
The Graph Pattern Matching Problem
through Parameterized Matching

Juan Carlos Mendivelso Moreno

Universidad Nacional de Colombia
School of Engineering, Department of Computer Science and Industrial Engineering

Bogotá, Colombia
2015

The Graph Pattern Matching Problem
through Parameterized Matching

Juan Carlos Mendivelso Moreno

Dissertation presented as partial requirement to grant the title of:
Doctor of Philosophy – Computer Science

Advisors:
Yoan Pinzón, PhD and Sameh Elnikety, PhD

Research Area:
Theoretical Computer Science

Research Group:
ALGOS-UN

Universidad Nacional de Colombia
School of Engineering, Department of Computer Science and Industrial Engineering

Bogotá, Colombia
2015

(Dedication)

In the loving memory of my dear grandpa Martı́n Mendivelso. I thank him very much for his love
and his scientific genes.

Also, I could not have made this without my dear mother. Her infinite love and support is what
has brought me this far. I will never be able to give back to her all the incredible things she has
done for me, but I will try. My love for her is infinitely deep.

I am so lucky to have another wonderful mother: Libby. We have had a really special connection
since I was born. I thank her for her unconditional love and support. My love for her has no
boundaries.

I love my Dad infinitely. Feeling his love and that he is proud of me fills my heart. I appreciate
that my dear brother Diego is also proud of me. I deeply love him.

I thank Anna Sylvia for her incredible love and support since the day I was born. Also, I thank
Fucci, my baby, for teaching me what love, beauty, tenderness, loyalty and joy are. I love Isaurah,
Starr, Marujah, Johanna, Linna, Matthew and all my family too.

It is a true blessing to have been friends with Fábiko for more than 13 years already. His friendship
has pulled me through more than once. I truly love him and appreciate him.

I will always be grateful with Mónica Sierra Riveros for what she did for me, no matter what. I
will love her forever. I cannot thank Patricia Muethe enough. She loved me back to life. She has
been there when I have needed her most. I love her.

I thank Patricia Torres and Marcela Pabón for their wonderful support.

I also thank John Paul (X2), Myrtha, Andrew and Helen, for their friendship. I appreciate my dear
friends at the E-Theater. Their impact in my life has been enormous. I have done some of the
things I love the most with them. And all in a nurturing environment.

Acknowledgements

First of all, I want to thank Yoan Pinzón. Besides being an excellent advisor and professor, he
is a wonderful person. I have the deepest respect and gratitude for him. I thank him for his in-
credible guidance and support throughout my MSc and my PhD. And of course, I thank him for
introducing me into the research world and helping me launch my career.

Also, I want to thank my co-advisor Sameh Elnikety. I thank him very much for everything. Wor-
king with him has taken my career to another level. I thank him for his guidance, insight, patience,
support, generosity and kindness. He is a great person; I feel fortunate to have him as the co-advisor
of this thesis and to keep learning from him.

I want to thank all the co-authors throughout my career, including Seung-won Hwang, Yuxiong He,
Inbok Lee, Xing Xie, Luis F. Niño, Juana Córdoba, David Becerra, Camilo Pino and Sunghwan
Kim. I have learned much from working with them and I appreciate all their incredible contribu-
tions.

I truly appreciate the wonderful work of the professors at the Computer Science Department of
the National University of Colombia. I appreciate the great quality of the education they provide.
They definitely do much for the students’ lives and for the development of the country.

I also thank the marvellous research groups I have been a part of for long time: ALGOS-UN and
LISI.

Furthermore, I want to thank everyone at Fundación Universitaria Konrad Lorenz. I have felt really
well working with them. Also, I appreciate your support in the final stage of this thesis.

I deeply thank Microsoft Research for the opportunity of doing a research internship at the Red-
mond labs. I learned a lot there and also met very nice people.

I am grateful with the National University of Colombia for all my undergraduate and graduate
education. I owe a lot of what I am to this wonderful university that has allowed me to grow as a
computer scientist, researcher and professor.

VIII

Finally, I want to thank different entities of the National University of Colombia, such as the Re-
search Direction of Bogotá, the Postgraduate Curricular Direction and the Vice-dean of Research,
for the funding provided for the academic trips. Also, I want to thank the Academic Direction of
Bogotá for the Assistant Professor Scholarshiph throughout my MSc and PhD.

IX

Abstract
We propose a new approach to solve graph isomorphism using parameterized matching. Para-
meterized matching is a string matching problem where two strings parameterized-match if there
exists a bijective function, on the symbols of the alphabet, that maps one of the strings into the
other. Given that parameterized matching is defined for linear structures, we define the concept of
graph linearization to represent the topology of a graph as a walk on it. Then, our approach to
determine whether two graphs are isomorphic consists of determining whether there exists a walk
in one of the graphs that parameterized-matches a linearization of the other graph.

Our solution has two main steps: linearization and matching. We develop an efficient lineariza-
tion algorithm, that generates short linearizations with an approximation guarantee, and develop a
graph matching algorithm. We show that this solution also works for subgraph isomorphism, which
is the problem of determining whether an input graph H is isomorphic to a subgraph of another
input graph G. We evaluate our approach experimentally on graphs of different types and sizes,
and compare to the performance of VF2, which is a prominent algorithm for graph isomorphism.
Our empirical measurements show that graph linearization finds a matching graph faster than VF2
in many cases, especially in Miyazaki-constructed graphs which are known to be one of the hardest
cases for graph isomorphism algorithms.

We extend this approach to query attributed graphs. An attributed graph is a graph data structu-
re, in which nodes and edges may have identifiers, types and other attributes. Attributed graphs
are used in many application domains, for example to model social networks in which nodes re-
present people, photos, and postings and edges represent friendship, person-tagged-in-photo and
mentioned-in-post relationships. Queries are used to extract information from such graphs. Several
graph queries are expressed as graph pattern matching, which is the problem of finding all instan-
ces of pattern match query P in a larger attributed graph G. A pattern match query may specify
both a graph structure and predicates on the attributes of the graph elements. Clearly, this problem
is associated to subgraph isomorphism.

Furthermore, we define a more general class of graph queries called generalized pattern queries
on attributed multigraphs. The goal of this class is to find paths and subgraphs that satisfy query
reachability and predicates. The query language is expressive: It allows (i) using regular expression
operators (e.g., Kleene star and union); (ii) specifying structural predicates on graph nodes and ed-
ges; and (iii) using attribute predicates on nodes and edges. Pattern match queries, reachability
queries, their combination, and even more queries can be expressed through generalized pattern
queries. We use our approach to solve this new type of queries.

The proposed technique has two phases. First, the query is linearized, i.e., represented as a graph
walk that covers all nodes and edges. There are several linearizations for a given query; we derive

X

heuristics to produce a good linearization that is short and places selective predicates early in the
linearization. Second, we search for a bijective function that maps each element of the query to an
element of the attributed multigraph that satisfies the reachability requirements and the predicates.
Specifically, we develop an algorithm that matches the linearization by traversing the attributed
graph in a manner similar to a breadth first traversal constrained by the linearization. We evaluate
our solution experimentally using a real graph (the DBLP citation network) to assess its practica-
lity and efficiency. Our results show that our techniques and optimizations are effective in querying
attributed graphs, offering several factors of reduction in query response time when graph statistics
are utilized.

Keywords: parameterized matching, graph theory, graph algorithms, graph matching, pattern mat-
ching, graph isomorphism, subgraph isomorphism, attributed graphs, graph queries, social networks.

Resumen
En esta tesis se propone un nuevo enfoque de solución para resolver el problema de isomorfismo
de grafos usando búsqueda parametrizada. La búsqueda parametrizada es un problema de búsque-
da de cadenas de texto en el cual dos cadenas coinciden si existe una biyección que mapee los
sı́mbolos de una cadena en los sı́mbolos de la otra. Dado que la búsqueda parametrizada está de-
finida para estructuras lineales, se define el concepto de linearización de grafos para representar
la topologı́a de un grafo como un camino sobre este. Entonces, la solución para determinar si dos
grafos son isomorfos consiste en determinar si existe un camino en uno de los grafos que haga
coincidencia parametrizada con la linearización del otro grafo.

La solución propuesta tiene dos pasos: linearización y búsqueda. Se presenta un algoritmo eficien-
te que genera linearizaciones aproximadamente óptimas en longitud, y un algoritmo de búsqueda.
Se demuestra que esta solución también resuelve el problema de isomorfismo de subgrafos, en el
cual se determina si un grafo H es isomorfo a un subgrafo de otro grafo G. Se evaluó experimen-
talmente la solución con grafos de diferentes tipos y tamaños. Se comparó su desempeño con el
de VF2, el cual es un algoritmo competitivo de isomorfismo de grafos. Los resultados experimen-
tales muestran que la solución propuesta es más eficiente que VF2 en varios casos, en especial en
grafos Miyazaki, los cuales se caracterizan por constituir uno de los casos más difı́ciles para los
algoritmos de isomorfismo de grafos.

Este enfoque de solución se extiende para resolver consultas sobre grafos semánticos. Un gra-
fo semántico es un grafo en el cual los nodes y arcos pueden tener identificadores, tipos y otros

XI

atributos. Estos grafos tienen aplicaciones importantes en diversas áreas, como por ejemplo pa-
ra modelar redes sociales en las que los nodos representan personas, fotos y publicaciones y los
arcos representan relaciones de amistad, etiquetado y mención. Se usan consultas para extraer in-
formación de estos grafos. Varias de estas consultas se expresan como búsqueda de patrones, la
cual consiste en encontrar las coincidencias del grafo patrón P en un grafo semántico G. El grafo
patrón especifica tanto la estructura de las coincidencias a encontrar, como los predicados sobre
los atributos que deben cumplir los nodos y los arcos de las mismas. Claramente, este problema
está asociado al isomorfismo de subgrafos.

Además, se define un tipo de consultas más general sobre grafos semánticos. Estos nuevos patrones
se denominan grafos patrón generalizados. El objetivo de estos es encontrar caminos y subgrafos
que satisfagan ciertos requisitos semánticos, de estructura y de alcance. Estos patrones son ex-
presivos, pues permiten (i) usar operadores de expresiones regulares (e.g., la estrella de Kleene y
la unión); (ii) especificar predicados estructurales en los nodos y arcos; y (iii) evaluar predicados
sobre los atributos de los nodos y arcos. Los patrones grafo tradicionales, las consultas de alcance,
la combinación de estos y más se pueden representar a través de grafos patrón generalizados. Se
usa el enfoque de solución propuesto para resolver los grafos patrón generalizados.

La solución tiene dos fases. Primero, el patrón es linearizado, i.e., representado como un camino
que incluye todos sus nodos y arcos. Hay muchas linearizaciones para un patrón dado; se proponen
heurı́sticas para producir linearizaciones cortas que ubican los predicados selectivos al comienzo.
Segundo, se busca una función biyectiva que mapee cada nodo en el patrón a un nodo en el grafo
semántico que satisfaga los requisitos de alcance y los predicados. Especı́ficamente, se propone un
algoritmo de búsqueda que recorre el grafo semántico siguiendo una búsqueda en amplitud res-
tringida por la linearización. La solución se evaluó experimentalmente usando un grafo semántico
real (la red de citaciones DBLP) para evaluar su practicidad y eficiencia. Los resultados experi-
mentales muestran que las técnicas y optimizaciones propuestas son efectivas en consultar grafos
semánticos, ofreciendo un alto factor de reducción en el tiempo de ejecución cuando se utilizan las
estadı́sticas del grafo semántico.

Palabras clave: búsqueda parametrizada, teorı́a de grafos, algoritmos de grafos, búsquedas en grafos,
búsqueda de patrones, isomorphismo de grafos, isomorphismo de subgrafos, grafos semánticos, redes
sociales.

Contents

Acknowledgements VII

Abstract IX

List of Figures XVI

List of Tables 1

1. Introduction 2
1.1. Graphs: Concepts and Applications . 2
1.2. Graph Matching Problems . 4
1.3. Applications of Graph Matching . 8
1.4. Parameterized Matching . 9
1.5. Our Contributions . 11

2. Related Work 13
2.1. Solutions for Graph and Subgraph Isomorphism 13

2.1.1. Ullmann’s Algorithm . 13
2.1.2. The VF2 Algorithm . 15

2.2. Queries on Attributed Graphs . 18
2.2.1. Reachability Queries . 18
2.2.2. Pattern Match Queries . 21
2.2.3. Pattern Queries . 21

2.3. Parameterized Matching . 22
2.3.1. Definition of the Basic Problems . 22
2.3.2. Solutions . 24
2.3.3. Extensions . 30
2.3.4. Applications . 33

I. Graph Isomorphism through Parameterized Matching 36

3. Our Approach: Graph Linearization 37
3.1. Definition of Graph Linearization . 37

Contents XIII

3.2. Characteristics and Algorithms for Graph Linearization 39
3.3. Graph Linearization Algorithm - GLA . 40

3.3.1. Key Ideas . 40
3.3.2. Algorithm . 41
3.3.3. Correctness Proof . 43
3.3.4. Length of GLA Linearization . 45
3.3.5. Empirical Comparison on the Length of Different Linearization Algorithms 46
3.3.6. Complexity Analysis . 47

4. Algorithm for Graph Isomorphism 48
4.1. Key Ideas . 48
4.2. Algorithm . 49
4.3. Correctness Proof . 50
4.4. Complexity Analysis . 52
4.5. Experimental Evaluation . 53

4.5.1. Benchmark Graphs . 54
4.5.2. Synthetic Graphs . 55

4.6. PMG-SI: Solution for Subgraph Isomorphism . 57
4.6.1. Algorithm . 58
4.6.2. Experimental Evaluation . 58

II. Queries on Attributed Graphs Solved through Parameterized
Matching 63

5. Generalized Pattern Queries 64
5.1. Graph Model . 64
5.2. Query Model . 65

5.2.1. Prerequisites . 65
5.2.2. Definition of Generalized Pattern Queries 67
5.2.3. Example . 68
5.2.4. Discussion . 68

6. Linearization on Generalized Pattern Queries 71
6.1. Query Linearization . 71
6.2. Enhanced Graph Linearization Algorithm — E-GLA 75

6.2.1. Baseline: GLA for Length-Optimality . 75
6.2.2. Key Ideas . 76
6.2.3. Algorithm . 77
6.2.4. Correctness Proof . 78

XIV Contents

6.2.5. Length of E-GLA Linearization . 79
6.2.6. Complexity Analysis . 80

7. Solution of Generalized Pattern Queries 81
7.1. Key Ideas . 81
7.2. Algorithm . 82
7.3. Correctness Proof . 86
7.4. Complexity Analysis . 87
7.5. Experimental Evaluation . 89

7.5.1. Experimental Setup . 89
7.5.2. Queries on the Complete DBLP Graph 90
7.5.3. Varying Graph and Query Sizes . 92
7.5.4. Efficiency of E-GLA . 94

8. Conclusions 96

Bibliography 99

List of Figures

1-1. Examples of graphs and graph isomorphism . 3
1-2. Example of an attributed multigraph . 4
1-3. Example of graph isomorphism . 5
1-4. Example of a pattern match query . 7
1-5. Example of a parameterized–match between strings 10
1-6. Illustration of the structure of parameterized–matching strings 11

2-1. Procedure prev as an aid for parameterized matching 26
2-2. Example of a parameterized–suffix tree . 27
2-3. Concept map of the parameterized matching algorithms 30
2-4. Example of the application of parameterized matching in software maintenance . . 34

3-1. Pseudocode for the GLA algorithm . 42
3-2. Pseudocode for the TRAVERSEGRAPH() procedure 43
3-3. Examples of graphs with different topology . 46

4-1. Pseudocode for the PMG algorithm . 50
4-2. Pseudocode for the EXTENDMATCH() function 51
4-3. Response time of GLA and VF2 on the benchmark graphs 54
4-4. Response time of GLA and VF2 on sparse and dense synthetic graphs 57
4-5. Pseudocode for the PMG-SI algorithm . 58
4-6. Pseudocode for the EXTENDMATCHSI() procedure 59
4-7. Experimental results of subgraph isomorphism for complete graphs 61
4-8. Experimental results of subgraph isomorphism for path graphs 61
4-9. Experimental results of subgraph isomorphism on graphs of different sizes 61

5-1. Example of an attributed multigraph . 65
5-2. Example of a generalized pattern query . 69
5-3. Example of a reachability query expressed as a generalized pattern query 70
5-4. Example of a reachability query with intermediate nodes of interest 70

6-3. Pseudocode for the E-GLA algorithm . 77
6-4. Pseudocode for the STATSTRAVERSE() procedure 78

7-1. Pseudocode for the GPQM algorithm . 83

XVI List of Figures

7-2. Pseudocode for the PROCESSNODE() procedure 84
7-3. Pseudocode for the FINDREACHABLENODES() function 84
7-4. Example of a DFS search tree traversed by GPQM 85
7-5. Example of the DFA for a (u, v, ρ)–reachability requirement 86
7-6. Experimental results of GPQM on the complete DBLP graph 93
7-7. Experimental results of GPQM for different graph and query sizes 94
7-8. Experimental evaluation of the effectiveness of E-GLA linearizations 95

List de Tables

2-1. Worst-case complexity of solutions for reachability queries 19

3-1. Comparison of the output length of different linearization algorithms 47

4-1. Number of winning cases of GLA and VF2 on the benchmark graphs 55
4-2. Ratio of short-running cases of GLA and VF2 on the benchmark graphs 56

5-1. Reversal of reachability expressions . 67

6-1. Example of the calculation of node selectivity . 78

7-1. Examples of generalized pattern queries on the DBLP graph 91

1. Introduction

Graphs are interesting data structures due to their expressive power that allows them to represent
real-word phenomena in diverse areas. Graphs’ expressive power lies in their ability to represent
different kinds of concepts and the relationships among such concepts. Nowadays, graph-based
models are found in different domains where both concepts and relationships contain rich and
diverse information expressed by types and attributes. In some applications, graphs contain mi-
llions of concepts and it is required to support queries efficiently. However, the growing size of
graph databases and the richness and the variety of their data have made it difficult to resolve this
problem in reasonable time. Given that existing solutions are not able to deal with the current de-
mands, it is quite pertinent to keep exploring new solutions from different approaches in order to
efficiently query large graphs. In this thesis, we apply a string matching technique called parame-
terized matching to evaluate the isomorphism and containment relations between graphs with or
without attributes.

In the rest of this chapter, we examine these problems and their relationships more closely. Specifi-
cally, in Section 1.1, we consider some of the most fundamental concepts and application areas of
graphs. The different variants of the graph matching problem are introduced in Section 1.2. Then,
in Section 1.3, some applications of querying graphs are discussed. The basic concepts of parame-
terized matching are presented in Section 1.4. Finally, in Section 1.5 our contributions are outlined.

1.1. Graphs: Concepts and Applications

A graph G = (V,E) consists of a set V of nodes (or vertices), n = |V |, and a set E of edges,
m = |E|, where the edges are ordered pairs of the nodes that represent links between them, i.e.,
E ⊆ V ×V . Let EG = V ∪E denote the set of graph elements ofG, i.e., the set of nodes and edges
in G. In Figure 1-1, three examples of graphs are presented. For more generality, in this thesis we
consider multigraphs. A multigraph is a graph where multiple edges between two distinct nodes
and self loops are permitted. We distinguish the edges that have the same end nodes by the notation
of the edge; for example, e = (u, v) and e′ = (u, v).

Multigraphs are useful for representing sets of entities of different kinds and their relationships.
Some of the domains where multigraphs can be found include the Semantic Web [131], the world-
wide web [3], communication networking [20], social networking [114], interactive gaming [91],

1.1 Graphs: Concepts and Applications 3

A B

C D

E

F G

H I
J

K ML

N O P

(a) (b) (c)

Figure 1-1.: Examples of graphs. Graphs (a) and (b) are isomorphic. There exists a subgraph in
graph (c) that is isomorphic to graph (a) and (b).

geographic information systems [98], pattern recognition [126], pattern analysis [146], computer
vision [65], artificial intelligence [118], information retrieval [119], knowledge discovery [100],
data mining [153], electronics [138], computer aided design [86], chemoinformatics [67] and bio-
informatics [92]. For instance, multigraphs are used to provide structural descriptions of images by
decomposing them into different components that are modelled through nodes and the relations-
hips of such components are modelled through edges [44]. Some of the types of images that have
been described in this way are handwritten characters, ideograms and symbols [45]. On the other
hand, in bioinformatics, several types of information can be represented through multigraphs: a
protein structure, considering the set of residues as the nodes and their spacial proximity as the
edges, or a protein interaction network where the nodes represent the proteins and the edges repre-
sent the physical interactions [78].

However, multigraphs are not only useful to represent real-world phenomena with nodes of the
same type connected by edges of the same type. In many applications, it is necessary to use multi-
graphs with attributes, called attributed multigraphs, which are multigraphs where both the set of
nodes and the set of edges are sets of entities with different types and characteristics. For example,
if the domain is music, we may have an information network where node types are singer, song
and album, and edge types are performs and containedIn to connect singer with song and song
with album, respectively. The attributes of singer may be name, birthday and website while the
attributes of album may be name, length and year. Moreover, there is an ontology associated to
an attributed multigraph that establishes the possible concepts, the types of relationships permitted
between two types of concepts and the restrictions on the attributes of both concepts and relations-
hips [69]. For instance, the ontology associated to the multigraph of our running example would
forbid a relationship of type performs between concepts of types album and song.

Another important area where attributed multigraphs are used is social networks. For instance, in
Figure 1-2, we show an example of a social network where nodes represent people and photos

4 1 Introduction

while edges establish friendship and person-tagged-in-photo relationships.

id = Photo 2
type = photo

location = NYC

frien
d

friend
ta

g

ta
g

friend

id = Dave
type = person

sex = male

id = Photo 3
type = photo

id = Bob
type = person

sex = male

id = Alice
type = person
sex = female

id = Chris
type = person

sex = male

id = Photo 1
type = photo

tag

tag
tag

tag

Figure 1-2.: Example of a social network represented as an attributed multigraph.

Considering the great amount of information that is represented through multigraphs nowadays,
in these and in several other areas, the problem of querying multigraphs has significantly gained
importance in recent years. In the next section, we introduce the main concepts of graph matching.

1.2. Graph Matching Problems

There are different problems associated to matching multigraphs. We first consider the general
problems tackled in theoretical computer science and then the problems of practical interest for at-
tributed multigraphs. The most basic problem is graph isomorphism which consists of determining
whether two multigraphs have the same structure, i.e., there exists a bijection that associates the
nodes/edges of the two multigraphs such that the adjacency relation is preserved. More formally,
graph isomorphism can be defined as follows.

1.2 Graph Matching Problems 5

V1 E1 A B C D E e1 e2 e3 e4 e5 e6

X Y Z W Sf1
e1 e2 e3 e4 e5 e6
' ' ' ' ' '

U

X Y Z W Sf2
e1 e2 e3 e5 e4 e6
' ' ' ' ' '

(c)

e1
e2

e3

e4 e5

e6

A

B C

D

E

V1G1 E1(,) V2G2 E2(,)

(a) (b)

X

Y Z

W

S

e1

e2'
'

e6
'

e5
'

e4
'

e3
'

Figure 1-3.: Isomorphism example: the multigraphs presented in (a) and (b) are isomorphic; the
functions that define the isomorphism are presented in (c). The difference between f1
and f2 is that f1(e4) = e′4 and f1(e5) = e′5 while f2(e4) = e′5 and f2(e5) = e′4.

Problem 1 (Graph Isomorphism). Let G1 = (V1, E1) and G2 = (V2, E2) be two multigraphs such
that n = |V1| = |V2| and m = |E1| = |E2|. The Graph Isomorphism problem determines whether
there exists a bijective mapping function f : EG1 → EG2 , such that

∀u,v∈V1 , e = (u, v) ∈ E1 ⇐⇒ f(u), f(v) ∈ V2 ∧ f(e) = (f(u), f(v)) ∈ E2 (1-1)

For example, the multigraph in Figure 1-1(a) is isomorphic to the multigraph in Figure 1-1(b) un-
der the bijection f : (A,B,C,D,E) → (H,F, I,G, J). Other example of graph isomorphism is
presented in Figure 1-3(a,b); furthermore there are two possible mapping functions that define the
isomorphism (see Figure 1-3(c)). A closely related problem is subgraph isomorphism.

Problem 2 (Subgraph Isomorphism). Let G1 and G2 be two multigraphs. The Subgraph Isomorp-
hism problem consists of determining whether there exists a subgraph in G2 isomorphic to G1.

For example, if we remove the node P and its adjacent edges from the multigraph in Figure 1-1(c),
we obtain a multigraph that is isomorphic to the multigraphs presented in Figures 1-1(a) and (b).
A naive solution for these problems could search for all the possible mappings; however, its search
space is exponential.

A lot of research about both graph and subgraph isomorphism has been carried out. Interestingly,
even though subgraph isomorphism has been proven to be NP-Complete, the exact complexity of
graph isomorphism has not been determined yet [44]. Due to the similarity of the problems, most
of the existing solutions solve both of them. In particular, Ullmann’s algorithm [148] is the traditio-
nal solution. Notwithstanding, a more recent algorithm, called VF2, experimentally outperformed

6 1 Introduction

Ullmann’s algorithm for many cases [44]. On the other hand, the NAUTY algorithm [102] is anot-
her traditional solution for only graph isomorphism. These algorithms have exponential worst-case
performance since isomorphism is a hard problem. Except for some easy cases, solving isomorp-
hism generally takes much longer time if there is no match; in such case, all the possible mappings
are progressively searched until shown not to lead to an isomorphism. Several heuristics, howe-
ver, are employed to find likely mappings quickly. A good algorithm for determining isomorphism
should quickly find isomorphic multigraphs in many cases. In this thesis, we propose a new ap-
proach to solve both graph and subgraph isomorphism that makes use of some heuristics to detect
isomorphism at an early stage of the search.

On the other hand, some models of interesting queries on attributed multigraphs have been propo-
sed. Particularly, reachability queries consist of determining whether two nodes in the multigraph
are somehow connected through an unrestricted path. For example, considering the multigraph of
Figure 1-2, we can say that Photo 3 is reachable from Alice as one of her friends is tagged in such
photo. Besides large-scale social networking, reachability queries have important applications in
several other areas. For instance, on biological multigraphs, it is relevant to find genes whose ex-
pressions are influenced by a given molecule [149]. Moreover, reachability queries are also useful
to query XML databases and domain ontologies [84].

In recent years, special types of constrains, like the permitted edge types on the connecting path,
have been included in reachability queries [83]. For example, considering the attributed multigraph
of Figure 1-2, we might want to know whether Dave is connected to a female using friend edges,
i.e., whether there is a female in his network. The output is true as Alice can be reached through
paths coming from either Bob or Chris. Later, reachability queries were extended to support regu-
lar expressions that establish the edges types on the connecting path [59]. However, such regular
expressions have limited expressive power as they do not support the Kleene operator nor predica-
tes on intermediate nodes. Then, a model that supports these features was developed [127, 128].

Other type of queries on attributed multigraphs is pattern match queries. Each pattern match query
is a query multigraph that searches for matches in an attributed multigraph such that: (i) the ad-
jacency relation of the matches is the same as the one of the query; and (ii) each node/edge in
the query specifies a predicate to be satisfied by its corresponding node/edge in the match. More
formally, the problem of finding all the matches can be defined as follows.

Problem 3 (Pattern Match Query Problem). Let P be a pattern match query andG be an attributed
multigraph. The Pattern Match Query problem consists of finding the set of subgraphs of G that
are isomorphic to P , and whose graph elements satisfy the predicates on the corresponding graph
elements in P .

This problem is clearly associated to subgraph isomorphism; thus, it can be solved with straight-

1.2 Graph Matching Problems 7

forward adaptations of subgraph isomorphism algorithms that include predicate evaluations. For
example, in Figure 1-4(a), we show a pattern match query that aims to find a pair of friends, where
one of them is a female, that are tagged in a photo. The output of this query on the attributed mul-
tigraph of Figure 1-2 is presented in Figure 1-4(b) and (c).

ta
g

friendtype = person
sex = female

type = photo
tag

friendid = Alice
type = person
sex = female

id = Bob
type = person

sex = male

id = Photo 1
type = photo

ta
g

friendid = Alice
type = person
sex = female

id = Chris
type = person

sex = male

id = Photo 2
type = photo

location = NYC
tag

(a)

(b)

(c)

type = person

ta
g tag

Figure 1-4.: Example of a pattern match query for the attributed multigraph presented in Figure 1-
2. (a) Pattern match query. (b, c) Output reported.

Later, a new type of query on attributed multigraphs was introduced [59]. These queries, called
pattern queries, constitute a combination of reachability and pattern match queries. Specifically,
the queries are multigraphs where each node is associated to a predicate and each edge, along with
its end nodes, establishes a reachability query. The output is associated to the set of nodes in the
attributed multigraph that correspondingly satisfy both the predicates and the reachability queries
in the query graph. However the output expressed corresponds to the set of global matches for each
edge, i.e., reachability query in the query graph [59]. Then, the relative relationships between the
nodes presented in the output is not easy to interpret. Moreover, these queries do not support the
Kleene operator nor predicates on intermediate nodes [59].

8 1 Introduction

In this thesis, we introduce generalized pattern queries as a new type of queries that evaluates
attribute predicates, structural requirements and reachability requirements. These queries, besides
allowing edge-to-path mappings, also support predicates on intermediate nodes/edges and opera-
tors like union and the Kleene star in the reachability requirements. Moreover, the output produced
is easy to interpret: it consists of the set of all the solution instances where each instance is an
ordered set of nodes that correspondingly satisfy the nodes in the query; thus, the relative rela-
tionships between the output nodes from each solution instance and the query is straightforward to
determine. Then, the graph matching problems we consider in this thesis are graph isomorphism,
subgraph isomorphism, solving pattern match queries and solving generalized pattern queries. In
the next section, we discuss some applications of these problems.

1.3. Applications of Graph Matching

The graph matching problems have applications in different domains [78, 159]. Some examples
are shown below:

To find all heterocyclic chemical compounds that contain a given aromatic ring and a side
chain. In this context, chemical compounds are modelled as graphs where the nodes represent
atoms and the edges represent bonds.

To find all protein structures that contain an α-β-barrel motif that is specified as a cycle of β
strands embraced by another cycle of α helices [27].

To determine whether a protein complex query from one species is functionally conserved
in another species. The protein complex can be represented as a graph where the nodes are
proteins labelled by Gene Ontology.

To find all the instances from a Resource Description Framework (RDF) graph where two
departments of a company share the same shipping company. The nodes are of type depart-
ment and company and the edges of type shipping.

To locate the occurrences of a suspicious bug that arises as a distortion in the control flow
within a large software system that can be represented as a large static or dynamic call graph
[55].

To find all the co-authors from a bibliographic information network, such as DBLP, in a spe-
cified set of conference proceedings.

Furthermore, there are many other applications of graph matching in different areas including: 2D
and 3D image analysis [135, 96, 150, 144], image database [80, 121], video analysis [133, 71, 125],

1.4 Parameterized Matching 9

document processing [62, 66, 94], biometric identification [140, 57] and biomedical engineering
[152, 64]. More information on such applications is provided in a recent survey [43].

1.4. Parameterized Matching

In this section, we introduce string matching as we propose to use it to solve the graph matching
problems. String matching is definitely one of the foremost and most basic and useful computatio-
nal primitives [8]. The input to the string pattern matching problem consists of two strings: the
pattern P = P1...m and the text T = T1...n. The output should list all the occurrences of the pattern
in the text, i.e., all the positions i in T such that Pj = Ti+j−1 for all 1 ≤ j ≤ m. Note that the
symbols in the strings are chosen from some set which is called an alphabet. An alphabet could
be any collection of symbols and it is normally drawn from a set of pre-existing characters which
is habitually designated as the common ASCII1 code set. Over the years, several variants of this
problem have been proposed in order to support a wider range of applications. For instance, in the
early nineties, a string matching variant called parameterized matching was proposed as an aid to
detect duplicate code in large software systems.

