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Abstract

In the following years Very Long Baseline Interferometry (VLBI) facilities
will be able to directly image the accretion �ow around the supermassive
black hole candidate at the center of the Milky Way, Sgr A*. They will
also be able to observe its shadow: an optical property which appears
as a consequence of the strong gravitational �eld around it and which
thus depends only on the physical parameters of the black hole. While
there is no de�nitive evidence of the nature of the spacetime geometry
around Sgr A*, it has been usually modeled by a Kerr black hole, by
virtue of the no-hair theorem, which asserts that all uncharged black
holes in 4-dimensional general relativity are described by this metric and
thus completely speci�ed by two parameters, the mass M and the spin
parameter a. As a consequence, testing the no-hair theorem in nature
with future observations allows us to not only verify that black holes in
our universe are Kerr black holes, but to test the strong �eld predictions
of general relativity

In this work I investigate if the shadow, image and spectrum of a non-Kerr
regular black hole inspired by noncommutative geometry may provide a
measurement of the parameters characterizing Kerr and non-Kerr regular
black holes to distinguish one from the other. Speci�cally, the non-Kerr
solution studied here is the rotating black hole found by Smailagic and
Spallucci in 2010 and known as the �Kerrr� black hole, where the third �r�
stands for regular, in the sense of a pathology-free rotating black hole. The
general strategy to derive this generalized solution consists of prescrib-
ing an improved form of the energy-momentum tensor, which accounts,
at least phenomenologically, for the noncommutative �uctuations of the
manifold at the origin and which vanishes for large distances with respect
to the noncommutative geometry scale, l0.

The image and spectrum of Sgr A*, as the case of study, was modeled us-
ing the relativistic ray-tracing code GYOTO, assuming an optically thin,
constant angular momentum torus in hydrodynamic equilibrium around
the Kerr and "Kerrr" geometries. The model used includes a toroidal
magnetic �eld and radiative cooling by bremsstrahlung, synchrotron, and
inverse Compton processes. The assumptions provided here, for drawing
the shadow and to model the accretion disk, do not provide a realistic
scenario, but an easily accessible yet powerful analytical analogy.

Then comparisons with the Kerr geometry are calculated by using the
observables de�ned by Hioki and Maeda and the distortion parameter



introduced by Tsukamoto, Li and Bambi. This work con�rms that it
is de�nitely challenging to test this kind of regular metric solely from
observations of the shadow or accretion structures in the near future.

Keywords: Black hole physics, Accretion Disks, Noncommutative ge-

ometries
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Resumen

En los próximos años las estaciones de interferometría de base ancha, Very Long
Baseline Interferometry (VLBI), serán capaces de obtener imágenes de la acreción
alrededor del candidato a agujero negro supermasivo en el centro de la Vía Láctea,
Sag A*. Los resultados de estas campañas de observación permitirán observar también
su sombra: un propiedad óptica que se genera como consecuencia del fuerte campo
gravitacional alrededor del agujero negro y que depende solamente de los parámetros
físicos del agujero negro.
Actualmente no hay evidencia de�nitiva sobre la naturaleza del espacio-tiempo alrede-
dor de Sgr A* y usualmente ha sido modelado como un agujero negro de Kerr en virtud
de los teoremas del no pelo, los cuales a�rman que todos los agujeros negros sin carga,
en cuatro dimensiones descritos por la relatividad general, dependen únicamente de
los dos parámetros de esa métrica; la masa y el parámetro de rotación. Por tal razón,
probar la validez de este teorema en la naturaleza a través de observaciones nos per-
mitirá, no solamente veri�car si los agujeros negros del Universo están descritos por
la métrica de Kerr, sino además probar las predicciones de la relatividad general en
el campo fuerte.
En este trabajo investigo si la sombra, imagen y espectro de un agujero negro reg-
ular diferente de Kerr, inspirado de la geometría no conmutativa, permite medir los
parámetros que caracterizan los agujeros negros y distinguir sus diferencias. Especí�-
camente, la solución estudiada acá es la rotante encontrada por Smailagic y Spallucci
en 2010 conocida como el agujero negro de "Kerrr", en donde la tercera "r" sim-
boliza la naturaleza regular de esa solución. La forma general de obtener ese tipo de
soluciones consiste en modi�car el tensor de momento y energía de tal manera que
codi�que, al menos de forma fenomenológica, las �uctuaciones no conmutativas de la
variedad en el origen y que desaparecen a grandes distancias, con respecto a la escala
de la geometría no conmutativa. La imagen y el espectro de Sgr A*, como caso de
estudio, fueron modeladas usando el código de trazado de rayos GYOTO, asumiendo
un toro ópticamente delgado con momento angular constante en equilibrio hidrod-
inámico, alrededor de las geometrías de Kerr y "Kerrr". El modelo usado incluye un
campo magnético toroidal y enfriamientos radiativos por bremsstrahlung, synchroton
y procesos de Compton inverso. Las simpli�caciones hechas acá, para dibujar la som-
bre y modelar el disco de acreción, no representan un escenario real, pero son buenas
analogías analíticas.
Las comparaciones son hechas a través de los observables de�nidos por Hioki y Maeda
y el parámetro de distorsión de Tsukamoto, Li y Bambi. Este trabajo con�rma la
complejidad y di�cultad de probar este tipo de soluciones a través de únicamente
mediciones de la sombra y estructura de acreción en el futuro próximo.
Palabras clave: Física de agujeros Negros, Discos de Acreción, Geometrías no

conmutativas
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Chapter 1

Introduction

Black holes are fascinating objects because they challenge our understanding of many
fundamental physical processes. In words of Chandrasekhar: �The black holes of
nature are the most perfect macroscopic objects there are in the universe: the only
element in their construction are our concepts of space and time. And since the
general theory of relativity provides only a single unique family of solutions for their
descriptions, they are the simplest objects as well� [29]. One can understand the latter
perfection and simplicity by virtue of one of the most important theorems of general
relativity; the so-called �No hair theorem� [26, 85], which states that all stationary
black holes are the same up to two parameters, i.e., the mass,M , and the spin angular
momentum, J , of the black hole. Thus, from an outside observer perspective, once
they form and settle down to the stationary con�guration, they can be described
exactly, without any approximation in any single equation, representing an unique
situation in physics and, in that sense, a perfect object.

The image shown in Fig. 1.1 is, to my understanding, the best simulated-image
we have of the appearance of a black hole seen by a �near� observer. It has many
relativistic e�ects, e.g., bending of light rays, luminosity and redshift e�ects and a
fully relativistic accretion disk. It was produced by a code written in C++ (40.000
lines) and took several hours running on a ten-core E5-2680 Intel Xeon CPUs with
156 GB RAM [54].

The foundation of that simulated-image is the Kerr metric, written in Boyer-
Lindquist coordinates, and honors perfectly the pioneering work of Bardeen [17],
where he studied, for the �rst time, the gravitational lensing by spinning black holes.
Despite of this seminal work, gravitational lensing by black holes remained quiet until
decades later, when the prospect for actual observations brought it to the fore [54].

Nevertheless, the nature of black holes is far for being clear: there is no evidence
that the spacetime geometry around Sagittarius A* (Sgr A*), M87 or any other black
hole candidate is really described by the Kerr metric1, but for the �rst time Very Long
Baseline Interferometry (VLBI) facilities will be able to directly observe the so-called

1There is no alternative explanation in the framework of conventional physics. For instance,
stellar mass black hole candidates are too heavy to be neutron stars [59, 10] and the exact physical
mechanisms of the supermassive black holes, like Sgr A*, origin and early growth are still not �rmly
established [32].
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Figure 1.1: Figure from Gravitational lensing by spinning black holes in astrophysics,
and in the movie Interstellar, O. James et al., Class. Quantum Grav. 32 (2015)
065001 [54]. This image is what a fully realistic accretion disk would truly look like
to an observer near the black hole, i.e., rc = 74.1M and θc = 86.56. The inner and
outer radii are located at r = 9.26M and r = 18.70M before placed around the black
hole.

black hole shadow, an optical property which appears as a consequence of the strong
gravitational �eld around the black hole, and image the accretion �ow around the
supermassive black hole candidates, particularly one at the center of the Milky Way,
Sgr A*, and M87 [34, 33, 42, 47, 48], giving us an unique opportunity to test the Kerr
or non-Kerr nature of astrophysical black holes. However, it is important to stress
that in order to really test the nature of the compact object, at least two independent
measurements are necessary [11].

Di�erent authors have proposed di�erent ways to test the geometry around black
hole candidates (see, for instance, Ref. [82] and references therein for tests with
observations in the electromagnetic spectrum, Ref. [104] and references therein for
tests based on strong gravity and gravitational waves, and for a general review Ref.
[9]). If astrophysical black holes are not described only by the mass and the spin, the
only two independent multipole moments of the Kerr black hole [50], it is expected
that the deviations from the Kerr metric are manifestly predominant in the immediate
vicinity of black holes [58]. If one parametrize a potential deviation from the Kerr
metric in terms of a parameter, or a family of parameters, if a measurement yields a
nonzero deviation of that parameter and if it is otherwise known to be a black hole,
i.e. to have a horizon2, then the compact object cannot be a Kerr black hole and then
the deviation from Kerr metric implies that both the no-hair theorem and general
relativity are violated.

Since I want to test the Kerr metric, I consider a background more general than
the Kerr solution and that includes the Kerr solution as special case, proposed by

2The event horizon is the de�ning characteristic of a black hole and, to date, observational
evidence for the presence of an apparent and trapping horizons, which are de�ned using local mea-
surements, in astrophysical black holes exists [84, 34, 19, 98].
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Smailagic and Spallucci in Ref. [89]. It is a regular, i.e., pathology-free, rotating black
hole by choosing a non-commutative geometry inspired matter source as the input
of the Einstein equations, based on the seminal work presented in Ref. [77] where a
minimal length l0 was introduced which takes into account the noncommutativity of
spacetime, determining the fundamental discretization of it. From the fundamental
view of noncommutative geometry, the idea of spacetime as a manifold of points
breaks down at Planck scale and the parameter introduced in that solutions cannot
be observed at presently accessible energies, i.e., l0 < 1016 cm [77]. However, it has
been shown recently that this parameter a�ects the shape of the black hole shadow [24,
100], o�ering a way to probe and determine not only the spacetime noncommutative
parameter but also as a test of general relativity via astronomical instruments in the
near future.

In this work I am going to study the shadow, image and spectra of an accretion
structure around Sgr A* (modeled as an optical thin, constant angular momentum
ion torus in hydrodynamic equilibrium proposed in Ref. [91]) produced by assuming
Kerr and the non-Kerr regular geometry proposed by Smailagic and Spallucci in Ref.
[89] as the background. Then using the observables de�ned in Refs. [51, 93] I will
compare these solutions.

This work is organized as follows. In chapters 2 and 3 I introduce the metrics
that will be used in the rest of the work. In chapter 4 I review the concept and
the calculation of the black hole shadow. Chapter 5 is devoted to the relativistic
ray tracing and the implementation of the disk accretion by using GYOTO [96, 91].
The observables and comparisons are shown in chapter 6. Results, summary and
conclusions are presented in chapter 7. Throughout this work geometrized units3 are
used unless otherwise mentioned.

3In this units, G = c = 1, meaning that mass, distance and energy have the same units, i.e., [L].
The SI units can always be recovered by adding c and G properly, e.g., t→ ct and M → GM/c2.
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Chapter 2

The Kerr Geometry

Among the several black hole solutions of the Einstein's equations, the Kerr geometry
[60] is without any doubts the most appropriate to �t the observational data1, showing
that collapsed objects exhibit angular momenta [15] . In this chapter I will study the
formulae of the Kerr metric for its photon orbits.

2.1 Kerr spacetime in Boyer-Lindquist coordinates

The spacetime of a rotating black hole is well described by the Kerr metric in Boyer-
Lindquist coordinates [18]

ds2 = −
(

1− 2Mr

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2

−4Mra sin2 θ

ρ2
dtdφ+

A sin2 θ

ρ2
dφ2, (2.1)

where

∆ (r) := r2 − 2Mr + a2 (2.2)

ρ2 (r, θ) := r2 + a2 cos2 θ (2.3)

A (r, θ) :=
(
r2 + a2

)2 −∆a2 sin2 θ. (2.4)

The parameters M and a represent the mass and the spin angular momentum pa-
rameter of the black hole, respectively2. The covariant and the contravariant forms

1Initial deviations from the Kerr spacetime, according to 4-dimensional general relativity, would
be radiated away through the emission of gravitational waves [81]. On the other hand, any initial
electric charge would be quickly neutralized due to the presence of a highly ionized host environment
[13].

2Note that the angular momentum is speci�ed in terms of the dimensionless spin parameter
a = Jc/GM2 , where J is the angular momentum and the cosmic censorship hypothesis ensures
that |a| ≤ 1. For gravitational processes, the mass acts as a scaling factor for distances, timescales,
and energies [39].
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of the foregoing metric are [17]:

(gij) =


−
(

1− 2Mr
ρ2

)
0 0 −4aMr sin2 θ

ρ2

0 ρ2

∆
0 0

0 0 ρ2 0

−4aMr sin2 θ
ρ2

0 0
[
r2 + a2 + 2a2Mr sin2 θ

ρ2

]
sin2 θ

 (2.5)

(
gij
)

=


− A
ρ2∆

0 0 −4aMr
ρ2∆

0 ∆
ρ2

0 0

0 0 1
ρ2

0

−4aMr
ρ2∆

0 0
(∆−a2 sin2 θ)
ρ2∆ sin2 θ

 . (2.6)

The horizon3 is a 2D surface of spherical topology, where the redshift factor vanishes

∆ (r±) = 0, (2.7)

where the normal vector is null to surfaces r = constant and satis�es

nαnβg
αβ = grr =

∆

ρ2
= 0,

which has in general two solutions. These are the outer horizon or event horizon

r+ = M +
√
M2 − a2, (2.8)

and the inner horizon or Cauchy horizon

r− = M −
√
M2 − a2, (2.9)

for all θ and φ. The gravitational redshift suppresses any emission at the event
horizon. This results in the blackness of the black hole.

