the presence of RFP fluorescence in 
vacuoles (arrow) in the appressorial cytoplasm. B) Bright field signal.  C) Overlay of bright field and 
fluorescence channels. D-F) second focal plane at the base of the same appressorium showing D) brightly 
fluorescing spot in the center (arrow), corresponding to the penetration pore, E) Bright field image and F) 
Overlay of bright field and fluorescence channels. Bars = 5 µm. Images were recorded at 24 hpi. 
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Figure 10 . ChEC36 is not expressed in biotrophic hyphae and during penetration of 
cellophane.  A, B: Individual optical sections from two different focal planes of appressoria 
expressing ChEC36:RFP, of which one has penetrated the host cell to form a biotrophic hypha 
(arrow in B). A) Overlay of bright field and fluorescence channels. Note the brightly fluorescing 
spots, corresponding to the penetration pore (arrow) of unpenetrated appressoria. B) Same region 
as in A) in a different focal plane showing a biotrophic hypha (BH) that is not expressing 
ChEC36:RFP. C, D: Appressorium penetrating cellophane membrane to form pseudo-biotrophic 
hyphae inside the membrane. C, Bright field image, D Fluorescence channel. ChEC36:RFP was 
not detected in appressoria or pseudo-biotrophic hyphae formed  in vitro on cellophane 
membranes. Bars = 5 µm. Images were recorded at 42 hai. 

 

To determine whether ChEC36 was secreted out of the appressorium into the plant 

apoplast, the leaf area immediately underneath appressoria was examined for the 

presence of RFP fluorescence signals. For this, appressoria were removed from the 

surface of inoculated leaves as follows. Leaves were brushed with a solution of cellulose 

acetate in acetone, and after drying, the cellulose acetate was stripped off using fine 



Results 35

 

forceps.  Both, cellulose acetate strips containing the embedded appressoria as well as 

the stripped leaf surface were evaluated using confocal microscopy to detect the RFP 

fluorescence signal. When the removed appressoria were evaluated, it was possible to 

find RFP fluorescent labelling inside appressoria, forming a ring around the basal 

penetration pore (Figure 11 A-C). On the corresponding stripped leaf surface, the RFP 

fluorescence was detected in the plant cell wall as a central bright spot, representing the 

penetration peg, surrounded by a small halo of diffuse fluorescence, providing evidence 

for the secretion of ChEC36-RFP into the plant apoplast (Figure 11 D-G). The signal 

coming from the halo was verified through spectral scanning, confirming that the 

fluorescence signal had the characteristic spectrum of mRFP and that it was not 

autofluorescence.  

 

It is known that some pathogen effector proteins can be translocated across the plant 

plasma membrane and enter into the host cell cytoplasm (Catanzariti et al., 2006, Dodds 

et al., 2004). However, the ChEC36:RFP fluorescence signal was not detected in the 

plant cytoplasm. This could be because the concentration of ChEC36:RFP was below the 

detection limit of confocal microscopy. As a more sensitive approach to demonstrate 

translocation into the plant cytoplasm, ChEC36 was expressed as a translational fusion to 

mCherry coupled with an artificial nuclear localization signal (NLS). Assuming 

translocation into the host cell, the NLS should result in the fluorescent fusion protein 

being concentrated in a small compartment (i.e. the plant nucleus), allowing more 

sensitive detection of small amounts of translocated effector protein (Khang et al., 2010). 

Figure 11 (H-J) shows transformant appressoria expressing ChEC36:NLS:mCherry 

inoculated onto transgenic Arabidopsis plants expressing NLS:GFP as a nuclear marker 

(Chytilova et al., 1999). However, it was not possible to detect any RFP signal in the 

nucleus of infected plant cells, suggesting that the fusion protein was not translocated 

across the plant plasma membrane. 
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Figure 11. ChEC36 is secreted into the plant cell wall but not into the plant cytoplasm. 
A,B,C: Base of an appressorium removed from the leaf surface by cellulose acetate-stripping. A. 
Bright field image showing the appressorial penetration pore (white arrow). B. Fluorescence image 
of the same appressorium. C. Overlay of bright field and fluorescence channels. White arrow 
indicates RFP-labelled ring around the penetration pore. D,-G Top: Leaf surface after removing 
appressoria by cellulose acetate-stripping. Series of confocal microscope optical sections 
representing different focal planes and shown as overlays of bright field and red fluorescence 
channels (top panels), and RFP fluorescence converted to black-and white to improve image 
contrast (lower panels). The ChEC36-RFP signal diffuses a short distance laterally and downwards 
from the penetration site (arrow). H-J: Confocal micrographs showing a fungal transformant 
expressing ChEC36:RFP:NLS inoculated onto transgenic Arabidopsis plants expressing GFP 
targeted to the plant nucleus. Images were recorded 30 hai. 
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Confocal microscopy suggested that effector protein ChEC36 is focally secreted to 

appressorial pores. Transmission electron microscopy (TEM) combined with immunogold 

labeling with antibodies specific to RFP was used to verify this localization pattern at 

higher resolution. Rabbit polyclonal anti-mRFP antibody was applied to ultrathin resin 

sections at a dilution of 1 in 500. Goat anti-rabbit IgG antibodies conjugated with 10 nm 

colloidal gold particles were used as secondary antibodies. TEM-immunogold labeling 

confirmed that ChEC36:RFP is localized in appressorial pores (Figure 12 C), but not in 

mature biotrophic hyphae (Figure 12  B). The ChEC36:RFP fusion protein was localized 

outside the appressorial plasma membrane (Figure 12 D, E), indicating that ChEC36:RFP 

is secreted. In addition, the pore ring which forms a cell wall layer continuous with the 

penetration peg cell wall, was intensely labelled in some appressoria (Figure 12 E). The 

punctate labelling in the appressorial cytoplasm visible with confocal microscopy 

appeared to correspond to protein accumulation inside vacuoles (Figure 12 A). There was 

no detectable labelling in cells of the wild-type fungus (Figure 12 F), indicating that the 

antibody used was specific for RFP.  
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Figure 12 . TEM-Immunogold localization of ChEC36:mRFP using antibodies 
recognizing RFP. A, Labelled protein inclusion bodies inside fungal vacuoles (FV). B, 
Unlabelled mature biotrophic hyphae (BH). C, Labelled appressorial pore (P) surrounded by 
an unlabelled pore ring (arrowheads). D, Tangential section through a penetration pore ring 
(black asterisks) labelled on the inner surface of the pore ring. E, Pore labelling is external to 
the appressorial plasma membrane (arrows). F, Wild-type appressorium showing absence of 
any labelling. White asterisks: melanized appressorial cell wall, AC, appressorial cytoplasm, 
PV, plant vacuole, P, penetration pore. PW, plant cell wall. WD, plant cell wall deposits. Scale 
bars, 500 nm.  
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4.3.2 Localization of effector candidate ChEC89 

