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To the tree that did not die

We said that the laws of nature

are approximate ...: how can the

results of an experiment be wrong?

Only by being inaccurate.

R. Feynman.

1918-1988
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Abstract

In this dissertation a reformulation of the Action and Phase Jump Method (APJ) is presen-

ted using both simulated and experimental LHC orbits. The LHC is the accelerator able to

create proton-proton collisions with the highest energy in a laboratory. The APJ is a tech-

nique to measure magnetic errors and the stated reformulation consists in to eliminate the

central BPM measurement and to include the phase advances of the triplets’ quadrupoles.

New theoretical equations are introduced and a comparison with the previous formulation

is developed. The results includes the design and study of digital filters to reduce noise. It

is found that the new formulation is better in specific occasions and that the best filter is

always a combination. For instance, σK1 is reduced in experimental orbits from 7.41 to 2.48

×10−7 m−2 using the reformulation compared to the previous APJ. Those orbits are obtai-

ned using an AC Dipole and its effect is discussed. Also, a study of the alternative methods

is presented and magnetic errors are obtained which are compared with APJ results.

Keywords: Beams in Particle Accelerators, charged-particle in accelerators, LHC,

Beam optics (charged-particle beams), Circular Accelerators.

Resumen

Una reformulación del Método de Acción y Fase (APJ) es presentada, usando órbitas del

LHC tanto simuladas como experimentales. El LHC es el acelerador construido en un labo-

ratorio para alcanzar las más altas enerǵıas en colisiones protón-protón. APJ es una técnica

para medir errores magnéticos y la reformulación consiste en eliminar la dependencia en la

medición del BPM central y en incluir los avances de fase en los cuadrupolos. Se presentan

las nuevas ecuaciones teóricas y una comparación con las anteriores. Los resultados incluyen

el diseño y estudio de filtros digitales para reducir ruido. Se encuentra que la reformulación

es mejor en ocasiones espećıficas, y que el mejor filtro es siempre una combinación. Por ejem-

plo, σK1 disminuye en órbitas experimentales de 7.41 a 2.48 ×10−7 m−2, usando la nueva

formulación comparada con la anterior. Estas órbitas son obtenidas usando un dipolo AC

y su efecto es discutido. También, un estudio de los métodos alternativos es presentado y

errores magnéticos son obtenidos, los cuales son comparados con los resultados de APJ.

Palabras claves: Haces en Aceleradores de part́ıculas, part́ıculas cargadas en acelera-

dores, LHC, óptica del haz en aceleradores, Aceleradores circulares
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List of symbols

This section contains the main Symbols and Abbreviations used during this dissertation.

Symbols in Latin Letters

Symbol Name/Definition SI Units

s Longitudinal component of the particle position m

x Horizontal component of the particle position m

y Vertical component of the particle position m

K1s Skew magnetic multipolar component for quadrupoles m−2

A1 Skew magnetic multipolar component for quadrupoles m−2

A1 Skew Magnetic Error or Gradient Error m−2

K1 Normal multipolar component for quadrupoles m−2

B1 Normal multipolar component for quadrupoles m−2

B1 Normal quadrupole Error or Gradient Error m−2

A1, B1, B1 Magnetic Error Combination of two Normal and one Skew errors

Symbols in Greek Letters

Symbol Name/Definition SI Units

β One of the Courant-Snyder Parameters m

β∗ β−function at the collision point m

∆β
β

Beta-Beating
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Abbreviations/Acronyms

Abbreviation/Acronym Meaning

APJ Action and Phase Jump Method

APJ Action and Phase Method

APJ Action and Phase

IP Interaction Point for the particle collision

IR Insertion Region

LHC Large Hadron Collider

New Results obtained using the Reformulation

Old Results obtained using the previous APJ formulation

RDT Resonance Driving Terms Method

SBS Segment-by-Segment Method

SbS Segment-by-Segment Method and CERN software

w/o without

sim. LHC Simulation (ideal orbits)

noi. LHC Simulation and noise (random number) included



1. Introduction

To study the basic components of the matter, accelerators like the LHC are constructed. The

basic components of the matter which constitute all the things we see every day includes

people, plants, rocks and animals. In fact a proton is one of the particles that all such things

have in common and its mass is less than 1.7×10−27 Kg. In particular in the LHC, to unders-

tand the interaction between the basic components of the matter, collisions between protons

at high energy are carried out every 25 ×10−9 s. Those protons are kept in the circular ring

of the LHC using magnetic fields from more than a thousand magnets.

To fulfill a collision point as accurately as possible, one of the goals during the LHC com-

missioning is to reduce the magnetic errors. This is because the magnetic devices cannot be

built to have only one component in a plane without disturbing other planes, especially at

the edges, therefore there are always more components presented than the expected ones.

Also, during the installation and working processes of the magnets, a couple of problems

could be presented: fabrication defects on their materials and a deviation from their design

position along the ring. These situations cause a beam quality loss or a large uncertainty

in the measurement of the particles position and hence in the determination of the collision

point.

The magnetic errors are found according to the multipolar expansion of the magnetic field,

and one of the biggest contributions comes from linear components. Hence, one of the major

problems when doing the commissioning of an accelerator is to identify and correct the linear

components of the magnetic errors.

One of the methods used to localize, to measure, and to correct magnetic errors is the Action

and Phase Jump (APJ) Method Analysis. It is based on the theoretical principle of preserva-

tion of the Action and Phase variables in absence of a magnetic error. This method had been

successfully tested in RHIC using closed-orbit data from experiments [1] and its theoretical

development is fully presented in [2]. The corrections are made locally and specially at the

Interaction Regions (IR) of an accelerator.

Preliminary analyses on turn-by-turn (TBT) orbits at the LHC show promising results ([3]

and [4]), although one of the initial difficulties to apply the Action and Phase Jump (APJ)

analysis to LHC orbits was the high level of noise present in the BPM measurements. The



2 1 Introduction

noise is due to the wide bandwidth of the LHC BPMs and the availability of only one bunch

to perform the optical measurements. On the other hand, the unprecedented number of turns

for LHC allows us to use all sort of filters.

This dissertation have the aim of reformulating the Action and Phase Jump (APJ) Method

in order to obtain and estimate the magnetic errors presented at the LHC or Large Hadron

Collider. The specific purposes are:

1. To reformulate the APJ method in order to dismiss (i.e. eliminate) the BPM depen-

dency presented at the insertion region of the LHC.

2. To study the effect on the magnetic error estimation using turn-by-turn data orbits

generated by an AC Dipole. This study is from the both points of view, the simulations

and the experiments. Optionally, to compare the magnetic errors estimation using

closed orbits and turn-by-turn data.

3. To reformulate the APJ method to include the possibility of having different phase

advances at the quadrupoles triplets.

4. To explore the possible ways to reduce the noise of the orbit data presented at the

LHC by testing digital filters.

5. To study the alternative methods to estimate the magnetic errors at the LHC.

In this document, the most relevant results for each purpose are presented. Their correspon-

ding development are in several parts along this dissertation, but their main discussions are

in the Chapters or Sections 6.1, 4.3, 6.2, 5 and 7, respectively.

Additionally, some theoretical developments for the APJ is presented in the first part of this

dissertation in Section 4.1 and the results obtained when analyzing experimental data are

presented in Chapter 8. The previous concepts for the understanding of this dissertation are

briefly explained in Chapter 3, including some aspects of the LHC.

The procedure followed to achieve the goals were in general: to obtain the theoretical equa-

tions of the reformulation, and then use the LHC simulator in MAD-x [5] to implement

the corresponding simulations to corroborate the relations obtained from the theory. After

the validation of the calculations, to use the APJ software to analyze the data from LHC

experiments. Also, to use the software developed in the LHC for the Linear Corrections to

estimate magnetic errors using the same orbits that the APJ, for comparison.

In this way, along this dissertation, the above listed factors are investigated to establish

their influence in the uncertainty of the measurements when analyzing the LHC data. Also,
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when comparing the results with the measurements given by the other techniques directly

used in the LHC, a more confidence in the corrections obtained is reached. Even further,

this investigation of the magnetic errors once the corresponding corrections are performed

at the accelerator, in this case the LHC, implies that the set of specific parameters which

are imposed during the creation of the accelerator, called design parameters, are closer to

the actual measured parameters, and a major control of the beams is achieved.



2. Statement of the Problem

In Physics one of the biggest questions to answer is how the elementary particles interact to

build all the things we see, including ourselves, rocks, plants and animals. Even more, this

basic question leads us to prove and to study theories about the origin of the universe.

To answer those questions the first instants of the universe are recreated all over again

and again inside a machine called accelerator. A huge number of repetitions is necessary to

acquire enough statistics to account as many different outcomes as possible. Although many

outcomes are expected, all of them are taken from the same initial conditions.

Those initial conditions are controlled in the accelerator, and among others these are: the

luminosity of the beam, the beam-size, the expected collision point, the beam stability.

For instance, as presented by the CERN news on 2011, the Luminosity1 measurement of the

LHC is reaching the value it is expected to have by the date, an integrated luminosity larger

than 1 fb−12 [7] (The reported Integrated Luminosity up to July/2011 is, at ATLAS 2522

pb−1, at CMS 2438 pb−1, at LHCb 732 pb−1 and at ALICE 3.8 pb−1[8]). Nevertheless, this

is less than the 2 % of the expected Luminosity of the machine for an ultimate proton-proton

collision run, which is 131 fb−1 [9]; so the question is how the luminosity is increasing by the

time.

Picking up some numbers, it is expected to have 2808 bunches, of 1.7×1011 particles each,

spacing by 25 ns, in order to obtain a luminosity is 2.3×1034 cm−2s−1 at ATLAS and CMS

(with a configuration of β∗ =0.5 m at the collision point) [10] and by May 2011, there were

1092 bunches for a peak luminosity reached of 1.25×1033 cm−2s−1 [7]. One can state that

by increasing the number of bunches from 1092 to 2808, it would be enough to increase

the luminosity. Probably it is correct; the problem is that having more particles inside the

accelerator without having the control of the beam is dangerous for the machine. 3.

1The Luminosity is a measure of the probability to obtain particle encounters in a head on collision of two

beams [6]
2One inverse femto barn equates to around 70×1012 collisions
3For a nominal bunch intensity and 25 bunches in the LHC the energy stored per beam is 1 MJ. This energy

could produce a serious damage outside the beam pipe, since only 1 MJ of energy is enough to melt 2

Kg of copper [11], the material used (a 75 µm layer of Cooper [12]) to reduce the amount of reflected

photons from the expected collisions.
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From a beam optics point of view, the machine is designed to reach their maximum lumino-

sity (approx. 1034 cm−2s−1) under specific design parameters. Failure of having the actual

parameters close to the designed ones implies, among others, that the expected luminosity

values are not going to be reached.

Therefore it is necessary not only to measure the actual parameters but also to be able to

arrange the beam to be close to its designed characteristics. By estimating the location and

the value of the magnetic errors, an arrangement to the beam properties close to the design

values, can be done.

This dissertation is related with the puesta a punto or fine tunning of the beam at the LHC,

by using the Action and Phase Jump Method to measure the linear magnetic errors. The

hypothesis of this dissertation is that the uncertainty of the magnetic errors measurement

can be improved, by exploring the below facts.

Although the APJ method is already a successful technique, there are factors that need to

be reviewed to establish a decrease in the uncertainty of the magnetic errors measurements.

When the APJ method is used to estimate the magnetic errors in a storage ring, it is manda-

tory to use the trajectory information obtained by many BPMs located at both sides outside

the interaction region (IR4) and an only one BPM inside the region. Therefore, it is clear

that the uncertainty on the magnetic error is strongly affected by the single measurement at

the IR. Hence it is needed to study what happen with the magnetic error if the dependency

on the BPM located at the interaction region is removed.

Also, in the LHC the turn-by-turn data taking by the BPMs is obtained after the use of

an AC Dipole to generate the oscillations [13]. Up to the beginning of this dissertation the

tested simulations using the APJ method were used closed orbit and single orbit using a

kicker or a dipole corrector to generate the oscillations. Therefore it is necessary to simulate

the process with the new settings, this is, to generate the oscillations on the beam trajectory

using an AC Dipole or taking it into account, to collect the turn-by-turn data and then

take the average of selected orbits to obtain a single orbit in order to apply the method. An

important part of this process is the selection of the orbits. The question to answer here is,

which is the actual effect of the AC Dipole on the orbits? Using the AC Dipole to generate

the orbits is more or less precise to calculate the magnetic errors in LHC using the APJ

method.

On the other hand, a main component of the interaction region is the triplets, which are

4IR stands for Insertion region in the LHC, but it also corresponds to the interaction region, in this

document interaction and insertion regions are consider synonyms
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used to decrease the beam size. The β-functions are usually large there, therefore the phase

advance difference is almost null along the quadrupoles belonged to the triplets. The APJ

method was derive assuming that those quadrupoles have the same phase advance (Appendix

B [14]) but in the LHC there are configurations where this assumption is not always valid.

The question that arise to answer is how the inclusion of the quadrupole phase advances

affects the calculation of the magnetic error.

The APJ method had been successfully tested using experimental data for a single orbit

measurements. Unfortunately in the LHC the single orbit data is characterized for having

a lot noise, refer to [4] or [3]. The causes of the noise in the LHC are attributed to BPMs

bandwidth (compare with the RHIC BPMs where the APJ method was successfully tested,

the bandwidth of the LHC BPMs is larger) and to the fact that in the development of this

dissertation the optics measurements are made with a single bunch of particles in the beam.

Therefore, it is desirable to try a digital filter on the beam position measurements in order

to decrease the noise of the signals keeping the appropriate magnetic error measurements.

Moreover, it is always desirable to compare the results using alternative methods. Therefore

it is necessary to include in the analysis for this dissertation a comparative study with the

available beam-based methods at LHC, for the same type of discussed magnetic errors, the

linear magnetic errors.