The hypersurfaces with r = r± are Killing horizons of the Killing vector �eld

~ξ = ~k + ΩH ~m; ΩH =
a

r± + a2
, (2.10)

where ΩH is the angular velocity of the horizon (independent of the latitude).
At these surfaces we measure surface gravities

κ± =
r± − r∓

2 (r2
± + a2)

. (2.11)

In the Kerr spacetime there is no globally static observer. Although k is time-like
at in�nity, it need not be time-like everywhere outside the horizon. For Kerr is found

3The inner root is very likely not important physically.
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that

k2 = gtt = −∆− a2 sin2 θ

%2
= −

(
1− 2Mr

r2 + a2 cos2 θ

)
(2.12)

and k is therefore time-like, provided

r2 + a2 cos2 θ − 2Mr > 0.

Now, for M2 > a2, this implies

r > rE (θ) = M +
√
M2 − a2 cos2 θ. (2.13)

The boundary of this region, r = rE (θ), marks the transition of the coordinate t
from a time-like to a space-like coordinate. This is called the static limit or ergosphere.
The region r+ ≤ r ≤ rE is the so-called ergoregion.

2.2 General orbits of particles (or photons)

The equations of motion of a test particle of mass µ are given by the general form of
the Hamilton-Jacobi equation [25, 29]

∂S

∂λ
=

1

2
gαβ

∂S

∂xα
∂S

∂xβ
, (2.14)

where S is the Jacobi action.
Since the spacetime represented by (2.1) has two Killing vector �elds, associated

with the assumption of stationary and axisymmetric of the spacetime, there exists two
conserved quantities for the general orbits of particles (or photons), i.e., the energy,
E, and the axial component of the angular momentum, Lz, of the particle. Trivially
the rest mass of the particle µ is also a constant (µ = 0 for photons). However, these
three constants just determine the motion when some restriction is imposed, which
reduces the problem e�ectively to three or fewer dimensions, implying that a fourth
constant of motion is needed in order to analyze the general case [25].

Given the lack of any obvious symmetry in r and θ in the metric (2.1), there
was no reason to expect the geodesic to be completely integrable, so it came as a
complete surprise when in 1968 Carter [25] showed that a fourth constant could be
found because the Hamilton-Jacobi equation for the geodesics was separable4 in r and
θ [92].

Carter found the fourth constant by solving explicitly the Hamilton-Jacobi Eqn.
(2.14) by assuming a Jacobi action of the form

S =
1

2
µ2λ− Et+ Lzφ+ Sr (r) + Sθ (θ) , (2.15)

4The separability was not properly justi�ed in Carter's seminal work [25], but it was well es-
tablished in 1970 by Walker and Penrose where they showed that this separability follows from the
existence of a Killing tensor [99].
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where λ is an a�ne parameter5 and Sr and Sθ are functions of only r and θ,
respectively, and getting

ρ2µ2 =
AE2

∆
−
(

∆− a2 sin2 θ

∆ sin2 θ

)
L2
z −

4aMrELz
∆

−∆

(
dSr
dr

)2

−
(
dSθ
dθ

)2

,

which can be factorized conveniently as

ρ2µ2 =
1

∆

[(
r2 + a2

)
E − aLz

]2 − 1

sin2 θ

[
Lz − aE sin2 θ

]2 −
−∆

(
dSr
dr

)2

−
(
dSθ
dθ

)2

.

The latter expression can be separated by introducing a constant, K, such that

−K = r2µ2 − 1

∆

[(
r2 + a2

)
E − aLz

]2
+ ∆

(
dSr
dr

)2

K = µ2a2 cos2 θ +
1

sin2 θ

[
Lz − aE sin2 θ

]2
+

(
dSθ
dθ

)2

.

Hence, the Hamilton-Jacobi equation is separable in all four coordinates, making
geodesic motion integrable and the Carter's constant is given by the relation

Q = K − (Lz − aE)2 . (2.16)

Then, the formal solution for the Jacobi action is given by the integrals

Sr (r) = ±
∫
dr

1

∆

√
Vr

Sθ (θ) = ±
∫
dθ
√
Vθ,

where

Vr =
[(
r2 + a2

)
E − aLz

]2 −∆
[
µ2r2 + (Lz − aE)2 +Q

]
(2.17)

and

5The parameter λ is related to the particle's proper time by λ = τ/µ and is an a�ne parameter
in the case when µ→ 0
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Vθ = Q+ (Lz − aE)2 − µ2a2 cos2 θ

− 1

sin2 θ

(
Lz − aE sin2 θ

)2
. (2.18)

The quantities Vr and Vθ can be seen as e�ective potentials governing the particle
motions in r and θ. The integrated forms of the geodesic and orbit equations can
be obtained by using the fact that the partial derivatives of Jacobi function with
respect to the constants of motion are themselves constants. Thus by di�erentiating
with respect to them, i.e., K,µ, E and Lz, the following expressions are derived,
respectively,

∫
dr√
Vr

=

∫
dθ√
Vθ
,

λ =

∫
r2

√
Vr
dr +

∫
a2 cos2 θ√

Vθ
dθ,

t =

∫
a∆ (Lz − aE) + [(r2 + a2)E − aLz] (r2 + a2)

∆
√
Vr

dr

+

∫
a (aE − Lz) + a

[
Lz − aE sin2 ϑ

]
√
Vθ

dθ,

φ =

∫
a∆ (Lz − aE) + a [(r2 + a2)E − aLz]

∆
√
Vr

dr

+

∫
(aE − Lz) + csc2 θ

[
Lz − aE sin2 θ

]
√
Vθ

dθ.

The particle's 4-momentum is given by the expression

pα = µ
dxα

dτ

and hence, from the partial derivatives of the Jacobi function with respect to the
proper time and with respect to the coordinates, the relations between the momentum
components and the constants of motion result

µE = −pt, (2.19)

µLz = pφ, (2.20)

Q = p2
θ − (Lz − aE)2 + µ2a2 cos2 θ

+
1

sin2 θ

(
Lz − aE sin2 θ

)2
. (2.21)

The above information is more conveniently expressed in terms of the �rst-order
di�erential system:
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ρ2 dt

dτ
= −a

[
aE sin2 θ − Lz

]
+

(r2 + a2) [(r2 + a2)E − aLz]
∆

(2.22)

ρ2 dr

dτ
= ±

√
Vr (2.23)

ρ2 dθ

dτ
= ±

√
Vθ (2.24)

ρ2dφ

dτ
= −

[
aE − Lz

sin2 θ

]
+
a [(r2 + a2)E − aLz]

∆
. (2.25)

By introducing conveniently two conserved parameters, ξ and η, by6

ξ =
Lz
E

(2.26)

and

η =
Q
E2

, (2.27)

the photon trajectories, i.e., µ = 0, can be fully determined in terms of this two
parameters and Eqns. (2.22-2.25) can be rewritten as [29]

ρ2 dr

dλ
= ±

√
R, (2.28)

ρ2 dθ

dλ
= ±

√
Θ, (2.29)

ρ2dφ

dλ
=

1

∆

(
2Mar + ξ csc2 θ

(
ρ2 − 2Mr

))
(2.30)

ρ2 dt

dλ
=

1

∆
(A− 2Mraξ) , (2.31)

where

R :=
(
r2 + a2 − aξ

)2 −∆I, (2.32)

Θ := I − (a sin θ − ξ csc θ)2 (2.33)

with

I (ξ, η) := η + (a− ξ)2 . (2.34)

Note again that the quantities R and Θ can be seen also as e�ective potentials
governing the particle motions in r and θ, in terms of the conserved parameters,
Eqns. (2.26) and (2.27), which are directly related to the impact parameters which

6The parameter ξ is the angular momentum per unit mass.
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describe the direction of the particle as seen by an observer at a large distance robs
from the black hole along the polar angle θobs. By assuming the spacetime symmetries,
the equations for the coordinate t and φ result irrelevant for the rest of this work.

Given the functional structure of Eqns. (2.28) and (2.29), Eqns. (2.32) and (2.33)
must be positive. Particularly, for Θ the latter condition implies the condition that
the conserved parameter de�ned above, ξ and η, satis�es the constraint I ≥ 0.

2.2.1 Circular orbits

A circular orbit at some radius r must satisfy

dr

dλ
= 0,

which implies, according to Eqns. (2.23) and (2.28)

R (r) = Vr = 0. (2.35)

However, the latter condition could be satis�ed instantaneously just for a particular
time, or set of times. In order to �nd the circular orbit it must be satis�ed at all
times, implying also the following condition

dR (r)

dr
=
dVr
dr

= 0. (2.36)

The investigation of the motion of test particles in the spacetime (2.1) is thus
reduced to the study of motion in the e�ective potential. In particular, for timelike
circular orbits in the equatorial plane the e�ective potential (2.17) can be written as

V (r) =

(
1−

(
E

µ

)2
)
r4 − 2Mr3 +

[
a2

(
1−

(
E

µ

)2
)

+

(
L

µ

)2
]
r2 − 2M

(
a

(
E

µ

)
−
(
L

µ

))
r.

(2.37)

When conditions (2.35) and (2.36) are satisfy there are three possible behaviors
[17]:

1. V ′′ (r) > 0: The photon is on a stable circular orbit, constrained to remain
exactly at that value of r.

2. V ′′ (r) < 0: The photon straddles the boundary between two regions with
V (r) < 0; if perturbed one way it falls into the horizon, if perturbed the other
way it �ies outward (and, after reaching the outermost zero of V ) turns back
inward. In this case, the particle is on an unstable circular orbit.

3. V ′′ (r) = 0: This is the junction between the two cases: the marginally stable
circular orbit.

By taking the derivative of Eqn. (2.37):
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V ′ (r) = 4

(
1−

(
E

µ

)2
)
r3 − 6Mr2 + 2

[
a2

(
1−

(
E

µ

)2
)

+

(
L

µ

)2
]
r − 2M

(
a

(
E

µ

)
−
(
L

µ

))
(2.38)

and using conditions (2.35) and (2.36), the following two linear combinations can be
written

0 =
1

r

(
V ′ (r)− V (r)

r

)
=
(
3r2 + a2

)(
1−

(
E

µ

)2
)
− 4Mr +

(
L

µ

)2

(2.39)

0 = V ′ (r)− 2V (r)

r
= 2

(
1−

(
E

µ

)2
)
r3 − 2Mr2 + 2M

(
a

(
E

µ

)
− L

)2

,(2.40)

which can be written as a quadratic equation for
(
E
µ

)2

, by using (2.39) to eliminate(
L
µ

)
from (2.40), with solution [29]

E

µ
= E =

1− 2M
r
± aM

1/2

r3/2√
1− 3M

r
± 2aM1/2

r3/2

(2.41)

Lz
µ

= L =
±
√

M
r
∓ 2M

r
± a2

√
M

r3/2√
1− 3M

r
± 2a

√
M

r3/2

, (2.42)

where the upper signs are for direct orbits and the lower signs for retrograde orbits,
i.e., co-rotaton with L > 0 or counter-rotating with L < 0, respectively.

2.2.1.1 General Orbits in terms of η and ξ

Now, assuming the de�nitions (2.26) and (2.27) conditions (2.35) and (2.36) can be
solved simultaneously for η and ξ as follows7

ξ =
1

a (r −M)

[
M
(
r2 − a2

)
− r∆

]
(2.43)

η =
r3

a2 (r −M)2

[
4M∆− r (r −M)2] . (2.44)

2.2.2 The photon orbit

Circular orbits do not exist for all values of r. The denominators for Eqns. (2.41)
and (2.42) are real only if

7The solution also is tedious (see Ref. [29] Chap. 7) and a more general case will be shown
explicitly in Sec. 3.2
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r
3
2 − 3M

√
r ± 2a

√
M ≥ 0. (2.45)

The limiting case i.e.,

r
3
2 − 3M

√
r ± 2a

√
M = 0, (2.46)

gives an orbit with in�nity energy, per unit rest mass, i.e., a photon orbit. This photon
orbit is the innermost boundary of the circular orbits for particles and it occurs a the
root of Eqn. (2.46),

rph ≡ 2M

{
1 + cos

[
2

3
cos−1

(
∓ a

M

)]}
. (2.47)

2.2.3 The marginally bound orbit

Bound8 circular orbits exists for

r > rmb,

where rmb is the marginally bound circular orbit

rmb = 2M ∓ a+ 2
√
M (M ∓ a) (2.48)

2.2.4 The marginally stable orbit

According to the studies of Wilkins in Ref. [103], even bound circular orbits are not
all stable, since stability requires that V ′′ (r) ≥ 0, which yields to the condition

r ≥ rms,

where rms is the radius of the marginally stable orbit, also known as the innermost
stable circular orbit (ISCO), [17]

rms = M
[
3 + Z2 ∓

√
(3− Z1) (3 + Z1 + 2Z2)

]
(2.49)

Z1 ≡ 1 +

(
1− a2

M2

) 1
3
[(

1 +
a

M

) 1
3

+
(

1− a

M

) 1
3

]
Z2 ≡

√
3a2

M2
+ Z2

1 .

