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Abstract

In this thesis we describe the hidden structure in the key generation process for the
multivariate public key cryptosystem ZHFE. Based on such structure, we propose a new
method for the mentioned process. We compare the time and memory required between our
new method and the original key generation process.

We also analyze the security of ZHFE with respect to the MinRank Attack. We show
that with high probability there exist a linear combination of Frobenious power of the core
polynomials F and F̃ of low rank. Furthermore, we show that such linear combination can
be extracted from the public key.
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Resumen

En esta tesis describimos la estructura oculta en el proceso de generación de llave para el
criptosistema de llave pública multivariada ZHFE. Basados en tal estructura, proponemos un
nuevo método para tal proceso. Comparamos los tiempo y memoria requerida entre nuestro
nuevo método y el método original de generación.

También analizamos las seguridad de ZHFE respecto al Ataque del MinRank. De-
mostramos que con alta probabilidad existe de una combinanción lineal de las potencias
de Frobenious de los polinomios centrales F y F̃ de rango pequeño. Más aún, demostramos
que tal combinación puede ser extráıda de la llave pública.
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Introduction

In the last years, multivariate public key cryptosystems (MPKCs, [2]) have been study as
alternative to replace current public key cryptosystems, which would be insecure in a world
with large quantum computers. In 2014, Porras et al. proposed ZHFE, an MPKCs inspired
in the HFE cryptosystem [9]. The key difference is that in ZHFE there are two high degree
core polynomials F and F̃ , whose associated matrices also have high rank. Furthermore, a
low degree function Ψ is used as a trapdoor for decryption.

Although ZHFE is a very interesting approach, it still have some issues that we improve
in this thesis. On the one hand, the key generation procedure is very slow, because to
construct the function Ψ, it is necessary to find the null space of a big matrix over a finite
field. On the other hand, it is not known if the existence of two linear combinations of the
Frobenius power of F and F̃ such that its matrix associated has low rank is a threat for the
ZHFE’s security.

In this thesis we describe the structure of the big matrix necessary to build the low degree
function Ψ. Based on that structure, we propose a method to find a random element in its
whole null space. We also want to show that there exist two linear combinations of the
Frobenius power of the core polynomials such that their associated matrices have low rank
and at least one of them can be extracted from the public key.

ix
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Chapter 1

Preliminaries

Cryptography is a branch of mathematics which, among other things, provides solutions to
confidentiality and authenticity in data transmition. In order to avoid that no authorized
people get access to transmitted information. Cryptosystems are designed to allow to encrypt
messages before they are sent, then decrypt the encrypted messages and recover the original
messages. To encrypt and decrypt messages is necessary that authorized people share a
secret information (a private key) before they communicate with each other. But, in several
very important communication media, (like the Internet) sharing a private key in advance
is not practical. This was the principal reason for developing public key cryptosystems. In a
public key cryptosystem, only one user knows both keys, a public key used to encrypt and a
private key only known by the the owner and used to decrypt.

The public key cryptosystems more commonly used in communications today are RSA,
whose security is based on the difficulty of factoring integers in classic computers and Diffie-
Hellman whose security is based on the difficulty of solving the Discrete Logarithm Problem
(DLP) [14].

In 1994, Peter Shor introduced a quantum algorithm that factors integers modulo n and
solve the DLP in polynomial time on the size of the problem [13]. Although there exists
no large enough quantum computer to break RSA today, great efforts are being made to
construct one [2]. For that reason, alternative secure cryptosystems in a postquatum world
must be constructed (postquantum cryptosystems).

One of the most interesting postquantum cryptosystems are the so called Multivariate
Public Key Cryptosystems (MPKCs) [5]). In general terms, a MPKC is a public key
cryptosystem such that the public key is an order set of multivariate polynomials (p1, . . . , pm)
with coefficients in a finite field. The private key is some secret information about the
construction of the public key which allows to easily find pre-images of the function P =
(p1, . . . , pm). The security of MPKCs is based on the fact that the problem of directly
solving a random system of multivariates polynomials is an NP-hard problem [6]. Even
more, this problem is believed to be hard even in the presence of large quantum computers.
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2 CHAPTER 1. PRELIMINARIES

1.1 Hidden field equation cryptosystem

In 1996, Patarin proposed one of the most important MPKCs called Hidden Fields Equation
(HFE, [9]). To give a formal description of HFE let us introduce first some notation. Let F
be a finite field with q elements, denote by K a field extension of degree n generated by an
irreducible polynomial g(x) ∈ F[x]. We say that F ∈ K[X] is an HFE polynomial if F is a
polynomial with the shape

F (X) =
b∑

i=0

i∑
j=0

aijX
qi+qj +

n∑
i=0

biX
qi + c,

where aij, bi, c ∈ K. If ϕ denotes the natural isomorphism from K to Fn, i.e, ϕ(a0+a1y+. . .+
an−1y

n−1) = (a0, . . . , an−1), then ϕ ◦F ◦ϕ−1(x1, . . . xn) is an ordered set of n quadratic poly-
nomials over Fn [5]. For simplicity, throughout this thesis we write p instead of p(x1, . . . , xn)
to make reference to a polynomial in the variables x1, . . . , xn. We say that a polynomial
F (X) ∈ K[X] has q-Hamming-weight-W if the maximum of the q-Hamming weights of all
its exponents is W . The q-Hamming weight of a non-negative integer is the sum of the
q-digits of its q-ary expansion. Also we donote by F ∈Mn×n(K) the matrix associated with
the q-Hamming-weight-two part of F (for short, matrix associated with F ) if

F (X) = XFX t +
n−1∑
i=0

biX
qi + c,

where X = (X,Xq, . . . , Xqn−1
). The public key of an HFE cryptosystem is a set of degree

two multivariate polynomials P = (p1, . . . , pn) in (F[x1, . . . , xn])n given by

P = T ◦ ϕ ◦ F ◦ ϕ−1 ◦ S.

Here T and S are invertible affine transformations, F is a uniformly random chosen HFE
polynimial of degree less than an integer D and ϕ is the natural isomorphism from K to Fn [5].
The private key is formed by the polynomial F and the two invertible affine transformations
S, T .

As in most MPKCs, the ciphertext of a plaintext x ∈ Fn (message to be encrypted) is
the element y = P (x) ∈ Fn. To decrypt a chiphertext y it is necessary to do the following
steps

1. To compute z = (T ◦ ϕ)−1(y), then

2. to find K = {w| F (w) = z}, next

3. for each element w ∈ K compute (ϕ−1 ◦ S)−1(w).

Clearly, the process to decrypt a HFE ciphertext may have several outputs, so some
redundant information must be placed in the paintext allowing to choose the correct output.
One important issue, in the decryption process is the inversion of the HFE polynomial F . One
of the most efficient algorithm to invert a univariate polynomial is Berlekamp’s Algorithm,
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whose complexity O(nd3) [5] is polynomial in the polynomial degree (D in our case). For
this reason, the parameter D must be small enough. But Kipnis and Shamir found out in
this fact the principal problem for HFE security.

In 1999, Kipnis and Shamir proposed a key recovery attack [7], i.e., they designed a
method to find a private key from the public key. Several years later, Bettale, Faugère
and Perret improved this attack [3] making the key recovery attack faster than Kipnis and
Shamir. In their paper, they show that the principal weaknesses of HFE are the following
facts:

• the low rank of the matrix associated with the nolinear part of the polynomial F , which
allows recover the transformation T solving an instance of the MinRank problem (see
Definition 1.1.1),

• the low degree and randomness of the core polynomial F . This fact allows recover the
transformation S by solving a linear equation system.

Definition 1.1.1. (MinRank Problem from HFE) Given n × n matrices A1, . . . , An over a
finite field F and r < n, find a non-trivial linear combination

A = α1A1 + · · ·+ αnAn

such that the rank of A is less than or equal to r.

Bettale, Faugère and Perret showed in [3] that the complexity of MiniRank from a HFE
cryptosystem is O(n(r+1)w), where r is less than 11 and n is the number of polynomials in
the public key (2 ≤ w < 3 is a linear algebra constant).

1.2 ZHFE cryptosystem

In 2014, Porras, Baena and Ding, made a attempt to correct the weakness of HFE and
proposed a cryptosystem called ZHFE [11]. It has two high degree core polynomial F , F̃
and a private low degree function Ψ used for invertion of the polynomials F and F̃ . They
show that that the matrices associated with the core polynomial have high rank.

Let F, K and ϕ be as in the last section, T and S invertible affine transformation from F2n

to F2n and from Fn to Fn, respectively. Furthermore, suppose F and F̃ are HFE polynomials
such that for some α1, . . . , α2n, β1, . . . , β2n in K, the q-Hamming-weight-three Ψ = Ψ0 + Ψ1

has degree lower than a “small” integer D, where

Ψ0 = X
(
α1F0 + · · ·+ αnFn−1 + β1F̃0 + · · ·+ βnF̃n−1

)
and

Ψ1 = Xq
(
αn+1F0 + · · ·+ α2nFn−1 + βn+1F̃0 + · · ·+ β2nF̃n−1

)
.