Confocal microscopy of transformants expressing ChEC89:RFP revealed that the fusion 

protein was localized to the surface of the biotrophic hyphae but was not detectable in 

appressoria (Figure 13 A-F). Similar results were obtained using transformants 

expressing ChEC89 as a C-terminal fusion with the green fluorescent protein (GFP) 

(Figure 13 G-I). On the surface of many biotrophic hyphae (50%) small, brightly 

fluorescent foci were observed (Figure 13 A-F), suggesting that effector proteins 

accumulate after secretion into small regions at the plant fungal interface, hereafter called 

interfacial bodies. At later infection stages, at the switch from biotrophy to necrotrophy, it 

was possible to visualize the protein on the surface of the biotrophic primary hyphae, but 

not on the surface of the necrotrophic secondary hyphae, confirming the expression 

profile of this gene (Figure 14 A-F). The expression of ChEC89:RFP was plant-induced 

and specific to pathogenesis because there was no detectable RFP fluorescence on 

pseudo-biotrophic hyphae formed after appressorial penetration into cellophane 

membranes in vitro (Figure 14 G, H). 

 

After plasmolysis of the infected tissue, it was possible to detect the RFP fluorescence 

signal in the expanded apoplast of the infected plant cell, between the plant plasma 

membrane and fungal cell wall, confirming that this effector is solubly secreted (Figure 

15). However, a portion of ChEC89:RFP also appeared cell wall-associated because the 

signal was visible in septa (Figure 14 E, F) and was retained on the surface of hyphae in 

dead host cells, when the plant plasma membrane was probably destroyed (Figure 14 D-

F). 
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Figure 13. ChEC89 localization. Confocal microscopy of C. higginsianum expressing RFP-tagged 
ChEC89. A, D, G Bright field image. B, E, H  fluorescence image. C, F, I. Overlay of bright field 
and fluorescence channels. A. Appressoria (arrows) and biotropic hyphae. B,C biotrophic hyphae 
showing fluorescent foci (arrowhead) on the hyphal surface and labelling of the plant cell wall 
(arrows). D Mature biotrophic hyphae, (E and F), showing fluorescence accumulation in hyphal 
concavities (arrowheads). Arrow: appressorium. G. Bright field image showing appressoria (white 
arrow) H) Fluorescence image showing GFP-tagged ChEC89 on the surface of young biotrophic 
hyphae. Images were recorded 42 hai. 
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Figure 14. ChEC89 localization. Confocal microscopy of C. higginsianum expressing RFP-tagged 
ChEC89. A, D, G J Bright field image. B, C. E, H.K fluorescence image. C, F, I. Overlay of bright 
field and fluorescence channels. A, B Transformant biotrophic hypha expressing effector 
ChEC89:GFP. C Maximum fluorescence intensity overlay of  biotrophic hypha expressing 
fluorescent foci (arrowheads) on the hyphal surface. Note the plant cell wall is labelled 
(arrowhead). White arrows in B and C indicate fluorescent foci. D. Biotrophic primary hyphae (BH) 
switching to the necrotrophic stage, producing a thin secondary hypha. Arrowheads indicate point 
of transition. F. RFP fluorescence is detectable on the surface of the biotrophic hypha but not the 
necrotrophic hypha. G. Appressorium (white arrow) and biotrophic hypha (BH) starting to switch to 
the necrotrophic stage, producing a thin secondary hypha at the tip (black arrow). H. RFP 
fluorescence is on the surface of biotrophic hyphae and in the septum (white arrow) I. RFP 
fluorescence is present on the biotrophic primary hypha but not the emerging secondary hyphae. 
J,K) Pseudo-biotrophic hyphae (white arrow) growing inside a cellophane membrane. J) Bright 
field image; K) Fluorescence image, showing there is no detectable RFP signal on the hyphae. 
Bars = 5m. Images were recorded at 55 hpi. 
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Figure 15. ChEC89 is solubly secreted into the plant cell apoplast. Confocal microscopy 
images of Arabidopsis hypocotyls infected with C. higginsianum and plasmolyzed in 0.85M KNO3. 
A. Bright field image. B. RFP Fluorescence image. C. Overlay of bright field and fluorescence 
channels. A. Biotrophic hyphae (BH) infecting a plant epidermal cell with contracted cytoplasm. B, 
C. RFP fluorescence signal is present in the enlarged plant apoplast (*). White arrowheads show 
the contracted plant plasma membrane. Bars = 5 µm. Images were recorded at 55 hpi. 
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4.3.3 Localization of effector candidate ChEC3 

Using confocal microscopy of Arabidopsis plants inoculated with transformants 

expressing RFP-tagged ChEC3, the fusion protein was localized exclusively on the 

surface of biotrophic hyphae but not in appressoria or in necrotrophic hyphae (Figure 16), 

consistent with the qPCR expression profile of this gene. After plasmolysis of the infected 

tissue, it was possible to detect the RFP fluorescence signal in the expanded apoplast of 

the infected plant cell, similar to ChEC89 (Figure 17). In addition, it was verified that the 

protein expression was only induced during plant infection and not under in vitro 

conditions by pseudo-biotrophic hyphae growing inside cellophane membranes (Figure 16 

G-I). 