8A bound orbit means that the particle rages over a �nite interval of radius, neither being captured
by the black hole or escaping to in�nity [103].
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2.2.5 Special Cases

2.2.5.1 Schwarzschild solution (a = 0)

For a = 0 Eqns. (2.1), (2.2), (2.3) and (2.4) reduce to the Schwarzschild solution
in curvature coordinates. In this case the orbits described above take the following
values

rph = 3M, (2.50)

rmb = 4M, (2.51)

rms = 6M. (2.52)

2.2.5.2 Extreme-rotating solution (a = M)

For a = M the orbits described above take the following value

rph = rmb = rms = M, (2.53)

i.e, coincident with the horizon. However, as it was pointed out in Ref. [17], this is
just an appearance of the Boyer-Lindquist coordinates, because all the above orbits,
in this case, are outside of the horizon and all are distinct, since all the values of
proper radial distance smaller or equal to rms becomes singulary projected into the
Boyer-Lindquist coordinate location at r = M .
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Chapter 3

The �Kerrr� Geometry

"We must confess in all humility that, while number is a product of our
mind alone, space has a reality beyond the mind whose rules we cannot
completely prescribe"

Carl Friedrich Gauss, 1830

It has been shown that noncommutativity eliminates point-like structures in favor of
smeared objects in �at spacetime (see Ref. [76] for a review). The e�ect of smearing
is mathematically implemented a �substitution rule�: position Dirac-delta function
is replaced everywhere with a Gaussian distribution of minimal width l0 [76]. The
symmetries of string theory (T-duality, in particular) suggest that there is, in a sense,
a minimal measurable length, but the issue is far from settled; it could be, in partic-
ular, that certain particle-like topological defects, known as D0 branes, could probe
shorter lengths [3].

The so-called noncommutative black holes are a class of stationary, axisymmetric,
asymptotically �at metrics that describe spinning regular black holes. However here
the metric coe�cients depend non only on the mass and spin of the black hole but
as well as on a free parameter l0, identi�ed as the characteristic length scale of the
Gaussian smeared mass distribution. This class of metrics includes the Kerr metric
as the special case when l0 → 0 [77, 89].

3.1 The �Kerrr� spacetime

The spacetime of this generalized rotating black hole is described in Boyer-Lindquist
like coordinates [89]:

ds2 = −
(

1− 2RM(R)

ρ2

)
dt2 +

ρ2

∆
dR2 + ρ2dθ2

−4M(R)Ra sin2 θ

ρ2
dtdφ+

A sin2 θ

ρ2
dφ2, (3.1)

where
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∆ (R) := R2 − 2M (R)R + a2 (3.2)

ρ2 (R, θ) := R2 + a2 cos2 θ (3.3)

A (R, θ) :=
(
R2 + a2

)2 −∆a2 sin2 θ (3.4)

and

M(R) =
M

Γ
(

3
2

)γ(3

2
;

(
R

2l0

)2
)
. (3.5)

Here, as in Chap. (2), the parameters M and a represent the mass and the spin
angular momentum parameter of the black hole, respectively. See Appendix (A) for
its derivation and a discussion about its origin.

3.1.1 Horizons

Horizons in (3.1) are real solutions of the equation ∆ (R) = 0, or

R2
H + a2 − 2MRH

Γ
(

3
2

) γ(3

2
;

(
RH

2l0

)2
)

= 0, (3.6)

which cannot be solved explicitly for RH . However, equation (3.6) can be solved for
the mass parameter M (RH) as function of the horizon radius RH to see that for
di�erent values of l0 and a, the metric displays di�erent horizon structures, i.e., two
horizons, one horizon, and no horizon. In this work the horizonless state will not
be considered. Thus, for �xed value of the noncommutative parameter l0, the spin
parameter is required to 0 ≤ a ≤ amax, where amax is obtained by solving numerically
∆ (R) = 0 and d∆(R)

dR
= 0. The parameter space is shown in Fig. (3.1).

3.2 General orbits of particles (or photons)

This spacetime has the same conserved quantities as the presented in the last chapter,
and the same procedure can be done in order to get the geodesics, i.e., using the
Hamilton-Jacobi equation to obtain the equations of motion for a particle and assume
the separability and one gets Eqns. (2.22), (2.23), (2.24) and (2.25) with the mass
Mreplaced by m (r).

Nevertheless, the study of radial-motion of photons will di�er as it will be shown.
To �nd these trajectories it is necessary to solve simultaneously, again,

R = 0,
dR
dR

= 0, (3.7)

using Eqns. (4.9), (4.8), (2.27) and (2.26) as follows,
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a/M

Figure 3.1: The parameter space describing the �Kerrr� black holes. The curve cor-
responds to the extremal con�guration, characterized by having the maximum value
of spin a = amax for a given l0 and the presence of one degenerate horizon. Below
this line, black holes have two horizons while con�gurations above the curve have no
horizons. This �gure can be compared with �gure 1(b) of Ref. [100].

R = R4 +
(
a2 − ξ2 − η

)
R2 + 2m

[
η + (a− ξ)2]R− a2η (3.8)

dR
dR

= 4R3 + 2
(
a2 − ξ2 − η

)
R + 2mf

[
η + (a− ξ)2] , (3.9)

where

f ≡ 1 +
m′ (R)

m (R)
r; (3.10)

m′ (R) =
dm (R)

dR
=

2M

Γ
(

3
2

)
l0

(
r

l0

)2

e
−
(
r
l0

)2
. (3.11)

Using conditions (3.7), multiplying Eqn. (3.9) by R and solving, one gets

4R4
sph + 2

(
a2 − ξ2 − η

)
R2
sph + 2mRsphf

[
η + (a− ξ)2

]
= 0

2mRsph

[
η + (a− ξ)2

]
= −

4R4
sph

f
−

2
(
a2 − ξ2 − η

)
R2
sph

f

and replacing in Eqn. (3.8)

R4
sph

(
1− 4

f

)
+
(
a2 − ξ2

)(
1− 2

f

)
R2
sph − η

[
a2 +R2

sph

(
1− 2

f

)]
= 0

or
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η =
R4
sph (f − 4) + (a2 − ξ2) (f − 2)R2

sph

fa2 +R2
sph (f − 2)

. (3.12)

Replacing Eqn. (3.12) in Eqn. (3.9) and doing some algebra one gets a quadratic
equation in ξ:

Aξ2 +Bξ + C = 0,

where

A ≡ a2 (Rsph −mf)

B ≡ −2am
[
(2− f)R2

sph − a2f
]

C ≡ −
[
R5
sph +R4

sphm (f − 4) + 2R3
spha

2 + 2R2
spha

2m (f − 2) +Rspha
4 + a4mf

]
,

its solution is

ξ =
m
[
(2− f)R2

sph − a2f
]
−Rsph [R2 − 2mRsph + a2]

a (Rsph −mf)
. (3.13)

The latter expression can be used to solve η from Eqn. (3.12)

η =
R3
sph

{
4ma2 (2− f)− [Rsph − (4− f)m]2

}
a2 (Rsph −mf)2 . (3.14)

The parameter Rsph is constrained by the existence conditions (2.33) and (2.34)
with Eqns. (3.14) and (3.13), i.e.,

−R3
sph

[
Rsph

{(
Rsph

[
1 +m′

]
− 3m

)2}
+ 4a2

{
rm′ −m

}]
≥ 0. (3.15)

The condition for the orbit to be unstable is

d2Veff
dR2

= 12R2 + 4a(a− ξ) + 2
[
η + (a− ξ)2] [2m′ + rm′′ − 1] < 0 (3.16)

where

m′′ (R) =
Me

−
(
R
2l0

)2
Γ (3/2)

(
R

2l20

)[
2−

(
R

2l0

)2
]
. (3.17)

3.2.0.1 Generalized Schwarzschild solution (a = 0)

For a = 0 Eqns. (3.8) and (3.9) can be written as
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R = R4 −
(
ξ2 + η

)
R2 + 2m

[
η + ξ2

]
R− η (3.18)

dR
dR

= 4R3 − 2
(
ξ2 + η

)
R + 2mf

[
η + ξ2

]
, (3.19)

and imposing conditions (3.7) one gets

η =
R4 [(f − 4)m+R]

fm−R
(3.20)

ξ = −

√
R3 [2 + (f − 4)mR +R2]

R− fm
(3.21)

3.2.1 Circular orbits

The circular orbits calculated in Chap. (2) cannot be written in an exact form in this
case, due to the non trivial functions involved, however in this section some general
expression will be derived that allow suitable expression to get the results numerically.

Assuming that the particles are moving in circular geodesic orbits on the equatorial
plane with four-velocity

uµ =
(
ut, 0, 0, uφ

)
,

= ut (1, 0, 0,Ω) , (3.22)

where Ω is the coordinate angular velocity of the circular orbit, de�ned as

Ω ≡ uφ

ut

= − gtφ + ξgtt
gφφ + ξgtφ

, (3.23)

where the constants of motion (2.19) and (2.20) were written as

E = −ut (gtt + Ωgtφ) (3.24)

L = ut (gtφ + Ωgφφ) (3.25)

and gµν are the metric coe�cients obtained from Eqn. (3.1).
From the above de�nition one gets

ξ = −gtφ + Ωgφφ
gtt + Ωgtφ

. (3.26)
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Assuming the normalization relation

uµu
µ = utu

t + uφu
φ

= −1 (3.27)

is possible to solve for ut, i.e. the particle's energy, in terms of Ω and the metric
coe�cients as follows. From Eqns. (3.24) and (3.25) one gets

ut =
ut

gtt + Ωgtφ
(3.28)

and

uφ = ut (gtφ + Ωgφφ)

which combined give

uφ = ut
gtφ + Ωgφφ
gtt + Ωgtφ

. (3.29)

From Eqn. (3.23) one obtains

uφ =
Ωut

gtt + Ωgtφ
. (3.30)

Plugging Eqns. (3.28), (3.29) and (3.30) in (3.27) �nally the energy per unit mass
is

ut = −E = − gtt + Ωgtφ√
−gtt − 2gtφΩ− gφφΩ2

. (3.31)

In a similar fashion, the other conserved quantity can be found

uφ = −L = − gtφ + Ωgφφ√
−gtt − 2gtφΩ− gφφΩ2

. (3.32)

The important circular orbits shown in Chap. (2), i.e. the photon orbit, Eqn.
(2.47), the marginally bound orbit, Eqn. (2.48) and marginally stable orbit, Eqn.
(2.49), can be obtained from Eqns. (3.31) and (3.32).

Fig. (3.2) shows the energy of the particle (Eqn. 3.31) around the black hole, Fig.
(3.3) shows the angular velocity (Eqn. (3.23)) and Fig. (3.4) show the marginally
stable orbit (ISCO) for orbits in the equatorial plane, i.e. θ = π/2.
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Figure 3.2: Energy of the particle in the equatorial plane for (Left) l0 = 0.0 and dif-
ferent values of a and for (Right) a = 0.5 and di�erent values of the noncommutative
parameter l0. In this plot M = 1 and the cases l0 = 0.6 and l0 = 0.65 are horizonless
black holes.

By virtue of the regularity of the metric (3.1) the energy of the particle and the
angular velocity Ω the do not diverge, see Figs. (3.2 and 3.3, Left panels). For the
case of l0 = 0.1 it gets a �nite value. Note that the other two cases are plotted to
better show the latter statement, however those are cases where there are no horizons,
see Fig. (3.1). Note the bizarre behavior of orbits at small radii in the space-time
when the solution considered is horizonless, i.e., l0 = 0.6 and l0 = 0.65, see Fig. (3.1).
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Figure 3.3: Angular velocity of the particle in the equatorial plane for (Left) l0 =
0.0 and di�erent values of a and for (Right) a = 0.5 and di�erent values of the
noncommutative parameter l0. In this plot M = 1. The cases l0 = 0.6 and l0 = 0.65
are horizonless black holes. The (Left) panel can be compared with Fig. 8.10 of Ref.
[22].

Finally, and for reasons that will be shown in Chap. (5), it is important to
know where the ISCO is located for each geometry. However, as it can be seen
from Fig. (3.4) the noncommutative parameter do not a�ect drastically its value,
e.g. rISCO = 5.99998 for l0 = 0.65 and a/M = 0, which means a di�erence of about
0.00207246% for the Schwarzschild case. However, for horizonless states the di�erence
is drastically increased, e.g. rISCO = 3.95201 for l0 = 0.65 and a/M = 0.5, which

20



means a di�erence of about 28.009% for the Kerr geometry. Note that the ISCO
take values continuously over the whole range of a/M , but here I just showed some
particular values, since the calculation is computationally expensive in the �Kerrr�
geometry.
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Figure 3.4: Value of the ISCO for l0 = 0.0 (Kerr) and l0 = 0.65 (�Kerrr� without
horizons) at some values of a/M . For the Schwarzschild case, i.e. l0 = 0.0 and
a/M = 0 the value obtained is 6.0, Eqn. (2.52). The results for the Kerr case can be
compared with Fig. 8.11 of Ref. [22].
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Chapter 4

Black Hole Shadow

It is conceptually interesting, if not astrophysically very important, to calculate the
precise apparent shape of a black hole [16]. But before analyzing the general problem
of a black hole surrounded by an emitting accretion disk, it is interesting to investigate
a more simple case in which the dynamics are already contained, namely the problem
of the return of light from a bare black hole illuminated by a source of illumination
whose angular size is large compared with the angular size of the black hole [65, 16].

To start, lets assume an observer located at in�nity r = ∞ with the inclination
angle i, which is de�ned by the angle between the rotation axis of the collapsed object
and the observer's line of sight. The celestial coordinates (α, β) [95] of the observer
are the apparent angular distances of the image on the celestial sphere measured from
the direction of the line of sight and will be de�ned and derived in Sec. (4.1).