Similarly to HFE decrytion, in ZHFE for decryption it is necessary to invert the core
function G := (F , F̃ ). However, the high degree of the core polynomials makes it inefficient
to find directly preimagens from F and F̃ . At this point, the function Ψ plays an important
role. The following proposition was proven in [12] and shows how Ψ is used to invert the
core polynomials
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Proposition 1.2.1. Let (Y1, Y2) be an element in Im(G) ⊆ K×K. Then the set of pre-images
of (Y1, Y2) under the map G = (F, F̃ ) is a subset of the roots of the low degree polynomial

Ψ′ = Ψ−
2∑

j=1

Xqj−1
n∑

i=1

αi+n(j−1)Y
qi−1

1 + βi+n(j−1)Y
qi−1

2 .

The ZHFE’s public key is formed by the structure of the field F and an ordered set of 2n
degree two polynomials in n variables P = (p1, . . . , p2n) constructed as

P = (p1, . . . , p2n) = T ◦ (ϕ× ϕ) ◦ (F, F̃ ) ◦ ϕ−1 ◦ S.

The core polynomials F and F̃ have high degree and their associated matrices, high rank.
This is in order to avoid the so called Kipnis and Shamir attack.

The ZHFE’s private key is formed by the invertible affine transformations S and T , the
function Ψ and the scalars α′is and β′is.

As in HFE, to encryp a message x ∈ Fn using the ZHFE cryptosystem, simply we
compute y = P (x) ∈ F2n. To decrypt a chipertext y we do the following steps

1. compute w = T−1(y), next

2. calculate (Y1, Y2) = ϕ−1
2 (w), where ϕ2 := (ϕ× ϕ)

3. Now we need to find the set of pre-images of Y1, Y2 under (F, F̃ ), i.e., the elements
X ∈ K such that (F (X), F̃ (X)) = (Y1, Y2). From Proposition 1.2.1 that set is a subset
of the set Z of roots of Ψ′, i.e.,

Z = {X ∈ K| Ψ′(X) = 0} .

So, finding Z and for each element X ∈ Z computing (F (X), F̃ (X)), we can find the
set of pre-images of Y1, Y2 under (F, F̃ ).

4. Finally, apply (ϕ−1 ◦ S)−1 for each pre-image found in the previous step. To know
which of the outputs is the original plaintext, some redundant information must be
added to he plaintext.

1.3 ZHFE’s key generation

In a public key cryptosystem, the key generation algorithm is the set of steps whereby
the private and public key are constructed. In ZHFE case it is necessary to find two HFE
polynomials F and F̃ , and scalars α1, . . . , α2n, β1, . . . , β2n such that the polynomial Ψ defined
as in the previous section has degree less than a small integer D. Next, choose uniformly at
random the invertible transformations S and T . Then, construct the public key P and the
low degree polynomial Ψ.

The hard part of the key generation process is to find the polynomials F , F̃ and the
scalars α′is, β

′
is, such that the polynomial

Ψ = X

(
n∑

i=1

αiFi−1 +
n∑

i=1

βiF̃i−1

)
+Xq

(
n∑

i=1

αn+iFi−1 +
n∑

i=1

βn+iF̃i−1

)
,



1.3. ZHFE’S KEY GENERATION 5

has degree less than D. To accomplish this, Porras et al. proposed in [12] to determine the
coefficients of F and F̃ , also the scalars α′is, β

′
is so that the coefficients of terms in Ψ of

degree greater than D are zero. This results in a vanishing equation system S where the
coefficients of F and F̃ , together with the scalars α′is and β′is are variables in the big field
K. Each equation represents the coefficient of one term in Ψ with degree greater than D.
Since each polynomial has n(n+1)

2
+ n + 1 coefficients, if q (the size of the small field F) is

different from two, and it is equal to n(n−1)
2

+ n+ 1 if q = 2, then the number of variables in
this system is

N =

 2
(

n(n+1)
2

+ n+ 1
)

+ 4n if q 6= 2

2
(

n(n−1)
2

+ n+ 1
)

+ 4n if q = 2.

The number of equation depends on the parameter D and it is the number t of terms in Ψ
having degree greater than D. Therefore, we get an equation system with N variables and t
equations. Solving this system of equation we can get the coefficients of F and F̃ , plus the
scalars α′is and β′is necessary to build a low degree polynomial Ψ. The problem with this
system is that it is not a linear system because several variables are raised to one q-power.

To make S a linear equation system, Porras et al. proposed in [12] choosing uniformly
at random the scalars αi’s and β′is, and writing each variable Z (coefficient of F or F̃ ) in
terms of the basis {1, y, . . . , yn−1}, i.e.,

Z = u0 + u1y + · · ·+ un−1y
n−1,

where u0, . . . , un−1 are new variables over the small field F. Notice that, by linearity of
Frobenius powers,

Zqi = u0 + u1y
qi + · · ·+ un−1y

qi(n−1).

Writing each power of y as a linear combination of the basis {1, y, . . . , yn−1} we get

Zqi = h0(u0, . . . , un−1) + h1(u0, . . . , un−1)y + . . .+ hn−1(u0, . . . , un−1)yn−1,

where hi(u0, . . . , un−1) is a linear combination of the variables u′is. In this sense, each equation
in S can be seen as n equations (one by each power of y) and Nn variables (n by each
coefficient from F or F̃ ). Therefore, the non linear system S with variables in the big field
K can be seen as a linear system with tn equations and Nn variables in the small field F,
called T . Since F and F̃ have the same terms, then for any D, the number of equations t
is less than or equal to two times the number of coefficients in F , i.e., t ≤ N . The equality
is only obtained when D = 0, which implies that Ψ is a constant. This makes no sense in
ZHFE, so we can assume that D is always greater than 1. For any D, we have t < N and
the linear system has more variables (Nn) than equations (tn), so that, in general the linear
system T has nontrivial solutions.

Porras et al. suggested in [12] to find a basis for the null space associated with the linear
system T and then choose a uniformly random element to build the polynomials F and F̃ .
The problem with this approach is that for realistic parameters the size of the matrix is very
big, thus finding a null space basis is very slow and then the key generation process is not
practical. The information in Table 1.1 is subtracted from [12] and shows the computational



6 CHAPTER 1. PRELIMINARIES

n CPU time [s] Memory[MB] Number of rows Number of columns

20 109.38 416 8500 9200
23 272.96 778 12880 13754
26 560.41 1361 18538 19604
29 1148.27 2333 25636 26912
32 2019.73 3609 34336 35840
35 3661.46 5813 44800 46550

Table 1.1: Private key generation for q = 7 and D = 105

time, memory resources, size of the matrix necessary to create one ZHFE private key for
different parameters.

In this thesis we describe the structure behind the big system T used in private key
generation and we propose an efficient method to find an element in that null space.



Chapter 2

A faster key generation method

In this chapter we describe a new method to build the function Ψ necessary to create the
private key in ZHFE. First, we enumerate adequately the coefficients of the polynomial F
and F̃ in order to show the hidden structure of the matrix associated with the vanishing
equation system. Next, we propose a method to solve efficiently the structured vanishing
equation system. This chapter was adapted from the paper entitled Efficient ZHFE Key Gen-
eration, which was accept for publication in Post-Quantum Cryptography 7-th International
Conference [1].

2.1 Structure of the Matrix

The vanishing equation system arises from equating to zero the coefficients of terms in
Ψ = Ψ0 + Ψ1 of degree greater than or equal to D. We carefully explain the combinatorial
structure of the Frobenius powers of F and F̃ . We explain how they match and mismatch
when raised to q-Hamming-weight-three through multiplication by q-Hamming-weight-one
monomials.

We will consider the case when n is even. The case when n is odd is similar and even
easier. Our analysis focuses on the q-Hamming-weight-three terms of Ψ, because q-Hamming-
weight-two terms lead to an independent and much simpler system. For k ∈ {0, . . . , n

2
} let

Ak be the subset of Zn × Zn

Ak :=

{
{(i, (k + i) mod n)| 0 ≤ i < n} if 0 ≤ k < n

2
,{

(i, k + i)| 0 ≤ i < n
2

}
if k = n

2
.

Let A be the union of the A′is. Each element (i, j) from A represents the q-Hamming-
weight-two term Xqi+qj of an HFE polynomial. Note that each possible q-Hamming-weight-
two term Xqi+qj appears on a single Ai. Moreover, if (i, j) ∈ A then (j, i) /∈ A.

Consider two HFE polynomials F and F̃ . We denote by Zh the coefficient of Xqi+qj in F
or F̃ , where h ∈ Z+ depends on (i, j) and on which polynomial the term ZhX

qi+qj belongs

to. We aim to sort these terms according to the partition {Ak}
n
2
k=0 of A. For (i, j) ∈ Ak,

the coefficient of Xqi+qj in F will be indexed by 2nk + i so that they range from 2nk to
2nk + n − 1, and we will index the coefficient of Xqi+qj in F̃ by 2nk + n + i so that they
range from 2nk + n to 2nk + 2n− 1.

7



8 CHAPTER 2. A FASTER KEY GENERATION METHOD

Similarly, we index the coefficients of the q-Hamming-weight-one monomials by setting
Zn(n+1)+i and Zn(n+1)+n+i to be the coefficients of Xqi in F and F̃ , respectively. With the

terms indexed in this fashion, F and F̃ are as follows

F (X) =

n
2∑

k=0

 ∑
(i,j)∈Ak

Z2nk+iX
qi+qj

+
n−1∑
i=1

Zn(n+1)+iX
qi + C,

F̃ (X) =

n
2∑

k=0

 ∑
(i,j)∈Ak

Z2nk+n+iX
qi+qj

+
n−1∑
i=1

Zn(n+1)+n+iX
qi + C̃.