Duplication in code occurs when there are some sections of code that are exactly equal (such as
literals and reserved keywords) and some other sections of code that are the same, except for a
systematic change of parameters (such as identifiers or constants). Then, the code can be seen as
a string of tokens, where each token belongs to either of the following alphabets: (i) an alphabet
ΣC of constant symbols for the tokens of code sections that remain exactly the same; and (ii) an
alphabet ΣP of parameter symbols for the tokens of code sections that could have the mentioned
systematic change. Then, the parameterized matching problem can be defined as follows.

Definition 1 (Parameterized-Match). Let ΣC be the constant symbol alphabet and ΣP be the pa-
rameter symbol alphabet, where ΣC and ΣP are disjoint. Two length–` strings X = X1...` and
Y = Y1...`, defined over (ΣC ∪ΣP)∗, are said to be a parameterized–match, or a p–match, if there
exists a bijective function g : ΣC ∪ ΣP 7→ ΣC ∪ ΣP such that g(Yi) = Xi, 1 ≤ i ≤ ` so that g is
identity for the the symbols from ΣC .

In other words, X and Y are a p-match if one string can be transformed into the other by renaming
its parameters through a bijective function g : ΣC ∪ΣP 7→ ΣC ∪ΣP , such that g is identity for the
constant symbols. Note that, g can be chosen from |ΣP |! different possible mapping functions. As
an example, Figure 1-5 shows two equal-length strings X = xbyyxbx and Y = zbxxzbz defined
over ΣC ∪ ΣP , where ΣC = {b} and ΣP = {x, y, z}. In Figure 1-5(a), the 6 possible bijecti-
ve functions from the symbols in Y to the symbols in X are shown. We conclude that X and Y

1American Standard Code for Information Interchange.

10 1 Introduction

parameterized-match because there is a function, specifically r, such that r(Yi) = Xi for every
1 ≤ i ≤ 7, and the only constant symbol, b, has an identity mapping, i.e., r(b) = b.

(a)

1 2 3 4 5 6 7

Y z b x x z b z

b x y z

§C §P

b x y z

r(Y) x b y y x b x

X x b y y x b x

1 2 3 4 5 6 7

(b)

s f(s) g(s) h(s) r(s) s(s) t(s)

§C b b b b b b b

§P

x x x y y z z

y y z x z x y

z z y z x y x

= = = = = = =

r

Figure 1-5.: Example of a parameterized-match between the strings X = xbyyxbx and Y =
zbxxzbz both defined over ΣC ∪ ΣP , where ΣC = {b} is the constant alphabet
and ΣP = {x, y, z} is the parameter alphabet. (a) All the 6 possible bijective fun-
ctions from the symbols in Y to the symbols in X such that the constant symbol has
an identity mapping. (b) Successful attempt to transform Y into X through r.

Furthermore, two equal-length strings X and Y that parameterized-match have the same structu-
re. Let us suppose that i and j are the only occurrences of the symbol α in Y . Then, the exis-
tence of a bijective function g that maps the symbols in Y to the symbols in X implies that
g(α) = Xi = Xj = β and that β has no other occurrences in X . As this applies for all the
distinct symbols α in Y , we can conclude that the following facts hold: (i) X and Y have the same
number of distinct symbols; (ii) the first occurrence of each distinct symbol α in Y takes place in
the same position of the first occurrence of the symbol g(α) in X; and (iii) the relative distances
among the different occurrences of each α in Y are the same relative distances among the occu-
rrences of g(α) in X . Therefore, two strings that parameterized-match have the same structure,
i.e., they are the same except for a systematic change of the symbols. We illustrate these properties
for our running example in Figure 1-6. For instance, notice that the first occurrence of x in Y is at
position 3 and its second occurrence is one position away; the occurrences of y in X take place at
corresponding positions.

In 1993, Brenda Baker [15] was the first researcher to have addressed this problem, and many ot-
hers [5, 9, 16, 17, 18, 41, 76, 68, 90, 53, 124] since have followed Baker’s work. She did, indeed,
open up a wide field of extensive research that soon was generalized to other fields. Over the years,

1.5 Our Contributions 11

1 2 3 4 5 6 7

Y z b x x z b z

z →

b →

x →

4 2

4

1

1 2 3 4 5 6 7

X x b y y x b x

x

b

y

4 2

4

1

Figure 1-6.: Two strings X = xbyyxbx and Y = zbxxzbz that parameterized-match. It is shown
that the structure of both strings is the same as the relative distances among the occu-
rrences of their distinct symbols are equal.

other lines of research that have been pursued are: parameterized matching under edit distance [19],
parameterized matching under Hamming distance [77, 7], parameterized matching under LCS dis-
tance [87], multiple parameterized matching [81], 2-dimensional parameterized matching [4] and
function matching [4, 6, 106]. This accelerated research could only be justified by the usefulness
of its practical applications such as in software maintenance [15], image processing [139, 11] and
computational biology [4].

1.5. Our Contributions

In this thesis, we propose a new application for parameterized matching: the solution of the graph
matching problems. Our initial motivation for this is based on the fact that in parameterized mat-
ching we must determine whether two strings that have the same structure, i.e., the relative dis-
tances among the occurrences of the distinct symbols in the strings are equal (see Figure 1-6).
Similarly, in graph matching, we must determine if two graphs have the same structure, i.e., if
the graphs are isomorphic. Furthermore, in parameterized matching (and graph isomorphism) the
match depends upon the existence of a bijection from the symbols (nodes) in one string (graph)
to the symbols (nodes) in the other string (graph). Therefore, this thesis defines a new model for
solving graph matching based on parameterized matching. Specifically, given two graphs G1 and
G2, we represent G1 in a linear manner which we call graph linearization. Then, we evaluate if
this representation parameterized-matches a walk on G2.

This document is comprised by two parts. In Part I, we propose a new solution for both graph and
subgraph isomorphism. Then, in Part II, we adapt this solution to answer different types of queries
on attributed graphs. In particular, we solve pattern match queries and generalized pattern queries.

12 1 Introduction

More specifically, in Part I, we present our approach to solve isomorphism in multigraphs through
parameterized matching as follows:

We define graph linearization, as a linear representation of graphs, and formally show how it
can be used to solve graph and subgraph isomorphism. We develop the Graph Linearization
Algorithm – GLA, an asymptotically length-optimal algorithm that efficiently linearizes a
graph through greedy heuristics (Chapter 3).

We propose a matching algorithm, called PMG, that solves graph isomorphism. Given two
multigraphs G1 and G2, PMG calculates a linearization of G1 and determines whether there
exists a walk on G2 that parameterized-matches such linearization. If so, the graphs are
isomorphic (Chapter 4).

We adapt the PMG algorithm to solve subgraph isomorphism; this adaptation is called
PMG-SI (Section 4.6).

Then, in Part II, we redefine our approach to efficiently solve queries of interest on attributed
graphs as follows:

We define the data model and the query model. Especially, we define generalized pattern
queries, a new type of queries with high expressive power that supports structural predicates,
attribute predicates and reachability evaluation (Chapter 5).

We extend the concept of graph linearization to represent generalized pattern queries. Mo-
reover, we show how the linearization of a generalized pattern query can be used to find its
solution on an attributed graph. We present the Enhanced– Graph Linearization Algorithm
– E-GLA, an algorithm that exploits the attributed graph statistics to generate linearizations
of the query that will incur in low matching cost (Chapter 6).

We develop a solution for generalized pattern queries on attributed graphs also based on
query linearization through E-GLA (Chapter 7).

Some contents of this thesis have already been presented in [105, 110, 104, 106, 103, 109, 93].
Other articles also developed during the PhD program, that are related to this thesis, are [22, 108,
107, 111, 112, 23, 21, 46].

2. Related Work

In this thesis we propose a new solution for the graph matching problems based on parameterized
matching. Thus, in this chapter we present a literature review of these topics. In particular, Sec-
tion 2.1 describes the most efficient algorithms for graph isomorphism and subgraph isomorphism.
Then, Section 2.2 considers graph matching in attributed graphs. Specifically, we cover different
types of queries on attributed graphs, including reachability queries, pattern match queries and
pattern queries. Finally, Section 2.3 includes the basic problems, solutions and extensions of para-
meterized matching.

2.1. Solutions for Graph and Subgraph Isomorphism

It has been proven that subgraph isomorphism is a NP-Complete problem [70]; however, the exact
complexity of graph isomorphism is still an open question [70, 44]. Because the two problems are
very related, most of the solutions for one of them works for the other. In this section, we describe
the most efficient algorithms: Ullmann’s algorithm (Section 2.1.1) and VF2 (Section 2.1.2).

2.1.1. Ullmann’s Algorithm

One of the first algorithms for solving both problems was proposed by Ullmann back in 1976 [148].
His solution is similar to Corneil and Gotlieb’s algorithm for graph isomorphism [47] but differs
from it in that graphs are not processed separately. Ullmann’s solution consists of backtracking in
a search tree using a mechanism to prune the search space called refinement procedure. For gene-
rality, we describe the algorithm for subgraph isomorphism, but it also solves graph isomorphism.
First, we show how the possible mappings are enumerated and then how to apply the refinement
procedure.

Ullmann’s algorithm determines whether graph G1 = (V1, E1), where n1 = |V1| and m1 = |E1|,
is isomorphic to a subgraph in G2 = (V2, E2), where n = |V2| and m = |E2|. Let us denote the
adjacency matrices of G1 and G2 as A and B, respectively. The possible mappings are stored in a
binary matrix M of n1 rows and n columns. In particular, M [i][j], for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n,
is equal to 1 if node vi ∈ V1 can be mapped to node vj ∈ V2; otherwise, M [i][j] = 0. An important
property of this matrix is that it must contain exactly one 1 in each row and at most one 1 in each
column. This is to ensure the injective mapping from the nodes of G1 (i.e., the rows) to a subset of

14 2 Related Work

the nodes of G2 (i.e., the columns).

The idea of the algorithm is exploring all the possible mappings by permuting the rows and co-
lumns of B and comparing adjacency with A. This can be done by multiplying B with the possible
mappings M . Specifically, for a given M , the multiplication MB moves row j to row i, for all
M [i][j] = 1. Thus, (MB)T moves column j to column i. Similarly, C = M(MB)T moves co-
lumn j to column i and row j to row i for every M [i][j] = 1. Then, in order to evaluate if a given
mapping M is an isomorphism, we check whether the adjacency relation defined in A is contained
in C. In other words, if M is an isomorphism, the following condition must be satisfied:

∀i,j(A[i][j] = 1)⇒ (C[i][j] = 1) (2-1)

Notice that, in case of graph isomorphism,⇒ is replaced by⇔ as the adjacency matrices must be
equal.

The possible mappings are explored as follows. An initial matrix M0 of n1 rows and n columns is
constructed by setting M0[i][j] = 1 if mapping vi ∈ V1 to node vj ∈ V2 is possible. Specifically, it
is possible to do such mapping if the degree of vj is greater or equal to the degree of vi in the case
of subgraph isomorphism; in the case of graph isomorphism, the degrees must be equal. Otherwise,
we set M0[i][j] = 0. Then, M0 becomes the root of the search space of the permutation matrices.
In particular, a Depth-First Seach (DFS) approach is used: at level k of the DFS search tree, the
matrix Mk only keeps one of the 1’s at the row k of Mk−1; the others are reassigned to 0. Thus,
at level n1, the mapping for all nodes in V1 should have been found. Therefore, for each matrix
Mk, we evaluate condition 2-1 to determine if it is an isomorphism. Note that if, at any point, a
given Mk has a row with no 1’s, it is not necessary to explore its successors as it will not lead to
an isomorphism.

Now Ullmann’s refinement procedure, which is the key idea of his algorithm to prune the search
space, is introduced. If, at any point, a node vj ∈ V2 is among the possible mappings of a node
vi ∈ V1, then every neighbour of vi must have at least one possible mapping among the neighbours
of vj . If this condition does not hold, we can safely remove vj from the possible mappings of vi as
we know that forthcoming mappings cannot be established in this direction. Recall that, in terms
of the mapping matrix M , the possible mappings for vi are the nodes vj for which M [i][j] = 1.
Then, for each M [i][j] = 1 in matrix M , the refinement procedure must be evaluated as follows:

∀x(A[i][x] = 1)⇒ ∃y(M [x][y] ·B[y][j] = 1) (2-2)

If this condition does not hold, then we set M [i][j] = 0. This is procedure is performed for every
M [i][j] = 1. However, changing a 1 to 0 can make condition 2-2 is no longer satisfied for other 1’s
in M . Then this process must be repeated over and over again until there is an iteration where no 1

in the matrix is changed to 0. The refinement procedure is applied for each matrix Mk in the DFS

2.1 Solutions for Graph and Subgraph Isomorphism 15

search tree, including M0 [148]. The space complexity of Ullmann’s algorithm is Θ(n3); its time
complexity in the best case is Θ(n3) while its worst-case time complexity is Θ(n!n2) [44].

Other refinement procedures to reduce the search space have also been considered. Specifically,
Haralick and Elliot proposed forward-checking and looking-ahead [74], and Kim and Kak used
discrete relaxation [88]. Another approach that has been taken consists of a reduction to the ma-
ximal clique detection problem [56, 115]. Besides, Blake proposed a solution based on a partition
according to lattice theory to reduce computational complexity [24].

However, Ullmann’s algorithm is one of the most used solution because of its good performance.
Ullmann’s algorithm was compared against other graph matching solutions and it turned out to be
the one with best matching time [113]. Furthermore, this algorithm also permits the comparison
of semantic information during the process. Notwithstanding, for large graphs, the time required
by Ullmann’s algorithm is still too high to be tractable. During the last three decades, there ha-
ve been many attempts for solving the graph matching problem on large graphs. Most of them
achieve low time complexity by imposing restrictions on the topology of the graphs. Some of the
most important contributions in this direction are polynomial algorithms for trees, planar graphs
and bounded valence graphs [95]. On the other hand, some algorithms based on continuous op-
timization methods like neural networks, simulated annealing [79], genetic algorithms [28] and
probabilistic relaxation [39] have been proposed. They find solutions in a reasonable time wit-
hout imposing constraints on the topology of the graph; the drawback is that their solutions are
approximate.

2.1.2. The VF2 Algorithm

More recently, new mechanisms to query large graphs have been devised. Specifically, Cordella
et al. proposed a deterministic algorithm, called VF2, that does not impose any restrictions on
the topology of the graph and supports attributed graphs [44]. This algorithm achieves a reduced
computational complexity by using a set of feasibility rules during the matching process. Furt-
hermore, sophisticated data structures are used to reduce space complexity. Experimental results
prove that VF2 is a competitive graph matching algorithm.

In particular, VF2 determines if graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic by cons-
tructing a mapping set M ⊂ V1× V2, where each pair (v1, v2) represents the mapping of a node v1
in G1 to a node v2 in G2. Then, if G1 and G2 are isomorphic, the mapping set M is a bijection that
preserves the adjacency relation of the graphs. The process to find M can be described using a Sta-
te Space Representation (SSR) [117] where each state is a partial mapping. Specifically, a partial
mapping M(s) leads to a new state M(s′) by inserting a new pair (v1, v2) ∈ V1 × V2 that main-
tains consistency, i.e., that does not preclude the possibility of obtaining a complete mapping. A
partial mapping is consistent if the subgraphs that its nodes constitute inG1 andG2 are isomorphic.

16 2 Related Work

Let M1(s) and M2(s) be the set of nodes of V1 and V2 in the mapping M(s), respectively. Also, let
T in
1 (s) be the set of nodes in V1 that are not in M1(s) but are the origin of edges ending into nodes

in V1. Likewise, let T out
1 (s) be the set of nodes in V1 that are not in M1(s) but are the destination

of edges starting from nodes in V1. Furthermore, let R1(s) denote the nodes in V1 that are neither
in M1(s), T in

1 (s) or T out
1 (s). Sets T in

2 (s), T out
2 (s) and R2(s) are defined in a similar way. Then,

consistency maintenance is verified by five feasibility rules:

For each predecessor v′1 of v1 in M1(s), there must be a predecessor v′2 of v2 in M2(s) such
that (v′1, v

′
2) ∈M(s), and vice versa.

For each successor v′1 of v1 in M1(s), there must be a successor v′2 of v2 in M2(s) such that
(v′1, v

′
2) ∈M(s), and vice versa.

The number of successors of v1 that are in T in
1 (s) must be equal to the number of successors

of v2 that are in T in
2 (s). Similarly, the number of predecessors of v1 that are in T in

1 (s) must
be equal to the number of predecessors of v2 that are in T in

2 (s).

The number of successors of v1 that are in T out
1 (s) must be equal to the number of successors

of v2 that are in T out
2 (s). Similarly, the number of predecessors of v1 that are in T out

1 (s) must
be equal to the number of predecessors of v2 that are in T out

2 (s).

The number of successors of v1 that are in R1(s) must be equal to the number of successors
of v2 that are in R2(s). Likewise, the number of predecessors of v1 that are in R1(s) must be
equal to the number of predecessors of v2 that are in R2(s).

The last three rules should be adapted for subgraph isomorphism. In particular, the equal cons-
traints must be replaced for inequalities. In case of isomorphism in attributed graphs, semantic
feasibility is also evaluated. Specifically, when a new pair (v1, v2) ∈ V1 × V2 is considered to
extend the partial mapping M(s), it is verified that v1 and v2 are semantically compatible. Further-
more, for each edge (v1, v

′
1) where v′1 ∈M1(s), there must be a node v′2 ∈M2(s) such that (v2, v

′
2)

is semantically compatible with (v1, v
′
1). Similarly, for each edge (v′1, v1) where v′1 ∈M1(s), there

must be a node v′2 ∈M2(s) such that (v′2, v2) is semantically compatible with (v′1, v1).

From a global perspective, the algorithm works as follows. For a given state M(s), a recursive
procedure called MATCHVF2(), is performed. In this procedure, all the pairs (v1, v2) ∈ V1 × V2
that can be considered for inclusion in M(s) are inserted into the set P (s). For each pair p ∈ P (s)

that satisfies the feasibility and semantic rules, a new state M(s′) is generated by inserting (v1, v2)

into M(s). Then, the procedure MATCHVF2() is recursively called for each M(s′). The process
ends when a complete mapping is found or when all the feasible mappings are explored. Note that
VF2 explores the search space in a DFS fashion starting from an empty mapping set.

2.1 Solutions for Graph and Subgraph Isomorphism 17

In order to reduce space requirements, and then make it scalable to large graphs, VF2 makes use
of the following data structures:

Vectors core1 and core2, whose length is n and m, respectively. Specifically, core1[i] con-
tains the index of the current mapping of node vi ∈ M1(s) into G2; in case vi is not in the
mapping yet, then core1[i] = null. Vector core2 is defined in the same manner to establish
the mappings of M2(s) into G1.

Vectors in1 and in2, whose length is n and m, respectively. In particular, in1[i] is non-null
if v1 is either in M1(s) or T in

1 (s); the value stored in in1[i] is the depth in the SSR tree of
the state in which the node entered the corresponding set. Vector in2 is defined in the same
manner with respect to G2.

Vectors out1 and out2, whose length is n and m, respectively. They are defined in a similar
way as in1 and in2. For instance, out1[i] contains the depth in the SSR tree in which vi
entered either M1(s) or T out

1 (s). In case vi has been inserted in neither of these sets, out1[i]
is equal to null.

These vectors allow to perform different operations of the algorithm efficiently. For instance, mem-
bership queries can be evaluated in constant time. Furthermore, VF2 does not require to store a
copy of these vectors at each state of the search. Just one instance of each vector must be stored
because if an element is non-null in a given state, it will have the same value in the descending
states from s. This, along with the traversal order of DFS, allows to restore the previous values of
the vectors when the algorithm backtracks. Then, the space complexity of VF2 is Θ(n), i.e, the
size of the vectors. In the best case, the algorithm finds a complete mapping on the first attempt,
i.e., just one length-n path in the SSR is explored. Then, the best-case time complexity of VF2 is
Θ(n2). On the other hand, the worst-case time complexity of VF2 is Θ(n!n) given that the algo-
rithm visits n! states in the worst case, i.e., the case where the complete mapping is the last one
explored or when there is no complete mapping at all.

The VF2 algorithm was experimentally compared against Ullmann’s algorithm and NAUTY to
evaluate its performance on graph isomorphism. In 56 % of the cases, the best results were achieved
by VF2 while, in 44 % of the cases, NAUTY was the most efficient. Moreover, the results indicate
that NAUTY is more convenient for randomly connected graphs, while VF2 is more efficient for
graphs with a more regular structure, especially for large graphs. It is important to remark that, in
most applications, graphs follows certain regularity. This makes VF2 a good candidate to consider
in practical environments. Furthermore, VF2 was compared against a straightforward adaptation
of Ullmann’s algorithm that supports attributes to evaluate subgraph isomorphism. Results show
that VF2 performs significantly better. While the matching time rapidly grows with the size of the
subgraph for Ullmann’s algorithm, it remains almost independent of such size for VF2 [44].

18 2 Related Work

2.2. Queries on Attributed Graphs

Several techniques have been proposed in the literature for querying graphs. However, the exis-
ting graph querying methods mainly focus on querying the topological structure of the graphs
[122, 156, 159] and very few of them have considered the use of attributed graphs [127, 143]. In
practice, it is more common that the querying requirements for the applications of graph databases
(e.g., social networks or bibliographical networks) would involve querying the graph data (attribu-
tes on nodes/edges) in addition to the graph topology.

Answering queries that involve predicates on the attributes of the graphs (nodes or edges) is more
challenging as it requires extra memory consumption for building indices over the graph attributes
in addition to the structural indices in order to accelerate the query evaluation process. Furthermo-
re, it makes the query evaluation and optimization process more complex (e.g., evaluation and join
orders). Existing graph optimization techniques focus on either building index structures [156, 159]
or on developing estimation modules for certain graph queries [120, 158]. These techniques are
complementary to this work. They can be used to accelerate query processing in our approach,
which exploits both attribute histograms and the topology of the graph to produce efficient linea-
rizations that yield lower matching time. At the same time, these index structures cannot be used
to answer all queries as they may require graph exploration. Two types of query which are wi-
dely used in many applications are reachability queries [40, 151, 84], and pattern match queries
[159, 161]. In this section, we review the related work on reachability queries (Section 2.2.1), pat-
tern match queries (Section 2.2.2), and a recently defined type of queries called pattern queries
(Section 2.2.3).

2.2.1. Reachability Queries

Given a directed attributed graph G = (V,E) and two nodes u, v ∈ V , a reachability query deter-
mines whether there exists a directed path in G from u to v. Graph reachability is closely related
to the concept of transitive closure. Specifically, the transitive closure of G, denoted as TC(G),
is defined as the set of the pairs of nodes (u, v) such that v is reachable from u. Then, in order
to determine reachability from u to v, it suffices to evaluate the membership of (u, v) in TC(G).
However, the transitive closure of large and dense graphs can be very large.

A reachability query on a directed graphG can be evaluated by using an associated directed acyclic
graph (DAG) G′ = (V ′, E ′) of G. Such graph can be obtained by finding the strongly connected
components of G, which takes O(|V | + |E|). Each node in V ′ represents one of the components.
Each edge (u, v) ∈ E, such that u and v belong to different components, is associated to an edge in
E ′ between the nodes in V ′ that represent the corresponding components of u and v. Then, given
the nodes u, v ∈ V , we can say that v is reachable from u if they are in the same component or if
the component of v is reachable from the component of u. In the next algorithms, we assume that

2.2 Queries on Attributed Graphs 19

the directed graph has been transformed into a DAG.

There are two main approaches to evaluate a reachability query on a graph G = (V,E): (i) per-
forming a DFS/BFS traversal; and (ii) pre-computing and maintaining the transitive closure of
the graph. The former has high time complexity (i.e., O(|V | + |E|)). The latter allows to answer
reachability queries in constant time but incurs high space requirements (i.e., O(|V |2)). Existing
solutions attempt to obtain a convenient trade-off between time and space requirements where the
query time complexity varies between O(1) and O(|V | + |E|) (the complexity of approaches (i)
and (ii)). This trade-off is achieved by constructing different types of indices that reduce the space
storage of the transitive closure [157]. Table 2-1 summarizes the complexity of constructing indi-
ces under different approaches, their size and the corresponding query response time [84].

Table 2-1.: Complexity of solutions for reachability queries on a DAG G = (V,E) [84]. Nota-
tion: t is the number of non-tree edges in the spanning-tree-based solutions.

Algorithm Query Time Index Size Index Construction

DFS/BFS O(|V |+ |E|) - -

Transitive Closure [136] O(1) O(|V |2) O(|V | × |E|)
Tree Cover [1] O(log |V |) O(|V |2) O(|V | × |E|)

Labelling + SSPI [35] O(|E| − |V |) O(|V |+ |E|) O(|V |+ |E|)
GRIPP [145] O(|E| − |V |) O(|V |+ |E|) O(|V |+ |E|)

Dual-Labelling [151] O(1) O(|V |+ t2) O(|V |+ |E|+ t3)

Chain Cover [36] O(log k) O(k|V |) O(|V |2 + k|V |
√
k)

Path-Tree Cover [85] O(log2 k′) O(k′|V |) O(k′|E|+ |V | × |E|)
2–Hop Cover [40] O(

√
|E|) O(|V |

√
|E|) O(|V |3 × TC(G))

3–Hop Cover [84] O(log |V |+ k) O(k|V |) O(k|V |2|Con(G)|)

In the following, we describe selected solutions of Table 2-1 as presented in a recent survey [157].
In the late eighties, an algorithm that computes the transitive closure without any compression in
O(|V | × |E|) time was developed by Simon [136]. In particular, this algorithm is an improvement
on the solution proposed by Goralčı́ková and Koubek [72] a decade earlier.

Also, in the late eighties, Agrawal et al. propose the use of a spanning tree of the DAG to compress
its transitive closure; such spanning tree is called the tree cover [1]. In this approach, the edges
of the graph are classified based on their membership in the tree: if an edge appears in the tree, it
is called a tree edge; otherwise, it is called a non-tree edge. First, let us consider the case where
the tree cover is comprised of only tree edges, i.e. the graph is a tree. Each node u is associated to
an interval-based label [i, j], where i is the index and j is the postorder number of the node. The

20 2 Related Work

postorder number of u is its relative position in the postorder traversal of the tree. The index of
u is the lowest postorder number among its descendants or, in case it is a leaf, its own postorder
number. Using these intervals, reachability can be checked with the following lemma: a node v,
with postorder number k, is reachable from u iff i ≤ k < j, i.e. the interval of v is contained in the
interval of u [1].

This index is applied to general graphs as follows. A spanning tree of the graph is computed. In
case the graph contains more than one connected component, a virtual root node can be added.
Then, each node is associated to a set of intervals rather than a single interval. The set of each node
initially contains only the interval [i, j] with its index and postorder number, respectively, just like
in the case of trees. Then, the nodes are sorted in reverse topological order. For each node u, all its
outgoing edges are considered. Specifically, for each edge (u, v), all the intervals associated to the
node v are inserted into the set of intervals of node u. If an interval is subsumed by another interval
in the set, it is discarded. It can be concluded that a node u′ can reach node v′ if the postorder
number of v′ is contained in one of the intervals of node u′. An algorithm that computes an optimal
spanning tree, in the sense that it minimizes the required storage of the transitive closure, was also
presented [1].

More recently, different variants of this approach, based on a spanning tree, have been developed.
For instance, Chen et al. proposed a set of stack-based algorithms in 2005 [35]. In their approach,
a label is assigned to each node in the tree; we denote the label of node u as label(u). A predicate
P(label(u), label(v)) is used to determine graph reachability from node u to node v in the DAG.
Specifically, if P(label(u), label(v)) = true, then v is reachable from u. However, because not all
the edges appear in the tree, P(label(u), label(v)) = false does not imply that v is not reachable
from u. In order to tackle these cases, another data structure called Surrogate & Surplus Prede-
cessor Index (SSPI) is used [157]. Another solution that makes use of a spanning tree of the DAG
and labelling was devised by Trißl and Leser [145]. This approach, called GRaph Indexing based
on Pre- and Postorder numbering (GRIPP), extends the pre- and postorder numbering scheme to
support graphs. The search phase is performed by means of a hop technique and a set of pruning
strategies. Notice that the complexity of this solution is the same as the one of Chen et al.

Also following the spanning-tree based approach, Wang et al. proposed a solution suitable for large
sparse graph where graph reachability needs to be evaluated [151]. This approach also constructs a
spanning tree where each node u is associated to an interval-based label [start, end), where start
and end−1 are the preorder and postorder number of u in the spanning tree. This labelling scheme
is called Dual-I. Furthermore, the non-tree edges are stored in a link table; such table is desired to
be small. The selection of a convenient spanning tree and strategies to avoid superfluous non-tree
edges have been studied [151]. This solution achieves constant query time while reduces the size
of the index to O(|V | + t2), where t is the number of non-tree edges. Notice that this is efficient
only if t is much lower than |V |, which does not occur in many real graphs [84].

2.2 Queries on Attributed Graphs 21

Most of the algorithms that efficiently solve shortest distance queries [40, 32, 37, 154], and reacha-
bility queries for graphs do not support predicates on the connecting paths [40, 32, 151, 37, 154].
Because of the need for supporting semantic restrictions in the queries, without sacrificing the
response time, recent work has been developed in this direction. For instance, a special type of
reachability query, called label-constraint reachability query, that only accepts edge labels from
a given set was proposed [83]. More recently, a revised definition of reachability query, where a
regular expression of edge labels is used to specify the connecting path in the query, was proposed
[59]; however such regular expression has limited expressiveness: neither the Kleene operator nor
predicates on intermediate nodes are supported.

2.2.2. Pattern Match Queries

Pattern match queries have been defined and solved in terms of subgraph isomorphism due to its
appropriateness for practical applications; some of the most relevant solutions following this ap-
proach are presented in [29, 35, 143, 38, 160, 159, 161], as outlined in the surveys [69, 132]. In
order to make the pattern match queries more flexible and support more applications, the edges of
the query have been allowed to map to paths in the graph [58, 61, 161]. The main challenge of the
techniques based on subgraph isomorphism is scalability on the graph size given that the problem
is NP-Complete. To address this issue, a new version of pattern match query was proposed [59].

On the other hand, given that graphs can be considered as databases, the database community
introduced a formal language called GraphQL to query semantic graphs [78]. Moreover, diffe-
rent techniques are applied on GraphQL to support large graphs: use of neighborhood subgraphs,
joint reduction of the search space and optimization of the search order. Experimental results on a
biological database of thousands of nodes showed that GraphQL outperforms an SQL-based imple-
mentation [78]. Later, Zhao and Han proposed an indexing mechanism called SPath that leverages
decomposed shortest paths around node neighborhoods as basic indexing units [159]. This mecha-
nism achieves efectiveness in pruning the search space and scalability in index construction and
deployment. Two experimental tests were perfomed: one on the same biological database used for
testing GraphQL, and another one on a synthetic database that contains one million nodes; in both
tests SPath significantly outperformed GraphQL [159].

2.2.3. Pattern Queries

To address this issue, a new version of pattern match query was proposed [59]. This variant is
based on graph bounded simulation rather than subgraph isomorphism. Graph bounded simulation
[60] is an extension of graph simulation for pattern match queries where bounds on the number of
permitted hops are imposed. This restriction allows to solve pattern match queries in polynomial
time, even when we allow that edges in the query map to paths in the graph. The corresponding

22 2 Related Work

output presents in batch the global matches for each edge (reachability query) in the query.

However, like in the reachability queries also studied in [59], pattern match queries using the Klee-
ne operator or containing predicates on intermediate nodes cannot be solved with such approach.
In this paper, we introduce generalized pattern queries as a new type of queries that evaluates
both attribute predicates and structural requirements. These queries, besides allowing edge-to-path
mappings, also support predicates on intermediate nodes/edges and operators like union and the
Kleene star in the reachability requirements. Moreover, the output produced is easy to interpret: it
consists of the set of all the solution instances where each instance is an ordered set of nodes that
correspondingly satisfy the nodes in the query; thus, the relative relations among the output nodes
from each solution instance and the query is straightforward to determine.