4.1 Celestial Coordinates [95]

Given the asymptotic properties of the metrics described in Chaps. (2) and (3),
an observer far away from the black hole can set up a reference euclidean coordinate
system (x, y, z) with the black hole at the origin (see Fig. 4.1 ) and rotating around the
z axis. These euclidean coordinates will coincide with the Boyer-Lindquist coordinates
(r, θ, φ) for r � 1.

If one assumes that the black hole rotates in the counterclockwise direction with
respect to the positive z axis and, for simplicity and by virtue of the spherical sym-
metry, that the observer is located at φo = 0, one can draw a better picture to work
with, in which the y axis is contained within the α − β plane and the observer is
contained within the x− z plane (see Fig. 4.2).

The observer will be located at coordinates (r0, i, 0) and the source at coordinates
(rs, θs, φs). Thus, the image seen by the observer is a projection of the real system over
the α−β plane, where α and β are the celestial coordinates; the plane is constructed
so that the normal vector of the plane is parallel to the observer's line of sight as is
shown in Fig. (4.1).

In the observer's reference frame, an incoming light ray is described by a para-
metric curve X (r), Y (r) and Z (r), where r satis�es r2 = X2 (r) + Y 2 (r) + Z2 (r).
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Figure 4.1: An observer far away from the astrophysical system is able to set up
a curvilinear coordinate system, for convenience we take the Cartesian coordinates
(x, y, z) with the black hole at the origin. The observer's position is given by (r0, i, ϕ0),
with r0 � 1. The coordinate system is constructed such that the z axis matches with
the rotation axis of the black hole. Figure courtesy of D. Torres.

The tangent vector to this parametric curve at the observer's position is given by

~µ = (µ1, µ2, µ3) =
dX

dr

∣∣∣∣
r0

+
dY

dr

∣∣∣∣
r0

+
dZ

dr

∣∣∣∣
r0

, (4.1)

and describes the straight line which intersect the α − β plane at the point (αi, βi),
which is described parametrically as

x− x0

µ1

=
y − y0

µ2

=
z − z0

µ3

, (4.2)

where (x0, y0, z0) represents the observer's position in Cartesian coordinates. By
virtue of the symmetry, this point in spherical coordinates is written as (r0 sin i, 0, r0 cos i)
and the point (αi, βi) over the α− β in terms of the celestial coordinates is given by
(xi, yi, zi) = (−βi cos i, αi, βi sin i), as seen from Fig. (4.2). In order to �nd the celes-
tial coordinates, the points (x0, y0, z0) and (xi, yi, zi) are replaced in Eqn. (4.2) and
one gets

−βi cos i− r0 sin i

µ1

=
αi
µ2

=
β1 sin i− r0 cos i

µ3

. (4.3)

To �nd the celestial coordinates, the tangent vector ~µ must be written in spherical
coordinates. Using the Eqn. (4.1) and evaluating on the observer's position the
coe�cients of ~µ take the form

µ1 = sin i+ r0 cos i
dθ

dr

∣∣∣∣
r0

, (4.4)
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Figure 4.2: Simpli�ed description of the system, where i represents the angle be-
tween the observer's line of sight and the rotation axis of the BH. The α-β plane is
constructed such that it is perpendicular to the line segment OBH, and the points
(αi, βi) represent the projection of the real system over the α-β plane seen by the ob-
server. The vector ~µ represents the tangent vector to the ray light curve at observer's
position. Figure courtesy of D. Torres.

µ2 = r0 sin i
dφ

dr

∣∣∣∣
r0

, (4.5)

µ3 = cos i− r0 sin i
dθ

dr

∣∣∣∣
r0

, (4.6)

these three expressions allow to write Eqn. (4.3) as

−βi cos i− r0 sin i

sin i+ r0 cos idθ
dr

∣∣∣∣
r0

=
αi

r0 sin idφ
dr

∣∣∣∣
r0

=
β1 sin i− r0 cos i

cos i− r0 sin idθ
dr

∣∣∣∣
r0

. (4.7)

Finding the celestial coordinates reduces to solve equation Eqn. (4.7) for αi and βi
with r0 at in�nite. Solving for βi one gets

βi = lim
r0→∞

r2
0

dθ

dr

∣∣∣∣
r0

, (4.8)

and solving for αi

αi = lim
r0→∞

−r2
0 sin θ0

dφ

dr

∣∣∣∣
r0

. (4.9)

Using Eqns. (2.28), (2.29) and (2.30) and taking the limit, the celestial coordinates
can be written as
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βi =
√
η + a2 cos2 i− ξ2 cot2 i, (4.10)

αi = −ξ csc i. (4.11)

4.2 Black Hole Shadow

As seen by a distant observer, a black hole will appear as a "black hole" in the
middle of the larger bright source. The rim of the "black hole" corresponds to photon
trajectories which are marginally trapped by the black hole; they spiral around many
times before they reach the observer [65, 40, 63].

Every orbit can be characterized by the constants of motion ξ and η, and the set
of unstable circular orbits (ξc, ηc) can be used to plot a closed curve in the αβ plane
which represents the boundary of the black hole shadow using, Eqns.(4.10), (4.11),
(3.14) and (3.13), and considering the light rays emitted at in�nity, which will be
either captured by the black hole or scattered back to in�nity, see Figs. (4.3), (4.4)
and (4.5). The condition to have unstable orbits, i.e., Eqn. (3.15), has to be checked
numerically, since there is no a su�cient condition for the existence of a circular
orbit. Note that the boundary of the shadow depends only on the geometry of the
background.

β

-5 0 5

-5

0

5

a =0.0 ; l0=0

α

Figure 4.3: Shadow of the Schwarzschild black hole. The celestial coordinates (α, β)
are measured in the unit of the black hole mass M and i = π/2.

If the rotation parameter a is zero (as is shown in Fig. (4.3)), the shape is a
circle, while if it rotates (as is shown Figs. (4.4) and (4.5)), the shape is distorted.
In Figs. (4.4) and (4.5) the shadows of the Kerr black holes are shown in black while
the shadow of the Kerrr black holes are shown in green. The inside of this distorted
silhouette is the region where null-geodesics are captured by the event horizon. The
typical feature is that the left-hand side of the disk is chipped away [51, 93].
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Figure 4.4: Shadows of the Kerr and �Kerrr� black holes for various values of the
noncommutative parameter l0. The celestial coordinates (α, β) are measured in the
unit of the black hole mass M and i = π/2 for all �gures. The shadows of the Kerr
black holes are shown in black while the shadow of the �Kerrr� black holes are shown
in green. This �gures can be compared with Fig. 4 of Ref. [100].
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Figure 4.5: Same as in Fig. (4.4) with higher spin parameter.

Although only shadows for an inclination of i = π/2 were drawn, the deviation of
the shape form the circle decreases with a smaller inclination angle as shown in Fig.
(4.6) and the impact of this parameter has been vastly studied in the literature, see
for instance Refs. [51, 12, 57].
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Figure 4.6: Shadows of the Kerr and �Kerrr� black holes for various values of incli-
nation i. The celestial coordinates (α, β) are measured in the unit of the black hole
mass M , a = 0.5 and l0 = 0.3.

Since it is of particular interest to investigate how the shadow of black holes gets
deformed in the case of distorted ones it has been recently an active �eld of research.
In Refs. [41, 51, 4, 12, 101, 57, 7, 8, 73, 93, 86, 45, 64, 79, 83, 71, 100] can be found
examples of black hole shadows in various theories of gravity.
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Chapter 5

Relativistic Ray Tracing

The size and shape of the black hole's shadow is determined by the photon orbit,
were studied in Chapters (2) and (3) and depend only on the black hole physical
parameters. However, the appearance (spatial extent, shape, brightness distribution,
etc.) of a �physical� image depends not only on black hole parameters, but also on
the details of the accretion structure around it [91]. The work that has been done so
far, assumes that the black hole is isolated from everything else, an assumption not
met in most astrophysical scenarios [6].

In this section, an approximate analytic ion torus model associated with the family
of Polish doughnuts, introduced in Refs. [1, 55], is used for a radiatively ine�cient
accretion �ow to describe the accretion structure in Sgr A* based on Refs. [1, 91, 97]
and using the Novikov-Thorne model, in which the disk is on the equatorial plane
and the particles of the gas move on nearly geodesic circular orbits, i.e., Keplerian
motion. The accretion disk is expected to have its inner edge at the radius of the
ISCO.

5.1 The General relativitY Orbit Tracer of the Ob-

servatory of Paris (GYOTO)

The best candidate for horizon-resolving mm-VLBI observations is the supermassive
black hole at the center of the Milky Way, Sgr A*. Because of its proximity, Sgr
A* subtends the largest angle on the sky of any known black hole and presents a
unique opportunity to observe strong-�eld general relativity e�ects. Particularly, for
Sgr A* most of these details are uncertain, as for example the chemical abundances,
the involved radiative processes, and the inclination of the accretion structure with
respect to our point of view [21, 33, 91].

There are mainly three analytic models used to make a meaningful comparison
between theory and observation:

• The radiatively ine�cient advection dominated accretion �ow (ADAF) model
[72, 105].

• The jet model [40] .
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• The torus model [91, 97].

The accretion structure around Sgr A* is most probably a radiatively ine�cient ad-
vection dominated accretion �ow [72].

The �rst developments of general relativistic ray-tracing date back to the 1970s,
with works regarding the appearance of a star orbiting around a Kerr black hole [31],
the derivation of an accretion disk's emitted spectrum in terms of a transfer function
[30] and the computation of the image of an accretion disk around a Schwarzschild
black hole [65].

In this work I use GYOTO [96], a general relativistic ray-tracing code which
computes images of astronomical bodies in the vicinity of compact objects and tra-
jectories of massive bodies in relativistic environments. GYOTO consists in launching
null geodesics from an observer's screen, that are integrated backward in time to reach
an astrophysical object emitting radiation. Once the photon gets inside the emitting
object, the equation of radiative transfer is integrated along the computed geodesic
in order to determine the value of the emitted speci�c intensity that will reach the
observer [96]. For the disk model of this work, the integration of the equation of radia-
tive transfer is straightforward since the values of the intensity are known analytically
at each point of the disk.

GYOTO is an open source C++ code and is documented on its homepage1.

5.1.1 Implementation

Here I will just summarize the most important concepts and features of GYOTO
relevant to this work, based on Ref. [96] where this code was �rst described in detail.

The initial conditions, the position of the observer and the direction of incidence of
the photon, allows the code to determine the tangent vector to the photon's geodesic
at the observer's positions. The equations of motion, Eqns. (2.28), (2.29), (2.30)
and (2.31) are solved by means of a Runge-Kutta algorithm of fourth order with an
adaptive step and the integration goes until one of the following stop conditions is
ful�lled:

1. The photon reaches the emitting object.

2. The photon escapes too far from the object.

3. The photon approaches too closely to the event horizon, which is de�ned as
when the photon's radial coordinate becomes only a few percent larger than the
radial coordinate of the event horizon.

Photons are launched from the observer's screen, which is assumed to be spatially at
rest at 8.33 kpc in a given speci�ed solid angle.

The numerical accuracy of GYOTO is investigated in Ref. [96], where a conver-
gence test was given.

1http://gyoto.obspm.fr
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5.1.2 Radiative transfer

Once the null geodesics, integrated backward in time from the observer's screen,
reaches the emitting object, the equation of radiative transfer must be integrated
along the part of the geodesic that lies inside the emitter. In order to perform this
computation, two basic quantities have to be known at each integration step in the
frame of a given observer comoving with the emitting matter:

• The emission coe�cient jν : De�ned in such a way that an element of mass dm
emits in directions con�ned to an element of solid angle dΩ, in the frequency
interval (ν, ν + dν) and in time dt, an amount of radiant energy given by [27]:

jνdmdΩdνdt,

and is related with the speci�c intensity's increment dIνas along the geodesic

dIv = jνds (5.1)

• The absorption coe�cient αν , de�ned as follows: If the speci�c intensity Iv
becomes Iv + dIv after traversing a thickness ds, measured by the observer, in
the direction of its propagation it is written

dIv = −ανIvds, (5.2)

where the quantity αν introduced de�nes the absorption coe�cient for radiation
of frequency ν.

The cgs unit of jν is [erg cm−3 s−1 ster−1Hz−1] while αν is expressed in [cm−1]. The
relativistic equation of radiative transfer is [69]

dI
dλ

= E − AI, (5.3)

where λ is an a�ne parameter along the considered geodesic, I is the invariant spe-
ci�c intensity, E is the invariant emission emission coe�cient and A is the invariant
absorption coe�cient de�ned as follows:

I ≡ Iν
ν3
, (5.4)

E ≡ jν
ν2
, (5.5)

A ≡ ναν , (5.6)

these quantities do not depend on the reference frame in which they are evaluated2.
The relativistic equation of radiative transfer (5.3) written in the reference frame
comoving with the �uid emitting the radiation reads:

2A nice explanation and short proof of the �rst invariant described here can be found in Ref.
[68].

31



dIνem
dsem

= jνem − ανemIνem , (5.7)

where νem is the emitted frequency of the radiation and dsem ≡ dλνem is the amount
of proper length as measured by the emitter. The latter expression can be integrated
between some value s0 where the speci�c intensity is vanishing and some position s:

Iν (s) =

∫ s

s0

ds′ e−
∫ s
s′ ds

′′ αν(s′′)jν (s′) . (5.8)

The emission coe�cient, jν , is required at any point within the torus. These
quantities will be discussed in the following and are known analytically for the ion
torus, so the integration (5.8) can be performed.

Before describing the standard equations of radiative processes, it is important
to mention that the following analysis is a simple analytical model which does not
achieve the same results of relativistic magnetohydrodynamic (GRMHD) numerical
codes, where a proper radiative transfer in curved spacetimes is formulated and solved
(see, for instance, Ref. [20] and references therein).