For 0 ≤ k ≤ n
2
, we define the k−th part of F as kF (X) :=

∑
(i,j)∈Ak

Z2nk+iX
qi+qj . For

(i, j) ∈ Ak, the Frobenius powers of Xqi+qj mod
(
Xqn −X

)
fall within a set indexed by

Ak, moreover, the k−th part of F q` is equal to the k−th part of F , raised to the power q`.
In order to prove this, we introduce the following definition.

Definition 2.1.1. For (i, j) ∈ Ak, and ` ∈ Zn we define

i	 ` :=

{
i− ` mod n if k 6= n

2

i− ` mod n
2

if k = n
2
.

Proposition 2.1.2. For 0 ≤ ` ≤ n− 1, k

[
F (X)q

`
]

= [kF (X)]q
`

.

Proof. In this proof we start taking ` = 1 and after we iterate ` times the same process.

[kF (X)]q =

 ∑
(i,j)∈Ak

Z2nk+iX
qi+qj

q

mod (Xqn −X)

=

 ∑
(i,j)∈Ak

Zq
2nk+iX

qi+1+qj+1

 mod (Xqn −X)

=
∑

(i,j)∈Ak

Zq
2nk+(i	1)X

qi+qj .

So, by iterating this ` times, we obtain

k

[
F (X)q

`
]

=
∑

(i,j)∈Ak

Zq`

2nk+(i	`)X
qi+qj = [kF (X)]q

`

.

Using the notation for the `−th Frobenius power of F as F`, we have k[F`] = [kF ]`. Since
the Ak

′s are mutually disjoint, if 2 < q and (i, j) ∈ Ak, the only term in F` that has the

monomial Xqi+qj is Zq`

2nk+(i	`)X
qi+qj . We thus get the following result.
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Corolary 2.1.3. If (i, j) ∈ Ak and s ∈ {0, 1}, then the coefficient of Xqs+qi+qj in Ψs is

n−1∑
`=0

αns+`+1Z
q`

2nk+(i	`) +
n−1∑
`=0

βns+`+1Z
q`

2nk+n+(i	`).

This corollary determines the coefficients of the q-Hamming-weight-three monomials in
Ψ0 and Ψ1. Since Ψ = Ψ0 + Ψ1, in order to determine the coefficients of the q-Hamming-
weight-three monomials of Ψ, we only need to find the q-Hamming-weight-three monomials
that Ψ0 and Ψ1 share. The following lemma gives the conditions under which this holds

Lemma 2.1.4. Assume 2 < q, (i, j) ∈ Ak and (s, t) ∈ A.

1. For 0 ≤ k < n
2
, q0 + qi + qj = q1 + qs + qt if and only if

(a) i = 1, s = 0 and j = t, or

(b) j = 1, t = 0 and i = s.

2. For k = n
2
, q0 + qi + qj = q1 + qs + qt if and only if i = 1, s = j = n

2
+ 1 and t = 0.

Proof. Throughout this proof we will use the uniqueness of the q-ary expansion of integers.
Suppose q0 + qi + qj = q1 + qs + qt. If i = j, then q0 + 2qi = q1 + qs + qt, but this is absurd
since q > 2 and q1 does not appear in the q-ary expansion of q0 + 2qi. Now, if i 6= j, the
uniqueness of the q-ary expansion of q0 + qi + qj shows us that one of the following cases
must hold:

1. i = 1, s = 0 and j = t

2. j = 1, t = 0 and i = s

3. i = 1, t = 0 and j = s

4. j = 1, s = 0 and i = t.

Suppose 0 ≤ k < n
2
. We now show that cases 3 and 4 are not possible. Suppose

i = 1, t = 0 and j = s, then (s, 0) ∈ A and therefore s > n
2
, but j = s, then (1, j) ∈ Ak with

0 ≤ k < n
2

and j > n
2
, but this is a contradiction since in this case n

2
> k = j − 1 > n

2
− 1,

so case 3 is not possible. Now, if case 4 holds, i.e., if j = 1, s = 0 and i = t, proceeding
as before we see that (0, t) ∈ A and so t ≤ n

2
, but then (i, 1) ∈ Ak with 0 ≤ k ≤ n

2
and

i = t ≤ n
2
, which is absurd since (1, i) ∈ Ak (note this also shows that case 4 is not possible

when k = n
2
). It is straightforward to see that cases 1 and 2 are actually achievable.

Now suppose k = n
2
. We claim that only case 3 is possible. Indeed, case 4 is not possible as

we pointed out in the previous paragraph. Suppose case 1 holds, then i = 1, s = 0 and j = t
and therefore (1, j) ∈ An

2
, then j = n

2
+ 1 = t so

(
0, n

2
+ 1
)
∈ A, which is absurd since(

n
2

+ 1, 0
)
∈ An

2
−1 ⊆ A. If case 2 holds, i.e., j = 1, t = 0 and i = s, we would then have

(i, 1) ∈ An
2
, but this is absurd since there is no element of this form in An

2
. Finally, the only

possibility left is case 3, which is only achievable by taking i = 1, s = j = n
2

+ 1 and t = 0.
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We can now precisely describe the coefficients of the q-Hamming-weight-three monomials
in Ψ.

Proposition 2.1.5. If 2 < q and (i, j) ∈ Ak, then the coefficient of Xq0+qi+qj in Ψ is one
of the following:

i)
1∑

p=0

[
n−1∑
`=0

(
αpn+`+1Z

q`

2n(k+p)+((i−p)	`) + βpn+`+1Z
q`

2n(k+p)+n+((i−p)	`)

)]

ii)
1∑

p=0

[
n−1∑
`=0

(
αpn+`+1Z

q`

2n(k−p)+((n
2
p+1)	`) + βpn+`+1Z

q`

2n(k−p)+n+((n
2
p+1)	`)

)]

iii)
1∑

p=0

[
n−1∑
`=0

(
αpn+`+1Z

q`

2n(k−p)+(i	`) + βpn+`+1Z
q`

2n(k−p)+n+(i	`)

)]

iv)
n−1∑
`=0

α`+1Z
q`

2nk+(i	`) +
n−1∑
`=0

β`+1Z
q`

2nk+n+(i	`)

Moreover, i) holds if i = 1 and k 6= n
2
, ii) holds if i = 1 and k = n

2
, iii) holds if j = 1 and

iv) holds otherwise.

Proof. Let (i, j) ∈ Ak. Suppose at first that i = 1 and k 6= n
2
. Note that in this case

(0, j) ∈ Ak+1. By Corollary 2.1.3, the coefficient of Xq0+q1+qj in Ψ0 is

n−1∑
`=0

α`+1Z
q`

2nk+(1	`) +
n−1∑
`=0

β`+1Z
q`

2nk+n+(1	`).

By Lemma 2.1.4, the only monomial in Ψ1 equal to Xq0+q1+qj is Xq1+q0+qj , whose coeffi-
cient by Corollary 2.1.3 is

n−1∑
`=0

αn+`+1Z
q`

2n(k+1)+(0	`) +
n−1∑
`=0

βn+`+1Z
q`

2n(k+1)+n+(0	`).

Since Ψ = Ψ0 + Ψ1, the coefficient of Xq0+q1+qj in Ψ is

n−1∑
`=0

α`+1Z
q`

2nk+(1	`) +
n−1∑
`=0

β`+1Z
q`

2nk+n+(1	`)

+
n−1∑
`=0

αn+`+1Z
q`

2n(k+1)+(0	`) +
n−1∑
`=0

βn+`+1Z
q`

2n(k+1)+n+(0	`),
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i.e.,
1∑

p=0

[
n−1∑
`=0

(
αpn+`+1Z

q`

2n(k+p)+((1−p)	`) + βpn+`+1Z
q`

2n(k+p)+n+((1−p)	`)

)]
.

Now suppose i = 1 and k = n
2
, i.e. i = 1 and (i, j) ∈ Ak. Clearly j = n

2
+1. By Corollary

2.1.3, the coefficient of Xq0+q1+q
n
2 +1

in Ψ0 is

n−1∑
`=0

α`+1Z
q`

2nk+(1	`) +
n−1∑
`=0

β`+1Z
q`

2nk+n+(1	`).

By lemma 2.1.4, the only monomial in Ψ1 equal to Xq0+q1+q
n
2 +1

is Xq1+q
n
2 +1+q0 , and by

Corollary 2.1.3, its coefficient is

n−1∑
`=0

αn+`+1Z
q`

2n(k−1)+((n
2

+1)	`) +
n−1∑
`=0

βn+`+1Z
q`

2n(k−1)+n+((n
2

+1)	`).

Then, the coefficient of Xq1+q
n
2 +1+q0 in Ψ is

n−1∑
`=0

α`+1Z
q`

2nk+(1	`) +
n−1∑
`=0

β`+1Z
q`

2nk+n+(1	`)

+
n−1∑
`=0

αn+`+1Z
q`

2n(k−1)+((n
2

+1)	`) +
n−1∑
`=0

βn+`+1Z
q`

2n(k−1)+n+((n
2

+1)	`),

i.e.,

1∑
p=0

[
n−1∑
`=0

(
αpn+`+1Z

q`

2n(k−p)+((n
2
p+1)	`) + βpn+`+1Z

q`

2n(k−p)+n+((n
2
p+1)	`)

)]
.

The other cases are obtained in a similar fashion.