On the other hand, graph query languages, based on either regular expressions [42, 51, 73], SQL-
like languages [10, 123, 134], or procedural languages [78], to solve graph queries have been
proposed. Such languages have limited expressive power and lack the support of declarative query
interfaces. For instance, comparing with well-known query languages such as SPARQL and SQL,
we support queries that cannot be expressed by either of them. (1) The SPARQL query language
expresses pattern match queries over RDF data, and cannot express general reachability queries.
In contrast, we target both reachability queries and pattern match queries. A recent specification of
SPARQL allows a limited form of reachability with the triple pattern (subject, verb+, object). (2)
SQL cannot express paths of arbitrary length, unless it is extended with recursion [69] to support
closure operators. Notwithstanding, we use an idea that is similar to the query optimizer in a
database system: the most restrictive conditions are often pushed down to the evaluation tree of a
query plan; thus, the selective predicates are evaluated early in the execution.

2.3. Parameterized Matching

As an aid in software maintenance, parameterized matching was first defined by Brenda Baker to
detect duplicate code in large software systems [15]. Later, the study on this problem was further
extended due to its practical applications in different areas. In this section, we cover some of this
research. Specifically, in Section 2.3.1, the formal definition of parameterized matching and its
variants are given. Some parameterized matching algorithms are reviewed in Section 2.3.2 and
some extensions are presented in Section 2.3.3. Finally, some of the most important applications
of this pattern matching variant are shown in Section 2.3.4.

2.3.1. Definition of the Basic Problems

Let ΣC be the constant symbol alphabet and ΣP be the parameter symbol alphabet. We assume
that ΣC and ΣP are disjoint from each other and the set of nonnegative integers. A parameterized
string or a p–string is defined as a string of symbols in (ΣC ∪ ΣP)∗. Furthermore, two length–m

2.3 Parameterized Matching 23

p–strings X = X1...m and Y = Y1...m are said to be a parameterized–match or a p–match, if one
p–string can be transformed into the other by renaming its parameters through a bijective function
g : ΣC ∪ ΣP 7→ ΣC ∪ ΣP , such that g is identity for the symbols from ΣC (see Definition 1).
Note that, g can be chosen from |ΣP |! different possible mapping functions (an example is given
in Figure 1-5).

Parameterized Matching is the problem of finding all the parameterized–matches of a pattern in a
text. More formally, let us consider two p–strings: the pattern P = P1...m and the text T = T1...n,
both defined over ΣC ∪ ΣP . Also, let T i denote the length–m text window starting at position
i of T , i.e., T i = Ti...i+m−1. Then, pattern P is said to parameterized-match T i iff there exists a
bijective mapping function gi such that gi(Pj) = Ti+j−1, 1 ≤ j ≤ m, so that gi is identity for the
symbols from ΣC . Notice that if there exists a function gi(Pj) = Ti+j−1, 1 ≤ j ≤ m, the inverse
of gi also exists given that gi is bijective. So we can equivalently say that P parameterized-matches
T i if there exists a bijective mapping function g′i(Ti+j−1) = Pj so that g′i is identity for the symbols
from ΣC . Note that, at each position i of T , a different gi can be considered to determine the exis-
tence of a parameterized-match between the pattern and the text window starting at position i. The
output of the problem is the set of indices i, 1 ≤ i ≤ n−m+1, such that P parameterized-matches
T i. This problem is also referred as Parameterized Fixed Pattern Matching (PFPM) [81].

Some other problems related to parameterized matching have been defined to be able to support
more applications. One of them is finding the maximal p–matches over a threshold length of a p–
string text, defined as follows. Let T = T1...n be a p–string and Ti...i+k and Tj...j+k two p–substrings
of it that p–match. This p–match is said to be left–extensible if Ti−1...i+k and Tj−1...j+k are a p–
match and is right–extensible if Ti...i+k+1 and Tj...j+k+1 are a p–match, where 1 ≤ i ≤ i + k ≤ n,
1 ≤ j ≤ j + k ≤ n and i 6= j. If a p–match is neither left–extensible or right–extensible, it is
said to be a maximal p–match. Maximal p–matches are not an equivalence relation, because they
are not transitive, so the output of the maximal p–matches problem must list pairs of p–substrings
rather than an equivalence class. Thus, the output of the maximal p–matches of a p–string text
T = T1...n over a threshold length t problem must report the set of all pairs of p–substrings of T
that p–match and whose length is at least t.

On the other hand, the searching of multiple patterns has been extended to parameterized matching
[81]. For a given fixed setD of p–string patterns over ΣC∪ΣP , the Parameterized Multiple Pattern
Matching (PMPM) problem consists of preprocessingD as an aid to later determine the p–matches
(for all of the patterns in D) in a query text T . A dynamic variant of this problem, called Parame-
terized Dynamic Dictionary Matching (PDDM), has also been considered [81]. In this problem,
a dictionary D of p–string patterns is preprocessed and maintained with available operations of
inserting/deleting patterns into/from D and searching a query text T for p–matches for the patterns
currently in D.

24 2 Related Work

2.3.2. Solutions

The maximal parameterized matching over a threshold length problem was the first parameterized
matching problem to ever be considered, even before some of the basic definitions of parameterized
matching were formalized. Baker tackled this problem motivated by the observation that there was
a considerable amount of duplicate code in large software systems [13]. Therefore, she presented
a program, called DUP, as an aid to find all the duplicate sections of code with a minimum length,
specified by the user, in a large software system. DUP simplifies the problem to an exact matching
problem replacing all the parameters by a determined symbol and then looks for the p–matches
among the exact matches found. The algorithm is based on recursions over the suffix tree of the
text.

A suffix tree of a string X is a compacted trie1 defined on the set of the suffixes of X$, where
$ is a unique end marker so that no suffix is a prefix of another suffix (cf. [101, 147, 155]). A
compacted trie is a tree data structure defined on a set of strings (in this case, the set of the suffixes
of a string) such that: (i) every inner node has at least two children; (ii) every edge is labelled with
a substring of one of the strings in the given set; and (iii) the concatenation of the labels on the
path from the root to each leaf is a distinct string in the set [41]. The key property of compacted
tries is that, for every pair of leaves, the string formed by concatenating the labels from the root to
their lowest common ancestor is the longest common prefix of the strings in the set associated with
these leaves. For each node v of the trie, the pathstring of v is the concatenation of the edge la-
bels on the path from the root to v and the length of the pathstring of v is called the pathlength of v.

For constructing the suffix tree for the text, Baker suggests McCreight’s Algorithm [101]. This
algorithm builds a suffix tree for a string X = X1...m in m stages each one of which corresponds
to the insertion (from left to right) of a suffix Xi...m, 1 ≤ i ≤ m, of X . The insertion of the i-th
suffix is made so that the first part of the path coincides with the path of the longest common prefix
of Xi...m and Xj...m for some j < i (a previously inserted suffix). One of the key points to make
this algorithm efficient is the use of suffix links. If an internal node has pathstring aX , where a is
a symbol and X is a string, its suffix link points to an internal node with pathstring X (which is
guaranteed to exist due to the Common Prefix Property and the Distinct Right Context Property of
strings). Suffix links are also useful for pattern matching in space proportional to the size of the
pattern [34].

Experiments with real data proved that DUP is highly useful in software maintenance but also sho-
wed that the algorithm is inefficient given that just a few of the found exact matches correspond to
p–matches. For this reason, the same author proposed a more elaborate theory [15, 18] aiming to
find better solutions and support a wider range of a applications. This theory includes the definition
of the parameterized pattern matching problem.

1a.k.a. Multiway Patricia Trie.

2.3 Parameterized Matching 25

Some core aspects of parameterized matching are discussed, as follows. For the case of the string
comparison problem, a naive way to determine whether two length–m p–strings X = X1...m and
Y = Y1...m are a p-match was proposed [18]. It consists of the following steps. Traverse both X
and Y from left to right while constructing a table that establishes the mapping function that allows
to transform one of the p–strings into the other one. Continue with this procedure until a mismatch
is found. A mismatch between two corresponding symbols occurs in any of the following three
cases: (i) one symbol is a parameter (from ΣP) and the other is a non-parameter (from ΣC); (ii)
both symbols are non-parameters and they are different; and (iii) both symbols are parameters
but any of them has previously been assigned to a different parameter in the mapping table. If
no mismatch occurs, then X and Y are a p–match. The time complexity is O(m) and the space
complexity isO(|ΣP |). Nevertheless, this approach is not proper for the pattern matching problem.

A procedure called prev was defined to yield more efficient solutions for parameterized mat-
ching [18]. Given the constant alphabet ΣC , the parameter alphabet ΣP and a length–m p–string
X = X1...m, prev(X) is a string in (ΣC ∪ N)∗ where every constant symbol in X remains the
same in prev(X) but the parameter symbols are replaced by nonnegative integers: the leftmost oc-
currence of a determined parameter is represented by a 0 and the other occurrences are represented
by the difference in position compared to the previous occurrence of this parameter. The numbers
that represent difference in position are called parameter pointers. The time complexity of the
computation of prev is O(m) and the space complexity is O(|ΣP |) by means of a table containing
the last occurrence position of each parameter. Notice that prev(X) is calculated in such a way
that it does not matter what the parameters of X are; what is really relevant is the relative distance
among the different occurrences of the same parameter (represented by the parameter pointers)
which provides valuable information about the structure of the p–string. Thus, two p–strings X
and Y are a p–match, iff prev(X) = prev(Y).

Example. For the example presented in Figure 1-5, where ΣC = {b}, ΣP = {x, y, z}, X =

xbyyxbx and Y = zbxxzbz, we find that prev(X) = 0b014b2 = prev(Y) and therefore X and Y
are a p–match (see Figure 2-1).

The prev of any substring of a p–string X can be calculated from prev(X) given that any symbol
of the substring is the same as in prev(X) except when it is a parameter pointer that points to
a position before i; in such case, it will correspond to the first occurrence of the parameter in
the substring so it must replaced by a 0. On the other hand, the parameterized pattern matching
problem could be defined, in terms of prev, in the following manner: Given the pattern P = P1...m

and the text T = T1...n, both defined over ΣC ∪ ΣP , P is said to parameterized-match T i iff
prev(P) = prev(T i) (recall that T i = Ti...i+m−1). Thus, using prev is a convenient approach for
the parameterized pattern matching case, given that any prev(T i) can be calculated as follows.

26 2 Related Work

Figure 2-1.: Determination of a p–match between X = xbyyxbx and Y = zbxxzbz through the
prev procedure, where ΣC = {b}, ΣP = {x, y, z}.

prev(T i)j =

{
0 if prev(T)i+j−1 > j − 1

prev(T)i+j−1 otherwise
, for 1 ≤ j ≤ m.

In this sense, with the use of prev, parameterized matching can be seen as a standard exact mat-
ching problem without losing information about the chains of parameters. Reminiscing about the
use of suffix trees for exact matches in DUP, Baker defined a new data structure called paramete-
rized suffix tree to aid in directly searching for parameterized–matches [18]. Parameterized suffix
trees are a generalization of suffix trees for strings.

To generalize suffix trees to parameterized suffix trees, it is necessary to review the definition of p–
suffix [18]. The i–th p–suffix of a p–string X = X1...m is defined as psuffix(X, i) = prev(Xi...m).
So we can calculate each p–suffix, just like the prev of any substring of X , by copying the co-
rresponding symbols of prev(X) except when they are parameter pointers that point to a symbol
outside the substring (in which case they are replaced by 0). Then, p–suffix trees are defined as
follows. If X is a p–string that ends with a unique end marker $ in ΣC , a parameterized suffix tree,
also called p–suffix tree, forX is a compacted trie (multiway Patricia trie) that stores the p–suffixes
of X [18]. Following, we give an example, as it appears in [18], of the p–suffixes that the p–suffix
tree of a given string must store.

Example. Let ΣC = {b, $} be the constant alphabet, ΣP = {x, y} be the parameter alphabet and
X = xbyyxbx$ be a p–string. Then, prev(X) = 0b014b2 so the p–suffix tree of X must encode
0b014b2$, b010b2$, 010b2$, 00b2$, 0b2$, b0$, 0$ and $ (see Fig. 2-2).

2.3 Parameterized Matching 27

Figure 2-2.: A p–suffix tree for X = xbyyxbx$ where ΣC = {b, $} and ΣP = {x, y}.

An algorithm to construct p–suffix trees, called LAZY, was proposed [18]. It is based on Mc-
Creight’s algorithm for constructing suffix trees [101]. Nevertheless, in this case, a suffix link for a
node with pathstring aX cannot point to a node with pathstringX because that node may not exist.
This is because the Distinct Right Context Property does not hold for p–strings. Therefore, suffix
links were redefined in such a way that, for a node with pathstring aX , the suffix link points to the
node whose pathstring is the longest prefix of X among all the nodes in the tree. This algorithm is
linear in the p–string length in both time and space for fixed alphabets. For variable alphabets, the
time complexity is O(n(|ΣP |log(|ΣC |+ |ΣP |))).

Later, Baker proposed a new algorithm to build p–suffix trees, called EAGER, where the suffix links
for a node with pathstring aX point to the node whose pathstring is the shortest of all those for
which X is a prefix [15]. This idea is more convenient for the structure of p–suffix trees. Even
though for fixed alphabets the time and space complexity remain linear, for variable alphabets the
time complexity is O(n(|ΣP |+ log(|ΣC |+ |ΣP |))). Nevertheless, for both LAZY and EAGER, the
time complexity of the variable alphabet case can be reduced to O(n log n) by using auxiliary data
structures like concatenable queues [2] and Sleator-Tarjan dynamic trees [137]. However, the use
of these structures makes the algorithms not practical.

Other authors have worked on developing faster algorithms for constructing p–suffix trees. Kosa-
raju proposed an algorithm whose time complexity is O(n log(|ΣP | + |ΣC |)) [90]. Furthermore,
a randomized algorithm to construct suffix trees for cases where there are missing suffix links,
such as p–suffix trees and suffix trees for two–dimensional arrays, was proposed [41]. It was the
first algorithm whose time complexity is O(n) even for variable alphabets. It is based on adding

28 2 Related Work

a back–propagation component to McCreight’s Algorithm and using a high probability hashing
scheme for large degrees.

Two solutions for the parameterized matching problem that use p–suffix trees were developed
[15]. Given the pattern p–string P = P1...m and the text p–string T = T1...n, one of the algo-
rithms consists of following the path determined by the symbols of prev(P) on the p–suffix tree
of T$ to find out if prev(P) is identical to a length–m substring of T . For fixed alphabets, to
determine all the positions in T where there is a p–match with P takes O(m + occ) time and
O(n) space, where occ is the number of p–matches. For variable alphabets, the time complexity is
O(mlog(|ΣC |+ |ΣP |)+occ). The other algorithm consists of searching in a p–suffix tree for P th-
rough an adaptation of the corresponding algorithm for strings [33]. Its space complexity is O(m)

and its time complexity is O(n) for fixed alphabets; for variable alphabets, its time complexity is
O(n (|ΣP |+ log(|ΣC |+ |ΣP |))). Nevertheless, it could also be improved to O(n log(|ΣC |+ |ΣP |))
by using some auxiliary data structures for computing lowest common ancestors [75, 130].

On the other hand, an algorithm, called PDUP, for finding the maximal p–matches over a threshold
length of a text T = T1...n was devised [18]. PDUP is similar to DUP, but constructs a p–suffix tree
of the text instead of a suffix tree. This algorithm generalizes to p–strings the algorithm for finding
maximal p–matches over a threshold length in a string [14]. In this generalization, it is necessary
to augment the p–suffix tree with lists that store valuable data that makes possible to determine
whether there is left–extensibility in the p–matching substrings. The time complexity of PDUP is
O(n+ occ), where occ is the number of maximal p–matches found, even for variable alphabets.

Soon after Baker proposed the parameterized matching theory and its first algorithms, other resear-
chers started to work on this topic. For instance, Amir et al. analysed Baker’s theory and defined a
related model called Mapped Matching which is a special case of parameterized matching where
all symbols are in the parameter alphabet ΣP [5]. Through this model, an algorithm that extends
the KMP algorithm [89] to parameterized matching and runs in O(n log min(m, |ΣP |)) time was
proposed [5]. This was the first parameterized matching algorithm independent from the size of
the constant alphabet ΣC . Furthermore, it was proven that the log min(m, |ΣP |) factor is inherent
to any algorithm for parameterized matching in the comparison model and, consequently, that the
provided algorithm is optimal. This demonstration was achieved through a reduction from the ele-
ment distinctness problem to parameterized matching.

This new research may have motivated Baker to look for parameterized matching solutions based
on classical exact string matching algorithms [16]. Given that the BOYER–MOORE algorithm [26]
is one of the most efficient, she attempted to generalize it to p–strings but found its worst case per-
formance was poor. Therefore she turned to one of its variants, TURBOBM [49]. Her non-trivial
generalization of TURBOBM to p–strings, called PTURBOBM, runs in O(n log min(m, |ΣP |)))
time and O(n) space; the preprocessing time is O(mlogmin(m, p)). Its time complexity is the sa-

2.3 Parameterized Matching 29

me as the generalization of KMP complexity so it is optimal [5]. Nevertheless some experiments
show that PTURBOBM works better for long patterns over different alphabet sizes. Anyhow, for
variable alphabets, both of these algorithms are notably better than then p–suffix tree based para-
meterized matching algorithms.

Other important contributions were made by Idury and Schäffer who proposed some variants of the
basic problem (see Section 2.3.1) and solutions for all of them [81]. For the Parameterized Mul-
tiple Pattern Matching Problem, they proposed an algorithm that uses a modified Aho–Corasick
automaton and runs in O(n log(|ΣC | + |ΣC |) + occ) time, where occ is the number of occurren-
ces of all the patterns. As for the Parameterized Dynamic Dictionary Problem, they devised an
automaton algorithm that supports different operations with the following time complexity: (i)
O((n+ occ)(log(|ΣC |+ |ΣP |) + log d) for searching the p–string patterns of the dictionary in a p–
string text T = T1...n; (ii) O(m(log(|ΣC |+ |ΣP |)) + log2 d) for inserting a new pattern P = P1...m

into the dictionary; and (iii) O(m(log(|ΣC | + |ΣP |)) + log d) for deleting a pattern P = P1...m

from the dictionary, where d is the total size of all the patterns.

More recently, Fredriksson and Mozgovoy proposed two new algorithms for both the single and
multiple parameterized matching problems [68]. Both of them make use of Baker’s lemma to com-
pute the prev of a text substring through the prev of the container p–string [18]. One of them is
a bit–parallelism based algorithm called P–SHIFT–OR. It is a generalization of the SHIFT–OR al-
gorithm [12] to p–strings and runs in O(n dm/we) worst case time and O(n) average time. This
algorithm can be extended to solve the multiple parameterized matching problem.

Fredriksson and Mozgovoy also devised an algorithm called Parameterized Backward Trie Mat-
ching (PBTM) [68] based on the Backward DAWG Matching (BDM) algorithm [25, 49]. First,
the set of p–suffixes of the reverse of the pattern are stored in a trie. Then, this trie is used to fastly
determine whether there is a p–match in the current text window; otherwise, the trie is used to
calculate the length of the shift to consider the next text window where a p–match could be found.
The average time complexity of PBTM is O(n log(m)/m). This process could also make use of
a suffix array [99] instead of a trie, in which case the algorithm is called Parameterized Backward
Array Matching (PBAM). PBTM and PBAM are also extensible for the multiple parameterized
matching problem. It is remarkable that these algorithms are the first parameterized matching algo-
rithms for which an average time complexity analysis has been made. They have optimal average
case running for both single and multiple patterns, as confirmed by experimental results.

The diagram in Figure 2-3 shows the algorithms for solving the different parameterized matching
problems presented in this section organized by the nature of their approaches.

30 2 Related Work

Figure 2-3.: Concept map of the algorithms for solving the main parameterized matching problems
organized by the nature of their approaches.

2.3.3. Extensions

Parameterized Matching has been studied in many directions. For instance, an investigation about
the periodicity of parameterized strings was done [9]. They attempted to generalize to p–strings
two of the periodicity lemmas of strings: the Lyndon and Schitzenberger lemma (referred as Weak
Version) [97], and the Fine and Wilf lemma [63]. They found out that only the Weak Version
holds for p–strings only when the two mappings inducing the periodicity commute. These results
and some other studies about the repetitions in p–strings showed considerable differences between
p–strings and ordinary strings. Nevertheless, binary p–strings behave in a very similar way as or-
dinary strings with respect to periodicity and repetitions.

On the other hand, parameterized matching was extended to the two dimensional case by conside-
ring matrices of symbols instead of p–strings. Two–dimensional parameterized matching consists
of finding all the p–matches of a pattern of size m×m in a text of size n×n. An algorithm for the
problem that runs in O(n2 + m2,5 polylog m) time was proposed [76]. Other solutions include a

2.3 Parameterized Matching 31

O(n2 log2m) deterministic algorithm and a O(n2 log n) randomized algorithm that reports all the
p–matches [4]. Nevertheless, it may report a mismatch as match with probability of 1/nk, where k
is a given constant.

Other topic that arose as a matter of interest was the calculation of similarity between two p–
strings. In particular, Baker defined the parameterized edit distance or p–edit distance of two
p–strings as the cost of a minimal edit script, called p–edit script, that transforms one p–string
into the other [19]. The valid operations are insertions, deletions and parameterized replacements
(the replacement of a substring with a p–string that p–matches it). Moreover, Baker proposed an
algorithm [19] for calculating the p–edit distance D of two prev–encoded p–strings, X = X1...m

and Y = Y1...n, by generalizing Myers’s algorithm for finding the LCS of two strings [116]. The
algorithm runs in O(D (n + m)) time and O(n + m) space. However, the complexities can be
improved by using p–suffix trees [18] and the lowest common ancestor [75, 130]. Furthermore, a
divide-and-conquer based algorithm for reporting the minimal p–edit script was proposed [19]. It
also runs in O(D (n + m)) and O(n + m) space. Finally, it is shown that these techniques can be
extended to solve the approximate parameterized problem under the p–edit distance [19], defined
as follows. For a given p–string pattern P = P1...m, a p–string text T = T1...n and an integer k, the
goal is to report all the positions 1 ≤ i ≤ n such that T i are within the p–edit distance k of P . This
can be done in O((k + log|ΣC |+ log|ΣP |)(n+m)) time and O(n+m) space.

There have been some works about approximate parameterized problem under hamming distance.
In particular, the π–match between two p–strings X = X1...m and Y = Y1...m was defined as the
number of matches between π(Yi) and Xi, for 1 ≤ i ≤ m [7]. For two equal–length p–strings,
the approximate parameterized matching problem, also called parameterized matching with mis-
matches, consists of finding a π of maximal π–match. Given a p–string pattern P = P1...m and a
p–string text T = T1...n, the approximate parameterized searching problem under hamming distan-
ce consists of computing the approximate parameterized matching between P and every length–m
p–substring of T . It is not necessary to choose the same π for every text window, as in standard
parameterized matching. Furthermore, a linear algorithm to solve this problem, for the case where
both P and T are run–length encoded and one of them is a binary p–string, was devised [7].

Further studies about parameterized matching and hamming distance have been developed [77, 76].
Specifically, a related problem, called parameterized matching with a threshold of k mismatches,
was proposed. Its goal is finding all the p–matches of a pattern P = P1...m in a text T = T1...n with
at most k mismatches. For two equal–length p–strings X = X1...m and Y = Y1...m, they proposed
a O(m + k1,5) time algorithm and a O(m1,5) time algorithm for the cases when k is considered
and when it is not considered, respectively. These solutions are based on maximum matching algo-
rithms; furthermore, it was demonstrated that the maximum matching problem is reducible to the
approximate parameterized matching problem. For a p–string pattern P = P1...m, a p–string text
T = T1...n and a given k, a O(nk1,5 + mk log m) time algorithm for the parameterized matching

32 2 Related Work

with k mismatches problem was also proposed. It is shown that this could be extended to the two
dimensional case in O(n2mk1,5 +m2k log m) time.

Another approximate version of parameterized matching is based on δ– and γ– distances. Spe-
cifically, we defined δγ–approximate parameterized matching [93, 103]. Given two equal-length
integer strings X = X1...m and Y = Y1...m, string X is said to δγ–parameterized match string Y
if X can be transformed in a string X ′, via a bijection π (i.e., X ′i = π(Xi) for 1 ≤ i ≤ m), such
that X ′ δγ–matches Y . Constants δ and γ are bounds for the local and global errors, respectively,
on the difference between the corresponding symbols of the strings. A O(nm) algorithm to report
the δγ–parameterized matches of a pattern P = P1...m in a text T = T1...n was proposed [93, 103].
This variant is defined as a combination of two string matching paradigms: parameterized mat-
ching and δγ–matching. The latter, is very effective in searching for all similar but not necessarily
identical occurrences of a given pattern. This problem has been well-studied (cf. [30, 50, 48]) due
to its applications in bioinformatics [107, 111] and music information retrieval [30].

The parameterized matching problem under the LCS distance problem has also been conside-
red. The longest common parameterized subsequence (LCPS) for two p–strings X = X1...m and
Y = Y1...n was defined as the pair of sequences I and J of maximum length, such that I is a
subsequence of the p–string X , J is a subsequence of the p–string Y , and I and J are a p–match
[87]. It is important to remark that it is not required that the symbols in I and J are consecutive
in X and Y . The LCPS could be useful as a similarity measure between code sections; neverthe-
less, this problem has been proven to be NP–hard. Then, an approximate algorithm was proposed
[87]. On the other hand, in [82] some algorithms for computing the longest parameterized common
subsequences are presented; nevertheless it is important to mention that their definition of parame-
terization is considerably different from the one developed by Baker and tackled in this thesis.

Another parameterized paradigm, called parameterized pattern queries, that does not correspond
to Baker’s initial definition, was proposed [53]. However, this model is indeed closely related to
the theory developed by Baker. They use a set of symbols and a set of variables that correspond to
Baker’s constant alphabet and parameter alphabet. They also defined a concept of valuation that
could be associated with the mapping bijection and the p–match definition. The parameterized pat-
tern queries paradigm was conceived as an extension of traditional pattern expressions to enhance
the querying and clustering operations over sequence databases. Thus, the definition of a set of
predicates on the variables (constraints) is also permitted under this new model. Furthermore, a
KMP–based algorithm for this problem is also proposed. Experimental results showed that it no-
tably decreases the query evaluation time compared to a naive approach.

In order to support more applications, parameterized matching was generalized to function mat-
ching by allowing the mapping function to be of any type, and not just bijections as in paramete-
rized matching [4]. In other words, many symbols of the pattern can be mapped to the same text

2.3 Parameterized Matching 33

symbol. A deterministic solution for the function matching problem, that runs in O(n|ΣP | log m)

time, was devised [4]. Furthermore, they proposed a Monte Carlo algorithm that runs inO(n log m)

time with failure probability of 1/nk, where k is a given constant. Function matching was also ex-
tended for the two–dimensional case and a randomized algorithm that runs in O(kn2 log n) time
was proposed [4]. This algorithm has a 1/nk probability of reporting a false positive.

We derived an approximate version of function matching to permit certain degree of error. In par-
ticular, we proposed δγ–approximate function matching [106]. Given two integer strings, X =

X1...m and Y = Y1...m, and two given constants, δ, γ ∈ N, we say that there is a match from X to
Y if X can be transformed into a string X ′, by means of a function f , such that X ′ is δ–equal and
γ–equal to Y . Two equal-length integer strings are δ–equal if the maximum difference between
their corresponding symbols is at most δ; they are γ–equal if the sum of such differences is at most
γ. A O(nm) algorithm to find the δγ–function matches of a pattern P = P1...m in a text T = T1...n
was proposed [106].

To support even a much wider range of applications, function matching was extended to the gene-
ralized function matching with don’t cares problem [6]. In this problem, the image of the mapping
function can be any substring in (ΣC ∪ΣP)∗ and not just a single symbol as in function matching.
Furthermore, an extra symbol φ, called the don’t care character, can be present in the strings. A
φ in the text matches any pattern symbol; a φ in the pattern matches any text substring. This pro-
blem represents many pattern searching types but, as a consequence, it is much more complex. It
was shown that the alphabet sizes appear in the exponent of the naive solution’s complexity which
leads to a considerable difference between the cases of finite and infinite alphabets. A polynomial
algorithm for the finite alphabet case was presented; for the case of infinite alphabets, it was de-
monstrated that the problem is NP–hard [6]. This is the first problem, so far, for which there is a
polynomial solution for the finite alphabet case and there is not one for the infinite alphabet case.

2.3.4. Applications

Parameterized matching was initially defined as a tool for software maintenance [13]. This was mo-
tivated by the observation that programmers introduce duplicate code into large software systems
when they are adding new features or fixing bugs possibly generated for not having considered
special cases in the initial programming. Instead of adapting working sections of code, the pro-
grammers prefer to copy and slightly modify new instances of those sections in order to avoid
making major revisions and introducing new bugs. They do it specially when the working sections
were written by another programmer. With time, the amount of duplicate code is highly increased
and the code gets larger, more complex and more difficult to maintain. For instance, when a new
issue in a determined part of the program is fixed, it will not be automatically fixed in the other
copies of that section of code and sometimes they may be hard to find.

34 2 Related Work

The definition of parameterized matching assumes that some sections of code are copied and mo-
dified through text editors such that the corresponding copies are mostly the same, except for a
systematic change of the variables and procedures’ names. Then, the code is considered as a se-
quence of tokens (variables, constants, operands, reserved keywords and procedure names) where
the constant alphabet ΣC is comprised by the operands and the reserved keywords while the para-
meter alphabet ΣP is comprised by the variables, constants and procedures’ names.

Example. In Fig. 2-4 two edited code excerpts from the X Window [129] source code are presen-
ted. These two fragments are a p–match given that they are identical except for a correspondence
between pfi and pfh, lbearing and left, and rbearing and right. Notice that the p–matching sections
are like expansions of the same macro with different parameters.

Figure 2-4.: Two sections of code that parameterized–match. Taken from [15].

In that sense, if it is required to look for all the copies of a determined section of code, the problem
can be solved through a parameterized fixed matching algorithm by considering that section of
code as the pattern and the code where copies are searched as the text. If the goal is finding all
the copies of many sections of code (multiple patterns), then a parameterized multiple matching
algorithm would be useful. If there exists no pattern, but the goal is finding all the pairs of duplicate
code that have at least a determined length specified by the user, then the problem can be solved
with a maximal p–matches over a threshold length algorithm, like DUP or PDUP.

Experiments with DUP on a large subsystem of over a million lines of code showed that 22 % of
the lines were involved in parameterized matching. This is a great amount of duplicate code, given
that a proportional percentage of the code could be shrunk by using better programming techni-
ques like procedures and functions. A reduction of this magnitude would make the code much
more simple and easier to maintain. In general, all the parameterized matching problems and the
approximate parameterized matching problems (under the p–edit and hamming distance) produce
important results that facilitate the analysis of the code and provide useful information to simplify

2.3 Parameterized Matching 35

it and shrink it. This is the reason why software maintenance is still one of the main areas where
parameterized matching is most useful at.

Other area of application of parameterized matching is image processing [77, 4]. Searching for
color images on the web is an interesting problem [11, 139]. The Human–Computer Interaction
Lab at the University of Maryland tackled the problem of searching for an icon in the screen. If
the colors are fixed, the problem can be solved with an exact two-dimensional pattern matching
algorithm. Nevertheless, sometimes the pattern image appears in other ranges of colors within the
text, which makes impossible for exact–matching algorithms to find these occurrences. In this kind
of cases it is proper to use two dimensional parameterized matching algorithms. However, images
often have some errors resulting from distortion and loss of resolution, so such occurrences of a
pattern image could not be reported by parameterized matching algorithms either (due to the ab-
sence of perfect bijections). But occurrences with these errors can indeed be found by taking either
a function matching approach [4, 106] or an approximate parameterized matching approach under
the hamming, p–edit, or δγ distance [19, 76, 77, 93, 103].