 

Figure 16. Localizaton of RFP-tagged ChEC3. Confocal microscopy images of biotrophic hyphae 
of C. higginsianum expressing RFP-tagged ChEC3. A, D. Bright field image. B, E. RFP 
fluorescence image showing labeling on the surface of biotrophic hyphae (BH). C, F. Overlay of 
bright field and fluorescence channels. G, H, I. Pseudo-biotrophic hypha (BH) that penetrated a 
cellophane membrane in vitro. G. Bright field image; H. RFP fluorescence signal. I. Overlay of 
bright field and fluorescence channels. Note the appressorium and hypha show no detectable RFP 
fluorescent. Bars = 5 µm. Images were recorded 42 hai. 
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Figure 17. ChEC3 is secreted into the plant apoplast. Localization of RFP-tagged ChEC3 by 
confocal microscopy. A. Bright field image. B. RFP fluorescence image. C. Overlay of bright field 
and fluorescence channels. A. Biotrophic hyphae (BH) infecting plant cell after plasmolysis. B, C. 
RFP fluorescence is detectable in the enlarged plant apoplast (*). White arrowheads show the 
contracted plasma membrane. Bars = 5 µm. Images were recorded 42 hai 
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4.3.4 Localization of effector candidate ChEC6 

Confocal microscopy of transformants expressing ChEC6:RFP had a similar localization pattern to 

ChEC36:RFP. The fluoresence signal was visible exclusively in appressoria, in the penetration 

pore, but there was not detection of fluorescence signal in the appresorial cytoplasm. This results 

were obtained previously by Dr Kleemann (Kleemann et al., 2012) (Figure 18 A-C). The ChEC6 

expression is induced only during plant infection, there was no fluorescence signal during in vitro 

conditions. (Figure 18 D-G).  

 

 

 

Figure 18. ChEC6 co-localizes with the appressorial penetration pore. Confocal microscopy 
images C. higginsianum appressoria expressing RFP-tagged ChEC6. A-C. In planta, D-G. in vitro 
(cellophane). A. Bright field image, showing the penetration pore (arrow) in the base of the darkly 
melanized, unpenetrated appressorium, viewed from above B. Red fluorescence channel (RFP). 
C. Overlay of bright field and fluorescence channel. D, F. RFP fluoresence signal. E,G. Bright field 
image. D-E. There is no ChEC6:RFP fluorescence signal in unpenetrated appresoria (black 
arrows). F-G. There is no ChEC6:RFP fluorescence signal after penetration (white arrows). gt, 
germ tubes. Arrowheads,  penetration hyphae within the cellophane. Bars = 5 µm. Images were 
recorded at 24 hpi. 
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4.4 Putative functions of effector candidates 

One advantage of the C. higginsianum-Arabidopsis interaction is that fungal genes of 

interest can be knocked out by targeted mutagenesis to test their contribution to 

pathogenicity. However, in previous studies the deletion of ChEC genes did not produce 

measurable infection phenotypes, possibly due to functional redundancy (Kleemann, 

2010). As an alternative approach, the direct expression of ChECs in plant cells can be 

used to evaluate their possible functions, e.g. repressing or inducing plant cell death, or 

suppressing plant defense responses.  

4.4.1 Effector proteins are able to suppress plant cell death 

During the biotrophic phase of infection, C. higginsianum must avoid damaging or killing 

host cells.  To evaluate whether the effector candidates have the ability to suppress plant 

cell death, they were transiently co-expressed in Nicotiana benthamiana leaves together 

with a necrosis-eliciting protein (NLP1) from C. higginsianum. Necrosis- and Ethylene-

inducing Peptide1-Like Proteins (NLPs) belong to a family of proteins which are able to 

disrupt the plasma membrane, thereby causing cell death and promoting the virulence of 

fungi, oomycetes and bacteria (Gjizen and Nürnberger, 2006, Ottmann et al., 2009). All of 

them contain the heptapeptide GHRHDWE, which has been defined as an essential 

domain for full biological activity (Ottmann et al., 2009). Recently, six NLP proteins have 

been described in C. higginsianum (ChNLP1-6) (Kleemann et al., 2010) which were 

identified through comparison with the NLP from Phytophthora sojae (Kanneganti et al., 

2006, Gijzen and Nürnberger 2006). The most similar homolog (ChNLP1) was specifically 

expressed at the switch from biotrophy to necrotrophy (Kleemann et al., 2012). ChNLP1 

was selected as a suitable elicitor of cell death for the assay described below. 

 

Effectors were transiently expressed in N. benthamiana leaves by infiltrating a mixture of 

Agrobacterium tumefaciens strains carrying constructs for expression of ChECs (without 

their predicted signal peptide for secretion) or NLP1 protein expression in one half of the 

leaf. Into the other half of the leaf, a control mixture was infiltrated comprising A. 

tumefaciens strains carrying constructs for the expression of NLP1 and the yellow 

fluorescent protein (YFP). This experimental design (Fig 19 A) allowed pair-wise 

comparisons of necrosis intensity in the same leaf to take account of the leaf-to-leaf 
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variation in necrosis development. All effectors were strongly over-expressed under the 

control of the Cauliflower mosaic virus 35S promoter. The cell death reduction was 

quantified by determining the proportion of infiltrated sites that showed necrosis reduction 

(exemplified in Fig 19 B) or showed no necrosis reduction (exemplified in Fig 19 C). As a 

negative control, a fungal secreted chitinase was used. This was previously found to be 

strongly up-regulated during biotrophy (Takahara et al, 2009). This experiment was 

repeated at least three times for each effector protein, and at least 30 leaves per 

repetition were evaluated, with reproducible results for experimental repetitions. 

 

Co-expression of ChEC3 and ChEC6 significantly impaired ChNLP1-induced cell death in 

93% and 88% of the evaluated infiltration sites (P<0.02 and <0.005 in Student´s test) 

compared to the chitinase negative control (Figure 19 D). In contrast, co-infiltration of 

ChEC36, ChE36-1 and ChEC89 resulted in no significant reduction of NLP1 induced 

necrosis. 
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Figure 19. Cell death suppressing activity of the C. higginsianum Effector Candidates 
(ChECs). A, Scheme showing the infiltrated combinations used for the transient co-expression 
assay in Nicotiana benthamiana leaves. Agrobacteria containing constructs for ChEC or YFP 
expression were mixed with those for expression of the cell death-inducer NLP1. (B), Examples of 
infiltration site pairs scored as showing necrosis reduction six days after infiltration. (C), Examples 
of infiltration site pairs scored as showing no reduction in necrosis. (D), Quantification of cell death 
suppressing activity of ChEC3, ChEC6, ChEC36-1, ChEC36-2 and ChEC89, all expressed without 
their signal peptide for secretion. Asterisks * and ** indicate significant differences from the 
chitinase control at P<0.02and <0.005, respectively (Student’s t-test). Data represent the means 
from at least three independent experiments, with at least 15 leaves/experiment/co-expression 
combination (± standard error). 
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4.4.2 Effector proteins are able to increase virulence of plant 
pathogenic bacteria 