Recall that the polynomial Ψ is constructed so that its degree is smaller than an adequate
parameter D. Therefore, we get a system S of vanishing equations, where the variables are
the coefficients of the polynomials F and F̃ , and each equation corresponds to the coefficient
of every term in Ψ of degree higher than D equated to zero. From now on, we refer to the

variables of the form Zq`

2nk+pn+(i	`), with p ∈ {0, 1}, as the variables associated with the group

Ak; and to the coefficient of Xqs+qi+qj in Ψ equated to zero as the (s, i, j) equation. The
matrix associated with this system has a very distinct structure as stated in the following
theorem.

Teorema 2.1.6. Let n, q, and D be positive integers such that 2 < q, 1 < r = dlogqDe < n
2
,

and q+2qr−1 < D ≤ qr. Then, we can reorganize adequately the rows of the matrix associated
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Figure 2.1: Hidden structure of the matrix associated with the system S.

with S so that it has the form shown in Fig. 2.1, and for 0 ≤ k ≤ n
2
, the size of the submatrix

Mk is a× b, with

a =


2(n− r + k) if k < r

2n if r ≤ i < n
2

n if k = n
2

and b =

{
2n2 if k 6= n

2

n2 if k = n
2

.

Proof. Note first that the condition q + 2qr−1 < D ≤ qr guarantees that for each (i, j) ∈ A,
D ≤ q + qi + qj if and only if D ≤ q0 + qi + qj, and they are both true only if i ≥ r or
j ≥ r. So given 0 ≤ k ≤ n

2
, the number of (s, i, j) equations such that D ≤ qs + qi + qj,

where s ∈ {0, 1} and (i, j) ∈ Ak, is equal to twice the number of elements (i, j) ∈ Ak such
that i ≥ r or j ≥ r, i.e 

2(n− r + k) if k < r
2n if r ≤ k < n

2

2n
2

if k = n
2
.

For 0 < k ≤ n
2
, we have (0, k) ∈ Ak and (1, k) ∈ Ak−1, so by Proposition 2.1.5 the

(0, 1, k) equation only contains variables associated with the groups Ak−1 and Ak. On the
other hand, for 0 ≤ k < n

2
− 1 and (i, 0) ∈ Ak, (i, 1) ∈ Ak+1 and by the Proposition 2.1.5

the (0, i, 1) equation only contains variables associated with Ak and Ak+1. Furthermore,
note that (n

2
+ 1, 0) ∈ An

2
−1 and (1, n

2
+ 1) ∈ An

2
, so the (0, 1, n

2
+ 1) equation contains only

variables associated with An
1
−1 and An

2
−1.

According to Lemma 2.1.4 and Corollary 2.1.3, if (i, j) ∈ Ak and i, j /∈ {0, 1}, then the
(0, i, j), (1, i, j) equations only contain variables associated with Ak. Then, for each k the
elements of the form (0, j), (1, j+1), (i, 0) and (i+1, 0) are the only ones that have elements
associated with a group different to Ak. So, given 0 < k < n

2
, the number of equations in

S that contain variables associated with Ak and Ak+1 is equal to the number of elements
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(i, j) ∈ Ak such that i = 1 and j ≥ r; or j = 0 and i ≥ r. Similarly, the number of
equations in S that contain variables associated with Ak and Ak−1 is equal to the number
of elements (i, j) ∈ Ak such that i = 0 and j ≥ r; or j = 1 and i ≥ r. Finally, the number
of equations in S that only contain variables associated with Ak is equal to the number of
elements (i, j) ∈ Ak, such that i, j /∈ {0, 1}.

Clearly, for each (i, i) ∈ A0 with i ≥ r, the (0, i, i) and (1, i, i) equations appear in the
system S and only have variables associated with A0. So, for any equation of the system S
there are two possibilities, either it does not contain variables associated with A0 or it only
contains variables associated with A0.

Suppose 1 < k ≤ r− 2. Even though by Proposition 2.1.5 the (1, 0, k) equation contains
variables associated with Ak−1 and Ak, that equation does not appear in the system because
k ≤ r. Analogously, we conclude that the (0, 1, k+1) equation does not appear in the system.
On the other hand, (n− k, 0), (n− k + 1, 1) ∈ Ak, and since 1 < k ≤ r − 2 and r < n

2
, then

r < n−k < n−1 and so the (1, n−k, 0) equation appears in the system; and by Proposition
2.1.5 it has variables associated with Ak and Ak+1. Also, since r < n − k + 1 ≤ n − 1, the
(0, n− k+ 1, 1) equation appears in the system and contains variables associated with Ak−1

and Ak. Consequently, for 1 < k ≤ r − 2 the system S only has one equation that contains
variables associated with Ak and Ak−1, and S only has one equation that contains variables
associated with Ak and Ak+1. For every other equation in S, either it only contains variables
associated with Ak or it does not contain variables associated with Ak at all.

Now, if k = r − 1, then (0, r − 1), (1, r) ∈ Ar−1. The (1, 0, r − 1) equation has variables
associated with Ar−1 and Ar−2, but it does not appear in the system. Clearly, the (0, 1, r)
equation is the only one in S that contains variables associated with Ar−1 and Ar. If in
particular 2 < r < n

2
, then r < n

2
+ 1 < n− (r−1) < n−1. Thus, r < n− (r−1) + 1 ≤ n−1

and finally we have that

(n− (r − 1), 0) = (0 + (n− (r − 1)), (r − 1) + (n− (r − 1)) mod n) , and

(n− (r − 1) + 1, 1) = (0 + (n− (r − 1)) + 1, (r − 1) + (n− (r − 1) + 1) mod n) .

Therefore, (n−(r−1), 0), (n−(r−1)+1, 1) ∈ Ar−1 and, by Proposition 2.1.5, the (1, n−(r−
1), 0) equation appears in the system and contains variables associated with Ar and Ar−1.
Likewise, the (0, n−(r−1)+1, 1) equation appears in the system and has variables associated
with Ar−1 and Ar−2. Notice that, if r = 2, then Ar−1 = A1, and (0, 1) is the unique element
of the form (i, 1) in A1. Consequently, and since 0, 1 < r, no equation contains variables
associated with Ar−1 and Ar−2 in the system; in contrast, if r > 2, there is only one equation
in S that contains variables associated with Ar−1 and Ar−2, namely, the (0, n− (r−1)+1, 1)
equation.

If r ≤ k < n
2
, then n

2
≤ n − k < n − k + 1 ≤ n − 1. By similar reasons as above, the

(1, 0, k) and (0, n− k + 1, 1) equations are the only ones in S that have variables associated
with Ak and Ak−1. Furthermore, the (0, 1, k + 1) and (1, n − k, 0) equations are the only
ones in S that have variables associated with Ak and Ak−1. All equations of the form (s, i, j)
with (i, j) ∈ Ak are in S, and they only contain variables associated with Ak.

For k = n
2
, the (1, 0, n

2
) and (0, 1, n

2
+1) equations are the only ones that contain variables

associated with An
2
−1 and An

2
. Moreover, the (s, i, j) equations with s ∈ {0, 1} and (i, j) ∈

An
2

are the only ones in S that contain variables associated with An
2
.
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r without the restriction with the restriction
2 7 < D ≤ 49 21 < D ≤ 49
3 49 < D ≤ 343 105 < D ≤ 343
4 343 < D ≤ 2401 693 < D ≤ 2401

Table 2.1: Possible values of D for q = 7 and n = 56.

Therefore, we can reorganize the rows of the matrix associated with the vanishing equa-
tion system S so that it has the desired structure.

Remark 2.1.7. The conditions 1 < r < n
2

and q + 2qr−1 < D ≤ qr in Theorem 2.1.6 are
merely technical. If we omit these conditions, the matrix is still quite structured but it is a bit
harder to describe. Moreover, these conditions do not restrict much the values D can take.
For example, if we choose the parameters suggested in [11] for a practical implementation of
ZHFE, q = 7 and n = 56, then r could be in the interval [1, 28] and the possible values for
D are as shown in Table 2.1.

2.2 The Matrix over the Small Field

Recall that we aim at determining the coefficients Zk such that the polynomial Ψ has degree
less than D. Initially, each coefficient Zk is seen as a variable. In that way, every term of the

form αns+`+1Z
q`

k in Ψ can be seen as an F-linear transformation from K to K. Since the big
field K is a vector space over the small field F, any F-linear transformation K → K can be
seen as an F-linear transformation Fn → Fn. Let Ans+` be the matrix over F that represents
the F-linear transformation Z 7→ αns+`+1Z

q` with respect to the canonical basis.
Let (i, j) be an element in Ak for some k 6= n

2
. We know that the coefficient of Xqs+qi+qj

in Ψs is
n−1∑
`=0

αns+`+1Z
q`

2nk+(i	`) +
n−1∑
`=0

βns+`+1Z
q`

2nk+n+(i	`). (2.1)

We can see the expression in (2.1) as an F-linear transformation T k
s,i : K2n → K, such

that its (ns + i)-th variable is Z2nk+ns+i, where s ∈ {0, 1} and i = 0, . . . n− 1. In that way,
the matrix that represents T k

s,i is [A|B] with

A =
[
Ans+i Ans+i−1 · · · Ans Ans+n−1 · · · Ans+(i+1)

]
,

B =
[
Bns+i Bns+i−1 · · · Bns Bns+n−1 · · · Bns+(i+1)

]
,

whereAns+` andBns+` are the matrices that represent the F-linear transformations αns+`+1Z
q`

and βns+`+1Z
q` , respectively. Furthermore, the matrix that represents the F-linear transfor-

mation Tk from K2n to K2n, defined by

Tk = (T k
0,0, · · · , T k

0,n−1, T
k
1,0, · · ·T k

1,n−1),
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A0 An−1 An−2 · · · A1 B0 Bn−1 Bn−2 · · · B1

A1 A0 An−1 · · · A2 B1 B0 Bn−1 · · · B2

A2 A1 A0 · · · A3 B2 B1 B0 · · · B3

...
...