On the other hand, parameterized matching has important applications in databases. For instance,
in a database that contains urls of the pages visited by different users, parameterized pattern queries
can be used to retrieve useful information for improving the ergonomy of the site and finding the
best places for advertisement ads [53]. For example, given the symbol a and the variable x where
both represent urls, the query of the parameterized pattern expression axa would retrieve the set
of urls that the users have visited before coming back to the previously visited page represented
by a. In a similar fashion, this idea can be used in computational biology to retrieve all the amino
acids substrings that follow a determined structure where the presence of determined amino acids
at certain positions are a constraint. This is also applicable to databases of any type, where the
analysis over the sequential occurrence of elements is a matter of interest.

In general, parameterized matching and its related problems are considerably useful in any area
where patterns are defined in terms of structural correlation across the positions. This motivates us
to extrapolate its use to the solution of graph matching.

Part I.

Graph Isomorphism through
Parameterized Matching

3. Our Approach: Graph Linearization

Our approach to determine whether two graphs, G1 = (V1, E1) and G2 = (V2, E2), are isomorphic
consists of two main steps: (i) linearizing G1 into a walk p = p1...`; and (ii) exploring all the walks
in G2 to determine whether there is one that parameterized-matches p = p1...`. In this chapter,
we define graph linearization and parameterized matching on graph walks (Section 3.1). Then,
we discuss characteristics and algorithms for linearization (Section 3.2). Finally, we propose an
efficient algorithm that produces asymptotically length-optimal linearizations (Section 3.3).

3.1. Definition of Graph Linearization

Definition 2 (Graph Linearization). LetG = (V,E) be a connected undirected multigraph. A walk
p = p1...` of nodes and edges is a linearization of G iff:

1. pi is a node v ∈ V if i is odd, 1 ≤ i ≤ `.

2. pi is an edge e ∈ E if i is even, 1 ≤ i ≤ `, such that e = (pi−1, pi+1).

3. Each node v ∈ V and each edge e ∈ E appears at least once in p.

In other words, the linearization p of a connected undirected graph G = (V,E) is an alternating
sequence of nodes v ∈ V and edges e ∈ E that starts and ends at a node. Each intermediate occu-
rrence of a node in p must be preceded and followed by an adjacent edge. Furthermore, all nodes
and edges in the graph must appear in p at least once.

Our motivation for defining graph linearization is representing the topology of a multigraph th-
rough a walk. Specifically, the linearization p of G is a walk that represents all its adjacency
relation, which we use to solve the graph isomorphism problem by comparing walks instead of
multigraphs. For this purpose, we define parameterized matching on walks as follows:

Definition 3 (Parameterized Match on Graph Walks). Let G1 = (V1, E1) and G2 = (V2, E2) be
two connected undirected multigraphs. Also, let V ′1 ⊆ V1 and E ′1 ⊆ E1 be subsets of nodes and
edges in G1; similarly, V ′2 ⊆ V2 and E ′2 ⊆ E2 are subsets of nodes and edges in G2. The walks
p = p1...k, in G1, and q = q1...k, in G2, are said to parameterized-match if and only if there exists a
bijective function f : (V ′1 ∪ E ′1)→ (V ′2 ∪ E ′2) such that qi = f(pi) for 1 ≤ i ≤ k.

38 3 Our Approach: Graph Linearization

The core idea of using parameterized matching to solve the graph isomorphism problem is as
follows. Let p be a linearization of G1; hence, p represents the topology of G1. Thus, if a walk q
in G2 parameterized-matches p, then p and q have the same topology. Consequently, considering
that q represents G2, we conclude that G1 and G2 are isomorphic. More formally, we prove the
following theorem that solves the graph isomorphism problem through parameterized walks.

Theorem 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two connected undirected multigraphs such
that n = |V1| = |V2| and m = |E1| = |E2|; also, let p = p1...` be a linearization of G1. Then,
G1 and G2 are isomorphic if and only if there exists a walk q = q1...` in G2 such that p = p1...`
parameterized-matches q = q1...`.

Proof. In order to prove the theorem, we need to show that (i) if G1 and G2 are isomorphic, then
there exists a walk q = q1...` in G2 that parameterized-matches p = p1...`; and (ii) if there exists a
walk q = q1...` in G2 that parameterized-matches p1...`, then G1 and G2 are isomorphic.

First we prove (i). According to Problem 1, if G1 and G2 are isomorphic, there exists a bijecti-
ve function f : EG1 → EG2 for which Equation 1-1 is evaluated as true. Notice that p = p1...`
represents all the adjacency relation of G1, which is defined on the left side of the biconditional.
Considering the format of p1...` (see Definition 2) and the existence of a bijective function f that
satisfies the right side of the biconditional, we can conclude that q = f(p1)f(p2) · · · f(p`) is a walk
in G2. Furthermore, as f(pi) = qi, walks p = p1...` and q = q1...` parameterized-match.

Now we prove (ii). Let q = q1...` be a walk inG2 that parameterized-matches p = p1...`. Then, there
exists a bijective function f : EG1 → EG2 such that qi = f(pi) for all 1 ≤ i ≤ `. Recall that all
the nodes in V1 and all the edges in E1 appear at least once in p (see Definition 2) and that all the
adjacency relation ofG1 is represented in p = p1...`. Therefore, the existence of a bijective function
f such that qi = f(pi), for all 1 ≤ i ≤ `, implies that Equation 1-1 is evaluated as true; then, G1

and G2 are isomorphic.

Corollary 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two connected undirected multigraphs
where |V1| ≤ |V2|. Also, let p = p1...` be a linearization of G1. Then, G1 is isomorphic to a
subgraph in G2 if and only if there exists a walk q = q1...` in G2 such that p = p1...` parameterized-
matches q = q1...`.

Proof. A walk q = q1...` on G2 is a linearization of a subgraph G = (V,E) of G2 where V and
E are the sets of nodes and edges, respectively, included in q = q1...` (see Definition 2). Then,
because of Theorem 1, G, a subgraph of G2, is isomorphic to G1.

3.2 Characteristics and Algorithms for Graph Linearization 39

3.2. Characteristics and Algorithms for Graph
Linearization

There may be many linearizations that represent the same graph. Many factors such as different
starting nodes and different visiting orders can result in different linearizations. However, a com-
pact representation is preferable. For solving graph isomorphism, the length of the linearization is
an important measure on the matching time. This is because a shorter linearization often leads to a
smaller cost at the matching stage. Next, we define length-optimal linearization.

Definition 4 (Length-Optimal Linearization). The linearization p = p1...` of a connected undirec-
ted multigraph is length-optimal if the length of p (i.e., `) is minimum.

Finding the linearization of a graph is very similar to the Chinese Postman Problem (CPP). CPP
finds a walk that visits all the edges (and all the nodes) in the multigraph at least once; the only
difference is that graph linearization does not require the starting node to be the same final node.
A O(n3 +m2) algorithm for the CPP was proposed [54]. We can adapt this algorithm to calculate
a length-optimal linearization. However, for large multigraphs, it is desirable to have algorithms
with lower time complexity even if they do not produce length-optimal linearizations. Then, we
consider BFS-L and DFS-L which produce linearizations using the graph traversal algorithms, as
follows:

BFS-L traverses the multigraph in the breadth-first search manner with some differences.
When it explores a node, it visits all of its unexplored adjacent edges regardless if the node
they lead to has been visited before. After discovering such nodes, it goes back to each one of
them to (i) check if it has unexplored adjacent edges; and (ii) explore such unexplored edges
(if there is any). But it is necessary to add in p all the walk that connects the current node
and the next node to be explored; this significantly increases the length of the linearization
walk. The algorithm terminates when there are no discovered nodes to be explored.

DFS-L traverses the multigraph in the depth-first search manner. It starts from any node and
makes recursive calls to visit the adjacent nodes that are connected to it through unexplored
edges. The base case of the recursive call is when it reaches a node whose edges are all
explored; then, it returns directly. Every time a recursive execution is finished, the execution
instance that called it must add the corresponding connecting edge and source node in p

again; this is because they need to be visited again so that other neighbours can be explored.
The procedure finishes when it goes back to the starting node and it does not have any unex-
plored edges.

Notwithstanding, the linearizations produced by these algorithms can be long. As an attractive
trade-off between length-optimality and efficiency, we propose a greedy approximation algorithm
with an approximation guarantee.

40 3 Our Approach: Graph Linearization

3.3. Graph Linearization Algorithm - GLA

This section presents the GLA or Graph Linearization Algorithm. First, we describe the key ideas
of the algorithm in Section 3.3.1; then we go through the details in Section 3.3.2. Its correctness is
proven in Section 3.3.3. In Section 3.3.4 we present an upper bound for the length of GLA linea-
rizations; furthermore, we show with empirical examples that, in practice, the produced lineariza-
tions are close to optimal (see Section 3.3.5). Finally, in Section 3.3.6, we present the complexity
analysis.

3.3.1. Key Ideas

One of the challenges of linearization algorithms is visiting all the edges with short linearization
length. Given that, in order to visit an edge, it is necessary to visit first one of its end nodes, we
use the number of unexplored adjacent edges that the nodes have to conduct the traversal in a con-
venient manner. Particularly, GLA does the traversal in a similar way as DFS-L. The base case of
the traversal is when we reach a node that has no unexplored adjacent edges; in this case, we say
that such node is covered. In GLA, the number of uncovered nodes is stored. Then, if all the nodes
are covered when a base case takes place, we do not add the way back up to the root of the DFS
tree in the linearization.

Furthermore, GLA takes into account the number of unexplored edges of the nodes, at all stages
of the process, to produce shorter linearizations. Specifically, we develop three heuristics: (i) the
traversal starts from the node with the lowest degree; (ii) the unexplored edges that lead to already
explored nodes are visited before than the ones that lead to unexplored nodes; and (iii) the edges
that lead to unexplored nodes are considered sorted, in ascending order, on the number of unexplo-
red edges they have. Heuristics (i) and (iii) aim to put the nodes that are close to be covered in the
top levels of the DFS tree. On the other hand, heuristic (ii) aims to cover the nodes in the highest
levels of the DFS tree at an early stage.

The first insight is that we want to cover the nodes at the top of the DFS tree early. This is because
when the base case of the recursion is reached, going back to a node in a higher level of the DFS
tree makes the linearization longer than going back to lower levels; thus, we want to reduce the
probability of needing to go back to a high level. The nodes with low degree are more likely to be
covered early; thus our first heuristic chooses the node with the lowest degree as the starting node
of the traversal (the root of the DFS tree). The next level of the DFS tree are the root’s adjacent
nodes that we discover first. And we want to cover them rapidly as well. Therefore, heuristic (iii)
prefers the edges e = (u, v) that lead to unexplored nodes v, sorted on the number of unexplored
edges of v. Then, the nodes at the top levels of the DFS tree will be the ones with the lowest de-
grees, as the ones with the highest degrees may be covered in a lower level of the tree. Furthermore,
to increase the probability of early covering the nodes at the top of the tree, we use heuristic (ii).

3.3 Graph Linearization Algorithm - GLA 41

More specifically, heuristic (ii) works as follows. When a node u is processed, all its unexplored
edges e that lead to already explored nodes w are visited first. Notice that we do not want to
continue the traversal on w as it is already being processed in a higher level of the DFS tree. All we
need is exploring e; however this implies visiting w again, so that the properties of the linearization
are satisfied. Then, we visit e and w and, in order to return to u, we visit e and u again. Notice that
this decreases the number of unexplored edges of w. Therefore, it is more likely that w is covered
before starting all the way back up on the DFS tree when the base case of the recursion takes place.
Furthermore, we do not need to add such way back into p if there are no other unexplored graph
elements. In practice, this condition is satisfied quite often due to the combination of the three
heuristics. Notice that these heuristics make the traversal explore one region of the multigraph
before visiting another one; then, the produced linearization is shorter.

3.3.2. Algorithm

The pseudocode of the Graph Linearization Algorithm (GLA) is listed in Figure 3-1. Each graph
element has a boolean attribute that indicates whether it has been explored. Furthermore, the num-
ber of unexplored graph elements is stored by variable unexplGE. This variable is used to avoid
reinserting graph elements in the backtracking of the DFS search tree when there are no unex-
plored elements left. The number of unexplored adjacent edges that each node v has is stored in
v.NumUnexplEdges. The produced linearization is implemented as the list p. These variables
are used during the DFS-like traversal to apply the heuristics presented in the last section. When
a graph element is inserted into p for the first time, it has to be set as explored and the number of
unexplored graph elements in the graph, unexplGE, must be decreased in one unit. Furthermore,
if such graph element is an edge, the number of unexplored edges of its adjacent nodes must also
be decreased.

The algorithm starts by setting every graph element as unexplored. Then, for each node, the number
of unexplored edges is calculated as the total number of adjacent edges it has. The walk p is set
as empty and the number of unexplored graph elements is calculated as the sum of the number
of nodes and the number of edges in the graph. After these initializations, a DFS-like traversal is
performed using the recursive function in TRAVERSEGRAPH() (see Figure 3-2) starting from the
node u with the lowest degree, i.e. the first call of the procedure TRAVERSEGRAPH() is performed
over u. This procedure is composed of the following steps:

1. Add u into p.

2. Go to already explored nodes v through unexplored edges e. Add e and v into p. In case there
are still unexplored graph elements, it goes back to u through e; this implies adding e and u
into p again.

42 3 Our Approach: Graph Linearization

3. Go to unexplored nodes v through unexplored edges e. The nodes v must be considered sor-
ted on their number of unexplored edges. Then e is added into p and the recursive procedure
TRAVERSEGRAPH() is called over v. If there are still unexplored graph elements after this
call, then e and u must be added again into p so that other neighbours of u can be visited.
When there are no other neighbours to explore, the method returns so the linearization con-
tinues at a higher level of the DFS tree.

Notice that Step (3) is represented in Figure 3-2 through lines 8 − 14. In such lines it seems
that, at each iteration, we find the node v with the minimum NumUnexploredEdges; howe-
ver, this is presented in this way just for clarity. Instead, we can sort the couples e = (u, v) on
v.NumUnexploredEdges before the loop. Then, in each iteration, we consider each of such
couples e = (u, v) in ascending order on v.NumUnexploredEdges. The only additional ope-
ration we perform in each iteration is checking whether the adjacent node is still uncovered. This
is because the value of each v.NumUnexploredEdges does not change, unless such v′ is cove-
red. Specifically, if v is explored at a lower level of the DFS tree traversal, we will not come back
to this loop until v is covered. Checking if a node is covered takes constant time. Consequently,
the complexity of this operation is the initial sorting which is O(d lg d) where d is the maximum
degree of the nodes in V .

The algorithm terminates when the first call to the recursive procedure finishes, i.e., when it
goes back to the root of the DFS tree and there are no unexplored adjacent edges. At this point,
unexplGE = 0 and p contains the linearization. The linearization produced by GLA for the graph
presented in Figure 1-3(a) is Ae1Be3Ce4De5Ce5De2 Be2De6E; its length is 17.

Algorithm 1: GLA Algorithm

Input: G = (V,E)
Output: p

1. for every e ∈ E do e.Explored← false
2. for every v ∈ V do
3. v.Explored← false
4. S ← {(u, v) | u ∈ V ∧ (u, v) ∈ E}
5. v.NumUnexploredEdges← |S|
6. choose u ∈ VP with min(u.NumUnexploredEdges)
7. p← 〈〉, unexplGE ← |V |+ |E|
8. TraverseGraph(G, u, p, unexplGE)
9. return p

Figure 3-1.: GLA algorithm.

3.3 Graph Linearization Algorithm - GLA 43

Algorithm 2: TRAVERSEGRAPH() Procedure

Input: G = (V,E), u, p, unexplGE

1. p.Add(u), u.Explored← true, unexplGE- -
2. for every e ∈ E such that e = (u, v) do
3. if !e.Explored ∧ v.Explored then
4. p.Add(e), e.Explored← true, unexplGE- -, p.Add(v)
5. u.NumUnexplEdges- -, v.NumUnexplEdges- -
6. if unexplGE > 0 do
7. p.Add(e), p.Add(u)
8. while there are unexplored edges e = (u, v)
9. choose e with min(v.NumUnexploredEdges)
10. p.Add(e), e.Explored← true, unexplGE- -
11. u.NumUnexplEdges- -, v.NumUnexplEdges- -
12. TraverseGraph(G, v, p, unexplGE)
13. if unexplGE = 0 then break
14. p.Add(e), p.Add(u)

Figure 3-2.: TRAVERSEGRAPH() procedure.

3.3.3. Correctness Proof

In this section, we first show that the output walk p = p1...` produced by GLA contains all the no-
des and edges in the input multigraph G = (V,E) (condition (3) of Definition 2). Then, we show
that p = p1...` is indeed a linearization ofG, i.e., we show that conditions (1) and (2) of Definition 2
are also satisfied.

The analysis for condition (3) uses two properties:

Property 1. If a node is visited, all of its adjacent edges must be visited as well. According
to lines 2− 4 and lines 8-10 of TRAVERSEGRAPH() in Figure 3-2, all the unexplored edges
of a node will be visited when such node is visited.

Property 2. If a node is visited, all its adjacent nodes must be visited as well. This property
is guaranteed by the code in lines 8− 12 of TRAVERSEGRAPH() in Figure 3-2.

With the two properties above, we can prove the following lemma:

Lemma 1. Given a connected undirected multigraph G = (V,E), the output walk p produced by
GLA includes all its nodes and edges.

44 3 Our Approach: Graph Linearization

Proof. We can prove the lemma by contradition under two cases:

Case 1. Suppose that all the nodes are explored but there exists at least one edge e = (u, v)

that is not visited by GLA. This hypothesis contradicts Property 1: when the node u is
visited, all its adjacent edges must be visited as well.

Case 2. Suppose that there exists at least one node u that is not visited. Assume that we start
the linearization from node v0. Since the multigraph is connected, there is a walk from v0 to
u; let us denote such walk as 〈v0, v1, v2, · · · , vk, u〉. We know that, for 0 ≤ i < k, vi and
vi+1 are adjacent nodes; vk and u are adjacent too. Since v0 is visited, according to Property
2, we know that v1 is visited as well. Then, v1, v2,. . ., vk and u are visited as well. Thus, we
have that u is also visited, which contradicts the hypothesis.

Therefore, all the nodes and edges in G must have been visited by GLA and included in its output
linearization p.

Then, the correctness of is proven by the following theorem:

Theorem 2. The Graph Linearization Algorithm (GLA) outputs a linearization p1...` of the input
multigraph G = (V,E).

Proof. We must prove that conditions (1), (2) and (3) of Definition 2 are satisfied for the output
walk p = p1...` generated by GLA. In particular, condition (3) is satisfied due to Lemma 1. Then,
in the remainder of this proof we show that the walk p1...` satisfies conditions (1) and (2).

Notice that when TRAVERSEGRAPH() is called for the first time (line 8, Figure 3-1), a node u is
inserted (line 1, Figure 3-2). Then, if the if statement of line 3 (Figure 3-2) is evaluated as true,
edges e and nodes v are alternatively added for e = (u, v) where e is unexplored and v is ex-
plored (line 4). After this, the if statement of line 6 is evaluated. If such evaluation yields true,
the algorithm finishes; in such case, p1...` is an alternating sequence of nodes and edges where the
odd indices correspond to nodes and the even indices correspond to edges. Furthermore each pi,
for even values in 1 ≤ i ≤ `, is an edge that connects pi−1 and pi+2; this is because the graph
elements inserted in p are adjacent (lines 2, 8, 9). Thus, the conditions (1) and (2) of Definition 2
are satisfied. Now, let us consider the case where the if statement of line 6 is evaluated as false. In
such case, e and u are added into p again before visiting the next neighbours; thus conditions (1)
and (2) are still satisfied for the current fragment of the walk p.

Then, in the loop of line 8, unexplored edges e = (u, v) that lead to unexplored nodes v are
considered. Edge e is inserted in line 10. When procedure TRAVERSEDGRAPH() is called in line
12, v is inserted as well. Then, if the if statement of line 13 is evaluated as true, conditions (1) and

3.3 Graph Linearization Algorithm - GLA 45

(2) of Definition 2 are satisfied for the returned walk. If such statement is evaluated as false, e and
v are added into p again before exploring the next neighbour (line 14); thus the conditions (1) and
(2) of Definition 2 are still satisfied for the sequence of graph elements currently added into p.

3.3.4. Length of GLA Linearization

Theorem 3 shows that given the multigraph G = (V,E), the length of the walk generated by GLA
is at most 2 times the length of an optimal linearization. Therefore, the length produced by GLA
is asympotically optimal.

Theorem 3. GLA is 2-approximate with respect to the length of the length-optimal linearization.

Proof. Any linearization algorithm, including length-optimal algorithms, must traverse each edge
of the multigraph at least once. Thus, for a multigraph G = (V,E), where n = |V | and m = |E|,
the number of edges in its linearization is at least m. Since a linearization has the format of alter-
nating between nodes and edges, a linearization with k edges has k + 1 nodes. Hence, the optimal
linearization p∗ has at least m edges and m+ 1 nodes. Therefore, |p∗| ≥ 2m+ 1.

When GLA linearizes a multigraph, it visits any edge at most twice. This is because, when proce-
dure TRAVERSEGRAPH() is executed over node u, an unexplored edge e that leads to any explored
or unexplored node v is added once into p (lines 4 and 10, respectively, Figure 3-2). If after exe-
cuting the next instructions there are still unvisited graph elements, it is necessary to go back to u
through e; this means that e and u are added into p again (lines 7 and 14, Figure 3-2). After this, e is
not visited ever again given that only unexplored edges are considered (lines 3 and 8, Figure 3-2).
Therefore, the number of edges in the linearization is at most 2m. Again, since a linearization has
the format of alternating between nodes and edges, the linearization pGLA has at most 2m edges
and 2m + 1 nodes. Therefore, we have

∣∣pGLA
∣∣ ≤ 4m + 1. It leads to the approximation ratio of

GLA, ∣∣pGLA
∣∣

|p∗|
≤ 4m+ 1

2m+ 1
≤ 2

Notice that this theorem is based on the fact that each edge in the multigraph G appears at most
twice in the linearization p = p1...` generated by GLA. Then, ` is compared to a lower bound that
visits each edge only once to show worst-case approximation ratio. However, even an optimal li-
nearization may not achieve the lower bound for many graph structures. Thus, for average cases in
practice, GLA linearization is much closer to the optimal, as elaborated with empirical examples
in Section 3.3.5.

46 3 Our Approach: Graph Linearization

3.3.5. Empirical Comparison on the Length of Different
Linearization Algorithms

This section compares GLA with the linearization methods presented in Section 3.2: BFS-L and
DFS-L. Furthermore, we consider a length-optimal algorithm, which we denote as OPT-L. Spe-
cifically, we compare the algorithms on the length of the linearizations produced for multigraphs
of different topologies.

(b)(a)

(d) (e) (f)

(c)

Figure 3-3.: Examples of graphs with different topology: (a) cyclic graph, (b) complete graph, (c)
star graph, (d) neuron graph, (e) balanced tree and (f) unbalanced tree.

Table 3-1 shows the length of the linearizations produced by each algorithm for each graph in
Figure 3-3. We can see that GLA performs better than both DFS-L and BFS-L for all cases. In
some of them, the difference is quite significant. Moreover, DFS-L is much better than BFS-L
because the length of the linearizations produced by BFS-L is considerably increased by the long
walks that connect the node being examined and the next node to be examined; in DFS-L those
walks are much shorter because of the traversal order. Even though GLA is similar to DFS-L,
GLA’s heuristics significantly reduce the length of the produced linearizations; they improve the
locality of the walk so that GLA is likely to finish exploring one region of the graph before mo-
ving to another one, instead of shuffling among different regions that prolong linearization walks.
In Table 3-1, we can see that these heuristics are effective: GLA performs close to OPT-L: GLA
produces the optimal optimization for all the graphs in the table except for the unbalanced tree for
which its result is close to the one of OPT-L.

3.3 Graph Linearization Algorithm - GLA 47

Table 3-1.: Comparison of the output length of different linearization algorithms.

Graph Figure Nodes Edges BFS-L DFS-L GLA OPT-L
Square graph Figure 3-3(a) 4 4 29 17 9 9

Complete graph Figure 3-3(b) 4 6 35 25 17 17

Star graph Figure 3-3(c) 5 4 31 24 13 13

Neuron graph Figure 3-3(d) 12 12 124 49 35 35

Balanced tree Figure 3-3(e) 7 6 53 25 17 17

Unbalanced tree Figure 3-3(f) 11 10 79 41 35 31

3.3.6. Complexity Analysis

In this section, we derive the complexity of GLA for linearizing the graph G = (V,E), where
n = |V | and m = |E|.

Time Complexity. In Figure 3-1, line 1 takes O(m) time. The time complexity of lines 2 − 5 is
O(2m) because every edge in the graph is visited twice (as the graph is undirected). Line 6 takes
O(n). However, the complexity of GLA is dominated by the traversed walk (line 8, Figure 3-1)
which corresponds to the linearization p. Notice that p has at most 2m edges and 2m+ 1 nodes (as
presented in Section 3.3.4). Each insertion takes constant time as it is always done at the end of p.
But when a node is inserted for the first time, it is necessary to consider the unexplored adjacent ed-
ges e that lead to unexplored nodes v sorted on v.NumUnexplEdges (lines 8−9, Figure 3-2). This
sorting operation takes O(d lg d), where d is the maximum degree of the nodes in G; specifically
d = máxv∈V v.degree. Thus, the time complexity of GLA isO(2m+n(d lg d)) = O(m+dn lg d).

Space Complexity. The space requirement of GLA is given by a list that stores the linearization
p = p1...`. Thus, the space complexity of GLA corresponds to the length of the linearization,
i.e. Θ(`). Because a GLA linearization can have at most 2m edges and 2m + 1 nodes, the space
complexity of the algorithm is Θ(m).

4. Algorithm for Graph Isomorphism

In this chapter we present a linearization-based algorithm for solving graph isomorphism. In par-
ticular, the Parameterized Matching on multi-Graphs (PMG) algorithm uses a linearization of
G1 = (V1, E1), denoted as p = p1...`, and matches it against G2 = (V2, E2) to determine whether
G1 and G2 are isomorphic by using Theorem 1. In Section 4.1 we present the high-level idea of
the algorithm. Then, in Sections 4.2 and 4.3, we respectively present the pseudocode and prove
its correctness. We present the complexity analysis of the algorithm in Section 4.4 while we show
experimental results in Section 4.5. Finally, we discuss how to adapt this algorithm for subgraph
isomorphism in Section 4.6.

4.1. Key Ideas

PMG considers all the possible injective functions f : EG1 → EG2 to determine whether there is
mapping with two properties: (i) f is bijective; and (ii) there exists a walk q = q1...` in G2 such that
q = q1...` parameterized-matches p1...`. These possible injective functions are explored by traver-
sing p and G2 simultaneously. Specifically, a graph element pi is compared to a graph element ge
in G2 to determine whether an injective mapping is possible. We progressively extend a successful
mapping by considering pi+1 and an adjacent graph element of ge. Thus, when the mapping is suc-
cessful for p`, the traversed walk inG2 parameterized-matches p; henceG1 andG2 are isomorphic.

The graph elements of G2 are traversed in the depth-first manner while p is traversed from left to
right. Let us consider the DFS tree that represents the traversal of G2. Each level i of the DFS tree
is comprised of graph elements from G2. If i is odd, it is a level of nodes; otherwise, it is a level
of edges. Then, the idea of this traversal of G2 is considering the possible injective mappings by
attempting to set f(pi) = ge where ge ∈ EG2 is a graph element at level i of the DFS tree. In
order to guarantee that the mapping is injective, two conditions must be verified: (i) if pi = pj , for
i < j, and f(pi) = ge, then the only valid mapping for pj is ge; and (ii) if pi 6= pj , for i < j, and
f(pi) = ge, then f(pj) 6= ge. Notice that if we consider all the assignments in the walk from the
root of the DFS tree to a leaf at the level `, we obtain a bijective function f : EG1 → EG2 such that
f(p1) · · · f(p`) is a walk in G2 that parameterized-matches p1...`.

Next, we show our heuristics to prune the search space. At each step of the process, a node u ∈ V2
and a node in pi are compared. Let us say that we set f(pi) = u. In order to extend the match,
we use node degrees and previous assignments in f to prune the search space. Specifically, we

4.2 Algorithm 49

consider two cases:

Case 1: Node pi+2 is unassigned: We consider all the possible assignments f(pi+1) = e and
f(pi+2) = v for edges e = (u, v) ∈ E2 such that: (i) both e and v are unassigned; and (ii)
v.degree = pi+2.degree. Condition (i) is to guarantee that f is injective; condition (ii) is a pruning
criterion based on that fact that, if G1 and G2 are isomorphic, then analogous nodes must have
the same degree. Notice that if pi+2 is unassigned, pi+1 is unassigned as well; this is because the
assignment of an edge in p is done at the same time (or after) the assignment of its end nodes. The
process continues by considering pi+2 and each v.

Case 2: Node pi+2 is assigned to v ∈ V2: There are two sub-cases. (a) Edge pi+1 is already as-
signed: it is not necessary to check adjacency as this was done when the mapping was set. We
continue by considering pi+2 and v. (b) Edge pi+1 is unassigned: the algorithm considers all the
possible assignments f(pi+1) = e for the unassigned edges e = (u, v). The process continues at
pi+2 and v.

Notice that the procedures for each of these cases guarantees that the mapping of both nodes and
edges is injective. Furthermore, the DFS tree is expected to be sparse due to the pruning criteria;
however, all the possible mapping functions are considered. If the algorithm reaches a successful
assignment for p`, then the algorithm reports that the multigraphs are isomorphic.

4.2. Algorithm

The algorithm PMG, that determines whether G1 = (V1, E1) and G2 = (V2, E2) are isomorphic,
is listed in Figure 4-1. The mapping function is represented as the array f ; namely, in such array,
there is a position for each graph element ge in G1 that stores its associated mapping f(ge) to G2.
On the other hand, boolean array g indicates if each graph element in G2 is already assigned to a
graph element in G1 (through function f). The process starts by obtaining a linearization p = p1...`
of G1 by means of GLA. Then, we initialize the mappings of all the graph elements in G1 as unde-
fined (which we abbreviate as undef in the pseudocode). Likewise, we set that none of the graph
elements in G2 has been assigned to graph elements in G1.

After these initializations, we start the exploration of the search space. In particular, the DFS search
trees are explored by calling the recursive procedure EXTENDMATCH() (see Figure 4-2). Each exe-
cuting instance of this procedure considers a node pi, a node u ∈ V2 and a copy of arrays f and
g. Furthermore, it is assumed that u has already been assigned to f [pi]. Then, what the procedure
does is attempting to set the adjacent graph elements of u, as mappings for pi+1 and pi+2, under the
two cases presented in Section 4.1. The corresponding partial mappings are extended by recursive
calls to EXTENDMATCH() according to the rules of these cases.

50 4 Algorithm for Graph Isomorphism

The roots of the DFS search trees, which correspond to the initial calls to the recursive procedure
(line 8, Figure 4-1), are the nodes in V2 that have the same degree as p1. When we run PMG for the
running example (see Figure 1-3), and p = Ae1Be3Ce4De5Ce5De2Be2De6E is the linearization
of G1, the match is returned when either walk q1 = Xe′1Y e

′
3Ze

′
4We′5Ze

′
5We′2Y e

′
2We′6S or walk

q2 = Xe′1Y e
′
3Ze

′
5We′4Ze

′
4We′2Y e

′
2We′6S is traversed. Notice that both q1 and q2 parameterized-

match p. The mapping functions of these matches correspond to the functions f1 and f2 presented
in Figure 1-3(c).

Algorithm 3: PMG Algorithm

Input: G1 = (V1, E1), G2 = (V2, E2)
Output: true/false

1. p = GLA(G1)
2. for every ge ∈ (V1 ∪ E1) do f [ge]← undef
3. for every ge ∈ (V2 ∪ E2) do g[ge]← false
4. for every u ∈ V2 do
5. if u.degree = p1.degree
6. f ′ ← copyOf(f), f ′[p1]← u
7. g′ ← copyOf(g), g′[u]← true
8. if ExtendMatch(u, p, 1, f ′, g′, G2) = true
9. return true
10. return false

Figure 4-1.: PMG algorithm.

4.3. Correctness Proof

The correctness of the Parameterized Matching on multi-Graphs algorithm (PMG) is proven by
the following theorem:

Theorem 4. The Parameterized Matching on multi-Graphs algorithm (PMG) determines whether
two input multigraphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic.