To test whether ChECs are able to make host cells more susceptible to other 

Colletotrichum species, preliminary experiments were done in which agroinfiltrated sites in 

N. benthamiana leaves expressing ChECs were challenged with Colletotrichum spp. that 

are adapted to infect Nicotiana, namely C. orbiculare and C. destructivum. However, no 

enhancement of pathogen growth was detectable (data not shown), possibly as a result of 

plant immune responses triggered by the infiltration of agrobacteria. Therefore, I used the 

well-described ‘effector detector vector’ system to deliver ChECs via the type III secretion 

system of transgenic Pseudomonas syringae pv. tomato (Pst) into Arabidopsis leaves to 

determine whether ChECs can manipulate the plant immune system in such way that they 

enhance bacterial multiplication and virulence (Sohn et al., 2007). Four ChECs (ChEC3, 

ChEC6, ChEC36 and ChEC89) were evaluated. The Hyaloperonospora parasitica 

effector ATR13Emco5 is known to enhance the virulence of Pst (Sohn et al., 2007) and was 

therefore used as a positive control in this assay. YFP served as a negative control. This 

experiment was repeated at least three times for each effector protein, sampling per 

treatment 63 leaf discs, showing similar results among treatments (Figure 20). 

  

Two ChECs tested, ChEC3 and ChEC89 significantly (P<0.0001; P< 0.02; Student´s test) 

enhanced the virulence of Pst, resulting in bacterial titers even higher than the positive 

control gene ATR13Emco5 (Figure 20). In contrast, ChEC6 and ChEC36 lacked activity in 

this assay, similar to the negative control YFP. These results suggest that ChEC3 and 

ChEC89 can increase the virulence of plant pathogenic bacteria, presumably by 

suppressing host defense responses (Sohn et al., 2007). 
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Figure 20. ChECs supporting multiplication of plant pathogenic bacteria. Bacterial titers in 
Arabidopsis Col-0 leaves infected with Pseudomonas syringae pv. tomato expressing the indicated 
ChECs as fusions with a bacterial effector mediating delivery via the type III secretion system. 
ATR13Emco5 and YFP were included as positive and negative controls, respectively. Colony forming 
units (cfu) were counted 0 and 3 days after spray inoculation. * and ** indicate significant 
difference from the YFP control at P<0.03 and P<0.0005, respectively. Bars represent means of 4 
replicates  (each replicate correspond to nine leaves per tratament) ± standard error. 

 

4.4.3 ChECs can suppress the hypersensitive cell death response 
(ETI) 

P. fluorescens (Pfo) carrying the Pst effector AvrPS4 is recognized by the corresponding 

R protein, RPS4, in the Arabidopsis accession Ws-0, thereby triggering a hypersensitive 

cell death response (HR). Cell death can be quantified by measuring electrolyte (ion) 

leakage from the dead cells using a conductivity meter (Rizhsky et al., 2004). To test 

whether ChECs are able to suppress the HR induced by this Avr-R gene interaction 

(effector-triggered immunity), leaves of Arabidopsis Ws-0 were pressure-infiltrated with a 

1:1 mixture of Pfo cells carrying AvrRps4 to induce HR and Pfo cells carrying individual 

fungal effectors (ChEC3, ChEC6, ChEC36 and ChEC89). After infiltration, leaf discs were 

taken from each treatment, washed in sterile water and incubated in destilled water in a 

multi-well plate, three leaf discs per well. Ion leakage was then measured at intervals 

using a conductivity meter (Figure 21). In each experiment, 18 leaves were sampled and 

the experiment was repeated four times. The ion leakage measurements showed 
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considerable variability between replicate leaf discs but the overall trend of the data was 

consistent and a representative set of measurements are shown in Figure 21.  

 

The control treatments with Pfo cells carrying AvrRPS4 alone and a mixture of AvrPS4 

and YFP provoked high levels of conductivity (77.5 µS/cm and 101 µS/cm), in contrast to 

the negative control Pfo strain harbouring YFP alone, which showed the lowest level of 

conductivity (12.8 µS/cm). It was found that mixtures of Pfo strains carrying AvrRPS4 and 

ChEC36, AvrRPS4 and ChEC3 or AvrRPS4 and ChEC6 all showed significantly lower 

levels of conductivity (P<0.05) compared with the positive control mixture of AvrPS4 and 

YFP. This suggests that these three fungal effector proteins interfere in some way with 

expression of the HR cell death response triggered by this AVR-R gene interaction. 

However, the Pfo strain mixture carrying AvrRPS4 and ChEC89 was not able to block HR, 

as shown by the high levels of ion leakage. It was clear that there was no activation of HR 

in the negative control with YFP alone. In contrast, AvrRPS4 provoked high conductivity 

levels, demonstrating the successful recognition of AvrRPS4 by RPS4 in this assay. 

 

 

Figure 21. ChECs are able to suppress the hypersensitive cell death response triggered by 
the recognition of AvrRPS4 by RPS4 (effector-triggered immunity). Ion leakage 
measurements were made at the indicated time points in leaf discs of 4-week-old Ws plants 
carrying RPS4, after inoculation of ChEC-AvrRPS4. Bars represent means of 3 replicates (each 
replicate correspond to eighteen leaves per treament) ± standard error. 

 





 

 
 

5. Discussion 

 

Through this work it was possible to characterize the expression patterns, localization and 

possible functions of four C. higginsianum effector candidates (ChECs). It was shown that 

ChEC3, ChEC6, ChEC36 and ChEC89 were all specifically upregulated during plant 

infection, in appressoria and/or during the biotrophic phase, suggesting that these 

proteins may play important roles during host infection. A novel localization pattern was 

described for ChEC36, which was focally secreted to, and out of, the appressorial 

penetration pore. Appressoria have long been recognized as fungal structures enabling 

adhesion and mechanical penetration of host surface barriers. This study describes a new 

function for appressoria, namely the local delivery of effector proteins into the plant 

through the nanoscale interface formed by the penetration pore. In contrast, ChEC89 was 

found to accumulate in small compartments on the surface of biotrophic hyphae called 

interfacial bodies, similar to the biotrophic interfacial complex (BIC) of M. oryzae, where 

fluorescent protein-tagged effectors also accumulate. ChEC3 and ChEC6 were shown to 

suppress plant cell death caused by the C. higginsianum Necrosis and Ethylene inducing 

peptide 1-like protein ChNLP1. In addition, ChEC3 and ChEC89 were found to enhance 

the growth of Pseudomonas syringae in susceptible Arabidopsis plants, suggesting they 

interfere with plant basal defense (PTI responses). Finally, ChEC3, ChEC6, and ChEC36 

suppressed the HR death triggered by the interaction of AvrRPS4 and RPS4, suggesting 

that these effectors are able to interfere with effector triggered immunity (ETI).  