3. Basic Concepts and the LHC

Before start discussing in this dissertation how the measurements or the estimation of the

magnetic errors are made in accelerators like the LHC, this chapter introduces the concepts

and definitions that are pertinent to clarify first. Also, a brief description of the LHC is

included.

3.1. Description of the motion in a Storage Ring

The devices used in accelerators produce electric fields as well as magnetic fields, all of them

having a free charge region close to the apparatus axis (ρfree = 0). The design of these

devices is in a way that the beam can cross them freely and during a time which the fields

are time independent (∂
~E
∂t

= 0 and ∂ ~B
∂t

= 0). During the particles journey, the beam-pipe is

under vacuum and the current produced by the charges (in the beam) are comparative small

and do not affect the fields around them [15].

In particular for a storage ring, the particle is kept at a fixed energy and its acceleration

process is considered complete. This is the case as well for the LHC configuration when the

optical measurements to obtain the magnetic errors are performed. Therefore, in the Maxwell

equations, the assumptions are ~J = 0, ~Eind = 0 and ~Bind = 0, and the simple representation

obtained is:

∇× ~E = 0 ∇ · ~E = 0

∇× ~B = 0 ∇ · ~B = 0 (3-1)

The mathematical ways to express the fields that follow that type of equations are:

~E = −∇Φ

~B = −∇V (3-2)

where Φ and V are scalar functions. And, in this case, there is a symmetry in the equations

and there is not a mathematical difference in which field is choosed to solve the equations.

Depending on the accelerator sector in which the particle is traveling, i.e. the particle position

along the accelerator, their motion will be determinated by the electric or the magnetic field.
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In the case of the magnetic errors measurements, the interested theory is when the particle is

travelling under the influence of just the magnetic field presented. Therefore, the mathema-

tical equation to solve is a kind of the Laplace equation but for a magnetic potential. Using

the fact that the beam travels in a cylindrical tube, it is convenient to express the space in

cylindrical coordinates. If the longitudinal axis in the cylindrical coordinates is written as s

instead of z:

∇2V = 0
∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2

∂2V

∂φ2
+
∂2V

∂s2
= 0 (3-3)

where s represents the axis of the direction of motion along the accelerator while x and y

are the transverse coordinates.

The ansatz for this differential equation is [16]:

V (r, φ, s) = −p
e

∑
n>0

1

n!
An(s)rneinφ = −p

e

∑
n>0

1

n!
An(s)(x+ iy)n (3-4)

where the expression at the right corresponds to the ansatz when it is written in Cartesian

coordinates x and y, where n is the multipolar index and An is the corresponding coeffi-

cient which in general is a number that depends also on the longitudinal position. The factor

p/e = Bρ is called the beam rigidity and is the ratio between the momentum and the electric

charge of the beam.

After replacing this solution in the Laplace equation it is obtain that the ansatz is valid for

each order n separately (not only the sum is solution of the equation). This scalar function

is related with the Hamiltonian of the motion and after all with the dynamics of a particle

in the storage ring.

For a particle, or in general for a beam, the Hamiltonian of the motion is usually expressed

in terms of the phase-space coordinates; this allows to exploit the analysis of linear and

nonlinear betatron motion, using the fact that the motion is periodic [6]. The relation is

[17]:

H(x, px, y, py; s) =
e

p0

p2
x + p2

y

2
+

1

ρ2

x2

2
+ k1

(
−x

2

2
+
y2

2

)
−<

{
∞∑
n=3

1

n!
(bn + ian)(x+ iy)n

}
(3-5)

where px = dx/ds and py = dy/ds are the transverse momentum components in the phase

space, for a beam of total momentum p0, ρ is the curvature radius, x and y are the transverse
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coordinates, k1 is a quadrupole gradient, bn and an are the normal and skew component of

the magnetic field as related with An as stated in the following paragraphs. The variables

depend on the longitudinal position s, these are: px = px(s), py = py(s), x = x(s), y = y(s),

ρ = ρ(s), k1 = k1(s).

Theoretical Description of the Magnets

As mentioned above, the magnets in the accelerator are located in a space without charges

and currents, therefore the rotational of the magnetic field goes to zero, and the field follows

equations (3-1).

The Normal and Skew components of the magnetic field are given by:

bn =
1

Bρ

∂n−1By

∂xn−1
and an =

1

Bρ

∂n−1Bx

∂xn−1
(3-6)

where Bx and By are the transverse components of the magnetic field.

In accelerator physics, two conventions for the magnetic field multipolar components have

been adopted. These result from the fact that the indices for the multipolar components

coefficients differs from the indices for the positions [18]:

B(z) = By + iBx =
∞∑
n=0

[Bn + iAn]

(
s

Rref

)n
U.S. Conv. (3-7)

B(z) = By + iBx =
∞∑
n=1

[Bn + iAn]

(
s

Rref

)n−1

European Conv. (3-8)

where Rref is a normalization constant, common for the components and obtained according

to potential ansatz (equation (3-4) ).

Hence, in the previous expressions the normal components are denoted by Bn while the

skew components are denoted by An. These new multipolar components notation is also

related to the previous one:

Bn =
q

p
bn

An =
q

p
an (3-9)

The magnets are built to have the main components alignment to the expected correspon-

ding magnetic field. In general the skew magnet have a rotation of π/(2n), where n is the

order of the multipole. In this dissertation the notation will be given by the U.S. Convention.
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Examples of the magnetic field expressions for the different multipoles can be found in sec

3.1.5 of [16] (3rd Edition). Some of the expressions are below with the convention adopted

for this dissertation.

Dipole

The magnetic field component for a normal quadrupole is:

Bx

Bρ

= 0 (3-10)

By

Bρ

= kx (3-11)

(3-12)

where kx is the constant term of the magnetic potential.

Quadrupole

The magnetic field component for a normal quadrupole is:

Bx

Bρ

= −kx (3-13)

By

Bρ

= ky (3-14)

(3-15)

where k is the gradient of the magnet.

Skew quadrupole

This is a normal quadrupole field with a rotation of 45◦ around its symmetric axis.

Bx

Bρ

= k′y (3-16)

By

Bρ

= k′x (3-17)

(3-18)

where k′ is the gradient of the magnet.

Skew Sextupole

This is a normal sextupole field with a rotation of 30◦ around its symmetric axis.

Bx

Rρ

= −m xy (3-19)

By

Rρ

= −1

2
m(x2 − y2) (3-20)

(3-21)
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where m is the second gradient of the magnet defined as m = ∂Bny

∂x
|x,y=0.

Magnetic Errors

The magnetic field errors on the accelerators are divided in two categories: Linear errors and

non-linear errors. The linear magnetic errors correspond with fields of order zero and one,

while the non-linear errors are fields of order two and more. These errors alter the dynamics

of the particle in the accelerator.

During the beam commissioning is important to detect the linear errors because they have

the biggest contribution in the reduction of the beam lifetime and dynamical aperture [6].

In general the equations using only linear magnetic fields are directly solved (as the harmo-

nic oscillation problem), while including non-linear fields the equations of motion are solved

using perturbation theory. Refer to chapter 3 of [6] (2nd Edition) for a detail explanation of

the effect of Linear magnetic imperfections.

3.2. Basic Accelerator Physics Concepts

The Coordinate System

In an accelerator, just to refine the coordinates mentioned in the previous section, the axis

along the direction of the particles advances around the accelerator, along the tube, is ca-

lled the longitudinal axis, while its perpendicular plane is called the transverse plane, [19].

The notation of the coordinate system in an instant along the the accelerator, used in this

disseration, is (s, x, y) where y is the coordinate in the vertical axis of the transverse plane

and x is the coordinate in the horizontal axis.

Courant Snyder Parameters

The trajectory of the beam along an accelerator is described by several parameters. The

traditional system to describe the beam motion is the set {β, ψ, s}, where s is the coordinate

in the direction of the motion, β is a function of the amplitude of the motion, and ψ is the

phase advance (in the phase space) expressing as:

ψz(s) =

∫ s

0

ds

βz(s)
(3-22)

where the variable z stands for any of the transverse coordinates x or y.
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To simplify the expressions of the dynamics representation, it is usual to use the Courant

Snyder Parameters (β, γ, α), which are defined as:

β = β(s) = amplitude (3-23)

α = α(s) = −1

2

dβ

ds
(3-24)

γ = γ(s) =
1 + α2

β
(3-25)

Betatron oscillations

Every time a particle passes by the magnets in a storage ring, it is expected to receive

the appropriate deviation on their trajectory to complete their designed journey inside the

ring. Because the magnets are not perfect, the beam change the expected trajectory and an

oscillation is produced. If the oscillation is produced in the transverse plane it is a called

Betatron oscillation.

In addition, kickers or dipole correctors or AC Dipoles, are used to excite oscillations in the

transverse plane of the beam orbit along the accelerator. These oscillations are also called

Betatron oscillations and from them the information to describe the orbit that the particles

follow is obtained.

Tune

The number of oscillations the particles do per cycle (one revolution) is defined as the Tune.

The oscillation can be determined for each axis separately; hence the tune can be defined

for each axis. The oscillations produced in the transversal plane are the same betatron

oscillations, and in this case, the tune can be expressed in terms of the Courant Snyder

parameters as:

Qx =
1

2π

∮
ds

βx(s)
and Qy =

1

2π

∮
ds

βy(s)
(3-26)

here the integral is along the ring from s to s+ C, being C the circumference of the ring.

The tune is a real number, its integer part is usually given as a reference and its decimal

part is the main information. The notation used for this quantity is Q or ν. [20].
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Hills Equation and the Action and Phase Parameters

The Hamiltonian that describes the motion of a particle in a storage ring equation (3-5)

implies that the equation of motion (especially for linear terms) can be expressed as

d2u

ds2
= −k(s) u (3-27)

where the variable u, represents any of the transversal coordinates x or y, and k(s) is a

periodic function k(s+ C) = k(s), according to the circumference of the ring C [21].

The function k(s) has a different representation given by the magnetic element involved.

For example, in the horizontal case, if one want to describe the particle motion crossing a

normal quadrupole k(s) = eg/p ,where e is the charge of the beam, p its momentum and g

the gradient of the quadrupole; while, in the case of a dipole k(s) = 1/ρ2, where ρ is the

bending radius of the dipole field.

The equation of motion in the transverse plane, equation (3-27), is called the Hill’s equation.

The solution of this equation is of the type

u = u(ψ, β, s) = a
√
βu(s) cos (ψu(s) + εu) (3-28)

where ψu(s) =
∫ s

0
ds

βu(s)
is define as before. In terms of the Action and Phase variables (J, δ)

u = u(J, δ, s) =
√

2J0βu(s) sin (ψu(s)− δ0) (3-29)

where the action and angle variables has a null subscript to denote that they are constants

throughout the motion.

Taylor Map

In accelerators the trajectory of the beam can be represented theoretically using different

formalisms. The relation that converts the coordinates from an initial point to a final point,

using polynomials functions of the initial point, is called a Taylor Map [22]

In the case of linear contributions the equation of motion can solve exactly and the Taylor

Map takes its simple form as a Matrix, and usually it is called the Transportation Matrix.

In the non-linear case the representation is more complex. In general the convenient way to

express the Taylor Map is using the Lie Operator.

By definition the exponential Lie Operator implies [23]:

e:f :g = g + [f, g] +
1

2
[f, [f, g]] + ... (3-30)
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where g and f are differentiable functions and [f, g] =
∑

j

(
∂f
∂qj

∂g
∂pj
− ∂f

∂pj

∂g
∂qj

)
, is the Poisson

bracket.

Transformation Matrix

As discussed above, the linear motion inside the accelerator can be represented as a transfor-

mation from the initial to the final coordinates. For two longitudinal points of the accelerator,

x1 and x2 is possible to express:x2

x′2

 = M

x1

x′1

 (3-31)

where x′ = dx/ds for each of the two longitudinal points of the accelerator.

Each point of the accelerator is represented by the Courant-Snyder parameters, and for each

transversal plane:

M =

 √
β1

β2
(cosψ12 + α1 sinψ12)

√
β1β2 sinψ12

α1−α2√
β1β2

cosψ12 − 1+α1α2√
β1β2

sinψ12

√
β1

β2
(cosψ12 − α2 sinψ12)

 (3-32)

is called the Transfer or Transformation Matrix from the point x1 = x(s1) to x2 = x(s2).

In base of this representation, every piece of the accelerator can be model as a Transforma-

tion Matrix. In particular the magnets can be represented by matrices in analogy with the

lens matrices in optics. Refer to Appendix C.2 of [16] 3rd Edition for the representation of

the different type of magnets.

Beam Position Monitors

The control of the beam is made from the measurement of the beam position made by the

Beam Position Monitors (BPMs). These devices are located in the beam pipe of the acce-

lerator and are composed by two or four conductor plates. They are built to follow one of

these two types of configurations: an electrostatic (equivalent as a current generator) or a

magneto-static (equivalent to a voltage generator with a series inductor) [6].

Every time the beam passed by the BPM, induced charges are produced in their plates,

with an electric charge corresponding to the beam charge. This charge can be transmitted

from the plates to a low impedance circuit to be measured or the charges can produced an

induced voltage that can be measure on a high impedance port (as a capacitance) between

the electrode (where the charge is collected) and the surrounding vacuum chamber.
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In general, the electric charge is stored to determine the beam position as u:

u ≈ w

2

∆

Σ
(3-33)

where w
2

is the effective width of the BPM, ∆ = U+ − U−, Σ = U+ + U−, and U+ and U−
are according with the configuration, the current or the voltage at the each BPM electrode.

The BPMs are also known (in the old school) as pickup electrodes or PUEs [6].