Proof. We prove the correctness of PMG by showing the following invariant: when u ∈ V2 and pi
are processed in the recursive procedure EXTENDMATCH(), the walk p1...i parameterized-matches
a walk q1...i in G2 where qi = u. Specifically, q1...i = f(p1) · · · f(pi). Next, we show that this
condition holds throughout the execution of the algorithm.

4.3 Correctness Proof 51

Algorithm 4: EXTENDMATCH() Function

Input: u, p = p1...`, i, f, g, G2 = (V2, E2)
Output: true/false

1. if i = ` then return true
2. if f [pi+2] = undef
3. for every e = (u, v) ∈ E2 do
4. if g[v] = false and g[e] = false and v.degree = pi+2.degree
5. f ′ ← copyOf(f), f ′[pi+1]← e, f ′[pi+2]← v
6. g′ ← copyOf(g), g′[e]← true, g′[v]← true
7. if ExtendMatch(v, p, i+ 2, f ′, g′, G2) = true
8. return true
9. else
10. v = f [pi+2]
11. if f [pi+1] = undef
12. for every e = (u, v) ∈ E2 such that g[e] = false
13. f ′ ← copyOf(f), f ′[pi+1]← e
14. g′ ← copyOf(g), g′[e]← true
15. if ExtendMatch(v, p, i+ 2, f ′, g′, G2) = true
16. return true
17. else
18. if ExtendMatch(v, p, i+ 2, f, g,G2) = true
19. return true
20. return false

Figure 4-2.: EXTENDMATCH() function.

Initialization: When i = 1, p1 parameterized-matches u given that f(p1) = u was set in line 6

- Figure 4-1 before calling ExtendMatch(u, p1) (line 8, Figure 4-1).

Maintenance: Let us assume that the invariant holds for pi and u. Then, we have to consider
two cases: (i) f(pi+2) has not been defined; and (ii) f(pi+2) = v′. Let us consider first case
(i). Notice that, because of lines 3 − 4 in Figure 4-2, ExtendMatch(v, pi+2) is only called for
unassigned nodes v such that e = (u, v) ∈ E2 is also unassigned; thus, adding f(pi+1) =

e and f(pi+2) = v (line 5, Figure 4-2) maintains the injective property of f . Hence, when
ExtendMatch(v, pi+2) is executed, p1...i+2 parameterized-matches the walk f(p1) · · · f(pi+2) in
G2 and f(pi+2) = v. For the case (ii), we have two sub-cases: that pi+1 is already assigned
or that it is not. In the former, we need not change the function and, thus, the invariant will
hold when ExtendMatch(v, pi+2) is called (line 18, Figure 4-2)). In the latter, the algorithm only
considers unassigned edges e = (u, v′) for the mapping of f(pi+1) (lines 12− 13, Figure 4-2));
hence, when ExtendMatch(v′, pi+2) is called in line 15, the mapping f will still be injective and

52 4 Algorithm for Graph Isomorphism

f(pi+2) = v′.

Termination: When no matches can be extended until p`, all the calls of ExtendMatch() return
false (see line 20); hence, PMG returns false as well (line 10, Figure 4-1). This is correct as
all the possible mapping functions were considered. Namely, (i) the search was started from all
the valid nodes (lines 5− 10, Figure 4-1); and (ii) all the possible mappings were considered at
all stages of the search (lines 3− 5 and 12, Figure 4-2). On the contrary, if a match is extended
in any branch of the search and reaches position ` (line 1, Figure 4-2)), we obtain that p1...`
parameterized-matches the walk q1...` = f(p1) · · · f(p`) in G2; then, PMG returns true (line 9,
Figure 4-1)). In such case, considering Theorem 1, we conclude that G1 and G2 are isomorphic.

4.4. Complexity Analysis

In this section, we analyse the complexity of determining isomorphism of multigraphs G1 =

(V1, E1) and G2 = (V2, E2), where n = |V1| = |V2| and m = |E1| = |E2|, using PMG.

Time Complexity. The PMG algorithm performs two basic steps: (i) linearizing multigraph G1

into a walk p = p1...`; and (ii) matching the linearization p = p1...` against multigraph G2. The
former takes O(m + dn lg d), where d is the maximum degree of the nodes in G1, as presented in
Section 3.3.6. The complexity of the latter is studied in this section.

The initialization of the arrays f and g takesO(n+m) (lines 2−3, Figure 4-1). However, this cost is
negligible with respect to the number of executions of the recursive procedure EXTENDMATCH();
each execution requires constant time. This number is equal to the number of nodes and edges in
the DFS search trees. The number of edges in a DFS tree is equivalent to the number of nodes:
each node, except the root, is associated to an edge that leads to its parent. Then, the asymptotic
behavior of PMG depends on the number of nodes in the DFS trees. Next theorem gives an upper
bound for this number.

Theorem 5. Let p = p1...` be a linearization of multigraph G1. Also, let d be the maximum degree
of the nodes in multigraph G2; specifically d = máxv∈V1 v.degree. The DFS tree that represents
the traversal of G2 done by PMG has at most O(db`/2c) nodes.

Proof. Let n and m be the cardinality of the sets of nodes and edges, respectively, of both G1 and
G2 (i.e., n = |V1| = |V2|, m = |E1| = |E2|). In the worst case, all the nodes in V1 and V2 have
the same degree; in such case, the pruning criterion based on only matching the nodes v ∈ V2 with
the same degree of pi is not useful. The DFS tree rooted at one of the nodes of multigraph G2 has
d`/2e levels of nodes and b`/2c levels of edges; we just consider the levels of nodes. The root has

4.5 Experimental Evaluation 53

one node and the second level has d nodes. Each of these d nodes is associated to d − 1 nodes in
the third level (as the edges that lead to nodes in upper levels of the tree are not considered); thus,
the third level has d(d− 1) nodes. Similarly, the fourth level has d(d− 1)(d− 2) nodes. In general,
level i of the tree has

∏i−2
j=0(d− j) nodes. Thus, the total number of nodes of a DFS tree is:

1 +

d`/2e∑
i=2

i−2∏
j=0

(d− j) = O(dd`/2e−1)

Since a linearized walk alternates between nodes and edges while starting and ending at a node, `
is odd. Thus, O(dd`/2e−1) = O(db`/2c).

As we have a DFS tree starting at each node in G2, the total number of nodes visited, and hence
the time complexity of PMG, is O(ndb`/2c). Thus, it is important to have a short linearization of
G1. Note that ifG2 is complete, i.e., d = n−1, the time complexity isO(n(n−1)b`/2c) = O(nd`/2e).

However, it is important to remark that Theorem 5 gives an upper bound for the worst-case comple-
xity. It assumes that, at every level of nodes, all the possible neighbors are explored. The average-
case situations are often not that “bad” because: (i) when a node pi has already been assigned,
only such assigned node is considered; and (ii) when the multigraph has varied node degrees, the
pruning criterion highly reduces the number of adjacent nodes to be visited. Thus, in practice, our
algorithm has a better performance than the given worst-case bound.

Space Complexity. PMG compares the linearization p of G1 with its potential parameterized-
matching walks in G2. Notice that only one of such walks is considered at a time. Therefore, PMG
only needs to store the mapping table of the linearization with respect to the current walk being
considered. Such table contains mapping for all the nodes and edges. Hence, the space complexity
of PMG is Θ(n+m).

4.5. Experimental Evaluation

We assess the performance of our proposed approach experimentally. We implement our proposed
framework in both Python and C# and release them as public resources 1 to help future comparison
studies. We compare our approach to VF2, using an optimized implementation from the networkX
library 2. Both are implemented in Python and open-sourced.

1http://ids.postech.ac.kr/graph
2http://networkx.github.io

54 4 Algorithm for Graph Isomorphism

0 100 200 300
10

0

10
2

10
4

10
6

Test id

R
es

po
ns

e
T

im
e

(m
s)

Benchmark Results sorted in increasing
order to GLA response time (log scale)

VF2
GLA

Figure 4-3.: Response time of GLA and VF2 on the benchmark graphs. Test id is sorted, in as-
cending order, on GLA response time.

As datasets, we employ a set of public benchmark graphs (Section 4.5.1) and synthetic graphs
(Section 4.5.2). All evaluations are performed on a server running under a Windows platform on a
3,40GHz CPU with 16GB memory.

4.5.1. Benchmark Graphs

In this section, we study performance over a collection of public benchmark graphs used for eva-
luating isomorphism papers, to validate the generality of GLA. More specifically, we consider
the following three widely adopted families of graphs in the public repository 3. Each family has
graphs of size up to one thousand nodes.

Strongly regular graphs: Graphs with high regularity. The repository has 87 pairs, covering
families of Steiner Triple, Latin Square, Paley, Lattice, and Triangular graphs used in prior
literature.

Component-based graphs: Graphs connecting regular graphs as a component. The repository
has 84 pairs, covering a union of regular graphs, cliques, or tripartite graphs used in existing
work.

3https://sites.google.com/site/giconauto/home/benchmarks

4.5 Experimental Evaluation 55

Graphs based on Miyazaki’s construction: Graphs following Miyazaki’s construction to de-
liberately add complexity to the problem. There are 195 instances available in the repository.

Figure 4-3 first illustrates the response time differences of VF2 and GLA for all 366 instances.
Test id is assigned, in ascending order, on GLA response time (X-axis); the Y-axis represents the
response time of the two algorithms. Observe that in 181 pairs, about half of the datasets, GLA
terminates earlier. This is encouraging as the benchmark datasets are intentionally biased into
“strongly regular”graphs. For example, nodes in the graphs in the strongly regular graph group are
all of the same degree, and node degrees in the component-based graphs also coincide into few
values (e.g., degree of a node within the regular component and degree of a connecting node). Our
target scenario is supporting graphs that are more structurally heterogeneous. The third group of
Miyazaki’s construction adds some such variation, from which GLA clearly excels VF2. In sum-
mary, GLA shows fast response in the half of all benchmark graphs.

Table 4-1 and 4-2 show the break down of this result. In Table 4-1, our empirical finding is con-
sistent with the above analysis, as VF2 excels in regular graphs, while GLA is significantly faster
in 65 % (126 out of 195) in Miyazaki-based constructed graphs. This is an interesting result since
Miyazaki-constructed graphs constitute one of the hardest cases for graph isomorphism algorithms
[141]. Table 4-2 shows cases where GLA is not short-running, or takes 2+ minutes. However, in
the majority of 272 short-running cases, namely 66 % of such cases, GLA runs faster. This opens
up a possibility of a hybrid algorithm that selects between these two algorithms, either statistically-
based on the graph topology or dynamically after running for some time, which we leave as future
work.

Table 4-1.: Number of winning cases of GLA and VF2 on the benchmark graphs.

Strongly Component- Miyazaki’s
Total

Regular graphs Based Graphs construction
VF2 63 53 69 185

GLA 24 31 126 181

4.5.2. Synthetic Graphs

In this section, we study performance over synthetically generated graphs to isolate the factors that
positively and negatively affect the performance of the two algorithms. For graph generation, we
deliberately avoid the “trivial cases”. For example, consider a graph where node vi is connected to
v1, . . . , vi−1, for 1 < i ≤ n. As the degree of each node is unique, testing isomorphism can be done
trivially by using a simple heuristic like sorting nodes by degree. In contrast, we consider cases

56 4 Algorithm for Graph Isomorphism

Table 4-2.: Ratio of short-running cases of GLA and VF2 on the benchmark graphs.

Strongly Component- Miyazaki’s
Total

Regular graphs Based Graphs construction

VF2
100 % 100 % 100 % 100 %

(87/87) (84/84) (195/195) (366/366)

GLA
55.2 % 94.0 % 74.4 % 74.3 %

(48/87) (79/84) (145/195) (272/366)

where no such simple heuristic can be used. Graphs where every node has identical degree would
be much more challenging in that sense.
Meanwhile, we also randomize the node degrees to complement benchmark studies focusing on
regular topologies. Given that the complexity of VF2 is reported to vary significantly over degree,
from O(n2) to O(nn!) [44], we consider both low- and high-degree cases to evaluate algorithms
in a wide spectrum of settings. The lower end of this spectrum is observed when the matching
graphs are early found in a sparse graph, while the opposite case of dense graphs often leads to
long running times. More specifically, we generate sparse and dense identical-degree graphs as
follows: 1-Sparse: We generate a random graph G, with n nodes and 3n edges, where every node
has degree three. We first build a random binary tree with n − 1 edges. Then, the nodes with the
degree less than three are connected to another such node randomly chosen. 2-Dense: We generate
graph G′ by subtracting G from a complete graph. Every node of G has the same degree (i.e.,
n− 4.).

In each setting, we vary the number of nodes from 16 to 256 to evaluate the response time of GLA
and VF2. For each point in the figures, we randomly generate 45 graphs and report the median
response time. We choose median response time as our performance metric because the running
time on different graphs significantly varies over graph complexity (as discussed above) while the
optimization margin is narrow for easy cases and hard extremes. Our target problems are thus neit-
her of these. Namely, using the average or min/max as the main performance metric would bias
the results to represent either extreme. In contrast, median would filter out extreme results.

Figure 4-4(a) and (b) show the results for sparse graphs and dense graphs, respectively. TheX-axis
is the number of nodes (in log scale) and the Y -axis is the median response time in milliseconds.
Note the two figures have different scales. Furthermore, the number of edges is linear with the
number of nodes for sparse graphs and quadratic for dense graphs. In Figure 4-4(a), the median
running time of GLA remains more or less constant to 10 milliseconds, despite the increase in
graph size. As a result, when n = 256, GLA outperforms VF2 by an order of magnitude. In Figu-
re 4-4(b), we observe a consistent trend, except that the performance gap is larger. In particular, for
n = 256, GLA is faster by two orders of magnitude. These figures show that GLA has low res-

4.6 PMG-SI: Solution for Subgraph Isomorphism 57

64 128 192 256
0

50

100

150

200

250

Number of Nodes

M
ed

ia
n

of
 R

es
po

ns
e

T
im

e(
m

s)

GLA
VF2

(a) Sparse median response time.

64 128 192 256
0

1000

2000

3000

4000

Number of Nodes

M
ed

ia
n

of
 R

es
po

ns
e

T
im

e(
m

s)

GLA
VF2

(b) Dense median response time.

Figure 4-4.: Response time of GLA and VF2: (a) on sparse graphs; and (b) on dense graphs.

ponse time, less than VF2. This can be explained by the effective pruning of the notoriously large
search space, which is guided by the heuristics employed during the linearization and matching
phases.

4.6. PMG-SI: Solution for Subgraph Isomorphism

In this section we present an adaptation of PMG to solve the subgraph isomorphism problem.
Specifically, we determine whether graph G1 = (V1, E1), where n1 = |V1| and m1 = |E1|, is

58 4 Algorithm for Graph Isomorphism

isomorphic to a subgraph in G2 = (V2, E2), where n = |V2| and m = |E2|. We solve this problem
by means of the linearization approach, which is correct due to the Corollary 1 of Theorem 1. In
Section 4.6.1 we present the algorithm and in Section 4.6.2 we present some experimental results.

4.6.1. Algorithm

The algorithm is essentially the same as the one presented in Figure 4-1, considering that we linea-
rize the smallest graph (i.e., G1). However, some aspects must be taken into account. For instance,
the length of array f is n1 while the length of array g is n. Furthermore, the heuristic to prune
on node degrees must be modified: instead of an equality constraints, we must use inequalities. In
particular, the condition of line 5 in Figure 4-1 is replaced by u.degree ≥ p1.degree; similarly,
the corresponding constraint of line 4 in Figure 4-2 is replaced by v.degree ≥ pi+2.degree. This
might decrease the pruning power of the node degree heuristic, especially when the node degrees
in G2 are significantly higher than the ones of G1.

Algorithm 5: PMG-SI Algorithm

Input: G1 = (V1, E1), G2 = (V2, E2)
Output:R

1. p = GLA(G1), R = ∅
2. for every ge ∈ (V1 ∪ E1) do f [ge]← undef
3. for every ge ∈ (V2 ∪ E2) do g[ge]← false
4. for every u ∈ V2 do
5. if u.degree ≥ p1.degree
6. f ′ ← copyOf(f), f ′[p1]← u
7. g′ ← copyOf(g), g′[u]← true
8. ExtendMatchSI(u, p, 1, f ′, g′, G2,R)
9. returnR

Figure 4-5.: PMG-SI algorithm.

Figure 4-5 presents a variation of the algorithm, called PMG-SI, that reports all the subgraphs of
G2 that are isomorphic to G1 in the set R. The DFS traversal is performed by the recursive pro-
cedure EXTENDMATCHSI() (see Figure 4-6). The correctness proof and the complexity analysis
presented in Sections 4.3 and 4.4, respectively, also apply for PMG-SI. Thus, its time complexity
is O(ndb`/2c), where d is the maximum node degree in G2 and ` is the length of G1’s linearization.

4.6.2. Experimental Evaluation

We evaluate the performance of our approach for solving subgraph isomorphism under a variety
of graph sizes. We first show the experimental setup and then we show the results.

4.6 PMG-SI: Solution for Subgraph Isomorphism 59

Algorithm 6: EXTENDMATCHSI() Procedure

Input: u, p = p1...`, i, f, g, G2 = (V2, E2),R

1. if i = ` then returnR.Add(f)
2. if f [pi+2] = undef
3. for every e = (u, v) ∈ E2 do
4. if g[v] = false and g[e] = false and v.degree ≥ pi+2.degree
5. f ′ ← copyOf(f), f ′[pi+1]← e, f ′[pi+2]← v
6. g′ ← copyOf(g), g′[e]← true, g′[v]← true
7. ExtendMatchSI(v, p, i+ 2, f ′, g′, G2,R)
8. else
9. v = f [pi+2]
10. if f [pi+1] = undef
11. for every e = (u, v) ∈ E2 such that g[e] = false
12. f ′ ← copyOf(f), f ′[pi+1]← e
13. g′ ← copyOf(g), g′[e]← true
14. ExtendMatchSI(v, p, i+ 2, f ′, g′, G2,R)
15. else
16. ExtendMatchSI(v, p, i+ 2, f, g,G2,R)

Figure 4-6.: EXTENDMATCHSI() procedure.

Experimental Setup

Implementation. We implement the GLA algorithm and the PMG algorithm in C#.

Small graphs. We employ graphs G1 = (V1, E1) with different sizes and topologies. In order to
vary the topology, we consider complete graphs, path graphs, cyclic graphs and star graphs. A cy-
clic graph is a path in which the first node is the same as the last node. A star graph is a graph in
which one node is connected to every other node.

Large graphs. We generate graphsG2 = (V2, E2) using the Recursive Matrix (RMAT) model [31]
that generates scale-free graphs similar to the types of graphs used in many applications. We use
graphs with different sizes: |V2| = 1024, 16384, 131072, 524288, 1048576. The number of edges
of each graph is |E2| = 5× |V2| representing sparse graphs.

Hardware. We perform the experiments on a commodity server with 3,30GHz Intel Xeon X5680
CPU with 24GB RAM running Windows Server 2008R2.

60 4 Algorithm for Graph Isomorphism

Metrics. Our main performance metric is the query response time. We report the number of graph
element comparisons as this is the dominant factor in time complexity. For reference, on our se-
ver, 400000 comparisons are perfomed per second. We also report the length of the linearization
generated for G1.

Experimental Results

The small graphs G1 = (V1, E1) were linearized into walks p = p1...` by means of the GLA
algorithm. Then, they were queried on each one of the large graphs G2 = (V2, E2), where n = |V2|
and m = |E2|, via the PMG algorithm. The behaviour of the matching process was very similar
on all the large graphs; thus, we analyse in detail only the experiment on the large graph with
|V2| = 1024.

For complete graphs: The length of the linearization grows linearly with number of edges
in the graph G1 as expected from Theorem 3 (see Figure 4-7(a)). However, it grows at a
quadratic rate with V1 (see Figure 4-7(b)); this can be explained by the fact that in complete
graphs |E1| = O(|V1|2). The time taken by the algorithm grows faster for low values of ` than
for greater values (see Figure 4-7(c)). This is because for low values there are more matches
and, hence, more graph elements need to be explored; for greater values, mismatches are
early detected.

For path graphs: The length of the linearization is linear respect to both the number of
nodes and edges in G1 (see Figure 4-8(a,b)). This is because in paths |EP | = O(|VP |).
The time taken by PMG grows exponentially on the length of the linearization of G1 (see
Figure 4-8(c)). This verifies the time complexity analysis of PMG in Section 4.4, which
concludes that its time complexity is O(ndb`/2c) where d is the maximum degree of the
nodes in G1. Given that, as the experiment is done on a fixed G2, both n and d are constant.
Consequently, we obtain an exponential function of `. Given that for cyclic and star graphs,
|EP | = O(|VP |), the performance for such graphs is similar.

In Figure 4-9, we show a comparison of the performance among all the different small graphs G1

against two large graphs G2. In Figure 4-9(a) we show the linearization length of the different
types of graphs G1. Because of the number of edges, the linearization of the complete graphs is
significantly much longer in all cases. Figure 4-9(b,c) show the time taken by PMG for all the
types of graphs G1 in the graphs G2 of |V | = 1024 and 1,048,576, respectively.

Notice that the time taken by the cyclic graphs is considerably greater than the other types of graphs
G1 on both large graphs G2. This is because, even though paths, star and cyclic graphs of a given
|V1| have a similar topology, their number of edges are |V1| − 1, |V1| − 1 and |V1|, respectively.
So let us compare the matching of a cyclic graph with both the path and the star graphs. A cyclic
graph is the same as a path but with an additional edge that connects the first node with the last one.

4.6 PMG-SI: Solution for Subgraph Isomorphism 61

Figure 4-7.: Subgraph isomorphism for complete graphs G1 = (V1, V2) on a graph G2 = (V2, E2)
where |V2| = 1024. (a) Linearization obtained by GLA for different values of E1. (b)
Linearization obtained by GLA for different values of |V1|. (c) Time taken by PMG
to solve the subgraph isomorphism problem for different values of the linearization
length.

Figure 4-8.: Subgraph isomorphism for path graphs G1 = (V1, E1) on a graph G2 = (V2, E2)
where |V2| = 1024. (a) Linearization obtained by GLA for different values of E1. (b)
Linearization obtained by GLA for different values of |V1|. (c) Time taken by PMG
to solve the subgraph isomorphism problem for different values of the linearization
length.

Figure 4-9.: Experimental results of different types of graphs G1 = (V1, E1) (complete, path,
cyclic and star graphs) on different graphs G2 = (V2, E2). X-axis is |V1|. (a) Linea-
rization length obtained by GLA for all the graphs G1 = (V1, E1). Number of graph
element comparisons used in PMG for graphs G2 = (V2, E2) with (b) |V2| = 1024,
(c) |V2| = 1048576.

Thus, the linearization of a cyclic graph of a given V1 exceeds in one the length of the linearization
of a path with the same number of nodes. Consequently, the time required to solve the problem for
a cyclic graph with |V1| nodes is equivalent to the time required for a path with |V1| + 1 nodes (as

62 4 Algorithm for Graph Isomorphism

it can be verified in Figure 4-9(b,c)).

Even though the number of edges of a graph with |V1| nodes is |V1|−1 for a star graph and |V1| for
a cyclic graph, the linearization of the star graph can be longer. This is because most edges of the
star graphs are visited back and forth in order to return to the central node. However, because the
mapping of a given edge e ∈ E1 is established only once, the second occurrence of the edge in the
linearization is skipped. Therefore, the time taken for a star graph of a given |V1| is similar to the
time of a path of the same size but much less than the time of a cyclic graph of the same size. On
the other hand, even though complete pattern graphs have long linearizations, the time required for
the matching phase is low due to the early detection of mismatches.

Part II.

Queries on Attributed Graphs Solved
through Parameterized Matching

5. Generalized Pattern Queries

In the last decades, the use of multigraphs to represent information of different types has widely
spread. In particular, attributed multigraphs have been used to represent social networks [114],
communication networks [20] and bioinformatics structures [92], to name some. In this chapter,
we define the attributed multigraph model considered in this thesis (Section 5.1). Furthermore, we
introduce a new type of queries on attributed multigraphs: generalized pattern queries. We show
that our queries support both reachability and pattern match queries and even queries that cannot
be represented under these models (Section 5.2).

5.1. Graph Model

We consider an attributed multigraph, a graph in which nodes and edges have attributes; further-
more, more than one edge may connect the same pair of nodes representing different relationships.
Next, a more formal definition is presented:

Definition 5 (Attributed Multigraph). An attributed multigraphG = (V,E, fV , fE) is a multigraph
where:

V is a set of nodes.

E is a multiset of edges on V × V .

fV is a node-attribute function defined on the set of nodes V such that, for each v ∈ V ,
fV (v) = (A1 = a1, . . . , Ad = ad) where Ak is an attribute and ak is the value assigned to
the corresponding attribute.

fE is an edge-attribute function defined on E in a similar way as fV is defined on the set of
nodes V .

Furthermore, we assume that each node v has at least two attributes: v.id which is a unique identi-
fier, and v.type which is a label (or categorical attribute) called type. Figure 5-1 shows an example
of an attributed multigraph modelling a social network. It contains nodes of two types: person and
photo, and edges of three types: friend, colleague and tag. A person node may have the gender
attribute; its value is male for the nodes with ids “Mike” and “Nick” and female for the nodes with
ids “Alice”, “Mary”, “Rose” and “Kate”.

5.2 Query Model 65

Unlike previous literature that does not consider attributes for edges, we support edges with at-
tributes. This can be useful, for instance, to consider the date when the friendship or the tag was
established. In Figure 5-1, we can see that Rose and Nick became friends on December 2, 2013.

Photo3

Photo1

[d
at

e:
]

12
-0

2-
20

13

Rose

NickAlice

KatePhoto2

Rose

Mary

friend

colleague

Mike

Figure 5-1.: Example of an attributed multigraph that represents a social network. Node type is
person or photo, and edge type is friend, colleague or tag.

As graph processing generally requires random data access (no locality), we assume that the graph
is managed in main memory to allow fast random access using pointer-base representation. Furt-
hermore, if the graph is directed, each node has references to both inbound and outbound edges to
allow queries to traverse both directions.

5.2. Query Model

We propose a novel query model, which allows to find paths, walks, and subgraphs that satisfy
reachability requirements. We call our queries generalized pattern queries. In this section, we
first introduce a few new concepts, and we use them to define our query model. We also present
examples and discuss the expressive power of our queries. We show that our queries can be used
to express both reachability queries and pattern match queries, and beyond.

5.2.1. Prerequisites

Our model supports not only structural requirements, but also attribute predicates and reachability.
In particular, our queries contain nodes and edges that are associated to attribute predicates and

66 5 Generalized Pattern Queries

edges that are associated to reachability expressions. In this section we formalize these concepts.

An attribute predicate is a set of conditions on the attributes established for a node or an edge
in a graph query. Specifically, an attribute predicate is either called a node predicate or an edge
predicate depending on whether it is associated to a node or an edge, respectively. We formalize
this definition as follows:

Definition 6 (Attribute Predicate). An attribute predicate on a node (or edge) of an attributed
multigraph is an expression, with conjunctions and disjunctions, that evaluates some conditions on
its attributes. Let us denote as u.pred the predicate associated to the node (or edge) u. An attribute
predicate u.pred associated to the node (or edge) u is drawn from the following grammar:

P →Attribute Op Constant | P ∧ P | P ∨ P
Op → < | ≤ | > | ≥ | = | 6=

A node/edge v in the attributed multigraph satisfies the predicate u.pred, denoted as v ∼ u, if
u.pred is true when evaluated with v’s attributes.

Furthermore, our model generalizes the traditional definition of reachability in graphs — we intro-
duce the concept of (u, v, ρ)–reachability. Here u and v represent nodes associated to node predi-
cates and ρ represents an edge that is associated to a reachability expression expression, which we
define next.

Definition 7 (Reachability Expression). Let e and n represent edges and nodes that are associated
to predicates, respectively. We define a reachability expression as an expression defined over Q:

Q → e | Q(nQ)∗ | (Qn)∗Q | Q ∪Q (5-1)

A reachability expression is associated to an edge in our query. We denote it as ρ.re when it is
associated to edge ρ.

Note that a reachability expression represents a reachability relation. Hence, the corresponding
edge can be mapped to a path with arbitrary length of the attributed multigraph.

Definition 8 ((u, v, ρ)–Reachability). Let us consider the nodes u and v associated to predi-
cates, and an edge ρ associated to a reachability expression. Given an attributed multigraph
G = (V,E, fV , fE) and two nodes u′, v′ ∈ V , v′ is said to be (u, v, ρ)-reachable from u′ iff:
(1) u′ ∼ u; (2) v′ ∼ v; and (3) there exists a path drawn from ρ.re that connects u′ and v′.

Note that a reachability expression ρ.re must be an alternating sequence of edges and nodes asso-
ciated to predicates where the Kleene star and union operators are supported. We useWG(u, v, ρ)

5.2 Query Model 67

to represent the set of all paths in G = (V,E, fV , fE) that connect any u′ ∈ V to any v′ ∈ V such
that v′ is (u, v, ρ)–reachable from u′.

In order to determine whether a particular v′ ∈ V is (u, v, ρ)-reachable from a given u′ ∈ V , we can
either match forward from u to v through ρ.re (forward approach), or match from v to u backward
through ρ.reR, which is the reversal of the reachability expression ρ.re (backward approach). In
the forward approach, outbound edges of the nodes in the attributed multigraph are considered; in
the backward approach, inbound edges of the nodes are traversed. Table 5-1 shows how to obtain
the reversal of different reachability expressions drawn from the context-free grammar Q under
different rules of production (see Definition 7).

Table 5-1.: Reversal of reachability expressions drawn from Q under different rules of production
(see Definition 7).

ρ.re ρ.reR

e e

Q(nQ)∗ (QRn)QR

(Qn)∗Q QR(nQR)∗

Q ∪Q QR ∪QR

5.2.2. Definition of Generalized Pattern Queries

Now, we are ready to define generalized pattern queries and their matches:

Definition 9 (Generalized Pattern Query). A generalized pattern queryGP = (VP , EP) is a weakly
connected directed multigraph1 where:

VP is a set of nodes associated to node predicates.

EP is a multiset of edges, on VP × VP , that are associated to reachability expressions.

Each edge e′ = (u, v) ∈ EP establishes a (u, v, e′)–reachability requirement.

A match of a generalized pattern query GP = (VP , EP) is a set of nodes in the attributed multi-
graph that bijectively satisfy the predicates associated to the nodes in VP . Furthermore, each pair of
nodes in the match must satisfy the reachability requirements established for the edges that connect
their corresponding nodes in GP . Hence, our model considers structural requirements, predicates
and reachability. We present a more formal definition next.

1A directed multigraph is weakly connected if replacing all its directed edges with undirected edges produces a
connected (undirected) multigraph.

68 5 Generalized Pattern Queries

Definition 10 (Match of a Generalized Pattern Query). Let the generalized pattern query GP =

(VP , EP), where VP = {u1, u2, . . . , un} and n = |VP |. Also letG = (V,E, fV , fE) be an attributed
multigraph and V ′ ⊆ V . The tuple (v1, . . . , vn), for vi ∈ V ′ and 1 ≤ i ≤ n, is a match of GP in G
iff there exists a bijective function f : VP → V ′ such that:

1. vi = f(ui) and vi ∼ ui for every 1 ≤ i ≤ n.

2. f(uj) is (ui, uj, e)-reachable from f(ui) for every e = (ui, uj) ∈ EP , 1 ≤ i, j ≤ n.

We say that (v1, . . . , vn) is a match of GP in G under f .

In this thesis, we study the next problem:

Problem 4 (Generalized Pattern Query Problem (GPQP)). Given a generalized pattern query
GP = (VP , EP) and an attributed multigraph G = (V,E, fV , fE), the Generalized Pattern Query
Problem (GPQP) consists of finding the set GP (G) of all the matches of GP in G, i.e.,

GP (G) = {(fk(u1), . . . , fk(un)) | fk ∈MGP→G},

whereMGP→G denotes the set of mapping functions fk : VP → V ′, for a set V ′ ⊆ V , that yield
matches of GP in G.