5.1 Homology of C. higginsianum effectors to proteins 
from other fungi 

 

A survey of the sequence similarity of the ChECs selected for this study with other known 

proteins in public databases revealed that in general they have few homologs in the 
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genus Colletotrichum or in other fungi. ChEC3 has a paralog called ChEC3a in C. 

higginsianum, and a homolog called CgDN3 in C. gloeosporioides. ChEC6 has a homolog 

in C. graminicola but resembles no other proteins outside the genus. In contrast, ChEC36 

and ChEC89 have homology to known secreted effectors of F. oxysporum and M. oryzae, 

respectively, but no homologs were found in C. graminicola. This is remarkable because 

although Fusarium and Magnaporthe belong to the Sordariomycetes, they are not closely 

related phylogenetically to Colletotrichum Possibly these effector genes were present in a 

common ancestral fungus but were subsequently lost from C. graminicola during the 

course of evolution. The SIX6 homolog of ChEC36 in Fusarium oxysporum has been 

described as a protein effector that contributes to fungal virulence (Takken and Rep, 

2010). In the present study, ChEC36 and its splice variants were not able to increase 

bacterial growth or suppress cell death induced by ChNLP1 proteins.  However, the splice 

variants differed in their ability to suppress plant cell death. Thus, transient expression of 

ChEC36-1 (with the canonical intron) reduced ChNLP1 induced necrosis in a higher 

percentage of leaf infiltration sites than ChEC36. This suggests that there may be 

functional diversification among the splice variants of this gene. These splice forms 

encode identical proteins with exception of the C terminus. It therefore appears that this 

protein region contains the functional portion of this protein an amino acid motif required 

for suppression of ChNLP1-induced cell death. 

 

5.2 Localization of C. higginsianum effectors during plant 
infection 

 

Previously the appressorium has been described as a specialized infection structure 

capable of providing turgor-driven fungal penetration of host surface barriers (Deising et 

al., 2000, Latunde-Dada, 2001). Penetration is a complex process that involves the 

release of adhesive extracellular matrix, the formation of a basal penetration pore, the 

deposition of extra cell wall layers and deposition of the phenolic polymer melanin in the 

appressorial cell wall. Melanization is a prerequisite for the generation of high turgor 

pressure through the accumulation of glycerol, providing the mechanical force to allow 

Colletotrichum species to penetrate the host cuticle/cell wall (Bechinger et al. 1999).  
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However, according with my results, it has been possible to define another function for the 

appressorium, namely the delivery of effector proteins into the host plant. The delivery of 

these effector proteins is extremely localized to a nanoscale interface formed between 

host and pathogen which is defined by the 200-nm diameter penetration pore. For plant-

pathogenic fungi it has been described that effectors localize to the surface of intracellular 

hyphae, e.g. Ustilago maydis Pep-1 (Doehlemann, 2009), or in special structures such as 

the M. oryzae biotrophic interfacial complex (BIC) (Mosquera et al., 2009), from where 

they may be translocated into host cells (Khang et al., 2010). Also in the case of 

oomycetes such as Phytophthora (Kamoun, 2006, Whisson et al., 2007) and true fungi 

such as Blumeria graminis (Ridout et al., 2006) and Melampsora lini (Catanzariti et al., 

2006), the extrahaustorial matrix has been described as a structure that plays a critical 

role in the accumulation and delivery of effector proteins. However, the delivery of 

effectors by fungal appressoria has not been previously reported. 

 

ChEC36 was focally secreted to and from the appressorial penetration pore and was 

specifically expressed during plant infection, but not under in vitro conditions (including 

appressoria formed in vitro). These findings suggest that expression of this gene is 

activated by signals derived from the host plant. It is known that several components 

associated with plant surfaces, for example cutin monomers, epicuticular waxes, as well 

as the phytohormone ethylene, can induce the germinating spores and germ-tubes of 

Colletotrichum to differentiate into appressoria (Flaishman and Kolattukudy 1994; Podila 

et al. 1993; Dickman et al. 2003). However, the ability of fully-developed appressoria to 

perceive and respond to plant signals was not previously reported for any fungi. 

Little is known about the mechanisms by which fungi perceive plant signal molecules. In 

M. oryzae, two putative sensor genes, called MoMSB2 and MoSHO1, have been 

described. These genes are expressed during plant infection and required for appressoria 

development. Sensors encoded by these genes are able to detect chemical and physical 

signals on the rice surface, activating the protein kinase gene PMK1 involved in the 

development of appressoria and host penetration. MoMSB2 is able to sense leaf surface 

hydrophobicity and cutin monomer precursors. Momsb2 mutants rarely form appressoria 
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on artificial hydrophobic surfaces. MoSHO1 is important in the perception of leaf waxes, 

and Mosho1 mutants are affected in appressoria formation (Liu et al., 2011). In contrast, 

appressorial development on polystyrene by C. higginsianum was identical to that found 

on A. thaliana leaf tissue (O´Connell et al., 2004, Kleemann et al., 2008), suggesting that 

in this species plant signals are not essential for the induction of appressorium formation 

per se. 

 

It is well known that many genes, not only those encoding effectors, are induced 

exclusively during plant infection. For example, during Uromyces fabae bean infection 31 

in-planta induced genes (PIGs) were identified, from a purified haustorial cDNA library. 

Some of them were involve in nutrient transport and metabolism of carbohydrates (Hahn 

and Mendgen 1997). Similarly, 21 in planta-induced fungal genes were found during 

infection of susceptible wheat leaves by the rust fungus Puccinia tritici. Some of them 

have homology to pathogenicity-related genes expressed by other fungi during infection 

(Thara et al., 2003).  For example, TR24 has homology with a cyclophilin, which is a 

pathogenicity determinant for the rice blast fungus, M. oryzae (Viaud et al., 2002).   