5.1.3 Spectra computation

By using the invariant intensity (5.4), the speci�c intensity observed by a distant
observer can be related to the emitted speci�c intensity according to [96]

Iνobs = g3Iνem , (5.9)

where

g ≡ νobs
νem

(5.10)

and is called the redshift factor.
However, a more important quantity from the observational point of view is �ux

density, or here, the �ux (Fν , F ) which gives the power of radiation per unit area and
its dimension depends on whether if the considered quantity is the �ux density at a
certain frequency or about the total �ux density.

The observed �ux Fν is related to the observed speci�c intensity according to

dFνobs = Iνobs cos θdΩ,

where Ω is the solid angle under which the emitting element is seen and θ is the angle
between the normal to the observer's screen and the direction of incidence, the �ux
is given by

Fνobs =
∑
pixels

Iνobs,pixel cos (θpixel) δΩpixel, (5.11)

where Iνobs,pixel is the speci�c intensity reaching the given pixel, θpixel is the angle
between the normal to the screen and the direction of incidence corresponding to this
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pixel and δΩpixel is the element of solid angle covered by a pixel in the sky, de�ned
as the total solid angle covered by the screen divided by the number of pixels:

δΩpixel =
2π (1− cos f)

N2
. (5.12)

5.2 Ion tori

�Accretion is the very process that allows black hole sources to emit elec-
tromagnetic radiation and other forms of energy. Because black holes
are so small in size compared to the spatial scale of their sources of fuel-
ing, and because centrifugal forces on matter of given angular momentum
increase more rapidly (∝ R−3) than gravity (∝ R−2) as one moves in-
ward in radius R, accretion is generally believed to be a process involving
rotationally supported �ows. Matter in such a �ow must lose angular
momentum in order to move inward and release gravitational binding en-
ergy. It is the nature of the angular momentum loss mechanism, and the
process whereby gravitational binding energy is converted into observable
forms of energy, that are the two central questions of black hole accretion
theory.� [39]

Ion tori are geometrically thick, optically thin accretion structures with constant
speci�c angular momentum. They are the optically thin counterparts of the optically
thick Polish doughnuts [1, 2]. The physics of the radiative transfer used for the ion
torus is based on Ref. [91] and in the following I will summarize these author's
descriptions.

5.2.1 Fluid torus of constant speci�c angular momentum and

isotropic magnetic �eld

GYOTO implements an accretion torus-shaped, barotropic, stationary disk of neg-
ligible self-gravitation3, with axisymmetry and constant angular momentum with
isotropic (i.e., chaotic) magnetic �eld around the black hole. Modeling the �uid
as a �perfect-like� one, the stress energy tensor is

Tµν = (ε+ P )uµuν + Pgµν , (5.13)

where P is the �uid pressure and ε is the �uid proper energy density. The �uid
4-velocity is assumed to be purely circular, i.e.,

uµ = ut (1, 0, 0,Ω) ,

3The deviation induced by the presence of an accretion disk is usually completely negligible,
because the disk mass is many orders of magnitude smaller than the mass of the black hole (see Ref.
[14] for a general discussion, in which the e�ect of a massive accretion disk in the measurement of
the black hole spin with a simple analytical model was estimated and discussed).
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using Boyer-Lindquist coordinates and where Ω is the angular velocity de�ned in
Chap. (2). The energy-momentum conservation equation

∇νT
ν
µ = 0,

leads to [91, 97]

∇µP

ε+ P
= −∇µ ln (−ut) +

Ω∇µξ

1− Ωξ
, (5.14)

where ξ related to the �uid four-velocity components by Eqn. (2.26). By assuming
that the �uid is barotropic, i.e., P = P (ε), the enthalpy function, de�ned as follows
[91]

H ≡
∫ P

0

dP

ε+ P
, (5.15)

permits to express the Eqn. (5.14) as

∇µH = −∇µ ln (−ut) +
Ω∇µξ

1− Ωξ
. (5.16)

If one assumes ξ = constant = ξ0 within the entire torus the equation of motion
(5.16) reduces to

∇µH = −∇µ ln (−ut)

or

H = W + constant,

where

W ≡ − ln (−ut) . (5.17)

Assuming the normalization relation uµu
µ = −1 the expression (5.17) can be

written

W (r, θ) =
1

2
ln

(
−gtt + 2Ωgtφ + Ω2gφφ

(gtt + Ωgtφ)2

)
. (5.18)

The cusp location should be between the marginally stable (2.49) and the marginally
bound (2.48) orbits, which implies that ξ0 must obey [1]

ξms (a) < ξ0 < ξmb (a) , (5.19)

with ξms (a) and ξmb (a) given by Eqn (2.26) evaluated on (2.48) and (2.49), respec-
tively. The condition (5.19) can be written more conveniently as

0 ≤ λ ≤ 1,
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where the dimensionless parameter λ is de�ned as

λ ≡ ξ0 − ξms (a)

ξmb (a)− ξms (a)
. (5.20)

The isobaric surfaces coincides with the equipotential surfaces of W (r, θ). The
cross-sectional shape of the equipotential surfaces is given in Fig. (5.1). Thus, im-
posing a speci�c relation between Ω and λ the equipotential surfaces W = const can
be found. It appears that one particular surface has a �cusp� at some r = rcrit: it
crosses itself in the equatorial plane, commonly called a �Roche lobe�. Equipotential
surfaces contained inside this critical surface are not connected to the central object:
thus, matter cannot be accreted and swallowed by the black hole. It is thus as-
sumed that the torus physical surface coincides with this critical surface. The central
point, r = rc, coincides with the innermost equipotential surface and to the point of
maximum pressure.

Roche lobe over�ow causes dynamical mass loss from the torus to the black hole,
with no need of help from viscosity.

5.2.1.1 Torus solution for a polytropic equation of state

By assuming a polytropic equation of state

P = Kε1+ 1
n , (5.21)

where K is the polytropic constant, n the polytropic index and ε is the total energy
density, which is the sum of the energy density ρ and internal energy Π, the the
enthalpy function (5.15) can be integrated to give

H = (n+ 1) ln
(

1 +Kε
1
n

)
. (5.22)

The surface of the torus is de�ned by P = 0 [91], which corresponds, according to
the equation of state (5.21), to ε = 0 and, from enthalpy function (5.22) to H = 0.
By de�ning Ws as the value of the potential W at the torus surface, Hc and Wc as
the values of H and W at the torus center, Eqn. (5.17) can be written as

H = W −Ws, (5.23)

which implies
Hc = Wc −Ws. (5.24)

For convenience, is de�ned a dimensionless potential as

ω (r, θ) ≡ W (r, θ)−Ws

Wc −Ws

(5.25)

and from Eqns. (5.23) and (5.24) the enthalpy function is

H = Hcω. (5.26)
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The expressions (5.22), (5.23) and (5.24) allow to write

ln
(

1 +Kε
1
n

)
= ω ln

(
1 +Kε

1
n
c

)
,

where εc is the energy density at the torus center. Solving for ε one gets [91]

ε =
1

Kn

[(
Kε

1
n
c + 1

)ω
− 1
]n
, (5.27)

where K is

K =
1

ρ
1
n
c

e(
Wc−Ws
n+1

−1). (5.28)

5.2.1.2 Thermodynamic quantities

For this con�guration the polytropic index is set to n = 3/2, which corresponds to the
adiabatic index γ = 5/3 of a non-relativistic gas with no radiation pressure which is
consistent with the existence of a very optically thin medium [91]. The total pressure
P is expressed as the sum of the magnetic and gas contributions, Pmag and Pgas
respectively, and the radiation pressure is neglected. These pressures are assumed to
be �xed parts of the total pressure [91]

Pmag =
B2

24π
= βP (5.29)

Pgas = (1− β)P, (5.30)

where B is the intensity of magnetic �eld and β ≡ Pgas/ (Pgas + Pmag) measures
the strength of the magnetic �eld4. The gas is assumed to be an electron gas with
molecular µ weight and Te and the pressure is written

Pgas =
kBεTe
muµ

,

where kB is the Boltzmann constant and mu is the atomic mass unit. The electron
molecular weight is written

µ =
ε

nemu

=
2

1 + Y
,

where Y us the helium abundance, which is assumed to be equal to Y = 0.25 [72],
and ne is the electron density with respect to the energy density.

For the temperature is assumed that there exists a relation5

4This β di�ers from the standard β′ ≡ Pgas/Pmag used in plasma physics, which is confusingly
also called β [105].

5This assumption is made in order to obtain a dependence with the choice of Tc, i.e. the tem-
perature of the center of the torus, and not only on the spacetime geometry.
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Te = C
P

ε
,

where C is a constant, but does not take its perfect-gas value [97]. The central
temperature Tc is chosen at the center of the torus and de�nes the constant C by

Tc = C
Pc
εc
.

Then

Te = Tc

(
ε

εc

)n−1

, (5.31)

which depends on the choice of Tc.

5.2.2 Radiative processes

The emission coe�cients inside the torus implemented in GYOTO correspond to
bremsstrahlung, synchrotron radiation and Compton processes. The following ex-
pressions are the standard formulae from the literature and were presented in Refs.
[91, 72] for this particular case (see, for instance, Refs. [78, 68, 67] for extensive and
general discussions of these and other mechanisms in astrophysics).

5.2.2.1 Bremsstrahlung

The rate at which energy is lost due to bremsstrahlung,

f−br =
dEbr
dtdV

= f−ee (5.32)

is due to emission from electron-electron collisions f−ee which is [96]

f−ee = n2
er

2
eαfmec

3Fee (θe) ,

where the classical radius of electron and the �ne structure constants are, respectively,

re =
e2

mec2
(5.33)

αf =
1

137
(5.34)

and

Fee (θe) = 20
9
√
π

(44− 3π2)
(

1 + 1.11θe + θ2
e − 1.25θ

5
2
e

)
θ

3
2
e ; θe < 1

= 24θe [ln (2ηθe) + 1.28] ; θe > 1
(5.35)
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with the Euler number is given in terms of the Euler-Mascheroni constant, γE as

η = e−γE = 0.5616 (5.36)

and the dimensionless temperature is de�ned as

θe =
kBTe
mec2

. (5.37)

Thus, the bremsstrahlung emission coe�cient is

jbrν = f−br
1

4π

h

kBT
e

(
− hν
kBTe

)
G, (5.38)

where h is the Planck's constant, the 1/4π factor assumes isotropic emission in the
emitter's frame and G is the velocity-averaged Gaunt factor given by

G =
√

3
π
kBTe
hν

; kBTe
hν

< 1

=
√

3
π

ln
(

4
γE

kBTe
hν

)
; θe > 1

. (5.39)

The function (5.35) has units of [erg−1 cm−3].

5.2.2.2 Synchrotron radiation

The emission coe�cient for synchrotron emission by a relativistic Maxwellian distri-
bution of electrons is given by [91]

jsyν =
1

4π

e2

c
√

3

4πneν

K2

(
1
θe

)M (xM) ,

with a 1/4π factor for isotropic emission in the emitter's frame, K2 is the modi�ed
Bessel function of second kind and the �tting function,

M (xM) =
4.0505α

x
1
6
M

(
1 +

0.48β

x
1
4
M

+
0.5316γ

x
1
2
M

)
e−1.8899x

1
3
M ,

where

xM =
2ν

3ν0θ2
e

,

ν0 =
eB

2πmec

and the parameters α, β and γ are all adjustable. In Ref. [66] appears a table of the
optimized parameters at various temperatures.
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5.2.2.3 Compton processes

The soft bremsstrahlung and synchrotron photons in an ion torus �lled with a thermal
distribution of electrons are (inverse) Compton scattered to higher energies. In the
central regions of the �ow in particular, this can be an important cooling mechanism
[91].

There is a probability P that a seed photon of some initial energy, Ein = hν, is
in optically thin material scattered to an ampli�ed energy [91]

Eout = AEin,

where

P = 1− e−τes ,

with the optical depth

τes =

∫
neσTdl,

where the Thomson cross section is

σT =
8π

3

(
e2

mc2

)2

≈ 6.625× 10−25cm2,

for the electron, and

A = 1 + 3θe + 16θ2
e .

The energy exchange between electrons and photons depends only on the electron
temperature θe and the probability that a photon will interact with an electron which
is given by the electron scattering optical depth. In Ref. [38] was derived an approx-
imate prescription for the energy enhancement factor due to Compton scattering,
which is de�ned as the average energy change of a seed photon

η = 1 + η1 + η2

(
x

θe

)η3
,

where

η1 =
P (A− 1)

1− PA
η2 = 3−η3η1

η3 = −1− lnP
lnA

.

The dimensionless energy is given by
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x =
hν

mec2
.

Comptonized emission is η − 1 times the seed photon distribution. The part of
the spectrum that can be Comptonized lies between the critical synchrotron self-
absorption edge

x = xc =
hνc
mec2

and x = 3θe. Note that as the emerging photons cannot gain more energy than the
electrons they collide with have, there is an upper limit to the energy gained

x . 3θe.

Comptonization of bremsstrahlung emission is then given by

jbr,Cν = jbrν 3η1θe

{(
1

3
− xc

3θe

)
− 1

η3 + 1

[(
1

3

)η3+1

−
(
xc
3θe

)η3+1
]}

. (5.40)

Comptonization of synchrotron radiation that is emitted mostly at the self-absorption
frequency νc is given by

jsy,Cν = jsyν

[
η1 − η2

(
xc
θe

)η3]
.