In the LHC (Run I) there is a total of 1032 BPMs installed. Those BPMs are of two kinds:

Buttons or Strip-Lines. The difference between those comes from the shape of the plate they

have and the precision that they reach [12].

3.3. The LHC or Large Hadron Collider

In a Ring with a circumference of approximately 27000 m, located in French and Swiss terri-

tory, is installed the Large Hadron Collider or LHC. This machine reach the highest energies

for proton-proton collision, in a laboratory constructed and designed by humans. It includes

the most recent advances on particle detectors in four points along itself, in those, there

are located the experiments ALICE, CMS, ATLAS and LHCb, where collaborations from

different nations are jointed to design, adjust, operate and maintain the equipment and also

to do analysis of the data from the collisions.

This machine was built with the aim to study the Higgs particle, the dark matter and the

dark energy [12]. For this, the first instants of the Universe are reproduced in a safe way.

The LHC started its operation in 2008 and later in 2012 it was announced that CERN

experiments observe (a) particle consistent with (a) long-sought Higgs boson [24]. Recently,

this year on May 14th, 2015, the experimental mass of the Higgs Boson is determined to

be mH=125.09 ± 0.21 (stat) ± 0.11 (syst) GeV [25], which favors the theories close to the

Standard Model, and leads to the path to more detailed studies on its behavior.

The discovery of the Standard Higgs Boson was made using proton-proton collisions with a

center-of-mass energy of 7 and 8 TeV. This energy is half of the expected ultimate energy of

the LHC. The corresponding data were obtained from the so called Run I of the machine.

At this time, the second semester of 2015, it is running the so called Run II of the LHC.

To obtain such amount of energy in one point, the European Laboratory of Particle Physics

of the CERN (the European Organization for Nuclear Research) has a chain of previous

accelerators that starts to accelerate light Hydrogen Ions using two Linacs, and then protons

arrive to the Booster and the PS, to finally get into the SPS and get out to the LHC with

an energy of 450 GeV. In the accelerator, the particles travel in a set or package of particles
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called bunch.

The LHC in few words is a set of two synchrotron accelerators, which accelerate the two

beams of protons from 450 GeV to the expected ultimate energy of 7 TeV. The synchrotron

principle corresponds to the fact that electrical fields are used to accelerate the particles,

while magnetic fields are used to guide the particles in the circular trajectory along the

accelerator, these fields are time dependent and they are synchronized for certain trajectory

[19].

To guide, to bend, to focus, and to do the magnetic corrections in the LHC beams, there

are available: the main magnets, like Dipoles and Quadrupoles, and the correctors of the

lattice and orbit, which include Octupoles, Skew quadrupoles, Sextupoles, Skew sextupole,

Decapoles, Skew octupoles and Dodecapoles. Kickers are used for the injection and ejection

of the beam, in the dump and septum regions. Additionally, Warm magnets are presented

in the RF interaction. [12].

In order to produce the proton-proton collision, two beams of protons travel in different

tubes along the LHC, and only at the detectors interaction points the beams share the sa-

me beam pipe. This demands a synchronism of the beams and an appropriate calibration

of each individual beam. As presented in this document, the aim of this investigation is to

analyze the quality of these beams by the detection of the magnetic errors in the LHC lattice.

The LHC optics arrangement is divided in eight sectors. Four of those are where the main

interaction points take place and the detectors of the main experiments ALICE, CMS, LHCb

and ATLAS are located. The other four interaction sectors are the points where the mainte-

nance of each beam is done (the momentum and betatron cleaning, the RF and the Dump).

Therefore, the magnets along the LHC are distributed in Sectors or in Octants, the sectors

are called 12, 23, 34, 45, 56, 67, 78 and 81, while the octants runs from 1 to 8, with a mis-

match of 20 degrees from the sector. [26].

It is usual to call the straight regions of the accelerator by IRs of the LHC, while the regions

with a strong bend are called the Arcs of the LHC. In this dissertation both concepts are

repeatedly used.

Insertion Region

Each insertion region of the LHC is composed mainly by a Long Straight Section (LSS)

and two dispersion suppressor (DS). The LSS are the quasi-straight sections between

the upstream and downstream dispersion suppressor of an insertion, including the separa-

tion/recombination dipole magnets, see Vol 1 chapter 2 [12]. Each DS consists of four indivi-
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dually powered quadrupole magnets which are separated by two dipole magnets, this arrange

of magnets plus six more dipoles is referred to a two missing dipole cells ; nevertheless, the

term DS involves the two missing dipole cells plus one additional arc cell. The last contains

two quadrupole magnets with a special powering, which allows to reach a zero dispersion at

the Interaction Points.

The insertion region, according with the duty of the machine at the particular point, could

be a couple of matching regions or triplets assemblies plus the separation/recombination di-

poles. The last configuration is used in the insertions where the main experiments take place,

in those, the triplet consists of four quadrupole magnets where the two central quadrupole

magnets work as one functional entity. The regions in the LHC with Triplets are IR1, IR2,

IR5 and IR8. Vol 1 chapter 2 [12].

3.3.1. The LHC Triplets

The assembly of three quadrupole magnets, used for a reduction of the optical β-functions

at each Interaction Point (IP) where the two LHC beams are expected to collide, is called

a triplet. It includes all the cryogenics necessary to keep those superconductive magnets at

1.9 K ([27]). There are two triplets in each IR, each one at each side of the IP.

In Table 3-1 the sequence of quadrupole magnets, corresponding to n = 1 ( U.S. conv.),

which belongs to triplets at LHC IR5 and IR1, is introduced. In addition, the triplets have

the cryogenics and power supply systems, plus a dipole corrector in the middle of the each

couple of quadrupoles denoted by Q2.

Each row in Table 3-1 corresponds to a quadrupole magnet, but there are also magnets

that work as one unity, the case of magnets labeled by Q2. In the table, the first column is

the name of the magnet according to the LHC nomenclature. In the second column there is

the longitudinal position (Long. Pos.) referred to the LHC beam 1. In the third column is

the type of quadrupole magnet (Quad. Type). In the last column labeled with (Eti.) is the

notation used along this dissertation for the magnets.

In summary, in each region there are mainly: three normal quadrupoles, a skew quadrupole

and a normal dipole magnet, for each triplet.

According to the LHC design parameters, the quadrupoles have a magnetic length of 3.4

m, with an aperture of 70 mm. The coils are NbTi Rutherford type, whose main part is

composed by filaments of 6 µm under a steel base. Several layers are used to insulate the

coils and all the other components, see page 5 in [12] for the material description. The actual
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Name Long. Pos. Quad. Eti.

[m] Type Q

IP 5 Left Triplet

MQXA.3L5 10142.81065 Normal 3L5

MQSX.3L5 10143.27915 Skew

MQXB.B2L5 10151.22565 Normal 2L5

MQXB.A2L5 10157.72565 Normal

MQXA.1L5 10166.81065 Normal 1L5

IP 5 Right Triplet

MQXA.1R5 10219.11065 Normal 1R5

MQXB.A2R5 10227.32565 Normal

MQXB.B2R5 10233.82565 Normal 2R5

MQSX.3R5 10236.49515 Skew

MQXA.3R5 10243.11065 Normal 3R5

IP 1 Left Triplet

MQXA.3L1 23472.40462 Normal 3L1

MQSX.3L1 23472.87312 Skew

MQXB.B2L1 23480.81962 Normal 2L1

MQXB.A2L1 23487.31962 Normal

MQXA.1L1 23496.40462 Normal 1L1

IP 1 Right Triplet

MQXA.1R1 23548.70462 Normal 1R1

MQXB.A2R1 23556.91962 Normal

MQXB.B2R1 23563.41962 Normal 2R1

MQSX.3R1 23566.08912 Skew

MQXA.3R1 23572.70462 Normal 3R1

Table 3-1.: Quadrupole Magnets in the Triplets on the LHC regions IR5 and IR1
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parameters registered at the LHC, from this type of magnets, include the fact that they can

produce a maximum strength of 215 T/m, refer to [27], with the same aperture and other

characteristics established in the design process of the accelerator.



4. The Action and Phase Jump Method

(APJ) and AC Dipole Effect

Initially the Action and Phase Jump (APJ) method was presented as an analysis of only the

Action Jump, it was in a Physics Accelerator Conference in 2001 [28]. The authors explain

that the quadrupole strength can be estimate from the BPM information with a kicker lo-

cated at the arc immediately before the IR or with a kicker in any previous arc different to

the arc immediately before the IR. The first case scenario corresponds to a principal strength

while the other is the secondary strength scenario (page 3133 [28]). A comparative study

with the Closed Orbit Bump (COB) method is included.

By the next year, the method is officially named as the Action and Phase Jump Analysis.

In the publication [29] of 2002, the authors mention about the APJ method that the correc-

tor must be chosen such that the difference of phase advance between the corrector and the

IR under study is close to an odd multiple of π/2. ’. Also they include an analysis on the

triplets’ quadrupoles, giving the fact that the APJ method only can gives the total error on

the triplet (it cannot distinguish the quadrupoles).

In the BNL laboratory, by 2003 at RHIC, there were experiments developed to measure

the sextupole strengths, using the APJ method. They consist of set a sextupole corrector

to a known strength value, and measure the orbits obtained when a particular dipole co-

rrector changes their strength to various values in the horizontal and in the vertical plane.

The difference orbits were obtained in each case as the method demands. This experiment

was repeated for different sextupole strengths. The results of the sextupoles strength can be

consulted in [30].

Since the APJ method was showing accurate results, the followed studies were centered in

the accuracy of the method. In 2004, the reported studies were made using MAD and inclu-

ding quadrupole errors of 1 % of a strength of 7 ×10−3 m−1, the biggest difference observed

for the recovery values was 3.5 % [1]. In that publication an analysis using real RHIC data

is also presented.

In a 2005 publication [31] there was a first attempt to use multi-turn trajectories to apply the

APJ method in the SPS. They observed that using trajectories instead of closed orbit data
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implies the fact that the orbit is not always a maximum at the place where the specific sex-

tupole is ’, producing a jump of the known sextupole locations but in different turn numbers.

Therefore, the APJ method starts to demands an update of the theory. In a 2007 article

[32], J. Cardona refined the APJ method by including a better estimation of the orbit at the

error location and a careful construction of the difference orbits from multi-turn orbits. The

refine of the theory at the error consisted in taking into account the phase advances at the

BPMs locations, leading to a recovery error of 0.04 % against the original 3.5 % observed. To

create the better difference orbits the turns should be chosen such that the orbit excursion

at sθ is the biggest possible’, sθ is the error location.

In 2009, an article in the Journal of Physical Review Special Topics - Accelerators and Beams-

summarizes the physical principles of the APJ technique, and converts it into a method that

can be applied in any High Energy Storage Ring or Collider, refer to [2]. This publication is

also the most recent publication of the APJ method in Journals.

Additionally, since 2010 there is a book about the APJ method, the one published by the

LAP and titled Action and Phase Jump Analysis on Orbit Data, [33].

In the following, a brief theoretical description is introduced, then a review of the application

of the method in different accelerators is made. And, in the last part of this chapter the

analysis of the AC Dipole effect is presented.

4.1. Theoretical Description of the APJ

With the APJ method, the variables of Action (J) and Phase (δ) are measured for a main

orbit around the accelerator and then three regions are identified: the region which contains

the magnetic error, a region (or subsection of the accelerator) before that error region, and a

region after the error region. To calculate the magnetic errors the method uses J and δ from

the region before and after the error region, and one transverse position from the error region.

Theoretically, the position of the particle in each region can be obtained from the solution

of the equation of Hills, and on the other hand, the magnetic error that is going to be esti-

mated is considered as a kick on the particle trajectory. This last means that the change in

the trajectory is perceived initially as a change only in the slope of the phase space. In the

absence of magnetic errors, the Action and Phase variables are preserved along the ring.

Table 4-1 shows the theoretical representation of the beam trajectory in the phase space as

described by this method when there is a magnetic error that produced a change given by the

kick θ. The variables β(s), ψ(s) and α(s) are the Courant-Snyder parameters at the longitu-
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Region Position z(s) Slope dz(s)
ds

Before the error
√

2J0βz(s) sin (ψz(s)− δ0)
√

2J0γz(s) cos (ψz(s) + ηz(s)− δ0)

At the error point
√

2J0βz(s) sin (ψz(s)− δ0)
√

2J0γz(s) cos (ψz(s) + ηz(s)− δ0)

+θz

After the error
√

2J0βz(s) sin (ψz(s)− δ0)+

+θz
√
βz(s)βz(sθ) sin (ψz(s)− ψz(sθ))

or
√

2J1βz(s) sin (ψz(s)− δ1)

Table 4-1.: Trajectory Equations described by the Action and Phase Method. Variable z

represents the x or y Axis while ηz(s) = arctan[αz(s)] , as mentioned in [2].

dinal position s where the equations are evaluated, while Jn and δn are the Action and Phase

variables, for the regions before n = 0 and after n = 1 the magnetic error region, respectively.