 

Previous ultrastructural studies have demonstrated that plant cell wall material is 

deposited beneath C. higginsianum appressoria even before any penetration into the host 

cell has occurred, when the plant cuticle and cell wall are still intact (Kleemann et al., 

2012). This suggests that the plant is able to detect and respond to the presence of the 

fungus very early, before host cells are penetrated. Similarly, the early expression of plant 

defense response genes also occurs during infection of beans by C. lindemuthianum, 

where appressorium maturation, without penetration, is sufficient to induce plant defense 

responses (Veneault-Fourrey et al., 2005). Therefore, one possibility is that ChEC36 is an 

effector protein that is delivered at an early stage of infection in order to counteract the 

pre-penetration host defenses and to prepare the host cell for subsequent invasion. 

 

In contrast to ChEC36:RFP, ChEC89:RFP and ChEC3:RFP both localized to the surface 

of the biotrophic hyphae, but interestingly, ChEC89:RFP accumulated in small interfacial 

bodies on the surface of the biotrophic hyphae. These interfacial bodies resemble the 
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biotrophy interfacial complex (BIC) formed by the Magnaporthe oryzae, biotrophic hyphae 

where effector proteins accumulate and from where they are believed to be translocated 

into the rice cells (Mosquera et al., 2009; Khang et al., 2010). However, unlike M. oryzae 

biotrophic hyphae, which produce only a single BIC in each infected cell, C. higginsianum 

hyphae are surrounded by numerous interfacial bodies. Further work is needed to 

determine if these structures are associated with effector proteins transfer into the plant 

cell. 

 

In fungi, the mechanisms involved in effector translocation into host cells and the amino 

acids sequences required for targeting proteins to host cells remain mostly unknown. In 

the case of oomycetes, effector transfer into host cells is mediated by the RxLR motif, 

which is similar to a motif present in Plasmodium the malaria parasite effectors,which 

allows translocation of secreted effector proteins into cells of the animal host (Morgan and 

Kamoun, 2007, Whisson et al., 2007). In the case of fungal effectors, transfer across the 

host plasma membrane into the cytoplasm has been described in several cases, although 

the mechanism is not clear. For example, the Avr2 (Six3) effector of F. oxysporum f. sp. 

lycopersici is secreted to the plant xylem but it is recognized by the intracellular resistance 

protein I2, providing indirect evidence of effector movement to the plant cytoplasm 

(Houterman et al., 2009). Rust transferred protein 1 (Uf-RTP1p) from Uromyces fabae 

and a homolog protein (Us-RTP1p) of U. striatus were found not only in the 

extrahaustorial matrix, but also in the cytoplasm and nucleus of infected host cells. These 

proteins were localized through immunocytochemistry (Kemen et al., 2005). Another case 

where translocation of fungal effector proteins has been inferred from their recognition by 

intracellular resistance proteins, is AvrM from Melampsora lini. This effector is secreted to 

the haustorial cell wall initially and five days after infection the effector was detected 

inside the host cytoplasm (Rafiqui et al., 2010).  

 

Using C-terminal RFP fusions with the ChEC3, ChEC36 and ChEC89 effector proteins, I 

did not detect their translocation into the plant cytoplasm. This could be explained by the 

low concentration of the protein in the cytoplasm, making detection by confocal 

microscopy and immunogold labelling impossible. Also an interference with effector 
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translocation due the relatively large size of the mRFP tag (28 kDa) could be considered. 

However, tags of 50 kDa have been used successfully to trace the movement of M. 

oryzae effector proteins into invaded rice cells and their neighbors (Khang et al., 2010). In 

an attempt to increase the detection sensitivity of RFP-tagged effectors by confocal 

microscopy, I tried to concentrate fusion proteins in the plant cytoplasm through 

plasmolysis of infected plant tissue, which causes the plant protoplasts to contract 

(Doehleman et al., 2009, Khang et al., 2010). However, none of the three fluorescent 

fusion proteins were detectable in the plant cytoplasm after plasmolysis.  

 

As an alternative approach to obtain a more intense fluorescence signal, and thus more 

sensitive detection of translocation, I tried a nuclear enrichment strategy by adding an 

NLS signal to the RFP-effector fusion protein (Khang et al., 2010). However, it was not 

possible to detect any RFP signal in nuclei of plant cells infected by transformants 

expressing ChEC36:RFP:NLS. For this effector I could only obtain evidence for highly 

localized movement of ChEC36:RFP into the plant apoplast directly beneath appressoria. 

Taken together, these findings suggest that ChEC36 should be classified as an apoplastic 

effector, which may act in the plant extracellular space (Stergiopoulos and deWit, 2009). 

Consistent with this, ChEC36 contains a relatively large number of cysteine residues (9). 

The presence of a high number of cysteines has been described as an important 

characteristic of effector proteins secreted to the plant apoplast, conferring greater protein 

stability by forming disulphide bridges that prevent degradation by plant proteases in the 

apoplast (Kamoun, 2007).  

 

Examples of well-characterized apoplastic effectors are Avr2, Avr4, Avr4E, and Avr9 from 

Cladosporium fulvum, which are recognized in tomato by resistance genes Cf-2, Cf-4, Cf-

4E, and Cf-9, respectively  (Joosten et al., 1997, 1999, Rooney et al., 2005, van den Burg 

et al., 2006). Avr2 inhibits at least four tomato cysteine proteases including Rcr3 (Rooney 

et al., 2005), Avr4 protects C. fulvum against tomato chitinases during infection (van den 

Burg et al., 2006), Avr4E triggers Cf-4E-mediated HR and Avr9 has necrosis-inducing 

activity (Kooman-Gersmann et al., 1998). In the case of Fusarium oxysporum f.sp 

lycopersici (Fol), at least 11 apoplastic effectors were identified and called Secreted In 
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Xylem (SIX) proteins (Houterman et al., 2007, Lievens et al., 2009). Avr2 (Six3), Avr3 

(Six1) and Six6 contribute to Fol virulence (Rep, 2005, Houterman et al., 2009). 

 

RFP-tagging revealed that ChEC3 and ChEC89 localize to the surface of biotrophic 

primary hyphae, but not necrotrophic secondary hyphae. Interestingly, the fluorescent 

labelling of primary hyphae persisted after the switch to necrotrophy, when the hyphae 

are in dead plant cells without an intact plasma membrane. This may indicate that these 

effector proteins may become associated with, or cross-linked onto, the fungal cell wall. 