5.2.2.4 Total cooling

�All three of the processes described above are similar, since in every case
the physical scenario studied to get them is dealing with the collision be-
tween a charge and a photon. What changes the mechanism is the nature
of the prescattered radiation. In bremsstrahlung emission the electron
plows through the virtual photon �eld of the ion Ze, in synchrotron the
electron scatters with the virtual photons compromising the magnetic �eld
and in Compton scattering the collision occurs between a charge and a free
photon, dynamically distinct from the charge that produced it�. Adapted
from Ref. [68]

The total emission coe�cient is the sum of all radiative contributions

jν = jbrν + jbr,Cν + jsyν + jsy,Cν . (5.41)

For a medium in local thermodynamic equilibrium (LTE) at temperature T , the
emission coe�cient given in Eqn. 5.41 and the absorption coe�cient are related by
means of Kirchho�'s law

αν =
jν

Bν (T )
(5.42)
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where Bν is Planck's law of blackbody radiation

Bν =
2hν3

c2

1

e
hν
KBT − 1

. (5.43)

However, since for the typical optical depth of ion tori, αν is negligible, the absorption
is ignored and assumed zero everywhere. Integration of jν over the whole frequency
range gives the total cooling rate at each point (r, θ) in the torus. Radiation that
originates close to a black hole is in�uenced by various relativistic e�ects, such as the
gravitational bending of light rays, gravitational redshift, and Doppler beaming [91].
GYOTO ray-traces the emission derived in Eqn. (5.41) from each point (r, θ) inside
the so-called Roche lobe equipotential back to the observer explicitly including all
relativistic e�ects in light propagation.

5.3 Adding the �Kerrr� metric to GYOTO

According to Frédéric Vincent (private communication) writing a plugin is the �clean-
est� way to modify GYOTO and perhaps not the �simplest�. In order to use the
�Kerrr� metric for the calculation a new Metric was added. The steps followed were:

• Create the �les lib/KerrrRBL.C, include/GyotoKerrrRBL.h from the lib/KerrRBL.C,
include/GyotoKerrRBL.h implemented already in GYOTO, by modifying the
functions needed, in particular:

� The metric coe�cients, in covariant and contravariant form,

� the prograde Marginally Stable orbit,

� the prograde Marginally bound orbit,

� the potential,

� the speci�c angular momentum,

� the standard equations of geodesics and

� the circular velocity.

• Update the �le lib/Make�le.am by adding KerrrBL.C when de�ning the variable
libgyoto_stdplug_la_SOURCES

• Update lib/StdPlug.C by adding a #include "GyotoKerrrBL.h" and

Metric::Register("KerrrBL", &(Metric::Subcontractor<Metric::KerrrBL>));

• Build up the whole code in order to get shared libraries �les.

The polish doughnut was not modi�ed and follows completely the above description,
since the model is formulated for a generic stationary and axisymmetric spacetime as
the one described in Chap. (3). If the background metric is known, there is only one
unspeci�ed function, (3.23), which characterizes the �uid's rotation. Thus, GYOTO

41



integrates backward in time the null geodesics from the observer's screen to reach
the torus emitting radiation and then the equation for radiative transfer is integrated
along the modi�ed computed geodesic in order to determine the value of the emitted
speci�c intensity that will reach the observer. For the "Kerrr" spacetime the quan-
tities mentioned above, i.e., prograde Marginally Stable orbit, prograde Marginally
bound orbit, potential and circular velocity were �rst calculated numerically and the
value plugged into the code. However, as it was shown in Chap. (3), those values are
very similar to the Kerr values.

5.4 The black hole silhouette with ion tori

So far the torus is characterized by the black hole spin, a, and inclination of the spin
axis to the line of sight, i, the torus angular momentum, λ, the polytropic index,
n , the magnetic total pressure ration, β, and the central values of density, εc, and
electron temperature Te,c.

The speci�c intensity at any point within the torus is obtained as follows:

1. From λ and a one evaluates ξ0 via Eqn. (5.20).

2. With the values of ξ0 and a the potential W (r, θ), Eqn. (5.18), is fully deter-
mined, using Eqn. (3.23) and the value found above.

3. Now, in order to get a Roche-lobe �lling torus, the value Ws of the potential W
a the torus surface must be set to the value at the Roche love as follows

Ws = W
(
rin,

π

2

)
.

4. The value Hc is obtained from Eqn. (5.22).

5. Given Ws and Hcthe value Wc can be obtained from Eqn. (5.24).

6. The dimensionless potential ω (r, θ) is obtained from Eqn. (5.25).

7. The energy density is obtained from Eqn. (5.27).

8. The temperature can be found with the previous value from Eqn. (5.31).

9. The value of the total cooling is obtained from Eqn. (5.41).

10. The speci�c intensity is obtained �nally by direct integration of Eqn. (5.8)
along the null geodesic that lies inside the emitter.

5.4.1 Images

The quantity that is carried along the geodesic computed by GYOTO is the speci�c
intensity Iν , with units [erg cm−2 s−1 ster−1Hz−1], updated at each step inside the
torus by using Eqn. (5.1). The image is then de�ned as a map of speci�c intensity
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Parameter Value

Angular Momentum λ 0.3
Magnetic Pressure Ratio β 0.1

Polytropic Index n 3/2

Central Density [g cm−3] εc 10−17

Central Electron Temperature Te,c 0.02Tvir

Table 5.1: Parameters for the reference ion torus. Tvir is the virial temperature. This
parameters can be compared with table 1 of Ref. [91].

[96]: each pixel of the screen contains one value of Iν that can be plotted. However,
this is not an �real� image, i.e., the one that would be obtained with a telescope,
since a real image is a map of speci�c �uxes values, and a speci�c �ux is the sum of
the speci�c intensity of some solid angle. So the GYOTO screen is considered to be
point-like, where a pixel corresponds to a direction of the sky.

The images (Figs. (5.2), (5.4) and (5.5)) are maps of speci�c intensity Iν of an ion
torus surrounding a Schwarzschild, Kerr and �Kerrr� black holes. Table (5.1) gives
the reference values of the parameters used for the computations, speci�cally chosen
for comparison with Ref. [96]. For all images the frequency shown is 10Hz and is
just for reference.

Each image is a superposition of a �rst-order image, i.e., the thick distorted image,
and highe-order images, i.e., the �circles� centered on the black hole, produced by
photons that swirl around the black hole before reaching the observer. The very �ne
circles of light consist of photons originating from a location just outside the photon
orbit, see Chap. (2) for details. In these images the black hole silhouette is produced
by the photons, which are severely red-shifted, that escape from the region inside the
photon orbit and create an area of reduced intensity on the observer's screen [91].

According to Ref. [83] the half opening angle of the shadow, as measured by
di�erent observers at in�nity and for black holes with di�erent spins, is always equal
to

(5± 0.2)
GM

Dc2
, (5.44)

where M is the mass of the black hole and D is the distance from the Earth. For the
supermassive black hole Sgr A* at the Galactic center they are [44]

M = 4.3× 106M�

and

D = 8.3 kpc.

Based in this result I will provide an estimate size of the images produced by GYOTO
in terms of (5.44). Using the image shown in (5.2), whose size 400 × 400 pixels , I
analyze the magnitude of intensity of the accretion �ow image on the two-dimensional
image plane of an observer located at Earth along the three cross sections delineated
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by the dashed lines, see Fig. (5.3). As expected, the steepest points occur at the
brightest points in the image, which will be considered the rim of the black hole
shadow. Note, however, that fainter and larger rims appear also at the outer edges
of the image.

The shadow size, in pixels, was calculated numerically from Fig. Right (5.3),
where the dashed red line was drawn. This value was converted, using Eqn. (5.44),
to a more physical presentation, see Fig. (5.4) for Kerr black holes and Fig. (5.5)
for �Kerrr� black holes. One can also write the approximate dimensions of the image
in other units, e.g., µarcs, however, as it was discussed above, the images shown are
not physical images at all, and that is the reason why I have draw the images in [M ]
which is just a scale factor.

Knowing the particular extent and shape of the accreting region from observations
will allow to constrain various parameters of the �ow. As expected, the di�erences
found in Figs. (5.4) and (5.5) are negligible.

5.4.2 Spectra

Figures (5.6) and (5.7) show the resulting emitted spectra, by using Eqn. 5.11, for the
Kerr and �Kerrr� black holes seen under di�erent angles6. To produce these spectra, 50
values of observed frequencies were considered, evenly spaced logarithmically, between
105 and 1025Hz. Note that the results are shifted with respect to the ones presented
in Ref. [91], since I have used the temperature for the accretion torus de�ned in Ref.
[97].

The left panel of Fig. (5.6) shows the total spectrum, while the right panel shows
the contributions from the emission mechanisms under consideration, i.e. bremsstrahlung,
synchrotron emission, and inverse Compton scattering of both bremsstrahlung and
synchrotron photons.

These �gures show that the ion torus model is able to account for the general
features of the observed data, which is �tted for the millimeter spectrum in Ref. [97],
by the parameters chose. This includes the X-ray �are �bow tie� which in the ion
torus model may originate from soft photons that are inverse Compton scattered by
the same population of hot electrons that is responsible for the synchrotron emission
[91]. However the �attening of the spectrum at low frequencies is not matched by
this model, which is due to the absence of a non-thermal electron distribution7.

5.4.2.1 χ2 Analysis

The following analysis emulate the standard technique used in Ref. [56], which is
suitable for X-ray data, but here is just performed as a numerical experiment for the

6Since observed �ux densities are usually rather small, especially in radio astronomy, the �ux is
presented in νFν .

7A more evolved model taking into account this e�ect was developed recently in Ref. [97], where a
millimeter-wavelength synchrotron radiative model for Sgr A* based on the fully general relativistic,
analytical magnetized torus model of Komissarov [61] .
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sake of comparison, consisting of grouping the data to a minimum n of counts per
bin.

In order to compare the pro�les shown in Figs. (5.6) and (5.7), I consider the Kerr
model with spin parameter a/M = 0.4 and inclination angle i = π/2, with notation

nKerrj ,

to indicate the photon �ux number density in the frequency [νj, νj + ∆νj] of the spec-
trum pro�le, and the comparison model as a �Kerrr� black hole with noncommutative
parameter l0/M = 0.3, spin parameter a/M = 0.4 and inclination angle i = π/2 with,
correspondingly, a pro�le

n”Kerrr”
j .

The comparison is be made using the normalized log-likelihood, L, introduced in Ref.
[56], as

L =
1∑

i n
Kerr
i

[∑
j

(
nKerrj − αn”Kerrr”

j

)2

nKerrj

]
, (5.45)

where α is

α =

∑
j n

”Kerrr”
j∑

j

(
(n”Kerrr”
j )

2

nKerrj

) .
Then, the corresponding χ2 is

χ2 ≈ NL, (5.46)

where N is the number of detected photons. The relation of χ2 and NL is only
approximate and becomes exact in the limit of high counts.

Table (5.2) shows the χ2 for di�erent values of N and n. The value N = 103 corre-
sponds to a high-quality observation today, and N = 105 is an optimistic benchmark
for quality observation with next generation missions, e.g., for X-ray satellite [56]8.
The di�erence obtained is near to the so-called machine epsilon of the computer used
in the calculations, which is 2.22044604925e − 16, corresponding to a �oating-point
computer numbering format that occupies 8 bytes (64 bits) in computer memory,
which means that the numerical errors calculating the χ2 became too big.

However, it is important to point out that the spectra shown in Figs (5.6) and
(5.7) are indeed di�erent, and the di�erence appears due to the introduction of the
noncommutative parameter, since the numerical values of the the quantity νFν are
below of the machine epsilon for all the cases, but the standard χ2 procedure can not
be applied to these subtle di�erences.

8These values refer to the photon count number in the iron line of a typical measurements, which
has nothing to do with the radiation emitted by a ion torus, and here was used just as a rough
numerical experiment.
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N n χ2

105 10 6.5380311554182026e− 16
20 6.5380224229632192e− 16

103 10 6.2236458883078157e− 18
20 6.1029550612365413e− 18

Table 5.2: Values of χ2 for di�erent values of N and n. See the text for more details.

It is challenging to test the Kerr metric of black hole candidates because most
measurements cannot distinguish a Kerr black hole from a non-Kerr black hole with
a di�erent spin parameter, namely there is a degeneracy between the spin and possible
deviations from the Kerr solution. In the case of Sgr A∗, in the near future it will
be probably possible to have di�erent measurements, which are sensitive to di�erent
relativistic e�ects, of the same object. If combined together, we can hope to be
able to break the parameter degeneracy 9. Here, I just showed the e�ect of the spin
parameter a and of the noncommutative parameter l0 describing possible deviations
from the Kerr geometry. However, the impact of l0 is again very small, meaning that
a measurement cannot provide an independent estimate of the two parameters or will
allow to break the degeneracy.