5.2.3. Example

An example of a generalized pattern query is presented in Figure 5-2(a). In particular, the query
searches for photos in which Alice is tagged with two people: one of her colleagues and another fe-
male; furthermore, the colleague must be within Mary’s network (they must be connected through
friend-edges). Figure 5-2(b) shows the output of this query on the attributed multigraph of Figure 5-
1. In this case, all the edges except e1 represent single edge predicates; thus their matches are edges
in the attributed multigraph. As for e1, we can see in Figure 5-1 that there is a path between Mary
and Nick that satisfies the regular expression ([type = friend][type = person])∗[type = friend].
The support of predicate attributes on both nodes and edges, as well as the expressive power of the
reachability expressions, allows us to construct many useful and complex queries.

5.2.4. Discussion

Generalized pattern queries possess rich expressive power. It is a strict superset of reachability
queries [40, 151, 84, 127, 128] and pattern match queries [159, 161]. We can use it to express
reachability queries, pattern match queries, and their combination. In particular, a reachability
query (RQ) is a special case of generalized pattern queries that only has two nodes (associated
to predicates) and one edge (associated to a reachability expression). While a RQ establishes a
single reachability requirement, generalized pattern queries allow multiple (u, v, ρ)–reachability

5.2 Query Model 69

u5

[id=Mary]

u4
[type=photo]

u2

[type=person]

u3

[id=Alice]

u1

[type=person gender=female˄]

e1

e2

e3e4

e5

e .re1 = [(friend - person)*- friend[] [] []]

e3 =.re .re .ree e4 5= = tag[]

e2 =.re []colleague

Kate

Nick

Mary

Alice

Photo 2

(b)(a)

Figure 5-2.: Example of generalized pattern queries: (a) a generalized pattern query; (b) output
obtained for the attributed multigraph of Figure 5-1.

requirements that are co-related. We support reachability queries with attribute predicates on both
intermediate edges and nodes, which had not been supported by previous models.

For example, if we want to know in which photos there are men within Alice’s network, we can
use a query like the one in Figure 5-3(a). The output of the query on the multigraph of Figure 5-1
includes (Alice, Photo1) and (Alice, Photo2). The set of the connecting paths associated to these
results is presented in Figure 5-3(b). Furthermore, if we also want to retrieve the names of the men
(tagged in the photos), we can use the query in Figure 5-4(a). The output of such query on the
graph of Figure 5-1 is composed by (Alice,Nick, Photo1) and (Alice,Nick, Photo2).
A pattern match query, associated to subgraph isomorphism, is also a special case of generalized
pattern queries where e.re, for all e ∈ EP , corresponds to a single edge predicate. For instance, let
us consider the query in Figure 5-5: it finds the friends of Alice that are tagged with her in a photo
and also retrieve the photos. The output of this query on the graph of Figure 5-1 is presented in
Figure 5-5(b). This result is a subgraph of the attributed multigraph that is isomorphic to the query
and satisfies all the predicates.

Generalized pattern queries can also represent queries that cannot be modelled by either reacha-
bility or subgraph isomorphism queries. Specifically, generalized pattern queries are graphs that
establish the predicates on a set of nodes of interest (through node predicates) and the reachability
requirements among them (through highly-expressive regular expressions associated to the edges).

70 5 Generalized Pattern Queries

u
[]id=Alice

v
[]type=photo

e.re: [([˄]) - []]type=person gender=male tag[] [] [-friend - type=person)* -(friend]

(a)

(b)

W (u, v,)G =ρ { Alice, friend, Mike, friend, Rose, friend, Nick, tag, Photo 1 ,‹ ›
}Alice, friend, Mike, friend, Rose, friend, Nick, tag, Photo 2‹ ›

e

Figure 5-3.: Example of a reachability query expressed as a generalized pattern query. (a) Query.
(b) Set of the connecting paths associated to the output of this query on the graph of
Figure 5-1.

u1

[id=Alice]

u3

[]type=photo

e .re1 = [(friend - type=person)* - friend][] [] []

u2

[˄]type=person gender=male

e1 e2

e .re2 = []tag

Figure 5-4.: Example of a reachability query with intermediate nodes of interest expressed as a
generalized pattern query.

u2

[]type=person

u1

[id=Alice]

u3

[]type=photo

tag]
[

[fr
ien

d]

[]tag

e3

e2

e1

Alice

Mary Photo 2
tag

tag

fr
ie
nd

(a) (b)

Figure 5-5.: Example of a pattern match query expressed as a generalized pattern query: (a) query
graph; (b) output obtained for the attributed multigraph of Figure 5-1.

We show an example in Figure 5-2(a); this query cannot be expressed by either of the previous
query models. In the next sections, we present an algorithm that finds all the matches of a genera-
lized pattern query; hence, this algorithm also solves reachability queries, pattern match queries,
and more.

6. Linearization on Generalized Pattern
Queries

In this chapter, we extend the concept of linearization presented in Section 3.1 to represent genera-
lized pattern queries in a linear manner. We then define match of a query linearization against the
attributed multigraph, and show that each match of the query linearization corresponds to a match
of our query. Therefore, processing our query requires two steps: (1) linearize the query, and (2)
find the matches of the query linearization. In Section 6.1, we present the main definitions and
prove the correctness of our approach. Then, in Section 6.2, we propose an algorithm that takes
into account the attributed multigraph statistics to produce a query linearization that entails low
time requirements during the matching phase.

6.1. Query Linearization

In this section, we present the definition of query linearization and how it can be used to solve the
generalized pattern queries.

Definition 11 (Query Linearization). Let GP = (VP , EP) be a generalized pattern query. An
undirected walk p = p1...` on GP is a query linearization of GP iff:

1. pi is a node v ∈ VP if i is odd, 1 ≤ i ≤ `.

2. pi is an edge e ∈ EP if i is even, 1 ≤ i ≤ `, such that either e = (pi−1, pi+1) or e =

(pi+1, pi−1).

3. Each node v ∈ VP and each edge e ∈ EP appears at least once in p.

Notice that this definition is similar to Definition 2. The difference is that, as the graph is a ge-
neralized pattern query, the nodes are associated to attributes and each edge defines a (u, v, ρ)–
reachability requirement. Then, the objective of a query linearization p of GP is representing the
structure, the reachability requirements and the attribute predicates of GP in a linear manner. We
use an alternating sequence of adjacent nodes (associated to predicates) and edges (associated to
reachability expressions) that starts and ends at a node. All the nodes and edges in GP must appear
in p at least once so that the complete set of adjacency relations in EP is represented.

72 6 Linearization on Generalized Pattern Queries

We use undirected walks, as there may not exist a directed walk including all the nodes and edges.
However, the direction of each edge e ∈ EP is denoted in the query linearization as e.direction and
is considered during the matching phase. Namely, for the edges pi in p, pi.direction = forward

if pi = (pi−1, pi+1) and pi.direction = backward if pi = (pi+1, pi−1), for even values of i in
1 ≤ i ≤ `. We refer to them as forward and backward edges, respectively. A forward edge pi
establishes a (pi−1, pi+1, pi)–reachability requirement; similarly, a backward edge pi establishes
a (pi+1, pi−1, pi)–reachability requirement, for even values in 1 ≤ i ≤ `. Then, the forward and
backward edges are matched in the attributed multigraph using the forward and backward ap-
proach, respectively.

There may be more than one query linearization that represents the same generalized pattern query.
Figure 6-1 depicts an example of two possible linearizations for the query in Figure 5-2(a).

p2
u1

e1

p1
p4

u2
e2

p3
p6

u3
e3

p5

p8

u4

e4

p7

p12
u5

e5

p13
p10

u4
e4

p11

u2 p9

p2
u3

e3

p1
p4

u4
e5

p3
p6

u5
e5

p5

p8

u4

e4

p7

p12
u2

e2

p13
p10

u3
e2

p11

u2 p9

p14
u1

e1

p15

(a)

(b)

Figure 6-1.: Two linearizations for the graph presented in Figure 5-2(a).

Because processing a walk is simpler than processing a graph, we use query linearization to solve
the generalized pattern queries problem by comparing undirected walks of G with a query lineari-
zation p. Then, we define match of a query linearization:

Definition 12 (Match of a Query Linearization). Consider the generalized pattern query GP =

(VP , EP) and an attributed multigraph G = (V,E, fV , fE). Also, let p = p1...` be a query linea-
rization of GP and q = q1...k be an undirected walk on G where k ≥ `. Furthermore, let q′ be a
subsequence of nodes in q such that q′ = (q′1, q

′
3, . . . , q

′
`) = (qs1 , qs3 , . . . , qs`) where s1 = 1, s` = k

and si < si+2 for odd values of i in 1 ≤ i < `. Then, the subsequence q′ of nodes is a match of the
query linearization p iff:

1. There exists a bijective mapping function f : VP → V ′, where V ′ is the set of nodes in the
subsequence q′, such that qsi = f(pi) and qsi ∼ pi, for odd values of i, 1 ≤ i ≤ `.

6.1 Query Linearization 73

2. qsi+2
is (pi, pi+2, pi+1)–reachable from qsi for odd values of i, 1 ≤ i < `, for which pi+1.direction =

forward. We denote this as qsi
pi pi+2−→ qsi+2

.

3. qsi is (pi+2, pi, pi+1)–reachable from qsi+2
for odd values of i, 1 ≤ i < `, for which pi+1.direction =

backward. We also denote this as qsi
pi pi+2←− qsi+2

.

We say that q′ is a match of p in G under function f .

Notice that a match q′ = (qs1 , qs3 , . . . , qs`) is a subsequence of nodes contained in an undirec-
ted walk q on G; such nodes are connected in an manner that satisfies the structural constraints,
the predicates and the reachability requirements associated to the query linearization p = p1...`.
Specifically, Condition (1) validates the predicates established by the nodes in the query linea-
rization and their bijective association with the nodes in q′. Furthermore, Conditions (2) and (3)
validate the reachability requirements established by the edges in the linearization. It is important
to remark that for edges whose direction is backward, the reversal of its associated reachability
expression must be considered. An example of a match of the query linearization p = p1...13 of
Figure 6-1(a) on the attributed multigraph of Figure 5-1 is presented in Figure 6-2. Specifically,
the match q′ = (Mary,Nick, Alice, Photo2, Nick, Photo2, Kate) is contained in the undirected
walk q = q1...19.

Mary

Alice

Mike

Rose

Kate

Photo 2

Nick

Photo 2

Nick Alice

friend

friend

friend

tag

tag

tag

q1

q2

q3

q4

q5

q6

q7

q8
q9

q10

q11
q12

q19

q18

q17

q16

q15

q14

q13

p1 » qs1
p13 » qs13

p11 » qs11

p9 » qs9

p7 » qs7

p5 » qs5
p3 » qs3

Figure 6-2.: q′ = (Mary,Nick, Alice, Photo2, Nick, Photo2, Kate) is a match of the the linea-
rization p = p1...13 presented in Figure 6-1(a). It is equivalent to finding a match
(Mary,Nick, Alice, Photo2, Kate) of GP in Figure 5-2(a).

The core idea of our approach to find all the matches of the query GP in G is as follows. Let p be
a query linearization of GP . Recall that, p represents the structural requirements, the reachability
requirements and the predicates of GP . If a subsequence q′ of nodes in G is a match of p, then
q′ satisfies the requirements and predicates established in p (and, hence, in GP); thus, q′ is an

74 6 Linearization on Generalized Pattern Queries

occurrence of GP in G. More formally, the following theorem allows us to find the matches of a
generalized pattern query in an attributed multigraph by means of query linearization.

Theorem 6. Consider the generalized pattern queryGP = (VP , EP), where VP = {u1, u2, . . . , un},
and an attributed multigraph G = (V,E, fV , fE). Also, let p = p1...` be a query linearization of
GP and V ′ ⊆ V . Then, the subsequence q′ of nodes is a match of p under function f : VP → V ′,
where V ′ is the set of nodes contained in q′, if and only if (f(u1), . . . , f(un)) is a match of GP

under bijective mapping function f in G.

Proof. Let us consider the attributed multigraph G = (V,E, fV , fE), the generalized pattern query
GP = (VP , EP) and the query linearization p = p1...` of GP . Furthermore, VP = {u1, u2, . . . , un}
and n = |VP |. Also, let V ′ be a subset of n nodes in G (V ′ ⊆ V). In order to prove the theorem,
we need to show that (i) if q′ is a match of p in G under the bijective function f : VP → V ′, then
(f(u1), . . . , f(un)) is a match of GP in G under f ; and (ii) if (f(u1), . . . , f(un)) is a match of GP

in G under function f : VP → V ′, then q′ is a match of p in G under f .

First we prove (i). According to Definition 12, if q′ is a match of p in G, there exists a bijective
mapping function f : VP → V ′ such that qsi = f(pi) and qsi ∼ pi, for odd values of i, 1 ≤ i ≤ `

(condition (1) of Definition 12). Given that p contains all the nodes in VP (see Definition 11),
condition (1) of Definition 10 is satisfied. Furthermore, because p also contains all the adjacency
relations ofGP , conditions (2) and (3) of Definition 12 imply that for every pair e = (u1, u2) ∈ EP ,
f(u2) is (u1, u2, e)–reachable from f(u1) (condition (2) of Definition 10).

Now we prove (ii). Let us consider V ′ = {v1, v2, . . . , vn}. According to Definition 10, if (v1, . . . , vn)

is a match of GP in G, then there exists a bijective mapping function f : VP → V ′ such that
vi = f(ui) and vi ∼ ui, for all 1 ≤ i ≤ n (condition (1) of Definition 10). Then, condition (1)
of Definition 12 is satisfied. Moreover, for every pair e = (u1, u2) ∈ EP , f(uj) is (ui, uj, e)–
reachable from f(ui) (condition (2) of Definition 10). Given that all the edges in EP are contained
at least once in p (see Definition 11), for each e = (ui, uj) ∈ EP , there exists at least a walk
〈f(ui), . . . , f(uj)〉 ∈ WG(ui, uj, e). Therefore, conditions (2) and (3) of Definition 12 are satisfied
as well.

Notice that this theorem is based on the following facts: (i) a query linearization represents all the
adjacency relations of the corresponding generalized pattern query; and (ii) the matches of both the
generalized pattern query and the query linearization involve the existence of a bijective mapping
of the nodes that satisfies the node predicates and the reachability requirements.

In other words, this theorem states that the matches of the generalized pattern query GP =

(VP , EP) in the attributed multigraph G = (V,E, fE, fE) are defined with the same bijective
mapping functions of the matches of p in G, where p is a query linearization of GP . Each match of

6.2 Enhanced Graph Linearization Algorithm — E-GLA 75

p in G is associated to a match of GP in G under a common function f . For example, for the attri-
buted multigraph in Figure 5-1, the mapping function of both p and GP (presented in Figures 6-2
and 5-2(b), respectively) are associated to the same mapping function:

f : (u1, u2, u3, u4, u5)→ (Mary,Nick, Alice, Photo2, Kate)

Then, finding the matches of GP is equivalent to finding the matches of p in G. Based on this,
our approach to find the matches of a generalized pattern query consists of two steps: computing a
linearization p of GP and finding the matches of such linearization in G. We describe each of these
steps in the next sections.

6.2. Enhanced Graph Linearization Algorithm — E-GLA

In this section, we present an algorithm for identifying a query linearization with low matching
cost, out of many possible linearizations, as illustrated in Figure 6-1. In particular, our algorithm is
called Enhanced-Graph Linearization Algorithm (E-GLA).

6.2.1. Baseline: GLA for Length-Optimality

As a baseline, we consider GLA (Graph Linearization Algorithm), which was presented in Sec-
tion 3.3. This algorithm aims at selecting a length-optimal linearization. For example, Figure 6-1(a)
is a length-optimal linerization: a linearization with minimum length among all possible lineari-
zations (see Definition 4). As exact computation incurs prohibitive cost, GLA implements simple
heuristics on a depth-first search (DFS) of the query graph. Specifically, the search can be repre-
sented as a DFS tree. The main heuristics of GLA is to cover the nodes in the highest levels of the
DFS tree to keep the depth minimal; this is done by prioritizing visits to the nodes with minimum
number of unexplored edges when there are choices. Its heuristics achieve 2-approximate optima-
lity (see Theorem 3).

Though length-optimality is a reasonable cost model for the isomorphism problem, this is not as
effective in a more complex query model like ours where selectivity varies. Specifically, it is im-
portant to take into account that we match the query linearization against the attributed multigraph
using a depth-first search (DFS), where the top levels of the DFS tree correspond to the first ele-
ments of the query linearization. Then, we want to put the predicates with fewer matches at the
beginning of the query linearization in order to prune the search space by detecting mismatches at
an early stage of the process.

To illustrate this, let us consider the generalized pattern query of Figure 5-5 and the attributed
multigraph of Figure 5-1. A query linearization can be started from any of the nodes in the gene-
ralized pattern query; however, u1, u2 and u3 have 1, 6 and 3 matches during the matching phase,

76 6 Linearization on Generalized Pattern Queries

respectively. Therefore, we start the query linearization from u1 in order to consider only one DFS
search tree in the matching phase. For the next steps, let us consider the following statistics: (i) the
average number of photos a person is tagged in is 1,16; and (ii) the average number of friends a
person has is 1,66. These statistics are obtained by simple counting on the attributed multigraph of
Figure 5-1. Hence, it is better to continue the query linearization with u3 as it is likely to lead to
fewer matches in the second level of the DFS search trees of the matching phase. Thus, the query
linearization that most likely reduces the search space is u1e3u3e2u2e1u1. We already observe the
cost benefit of using statistics in this example even though the graph is tiny. It becomes much mo-
re important when the graph size increases, as different query linearizations may incur orders of
significantly different costs.

6.2.2. Key Ideas

In this section, we develop the key ideas of the Enhanced-Graph Linearization algorithm (E-GLA).
The cost of the matching phase is represented as DFS search trees where the roots are the possible
matches of p1. The goal of E-GLA is pruning such trees by placing the nodes in VP with fewer
matches in G (i.e., nodes with low selectivity) at the beginning of the query linearization p. As it
was mentioned in last section, this causes that such few matches are placed at the top levels of the
DFS search trees during the matching phase. Hence, the search space is pruned at an early stage
by avoiding partial matches of p that will not lead to complete matches.

More formally, we define the selectivity for each node u ∈ VP in the generalized pattern query. The
selectivity of the node u with respect to the attributed multigraph G = (V,E, fV , fE) is denoted as
selectG(u). It is calculated as the probability of selecting a node from G that satisfies the predicate
u.pred. In this sense, E-GLA gives preference to the nodes in the query with the lowest selectivity
for starting (or continuing) the linearization.

The traversal performed by E-GLA on the generalized pattern query is a DFS search with the follo-
wing heuristics: (1) the traversal starts from the node with the lowest selectivity; (2) the unexplored
edges that lead to already explored nodes are visited before than the ones that lead to unexplored
nodes; and (3) the edges that lead to unexplored nodes are considered sorted, in ascending order,
on the selectivity of such nodes. Notice that heuristics (1) and (3) aim to optimize for selectivity, by
placing the nodes of the generalized pattern query that will have many mismatches at the beginning
of the query linearization; this helps to prune the search space at an early stage of the matching
phase. Moreover, heuristic (2) optimizes for the length of the linearization as in GLA. Thus, E-
GLA produces a linearization that not only considers the length but also takes into account the
statistics of the attributed multigraph to reduce the matching-phase time.

6.2 Enhanced Graph Linearization Algorithm — E-GLA 77

6.2.3. Algorithm

The pseudocode in Figure 6-3 describes E-GLA. Each node and edge has a boolean flag that in-
dicates whether it has been explored. All these flags are initialized with false. Furthermore, the
number of unexplored nodes/edges is stored in variable unexplV E. This variable is used to avoid
reinserting graph elements in the backtracking of the DFS search tree when there are no unexplo-
red elements left. The query linearization is represented as a list p.

Notice that the selectivity of each node v, denoted as v.selectivity, is populated by means of the
function COMPUTESELECTIVITY(). The parameters of this function are the corresponding node
predicate v.pred and the attributed multigraph G = (V,E, fV , fE). This function can be imple-
mented in different ways: (i) counting the nodes in the attributed multigraph that satisfy v.pred;
(ii) using previous information on the attributed multigraph statistics; or (iii) designing formulas
based on the distribution of the node attributes. Thus, the complexity of this function can vary from
constant to linear on the number of nodes in the attributed multigraph.

With such selectivity information, we find the node u with lowest selectivity (line 5, Figure 6-
3). Then, the DFS traversal is performed by calling the recursive procedure STATSTRAVERSE()

over node u (see Figure 6-4). This procedure is essentially the same as TRAVERSEGRAPH() (the
recursive procedure that performs the traversal for GLA); the difference is that edges that lead to
unexplored nodes are sorted, in ascending order, on their selectivity (lines 7− 8, Figure 3-2). The
algorithm terminates when the first call to STATSTRAVERSE() finishes.

Algorithm 7: E-GLA Algorithm

Input: GP = (VP , EP), G = (V,E, fV , fE) Output: p

1. for every e ∈ EP do e.Explored← false
2. for every v ∈ VP do
3. v.Explored← false
4. v.selectivity ← ComputeSelectivity(v.pred,G)
5. choose u ∈ VP with min(u.selectivity)
6. p← 〈〉, unexplV E ← |V |+ |E|
7. StatsTraverse(GP , u, p, unexplV E)
8. return p

Figure 6-3.: E-GLA algorithm.

Example. To illustrate how E-GLA works, Table 6-1 shows the selectivity of the nodes in the
query of Figure 5-2(a). This can be obtained from the statistics on the attributed multigraph of
Figure 5-1, e.g., the number of nodes that satisfy each predicate divided by the total number of

78 6 Linearization on Generalized Pattern Queries

Algorithm 8: STATSTRAVERSE() Procedure

Input: GP = (VP , EP), u, p, unexplV E

1. p.Add(u), u.Explored← true, unexplV E- -
2. for every e ∈ E such that e = (u, v) or e = (v, u) do
3. if !e.Explored ∧ v.Explored then
4. p.Add(e), e.Explored← true, unexplV E- -, p.Add(v)
5. if unexplV E > 0 do
6. p.Add(e), p.Add(u)
7. while there are unexplored edges e = (u, v) or e = (v, u)
8. choose e with min(v.selectivity)
9. p.Add(e), e.Explored← true, unexplV E- -
10. StatsTraverse(GP , v, p, unexplV E)
11. if unexplV E = 0 then break
12. p.Add(e), p.Add(u)

Figure 6-4.: STATSTRAVERSE() procedure.

nodes. E-GLA may start the linearization from the nodes with lowest selectivity, namely u1 and
u3: if the starting node is u1, the linearization obtained is the one presented in Figure 6-1(a); if the
starting node is u3, the linearization is slightly longer as presented in Figure 6-1(b).

Table 6-1.: Selectivity of the nodes in the generalized pattern query of Figure 5-2(a) with respect
to the attributed multigraph of Figure 5-1.

Node u1 u2 u3 u4 u5

Selectivity 1/9 2/3 1/9 1/3 4/9

6.2.4. Correctness Proof

The correctness of this algorithm is proven in the following theorem:

Theorem 7. The Enhanced-Graph Linearization Algorithm (E-GLA) outputs a query lineariza-
tion of the input generalized pattern query G = (VP , EP).

Proof. Let G = (VP , EP) be a generalized pattern query and p = p1...` the output walk produ-
ced by E-GLA. Notice that, disregarding the predicates associated to the nodes in VP and the
reachability expressions associated to the edges in EP , GP is a regular graph. Similarly, a query
linearization of GP , without the node predicates and the reachability expressions of the edges, is
a simple linearization (as defined in Definition 2). Then, we prove Theorem 7 by showing that the

6.2 Enhanced Graph Linearization Algorithm — E-GLA 79

output walk produced by E-GLA is a linearization.

Let us recall that the recursive procedure STATSTRAVERSE() is essentially the same as the recursi-
ve procedure TRAVERSEGRAPH(). These procedures are in charge of the DFS traversal performed
by GLA and E-GLA, respectively. Their only difference is the order in which adjacent edges that
lead to unexplored nodes are considered. Hence, even though the traversal performed by E-GLA
can be different from the one of GLA, such traversal maintains the same properties. Namely, con-
ditions (1), (2) and (3) of Definition 2 are satisfied due to Theorem 2. That is, the output walk
p is a linearization of GP . Thus, if the corresponding predicates and reachability expressions are
respectively included in the nodes and edges of the walk p, then such walk is a query linearization
of GP .

6.2.5. Length of E-GLA Linearization

In this section, we formally discuss the strength of E-GLA. Theorem 8 shows that given the ge-
neralized pattern query GP = (VP , EP), the length of the linearization generated by E-GLA is at
most 2 times the length of a length-optimal linearization. That is, E-GLA optimizes for selectivity,
yet gives the same asymptotic length guarantee as GLA.

Theorem 8. E-GLA is 2-approximate with respect to the length of a length-optimal linearization.

Proof. Let GP = (VP , EP) be a generalized pattern query and p = p1...` the output walk produced
by E-GLA. Any query linearization algorithm, including length-optimal algorithms, must traverse
each edge of the multigraph at least once. Thus, the number of edges in a query linearization of
GP is at least |EP |. Since a linearization has the format of alternating between nodes and edges, a
query linearization with k edges has k + 1 nodes. Hence, the optimal query linearization p∗ has at
least |EP | edges and |EP |+ 1 nodes. Therefore, |p∗| ≥ 2|EP |+ 1.

Like GLA, E-GLA also visits any edge at most twice during the DFS traversal. This is because,
when procedure STATSTRAVERSE() is executed over node u, an unexplored edge e that leads to
any explored or unexplored node v is added once into p (lines 4 and 9, respectively, Figure 6-4).
If after executing the next instructions there are still unvisited graph elements, it is necessary to go
back to u through e; this means that e and u are added into p again (lines 6 and 12, Figure 6-4).
After this, e is not visited ever again given that only unexplored edges are considered (lines 3 and
7, Figure 6-4). Therefore, the number of edges in the query linearization is at most 2|EP |. Again,
since a linearization has the format of alternating between nodes and edges, the query linearization
pE−GLA has at most 2|EP | edges and 2|EP |+ 1 nodes. Therefore, we have

∣∣pE−GLA
∣∣ ≤ 4|EP |+ 1.

It leads to the approximation ratio of E-GLA,∣∣pE−GLA
∣∣

|p∗|
≤ 4|EP |+ 1

2|EP |+ 1
≤ 2.

80 6 Linearization on Generalized Pattern Queries

This worst-case approximation ratio is obtained by comparing the length of E-GLA linearizations
with a lower bound where it is assumed that each edge in the query appears only once in the query
linearization. However, even a length-optimal linearization may not achieve this lower bound for
many graph structures, because it may require including an element more that once. Thus, for many
cases, in practice, E-GLA linearizations are much closer to length-optimal linearizations than the
ratio given by this theorem.

6.2.6. Complexity Analysis

This section studies the computational complexity of E-GLA to generate a query linearization
p = p1...` of the generalized pattern query GP = (VP , EP) for the attributed multigraph G =

(V,E, fV , fE), where n = |V | and m = |E|.

Time Complexity. Initializing the edges and nodes as unexplored takes O(|EP |) and O(VP), res-
pectively (lines 1−3, Figure 6-3). As discussed in Section 6.2.3, the time complexity for computing
the selectivity of each node can vary from constant to linear on n. In this analysis, we assume that
we have information on the distribution of the node attributes; thus, the cost of executing this pro-
cedure is O(1) per node and, hence, O(|VP |) for all nodes in GP (line 4, Figure 6-3). Finding the
node with lowest selectivity takes O(|VP |) (line 5, Figure 6-3). Initializing p and unexplV E takes
constant time (line 6, Figure 6-3).

Notwithstanding, the time complexity of E-GLA is dominated by the undirected walk traversed
(line 7, Figure 6-3) which corresponds to the length of the query linearization. In Section 6.2.5, we
showed that p has at most 2|EP | edges and 2|EP |+ 1 nodes. Each insertion takes constant time as
it is always done at the end of p. But when a node is inserted for the first time, it is necessary to
consider the unexplored adjacent edges e that lead to unexplored nodes v sorted on their selectivity
(lines 7 − 8, Figure 6-4). This sorting operation takes O(d lg d), where d is the maximum degree
of the nodes in GP (including both incoming and outgoing edges). Thus, the time complexity of
E-GLA is O(2|EP |+ |VP |(d lg d)) = O(|EP |+ d|VP | lg d).

Space Complexity. The space complexity is given by the list that stores the linearization, i.e., by
the length of the linearization. Because the linearization can have at most 2m edges and 2m + 1

nodes, the total space complexity is Θ(m).

7. Solution of Generalized Pattern
Queries

We develop a matching algorithm for generalized pattern queries, which we call GPQM. This
algorithm uses a query linearization p = p1...` of the generalized pattern query GP = (VP , EP)

to find the matches of GP in the attributed multigraph G = (V,E, fV , fE). In Section 7.1, the
high-level ideas of the algorithm are presented. Then, we go through the details in Section 7.2.
Its correctness is proven in Section 7.3 while the complexity analysis is derived in Section 7.4.
Finally, some experimental results are presented in Section 7.5.

7.1. Key Ideas

The GPQM algorithm searches for matches of the query linearization p = p1...` of the generali-
zed pattern query GP = (VP , EP) in the attributed multigraph G = (V,E, fV , fE). According to
Theorem 6, each match represents a match of GP in G. This section presents the key ideas of the
algorithm.

We search all the possible undirected walks in G that may contain matches of a linearization
p = p1...` in a DFS manner. Our search starts from p1: the roots of the candidate DFS search
trees are the nodes that satisfy p1. Then, we try to associate each node pi to every node u in these
DFS search trees that satisfies both the node predicates and the reachability requirements. Each
undirected walk from the root of the search tree to u is associated to an injective function f that
establishes a mapping between the nodes in the linearization and certain nodes on the walk. The
injective property ensures that two different nodes in p are not assigned to the same node u ∈ V ;
likewise, two different nodes in V are not associated to the same node in p.

More specifically, the query linearization p = p1...` is traversed from p1 to p` while we consider the
possible assignments for each pi, 1 ≤ i ≤ ` in the graph G. Let us assume that f(pi) = u was set.
We recursively extend the current partial match under f where there are two cases:

Case 1: Node pi+2 is unassigned: We consider all the possible assignments f(pi+2) = v for all
the nodes v ∈ V such that u pi pi+2−→ v (or u pi pi+2←− v, if pi+1 is a backward edge). Let us establish
the predicate p′i.pred : [ID = u.id]. Because u was assigned to pi, we can find the nodes v by

82 7 Solution of Generalized Pattern Queries

finding the nodes v such that u p′
i

pi+2−→ v (or u p′
i

pi+2←− v). Notice that, if pi+1 is a backward edge, sol-
ving u p′

i
pi+2←− v by taking the backward approach prunes the search space as there is only a single

source, i.e., u. This is an advantage of using the query linearization approach instead of separately
solving each reachability requirement and then computing their intersections. Furthermore, among
the possible nodes v, we only consider the ones that are unassigned; this is to guarantee that f is
injective. In case that there exists no node v that satisfies the requirements, the match cannot be
extended. Otherwise, the process continues at pi+2 and each v.

Case 2: Node pi+2 is assigned to v ∈ V : There are two sub-cases. (a) The reachability requi-
rement established by pi+1 has already been evaluated: it is not necessary to evaluate reachabi-
lity again; we continue by considering pi+2 and v. (b) The reachability requirement established
by pi+1 has not been evaluated: we establish the node predicates p′i.pred : [ID = u.id] and

p′i+2.pred : [ID = v.id] and evaluate whether u
p′
i

p′
i+2−→ v (or u

p′
i

p′
i+2←− v, if pi+1 is a backward

edge, which is evaluated using the backward approach). If the requirement is satisfied, the process
continues at pi+2 and v. Otherwise, the match cannot be extended.