However, after plasmolysis of plant cells infected with biotrophic hyphae expressing 

ChEC89:RFP or ChEC3:RFP, I was able to detect fluorescence in the enlarged plant 

apoplast between the fungal cell wall and the retracted plant plasma membrane. This 

suggests ChEC89 and ChEC3 are, at least partially, soluble secreted proteins that are not 

incorporated into the fungal cell wall or extracellular matrix permanently. 

5.3 Putative effector functions 

The function of the ChEC3, ChEC6, ChEC36 and ChEC89 effectors is unknown. 

However, different approaches used in this work suggest that these ChECs can suppress 

plant defense. Thus, ChEC3 and ChEC89 improved the growth and multiplication of 

Pseudomonas syringae inside Arabidopsis leaves using the effector detector vector 

(EDV) assay. Similarly, it has been shown that the ATR1 and ATR13 effector proteins of 

Hyaloperonospora parasitica are able to increase virulence of Pst DC3000 in susceptible 

Arabidopsis plants (Sohn et al., 2007). Likewise, the P. syringae effector AvrRp2 is able to 

increase bacterial growth in Arabidopsis plants that lack the resistance gene RPS2 (Kim 

et al., 2005, Chen et al., 2000). Moreover, in Phytophthora infestans a family of RxLR 

effectors called AVRblb2 have been shown to promote bacterial virulence in the EDV 

assay (Bozkurt, et al., 2011). Recently it was shown that AVRblb2 is localized in the plant 

plasma membrane around haustoria in infected cells. AVRblb2 targets C14, a host 

secreted papain-like cysteine protease involved in plant defense by preventing its 

secretion into the apoplast. N. benthamiana plants expressing GFP:AVRblb2 support 

increased virulence of P. infestans, as shown by higher levels of colonization and 

sporulation relative to control lines (Bozkurt et al., 2011). In Albugo laibachii, three 

different kinds of effector proteins were described with the amino acid motifs RxLR, RxLQ 
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and CHxC. P. syringae pv. tomato was transformed with constructs containing effectors of 

each type to be delivered into plant cytoplasm by the EDV system. It was found that both 

RxLR2 and CHxC effectors were able to enhance bacterial growth, perhaps by 

suppression of the host resistance mechanisms (Kemen et al., 2011). 

 

My results obtained using the EDV assay suggest that ChEC3 and ChEC89 are able to 

interfere with mechanisms of plant defense against bacteria. Thus, the amount of 

bacterial growth reached in leaves receiving either of these two effectors was 

approximately 100-fold greater than in leaves receiving the control protein (YFP). 

Previously it was shown that C. higginsianum is able to suppress callose deposition 

during the early stages of Arabidopsis infection (O´Connell et al., 2004). Therefore, it is 

possible that ChEC3 and ChEC89 are targeting host proteins in the pathway of PAMP-

trigged immunity (PTI) which are involved in plant defense against both bacteria and fungi 

(Sohn et al., 2007). 

 

In addition, I found that ChEC3, ChEC6 and ChEC36 can significantly suppress plant cell 

death induced by ChNLP1. ChEC3 is homolog to the putative effector CgDN3 from C. 

gloeosporioides (Stephenson et al., 2000). CgDN3 mutants elicited a hypersensitive-like 

response on the susceptible host plant Stylosanthes, leading to the suggestion that 

CgDN3 can suppress HR cell death, permitting to the pathogen establish/maintain the 

biotrophic phase. Using the CgDN3 promoter to drive GFP expression, Stephenson and 

co-workers (2000) also provided evidence for the early expression of CgDN3 but not in 

the necrotrophic stage. ChEC3 follows the same early pattern of expression and possibly 

it also functions in maintaining biotrophy by suppressing plant cell death. Since ChNLP1 

itself is not expressed at this early infection stage, ChEC3, ChEC6 and ChEC36 may 

function to suppress cell death triggered by other factors. 

 

NLPs cause plant cell death by disrupting the plasma membrane of dicotyledoneous 

plants, producing symptoms similar to those caused by normal host infection. This 

damage is believed to be perceived by the plant through the release of damage-

associated molecular patterns (DAMPs), resulting in the activation of plant immunity 
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(Matzinger et al., 2007, Denoux et al., 2008). It has been reported that NLPs activate the 

expression of genes related to the production of ethylene, phytoalexins, reactive oxygen 

species and activation of mitogen actived protein kinases (MAPKs). Many of these plant 

defense responses are also activated by the bacterial PAMP, flagellin flg22 (Felix et al., 

1999, Gomez et al., 1999, Qutob et al., 2006). It was reported by Qutob, 2006 and 

collaborators that there is extensive overlap between the genes expressed by Arabidopsis 

plants in presence of flg22 and NLP1-like proteins from P. parasitica (Qutob et al., 2006). 

In addition, NLP1 was able to trigger immune responses as callose deposition, nitric oxide 

production and ethylene and MAPKs in Arabidopsis (Qutob et al., 2006). It is possible that 

ChEC3, ChEC6 and ChEC36-1 interfere with those pathways. Previously one effector, 

SNE1 (Suppressor of NEcrosis1), from P. infestans has been reported to suppress host 

cell death caused by NLPs from P. sojae and P. infestans (Kelley et al., 2010), which are 

known to trigger plant defence responses and host cell death in tomato and Nicotiana 

(Qutob et al, 2006; Pemberton and Salmond, 2004; Kanneganti et al., 2006). 

 

The observations that ChEC3 and ChEC89 were able to increase bacterial growth in wild-

type Arabidospsis Col-0 plants, while ChEC3, ChEC36-1 and ChEC6 suppressed the cell 

death triggered by ChNLP1, suggest that these effectors could interfere with plant 

defense pathways activated against both bacterial and fungal PAMPS. 