...
. . .

...
...

...
...

. . .
...

An−2 An−3 An−4 · · · An−1 Bn−2 Bn−3 Bn−4 · · · Bn−1

An−1 An−2 An−3 · · · A0 Bn−1 Bn−2 Bn−3 · · · B0

An A2n−1 A2n−2 · · · An+1 Bn B2n−1 B2n−2 · · · Bn+1

An+1 An A2n−1 · · · An+2 Bn+1 Bn B2n−1 · · · Bn+2

An+2 An+1 An · · · An+3 Bn+2 Bn+1 Bn · · · Bn+3

...
...

...
. . .

...
...

...
...

. . .
...

A2n−2 A2n−3 A2n−4 · · · A2n−1 B2n−2 B2n−3 B2n−4 · · · B2n−1

A2n−1 A2n−2 A2n−3 · · · An B2n−1 B2n−2 B2n−3 · · · Bn

Figure 2.2: Matrix representation of Tk : K2n → K2n.

is as shown in Fig. 2.2.

Similarly, for (i, j) ∈ An
2
, we can define the F-linear transformation T

n
2
s,i from Kn to K,

so that the matrix that represents T
n
2
s,i is [A|B] with

A =
[

Ans+i + Ans+n
2
+i · · · Ans + Ans+n

2
Ans+n−1 + Ans+n

2
−1 · · · Ans+(i+1) + Ans+n

2
+(i+1)

]
,

B =
[

Bns+i + Bns+n
2
+i · · · Bns + Bns+n

2
Bns+n−1 + Bns+n

2
−1 · · · Bns+(i+1) + Bns+n

2
+(i+1)

]
.

The matrix that represents the F-linear transformation Tn
2

= (T
n
2

0,1, . . . , T
n
2

0,n
2
−1, T

n
2

1,0, . . . , T
n
2

1,n
2
−1)

is presented Fig. 2.3.
Recall that the homogeneous system S contains all (s, i, j) equations such that qs + qi +

qj ≥ D, where s ∈ {0, 1} and (i, j) ∈ A. Theorem 2.1.6 explains the hidden structure of
the matrix associated with S. We now consider S with the order given in Theorem 2.1.6,
so that the i−th equation in S can be seen as Li(Z0, . . . , ZN) = 0, where Li is an F-linear
transformation from KN to K and N is two times the number of variables of the polynomial
F . In that way, S can be seen as L(Z1, . . . , ZN) = 0, where L = (L1, . . . , Lt) and t is the
number of equations in the system S.

Teorema 2.2.1. Let n, q, and D be positive integers such that q > 2, 1 < r = dlogqDe < n
2

and q + 2qr−1 < D ≤ qr−1. Then, the matrix M̃ that represents the F-linear transformation
L is formed by n

2
+ 1 submatrices M̃0, . . . , M̃n

2
arranged in the same way as in the matrix in

Fig. 2.1. For 0 ≤ i ≤ n
2
, the size of the submatrix M̃i is a× b, where

a =


2n(n− r − i) if i < r

2n2 if r ≤ i < n
2

n2 if i = n
2

, b =

{
2n2 if i 6= r

n2 if i = n
2
.

Remark 2.2.2. The blocks M̃i and M̃i+1 overlap in a block of pn rows if and only if the
blocks Mi and Mi+1 overlap in p rows.
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A0

+An
2

An
2

−1

+An
2

−1
· · ·

A1

+An
2

+1

B0

+Bn
2

Bn
2

−1

+Bn
2

−1
· · ·

B1

+Bn
2

+1

A1

+An
2

+1

A0

+An
2

· · ·

A2

+An
2

+2

B1

+Bn
2

+1

B0

+Bn
2

· · ·

B2

+Bn
2

+2

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

An
2

−1

+An
2

+n
2

−1

An
2

−2

+An
2

+n
2

−2
· · ·

A0

+An
2

Bn
2

−1

+Bn
2

+n
2

−1

Bn
2

−2

+Bn
2

+n
2

−2
· · ·

B0

+Bn
2

An

+An+n
2

An+n
2

−1

+An+n
2

−1
· · ·

An+1

+An+n
2

+1

Bn

+Bn+n
2

Bn+n
2

−1

+Bn+n
2

−1
· · ·

Bn+1

+Bn+n
2

+1

An+1

+An+n
2

+1

An

+An+n
2

· · ·

An+2

+An+n
2

+2

Bn+1

+Bn+n
2

+1

Bn

+Bn+n
2

· · ·

Bn+2

+Bn+n
2

+2

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

An+n
2

−1

+An+n
2

+n
2

−1

An+n
2

−2

+An+n
2

+n
2

−2
· · ·

An

+An+n
2

Bn+n
2

−1

+Bn+n
2

+n
2

−1

Bn+n
2

−2

+Bn+n
2

+n
2

−2
· · ·

Bn

+Bn+n
2

Figure 2.3: Matrix representation of Tn
2

: Kn → Kn.

Remark 2.2.3. The submatrices M̃0, . . . , M̃n
2

are small modifications of the matrix in Fig.

2.2. More precisely, for r ≤ k < n
2
, M̃k can be obtained simply by permuting the rows of the

matrix in Fig. 2.2, placing in the upper part the rows that come from equations in S with
variables associated with both Ak and Ak−1. Also, for 0 ≤ k ≤ r− 1, M̃k can be obtained by
removing the blocks of rows that represent expressions with (i, j) ∈ Ak, i < r and j < r, and
adequately permuting rows as above.

Note that Theorem 2.2.1, together with the description of the submatrices above, provide
a direct and fast algorithm to construct the matrix M̃ . Given αi’s and βi’s we construct
Ans+` and Bns+` as the matrices that represent the F-linear transformations Z 7→ αns+`+1Z

q`

and Z 7→ βns+`+1Z
q` , respectively. Then, we assemble the matrices in Fig. 2.2 and Fig. 2.3

for all k’s, and sort their rows according to Remark 2.2.3. Finally, we put them together
as described in Theorem 2.2.1. However, as we will see in the next section, we never really
have to construct the whole matrix M̃ . Since we just aim at finding a non-trivial element in
its null space, we can exploit its structure to do so more efficiently.

2.3 An Algorithm to Solve the System

In this section, we will first describe an algorithm for finding random elements in the null
space of the matrix M̃ . The algorithm is based on the hidden structure of the matrix unveiled
in Theorem 2.2.1. Then, we will discuss the probability that this algorithm terminates.

As seen in Section 2.2, the matrix M̃ is almost block diagonal, with blocks M̃1, . . . , M̃n
2

overlapping in a few rows. In order to illustrate the method, suppose we have only two
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blocks M̃1, M̃2. We first split each block in two blocks Ui and Li so that the matrix has the
form

M̃ =

U1 0
L1 U2

0 L2

 .
Next we find an element y2 in the null space of L2. Then, we compute r = U2y2. Then

we find an element y1 such that

[
U1

L1

]
y1 =

[
0
−r

]
. It is easy to see that M̃

[
y1

y2

]
= 0. This

process can be iterated through the whole matrix regardless of the number of blocks.

To formally describe the algorithm, we introduce the following notation. For r ≤ i ≤ n
2
,

let Li be the matrix that results from removing the first 2n rows from M̃i, and let Li be
the matrix that results from removing the first n rows from M̃i, for 2 ≤ i < r. For each

2 ≤ i ≤ n
2
, Ui is the matrix such that M̃i =

[
Ui

Li

]
(for i = 1, we define U1 = M̃1). The

expression y
$←− W denotes that y is an element chosen uniformly at random from the set

W . Algorithm 1 describes an algorithm to find a solution of the equation M̃y = 0.

Algorithm 1: Finds an element in the null space of M̃

Input: M̃0, M̃1, . . . , M̃n
2
, blocks of M̃ as described in Theorem 2.2.1

1: W :=
{
z | Ln

2
z = 0

}
2: for i = n

2
, . . . , 1 do

3: yi
$←− W

4: ri := Uiyi

5: W :=

{
z | Liz =

[
0
−ri

]}
6: if W = ∅ then
7: stop algorithm

8: W :=
{

z | M̃0z = 0
}

9: y0
$←− W

10: return y =


y0

y1
...

yn
2



It is easy to see that if this algorithm terminates, the output y is an element in the null
space of M̃ . Moreover, the converse is also true.

Proposition 2.3.1. If x is a vector in the null space of the matrix M̃ , then x can be the
output of Algorithm 1.
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Proof. Let x be an element in the null space of M̃ , say

x =


x1

x2
...

xt−1

xt

 , t = n2(n+ 1).

For 0 < i ≤ n
2
, we define

xi =


xti−1+1

xti−1+2
...
xti

 ,
where ti := 2in2, for 0 < i < n

2
, t0 := 0 and tn

2
:= t. Since x is an element in the null space

of M̃ and M̃i =

[
Ui

Li

]
, then

Ln
2
xn

2
= 0.