To obtain the trajectory after the error, one can use the Transfer Matrix, equation (3-32),

from the longitudinal position of the magnetic error sθ to a any position s. The final equation

of trajectory can be expressed also as a simple solution of the equation of motion, in the

same way as the trajectory before the error

z(s) =
√

2J1βz(s) sin (ψz(s)− δ1) =
√

2J1βs sin (ψs − δ1) (4-1)

if the new action and phase values J1 and δ1 are represented as equations (9) and (10) from

[2]. The procedure to obtain those variables and the kick is as follows:

From equations (7) and (8) of the same paper [2], which is the expression for the position

after the error reported in here in the previous Table 4-1, third row and second column, an

expansion of the trigonometric functions is perfomed. Then the coefficients of the sinψs and

cosψs functions are equalized and the below couple of equations can be inferred√
2J0βs cos δ0 + θz

√
βsβsθ cosψsθ =

√
2J1βs cos δ1√

2J0βs sin δ0 + θz
√
βsβsθ sinψsθ =

√
2J1βs sin δ1 (4-2)

Therefore, to obtain the phase after the error, equations (4-2) can be arranged together as:

tan δ1 =

√
2J0 sin δ0 + θz

√
βsθ sinψsθ√

2J0 cos δ0 + θz
√
βsθ cosψsθ

(4-3)

To find the Action J after the kick error, in terms of only the variables before the error, one

can use again the couple of equations (4-2) and the identity cos2 δ1 + sin2 δ1 = 1. The new
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expression depends on the Action and Phase variables for the region before the magnetic

error and the kick. The relation is:

J1 = J0 +
θ2βsθ

2
+
√

2J0βsθθz cos (ψsθ − δ0) (4-4)

A practical result of this theory and the base of the magnetic error measurement is to get

the magnetic kick from the action and phase variables. This can be done with these steps:

to multiply the first relation, of the couple of equations (4-2), by cos δ0, and to multiply

the second relation by sin δ0; then, to add the results of the preceding steps; and finally to

replace the factor θz cos (ψsθ − δ0) in terms of the action given by equation (4-4). These end

up in the following relation√
2J0βs +

√
βsβsθ

(
J1 − J0 − θ2

zβsθ/2√
2J0βsθ

)
=
√

2J1βs cos (δ1 − δ0) (4-5)

and solving for the kick value in magnitude

θz =

√
2J0 + 2J1 − 4

√
J0J1 cos (δ1 − δ0)

βsθ
(4-6)

This kick, or magnetic kick error, in terms of the magnetic field can have contributions from

any magnetic field component- dipole, quadrupole, skew quadrupole, sextupole, et cetera [2].

To identify the type of component, the multipolar expansion of the magnetic field as dicussed

in the previous chapter is used.

Each kick, horizontal θx or vertical θy cause a deviation of the trajectory of the particles. If

the trajectory is represented by the transversal coordinates x and y, at certain point sθ, the

kick values are the (corrected) equations (19) and (20) in paper [2], these are:

θx = B0 − xB1 + yA1 + 2xyA2 +B2(−x2 + y2) + . . .

θy = A0 + xA1 + yB1 + 2xyB2 + A2(x2 − y2) + . . . (4-7)

where An and Bn are the skew and normal magnetic strength of the multipole field, respec-

tively.

Measurement of Magnetic Errors

To measure the magnetic errors using the Action and Phase Jump method, a change in

the closed orbit is necessary. This change is obtained by using a dipole corrector or a kic-

ker that exaggerates the betatron oscillations, even more, recent measurements are made

from the betatron oscillations produced by an AC Dipole. Then, a single-turn trajectory

of the closed orbit is recorded, also multiple turns of the beam with different positions can

be recorded in each BPMs to then obtain a single turn, or even just the first-turn is recorded.
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In fact, the experiments carried out at RHIC, consisted in changing the strength of a dipole

corrector keeping the other variables with a constant value. The results showed that the APJ

method, with the equations as described above are useful to the measurement of magnetic

errors. For details in the accuracy and precision of the method and more, refer to [33] or [2]

and the others mentioned at the beginning of this chapter.

A difference orbit is created from the measure BPM data, and it is the trajectory information

that is going to be used to apply the technique. In the majority of cases, the difference orbit

is the closed orbit change obtained when the orbit, generate with the kicker, is subtracted

by a baseline orbit and the baseline orbit is the measurement orbit when the dipole corrector

or the kicker is off.

From the measurements obtained in the BPMs, in particular from two adjacent BPMs (i

and i + 1) on the same region, the Action and Phase variables can be inferred to be (as

equations (13) and (14) in [2]):

J =
z2
i+1/βi+1 + z2

i /βi

2 sin2 (ψi+1 − ψi)
− zi+1zi cos (ψi+1 − ψi)√

βi+1βi sin
2 (ψi+1 − ψi)

(4-8)

tan δ =
(zi/
√
βi) sinψi+1 − (zi+1/

√
βi+1) sinψi

(zi/
√
βi) cosψi − (zi+1/

√
βi+1) cosψi+1

(4-9)

where z stands for any of the transverse coordinates x or y, while β and ψ are the Courant-

Snyder parameters at the adjacent locations. These transverse positions are measured using

the BPMs.

In this way, from every two adjacent BPMs, the Action and Phase values can be obtained,

and at the same time, the average of the variables are determined for each region. This last

means that the values of J0, J1, δ0 and δ1 are obtained as the average of the values measured

for the corresponding region, with label 0 for region before the magnetic error and label 1

after the error.

Afterwards, the strength of the kick error θ can be estimated using equation (4-6) for each

difference orbit. The corresponding magnetic strength can be inferred from the θu vs. u plots,

for each transversal coordinate u = x or u = y, using equations (4-7) up to the interested

order. The values for the variables Jn, δn in equation (4-6) are generally obtained as the

average of the individual measurements in the arc before (J0, δ0) and after (J1, δ1) the error

region.

For the linear case, the magnetic error measurement can be obtained directly from the

equations if the transverse position at the magnetic error is known. When there is only one

magnetic error, the measurement in one of the BPM measurements is used as the error



4.1 Theoretical Description of the APJ 25

position if the BPM is closed enough to the quadrupole with the magnetic error. If the BPM

is far, the estimation of the position is made using equation (2) in [32], which is:

z(s) =

√
βz(s0)

βz(sBPM)

sin (ψ(s0)− δ0)

sin (ψ(sBPM)− δ0)
z(sBPM) (4-10)

where the measurement at the closest BPM z(sBPM) is included, and generally this BPM

belongs to the error region and is connected in the middle of the triplets. In this disserta-

tion, this BPM measurement is removed from the equations, as explained in the next chapter.

In addition, in the case of linear errors, when there is more than one magnetic error, the

concept of equivalent error have been introduced, see [14]. New variables are proposed to

obtain the total magnetic errors using a couple of orbits (1 and 2), these are (equation (5.28)

in [14]):

Btx
1 =

y1θ
x
2 − y2θ

x
1

−x2y1 + x1y2

Bty
1 =

x1θ
y
2 − x2θ

y
1

−x2y1 + x1y2

At1 =
x1θ

x
2 − x2θ

x
1

−x2y1 + x1y2

(4-11)

where θzi are the kicks obtained from the actions and phases, using equation (4-6), for each

orbit i = {1, 2} independently, while zi are the error position estimations given by (4-10).

The variables Btx
1 , Bty

1 and At1 are the total equivalent linear normal quadrupole component

in plane X, the total equivalent linear normal quadrupole component in plane Y and the

total equivalent skew quadrupole component, respectively.

However, not all the orbits from the accelerator are suitable to measure the magnetic errors,

using the Action and Phase Jump method. Four types of orbits from the turn-by-turn are

chosen, with the condition to have a maximum and/or minimum for the amplitude, in both

transverse planes, at the longitudinal position where the magnetic errors are measured. [34].

At the beginning of 2011, in [4], for the first time it is presented a validation of the APJ

Method applied to the LHC, the authors established that the best way to reduce the noise

in the LHC data is doing a selection of orbits by establishing a phase range. The selected

orbit is therefore taken as the average of many orbits.

Four selected orbits are then reported to be useful to obtain the magnetic errors using the

Action and Phase Jump method for turn-by-turn orbits in the LHC, as presented in [3], and

it is how in this dissertation the results are obtained, unless something different is mentioned.
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Each main orbit is selected according to a reference phase advance in each transverse plane,

given by the region where the magnetic errors are located. Each main orbit is a sum of the

orbits that have a similar phase to reference value in each plane, in this way the 4-type orbits

are called: ”maxmax”, ”minmax”, ”maxmin” and ”minmin”. Those names corresponds to

the characteristic of the orbit, where the three first letters are given by the condition at

the plane X, while the next three letters are given by the condition at the plane Y; the

letters ”max” and ”min” mean that the orbit has a maximum of amplitude or a minimum

of amplitude at the error location, respectively.

To obtain the magnetic errors in the LHC, it can be shown that the effect of having magnetic

errors in all the quadrupoles from both triplets, at one IR, in other words, to have magnetic

errors at the quadrupoles located in left and in the right from the collision point, can be

summarized in having two normal quadrupole errors and one skew quadrupole error ([3],

[34], and the Appendix A in this dissertation).

According to [3], all the normal quadrupole errors presented in the triplets can be corrected

if only the strength of two magnets are changed (equation (3) in [3], and discussed further in

this section, equation (6-18)), by a quantity that depends on the total equivalent errors Btx
1

and Bty
1 and the β-functions. Meanwhile to correct the skew quadrupole errors, according to

[3], it is enough to change the strength in one of the skew corrector by the amount of −At1/L
where L is the length of the corrector used and A1 is the measured value from all the skew

quadrupole components, and is given by 4-11.

In general, it is assumed that the magnetic errors are given by the contribution from each

magnet, individually. In this way, for each quadrupole i there is a deviation in the orbit

given by θz,i, which at the same time can be expressed as a function of magnetic multipolar

components given by equations (19) and (29) from [2] as follows:

θx = B0 −B1x(sε) + A1y(sε) + 2A2x(sε)y(sε) +B2[−x2(sε) + y2(sε)] + ...

θy = A0 + A1x(sε) +B1y(sε) + 2B2x(sε)y(sε) + A2[x2(sε)− y2(sε)] + .... (4-12)

where the transverse positions are given by z(sε) =
√

2J0βz,ε sin (ψz,ε − δ0), which depends

only of the Action and Phase measured at the region before the error, and of the Courant-

Snyder parameters obtained from the model of the accelerator, βz, ψz at the longitudinal

position of the error denoted by sε, for each transverse plane z = {x, y}.

In case of just one normal quadrupole magnetic error, B1, the equations are reduced to

θx = −B1x(sε) and θy = B1y(sε). A study for this case, when orbits include noise, was

developed during this dissertation [35]. Results show that there is a better accuracy in one

plane than in the other, but for a quick result in the measurements this approach can be
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useful.

Higher Accuracy using the Integrals

In 2011, there is a publication on Conference Proceedings [3] in which the authors state

that the effects of normal quadrupole errors in the triplet can be suppressed by changing

the strengths of two quadrupoles of the triplet according to the values Btx
1 and Bty

1 ’, where

Btx
1 and Bty

1 are the equivalent magnetic strength of triplet in each transverse plane. The

corresponding change in the quadrupoles strength is given by:

∆k1(Q1) =
Bty

1 βy(s∗)
∫
Q2
βxds−Btx

1 βx(s∗)
∫
Q2
βyds∫

Q1
βxds

∫
Q2
βyds−

∫
Q2
βxds

∫
Q1
βyds

∆k1(Q2) =
Btx

1 βx(s∗)
∫
Q1
βyds−Bty

1 βy(s∗)
∫
Q1
βxds∫

Q1
βxds

∫
Q2
βyds−

∫
Q2
βxds

∫
Q1
βyds

(4-13)

where s∗ is the position of the skew quadrupole corrector of the triplet.

The first contribution from this dissertation is to obtain the integrals
∫
Q
βds in a more auto-

matically way and for all the quadrupoles at the LHC, not only for the β-function at Beam

1, but also for Beam 2.

Furthermore, one of the improvements introduced, for the magnetic error estimation, is to in-

clude the β-function integral when the measurement of the skew quadrupole is done, though

its variation is not as larger as for the normal quadrupole errors.

For both cases, the normal quadrupole errors and the skew quadrupole errors, the numeri-

cal way to obtain the integrals is using the Simpson’s Rule (as presented in [36]) for 5000

divisions of each quadrupole.

In Table 4-2, it is shown the results when applied the integrals and the case without integrals,

for the particular magnetic errors. The results are obtained for each beam independently.

In the table the Relative Error is reported, it is given by the simulated value Ks and the

recovery value using the Action and Phase Method K, Error = ∆ =
∣∣∣Ks−K

Ks

∣∣∣ · 100 %.

Taking into account the integrals of those skew quadrupoles, a slightly higher accuracy is

reached, just about 0.1 % better compare to the case of obtaining the magnetic errors without

the integrals. Nevertheless, for the normal quadrupoles the accuracy of the measurements

increases by about 5 %.
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Table 4-2.: Relative Errors for the Recovery of Magnetic Errors using the Old Formulation

sim. ∆K1(Q2L) ∆K1(Q2R) ∆K1s(MQSL5)

β∗ =2.0 m [ %] [ %] [ %]

Beam 1

WITH INTEGRALS 0.163 0.663 0.524

WITHOUT INTEGRALS 5.862 4.644 0.589

Beam 2

WITH INTEGRALS 0.248 0.619 0.323

WITHOUT INTEGRALS 5.959 4.688 0.387

These values were obtained using the formulation as described above, called here Old, for

2000 orbits turn-by-turn. In the simulator three errors were installed in the same optics used

to analyze the 2010’s orbits, and the quadrupoles where the errors were installed are the sa-

me used to analyze the orbits as explain in the following chapter and along this dissertation.

4.2. APJ in Accelerators

Using experimental data, the Action and Phase Jump have been tested at different labora-

tories, as mentioned at the beginning of this chapter. A summary of the reported studies

is presented in Table 4-3, so far the accelerators used to do the measurements are RHIC,

SPS and LHC. An excellent reading about the results from RHIC and the Action and Phase

method is in [33].