9The analysis of the iron Kα line is other technique, not discussed in this work, which has a
more complicated structure and it is potentially a more powerful tool to test the Kerr metric, see
for instance Ref. [56].
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Figure 5.1: Meridional cuts through a λ = 0.3 and λ = 0.7 around a black hole. (Top
panels) Schwarzschild case. (Bottom panels) Kerr case with a a = 0.5 M . Note that
the surfaces of constant pressure, which represent the possible boundaries of the �uid
con�guration. The numbers on the curves refer to di�erent values of W . This �gures
can be compared with Fig. 1 of Refs. [1, 91].
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Figure 5.2: False-colour image of a ion torus around a Schwarzschild black hole with
400× 400 pixels screen. The inclination of the observer is set to π/2 with respect to
the angular momentum vector of the accretion �ow. The dashed lines show three cross
sections at 0, π/4 and π/2 with respect to the equatorial plane. All the parameters
are set to their reference values listed on Table 5.1.
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Figure 5.3: (Left) The brightness of the image shown on the Fig. (5.2) along the three
indicated cross sections. In all cases the rim of the black hole shadow corresponds to
the sharp drop in the brightness. (Right) The brightness of the image shown on the
Fig. (5.2) along the 0 cross section, which better allows to calculated, numerically,
the rim of the black hole shadow.
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Figure 5.4: False-colour images of the reference ion torus corresponding to the pa-
rameters listed on Table 5.1, as observed by an observer on Earth. Top panels:
Schwarzschild case. (Upper left) Inclination angle i = π/4. (Upper right) Inclination
angle i = π/2. Bottom panels: Kerr case with a = 0.4M . (Lower left) Inclination
angle i = π/4. (Lower right) Inclination angle i = π/2.
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Figure 5.5: False-colour images of the reference ion torus corresponding to the param-
eters listed on Table 5.1, as observed by an observer on Earth in the �Kerrr� geometry
with a = 0.4M and l0 = 0.3M . (Left) Inclination angle i = π/4. (Right) Inclination
angle i = π/2.

104 106 108 1010 1012 1014 1016 1018 1020 1022 1024

ν [Hz]

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

ν
F
ν
[e
rg

s−
1
cm

−2
]

a/M=0.4 ; l0/M=0.0 ; i=π/2

104 106 108 1010 1012 1014 1016 1018 1020 1022 1024

ν [Hz]

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

ν
F
ν
[e
rg

s−
1
cm

−2
]

a/M=0.4 ; l0/M=0.0 ; i=π/2

sync

brem

Csync

Cbrem

Figure 5.6: (Left) Spectrum of the ion torus, showing the quantity νFν for di�erent
values of frequencies. All the parameters not shown in the �gures are set to their
reference values listed on Table 5.1. (Right) Contribution from every radiative mech-
anism, namely bremsstrahlung emission, Comptonization of bremsstrahlung emission,
synchrotron radiation, and Comptonisation of synchrotron radiation.
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Figure 5.7: The spectra show the quantity νFν for di�erent values of frequencies.
The impact of inclination, i, spin, a/M and the noncommutative parameter l0/M are
shown in each �gure. All other parameters are set to their reference values listed on
Table 5.1. The shape of the �gures can be compared with �gures 4 and 9 of Ref. [91].
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Chapter 6

Observables

6.1 Parameters

6.1.1 The radius Rs and the distortion parameter δs

The size and the form of the shadow can be characterized by using the two observables
introduced in Ref. [51]. The observable Rs is de�ned as the radius of a reference circle
passing by three points of the shadow: the top position (αt, βt), the bottom position
(αb, βb), and the point corresponding to the unstable retrograde circular orbit seen by
an observer on the equatorial plane (αr, 0), see Fig. (6.1). The distortion parameter
δs is de�ned by the quotient D/Rs, where D is the di�erence between the end points
of the circle and of the shadow, both of them at the opposite side of the point (αr, 0),
i.e., corresponding to the prograde circular orbit [51, 4].

The radius Rs gives an idea of the approximate size of the shadow, while δs
measures its deformation with respect to the reference circle (for more details, see
Refs. [51]). However in this case a dark �lunate� shadow is observed, which can be
approximate by the arc with the radius Ra and the central angle θc as is also de�ned
in [51] for naked singularities, but here not analyzed.

In the case of Kerr backgrounds, the exact shape of the shadow depends only on
the black hole spin parameter, a, and the line of sight of the distant observer with
respect to the black hole's spin, i. For a given inclination angle i, there is a one-to-
one correspondence between a and the distortion parameter δs [64]. If one has an
independent estimate of the viewing angle and measures the distortion parameter of
the shadow it can be inferred its spin parameter a [51]. Figs. (6.2) and (6.3) show the
curves describing the spin parameter a/M as a function of the distortion parameter
δs for di�erent black holes and di�erent inclination angles.
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Figure 6.1: Black Hole's shadow with the three parameters that approximately characterize

its shape: the radius Rs, the dent Ds, and the distance S. Rs is de�ned as the radius of the

circle passing through the points A, B and C, located at the top (β = βmax), most right end

of the shadow and bottom, respectively. Ds is the di�erence between the most left points

of the circle and of the shadow. S is the distance between the center of the circle, O, and

the most left end of the shadow at β = βmax/2. The Hioki-Maeda distortion parameter is

δs = Ds/Rs [51]. The Tsukamoto-Li-Bambi distortion parameter is ε = S/Rs [93]. α and β

in units M = 1. See the text for more details. Figure courtesy of D. Torres.
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Figure 6.2: The distortion δs of the black hole shadow against spin a for di�erent
values of inclination angle i in the Kerr geometry. The lines presented are just for
reference.
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Figure 6.3: The distortion δs of the black hole shadow against spin a for di�erent
values of inclination angle i and noncommutative parameter l0. The lines presented
are just for reference. This �gure can be compared with �gure 5 of Ref. [100].

In order to compare it with that of the Kerr black hole, the di�erence δsKerr−δsKerrr
was plotted, see Fig. (6.4), and it can be seen that signi�cant di�erences start from
l0 = 0.3 with di�erences of about 0.1%, as were reported �rst in Ref. [100]. Adopting
the results presented in Ref. [83] for the half opening angle of the shadow, as measured
by di�erent observers from Earth, this di�erence, for Sgr A*, will be less than∼
10−3 µarcs.
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Figure 6.4: The distortion δs of the black hole shadow against spin a for di�erent
values of inclination angle i and noncommutative parameter l0.

54



6.1.2 The distortion parameter ε

In Ref. [93] was pointed out, by studying the �ne structure of the shadow, that the
main di�erence in the shadow shape is in the apparent photon capture radii on the
side corresponding to the ones associated to co-rotating orbits and there was de�ned
another distortion, ε, as follows. With reference to Fig. (6.1), S is de�ned as the
distance between the center of the circle of the shadow, O, and the point on the right
side of the boundary with coordinate β = βmax/2, where βmax is the β coordinate
of the top end of the shadow used to �nd Rs. The third observable is de�ned as
ε = S/Rs which, like the Hioki-Maeda distortion parameter δs, only depends on the
shape of the shadow.

The distortion parameter ε as a function of the spin parameter a/M for di�erent
black holes is shown in Fig. (6.5) and (6.6)
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Figure 6.5: The distortion ε of the black hole shadow against spin a for di�erent
values of inclination angle i in the Kerr geometry. The lines presented are just for
reference.

Note that the shapes of the shadows of Kerr and �Kerrr� black holes are extremely
similar and therefore only very accurate image can distinguish the two metrics and
provide a meaningful constraint on l0.
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Figure 6.6: The distortion ε of the black hole shadow against spin a for di�erent
values of inclination angle i and noncommutative parameter l0. The lines presented
are just for reference. This �gure can be compared with �gure 5 of Ref. [100].

6.2 Addendum: Shadow Detection with Image Gra-

dients

Inspired by the edge detection scheme for interferometric data and pattern matching
algorithm presented in Ref. [83], I analyze the images presented in Sec. (5.4.1) in
order to detect sharp features (edges) in a model-independent fashion, by applying
the gradient method1 [23, 80] and the Hough transform [37, 52, 53].

6.2.0.1 Canny's Method

The discontinuities are abrupt changes in pixel intensity which characterize bound-
aries of objects in a scene. Classical methods of edge detection involve convolving the
image with an operator (a 2-D �lter), which is constructed to be sensitive to large
gradients in the image while returning values of zero in uniform regions [80, 94].

• Smooth the image using a Gaussian with sigma width:

G (x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (6.1)

where σ is the standard deviation of the Gaussian, which in�uence highly the
detection results. The Gaussian outputs a �weighted average� of each pixel's
neighborhood, with the average weighted more towards the value of the central
pixels.

• Apply the horizontal and vertical Sobel operators to get the gradients within
the image. The edge strength is the norm of the gradient. The operator consists
of a pair of 3× 3 convolution kernels

1This kind of algorithms has been already applied to interferometric images to quantify properties
of the turbulent structure of the interstellar magnetic �eld, see for instance Ref. [43].
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Gx =
−1 0 1
−2 0 3
−1 0 1

Gy =
1 2 1
0 0 0
−1 −2 −1

, (6.2)

designed to respond maximally to edges running vertically and horizontally rel-
ative to the pixel grid, one kernel for each of the two perpendicular orientation.
The kernels can be applied separately to the input image, to produce separate
measurements of the gradient component in each orientation. These can then
be combined together to �nd the absolute magnitude of the gradient at each
point and the orientation of that gradient. The gradient magnitude is given by:

|∇f (x, y)| =
√

(∂xf (x, y))2 + (∂yf (x, y))2. (6.3)

• Thin potential edges to 1-pixel wide curves. First, �nd the normal to the edge
at each point. This is done by looking at the signs and the relative magnitude of
the X-Sobel and Y-Sobel to sort the points into 4 categories: horizontal, vertical,
diagonal and antidiagonal. Then look in the normal and reverse directions to see
if the values in either of those directions are greater than the point in question.
Use interpolation to get a mix of points instead of picking the one that's the
closest to the normal.

• Perform a hysteresis thresholding: �rst label all points above the high threshold
as edges. Then recursively label any point above the low threshold that is 8-
connected to a labeled point as an edge.

Fig. (6.7) shows the result of the Canny's edge detection algorithm applied to the
(Lower left) image of Fig. (5.4) for di�erent values of σ.
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Figure 6.7: Edge detection by Canny's method for σ = 1, 2, 3, 4, 5, 6 (Left to right,
top to bottom). The bigger the value for σ, the larger the size of the Gaussian �lter
becomes. This implies more blurring, necessary for noisy images, as well as detecting
larger edges. As expected, however, the larger the scale of the Gaussian, the less
accurate is the localization of the edge. Smaller values of σ imply a smaller Gaussian
�lter which limits the amount of blurring, maintaining �ner edges in the image. (See
Ref. [94] for further details)
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6.2.0.2 Hough transform

In order to �nd a circle, a rough approximation of the shadow, in the image inten-
sity, the information is converted into a binary edge-map, by a the gradient method
described above and then the edge points vote to instantiate particular contour pa-
rameter values. For the circular limbic boundaries and a set of recovered edge points
(xi, yi) for j = 1, . . . n, a Hough transform is de�ned as [102, 94]

H (xc, yc, r) =
n∑
j=1

h (xj, yj, xc, yc, r) (6.4)

where

h (xj, yj, xc, yc, r) =

{
1 if g (xj, yj, xc, yc, r) = 0

0 otherwise

with

g (xj, yj, xc, yc, r) = (xj − xc)2 + (yj − yc)2 − r2. (6.5)

For each edge point (xj, yj), g (xj, yj, xc, yc, r) = 0 for every parameter triplet (xc, yc, r)
that represents a circle through that point. Correspondingly, the parameter triplet
that maximizes H is common to the largest number of edge points and is a reasonable
choice to represent the contour of interest. In implementation, the maximizing pa-
rameter set is computed by building as an array that is indexed by discretized values
for and . Once populated, the array is scanned for the triple that de�nes its largest
value.

As an example, Fig. (6.8) shows the result of the Hough transformation applied
to the bottom images of Fig. (5.4). where the Fig. (6.8, Left) has a circle of radius
54 pixels drawn and Fig. (6.8, Right) a circle of radius 56 pixels drawn.

Figure 6.8: Illustrative results of shadow localization for Kerr black holes. See text
for details.
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Chapter 7

Discussion

Black holes are commonly believed to be the �nal states of the evolution of su�ciently
massive stars, but their true nature is still far from clear. Within the following years,
VLBI facilities will be able to directly image the accretion �ow around Sgr A∗, our
best black hole candidate. In particular, it will be possible to observe the black hole
shadow �whose boundary corresponds to the apparent image of the photon capture
sphere and is therefore determined by the spacetime geometry around the compact
object� and image directly the accretion �ow around it, opening a new window to
test gravity in the strong �eld regime.

In this work, I have focused my attention on the �Kerrr� metric, a regular non-
commutative inspired black hole. In order to explore the possibility of measuring
this parameter from the shadow, images and spectra of Sgr A∗, I compared �Kerrr�
to the Kerr solution. I have shown that, at least in principle, a very high precision
measurement of the distortion parameters δs and ε breaks the degeneracy between
the black hole spin and possible deviations from the Kerr geometry. Therefore, we
can potentially test the Kerr metric via observations of its shadow. However, it is ex-
tremely di�cult to distinguish between the Kerr case and the noncommutative case;
if l0 is large enough, the distortion parameters δs and ε will deviate by up to 4% of
their value in the Kerr case.

The image and spectrum of Sgr A∗, as the case of study, was modeled using the
relativistic ray-tracing code GYOTO, assuming an optically thin, constant angular
momentum torus in hydrodynamic equilibrium around the Kerr and "Kerrr" geome-
tries. The model used includes a toroidal magnetic �eld and radiative cooling by
bremsstrahlung, synchrotron, and inverse Compton processes. It was shown that the
black hole spin, torus dimensionless angular momentum and inclination each have a
huge and and characteristic impact on the observed image and spectra of the torus,
but the noncommutative parameter l0 does not. It is challenging to test the Kerr met-
ric of black hole candidates because most measurements cannot distinguish a Kerr
black hole from a non-Kerr black hole with a di�erent spin parameter, namely there
is a degeneracy between the spin and possible deviations from the Kerr solution. In
the case of Sgr A∗, in the near future it will be probably possible to have di�erent
measurements, which are sensitive to di�erent relativistic e�ects, of the same object.
If combined together, we can hope to be able to break the parameter degeneracy. The
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assumptions provided here, for drawing the shadow and to model the accretion disk,
do not provide a realistic scenario, but an easily accessible yet powerful analytical
analogy.