The above procedures guarantee that: (i) all the reachability requirements established by the edges
in GP are satisfied; (ii) all the possible mapping functions (or all the possible matches) are consi-
dered; and (iii) because of Case 2, the reachability requirement defined by each edge is evaluated
only once. If the algorithm reaches a successful assignment for p`, then the algorithm reports that
the corresponding mapping function f is associated to a match of GP in G.

7.2. Algorithm

Figure 7-1 lists the pseudocode of GPQM. Three arrays are used to store the information of a
partial (or full) match. (i) The mapping function is represented as the array f where each position
is associated to a node u ∈ VP , which will eventually contain the mapping of u. In the beginning,
all the mappings are undefined (which we denote as undef). (ii) We have a boolean array h, where
each position is associated to an edge e ∈ EP to establish whether the reachability requirement
established by e has already been checked. (iii) We have a boolean array g where each node in V
is associated to a position in the array. Specifically, g[v] = true, for a node v ∈ V , if a mapping
for v has already been established (through f). Intuitively, all the positions of arrays g and h are
initialized with false.

The algorithm starts by computing a query linearization p = p1...` of GP and initializing the set R
of matches as empty. Then, all the nodes v in V such that v ∼ p1 are considered as roots of the DFS
trees. In particular, the DFS traversal is performed by the recursive procedure PROCESSNODE()

(see Figure 7-2). Each execution instance of this procedure considers a node pi, a node u ∈ V

and a copy of f , g and h. It is assumed that u was assigned to f(pi) before the execution instance

7.2 Algorithm 83

was called. Thus, there is a partial match of p1...i in G under f . Then, what the procedure does is
attempting to extend this partial match according to the cases presented in last section.

Algorithm 9: GPQM Algorithm

Input: GP = (VP , EP), G = (V,E, fV , fE) Output:R

1. p = E −GLA(GP , G), R = ∅
2. for every v ∈ VP do f [v]← undef
3. for every e ∈ EP do h[e]← false
4. for every v ∈ V do g[v]← false
5. for every u ∈ V do
6. if u ∼ p1 then
7. f ′ ← copy(f), g′ ← copy(g), h′ ← copy(h)
8. f ′[p1] = u, g′[u] = true
9. ProcessNode(u, p, 1, f ′, g′, h′, G,R)
10. returnR

Figure 7-1.: GPQM algorithm.

We efficiently evaluate the reachability requirements in the query linearization by means of the
function FINDREACHABLENODES() (see Figure 7-3). Let us consider an edge pi+1 in the query
linearization. We first tackle the case where pi+1.direction = forward. Then, in order to evaluate
the corresponding (pi, pi+2, pi+1)–reachability requirement, this function constructs a determinis-
tic finite automaton (DFA) that accepts all the paths 〈u, . . . , v〉 such that v ∈ V is (pi, pi+2, pi+1)–
reachable from u ∈ V . These walks are explored in a DFS manner. The roots of the DFS search
trees are the nodes that satisfy pi+1.pred. Starting from these nodes, we continue the DFS traver-
sal constrained by the DFA. The process terminates when all the paths that lead to the final state,
associated to pi+2.pred, are considered.

If, on the contrary pi+1.direction = backward, the (pi+2, pi, pi+1)–reachability requirement is
validated in a similar manner. However, we use the backward approach to enhance efficiency.
Specifically, notice that if we have already processed a node pi in the query linearization, then a
particular node u ∈ V such that u ∼ pi has already been found. Hence, following the backward
approach makes the search start from a single node (i.e., u) rather than all the possible nodes v
such that v ∼ pi+2. Note that many paths starting from valid nodes v may not lead to u, so they
should not be considered at this point. Then, the search is represented by a single DFS tree rooted
at u. The DFA must accept the paths in G that satisfy the reversal of the corresponding reachability
expression (i.e., pi+1.re

R). Thus, such paths are traversed inversely: for each node on a path, the
incoming edges are considered. For a given reachability requirement, disregarding the direction of
its corresponding edge, the function FINDREACHABLENODES() returns the set of nodes v ∈ V

84 7 Solution of Generalized Pattern Queries

Algorithm 10: PROCESSNODE() Procedure

Input: u, p = p1...`, i, f, g, h,G = (V,E, fV , fE),R

1. if i = ` thenR.Add(f)
2. else
3. p′i.pred : [ID = u.id]
4. if f [pi+2] = undef
5. Q ← FindReachableNodes(p′i, pi+2, pi+1)
6. for every v ∈ Q do
7. if g[v] = false then
8. f ′ ← copy(f), g′ ← copy(g), h′ ← copy(h)
9. f ′[pi+2]← v, g′[v]← true, h′[pi+1]← true
10. ProcessNode(v, p, i+ 2, f ′, g′, h′, G,R)
11. else
12. v = f [pi+2]
13. if h[pi+1] = true then
14. ProcessNode(v, p, i+ 2, f, g, h,G,R)
15. else
16. p′i+2.pred : [ID = v.id]
17. Q ← FindReachableNodes(p′i, p

′
i+2, pi+1)

18. if Q 6= ∅
19. h← copy(h), h′[pi+1]← true
20. ProcessNode(v, p, i+ 2, f, g, h′, G,R)

Figure 7-2.: PROCESSNODE() procedure.

Algorithm 11: FINDREACHABLENODES() Function

Input: u, v, e, G = (V,E, fV , fE) Output: Q

1. if e.direction = forward then reachReq = (u, v, e)
2. else then reachReq = (v, u, e)
3. Q ← QueryConstrainedDFA(reachReq,G, e.direction)
4. return Q

Figure 7-3.: FINDREACHABLENODES() function.

that satisfy the corresponding reachability requirements with respect to a given u ∈ V .

Example. Figure 7-4 shows the DFS search tree traversed by GPQM to find the matches of the

7.2 Algorithm 85

query of Figure 5-2(a) on the attributed multigraph of Figure 5-1 by using the linearization of
Figure 6-1(a). Notice that we associate each node in the linearization to nodes in the attributed
multigraph that satisfy the reachability requirements. For example, the people associated to p3
([type = person]) are the ones that can be reached from Mary ([id = Mary]) through a path
satisfying the expression [([type = friend][type = person])∗[type = friend]]. Such paths are
explored using the DFS constrained by the automaton presented in Figure 7-5.

Moreover, the example demonstrates that both reachability requirement evaluation and injective
assignments prune the search space. For instance, there is just one possible mapping for p11 = u4
in each branch of the search; because p7 = u4, then the only possible mapping for p11 is the
same mapping established for p7, i.e., Photo 1 in the left branch and Photo 2 in the right branch.
The highlighted walk (notes with double lines in Figure 7-4), which has mappings for all the
elements in the query linearization, corresponds to the undirected walk presented in Figure 6-2.
The mapping function associated to this walk constitutes a match of p (and hence of GP) in G (the
one of Figure 5-2(b)).

Mary

RoseMikeAlice Nick Kate

Alice

Alice

Alice

Nick

Photo2

Kate

Photo2

Nick

Photo1

Photo1 Photo3

p u1 1=

p3 = u2

p u5 3=

p7 = u4

p9 = u2

p11 = u4

p u13 5=

tag

colleague

tag

tag

tag

(friend-person)*-friend
... ...

Alice
Alice

Mike

Figure 7-4.: DFS search tree traversed by GPQM to find the matches of the query of Figure 5-2(a)
on the attributed multigraph of Figure 5-1 by using the linearization of Figure 6-1(a).

86 7 Solution of Generalized Pattern Queries

s0
[id=Mary]

s1
[type=friend] [type=person]

s2 s3

Figure 7-5.: Deterministic Finite Automaton (DFA) corresponding to the reachability expression
[[id = Mary]([type = friend][type = person])∗[type = friend][type = person]]
in Figure 5-2(a).

7.3. Correctness Proof

We formally prove the correctness of the GPQM algorithm by means of the following theorem:

Theorem 9. Given the attributed multigraph G = (V,E, fV , fE) and the generalized pattern
query GP = (VP , EP), the GPQM algorithm reports all the matches of GP in G.

Proof. We prove this theorem by showing the following invariant: when u ∈ V and pi are pro-
cessed in the recursive procedure PROCESSNODE(), there exists a match of p1...i in G under so-
me bijective function f . Let us denote such match as (v1, v3, . . . , vi−2, u), where vj ∈ V . Then,
f(pj) = vj , for odd values of j in 1 ≤ j < i, and f(pi) = u. Next, we show that this condition
holds throughout the execution of the algorithm.

Initialization: Let us consider the pseudocode presented in Figure 7-1. Because of the exe-
cution of lines 6 and 8 before calling PROCESSNODE(u, p1) (in line 9), there exists a match
(u) of (p1) under f (i.e., f(p1) = u).

Maintenance: Let us assume that the invariant holds when PROCESSNODE(u, pi) is exe-
cuted (see Figure 7-2). Thus, there exists a match (v1, v3, . . . , vi−1, u) of p = p1...i under a
given function f . If i < `, we have to consider two cases: (i) f(pi+2) has not been defined;
and (ii) f(pi+2) = v, where v ∈ V .

Let us consider first case (i). Notice that, because of lines 5− 7, PROCESSNODE(v′, pi+2) is
only called for unassigned nodes v′ ∈ V such that v′ is (pi, pi+2, pi+1)-reachable from u (or u
is (pi+2, pi, pi+1)-reachable from v′, if pi+1 is a backward edge). Thus, adding f(pi+2) = v′

(line 9, Figure 7-2) maintains the injective property of f and satisfies the corresponding
reachability requirements. Hence, when PROCESSNODE(v′, pi+2) is executed (line 10, Figu-
re 7-2), the invariant is satisfied given that (v1, v3, . . . , vi−1, u, v

′) is a match of p1...i+2.

For the case (ii), we have two sub-cases: the case where the reachability requirement esta-
blished by pi+1 has already been evaluated and the case where it has not. In the former, we
need not change the function and the invariant will hold when PROCESSNODE(v, pi+2) is
called (line 14, Figure 7-2). In the latter, PROCESSNODE(v, pi+2) is only called if the node
v is (pi, pi+2, pi+1)-reachable from u (or if u is (pi+2, pi, pi+1)-reachable from v, if pi+1 is

7.4 Complexity Analysis 87

a backward edge). Furthermore, the mapping function f is not changed. Therefore, when
PROCESSNODE(v, pi+2) is called (line 20, Figure 7-2), (v1, v3, . . . , vi−1, u, v) is a match of
p1...i+2; thus, the invariant holds.

Termination: When a partial match is extended in any branch of the search and reaches
position ` (line 1, Figure 7-2), we know that the function f contains a match of p1...` because
of the invariant. Furthermore, all the matches of p in G are inserted in R as all the possible
mapping functions are considered. Namely, (i) the search is started from all the valid nodes
(lines 5 − 9, Figure 7-1); and (ii) in all the stages of the search, all the possible injective
mappings that satisfy the reachability requirements are considered (lines 5−10, 13−14 and
17− 20, Figure 7-2). This set of matches also corresponds to the set of matches of GP in G
(see Theorem 6).

7.4. Complexity Analysis

This section establishes the worst-case time complexity of GPQM. As we know that subgraph iso-
morphism, a simpler problem than Problem 4, is NP-complete [70], matching generalized pattern
queries is expensive in the worst case. However, we also show that GPQM often performs better
in practice than its worst-case bound and elaborate the reason.

Let us consider the generalized pattern query GP = (VP , EP) and the attributed multigraph
G = (V,E, fV , fE), where n = |V | and m = |E|. As it was shown in Section 6.2.6, finding a
convenient linearization p = p1...` of GP takes O(d|EP | lg d) where d is the maximum degree of
the nodes in GP (line 1, Figure 7-1). The initialization of f , g and h takes O(|VP |), O(|EP |) and
O(n), respectively (lines 2 − 4, Figure 7-1). Notwithstanding, these costs are insignificant with
respect to the cost incurred by repeatedly executing the procedure PROCESSNODE().

In order to calculate the time complexity of GPQM, we first find an upper bound for the number
of executions of the recursive procedure PROCESSNODE(). This number is equal to the number
of nodes that are associated to a given pi in the DFS search trees. The next theorem establishes an
upper bound.

Theorem 10. Let p1...` represent a linearization of a generalized pattern query, and let G =

(V,E, fV , fE) represent an attributed multigraph, where n = |V |. A DFS search tree that repre-
sents the traversal of G done by GPQM has O(nb`/2c−1) nodes associated to the different nodes pi
in the linearization, for odd values of i in 1 ≤ i < `.

Proof. Let us consider the undirected walks from the root of a DFS search tree to the lowest
leaves, i.e. the undirected walks that have d`/2e nodes associated to a pi. These walks are the

88 7 Solution of Generalized Pattern Queries

ones that determine the height of the tree with the greatest number of executions of the procedure
PROCESSNODE().

Next we calculate the number of possible assignments for each node pi that requires the execution
of the procedure PROCESSNODE(). There is one possible assignment for p1 in a given DFS search
tree. According to the reachability requirement established by p2, there can be up to n − 1 nodes
that could be assigned to p3. This is because the node assigned to p1 cannot be assigned to p3
because of the injective requirement. Each of these n − 1 nodes that can be associated to p3 may
yield to n − 2 possible assignments for p5 (again, the paths that lead to the nodes assigned to p1
and p3 are not considered); thus, the total number of possible assignments for p5 in the DFS search
tree is O((n − 1)(n − 2)) nodes. Similarly, the total number of assignments in the tree for p7 is
O((n − 1)(n − 2)(n − 3)) nodes. In general, pi has at most

∏bi/2c
j=1 (n − j) possible assignments.

Therefore, the total number of assignments in the tree for odd values of i in 1 ≤ i < ` is:

1 +
`−2∑
i=3
i+=2

bi/2c∏
j=1
j+=1

(n− j) = O(nb(`−2)/2c) = O(nb`/2c−1)

In the worst case, we can have at most n DFS search trees with these characteristics, by assig-
ning each distinct node in G to p1. In other words, we obtain a different DFS search tree by
starting the search from a different node of G. Thus, the total number of times that the procedure
PROCESSNODE() can be executed is: O(n× nb`/2c−1) = O(nb`/2c).

The complexity of each execution of the procedure PROCESSNODE() is dominated by the execu-
tion of the function FINDREACHABLENODES() (lines 5 and 17, Figure 7-2). The complexity of
this function is determined by the construction of the DFA and the DFS search constrained by it
(line 3, Figure 7-3). This can be done, using the traditional technique [142], as follows. We convert
the regular expression, whose length we denote as r, into an NFA with O(r) nodes. Then, this
NFA is converted into a DFA in O(2r) time. Let O(s) be a tight upper bound on the length of the
paths read by this DFA. The DFS search constrained by such DFA takes O(ns); this complexity
is calculated using a similar analysis as the one of Theorem 5. Thus, the total complexity of an
execution of FINDREACHABLENODES is O(2r + ns). Given that this function is executed at most
once in the procedure PROCESSNODE(), the complexity of this procedure is also O(2r + ns).

Hence, the total complexity of GPQM is the number of times that the procedure PROCESSNODE()

is executed multiplied by the cost of each single execution. Specifically, the total complexity is
O(nb`/2c×máx{2r, ns}) where r is the length of the longest regular expression in the query and s
is the length of the longest matching path of any regular expression in such query.

7.5 Experimental Evaluation 89

It is, however, important to remark that this analysis gives an upper bound for the worst-case
complexity. It assumes that, for every node pi in the linearization, all the possible assignments
will be evaluated. The average-case situations are often not that “bad” because (i) when a node
pi has already been assigned, only the assigned node is considered; and (ii) the node and edge
predicates as well as reachability requirements often effectively prune the search space: for each
possible assignment for a given pi (where i is odd) only few assignments for pi+2 are possible.
Furthermore, this analysis was made assuming that the attributed graph is complete, while many
graphs in the real world are sparse. Moreover, the values of `, r and s are often constant which
makes our algorithm polynomial for many cases. Therefore, in practice, our algorithm shows much
better performance than the given worst-case bound, as demonstrated in the experiments.

7.5. Experimental Evaluation

This section presents the implementation and experimental results of the proposed techniques. The
main objective is to show the feasibility and efficiency of executing generalized pattern queries.
Specifically, this section consists of four parts. We first describe the experimental setup that inclu-
des the information of the data set, the test set and the environment used (Section 7.5.1). Second,
we introduce some examples of queries and the results of their evaluation on the complete DBLP
graph by means of GPQM (Section 7.5.2). Third, we evaluate the performance of GPQM when
the sizes of the query and the graph are varied (Section 7.5.3). Lastly, we illustrate the efficiency
of using graph statistics (Section 7.5.4).

7.5.1. Experimental Setup

Datasets. We use the DBLP graph, which is a well-known computer science bibliography that cap-
tures information on authors, papers and where they are published (e.g., journals and conferences),
as well as academic citations. We obtained the data from the DBLP website [52] on December
20, 2013 to produce a graph with more than 10 million elements (1.684.750 nodes and 9.955.181
edges) containing three node types and three edge types.

To study how the query response time varies with the graph size, we also generate synthetic graphs
of varying sizes as subsets of the DBLP graph. To preserve the network structure among graph
nodes, we perform the following steps to generate a graph with a specific number of nodes. We
randomly select an arbitrary article, that has not been selected yet, and add the article node into
the synthetic graph. Furthermore, we add all its edges and immediate neighbours (the 1-hop neigh-
bourhood) if they do not belong to the generated graph. We repeat this step until the number of
nodes reaches the target. We produce three synthetic DBLP graphs with {250K, 500K, 1M} nodes
and {923,762, 2,049,242, 4,510,296} edges, respectively.

90 7 Solution of Generalized Pattern Queries

Query workload. There is no standard benchmark for generalized pattern queries. Therefore, we
form queries that possess different features (such as reachability, pattern match queries and their
combinations). As performance measures, we report the query execution time and the number of
graph elements accessed during the processing.

Implementation. We implement a query processing system in C#. This system includes the query
linearization and matching algorithms, as well as the query language parser and compiler. We use
a server with 2,79GHz Xeon CPU and 24GB main memory (RAM) running the Windows Server
operating system.

7.5.2. Queries on the Complete DBLP Graph

We introduce examples of generalized pattern queries with different characteristics. Then, we dis-
cuss experimental results of performing such queries on the DBLP graph.

Examples of Generalized Pattern Queries

We present some examples of generalized pattern queries in Figure 7-1. For instance, the generali-
zed pattern query Q1 evaluates reachability. This query makes use of the Kleene star to find paths
of arbitrary length that represent the relationship between a specific author and his/her academic
descendants 1. In particular, Q1 allows to find all the academic descendants of Jiawei Han. On the
other hand, the generalized pattern query Q2 is a combination of reachability and pattern match
queries. Specifically, the query allows to find the articles co-authored by two academic descendants
of Jiawei Han.

The generalized pattern queries Q3 and Q4 are examples of queries with the union operator. The
former searches for journals that published papers written by M.Tamer Özsu or any of his co-
authors; the latter looks for articles written by H. Vincent Poor and one of his colleagues, such that
the colleague is either a prolific author2 or has worked with the him for at least 10 times.

Notice that queries Q5 and Q6 look similar. However, they have different meaning and execution
costs. In particular, Q5 searches for prolific authors who have published articles at four conferences
(i.e., VLDB, PVLDB, SIGMOD and SIGKDD). In contrast, Q6 is a pattern match query where the
articles at each conference also constitute nodes of the query. This makes a big difference since the
output of a generalized pattern query is established by its nodes. Specifically, Q5 reports only the
authors that satisfy the condition, while Q6 looks for all the articles published by the author in each
conference and reports all the possible combinations. As a result, Q6 can potentially have many

1Academic descendant: An author A is an academic descendant of another author B, if A publishes at least 10
articles with B or A is an academic descendant of an academic descendant of B.

2Prolific author: An author is a prolific author when he/she has written more than 200 articles.

7.5 Experimental Evaluation 91

Table 7-1.: Examples of generalized pattern queries on the DBLP graph.
Query Query Representation

Q1 Jiawei

Han
author

(cowork[count≥10] - author -)*

cowork[count≥10]

Q2
article

[exp1] [exp1]

writewrite

Jiawei

Han

author author

[exp1]: (cowork[count≥10] - author -)* cowork[count≥10]

Q3 M. Tamer
Özsu

journal

((write) or (cowork - author - write))
- article - publish

Q4 H. Vincent

Poor
article

(cowork[count≥10] - author - write) or

(cowork - author[publication>200] - write)

write

Q5
author

pubs>200

VLDB PVLDB

SIGMOD SIGKDD

[exp1] [exp1]

[exp1][exp1]

[exp1]: write - article - published by

Q6 author

pubs>200

article article PVLDB

SIGMODarticle article

write wr
ite

wr
ite

write

publish

publish

VLDB
publish

SIGMOD
publish

Q7 Samuel

Madden
author

(write - article@VLDB - write - author)≤k

- write - article@VLDB - write

Q8 author article
write

author write

author

writ
e

Q9 author
journal

(pubs>500)

write

author

(pubs<5)
write(1 st)

author
wr
ite

article
publish

92 7 Solution of Generalized Pattern Queries

more matches than Q5, if the authors who satisfy the condition also have many combinations of
papers from the four conferences. We discuss Q7 and Q8 in Section 7.5.3, and Q9 in Section 7.5.4.

Performance of the Query Evaluation

Figure 7-6 contains three subfigures that show the experimental results of evaluating the generali-
zed pattern queries of Table 7-1 on the complete DBLP graph. In particular, Figure 7-6a presents
the execution time and Figure 7-6b shows the number of visited graph elements of each query.
Similarly, Figure 7-6c shows the number of matches for each query. For example, we found 18

matches of Q1 in 0,1 second visiting 6, 575 graph elements.

These results show that the number of accessed graph elements is strongly correlated to the execu-
tion time, which validates the assumption of using the number of visited elements as our comple-
xity metric. In contrast, the number of matches does not necessarily reflect the processing time.

We show the difference on the performance between Q5 and Q6. The execution time and the num-
ber of visited graph elements for Q6 are almost 100 times greater than the ones for Q5. Also, Q6
has 980 matches, while Q5 has only one match. The reason is that, in the case of Q5, once we es-
tablish the reachability from an author to one of the conferences, we can stop exploring other paths
that lead to the same conference via a different publication. In other words, we only need to find if
the author has published in the conference. In contrast, Q6 needs to enumerate all the publications
from the author in the conference. That is why Q6 is more expensive and returns more results.
This verifies the hypothesis posed at the end of Section 7.5.2. Also, these results demonstrate that
the expressive power of generalized pattern queries allows us to write the queries in a flexible way,
where the trade-off between the execution time and the amount of information returned is establis-
hed according to our needs.

In summary, we show that our query linearization and matching algorithms can evaluate generali-
zed pattern queries.

7.5.3. Varying Graph and Query Sizes

We show that the processing time depends on the size of both the attributed multigraph and the
generalized pattern query. We use two generalized pattern queries: Q7 and Q8 of Table 7-1.

Let us consider first query Q7. The expression ρ≤k indicates that the expression ρ can be concate-
nated with itself from 0 to k−1 times, i.e., ρ≤k = ρ∪ρ2∪· · ·∪ρk. Thus, Q7 searches for the VLDB
co-authors of Madden within a (k + 1)-hop. Note that k sets an upper bound on the length of the
paths that match the corresponding reachability requirement. We use this query on the experiments
with varying k. Figure 7-7a shows the performance of our algorithm for this query Q7 on various
sizes of the DBLP graph. When the graph size is smaller than 1M , or k is equal or smaller than

7.5 Experimental Evaluation 93

0.1 0.1

4.1

1.3
0.02

37.4

0

5

10

15

20

25

30

35

40

Q1 Q2 Q3 Q4 Q5 Q6

T
im

e
 (

se
c
)

(a) Execution time

6.58K 10.7K
3.31M 1.38M 27.2K

114M

0

20

40

60

80

100

120

Q1 Q2 Q3 Q4 Q5 Q6

)
n

oilli
M(st

ne
mel

E
h

p
ar

G
detisi

V
(b) # of visited graph elements

18

912

202

53
1

968

0

200

400

600

800

1000

1200

Q1 Q2 Q3 Q4 Q5 Q6

N
u
m
b
e
r
s

(c) # of matches

Figure 7-6.: Experimental results for queries Q1–Q6 (see Table 7-1) on the complete DBLP graph.

3, the execution time of the query is less than 2 seconds. When we use the complete DBLP graph,
however, the execution time grows with respect to the query length. As a result, while we find
the 6-hop co-author neighbourhood for a specific author, via VLDB paper authorship, the query
requires 50 seconds for the full DBLP graph. This shows that the execution time depends on the
size of graph and the query complexity.

Next, we use a star pattern match query and change the number of nodes. Query Q8 is a template
for such type of query. This is a complex query with few predicates that prune the search space.
It does not have various candidates of query linearization orders. We vary the number of nodes in
the query by changing the number of author nodes. Figure 7-7b shows that the execution time is

94 7 Solution of Generalized Pattern Queries

strongly related to the graph size and the query size.

In conclusion, the time required for processing a generalized pattern query depends on both the
size of the attributed multigraph as well as the query.

0

10

20

30

40

50

60

0 1 2

T
im

es
 (

se
c)

Graph Size (# of nodes, Millions)

k=0
k=1
k=2
k=3
k=4
k=5

(a) Varying k in Q7 .

0

50

100

150

200

250

300

0 1 2

T
im

es
 (

se
c)

Graph Size (# of nodes, Millions)

|V|=2

|V|=3

|V|=4

(b) Varying # of nodes in Q8.

Figure 7-7.: Response time of GPQM for queries Q7–Q8 (see Table 7-1) on subgraphs of the
DBLP graph of varying sizes.

7.5.4. Efficiency of E-GLA

The query linearization algorithm E-GLA uses graph statistics and selectivity estimation to ge-
nerate a better linearization order. We compare E-GLA with GLA, an algorithm that optimizes
the length of the linearizations but does not use the attributed multigraph statistics (see Section 3.3).

Notice that both GLA and E-GLA produce the same linearization for Q8. Thus, we use the query
Q9 of Table 7-1 to evaluate the difference. This query searches for articles written by three authors
and published at a journal with more than 500 publications. Furthermore, the first author must have
at most 4 publications.

GLA starts from either an author or a journal node and then goes to the article node. Next, it selects
an arbitrary non-visited node and repeatedly goes back to the center (i.e., the article node) until all
the nodes are visited. In contrast, E-GLA starts from a journal node because it has the most restric-
tive predicate (journal with 500+ publications). Next, it visits the article node. Then, it selects the
node with the lowest selectivity, i.e., the node that establishes that the author must have at most 4

7.5 Experimental Evaluation 95

publications. Finally, it goes back to the center and visits the non-visited nodes in an arbitrary order.

The performance of the matching algorithm GPQM is different depending on the used lineariza-
tion algorithm. Figures 7-8a and 7-8b respectively show the execution time and the number of
visited nodes, when each linearization algorithm is used, for different graph sizes. The E-GLA
algorithm results in lower execution time and the difference between E-GLA and GLA increase
with the the graph size.

0

100

200

300

400

500

600

700

0 1 2

T
im

es
 (

se
c)

Graph Size (# of nodes, Millions)

GLA

EGLA

(a) Execution response time.

0

5

10

15

20

25

30

35

40

0 1 2

)s
n

oilli
M(

es

citre
v

detisi
v f

o
#

Graph Size (# of nodes, Millions)

GLA

EGLA

(b) # of visited graph elements.

Figure 7-8.: Experimental results for query Q9 (see Table 7-1), using GLA and E-GLA lineari-
zations, on subgraphs of the DBLP graph of varying sizes.

8. Conclusions

This thesis presents a novel approach to determine whether multigraphs G1 = (V1, E1) and
G2 = (V2, E2), where n = |V1| = |V2| and m = |E1| = |E2|, are isomorphic. In particular,
this approach is based on a string matching technique called parameterized matching. Parameteri-
zed matching is used to find strings that have the same structure, i.e., the relative distances among
the occurrences of each symbol is preserved. Our solution starts by representing G1 in a linear
manner, which we call graph linearization p = p1...`. Then, we search for the walks in G2 that
parameterized-match the linearization. If there exists at least one of such walks, we conclude that
the graphs are isomorphic. The correctness of our approach is formally proven.

We develop a Graph Linearization Algorithm called GLA. This algorithm does a DFS–like traver-
sal on G1 guided by heuristics that consider the number of unexplored adjacent edges that nodes
have. The GLA algorithm produces short linearizations as illustrated through empirical examples.
In fact, it is proven that the produced linearizations are 2–approximate length-optimal. We show
that the time complexity of GLA is O(m + nd lg d) where d is the maximum degree of the nodes
in the graph.

New optimizations can be included in the GLA algorithm to incur in lower time during the mat-
ching phase. In particular, the matching time does not only depend on the length of the lineari-
zation, but also on the order of comparisons. For instance, the topological graph statistics of the
multigraphs can be used to produce a linearization that prunes the search space during the mat-
ching phase. For example, if the frequency of some nodes of a certain degree is low, it would be
appropriate to start the linearization from such nodes. However, for clarity, in this thesis, we focus
on the fundamental approach only.

Furthermore, we devise a matching algorithm called PMG that searches for walks in G2 that
parameterized-matches the linearization p = p1...`. Specifically, this algorithm does a DFS traver-
sal on G2 where all the feasible mappings from the graph elements in the linearization to the graph
elements in G2 are explored. One of the key ideas of the algorithm is to prune the search space by
considering node degrees and previous assignments. The time complexity of PMG is O(ndb`/2c).

We experimentally evaluate the efficiency of our solution by comparing with a prominent graph
isomorphism algorithm called VF2. Experiments on synthetic graphs show that our algorithm per-
forms better for both sparse graphs and complete graphs, but the difference is more significant for

97

complete graphs. We also perform experiments on benchmark graphs. For those, our algorithm
reported better time results than VF2 in about half of the datasets. More precisely, VF2 excels in
regular graphs, while our algorithm is significantly faster in 65 % of Miyazaki-based constructed
graphs. This is an interesting result since Miyazaki-constructed graphs constitute one of the hardest
cases for graph isomorphism algorithms [141]. It is important to remark that in some cases where
our solution is not short running, VF2 is fast. However, in the majority of the short-running cases,
namely 66 % of such cases, our algorithm runs faster. This opens up a possibility of a hybrid algo-
rithm that selects between these two algorithms, either statistically-based on the graph topology or
dynamically after running for some time, which we leave as future work.

We present a straightforward adaptation of our approach to determine whether G1 = (V1, E1) is
isomorphic to a subgraph in G2 = (V2, E2). The resulting algorithm, called PMG-SI, preserves
the time complexity of PMG, i.e., O(ndb`/2c) where n = |V2| and d is the maximum node de-
gree in G2. We experimentally evaluate the algorithm on synthetic graphs G2 of varying sizes. For
the graphs G1 we used path, star, cyclic and complete graphs. Experimental results verify that the
matching time depends on the linearization length and the promptness in which mismatches are
detected.

Moreover, we extend our approach to query attributed multigraphs. In fact, we define a new type of
queries called generalized pattern queries that establish predicates, reachability and topological re-
quirements. These queries are multigraphs that establish predicates on a set of nodes of interest (th-
rough node predicates) and the reachability requirements among them through highly-expressive
regular expressions associated to the edges. Such expressions are composed by nodes and edges
(associated to predicates) and the regular expression operators (i.e., concatenation, union and Klee-
ne star). Thus, each edge e = (u, v) in the query defines a complex reachability requirement from
node u to node v. It is important to remark that previous reachability query models do not support
evaluation of predicates on intermediate nodes and edges nor the Kleene star operator. This new
type of queries can represent pattern match queries, reachability queries and beyond.

Then, we use the linearization approach to solve the problem of finding the matches of a genera-
lized pattern query GP = (VP , EP) in an attributed multigraph G = (V,E, fV , fE). Each vertex
and each edge in G is associated to a set of attributes, which are defined by the functions fV and
fE , respectively. In order to produce a convenient linearization, we propose an algorithm, called
E-GLA, that takes into account the statistics of the attributed multigraph to linearize the genera-
lized pattern query. In particular, for each node u ∈ VP , the selectivity of u is calculated as the
probability of selecting a node from G that satisfies the predicates of u. Then, the main heuristic of
E-GLA is starting (or continuing) the query linearization from the node with lowest selectivity. In
this sense, the mismatches are early detected during the matching phase and, hence, the search spa-
ce is pruned. Furthermore, E-GLA query linearizations are also 2–approximate length–optimal.
The time complexity of the algorithm is the same as the one of GLA.