Nevertheless, the majority of measurements were made using a closed orbit or with a kicker

to generate the betatron motion of the orbits. In the table, turn-by-turn† means than the

measurements were made by using the data of multiple turns. As mentioned above from the

turn-by-turn orbits a single orbit is obtained to apply the APJ method, in fact, 4-type orbits

are generally used. In [3] author show an example of the characteristics of the orbits, they

explain that One of these orbits ... has a maximum excursion of the horizontal position of

the beam at the right triplet .. while the vertical position is minimum at the same place. The

other kinds of orbits correspond to the combinations: maximum in the horizontal plane while

the vertical is maximum, minimum in the horizontal plane while the vertical is maximum

and minimum in the horizontal plane while the vertical is minimum.
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Also, at the beginning of 2011 for the first time it is presented a validation of the APJ

Method applied to the LHC [4]. It is important to notice that the simulations performed for

the LHC lattice confirmed the accuracy of the APJ method for the magnetic error measu-

rement in High Energy colliders. Using an orbit corrector (a kicker), the normal quadrupole

error or gradient error accuracy reported from the simulations was of the 0.01 % with an

uncertainty of 1.53 % in the LHC. In the middle of 2011, as presented in Table 4-3, there

is a publication on Conference Proceedings [3] about a comparison of the APJ method with

the Segment-by-Segment Technique (SBST).

In this dissertation analysis from turn-by-turn orbits are presented. The orbits are obtained

using simulations and the LHC. The experimental data analyzed is from 2010, the same

reported in [3] but in here with a different configuration, and also using orbits from recent

experiments in 2015. The results for the simulations are reported in here and in Chapter 6

while the results and discussion for the experimental data is reported in Chapter 8.
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4.3. The AC Dipole Effect

Various techniques are available to measure the lattice errors and/or the nonlinearities in

accelerators. Those can be classified in three categories, according with the type of pertur-

bation used: Orbit Bump, Energy Change, and Dipole Kick; as described in Chapter 10 of

[23]. What it is important to point out is that there are cases where the application of the

technique ends up in the destruction of the beam, as in the case of APJ method (which can

be classified inside the Dipole Kick techniques).

Actually, the not-destructive cases are only the Orbit Bump Techniques and the techniques

that use an AC Dipole to generate the betatron-oscillations. Nowadays the APJ method is

applied to experimental orbits generated by an AC Dipole in the LHC.

An AC Dipole is a dipolar magnet in where the magnetic field changes with time, this is

similar to say that the dipole is connected to an AC power supply. The expected change

in the magnetic field is just the enough amount to the beam to complete the accelerator

journey without further distortions on its trajectory i.e. the effect is to keep the beam in its

ideal trajectory eternally. In the LHC, to generate the orbits turn-by-turn, an AC dipole for

each beam was installed [37], for Run II an update to the AC Dipole was made to be able

to take 6600 consecutive turns instead of just 2000 turns.

AC Dipole Theoretical Description

The dipole which is used to create oscillations without disturbing the orbits is called an AC

Dipole. A dipolar field corresponds with a magnetic field with a multipolar component of

order zero.

In the Hamiltonian of a particle in an accelerator, the inclusion of an AC Dipole adds the

term:

H0,dipole = −δ(s, t)x (4-14)

The kick produced by an AC Dipole is represented in a linear Hamiltonian as:

Hdipo = −f(s, t) with f(s, t) =
BL

B0ρ
δDirac(s− sD) cos (2πQDt+ ψ0) (4-15)

where BL is the integrated field amplitude of the magnet, (B0ρ) is the rigidity of the beam,

QD and ψ0 are the tune and the initial phase of the AC dipole, and δ is the Dirac Delta

function (refer to page 1 on [38]).
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AC Dipole Simulation

For this dissertation, the simulation of the AC dipole was performed using the MAD-X files

from CERN, where the AC Dipole has been constructed through the transfer matrix, which

components are:

M21 =
2(cos (2πQx,d)− cos (2πQx))

βx,ac sin (2πQx)
for the horizontal plane, (4-16)

M43 =
2(cos (2πQy,d)− cos (2πQy))

βy,ac sin (2πQy)
for the vertical plane (4-17)

and the other terms to a corresponding identity matrix. The quantities Qxd and Qyd are

the new tunes, which are reached by the accelerator due to the AC dipole effect; Qx and

Qy are the accelerator tunes without the AC Dipole; βx,ac and βy,ac are the Courant-Snyder

parameters where the AC Dipole was installed.

After running the LHC simulator, it was found that this new element changes the obtained

values for the Action and the Phase variables. This is explained by the fact that the effect

of the AC Dipole is also to change, by a small amount, the expected Courant-Snyder para-

meters from the new accelerator model. This change in the parameters is described in [39].
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Figure 4-1.: Action in Y-axis (Jy) along the LHC. Simulation with presence of an AC Dipole

at 6707.354433 m, and a magnetic error at 10158 m. Squared dots are obtained

taking the model as the nominal one, while Crosses dots are obtained taking

the model as the nominal in the presence of the AC Dipole, a close-up of each

case is presented in the subfigures at the right.
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Figures 4-1 and 4-2 show that the values of the Action and Phase along the accelerator,

when a magnetic error K1 is introduced and taking or not taking into account an AC Dipole,

with the configuration described above. In the plots both cases are plotted, the case without

the AC Dipole is the one with the model taking as the Nominal model of the accelerator

(magenta squares) while the other is when the model is taken as the Nominal plus the AC

Dipole (blue crosses). The fractional nominal tunes in the simulator are 0.28 and 0.31, in

planes X and Y, respectively, while taking into account the AC Dipole effect are 0.31 and

0.22 to finally have 0.28 and 0.31.

In the graphs for the Action, Figure 4-1, the jump closer to 7000 m corresponds to the effect

of the AC Dipole (installed at 6707.354433 m, which is at (1.583/2) m from MKQA.6L4.B1

with a 0.0 m length), while the jump closer to 10000 m, almost unseen when using the nomi-

nal model plus the AC dipole, corresponds to the longitudinal position where the magnetic

error was installed. A close-up of these last jumps is in the subfigures (at the right).

In the graphs for the Phase, Figure 4-2, it is observed directly the two jumps, given by the

AC Dipole and the magnetic error for the model taked as the nominal case (squared dots). In

the same scale the jump from the magnetic error close to 10000 m is easy to identify for any of

the two studied cases, although the jump produced by the AC Dipole is much more notorious.
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Figure 4-2.: Phase in Y-axis along the LHC. Simulation with presence of an AC Dipole at

6707.354433 m, and a magnetic error at 10158 m. Squared dots are obtained

taking the model as the nominal one, while Crosses dots are obtained taking

the model as the nominal in the presence of the AC Dipole.

From the average of J and δ in each region, before and after the error, it was obtained
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that the magnetic error is 0.000100000020 m−1 when the model is taken as the nominal and

9.99999411x10−5 m−1 when the model is taken as the nominal plus the AC Dipole. The mag-

netic error was installed with a strength of 0.00010 m−1 using the thin lens approximation

with a length of zero at BPMS.2L5.B1 (at 13297.76023 m). The simulation was performed

using MAD-X ([5]) with the V6.5 sequence and the injection mode with β∗ = 2 m for Beam

1 of the LHC.

Therefore, although the values for Action and Phase are different for the corresponding

analysis with just the Nominal model or including the AC Dipole, the recovery value is the

same within 7 significant figures. From this, it is inferred that there is not a significant change

in the relative error of the measurement when using the model that includes the AC Dipole

or the model that does not.
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Figure 4-3.: Trajectories after many turns in a specific location in the LHC with and wit-

hout the effect of an AC Dipole (at 6707.354433 m). The AC Dipole does not

influence the simulated trajectory and this is valid for the all ring. For this ca-

se, the start position is (x, y) = (0.0001 m, 0.0001 m) and the three magnetic

errors are localed close to 10000 m (IR5).

The AC Dipole, as presented in the next subsection, just guarantee that the beam keeps

stable after many turns. In the simulator to obtain the several turns without losing the ge-

neral amplitude, the module PTC [40] is used, and it gives the particle track at any chosen

accelerator element. For instance, Figure 4-3 shows the trajectories observed from turn 4000

to more than 5000 in the simulator; two cases are plotted, when the trajectory takes, and

not takes, into account the AC Dipole effect. To keep the same tune values given by the AC

Dipole in the analysis of the simulated orbits, two ways were obtained, one by adding the line
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MKQA.6L4.B1, HKICK := Θ21, VKICK := Θ43; , with the parameters of the AC Dipole, before calling the

module PTC in the LHC simulator, or by doing a matching at the tunes using the MATCH

command in MAD-x, this last is the implemented way for this dissertation.

From the above, it is shown that for the method of Action and Phase, it is not relevant how

the orbits turn-by-turn are generated, provided that the generator of the turns is far from

the place where the magnetic errors are measured. Even more, the magnetic errors can be

obtained despite changes in the Courant-Snyder parameters, as the caused by an AC Dipole

(a detailed description of the AC Dipole effects are in [39]).

If the simulations does not count the AC Dipole effect, the trajectories would be always less

than 2000 orbits followed by a total decrease of the amplitude for the transverse trajectories,

but it is not the case. Therefore, for the rest of the dissertation it is understood that the

simulated orbits are generated taking into account the AC Dipole effect.

AC Dipole to Generate Orbits at LHC

To add experimental evidence in this discussion of the AC Dipole effect, Figure 4-4 presents

the trajectory of Beam 1 from a particular part of a LHC Experiment. This is a screen of

the GUI Window that was obtained during the Experiment, courtesy of the OMC Team at

CERN.

At the top of Figure 4-4 are the measured positions at the transverse plane X, while at

the bottom are the measurements for plane Y. The system used to kick in each transverse

plane is different. The horizontal trajectories were excited using a kicker while the betatron

oscillations in the vertical plane were obtained using an AC Dipole (installed close to MK-

QA.6L4).

The most important observation is that, due to the decoherence effect the amplitude of the

orbit is drastically reduced (from 3 mm to less than 1mm) after 2000 turns, when the kicker

is used to excite the orbits. In contrast, the orbits kicked by the AC Dipole remains with

the expected amplitude (of almost 5 mm) along the time of more than 5000 turns.

All the LHC data for the magnetic corrections are taken using the AC Dipole as the creator

of the multiple turn-by-turn orbits.
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Figure 4-4.: Betatron oscillations, for Beam 1, excited by a different system in each plane.

Part of a LHC Experiment performed in Apr 23th, 2015.



5. Design of a Digital Filter to Reduce

Noise in LHC Orbits

The first step in the development of this dissertation is the design of a Digital Filter which

can be useful to reduce noise in the LHC orbits.

The Large Hadron Collider (LHC), as mentioned earlier, is a machine designed to have two

beams of particles, which encounter each other in 4 different points around a ring of 26.7

Km. The LHC system is capable to have 2808 bunches in each beam. To perform this task,

the Beam Position Monitors (BPMs) have a wide bandwidth to account RF frequencies of

400.8 MHz. [12]

A requirement for the optical measurements is that each beam has to be with a single

bunch. Therefore, with the wide bandwidth of the BPMs, the measurements has a conside-

rable amount of noise compare to previous trials of APJ in accelerators.

On the other hand, the thousands of available orbits at the LHC leads us to apply all sort of

digital filters. Several trials were performed with the problem that the characteristic jump

for the Action and Phase along the accelerator, in the presence of magnetic errors, is lost.

In this chapter a Band-pass Filter, specially designed during this dissertation, is presented.

The signal-to-noise ratio is also included for its characterization. Results of the magnetic

error measurement using the filter for the simulation of two magnetic errors, one B1 and one

A1 are included. This filter have already been presented at a Conference [41] and the plots

and most of the paragraphs are extracted from there.

Also, in the last part of the chapter the different ways to reduce noise studied in this disser-

tation are presented and its corresponding tools are described.

5.1. The Band-Pass Filter

For a fixed longitudinal position, one way to consider a sampling of the LHC TBT data is

taking the basic unit as 1 turn. Therefore the signal to be filtered is the data recorded at
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one of the BPMs; the frequency is given, in rad/turn or simply rad. The transverse beam

position after n turns, in terms of the Action (J) and Phase (δ), is:

z(n) =
√

2JβBPM sin (ψBPM + 2πQzn− δ) (5-1)

where the total phase advance have been replaced, and the measurements of β and ψ are

the beam β-function and phase advance at the BPM location, Qz is the accelerator tune, for

each transverse plane z = {x, y}.

These transverse positions turn-by-turn constitute a discrete signal, when taken in a fixed

point along the accelerator. In principle, this signal can be filtered.

From the available filters, the band-pass filter was chosen, because it reduces the noise wit-

hout damaging the magnetic errors recovery. In this study, the filter was implemented using

directly PYTHON functions, although trials were also made with own built transfer fun-

ctions. The implementation is as a second order filter, with Butterworth coefficients and the

double run function given in [42].

Also previous trials showed that the best results are obtained using a band-pass filter with

two bands, each band centered on the transverse tunes νx and νy (a 99 % uncertainty is

reached if only one tune band is used without noise when the using thin magnetic errors),

both bands with the same bandwidth.
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Figure 5-1.: Frequency Response for the Dual Band-pass Filter. It is designed to have its

bands at the frequencies 0.2805 and 0.309.
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The filtered signal is the addition of the signals obtained with the two single band-pass filters,

whose frequency response looks like Figure 5-1, and in case of overlapping, the addition of

the filtered signals is followed by the subtraction of the corresponding overlapping band-pass

signal.
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Figure 5-2.: FFT for the Vertical Positions at BPM.14L5.B1 after 2000 turns. Ideal orbits

with noise from a Normal Distribution. The left plots are the complete spec-

trum while the right plots are a close-up for the bottom of the spectra. In

both cases a superimpose of a simulated trajectory (sim. Y), a sim. with noise

added (noi. Y), and two noi. filtered signals (noi. Y Fil.2 and noi. Y Fil.1),

is presented. The bandwidths used for the filtered signals Fil.2 and Fil.1 are

0.004 and 0.001, in 2π rad/turn units, respectively.

Figure 5-2 contains the beam y-trajectory in the frequency space for one BPM of the LHC.