Let us define the vector rn
2

as
rn

2
= Un

2
xn

2
.

Since x is a element in the null space of M̃ , we must have that

Ln
2
−1xn

2
−1 =

[
0
−rn

2

]
.

So, xn
2
−1 belongs to the solution set of the equation

Ln
2
−1z =

[
0
−rn

2
.

]
In general, for 0 ≤ i < n

2
, xi−1 belongs to the solution set of the equation

Liz =

[
0

−ri+1,

]
where ri = Uixi.

The above proposition shows that every element in the null space of M̃ can be output
by Algorithm 1. However, at this point is not clear what is the distribution of probability
over the null space of M̃ given by Algorithm 1. That is a very important issue because if
the distribution changes, then the degree of regularity1 may change too.

In the following, we prove that the distribution over the null space of M̃ is still uniform
when we use Algorithm 1 to find an element in the null space of M̃ . First, we show that

1The degree of regularity is a very important parameter associated with a multivariate public key cryp-
tosystem. Its importance lies in the fact that the complexity of the best known algorithm to find preimages
in a multivariate polynomial systems is exponential in the degree of regularity
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every element in such null space has the same probability to be an output for an execution
of Algorithm 1. Indeed, let x = [x1x2 · · ·xt−1xt]

T , be an element in the null space of M̃ ,
with t = n2(n + 1), U ′is, L

′
is and x′is as in the proof of Proposition 2.3.1. Let us define the

random variable Vi as the result of the i-th partial output in one run of Algorithm 1. Let V
be the random variable denoting the complete output. Clearly, the probability that V takes
the value x (denoted by P (V = x)) is given by

P (V = x) = P (V0 = xn
2
)

n
2∏

i=1

P (Vi = xn
2
−i | Vi−1 = xn

2
−(i−1), . . . , V0 = xn

2
)

= P (V0 = xn
2
)

n
2∏

i=1

P (Vi = xn
2
−i | Vi−1 = xn

2
−(i−1))

=
1

| Wn
2
|

n
2∏

i=1

1

| Wn
2
−i |

,

where Wi−1 =

{
z | Liz =

[
0
−ri

]}
and ri = Uixi. It is easy see that | Wi−1 | is equal to the

number of element in the null space of Li−1 (denoted by | Ker(Li−1) |). Therefore,

P (V = x) =

n
2∏

i=0

1

| Ker(Ln
2
−i) |

.

Consequently, each x in the null space of M̃ is equality probable to be output by Algo-
rithm 1. Finally, we claim that if we execute Algorithm 1 as many times as necessary until
it terminates, then the distribution over the null space of M̃ is the uniform distribution.

Algorithm 1 does not always terminate. In case it fails, we would have to run it again.
However, we claim that the probability of failure is very small. Note that the termination
of the Algorithm 1 depends on W not being empty for each i = n

2
, . . . , 1. So, a sufficient

condition to guarantee that the Algorithm 1 terminates is that each matrix Li be of full rank.
Therefore, for a uniformly random instance of ZHFE, the probability that the Algorithm 1
terminates is greater than the probability that for each i the rank of Li is equal to its number
of rows. In order to give an estimate for this probability, we ran extensive experiments for
different values of n and computed the rank of Li for i = r, . . . , n

2
(see Table 2.2). For every

single instance and for each i = r, . . . , n
2
, the matrix Li was full rank.

2.4 Complexity

The new method finds an element in the null space of an almost-block diagonal matrix with
n
2

+1 blocks, as depicted in Fig. 2.1. The size of each block is at most 2n2×2n2, so reducing
each block to its echelon form has complexity O

(
(n2)

ω)
, where the parameter 2 ≤ ω ≤ 3 is

a constant that depends on the specific Gaussian elimination algorithm used (e.g., ω = 3 for
a classical Gaussian elimination algorithm and ω < 2.376 for an asymptotically improved
algorithm). Therefore, the complexity of the new method is O

(
n (n2)

ω)
= O (n2ω+1). This
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n Number of Instances

8 80000000
16 4000000
32 100000
56 5000

Table 2.2: Computation of the rank of the Li’s with q = 7 and D = 106. For every generated
instance, the matrices are full rank.

improves the naive approach used in [11], which costs O
(
(n3)

ω)
= O (n3ω), if a dense Gaus-

sian elimination algorithm is used. Since the matrix of the vanishing equation system is
sparse, even the old method could take advantage of its sparsity. Although the complex-
ity of sparse algorithms is harder to compare with, our experiments confirm a significant
improvement against sparse methods too.

We performed experiments in order to compare the new method with the one used in
[11] for solving the vanishing equation system. We built different ZHFE private keys using
both methods. In Table 2.3 we present these results for different sets of parameters. All the
experiments were performed using Magma v2.21-1 [4] on a server with a processor Intel(R)
Xeon(R) CPU E5-2609 0 @ 2.40GHz, running Linux CentOS release 6.6. It is important
to notice that the experiments for the old method where performed on Magma using the
Nullspace command. Magma’s Nullspace implementation exploits the matrix sparsity using
the Markowitz Pivot Strategy. Hence, in practice, we are comparing our new method with
an sparse matrix solving algorithm.

Nuevo Método Viejo Método

q D n Tiempo [s] Memoria [MB] n Tiempo [s] Memoria [MB]

7 106 8 0.07 ≤ 32 8 0.43 ≤ 32
7 106 16 1.46 ≤ 32 16 25.41 131
7 106 32 67.29 64 32 2285.44 3452

7 106 56 1111.26 235 55* 216076.27 53619

17 106 8 0.08 ≤ 32 8 0.45 ≤ 32
17 106 16 2.02 68 16 26.63 160
17 106 32 122.86 93 32 2095.94 3785

17 595 56 2712.63 353 55* 226384.28 59658
* Experiments run on a different machine: Magma V2.20-2 on a Sun X4440 server, with four

Quad-Core AMD OpteronTM Processor 8356 CPUs running at 2.3 GHz.

Table 2.3: Private key generation: comparison between the new and old methods.

Note the significant reduction in the time needed to construct the keys for ZHFE. It
is also evident that, for the new method, the memory needed to build the ZHFE keys is
considerably less than the memory needed in [11].



Chapter 3

Security of ZHFE

In this chapter we analyze the security of ZHFE with respect to the MinRank Attack. We
first show that with high probability there exists a linear combination of Frobenius powers
of the core polynomials F and F̃ of low rank. Then, we show that such linear combination
can be extracted from the public key.

3.1 Existence of a low rank equivalent key

In this section, we will show that given a instance of ZHFE with public key P = T ◦ (ϕ ×
ϕ)◦ (F, F̃ )◦ϕ−1 ◦S, with high probability there are two invertible affine transformations T ′,
S ′, and two HFE polynomial F ′, F̃ ′ with low rank associated matrices such that

P = T ′ ◦ (ϕ× ϕ) ◦ (F ′, F̃ ′) ◦ ϕ−1 ◦ S ′.

Throughout this section we use the following notation, the capital bold font letter denotes
a matrix, e.g. M, underline letter denotes a vector, e.g. v = (v1, . . . , vn) and ϕ2 for ϕ × ϕ.
In this section we say that (G,S, T ), where G = (F, F̃ ) is a private key of ZHFE. We
only consider linear transformations and homogeneous polynomials. This case can be easily
adapted to affine transformations and general HFE polynomial (See [3] section 6.2).

Two private keys are equivalent if they build the same public key. That is:

Definition 3.1.1. Let (G,S, T ) be a private key for ZHFE. We say that (G′, S ′, T ′), G′ =
(F ′, F̃ ′) is an equivalent key to (G,S, T ) if the polynomials in G′ have HFE shape, and

T ′ ◦ ϕ2 ◦ (F ′, F̃ ′) ◦ ϕ−1 ◦ S ′ = T ◦ ϕ2 ◦ (F, F̃ ) ◦ ϕ−1 ◦ S.

In terms of above definition, our purpose in this section is to show that given a ZHFE
private key, with high probability, there exists an equivalent private key (G′, S ′, T ′) such that
the matrices associated with the polynomials in the core map G′ have low rank. To see how
this is possible, remember that for each ZHFE private key (G,S, T ), G = (F, F̃ ), there are
scalars α1, . . . , α2n, β1, . . . , β2n in the big field K such that the function

Ψ = X
(
α1F0 + · · ·+ αnFn−1 + β1F̃0 + · · ·+ βnF̃n−1

)
+ Xq

(
αn+1F0 + · · ·+ α2nFn−1 + βn+1F̃0 + · · ·+ β2nF̃n−1

)
,

21
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has degree less than a small integer D. Notice that for s ∈ {0, 1} the polynomial,

αsn+1F0 + · · ·+ αsn+nFn−1 + βsn+1F̃0 + · · ·+ βsn+nF̃n−1

has HFE shape and by Lemma 2.1.4 in Chapter 2, its non zero monomials with degree greater
than D have the form ZXq0+q1+qj , with Z ∈ K and j an integer. Consequently, in each case
the matrix associated with that polynomial has rank less than or equal to dlogqDe+ 1 and
the following form:

∗ ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ . . . ∗
∗ ∗ ∗ ∗

...
. . .

∗ ∗ ∗ ∗
∗
...
∗


Case s = 0.



∗ ∗ ∗ ∗ ∗ . . . ∗
∗ ∗ ∗ . . . ∗
∗ ∗ ∗ ∗

...
. . .

∗ ∗ ∗ ∗
∗
...
∗


Case s = 1.