 

However, I also obtained evidence that the HR cell death caused by the  recognition of 

the bacterial effector AvrRPS4 by the resistance protein RPS4 may be suppressed by 

ChEC3, ChEC6 and ChEC36, consistent with their ability to suppress ChNLP1-induced 

cell death. This finding suggests that these effectors could interfere in both types of plant 

cell death. The SNE1 (Suppressor of NEcrosis1) effector from P. infestans was similarly 

able to suppress both cell death caused by NLP1 proteins and the HR initiated by Avr-R 

protein interactions from a broad spectrum of pathosystems, including oomycetes 

(Avr3a/R3a), bacteria (AvrPto/Pto), fungi (Avr9/Cf9) and viruses (CP/Rx2) (Kelley et al., 

2010). 
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Bacterial T3SS effectors from Pst such as AvrPtoB (HopAB2), HopE1, HopF2, HopX1 

(AvrPphE) and HopAM1 (AvrPpiB1), were able to suppress HopA1-induced HR in 

Arabidopsis when they were expressed in P. fluorescens (Jamir et al., 2004). Moreover, 

when P. fluorescens, which cannot inject any type III secreted effectors and is not able to 

elicit an HR, was inoculated into Arabidospsis Col-0 plants it triggered callose deposition. 

When the same strain was used to express AvrPtoB, HopE1, HopF2, HopX1, or HopAM1 

into A. thaliana Col-0, all of them were able to suppress callose deposition (Guo et al., 

2009).  Therefore, it appears that pathogen effectors can interfere with similar targets 

necessary for both the ETI and PTI pathways of plant defense. 

 



 

 
 

6. Conclusions and perspectives 

 

In this work it was possible to characterize a set of C. higginsianum effectors candidates 

(ChECs). It was shown that they are specifically expressed during plant infection but not 

during in vitro conditions. This suggests that these effector genes are induced by plant 

signals and may play roles in the infection process that favour pathogenicity. Important 

future goals will be to understand the nature of the plant signal(s) inducing effector gene 

expression and how they are sensed by the pathogen. A better understanding of the 

mechanisms of host perception by plant pathogenic fungi is likely to provide novel 

strategies for the control of many economically important crop diseases through chemical 

intervention or plant breeding. 

 

A novel finding was that ChEC36 localized precisely to the appressorial penetration pore.  

This localization suggests a new function for appressoria in addition to their long- 

established roles in adhesion and turgor-driven penetration, namely the local release of 

effector proteins at a nanoscale interface formed by the penetration pore. In the case of 

ChEC3 and ChEC89, these effectors were localized in interfacial bodies resembling the 

BICs found in M. oryzae-rice infections. The role of these structures in effector 

translocation requires further investigation.  

 

Although I could not find any RFP-tagged ChECs in the plant cytoplasm, some were 

active in suppressing ChNLP1-induced cell death and/or improving bacterial growth when 

they were delivered or expressed directly in the plant cytoplasm. This raises the possibility 

that these effectors are indeed translocated into host cells in vivo, but addition of the large 

RFP tag alters their mobility. The use of antibodies raised against native ChEC proteins or 
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peptides for immunolabelling could be an option for more accurate ChEC localization in 

future experiments. 

 

The NLP1-induced plant cell death suppression by some ChECs might indicate that they 

were able to interfere with plant defense pathways activated in response to PAMPs, since 

NLP1-induced plant defences overlap with plant responses to PAMPs (Qutob et al., 

2006). Some ChECs may also be involved in the suppression of ETI, because they 

decreased ion leakage from leaf tissues where the interaction between AvrRPS4 and 

RPS4 had produced an HR response. However, their ability to interfere with ETI now 

requires further confirmation using different Avr-R gene combinations and different 

assays, e.g. using the model Pto–AvrPto interaction in tomato (Tang et al., 1996). 

Furthermore, it would be interesting to use Arabidopsis Ws-0 plants to determine whether 

the delivery of ChECs through the bacterial T3SS using P. fluorescens triggers an HR due 

to their recognition by the anthracnose resistance genes RRS1 and RPS4. 

 

Future approaches that could be used to study the biological function of the ChECs 

include: (a) targeted gene knock-outs to test their role in fungal virulence; (b) yeast two-

hybrid (Y2H) screens to identify potential plant targets of these effectors; and (c) ChECs 

expression of the in stable transgenic Arabidopsis plants, which could be used in various 

assays to determine the effect on PTI and ETI responses, including resistance to non-

adapted pathogens. 

 
 



 

 
 

7. Annexes 

Annex 1. Primer sequence used 
 

Fluorescent protein tagging of ChECs 

pChEC36-fw 
 

CACCCTGGCTCAACAGTAGTTCCTAATTC 

ChEC36-rev without stop codon AATAAGCCAAGAAAAGGCATTTAG 

pChEC3-fw 
 

CACCACTAACATGCTCTCACGTAGGAACT 

ChEC3-rev without stop codon ACATTTAAACTTTCCACAGTGTGCT 

pCHEC89-fw 
 

CACCTACACTGTAGTAAGCCCACTGTTAC 

CHEC89-rev without stop codon AGGGCACTAGAGATCAACCCATTGTTA 

Cloning of protein coding sequences 

ChEC3 ORF –SP fw without signal peptide CACCATGCTCCCTGCCAATAAGCATATAGG 

ChEC3 ORF rev with stop codon TCAACATTTAAACTTTCCACAG 

ChEC36 ORF fw without signal peptide CACCATGGTGGTCATTCCTCTCTCTCAAGTTG 

ChEC36 ORF rev with stop codon TTAAATAAGCCAAGAAAAGGCATTT 

CHEC89 ORF fw without signal peptide CACCATGCAGTTCTTCAACGCCATCATCGTTTTCG 

CHEC89 ORF rev with stop codon TTAAGGGCAGCTCCAGTAGG 

ChEC6 ORF-SP fw without signal peptide CACCATGTCGCCTGTCTCTGAGCGCGCCATTGG 

ChEC6 ORF-SP rev with stop codon TTAGCCGAGGACTTGCTTGGGATCAGC 
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Annex 2.  Primers used for qRT-PCR 
 

 

Name Forward  Reverse 
Amplicon 

length (bp) 
Efficiency 
(%) 

α tubulin GAGCGCCCTAACTACGAGAA CGAAGCAGGACATGGTCATC 232 103 

Actin CCCCAAGTCCAACAGAGAGA CATCAGGTAGTCGGTCAAGTCA 238 100 

ChEC3 CGCTCTTCCCTTTACAACCA ATATTCCACGCCCACACATT 153 106 

ChEC6 CGCCATTCTTGCCATCATT GAGGACTTGCTTGGGATCAG 256 106 

CHEC89 TGGAACACCGGCAACTATG TAAGGGCAGCTCCAGTAGG 119 106 

ChEC36  TTTGTGCCAACAACGAAGTC ATTGGGTCTGTCCTCCATTG 106 115 
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