Four signals are plotted in the same axis, the FFT of: the simulated, with noise, and filtered,

trajectories. This representation allows to observe how the amplitude of the noise signal is

reduced in the filtered signals. Filter Fil N.1 is the filter with a narrow central frequency

band (Bandwidth of 0.001 tune units) while filter Fil N.8 is the filter with a more broad

central frequency band (Bandwidth of 0.004 tune units).

When noise is presented in the orbits, The Action (J) and Phase (δ) are modified in both

planes X and Y. Figure 5-3.left contains J against s, while Figure 5-3.right contains δ against

s. The plots are for the Y plane under these conditions: without noise, for Gaussian noise

and filtered. The value of J is affected after the use of the filter Fil N.1. The dispersion of

the action and phase variables is reduced using the filters (keeping the jump produce by the
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magnetic errors).
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Figure 5-3.: Action (J) and Phase (δ) along the LHC ring for one orbit type. Obtained

from the simulation, without noise (Sim.), with Gaussian Noise (Noi. Sim.),

and using filters with a narrow and broad frequency band ( Filter 1 with a

bandwidth of 0.001 tune units and Filter 8 with a bandwidth of 0.004 tune

units). Two thin magnetic errors are installed at 13271 m.

A report about this filter have been already presented at a Conference during the develop-

ment of this dissertation, refer to [41], for the details of the filters. The machine tunes after

added the magnetic errors are 0.309 in Y and 0.2805 in X.

Preliminary Results with Simulated Orbits

The Action and Phase obtained in the previous plots, Figure 5-3, are obtained from a si-

mulation of Beam 1 in the LHC simulator in MAD-x. Two magnetic errors B1 and A1 were

installed in the same longitudinal position of MQXA.3L5 at the accelerator.

Figure 5-4 shows the results for the uncertainty of the magnetic measurements when noisy

orbits are filtered with the Dual Band-pass Filter. The Uncertainty (uncert. corresponds to

relative error) is plotted against the bandwidth ∆ω, for the different studied cases.

According to S.Y. Lee in [6] the closed orbit can be extracted from the turn-by-turn orbits

using a low-band pass filter. In Figure 5-4, results using a low-band pass filter (ωcut =0.075)
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Figure 5-4.: Results for Dual Band-pass Filter in orbits with Gaussian Noise. The Uncer-

tainty (unc.) for B1 and A1 are plotted against the bandwidth. The results

without filter are included as a horizontal line. Also, the results when the

closed-orbit is obtained from a Low-band pass filter is included as -clo.

for the closed-orbit calculation are reported with the line labelled as -clo. In the others, the

closed-orbit is the average of the TBT trajectories. When there is noise at many frequencies

a discrepancy on the results, in how the closed orbits is obtained, is observed.

Something similar occurs when noise from a uniform distribution is added to the orbits

instead of the noise from a Gaussian or Normal distribution. Comparing the results from

the two distributions, the noise from a uniform distribution implies a less dispersion in the

magnetic errors measurements.

In conclusion, the dual band-pass filter with a bandwidth of 0.0174 around the transverse

tunes can be used to highly decrease Gaussian and Uniform noise in LHC orbits, when mea-

sure A1 and B1 at the same quadrupole using the APJ method as presented.

The results reported in this section have modifications of the original method APJ, these

are: To obtain A1 and B1, the selection of the orbits in here implies that 8 points (two from

each 4-type orbit, which are comming from the symmetry in the sinusoidal function, refer

to [41] to know about this formable orbits) are available to solve:

θx = −xB1 + yA1 and θy = xA1 + yB1 (5-2)

for a higher precise level, an implementation of a 2D independent fit is done. The orbits

were selected in between a phase interval of 0.15 rad. Each orbit, called a formable orbit, is



42 5 Design of a Digital Filter to Reduce Noise in LHC Orbits

the average of the TBT orbits that have the maximum. Also, an initial reformulation of the

error position estimation is done in the PYTHON APJ code. The transverse error position

is taken as:

zerror =
√

2J̄0βz,error sin (ψz,error − δ̄0) (5-3)

where J̄0 and δ̄0 are the average of the Action and Phase in a region before the error (generally

the arc before the IR), respectively, and βz,error and ψz,error are the beam β-function and

phase advance, at the longitudinal position of the magnetic error, respectively.

5.2. Signal to Noise Ratio for the Band-Pass Filter

With several values of tunes in the simulator of the LHC but keeping the same LHC op-

tics, the collision sequence V.6.5 for the LHC accelerator, the Band-pass filter (as described

above and reported in [41]) was evaluated. It was found necessary, along this process, to

include some improvements in the filter. Mainly to take into account the case where the

vertical transverse tune is larger than the horizontal transverse tune; also there was found a

mistake in the writing code, that does not change the previous results, but that was corrected.

Therefore, the filter proven to be useful in all the ranges of frequencies. The simulations

where made using two normal quadrupole errors at IR1 of 0.00001 and 0.000015 m−2. The

errors were installed in the quadrupoles MQXB.A2L1 and MQXA.1L1, and the tunes were

modified to have close values of the LHC experiment of 2010.

For this dissertation it was studied as well, the efficiency of the band-pass filter to reduce

the noise. This was done by obtaining the corresponding Signal to Noise Ratio. For this, to

isolate the amount of noise was a concern. The different approaches end up in the problem

that the filter reduces the amplitude of the final signal so the initial and final signals cannot

be compare to get noise. Those strategies were to get the noise from the difference between

an orbit without noise and an orbit (selected in the same way that the previous one) obtained

from the treated orbits, where noise was added and had been filtered.

Therefore, to get the amount of noise property, the signal without noise was filtered and

subtracted from the signal where noise was added and had been filtered. The measure of

the noise is done for each transverse plane independently. The noise was taken to have a

statistical dispersion along the ring given by:

σ =

√∑N
i=1(zi)2

N − 1
(5-4)

where zi is the amplitude or transverse position, in units of length, at the position where the
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measurement is made, in the BPM ith, and N is the amount of measurements or BPMs used.

This study includes the analysis of the difference in efficiency for the specific regions defined

in the accelerator by the APJ method, in other words, to get to know if there is a depen-

dency on the filter efficiency and the analyzed region, which is the region before or after

the magnetic error. In Figure 5-5 there is the plots for the signal to noise Ratio for small

band-widths ∆ω. In the Ratio, the Amplitude is taken as the amplitude of the analyzed

orbit which is given by the maximum value of the orbit in the corresponding region. The

graphs in the figure are for the maxmax orbit of the case.

From the plots it is observed that there is not a difference in how the filter is less or more

effective with the APJ region, neither there is a difference with respect to the transverse

plane involves. Additionally, for this particular case, two normal quadrupole magnetic errors

(which imply narrow peaks in the frequency spectra), there is not a single optimum band-

width, it is observed that as the bandwidth is getting shorter, the greater the amount of

noise that is reduced.
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Figure 5-5.: Ratio Amplitude/Noise against the Band-Width for the Band Filter. Results

for the regions before and after the location of the magnetic error in the trans-

verse planes X and Y.

These studies for the Ratio allow to evaluate the quality of the filter, more than just to

identify if the filter reduce the noise or not. This because it could be possible that the noise

decreases with the amount of signal that the filter always takes, and at the end, the final
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signal (after it had been filtered) obtained gives less information than the case of the signal

with just noise added.

All the previously described studies are important because the efficiency of the filter is in-

dependent on the APJ, the technique used to measure the magnetic errors. And, it was

obtained that the band-pass filter decreases the noise as its bandwidth becomes shorter, in

this way the filter is getting more efficient as its bandwidth reduces in size.

Also it was studied the sensitivity of the filter with the frequency. This was done in two ways,

the first one, by taking the signal as the obtained from the simulator orbits, and the second,

by taking a fictitious sinusoidal signal. In the first case, the function MATCH of MAD-X

is used to obtain fractions between 0.0 and 0.5 for the accelerator tune; the trajectories are

obtained after 1000 turns, noise with a normal distribution is added, and then the orbits are

selected. In the second case, the fictitious signal was created as a specific sinusoidal with a

phase distribution closes to the obtained from the simulated orbit; noise is then added as

other sinusoidal signals but with a lesser amplitude. In both cases it was found that the filter

is effective.

5.3. Different Ways to Reduce Noise in the Orbits by

applying Digital Filters.

The different ways explored to reduce noise during this dissertation, correspond to the seve-

ral combinations of the digital filters which have been already tested to be effective in the

reduction of noise in the LHC orbits.

These filters are:

Filter obtained as the Average of many orbits, as reported in [3], in here denoted by

Prom. The suitable final orbit is able to be obtained even for experimental orbits.

Band-pass Filter, developed for this dissertation, described at the beginning of this

chapter and reported in [41], where trials for orbits with noise from normal distribution

and uniform distribution are introduced. In here this filter is denoted by Band.

Filter from the Singular Values Decomposition, as reported in [43], in here denoted by

Svd. Studies during this dissertation started with 100 singular values, and then with

10, 8, and 4 (best for two K1 errors), agreed with what is reported in [43] and in all

cases the results presented in this dissertation are obtained using 8 singular values.

This is done in an effort to compare to the techniques developed and used in the LHC

and the taken program is svd clean.py (version at 2011).
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Therefore the combinations of filters are seven. For this dissertation these different ways to

reduce noise are denoted by:

1. Prom

2. BandProm

3. BandSvdProm

4. Band

5. Svd

6. SvdProm

7. SvdBandProm

Where each combination of names indicates the hierarchy or sequence that is followed to

obtain the final filtered orbits, the first applied filter is the one with the name more at the

left. For example the combination denoted by BandProm implies that the original orbits

which includes noise are filtered first using the Band filter and immediately the resulted

orbits are filtered using the filter Prom.

Nevertheless, before presenting the results for the different ways to reduce the noise, which

are developed in the following chapters, some tools are implemented and presented below.

This is because most of the filters have as an outcome a turn-by-turn orbit, generally with

the same amount of orbits or turns that the one initially given as input, while the filter Prom

gives as an output a single orbit.

When using the Action and Phase Jump method, as mentioned before, four types of orbits

are obtained from the turn-by-turn orbit. Therefore after filtering the orbits, with filters

different than Prom, the selection of the orbits have to be done. According to the theory, the

orbits must be selected taking into account that the phase of the selected orbit ψ0 is equal

or relatively close to the phase ψd of the point in the accelerator where the magnetic error

is measured.

Two approaches were developed to select the orbits without using Prom, these are called

Best and Sel1. In Figure 5-5, presented above, the selection of the orbit maxmax is made

using the Sel1 option, although similar results were obtained from the orbits selected in

other ways.

In all cases the selection of the single orbit is performed from a reference phase ψ0, given by

the expected phase at the APJ region which contains the magnetic errors.
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The selection of the orbits made by Best is based in the minimization of:√
(ψx,0 − ψx,d)2 + (ψy,0 − ψy,d)2 (5-5)

which is given as distance for the two transverse planes X and Y.

The selection of the orbits made by Sel1 is based on the idea that the planes has an opposite

relation, if the difference in phase (ψ0 - ψd) in X is maximum then the difference in Y must

be a minimum. Therefore the quantity used to minimize is:

|ψx,0 − ψx,d| − |ψy,0 − ψy,d| (5-6)

Both selections were tested during this dissertation and the values obtained for the magnetic

errors were almost similar and close to the expected values installed in the LHC simulator

for beam 1. Some differences are observed when noise is included but, unless specified, in

the following chapters, the reported results are made with the selection Best. The selection

of the orbits starts with orbits which have a phase as far as± 0.5 rad from the expected phase.

On the other hand, there are some comments about the filter Band, to tell. A difficulty

found when using Band is to obtain an optimal bandwidth, as it is observed in the following

chapters.

Even more, from the trials changing the transverse tunes, in the range 0.0 to 0.5, it was

found that the optimal bandwidth is different for each tune case, and later also with the

formulation of APJ which is used to obtain the magnetic errors. However, for some of the

combinations of filters, the optimal bandwidth is reduced to a smaller range.

Nevertheless, as expected, the trials showed that the filter Band has the advantage of reduce

or eliminate orbits which have frequency values further from the central frequency of the

filter. Even though, during the process, some Fourier frequencies values close to the central

frequency change a little bit, so the filter selection is not perfect. This last does not seem to

be a problem to obtain the magnetic errors using the APJ method.

In any case, it is expected to plot some calibration graphs before doing the analysis of ex-

perimental data. These plots are to obtain the most suitable bandwidth and are discussed

and presented during this dissertation, in the following chapters.

An extension of what can be used to filter the orbits are the filters used in the LHC besides

the Svd. One of them is the window type filter, although it is mainly development to take

out the constant part of the signal, which is not necessary to reduce noise. This is left for

further investigations.



6. Reformulation of the APJ, and Orbits

Analysis

This chapter is one of the core chapters for this dissertation. It contents the main aspects

developed for the reformulation of the Action and Phase Jump Method and its correspon-

ding results on simulated orbits. It is divided in four main sections. The first two present

the theoretical development of the new formulation, while the last two subsections present

the results of the comparison using both formulations.

For the theoretical part, it is recommend to have done a previous review of the precedent

chapter. The reformulation presented in here is based on the concepts already explained in

this dissertation, which are taken as granted. First, the equations for the removal of the

BPM dependency are introduced. Then the equations which include the quadrupole phase

advances are introduced.

The comparison between the formulations is performing using simulated orbits, which are

consider the ideal orbits to test the deduced theoretical equations. Because the method is

developed for analysis on experimental orbits, trials using a normal distribution to add noise

to the ideal orbit were performed. In the last part of this chapter, the results of the analysis

is presented. First a direct comparison of the formulations is made and then the results for

the different ways to reduce noise are presented. The simulated orbits are obtained using the

MAD-x simulator of the LHC.