98 8 Conclusions

The matching algorithm, called GPQM, does a DFS traversal on the attributed multigraph. The
different feasible mappings between the nodes in the query linearization and the nodes in the DFS
search tree are considered. In order to evaluate reachability, we construct a deterministic finite
automaton (DFA) that accepts all the paths that satisfy the corresponding reachability expression.
Then, we perform another DFS constrained by such automaton. The time complexity of GPQM
is O(ndb`/2c), where n = |V |, d is the maximum node degree in G and ` is the length of the query
linearization.

We experimentaly validate the algorithm on the DBLP graph. We formed generalized pattern que-
ries that possess different features, including reachability, pattern match queries and their combi-
nations. Our experiments verify that the number of visited nodes is strongly correlated with the
execution time. Furthermore, the results illustrate that the expressive power of generalized pattern
queries allows us to write the queries in a flexible way, where the trade-off between the execution
time and the amount of information returned is established according to our needs. Other set of
experiments demonstrate that the processing time of a generalized pattern query depends on both
the size of the query and the attributed multigraph. In order to evaluate the effectiveness of E-GLA
heuristics, we compare the performance of GPQM when either E-GLA or GLA linearization al-
gorithm is used. The results indicate that, when E-GLA is used, the execution time is lower and the
difference increase with the graph size. As a conclusion, generalized graph queries are processed
efficiently by considering graph statistics and selectivity estimation for query linearization.

Bibliography

[1] Rakesh Agrawal, Alexander Borgida, and HV Jagadish. Efficient management of transiti-
ve relationships. In Proceedings of the 1989 ACM SIGMOD International Conference on
Management of Data. Citeseer, 1989.

[2] Alfred V Aho and John E Hopcroft. Design & Analysis of Computer Algorithms. Pearson
Education India, 1974.

[3] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Internet: Diameter of the world-
wide web. Nature, 401(6749):130–131, 1999.

[4] Amihood Amir, Yonatan Aumann, Richard Cole, Moshe Lewenstein, and Ely Porat. Fun-
ction matching: Algorithms, applications, and a lower bound. In Proceedings of the 30th
International Colloquium on Automata, Languages and Programming, 2003.

[5] Amihood Amir, Martin Farach, and S Muthukrishnan. Alphabet dependence in parameteri-
zed matching. Information Processing Letters, 49(3):111–115, 1994.

[6] Amihood Amir and Igor Nor. Generalized function matching. Journal of Discrete Algo-
rithms, 5(3):514–523, 2007.

[7] Alberto Apostolico, Péter L Erdős, and Moshe Lewenstein. Parameterized matching with
mismatches. Journal of Discrete Algorithms, 5(1):135–140, 2007.

[8] Alberto Apostolico and Zvi Galil. Pattern matching algorithms. Oxford University Press,
USA, 1997.

[9] Alberto Apostolico and Raffaele Giancarlo. Periodicity and repetitions in parameterized
strings. Discrete Applied Mathematics, 156(9):1389–1398, 2008.

[10] Gustavo O Arocena and Alberto O Mendelzon. Weboql: Restructuring documents, databa-
ses and webs. In Data Engineering (ICDE), 1998 IEEE 14th International Conference on,
pages 24–33. IEEE, 1998.

[11] G Phanendra Babu, Babu M Mehtre, and Mohan S Kankanhalli. Color indexing for efficient
image retrieval. Multimedia Tools and Applications, 1(4):327–348, 1995.

[12] Ricardo Baeza-Yates and Gaston H Gonnet. A new approach to text searching. Communi-
cations of the ACM, 35(10):82, 1992.

100 Bibliography

[13] Brenda S Baker. A program for identifying duplicated code. In Computing Science and
Statistics: Proceedings of the 24th Symposium on the Interface, 1992.

[14] Brenda S Baker. On finding duplication in strings and software. Technical report, AT&T
Laboratories, 1993.

[15] Brenda S Baker. A theory of parameterized pattern matching: Algorithms and applications.
In Proceedings of the 25th Annual ACM Symposium on Theory of Computing, 1993.

[16] Brenda S Baker. Parameterized pattern matching by boyer-moore-type algorithms. In Pro-
ceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, page 550. So-
ciety for Industrial and Applied Mathematics, 1995.

[17] Brenda S Baker. Parameterized pattern matching: Algorithms and applications. Journal of
Computer and System Sciences, 52(1):28–42, 1996.

[18] Brenda S Baker. Parameterized duplication in strings: Algorithms and an application to
software maintenance. SIAM Journal on Computing, 26(5):1343–1362, 1997.

[19] Brenda S Baker. Parameterized diff. In Proceedings of the 10th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 854–855. Society for Industrial and Applied Mathe-
matics Philadelphia, PA, USA, 1999.

[20] Amotz Bar-Noy and Ilan Kessler. Tracking mobile users in wireless communications net-
works. Information Theory, IEEE Transactions on, 39(6):1877–1886, 1993.

[21] David Becerra, Juan Mendivelso, and Yoan Pinzón. An algorithm for the weighted longest
common subsequence problem. In Proceedings of the 5th Colombian Computing Conferen-
ce (5CCC), 2010.

[22] David Becerra, Juan Mendivelso, and Yoan Pinzón. A multiobjective optimization algorithm
for the weighted lcs. Accepted in Discrete Applied Mathematics, 2015.

[23] David Becerra, Juan Mendivelso, and Yoan J Pinzón. A multiobjective approach to the
weighted longest common subsequence problem. In Proceedings of the Prague Stringology
Conference 2012 (PSC 2012), pages 64–74, 2012.

[24] Richard E Blake. Partitioning graph matching with constraints. Pattern Recognition,
27(3):439–446, 1994.

[25] Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht, Mu-Tian Chen, and
Joel Seiferas. The smallest automaton recognizing the subwords of a text. Theoretical
Computer Science, 40(1):31–55, 1985.

[26] Robert S Boyer and J Strother Moore. A fast string searching algorithm. Communications
ACM, 20(10):762–772, 1977.

Bibliography 101

[27] Carl Branden and John Tooze. Introduction to protein structure, volume 2. Garland New
York, 1991.

[28] Donald E Brown, Christopher L Huntley, and Andrew R Spillane. A parallel genetic heu-
ristic for the quadratic assignment problem. In Proceedings of the 3rd International Confe-
rence on Genetic Algorithms, pages 406–415. Morgan Kaufmann Publishers Inc., 1989.

[29] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: Optimal xml pat-
tern matching. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, pages 310–321. ACM, 2002.

[30] Emilios Cambouropoulos, Maxime Crochemore, Costas Iliopoulos, Laurent Mouchard, and
Yoan Pinzon. Algorithms for computing approximate repetitions in musical sequences.
International Journal of Computer Mathematics, 79(11):1135–1148, 2002.

[31] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive model for
graph mining. In SDM, 2004.

[32] Edward PF Chan and Heechul Lim. Optimization and evaluation of shortest path queries.
The VLDB Journal, 16(3):343–369, 2007.

[33] William I Chang and Eugene L Lawler. Approximate string matching in sublinear expected
time. In Proceedings of the 31st Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 1990.

[34] William I. Chang and Eugene L. Lawler. Sublinear approximate string matching and biolo-
gical applications. Algorithmica, 12(4):327–344, 1994.

[35] Li Chen, Amarnath Gupta, and M Erdem Kurul. Stack-based algorithms for pattern mat-
ching on dags. In Proceedings of the VLDB Endowment, volume 4, pages 493–504, 2005.

[36] Yangjun Chen and Yibin Chen. An efficient algorithm for answering graph reachability
queries. In Data Engineering (ICDE), 2008 IEEE 24th International Conference on, pages
893–902. IEEE, 2008.

[37] Jiefeng Cheng and Jeffrey Xu Yu. On-line exact shortest distance query processing. In
Proceedings of the 12th International Conference on Extending Database Technology: Ad-
vances in Database Technology, pages 481–492. ACM, 2009.

[38] Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S Yu, and Haixun Wang. Fast graph
pattern matching. In Data Engineering (ICDE), 2008 IEEE 24th International Conference
on, pages 913–922. IEEE, 2008.

102 Bibliography

[39] William J Christmas, Josef Kittler, and Maria Petrou. Structural matching in computer
vision using probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(8):749–764, 1995.

[40] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance que-
ries via 2-hop labels. SIAM Journal on Computing, 32(5):1338–1355, 2003.

[41] Richard Cole and Ramesh Hariharan. Faster suffix tree construction with missing suffix
links. SIAM Journal on Computing, 33(1):26–42, 2004.

[42] Mariano P Consens and Alberto O Mendelzon. Graphlog: A visual formalism for real
life recursion. In Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 1990.

[43] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph
matching in pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence, 18(3):265–298, 2004.

[44] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph iso-
morphism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(10):1367–1372, 2004.

[45] Luigi P Cordella and Mario Vento. Symbol recognition in documents: a collection of tech-
niques? International Journal on Document Analysis and Recognition, 3(2):73–88, 2000.

[46] Juana Córdoba, Juan C Mendivelso, and Luis F Niño. Búsqueda de secuencias microsatelita-
les en frı́jol común (phaseolus vulgaris l.). In Proceedings of the 3rd Colombian Computing
Conference (3CCC), 2008.

[47] Derek Gordon Corneil and Calvin C Gotlieb. An efficient algorithm for graph isomorphism.
Journal of the ACM (JACM), 17(1):51–64, 1970.

[48] M. Crochemore, C.S. Iliopoulos, G. Navarro, Y.J. Pinzon, and A. Salinger. Bit-parallel (δ,
γ)-Matching and Suffix Automata. Journal of Discrete Algorithms, 3(2-4):198–214, 2005.

[49] Maxime Crochemore, Artur Czumaj, Leszek Gasieniec, Stefan Jarominek, Thierry Lecroq,
Wojciech Plandowski, and Wojciech Rytter. Speeding up two string-matching algorithms.
Algorithmica, 12(4):247–267, 1994.

[50] Maxime Crochemore, Costas S Iliopoulos, Thierry Lecroq, Yoan J Pinzon, Wojciech Plan-
dowski, and Wojciech Rytter. Occurrence and substring heuristics for δ-matching. Funda-
menta Informaticae, 56(1):1–21, 2003.

[51] Isabel F Cruz, Alberto O Mendelzon, and Peter T Wood. A graphical query language sup-
porting recursion. In ACM SIGMOD Record, 1987.

Bibliography 103

[52] DBLP. The dblp computer science bibliography. http://dblp.uni-trier.de/

xml/.

[53] Cédric Du Mouza, Philippe Rigaux, and Michels Scholl. Parameterized pattern queries.
Data & Knowledge Engineering, 63(2):433–456, 2007.

[54] Jack Edmonds and Ellis L Johnson. Matching, euler tours and the chinese postman. Mathe-
matical Programming, 5(1):88–124, 1973.

[55] Frank Eichinger, Klemens Böhm, and Matthias Huber. Mining edge-weighted call graphs
to localise software bugs. In Proceedings of the 2008 European Conference on Machine
Learning and Knowledge Discovery in Databases-Part I, pages 333–348. Springer-Verlag,
2008.

[56] Brian Falkenhainer, Kenneth D Forbus, and Dedre Gentner. The structure-mapping engine:
Algorithm and examples. Artificial Intelligence, 41(1):1–63, 1989.

[57] Kuo-Chin Fan, Cheng-Wen Liu, and Yuan-Kai Wang. A fuzzy bipartite weighted graph
matching approach to fingerprint verification. In Systems, Man, and Cybernetics, 1998.
1998 IEEE International Conference on, volume 5, pages 4363–4368. IEEE, 1998.

[58] Wenfei Fan and Philip Bohannon. Information preserving xml schema embedding. ACM
Transactions on Database Systems (TODS), 33(1):4, 2008.

[59] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu. Adding regular expres-
sions to graph reachability and pattern queries. In Data Engineering (ICDE), 2011 IEEE
27th International Conference on, pages 39–50. IEEE, 2011.

[60] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng Wu. Graph pat-
tern matching: From intractable to polynomial time. Proceedings of the VLDB Endowment,
3(1-2):264–275, 2010.

[61] Wenfei Fan, Jianzhong Li, Shuai Ma, Hongzhi Wang, and Yinghui Wu. Graph homomorp-
hism revisited for graph matching. Proceedings of the VLDB Endowment, 3(1-2):1161–
1172, 2010.

[62] Alexander Filatov, Alexander Gitis, and Igor Kil. Graph-based handwritten digit string
recognition. In Proceedings of the 3rd International Conference on Document Analysis and
Recognition, volume 2, pages 845–848. IEEE, 1995.

[63] Nathan J Fine and Herbert S Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16:109–114, 1965.

[64] Stefan Fischer, Kaspar Gilomen, and Horst Bunke. Identification of diatoms by grid graph
matching. Structural, Syntactic, and Statistical Pattern Recognition, 2396:335–370, 2002.

http://dblp.uni-trier.de/xml/
http://dblp.uni-trier.de/xml/

104 Bibliography

[65] Patrick J Flynn and Anil K Jain. Cad-based computer vision: from cad models to relational
graphs. In Systems, Man and Cybernetics, IEEE International Conference on, pages 162–
167. IEEE, 1989.

[66] Pasquale Foggia, Roberto Genna, and Mario Vento. Symbolic vs. connectionist learning: an
experimental comparison in a structured domain. Knowledge and Data Engineering, IEEE
Transactions on, 13(2):176–195, 2001.

[67] Denis Fourches, Eugene Muratov, and Alexander Tropsha. Trust, but verify: on the im-
portance of chemical structure curation in cheminformatics and qsar modeling research.
Journal of Chemical Information and Modeling, 50(7):1189–1204, 2010.

[68] Kimmo Fredriksson and Maxim Mozgovoy. Efficient parameterized string matching. Infor-
mation Processing Letters, 100(3):91–96, 2006.

[69] Brian Gallagher. Matching structure and semantics: A survey on graph-based pattern mat-
ching. In AAAI FS, 2006.

[70] Michael R Garey and David S Johnson. Computers and intractability: A guide to the theory
of NP-completeness. WH Freeman & Co., 1979.

[71] Cristina Gomila and Fernand Meyer. Tracking objects by graph matching of image partition
sequences. In Proceedings of the 3rd IAPR-TC15 Workshop on Graph-Based Representa-
tions in Pattern Recognition, pages 1–11, 2001.

[72] Alla Goralčı́ková and Václav Koubek. A reduct-and-closure algorithm for graphs. In Mat-
hematical Foundations of Computer Science 1979, pages 301–307. Springer, 1979.

[73] Ralf Hartmut Güting. Graphdb: Modeling and querying graphs in databases. In Proceedings
of 20th International Conference on Very Large Data Bases (VLDB), volume 94, pages 12–
15, 1994.

[74] Robert M Haralick and Gordon L Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14(3):263–313, 1980.

[75] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13:338, 1984.

[76] Carmit Hazay. Parameterized matching. Master’s thesis, Bar-Ilan University, 2004.

[77] Carmit Hazay, Moshe Lewenstein, and Dina Sokol. Approximate parameterized matching.
ACM Transactions on Algorithms (TALG), 3(3):29, 2007.

[78] Huahai He and Ambuj K Singh. Graphs-at-a-time: Query language and access methods for
graph databases. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pages 405–418. ACM, 2008.

Bibliography 105

[79] Laurent Hérault, Radu Horaud, Françoise Veillon, and Jean-Jacques Niez. Symbolic image
matching by simulated annealing. In Proceedings of the 4th British Machine Vision Confe-
rence (BMVC’90), 1990.

[80] Adel Hlaoui and Shengrui Wang. A new algorithm for graph matching with application
to content-based image retrieval. Structural, Syntactic, and Statistical Pattern Recognition,
2396:291–300, 2002.

[81] Ramana M Idury and Alejandro A Schäffer. Multiple matching of parameterized patterns.
Theoretical Computer Science, 154(2):203–224, 1996.

[82] Costas S Iliopoulos, Marcin Kubica, M Sohel Rahman, and Tomasz Waleń. Algorithms
for computing the longest parameterized common subsequence. In Combinatorial Pattern
Matching, pages 265–273. Springer, 2007.

[83] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang. Computing label-
constraint reachability in graph databases. In Proceedings of the 2010 ACM SIGMOD In-
ternational Conference on Management of Data, pages 123–134. ACM, 2010.

[84] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 3-hop: A high-compression inde-
xing scheme for reachability query. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pages 813–826. ACM, 2009.

[85] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently answering reacha-
bility queries on very large directed graphs. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pages 595–608. ACM, 2008.

[86] Sanjay Joshi and Tien-Chien Chang. Graph-based heuristics for recognition of machined
features from a 3d solid model. Computer-Aided Design, 20(2):58–66, 1988.

[87] Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. On the longest common paramete-
rized subsequence. Theoretical Computer Science, 410(51):5347–5353, 2009.

[88] Whoi-Yul Kim and Avinash C Kak. 3-d object recognition using bipartite matching embed-
ded in discrete relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13:224–251, 1991.

[89] Donald E Knuth, James H Morris Jr, and Vaughan R Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6:323, 1977.

[90] S Rao Kosaraju. Faster algorithms for the construction of parameterized suffix trees. In
Proceedings of the 36th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Washington, DC, USA, 1995.

106 Bibliography

[91] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. ACM Transactions on
Graphics (TOG), 21(3):473–482, 2002.

[92] Christopher Lee, Catherine Grasso, and Mark F Sharlow. Multiple sequence alignment
using partial order graphs. Bioinformatics, 18(3):452–464, 2002.

[93] Inbok Lee, Juan Mendivelso, and Yoan J Pinzón. δγ–parameterized matching. Lecture
Notes in Computer Science, String Processing and Information Retrieval, 5280:236–248,
2008.

[94] Josep Lladós, Enric Martı́, and Juan J Villanueva. Symbol recognition by error-tolerant
subgraph matching between region adjacency graphs. Pattern Analysis and Machine Inte-
lligence, IEEE Transactions on, 23(10):1137–1143, 2001.

[95] Eugene M Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences, 25(1):42–65, 1982.

[96] Bin Luo and Edwin R Hancock. Structural graph matching using the em algorithm and sin-
gular value decomposition. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 23(10):1120–1136, 2001.

[97] Roger C Lyndon and Marcel-Paul Schützenberger. The equation am = bncp in a free group.
The Michigan Mathematical Journal, 11:289–298, 1962.

[98] William A Mackaness and Kate M Beard. Use of graph theory to support map generaliza-
tion. Cartography and Geographic Information Systems, 20(4):210–221, 1993.

[99] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22:935, 1993.

[100] Christopher J. Matheus, Philip K. Chan, and Gregory Piatetsky-Shapiro. Systems for know-
ledge discovery in databases. Knowledge and Data Engineering, IEEE Transactions on,
5(6):903–913, 1993.

[101] Edward M McCreight. A space-economical suffix tree construction algorithm. Journal of
the ACM (JACM), 23(2):262–272, 1976.

[102] Brendan D McKay. Practical graph isomorphism. Congressus Numerantium, 30:45, 1981.

[103] Juan Mendivelso. Definition and solution of a new string searching variant termed δγ–
parameterized matching. Master’s thesis, Universidad Nacional de Colombia, 2010.

[104] Juan Mendivelso. The graph pattern matching problem through parameterized matching.
phd proposal. In Proceedings of the 8th Colombian Computing Conference (8CCC), 2013.

Bibliography 107

[105] Juan Mendivelso, Sunghwan Kim, Sameh Elnikety, Yuxiong He, Seung-won Hwang, and
Yoan Pinzón. Solving graph isomorphism using parameterized matching. Lecture Notes in
Computer Science, String Processing and Information Retrieval, 8214:230–242, 2013.

[106] Juan Mendivelso, Inbok Lee, and Yoan J Pinzón. Approximate function matching under
δ-and γ-distances. Lecture Notes in Computer Science, String Processing and Information
Retrieval, 7608:348–359, 2012.

[107] Juan Mendivelso, Camilo Pino, Luis F Niño, and Yoan Pinzón. Finding regularities in
biological sequences through δγ–approximate abelian periods. In Proceedings of the 11th
International Meeting on Computational Intelligence Methods for Bioinformatics and Bios-
tatistics (CIBB 2014), 2014.

[108] Juan Mendivelso, Camilo Pino, Luis F Niño, and Yoan Pinzón. Approximate abelian periods
to find motifs in biological sequences. Accepted in Lecture Notes in Bioinformatics (LNBI),
2015.

[109] Juan Mendivelso and Yoan Pinzón. Revisión de diferentes tipos de búsqueda de patrones
en cadenas con énfasis en la parametrizada y en la (δ, γ, α). In Proceedings of the National
Symposium on Research and Development 2010 (ENID 2010), 2010.

[110] Juan Mendivelso and Yoan Pinzón. A new approach to isomorphism in attributed graphs.
In Proceedings of the 9th Colombian Computing Conference (9CCC), 2014.

[111] Juan Mendivelso and Yoan Pinzón. A novel approach to approximate parikh matching for
comparing composition in biological sequences. In Proceedings of the 6th International
Conference on Bioinformatics and Computational Biology (BICoB 2014), 2014.

[112] Juan Mendivelso, Yoan Pinzón, and Inbok Lee. Finding overlaps within regular expressions
with variable-length gaps. In Proceedings of the ACM Research in Adaptive and Convergent
Systems Conference 2013 (ACM RACS 2013), 2013.

[113] Bruno T Messmer. Efficient graph matching algorithms for preprocessed model graphs.
PhD thesis, Institute of Computer Science and Applied Mathematics, University of Bern,
1995.

[114] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and Bobby
Bhattacharjee. Measurement and analysis of online social networks. In Proceedings of
the 7th ACM SIGCOMM Conference on Internet Measurement, pages 29–42. ACM, 2007.

[115] Sung H Myaeng and Aurelio López-López. Conceptual graph matching: A flexible al-
gorithm and experiments. Journal of Experimental & Theoretical Artificial Intelligence,
4(2):107–126, 1992.

108 Bibliography

[116] Eugene W Myers. An o (nd) difference algorithm and its variations. Algorithmica, 1(1):251–
266, 1986.

[117] Nils J Nilsson. Principles of Artificial Intelligence. Springer-Verlag, 1982.

[118] Nils J Nilsson. Artificial intelligence: A new synthesis. Elsevier, 1998.

[119] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Stanford Digital Libraries Working Paper, 1999.

[120] Yun Peng, Byron Choi, and Jianliang Xu. Selectivity estimation of twig queries on cyclic
graphs. In Data Engineering (ICDE), 2011 IEEE 27th International Conference on, pages
960–971. IEEE, 2011.

[121] Euripides GM Petrakis and Christos Faloutsos. Similarity searching in medical image data-
bases. Knowledge and Data Engineering, IEEE Transactions onp, 9(3):435–447, 1997.

[122] Sherif Sakr. Graphrel: A decomposition-based and selectivity-aware relational framework
for processing sub-graph queries. In Database Systems for Advanced Applications, pages
123–137. Springer, 2009.

[123] Sherif Sakr, Sameh Elnikety, and Yuxiong He. G-sparql: A hybrid engine for querying large
attributed graphs. In Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, pages 335–344. ACM, 2012.

[124] Leena Salmela and Jorma Tarhio. Sublinear algorithms for parameterized matching. In
Combinatorial Pattern Matching, pages 354–364. Springer, 2006.

[125] M Salotti and N Laachfoubi. Topographic graph matching for shift estimation. In Procee-
dings of the 3rd IAPR-TC15 Workshop Graph-Based Representations in Pattern Recogni-
tion, pages 54–63, 2001.

[126] Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed relational graphs
for pattern recognition. Systems, Man and Cybernetics, IEEE Transactions on, SMC-
13(3):353–362, 1983.

[127] Mohamed Sarwat, Sameh Elnikety, Yuxiong He, and Gabriel Kliot. Horton: Online query
execution engine for large distributed graphs. In Data Engineering (ICDE), 2012 IEEE 28th
International Conference on, pages 1289–1292. IEEE, 2012.

[128] Mohamed Sarwat, Sameh Elnikety, Yuxiong He, and Mohamed F Mokbel. Horton+: A
distributed system for processing declarative reachability queries over partitioned graphs.
Proceedings of the VLDB Endowment, 6(14):1918–1929, 2013.

[129] Robert W Scheifler and Jim Gettys. The x window system. ACM Transactions on Graphics
(TOG), 5(2):79–109, 1986.

Bibliography 109

[130] Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplification and
parallelization. SIAM Journal on Computing, 17:1253, 1988.

[131] Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee. The semantic web revisited. Intelligent
Systems, IEEE, 21(3):96–101, 2006.

[132] Dennis Shasha, Jason TL Wang, and Rosalba Giugno. Algorithmics and applications of tree
and graph searching. In Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, pages 39–52. ACM, 2002.

[133] Kim Shearer, Horst Bunke, and Svetha Venkatesh. Video indexing and similarity retrieval by
largest common subgraph detection using decision trees. Pattern Recognition, 34(5):1075–
1091, 2001.

[134] Lei Sheng, Z Meral Ozsoyoglu, and Gultekin Ozsoyoglu. A graph query language and its
query processing. In Data Engineering (ICDE), 1999 IEEE 15th International Conference
on, pages 572–581. IEEE, 1999.

[135] Ali Shokoufandeh and Sven Dickinson. A unified framework for indexing and matching
hierarchical shape structures. Visual Form 2001, 2059:67–84, 2001.

[136] Klaus Simon. An improved algorithm for transitive closure on acyclic digraphs. Theoretical
Computer Science, 58(1):325–346, 1988.

[137] Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983.

[138] Frits Steenhof, Harry Duque, Björn Nilsson, Kees Goossens, and Rafael Peset Llopis. Net-
works on chips for high-end consumer-electronics tv system architectures. In Design, Au-
tomation and Test in Europe, DATE’06. Proceedings, volume 2, pages 1–6. IEEE, 2006.

[139] M.J. Swain and D.H. Ballard. Color indexing. International Journal for Parasitologyournal
of Computer Vision, 7(1):11–32, 1991.

[140] Anastasios Tefas, Constantine Kotropoulos, and Ioannisl Pitas. Using support vector ma-
chines to enhance the performance of elastic graph matching for frontal face authentication.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(7):735–746, 2001.

[141] Greg Daniel Tener. Attacks on difficult instances of graph isomorphism: sequential and
parallel algorithms. PhD thesis, University of Central Florida, 2009.

[142] Ken Thompson. Programming techniques: Regular expression search algorithm. Commu-
nications of the ACM, 11(6):419–422, 1968.

110 Bibliography

[143] Hanghang Tong, Christos Faloutsos, Brian Gallagher, and Tina Eliassi-Rad. Fast best-effort
pattern matching in large attributed graphs. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 737–746. ACM,
2007.

[144] Andrea Torsello and Edwin Rl Hancock. Learning structural variations in shock trees. Struc-
tural, Syntactic, and Statistical Pattern Recognition, 2396:101–117, 2002.

[145] Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very large graphs. In
Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data,
pages 845–856. ACM, 2007.

[146] Wen-Hsiang Tsai and King-Sun Fu. Error-correcting isomorphisms of attributed relatio-
nal graphs for pattern analysis. Systems, Man and Cybernetics, IEEE Transactions on,
9(12):757–768, 1979.

[147] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[148] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM),
23(1):31–42, 1976.

[149] Jacques Van Helden, Avi Naim, Renato Mancuso, Mattew Eldridge, Lorenz Wernisch, Da-
vid Gilbert, and Shoshana J Wodak. Representing and analysing molecular and cellular
function using the computer. Biological chemistry, 381(9/10):921–936, 2000.

[150] Michael A Van Wyk, Tariq S Durrani, and Barend J Van Wyk. A rkhs interpolator-based
graph matching algorithm. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 24(7):988–995, 2002.

[151] Haixun Wang, Hao He, Jun Yang, Philip S Yu, and Jeffrey Xu Yu. Dual labeling: Answering
graph reachability queries in constant time. In Data Engineering (ICDE), 2006 IEEE 22nd
International Conference on, pages 75–75. IEEE, 2006.

[152] Mei Wang, Yoshio Iwai, and Masahiko Yachida. Expression recognition from time-
sequential facial images by use of expression change model. In Automatic Face and Gestu-
re Recognition, 1998. Proceedings. 3rd IEEE International Conference on, pages 324–329.
IEEE, 1998.

[153] Takashi Washio and Hiroshi Motoda. State of the art of graph-based data mining. ACM
SIGKDD Explorations Newsletter, 5(1):59–68, 2003.

[154] Fang Wei. Tedi: Efficient shortest path query answering on graphs. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data, pages 99–110.
ACM, 2010.

Bibliography 111

[155] Peter Weiner. Linear pattern matching algorithms. In Switching and Automata Theory, 1973.
SWAT’08. IEEE Conference Record of 14th Annual Symposium on, pages 1–11, 1973.

[156] Xifeng Yan, Philip S Yu, and Jiawei Han. Graph indexing: A frequent structure-based ap-
proach. In Proceedings of the 2004 ACM SIGMOD International Conference on Manage-
ment of Data, pages 335–346. ACM, 2004.

[157] Jeffrey Xu Yu and Jiefeng Cheng. Graph reachability queries: A survey. In Managing and
Mining Graph Data, pages 181–215. Springer, 2010.

[158] Peixiang Zhao, Charu C Aggarwal, and Min Wang. gsketch: On query estimation in graph
streams. Proceedings of the VLDB Endowment, 5(3):193–204, 2011.

[159] Peixiang Zhao and Jiawei Han. On graph query optimization in large networks. Proceedings
of the VLDB Endowment, 3(1):340–351, 2010.

[160] Lei Zou, Lei Chen, and M Tamer Özsu. Distance-join: Pattern match query in a large graph
database. Proceedings of the VLDB Endowment, 2(1):886–897, 2009.

[161] Lei Zou, Lei Chen, M Tamer Özsu, and Dongyan Zhao. Answering pattern match queries
in large graph databases via graph embedding. The VLDB Journal, 21:97–120, 2012.

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Graphs: Concepts and Applications
	Graph Matching Problems
	Applications of Graph Matching
	Parameterized Matching
	Our Contributions

	Related Work
	Solutions for Graph and Subgraph Isomorphism
	Ullmann's Algorithm
	The VF2 Algorithm

	Queries on Attributed Graphs
	Reachability Queries
	Pattern Match Queries
	Pattern Queries

	Parameterized Matching
	Definition of the Basic Problems
	Solutions
	Extensions
	Applications

	Graph Isomorphism through Parameterized Matching
	Our Approach: Graph Linearization
	Definition of Graph Linearization
	Characteristics and Algorithms for Graph Linearization
	Graph Linearization Algorithm - GLA
	Key Ideas
	Algorithm
	Correctness Proof
	Length of GLA Linearization
	Empirical Comparison on the Length of Different Linearization Algorithms
	Complexity Analysis

	Algorithm for Graph Isomorphism
	Key Ideas
	Algorithm
	Correctness Proof
	Complexity Analysis
	Experimental Evaluation
	Benchmark Graphs
	Synthetic Graphs

	PMG-SI: Solution for Subgraph Isomorphism
	Algorithm
	Experimental Evaluation

	Queries on Attributed Graphs Solved through Parameterized Matching
	Generalized Pattern Queries
	Graph Model
	Query Model
	Prerequisites
	Definition of Generalized Pattern Queries
	Example
	Discussion

	Linearization on Generalized Pattern Queries
	Query Linearization
	Enhanced Graph Linearization Algorithm — E-GLA
	Baseline: GLA for Length-Optimality
	Key Ideas
	Algorithm
	Correctness Proof
	Length of E-GLA Linearization
	Complexity Analysis

	Solution of Generalized Pattern Queries
	Key Ideas
	Algorithm
	Correctness Proof
	Complexity Analysis
	Experimental Evaluation
	Experimental Setup
	Queries on the Complete DBLP Graph
	Varying Graph and Query Sizes
	Efficiency of E-GLA

	Conclusions
	Bibliography