Let L be the function from K2 to K2 given by L(X, Y ) = (L1(X, Y ), L2(X, Y )), such that

L1(X, Y ) =
n∑

i=1

αiX
qi−1

+
n∑

i=1

βiY
qi−1

, L2(X, Y ) =
n∑

i=1

αn+iX
qi−1

+
n∑

i=1

βn+iY
qi−1

.

Notice that L is a linear transformation of the vector space K2 over F. From the above
observation, the matrices associated with the polynomials in L◦G are of low rank (less than
or equal to r+ 1 = dlogqDe+ 1). Furthermore, if L is invertible, then (L ◦G,S, T ◦R) is an

equivalent key to (G,S, T ), with R = ϕ2 ◦ L−1 ◦ ϕ−1
2 and the matrices associated with the

core polynomials L ◦G are of low rank. Indeed

(T ◦R) ◦ ϕ2 ◦ (L ◦G) ◦ ϕ−1 ◦ S = T ◦ ϕ2 ◦ (L−1 ◦ ϕ−1
2 ◦ ϕ2 ◦ L) ◦G ◦ ϕ−1 ◦ S

= T ◦ ϕ2 ◦G ◦ ϕ−1 ◦ S.

For the above assertion to make sense, the function R must be an invertible linear trans-
formation from F2n to F2n, and this is only possible if L−1 is well defined. For this reason,
we will study some properties of the function L taken into the small field F, i.e., properties
of the function ϕ2 ◦ L ◦ ϕ−1

2 . To do that, we start introducing the following change of basis
matrix Mn ∈Mn×n(K) defined by

Mn =


1 1 . . . 1

y yq yq
n−1

...
. . .

yn−1 y(n−1)q y(n−1)qn−1

 .

It is well known that the matrix Mn is invertible (see [8]). The following proposition is a
particular case of Proposition 4 in [3]. We include its proof for completeness.
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Proposition 3.1.2. Let M2n ∈M2n×2n(K) be the matrix defined by

M2n =

(
Mn 0
0 Mn

)
.

Then the function ϕ2 = K2 → F2n can be expressed as

(X, Y ) 7→ (X,Xq, . . . , Xqn−1

, Y, Y q, . . . , Y qn−1

)M−1
2n

and its inverse ϕ−1
2 : F2n → K2 as

(x1, . . . , x2n) 7→ (X1, Xn+1),

where (X1, . . . , X2n) = (x1, . . . , x2n)M2n

Proof. Assume that X = x1 + x2y + · · ·+ xny
n−1 and Y = y1 + y2y + · · ·+ yny

n−1. Clearly,

(x1, . . . , xn)Mn = (X,Xq, . . . , Xqn−1

),

and

(x1, . . . , xn, y1, . . . , yn)M2n = ((x1, . . . , xn)Mn, (y1, . . . , yn)Mn

= (X,Xq, . . . , Xqn−1

, Y, Y q, . . . , Y qn−1

).

Consequently,

ϕ2(X, Y ) = (ϕ(X), ϕ(Y ))

= (x1, . . . , xn, y1, . . . , yn)

= (X,Xq, . . . , Xqn−1

, Y, Y q, . . . , Y qn−1

)M−1
2n

and its inverse
ϕ−1

2 (x1, . . . , x2n) = (X1, Xn+1),

where (X1, . . . , X2n) = (x1, . . . , x2n)M2n

In the following, we use the change of basis matrix M2n to show that, if the elements
α1, . . . , α2n, β1, . . . , β2n are chosen following a uniform distribution, then the probability that
L is invertible is equal to the probability that a uniformly chosen matrix A ∈M2n×2n(F) is
invertible. This implies that, given an instance of ZHFE with a high probability there is an
equivalent key such that the matrices associated with the core polynomials are of low rank.
First we show that if L is as above, then ϕ2 ◦ L ◦ ϕ−1

2 is a linear transformation from F2n to
F2n, and explicitly reveal the shape of its matrix.

Proposition 3.1.3. Let α1, . . . , α2n, β1, . . . , β2n be elements in K, L be the function from
K2 to K2 given by L(X, Y ) = (L1(X, Y ), L2(X, Y )), with

L1(X, Y ) =
n∑

i=1

αiX
qi−1

+
n∑

i=1

βiY
qi−1

, L2(X, Y ) =
n∑

i=1

αn+iX
qi−1

+
n∑

i=1

βn+iY
qi−1

.
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It holds that ϕ2 ◦L◦ϕ−1
2 is a linear transformation with matrix associated M2nJM

−1
2n , where

J =



α1 αq
n . . . αqn−1

2 αn+1 αq
2n . . . αqn−1

n+2

α2 αq
1 αqn−1

3 αn+2 αq
n+1 αqn−1

n+3
...

. . .
...

...
. . .

...

αn αq
n−1 . . . αqn−1

1 α2n αq
2n−1 . . . αqn−1

n+1

β1 βq
n . . . βqn−1

2 βn+1 βq
2n . . . βqn−1

n+2

β2 βq
1 βqn−1

3 βn+2 βq
n+1 βqn−1

n+3
...

. . .
...

...
. . .

...

βn βq
n−1 . . . βqn−1

1 β2n βq
2n−1 . . . βqn−1

n+1


Proof. Suppose that ϕ2 ◦ L ◦ ϕ−1

2 (x, y) = (z1, . . . , z2n) and set X = x1 + x2y + · · ·+ xny
n−1,

Y = y1 +y2y+ · · ·+ynyn−1, Z1 = z1 +z2y+ · · ·+znyn−1 and Z2 = zn+1 +zn+2y+ · · ·+z2ny
n−1,

so that L(X, Y ) = (Z1, Z2). Then, from the definition of L

(Z1, Z2) =

(
n∑

i=1

αiX
qi−1

+
n∑

i=1

βiY
qi−1

,
n∑

i=1

αn+iX
qi−1

+
n∑

i=1

βn+iY
qi−1

)
,

and clearly, for each integer k, 0 ≤ k < n,(
Zqk

1 , Z
qk

2

)
=

(
n∑

i=1

αqk

i−kX
qi−1

+
n∑

i=1

βqk

i−kY
qi−1

,
n∑

i=1

αqk

n+(i−k)X
qi−1

+
n∑

i=1

βqk

n+(i−k)Y
qi−1

)
.

Equivalently,

Zqk

1 =
(
X, . . . , Xqn−1

, Y, . . . , Y qn−1
)


αqk

1−k
...

αqk

n−k

βqk

1−k
...

αqk

n−k


, and

Zqk

2 =
(
X, . . . , Xqn−1

, Y, . . . , Y qn−1
)


αqk

n+(1−k)
...

αqk

n+(n−k)

βqk

n+(1−k)
...

αqk

n+(n−k)


,

where the index operation i− k is modulo n if i− k 6= 0, else i− j is equal to n. From the
previous equation we get that

(Z1, . . . , Z
qn−1

1 , Z2, . . . , Z
qn−1

2 ) = (X, . . . , Xqn−1

, Y, . . . , Y qn−1

)J.
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Furthermore, we know that

(z1, . . . z2n) M2n =
(
Z1, . . . , Z

qn−1

1 , Z2, . . . , Z
qn−1

2

)
,

(x1, . . . xn, y1, . . . yn) M2n =
(
X, . . . , Xqn−1

, Y, . . . , Y qn−1
)
.

Putting everything together, we get

(z1, . . . z2n) M2n =
(
Z1, . . . , Z

qn−1

1 , Z2, . . . , Z
qn−1

2

)
=

(
X, . . . , Xqn−1

, Y, . . . , Y qn−1
)

J

= (x1, . . . xn, y1, . . . yn) M2nJ.

Therefore, (z1, . . . z2n) = (x1, . . . xn, y1, . . . yn) M2nJM−1
2n

By Proposition 3.1.3, we know that ϕ2◦L◦ϕ−1
2 is a linear transformation with associated

matrix M2nJM−1
2n . Since M2n is an invertible matrix, L is an invertible function if and only

if M2nJM−1
2n is an invertible matrix over F. Even more, the map from the set of functions

like L to M2n×2n(F), given by L 7→M2nJM−1
2n is clearly a bijection. Therefore, the number

of invertible functions like L is equal to the number of invertible matrices inM2n×2n(F). As
a direct consequence of the last analysis we have the next theorem.

Teorema 3.1.4. If α1, . . . , α2n, β1, . . . , β2n ∈ K are chosen uniformly, the probability that L
defined by

L(X, Y ) = (
n∑

i=1

αiX
qi−1

+
n∑

i=1

βiY
qi−1

,
n∑

i=1

αn+iX
qi−1

+
n∑

i=1

βn+iY
qi−1

)

is invertible, is given by ∏2n−1
i=0 (q2n − qi)

q4n2

Proof. The number of invertible matrices inM2n×2n(F) is
∏2n−1

i=0 (q2n−qi). The total number

of matrices in M2n×2n(F) is q4n2
.

The principal conclusion in this section is that given an instance for ZHFE with private
key (G,S, T ), with a high probability there is an equivalent key (G′, S, T ′) such that the
matrices associated with the polynomials in G′ have low rank.

3.2 Finding a low rank core polynomial

In the previous section we saw that, with high probability a ZFHE public key P has at least
one private key (G′, S, T ′) such that the matrices associated with the polynomials in G′ have
low rank. The principal goal in this section is to explain how from P , we can get one of
those private keys.
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Let P be a ZHFE public key with low rank core polynomial, e.g.