6.1. Theoretical Equations Removing the Central BPM

Dependency

To measure the quadrupole magnetic errors in an IR, the APJ method uses the BPMs at

the Arc previous to the error region, and the Arc after it. As mentioned before, the Action

and Phase variables along the accelerator are obtained from these measurements.

Afterwards, from the Action (J) and Phase δ variables, before and after the magnetic error,

the observed kick for the orbit, can be determined. The relation to obtain that quantity is
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(equation (15) in [2]), which is:

θz =

√
2J0 + 2J1 − 4

√
J0J1 cos (δ1 − δ0)

βz(sθ)
−→ θz

√
βsθ =

√
2J0 + 2J1 − 4

√
J0J1 cos (δ1 − δ0)

(6-1)

where the values Jn, δn are the average of the measurements before and after the magnetic

error region.

And at the same time for the X plane, for instance, θx = −B1x + A1y, hence, the trans-

verse positions x, y are needed to obtain the magnetic errors B1 and A1. As described in

the previous chapter, the transverse position at the error region is inferred from one BPM

measurement at the IR [32]. In some cases, this BPM measurement can become the biggest

source of uncertainty when the action and phase jump technique is used, because it is a sin-

gle measurement and also because the high noise that LHC BPM system has for low bunch

crossing measurements, which is the configuration for the magnetic error measurements.

The central BPM dependency is given by the measurement taken for the error positions x, y,

given explicitly in equation (4-10). The reformulation consists in to change the total kick

produced in the orbit by the magnetic error, equation (6-1) or (4-6), given by the dependency

to the magnetic strength multipolar components, to end up obtaining an expression where

the error position is not included.

The changes start by including more than one source of magnetic error. From the theoretical

trajectory after the magnetic error (reported in Table 4-1):

z(s) =
√

2J1βz(s) sin (ψz(s) − δ1)

z(s) =
√

2J0βz(s) sin (ψz(s) − δ0) + θz

√
βz(s)βsθ sin (ψz(s) − ψsθ) (6-2)

but assuming that many magnetic errors are presented, so equation (11) in [] is obtained

z(s) =
√

2J1βz(s) sin (ψz(s) − δ1)

z(s) =
√

2J0βz(s) sin (ψz(s) − δ0) +
∑
i

θz,i

√
βz(s)βsθ,i sin (ψz(s) − ψsθ,i) (6-3)

and the sum is over the number of magnets, each one denoted by i.

If, by first approximation it is considered that the phase advance does not change along the

IR region, or that the change is almost null, the factor sin (ψz(s) − ψsθ,i) is sin (ψz(s) − ψsθ)



6.1 Theoretical Equations Removing the Central BPM Dependency 49

and can be taken out of the sum, therefore

z(s) =
√

2J1βz(s) sin (ψz(s) − δ1)

z(s) =
√

2J0βz(s) sin (ψz(s) − δ0) + sin (ψz(s) − ψsθ)
∑
i

θz,i

√
βz(s)βsθ,i (6-4)

Even more, the terms can be organized in a similar way performed in the original formulation

described in section 4.1. The sinusoidals are expressed as the trigonometric sum of the

product of sinusoidal functions:

z(s) =
√

2J1βz(s) sin (ψz(s) − δ1) =
√

2J1βz(s)[sin (ψz(s)) cos (δ1)− cos (ψz(s)) sin (δ1)]

z(s) =
√

2J0βz(s)[sin (ψz(s)) cos (δ0)− cos (ψz(s)) sin (δ0)] +

+[sin (ψz(s)) cos (ψsθ)− cos (ψz(s)) sin (ψsθ)]
∑
i

θz,i

√
βz(s)βsθ,i (6-5)

therefore, taking the coefficients for sin (ψz(s)) separately from the coefficients of cos (ψz(s)),

the final system of equations is:√
2J1βz(s) cos (δ1) =

√
2J0βz(s) cos (δ0) + cos (ψsθ)

∑
i

θz,i

√
βz(s)βsθ,i (6-6)√

2J1βz(s) sin (δ1) =
√

2J0βz(s) sin (δ0) + sin (ψsθ)
∑
i

θz,i

√
βz(s)βsθ,i (6-7)

Using the trigonometric identity for sinusoidals of δ1 and taking sin (δ1) from equation (6-7)

and cos (δ1) from equation (6-6), after simplifying it is obtained that

J1 = J0 +
√

2J0 cos (ψsθ − δ0)
∑
i

[θz,i
√
βsθ,i] +

1

2

[∑
i

θz,i
√
βsθ,i

]2

(6-8)

On the other hand, multiplying equation (6-6) by sin (δo) and equation (6-7) by cos (δo) ,

some terms are simplified and the final expression is:√
2J1 cos (δ1 − δ0) =

√
2J0 + cos (ψsθ − δ0)

∑
i

[θz,i
√
βsθ,i] (6-9)

and in this last equation the term cos (ψsθ − δ0)
∑

i [θz,i
√
βsθ,i] is obtained from equation

(6-8), so

√
2J1 cos (δ1 − δ0) =

√
2J0 +

J1√
2J0

− J0√
2J0

− 1

2
√

2J0

[∑
i

θz,i
√
βsθ,i

]2

(6-10)

therefore

2J1 + 2J0 − 4
√
J0J1 cos (δ1 − δ0) =

[∑
i

θz,i
√
βsθ,i

]2

(6-11)
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and a final result very close to equation (6-1) is obtained

√
2J0 + 2J1 − 4

√
J0J1 cos (δ1 − δ0) =

∑
i

[θz,i

√
βz,i(sθ)] (6-12)

A way to understand this last equation is to notice that the magnetic error strength is given

by equation (6-1) but applied to every magnetic error i independently.

From the trajectory solution in the region of the magnetic error, given by the theoretical

development of the APJ method,

z(sj) =
√

2Jz,0βz(sj) sin (ψ(sj)− δ0) (6-13)

the kick can be expressed as:

θx,i = B0,i −B1,imsεi ,x

√
βx,sεi + A1,imsεi ,y

√
βy,sεi + 2A2,imsεi ,x

√
βx,sεimsεi ,y

√
βy,sεi + ...

θy,i = A0,i + A1,imsεi ,x

√
βx,sεi +B1,imsεi ,y

√
βy,sεi + 2B2,imsεi ,x

√
βx,sεimsεi ,y

√
βy,sεi + ....(6-14)

where a new variable is defined as:

mj,z =
√

2Jz,0 sin (ψz(sj) − δz,0) therefore z(sj) = mj,z

√
βz,j (6-15)

Taking the equal side of the previous equations, the reformulation presented as a system of

equations is: √
2Jx,0 + 2Jx,1 − 4

√
Jx,0Jx,1 cos (δx,1 − δx,0) =∑

i

[
B0,i

√
βx,sεi −B1,imsεi ,x

βx,sεi + A1,imsεi ,y

√
βy,sεiβx,sεi + 2A2,imsεi ,x

βx,sεimsεi ,y

√
βy,sεi + ...

]
√

2Jy,0 + 2Jy,1 − 4
√
Jy,0Jy,1 cos (δy,1 − δy,0) =∑

i

[
A0,i

√
βy,sεi + A1,imsεi ,x

√
βy,sεiβx,sεi +B1,imsεi ,y

βy,sεi + 2B2,imsεi ,x

√
βx,sεimsεi ,y

βy,sεi + ....
]
(6-16)

In this system, the left hand side in the equations depends only on measured quantities, while

at the right hand side the values taken from the model of the accelerator are presented, the

unknowns of the system and the phases δ0. In this way, if all the variables on the left hand

side are obtained from more than one measurement, there is an intrinsic improvement of the

reformulation compared to the old one.

Taking the most general case, to obtain the magnetic errors for a triplet, in the LHC, the

composed by two normal quadrupole magnetic errors and one skew quadrupole error ([34]),
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the reformulated equations imply that:√
2Jx,0 + 2Jx,1 − 4

√
Jx,0Jx,1 cos (δx,1 − δx,0) =

β̂K1sms,yK1s − β̂x,K1,I
mK1I,xK1,I − β̂x,K1,II

mK1II,xK1,II√
2Jy,0 + 2Jy,1 − 4

√
Jy,0Jy,1 cos (δy,1 − δy,0) =

β̂K1sms,xK1s + β̂y,K1,I
mK1I,yK1,I + β̂y,K1,II

mK1II,yK1,II (6-17)

where

β̂z,t =

∫
βzds for t = K1,I ,K1,II (6-18)

ms,z = mK1s,z and β̂K1s =

∫ √
βxβyds/Ls (6-19)

where Ls is the length for the skew quadrupole.

In equation (6-17), the notation and units correspond to the nomenclature in MAD-X [5].

These are: K1, for The normal quadrupole coefficient and K1S for The skew quadrupole coef-

ficient ), respectively.

To obtain the magnetic errors an additional step have to be done. The system of equations

are composed by only two equations while the unknowns are K1,I ,K1,II ,K1s. To overcome

this issue, a couple of orbits are used to obtain the magnetic errors. These orbits are taking

from the 4 type selected orbits, mentioned earlier.

For this dissertation, the final system of equations was solved numerically, and the final

magnetic error for each TBT orbit was taken as the average of the four combinations of a

couple of orbits that are available. The numerical function used is linalg.solve implemented

in the PYTHON library [42].

Alternatively, there is a possibility of solving the system in an explicit way. In that case the

system of equations obtained is:

K1,I =
kxβ̂y,II − kyβ̂x,II
β̂x,I β̂y,II − β̂x,II β̂y,I

K1,II =
kxβ̂y,I − kyβ̂x,I

β̂x,II β̂y,I − β̂y,II β̂x,I

K1s =
−Ty,dMy,f + Ty,fMy,d

β̂K1s(Mx,fMy,d −Mx,dMy,f )
(6-20)

where
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kx =
Tx,dMy,f − Tx,fMy,d

−Mx,dMy,f +Mx,fMy,d

(6-21)

ky =
Ty,dMx,f − Ty,fMx,d

My,dMx,f −My,fMx,d

(6-22)

where Mz,t =
√

2J tz,0 sin (ψ(sz,E)− δtz,0) (6-23)

Tz,t =

√
2J tz,0 + 2J tz,1 − 4

√
J tz,0J

t
z,1 cos (δtz,1 − δtz,0) (6-24)

for the pair of chosen orbits t = {d, f}, in each of the transverse planes z ε {x, y} and the

Courant-Snyder parameters in the triplet according to the label in subscript E.

The magnetic errors measured using APJ are obtained for the IR triplets, and the above

relations are valid for any triplet, independently.

In particular for the LHC, there is a change in phase advance of almost π rad, between the

triplets at the left and right of the IP. The reformulation presented was obtained taking into

account that the selected orbits are in certain phase with all the quadrupoles at the same

time. If quadrupoles at the right triplet are chosen as a corrector but the orbit is selected for

a magnetic error at the left triplet, a change in of −π rad in the quadrupole phase advance

must be included, inversely, an orbit selected for a magnetic error at the right triplet implies

that the phase advance of a quadrupole at the left triplet must be corrected to have π rad

more.

Therefore, for the LHC lattice the above equations can be used with quadrupoles at the left

triplet and at the right triplet, at the same time.

On the other hand, the system can be solved explicitly when the analyzed case is of only two

normal quadrupole errors K1. Even more, the calculation can be made from just one orbit.

The magnetic errors are obtained from the following relations:

K1,I =
kxβ̂y,II + kyβ̂x,II

β̂x,II β̂y,I − β̂y,II β̂x,I

K1,II =
kxβ̂y,I + kyβ̂x,I

−β̂x,II β̂y,I + β̂y,II β̂x,I
(6-25)

where kz =

√
2Jz,0+2Jz,1−4

√
Jz,0Jz,1 cos (δz,1−δz,0)√

2Jz,0 sin (ψz,E−δz,0)
and the sub-index E corresponds to the longi-

tudinal position of the triple that contains the quadrupoles or magnetic errors.
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The results using this reformulation of the Action and Phase method are presented below

with simulated orbits and in the next chapter for the experimental orbits.

6.2. Theoretical Equations Including Different Phase

Advances at the Quadrupoles Triplets

Two different approximations are established to take into account the case where the phase

advances of the quadrupoles at the triplets of the LHC IRs are not equal.

The first option is considering the total kick as the directly sum of the oscillations produced

for each magnetic error individually.

This development is done for the case of the betatron oscillations induced by two quadrupole

magnetic errors from the same LHC triplet. The theoretical approach is to follow what it is

stated in [14].

Starting with the position after the error given by the APJ method (Table 4-1)

z(s) =
√

2J0βz(s) sin (ψz(s) − δ0) + θz
√
βsβsθ sin (ψs − ψsθ) (6-26)

the individual contribution of the magnetic errors is therefore given by θz
√
βsβsθ sin (ψs − ψsθ).

For the two magnetic errors a and b, if only the linear quadrupole error component is taking

into account, the change in the orbit in the horizontal plane is given by

x(s) = −Ba
1

√
βxβxaxa sin (ψx − ψxa)−Bb

1

√
βxβxbxb sin (ψx − ψxb) (6-27)

these contributions can be added as they were phasors, therefore the total change in the

orbit due to the presence of the linear quadrupole magnetic errors is:

x(s) = −
√
Ba

1B
b
1

√
βx(s)

√
βxaβxbxeqv sin (ψequi) (6-28)

where

x2
eqv = x2

a

√
βxa
βxb

Ba
1

Bb
1

+ x2
b

√
βxb
βxa

Bb
1

Ba
1

+ 2xaxb cos (ψxa − ψxb)

and ψequi = tan−1

(
Ba

1

√
βxaxa sin (ψxa) +Bb

1

√
βxbxb sin (ψxb)

Ba
1

√
βxaxa cos (ψxa) +Bb

1

√
βxbxb cos (ψxb)

)
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The distortion of the orbit in the phase-space can also be obtained. This is done as a first

approximation of the derivative of the transverse position: x′ = x(s)
∆s

= ∂x
∂s

, and at the same

time ∆s = β∆φ provided that the β-function inside the quadrupole is almost constant.