Self-Disclosure:

• I have used geometrized units and, in the comparative cases, I chose the non-
commutative parameter, to be almost-extremal. This gave me solutions with
horizons that had the maximum allowed spin. However in these cases, the value
is not physical, in the sense of the parameter's origin, i.e., a minimal length
[90]. Nevertheless, it was conceptually interesting and lots of physics and com-
putational techniques were developed in the process. The development of such
analytic models and techniques are interesting as we wait for the Event Horizon
Telescope data, where a large number of physical parameters will need to be
explored. This work was done towards this direction.

• This work does not use the non-Gaussian smeared mass distributions considered
in the article Phys. Lett. B Vol. 747: 564 (2015) by A. Larranaga, A. Cárdenas-
Avendaño and D. Torres, which were �rst introduced in Adv. High Energy
Physics, Vol 2013 (2013) by P. Nicolini, A. Orlandi and E. Spallucci. All the
calculations presented here were derived and properly cited by myself.
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Appendix A

Derivation and Properties of the Kerr

and �Kerrr� metrics

A.1 �Kerrr�

A.1.0.3 Noncommutative geometry

There is a long-held belief that alternative theories of gravity should have an un-
certainty principle which prevents one from measuring positions to accuracies better
than that given by the Planck length [76]: the momentum and energy required to
make such a measurement would themselves modify the geometry at these scales.
Therefore, one might wish to describe these e�ects, at least e�ectively, by a model
theory having a new sort of uncertainty principle among the coordinates. Thus, and
in analogy with coordinates and momenta in conventional quantum theory, the un-
certainty would come from a noncommutative relation, postulating the existence of a
noncommutative manifold [76]

[xµ, xν ] = iθµν , (A.1)

where θµν is an anti-symmetric matrix which determines the fundamental cell dis-
cretization of spacetime much in the same way as Planck constant ~ discretizes the
phase space [77]. This idea was �rst proposed by Snyder in Ref. [90] as a way to
improve the renormalizability properties of a theory at short distances or even to
make it �nite. However, this result was largely ignored due to the development of
e�cient renormalization techniques in �eld theories [76].

In Refs. [88, 87] was shown for the �rst time a model of quantum �eld theory
on noncommutative spacetime, satisfying Lorentz invariance and unitarity, with no
need for the Weyl�Wigner�Moyal-product [35] where the noncommutativity is carried
by a Gaussian cut-o� in the Fourier transform of the �elds, which can be achieved
assuming

θµν = l20diag(εij, εij, . . .),

where l0 is a constant with dimension of length. This is not an ad hoc regularization

70



device but is a result coming from the averaging operation on coherent states [46].
It seems natural to modify the 4D Einstein action to incorporate noncommutative

e�ects. However, as it was shown in Ref. [77], it is not necessary to change the
Einstein tensor part of the �eld equations and the noncommutative e�ects can be
implemented acting only on the matter source, since noncommutativity is considered
an intrinsic property of the manifold itself, rather than a super-imposed geometrical
structure and a�ects gravity in a subtle, indirect way. Hence, noncommutativity can
be taken into account by keeping the standard form of the Einstein tensor in the
l.h.s. of the �eld equations and introducing a modi�ed energy�momentum tensor as
a source in the r.h.s.

A.1.0.4 The static case

In a seminal work by Nicolini, Smailagic and Spallucci [77] was presented an inspired
noncommutative Schwarzschild-like black hole based on Refs. [87, 88], where was
explicitly shown that noncommutativity eliminates point-like structures in favor of
smeared objects in �at space-time. In Ref. [77] the e�ect of smearing was mathemat-
ically implemented as a �substitution rule�: position Dirac-delta function is replaced
everywhere with a Gaussian distribution of minimal width l0, a minimal length, which
is reminiscent of the underlying noncommutativity of spacetime coordinates leading
to the matter distribution [77], by choosing the mass density of a static, spherically
symmetric, smeared, particle-like gravitational source as [77]

ρlo (r) =
M

(4πθ)
3
2

e

(
− r2

4l2o

)
, (A.2)

which means that the total mass M is di�used throughout a region of linear size l0.
The mass enclosed in a volume of radius r is [89]

M →M (r, l0) = 4π

∫ r

0

dχχ2ρG (χ)

=
M

Γ
(

3
2

)γ(3

2
;

(
r

2l0

)2
)
, (A.3)

γ (b;χ) is the lower incomplete gamma function1. Fig. (A.1) shows
The energy-momentum tensor was de�ned by considering the covariant conserva-

tion condition T µν;ν = 0 which, for a spherically symmetric metric is

∂rT
r
r = −1

2
g00∂rg00

(
T rr − T 0

0

)
− gθθ∂rgθθ

(
T rr − T θθ

)
.

1The lower incomplete gamma function is de�ned as:

γ (b;x) ≡
∫ x

0

(
tb−1e−t

)
dt.
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Figure A.1: Mass distribution for di�erent values of the noncommutative parameter
l0. This �gure can be compared with �gure 1(a) of Ref. [100].

In order to preserve the Schwarzschild-like property g00 = −g−1
RR, the condition

T rr = −T 0
0 = ρl0 (r) was imposed. Therefore, the divergence free equation allows a

solution for T θθ which reads [77]

T θθ = −ρl0 (R)− r

2
∂Rρ (R) .

Note that, rather than a massive structureless point, the source (A.2) turns out
to be a self-gravitating droplet of anisotropic �uid of density ρl0 , radial pressure
pr = −ρl0 and tangential pressure

p⊥ = −ρl0 −
r

2
∂rρl0 .

The equations involving the energy-momentum tensor turn out to mean that there
is a non-vanishing radial pressure balancing the inward gravitational pull and thus,
preventing the collapse of the droplet into a matter point [76]. This is precisely the
physical e�ect on matter caused by the existence of a fundamental length in spacetime
and is the origin of all new physics at short distance scales.

Then the Einstein equations were solved2

Gµ
ν = Rµ

ν −
1

2
gµνR = 8πT µν ,

with (A.2) as the matter source and using the line element

ds2 = f (r) dt2 − dr2

f (r)
− r2

(
dθ2 + sin2 θdφ2

)
. (A.4)

This gives the function[77]

2Here R is the Ricci scalar!
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f (r) = 1− M

4πrΓ
(

3
2

)γ (3

2
,
r2

4l20

)
. (A.5)

The classical Schwarzschild metric is obtained from this solution in the limit r
l0
→

∞. In Ref. [77] was studied the horizon(s) structure, thermodynamics and regularity
of the solution (A.4) and in Ref. [5] can be found a comprehensive study of the
geometrical properties of the solution (A.4) and a discussion on the energy conditions.

A.1.0.5 The rotating case

The Newman-Janis algorithm [74] is a short cut to obtain spinning black hole solu-
tions from the corresponding non rotating ones and it has been shown that it works
for vacuum solutions or for solutions with a Maxwell source [36]. The black hole
solution (A.4) is not a vacuum solution, since Einstein equations have an anisotropic
�uid as source, and therefore the application of the Newman-Janis procedure is not
straightforward but in Ref. [70] Modesto and Nicolini provided a modi�cation to
include non vanishing stress-energy tensors and, using this modi�cation of the algo-
rithm and the �ve steps presented in Ref. [36], the rotating black holes based on the
smeared mass distribution (A.2) is found 3.

To start, the line element (A.4) must be changed to the outgoing Eddington-
Finkelstein coordinates {u,R, ϑ, φ}, where u = t − R∗and dR∗ = dR

f(R)
, to obtain the

metric

ds2 = f (R) du2 + 2dudR−R2
(
dθ2 + sin2 θdφ2

)
. (A.6)

This metric can be written in terms of null tetrad vectors as [75]

gµν = lµnν + lνnµ − kµk̄ν − kν k̄µ,

where the tetrad vectors are

lµ = δµ1 ,

nµ = δµ0 −
1

2
f (R) δµ1 ,

kµ =
1√
2R2

[
δµ2 +

i

sin θ
δµ3

]
,

satisfying the relations lµl
µ = kµk

µ = nµn
µ = lµk

µ = nµk
µ = 0 and lµn

µ =
−kµk̄µ = 1, with k̄ being the complex conjugate of k. The following step in the
Newman-Janis algorithm is to perform the complex increment

3In Ref. [49] was found that the application of the Newman-Janis algorithm to an arbitrary
non-GR spherically symmetric solution introduces pathologies in the resulting axially symmetric
metric, establishing that, in general, the Newman-Janis algorithm should not be used to construct
rotating black hole solutions outside of General Relativity. However, as has been seen here, General
Relativity has not been changed at all, just an anisotropic �uid as source was included.

73



{
R → R′ = R + ia cos θ

u → u′ = u− ia cos θ,
(A.7)

which is the key point of the algorithm. In the limiting case l0 → 0, the met-
ric (A.4) coincides with the Schwarzschild solution, i.e., the mass function becomes
m(R) = M , and the usual algorithm can be followed [70].

The mass term is una�ected by the complexi�cation (A.7) and it is assumed that
[36]

1

R
7→ 1

2

(
1

R′
+

1

R̄′

)
=

R

R2 + a2 cos2 θ
.

Therefore, the proposal for the complexi�cation of the function f (R) given in equation
(A.5) is to make m (R)→ m [Re (R′)] = m (R) which gives

f (R) = 1− 2m (R)

R

→ 1− 2m [Re (R′)]

[
1

2

(
1

R′
+

1

R̄′

)]
= 1− 2m (R)R

R2 + a2 cos2 θ
= F (R, θ) ,

or writing the obtained function in terms of the gamma functions,

F (R, θ) = 1− M

4πΓ
(

3
2

) R

R2 + a2 cos2 θ
γ

(
3

2
,
R2

4l20

)
.

Thus, the tetrad vectors are

lµ = δµ1 ,

nµ = δµ0 −
1

2
F (R, θ) δµ1

and

kµ =
1√

2 (R2 + a2 cos2 θ)

[
ia sin θ (δµ0 − δ

µ
1 ) + δµ2 +

i

sin θ
δµ3

]
,

from which the metric of the rotating regular black hole can be cast in Boyer-
Lindquist coordinates,
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ds2 = F (R, θ) dt2 − ΣdR2

a2 sin2 θ + F (R, θ) ρ2

+2 (1− F (R, θ)) a sin2 θdtdφ− ρ2dθ2

−
[
a2 (2− F (R, θ)) sin2 θ + ρ2

]
sin2 θdφ2,

where

ρ2 = R2 + a2 cos2 θ.

By introducing the quantity

∆ = ρ2F (R, θ) + a2 sin2 θ = R2 − 2Rm (R) + a2,

the latter metric can be written in the usual form

ds2 =
∆− a2 sin2 θ

ρ2
dt2 − ρ2dR2

∆
− ρ2dθ2

−
[
ρ2 + a2 sin2 θ

(
2− ∆− a2 sin2 θ

ρ2

)]
sin2 θdφ2

+2a sin2 θ

(
1− ∆− a2 sin2 θ

ρ2

)
dtdφ, (A.8)

which is exactly the rotating noncommutative inspired black hole shown by Smailagic
and Spallucci in Ref. [89] but there was derived in a more �physical� way, by exploiting
the common properties of Schwarzschild and Kerr solutions.

A.1.0.6 Properties

As has been seen above, this kind of solution can be achieved by �simply� substituting
the mass function into the mass term of Schwarzschild and Kerrr metrics, respectively.
Therefore the classical Schwarzschild and Kerr metrics are obtained from this solution
in the limit R

l0
→∞ [77].

Here, I this work I have used R instead of r mainly for two reasons, the �rst is
to distinguish it easily from the geometry presented in Chap. 2 and the second is to
clarify the coordinates used to described an axially symmetric spheroidal geometry
as was done in Ref. [89], i.e.,

x =
√
R2 + a2 sin θ cosφ

y =
√
R2 + a2 sin θ sinφ

z = R cos θ,

in which surfaces described by these coordinates are cofocal ellipsoids, for R =
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constant, and cofocal hyperboloids, for θ = const , with foci on the ring

(0, a cosφ, a sinφ, 0) .

These surfaces are described by π/2

x2 + y2

R2 + a2
+
z2

R2
= 1,

x2 + y2

a2 sin2 θ
− z2

a2 cos2 θ
= 1,

and by taking y = 0, for simplicity, the asymptote of the hyperbola is

z = x cot θ.

Thus, θ is the angle between the z-axis and the asymptote of the hyperbola and
R is the smaller semi-axis of the ellipse. Any function f(R) is not to be considered
a radial function in the usual sense [89]. It can be shown that the Ricci R(rot) and
Kretschmann K(rot) scalars, are regular in the point R = 0, θ = π

2
, but discontinuous

(they assume two di�erent values depending of the way one reaches that point, as in
Ref. [70]), and this is the reason why this solutions are considered �r�egulars.

A.2 Kerr

The classical Kerr metric can be recovered from (A.8) in the limit R/l0 →∞. How-
ever, there are more physical ways to obtain it and here I just want to make a few
remarks about its derivation.

Landau and Liftshitz said in 1962 that [62]:

�There is no constructive analytic derivation of the Kerr metric that is ad-
equate in its physical ideas, and even a check of this solution of Einstein's
equations involves cumbertone calculations�.

Sixteen years later, in 1978, Chandrasekhar said that [28]:

�...it is striking that there is no extant derivation of Kerr's solution that
is direct and simple�

and in Ref. [29] it was �rst derived and properly reduced the equations leading to the
Kerr metric. Nevertheless, the situation has not changed over the past years, even
today its derivation from some reasonable assumptions is still not easy [92]. The Kerr
metric can be derived in a systematic way as is done in Refs. [28] and [22].
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