P = T ◦ ϕ2 ◦G ◦ ϕ−1 ◦ S,

where G = (F, F̃ ), and the matrices F, F̃ associated with F , F̃ have low rank (r + 1, with
r = dlogqDe). Let F∗k ∈Mn×n(F) be the matrix associated with the k-th Frobenius power
of the polynomial F .

Proposition 3.2.1. Let F = [ai,j] be the matrix associated with an HFE polynomial F .

Then, the (i, j)-th element in F∗k is aq
k

i−k,j−k (indexes are modulo n).

Now we use the property on the matrices Mn and M2n to deduce a useful relation between
the matrices associated with the secret polynomials ϕ2 ◦ (F, F̃ ) ◦ϕ−1 and the matrices F∗k ′s.
The following Lemma is very similar to Lemma 2 in [3], the only difference is that here we
use ϕ−1 instead of ϕ−1

2 .

Lemma 3.2.2. Let (H1, . . . ,H2n) ∈ (M2n×2n(F))2n be the matrices associated with the secret
quadratic polynomials ϕ2 ◦ G ◦ ϕ−1 = (h1, . . . , h2n) ∈ (F[x1, . . . , xn])2n, i.e. hi = xHix

t for
all i, 1 ≤ i ≤ n. It holds that

(H1, . . . ,H2n) = (MnF
∗0M−1

n , . . . ,MnF
∗n−1M−1

n ,MnF̃
∗0
M−1

n , . . . ,MnF̃
∗n−1

M−1
n )M−1

2n

Proof. Let v = (v1, . . . , vn) be an element in Fn. Since (h1, . . . , h2n) = ϕ2 ◦G ◦ ϕ−1,

(h1(v), . . . , h2n(v)) = ϕ2 ◦ (F, F̃ ) ◦ ϕ−1(v)

= ϕ2(F (ϕ−1(v)), F̃ (ϕ−1(v)))

= (F q0(ϕ−1(v)), . . . , F qn−1

(ϕ−1(v)), F̃ q0(ϕ−1(v)), . . . , F̃ qn−1

(ϕ−1(v)))M−1
2n .

If V = ϕ−1(v) and V = vMn, then

(vH1v
t, . . . , vH2nv

t) = (V F∗0V t, . . . , V F∗n−1V t, V F̃
∗0
V t, . . . , V F̃

∗n−1
V t)M−1

2n .

Since V t = Mt
nv

t, we have

(H1, . . . ,H2n) = (MnF
∗0Mt

n, . . . ,MnF
∗n−1Mt

n,MnF̃
∗0

Mt
n, . . . ,MnF̃

∗n−1
Mt

n)M−1
2n .

Let F ∈ (F[x1, . . . , xn])2n be the secret quadratic polynomials, i.e, F = ϕ2 ◦ (F, F̃ ) ◦
ϕ−1. Assume also that (G1, . . . ,G2n) ∈ (Mn×n(F))2n are the matrices associated with the
quadratic public polynomials. So,

P (x) = T (F(S(x)))

(xG1x
t, . . . , xG2nx

t) = (h1(xS), . . . , h2n(xS))T

(xG1x
t, . . . , xG2nx

t) = (xSH1S
txt, . . . , xSH2nS

txt)T.

So by Lemma 3.2.2,

(G1, . . . ,G2n)U = (WF∗0Wt, . . . ,WF∗n−1Wt,WF̃
∗0

Wt, . . . ,WF̃
∗n−1

Wt), (3.1)
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where, W = SMn ∈ Mn×n(K) and U = T−1M2n ∈ M2n×2n(K). If U = [ui,j], by (3.1) we
get the following useful equations

2n−1∑
i=0

ui,0Gi+1 = WF∗0Wt = WFWt,

2n−1∑
i=0

ui,nGi+1 = WF̃
∗0

Wt = WF̃Wt. (3.2)

Since F, F̃ have rank r+1 and W is an invertible matrix, the rank of WFWt is also r+1
(similarly for F̃). Consequently, the last equation implies that the vectors (u0,0, . . . , u2n−1,0)
and (u0,n, . . . , u2n−1,n) are solutions for the MinRank problem associated with the public
symmetric matrices (G1, . . . ,G2n) and the integer r+1. Therefore, if we solve that MinRank
problem we get the matrix associated with a linear combination of the Frobenius powers of
F and F̃ composed with ϕ−1 ◦ S. More precisely, we have the next result.

Teorema 3.2.3. Given a ZHFE public key P = T ◦ ϕ2 ◦ (F, F̃ ) ◦ ϕ−1 ◦ S. We can find the
matrix associated with a polynomial in the form

F ◦ ϕ−1 ◦ S,

where F is a linear combination of the Frobenius power for F and F̃ .

Proof. We know that the MinRank problem associated with the public matrices (G1, . . . ,G2n)
and the integer r+ 1 has at least one solution. So, by solving the MinRank problem we can
find scalars u′0, . . . , u

′
2n−1 in the big field such that

Rank

(
2n−1∑
j=0

u′jGj+1

)
≤ r + 1.

On the other hand, if U−1 = [u−1
i,j ], by equation (3.2) we have that

Gj+1 =
n−1∑
i=0

u−1
i,j (WF∗iWt) +

n−1∑
i=0

u−1
i+n,j(WF̃

∗i
Wt) = W

(
n−1∑
i=0

u−1
i,j F∗i +

n−1∑
i=0

u−1
i+n,jF̃

∗i
)

Wt.
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Therefore,

G′ =
2n−1∑
j=0

u′jGj+1

=
2n−1∑
j=0

u′jW

(
n−1∑
i=0

u−1
i,j F∗i +

n−1∑
i=0

u−1
i+n,jF̃

∗i
)

Wt

=
2n−1∑
j=0

W

(
u′j

n−1∑
i=0

u−1
i,j F∗i + u′j

n−1∑
i=0

u−1
i+n,jF̃

∗i
)

Wt

= W
2n−1∑
j=0

(
u′j

n−1∑
i=0

u−1
i,j F∗i + u′j

n−1∑
i=0

u−1
i+n,jF̃

∗i
)

Wt

= W

[
n−1∑
i=0

(
2n−1∑
j=0

u′ju
−1
i,j

)
F∗i +

n−1∑
i=0

(
2n−1∑
j=0

u′ju
−1
i+n,j

)
F̃
∗i
]

Wt

= SMn

[
n−1∑
i=0

(
2n−1∑
j=0

u′ju
−1
i,j

)
F∗i +

n−1∑
i=0

(
2n−1∑
j=0

u′ju
−1
i+n,j

)
F̃
∗i
]

Mt
nS

t.

And finally, define F as the polynomial with coefficient in the big field K given by the
symmetric matrix

n−1∑
i=0

(
2n−1∑
j=0

u′ju
−1
i,j

)
F∗i +

n−1∑
i=0

(
2n−1∑
j=0

u′ju
−1
i+n,j

)
F̃
∗i

.

By Theorem 3.2.3 and equation (3.2), we could find another low rank linear combination
G̃ of the public matrices (G1, . . . ,G2n) such that the polynomial with associated matrix G̃
is in the form F̃ ◦ ϕ−1 ◦ S. This may represent a weakness of ZHFE.

Recently, in parallel with our work and independetly, Perlner and Smith-Tone analyzed
the security of ZHFE [10]. They argue that if L11 =

∑n
i=1 αiX

qi−1
, L12 =

∑n
i=1 βiY

qi−1
, L21 =∑n

i=1 αn+iX
qi−1

and L22 =
∑n

i=1 βn+iY
qi−1

are chosen so that each ϕ ◦Lij ◦ϕ−1 has corank s
greater than zero, then the rank of the matrix associated with Li(F, F̃ ) is 2s, and with this
simple restriction on the Lij maps is enough to avoid a MinRank attack. They assure, that
this is the case because the complexity of the attack is exponential in the rank of the matrix
associate with Li(F, F̃ ).



Chapter 4

Conclutions and future works

In Chapter 2 we have proposed a novel way to solve the vanishing equation system necessary
to construct keys in ZHFE. By exposing its almost-block diagonal structure, we unleashed a
series of improvements in ZHFE key generation. We can now construct the matrix associated
with the system faster, and store it more efficiently. Moreover, we can find solutions to the
system asymptotically faster. These improvements turn ZHFE from an only theoretical
proposal, into a viable Post-Quantum public key encryption scheme.

We think that future improvements are possible in ZHFE derived from this work. In
Section 2.3, we exposed the structure by blocks of the Li matrices in Algorithm 1. We
believe that it is possible to exploit its structure to compute the set W faster.

In Chapter 3 we have found out that given a ZHFE pulic key P , if the function L is
invertible, there exist two affine transformations T ′ and S ′ and a core polynomials F ′, F̃ ′

with associated matrix of low rank shuch that P = T ′ ◦ ϕ2 ◦ (F ′, F̃ ′) ◦ ϕ−1 ◦ S ′. We also
showed that L is invertible with very high probability. Then we show that it is possible to
extract a linear combination of the public matrices from the public key, whereby we can get
T ′.

As future works, we consider interesting studying if it is possible to find both affine
transformations T ′ and S from the public key. Also, verify if with the resulting HFE core
polynomials F ′ and F̃ ′ we can bulit a polynomial as Ψ of low degree. Finally, a crucial
question is whether it is posible to prevent this attack by choosing the function L not
invertible.
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