After the mathematical procedure, the total magnetic error can be expressed in terms of the

total orbit distortion θ = −B1x, and the corresponding magnetic error is given by

B1 =
1

βx(s)

[
∆β(s)

4βx(s)∆ψ(s)

]
(6-29)

from the theoretical relations in accelerator physics expected for the RMS β−beating, the

corrector strength is given by:

B1 ≈
1

βx(s)

[ √
(Ba

1)2β2
xa + (Bb

1)2β2
xb

4(2
√

2| sin (2πνx)|)∆ψx(s)

]
(6-30)

where νx is the decimal part of the horizontal transverse tune.

This same procedure can be followed for the vertical plane and the results is the similar

when the vertical plane is evaluated in the variables. In both cases, with only one corrector

the two magnetic errors are taking into account.

Analogously, the procedure can be followed to obtain a single skew quadrupole error from

two skew quadrupole errors. The result is the same as given by equation (6-30).

Sometimes the measurement of ∆ψx(s) and βx(s) at the equivalent error position can be a

difficult task or with a large inaccuracy during the experiment. Also, ideally the formulation

will be inversible for instance to get magnetic strength corrections at some quadrupoles from

an equivalent point in the accelerator, but in the equations are not. Therefore this approach

is impracticable.

Even more, when taking directly the result for the orbit given by (6-28), the equivalent phase

not necessary implies an available measurement position in the accelerator, therefore a pro-

cedure as described above is also a non-practical way to measure magnetic errors, although

it is a base to calculate the errors.

Secondly, an alternative way to include the case that the phases advances at the triplet

quadrupoles are different is to express the correction of the magnetic errors as the values to

cancel the magnetic errors measured inside a LHC triplet, inside the theoretical expressions.
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Starting, again, from the position after the magnetic error, equation (6-26), for single turn

analysis:

z(s) =
√

2J0βz(s) sin (ψz(s) − δ0) +
∑
i

θz,i
√
βsβsθ,i sin (ψs − ψsθ,i) (6-31)

the distortion of the orbit is taken as the sum of distortions produced by many quadrupoles

that after the correction are canceled, therefore:∑
i

θz,i
√
βsβsθ,i sin (ψs − ψsθ,i) = 0 (6-32)

if two correctors are chosen to overcome the magnetic error at a certain position close to

those quadrupoles, only three contributions to the distortion are obtained:

θz,a
√
βsβsθ,a sin (ψs − ψsθ,a) + θz,b

√
βsβsθ,b sin (ψs − ψsθ,b) + Θz

√
βsβsθ sin (ψs − ψsθ) = 0

(6-33)

and if the kick produced for the quadrupoles are replaced, the equations for each are sum-

marized in:

sgnz zaB1,a

√
βsβsθ,a sin (ψs − ψsθ,a) + sgnz zbB1,b

√
βsβsθ,b sin (ψs − ψsθ,b) +

+Θz

√
βsβsθ sin (ψs − ψsθ) = 0 (6-34)

where sgnz is +1 if the equation is written for the plane z=Y and −1 if the equation is

written for the plane z=X, according to the multipolar expansion of the magnetic field and

their kick produced, as mentioned earlier (equation 4-7).

Expanding each sinusoidal function as product of sinusoids

sgnz zaB1,a

√
βsβsθ,a[sin (ψs) cos (ψsθ,a)− cos (ψs) sin (ψsθ,a)] + sgnz zbB1,b

√
βsβsθ,b[sin (ψs)×

× cos (ψsθ,b)− cos (ψs) sin (ψsθ,b)] + Θz

√
βsβsθ[sin (ψs) cos (ψsθ)− cos (ψs) sin (ψsθ)] = 0

Taking the coefficients for the sinusoidals of ψs given by the orthogonal properties, a couple

of equations are obtained, where a division by βs is done previously

sgnz zaB1,a

√
βsθ,a cos (ψsθ,a) + sgnz zbB1,b

√
βsθ,b cos (ψsθ,b) + Θz

√
βsθ cos (ψsθ) = 0

sgnz zaB1,a

√
βsθ,a[− sin (ψsθ,a)] + sgnz zbB1,b

√
βsθ,b[− sin (ψsθ,b)] + Θz

√
βsθ[− sin (ψsθ)] = 0

(6-35)

And as before, each position zi at the quadrupoles can be obtained from the Action and

Phase method, equation (6-13), and using the notation given by equation (6-15), which is

z(sj) = mj,z

√
βz,j, all the positions zi in each corresponding plane are determinated. Also,
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the kick produced by the magnetic errors in the orbits, Θz can be obtained from the APJ

method using equation (6-1). Therefore the system of equations to solve is:

−ma,xβx,aB1,a cos (ψx,a)−mb,xβx,bB1,b cos (ψx,b) +

√
2Jx0 + 2Jx1 − 4

√
Jx0 J

x
1 cos (δx1 − δx0 )

cos (ψθ,x)
−1 = 0

−ma,xβx,aB1,a sin (ψx,a)−mb,xβx,bB1,b sin (ψx,b) +

√
2Jx0 + 2Jx1 − 4

√
Jx0 J

x
1 cos (δx1 − δx0 )

sin (ψθ,x)
−1 = 0

ma,yβy,aB1,a cos (ψy,a) +mb,yβy,bB1,b cos (ψy,b) +

√
2Jy0 + 2Jy1 − 4

√
Jy0J

y
1 cos (δy1 − δ

y
0)

cos (ψθ,y)
−1 = 0

ma,yβy,aB1,a sin (ψy,a) +mb,yβy,bB1,b sin (ψy,b) +

√
2Jy0 + 2Jy1 − 4

√
Jy0J

y
1 cos (δy1 − δ

y
0)

sin (ψθ,y)
−1 = 0

(6-36)

The orbits selected using APJ, the 4-type orbits, can be used in the above equations, with

the values of βx,a, ψx,a, βx,b and ψx,b given by the model of the accelerator. In this way

for each orbit, four equations are written with B1,a and B1,b as the unknowns, taking into

account the values of ψθ,x, ψθ,y as the selected phases for each orbit.

From the results obtained with ideal orbits it is found that the best combinations of equations

to obtain the magnetic errors are:

−ma,xβx,aB1,a sin (ψx,a)−mb,xβx,bB1,b sin (ψx,b) +

√
2Jx0 + 2Jx1 − 4

√
Jx0 J

x
1 cos (δx1 − δx0 )

sin (ψθ,x)
−1 = 0

ma,yβy,aB1,a cos (ψy,a) +mb,yβy,bB1,b cos (ψy,b) +

√
2Jy0 + 2Jy1 − 4

√
Jy0J

y
1 cos (δy1 − δ

y
0)

cos (ψθ,y)
−1 = 0

(6-37)

For each quadrupole ψ =
∫ s

0
[1/β(s)]ds is a calculated integral (the Simpson’s Rule were

used during this dissertation), and ψθ is given by the point error in the orbit selections.

As mentioned above, when using magnets at the right triplet but with the orbit selected

to be a maximum at the left triplet, it is necessary to take the phase advance of the right

quadrupole as its corresponding value plus −π. Also, the magnetic errors recovery using

MAD-x simulations are made with βB1 equal to β̂K1 as given in the previous equations, see

equation (6-18).
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6.3. Comparison Reformulation and Old Formulation

using Ideal Orbits

In this section the results for the analysis of simulated orbits when using the new formulation

removing the central BPM measurement and the new formulation including the quadrupoles

phase advances are presented. The orbits are obtained from the LHC simulator in MAD-x [5].

The results when using the new formulation of APJ, discussed previously in this chapter,

are obtained from the numerical solution of the equations (6-17) and (6-37), and in this sec-

tion the same orbits are used with the old formulation (equations (4-11) and (6-18) ). The

orbits are considering ideal because they are obtained from the same simulator used as the co-

rresponding model and there is not included noise or different errors from the ones measured.

Initially, from simulations developed during this investigation, where three magnetic errors

are included, (the same three used in most of the demonstrations in K1(Q2L5), K1(Q2R5),

K1s(MQSL5)), it have been checked up that the new formulation of the Action and Phase

preserved the fact that the magnetic errors recovery is independently of the initial amplitude

of the turn-by-turn orbits.

Table 6-1 shows the results for the relative errors to obtain the three magnetic errors at the

LHC region IR5. The measurements are made for Beam 1 and Beam 2. For both formulations

the integrals of the β−functions were used, for each corrector quadrupole.

Table 6-1.: Comparison of the Relative Errors when using the reformulation of the APJ

(New) and the previous formulation (Old) to recover the Magnetic Errors.

sim. ∆K1(Q2L5) ∆K1(Q2R5) ∆K1s(MQSL5)

β∗ = 2.0 m [ %] [ %] [ %]

Beam 1

Old Formulation 0.163 0.663 0.524

New Formulation 0.484 0.209 0.323

Beam 2

Old Formulation 0.248 0.619 0.323

New Formulation 0.682 0.418 0.282

Therefore, it was obtained that both formulations have accuracies, in general, similar and in
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all the cases the recovery of the errors are within a 1 % range. However, taking a detailed look

it is noticed that the new formulation improves mainly the recovery of the skew quadrupole

error, and in general, taking into account the three quadrupoles at the same time, the new

formulation is more accurate than the previous formulation, because its worst calculation

compared to the older formulation is compensated by the better calculations of the other

two magnetic errors.

Even more, when measured a single quadrupole magnetic error the direct advantage for the

new formulation is evident, this is that the new formulation does not depend on the mea-

surements of the BPMs at the IR; in fact a reduction in the relative error of the magnetic

error measurement is also obtained. Simulations performing for Beam 1, with a magnetic

error of 0.0001 m2 at the LHC magnet MQXA.1L1 (using β∗ = 2.0 m), shows a change

in the relative error from 0.2035 % (std 0.03407, taking as the statistical deviation of the

measurement with 8 values) when all the BPMs measurements are presented, to 3.896 %

(std 0.3607) when the BPMs measurements at the left triplet of IR1 had been removed.

In both cases, the new formulation implies a relative error of 0.1734 % (std 0.009543). The

difference in the old formulation results comes from the fact that in the first case the mea-

surement taken as the central BPM is the measurement from BPMSW.1L1.B1, while in

the second case the measurement is taken from BPMSW.1R1.B1. In the simulation, the

results are obtained using the average of 8 orbits resulting from the 4-type orbits in each

transverse plane, and the magnetic error calculation is made using the information from just

one transverse plane each time, following the procedure mentioned earlier in equation (4-12).

On the other hand, a simulation of the LHC using the injection optics V6.5 (β∗ = 11.0 m),

where the phase advances in the quadrupole triplets differ from one another is performed

to recover two normal quadrupole magnetic errors at IR5. Using the reformulation which

takes into account that the quadrupoles have a different phase advance and following the

traditional formulation of the APJ, the recovery of the magnetic errors are done.

Table 6-2 presents the results for the relative errors in the recovery of the magnetic errors

using ideal orbits obtained from the LHC simulator. In the first row, there are the results

when the analysis of the orbits is done using the reformulation including the quadrupole

phases (New-Ph) while in the second row the results obtained using the previous APJ for-

mulation (Old) are presented.

From the results it is clear that the reformulation including the phase advances reduce the

relative error in the recovery of the magnetic errors. The presented reduction is more than

50 % for each magnetic error, hence it is significant. Nevertheless, relative errors close to

4 % are obtained for a different example, therefore this approach is not suitable for the

experimental analysis because the expected relative errors are below 1 % using ideal orbits.



6.3 Comparison Reformulation and Old Formulation using Ideal Orbits 59

Table 6-2.: Comparison of the reformulation including the quadrupole phases (New-Ph)

and Old formulation, for the Recovery of Magnetic Errors.

sim. ∆K1(Q2L5) ∆K1(Q2R5)

β∗ = 11.0 m [ %] [ %]

Beam 1

New-Ph 0.868 1.06

Old 4.10 10.7

From here and to the end of this paper, the reformulation is taken as the reformulation

obtained from the removing of the central BPM dependency, mainly because the data and

simulations developed for this dissertation are corresponding to the LHC with the configu-

ration of low-β, when the phase advances of the quadrupoles at the LHC triplet are almost

the same.

However, the phase of the quadrupoles is also taken into account in the systems of equations

in the reformulation of APJ (equation (6-17) ), but it is pointing out as well that there is

the assumption that the single point of error is extended over the quadrupoles with the same

phase advance.

Several simulations were performed using the APJ methods, especially for Beam 1. And

although in the simulation not all what is happening in the experiment can be included,

due to the complexity of the accelerator, the simulation reported above is closer to the ex-

perimental data taken on April 13th, 2010, at 12:54:09, 12:56:24 and 12:59:18 CEST. In the

simulator the tunes were adjusted (after adding the magnetic errors) to the experimental

tunes, using the function MATCH of MAD-x. The observed frequency spectra is closer to

the experimental case, see appendix in [44].

Figure 6-1 shows the scheme followed to obtain the magnetic error at LHC using the Action

and Phase method. The numbers are just a reference to the drawn scheme. The general

description of the steps is below.

Module 1 is to create the multiple turns of 1000 or 2000 turns, this is done with the package

MAD-x, and the output is converted to a file generally called orbit.sdds.new. Optionally,

noise is added to each position using the Module 5 which takes the output from Mad-x and

returns a file called orbit.sdds.new as before. In case of experimental orbits, Modules 1 and

5 are replaced for the experiment and it is expected to obtain an orbit.sdds.new file.
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MAD-x     // Exp  
PTC_track // Data

MAD-x
To create the LHC model 

according 
to the LHC optics of 

orbit.sdds.new

MTPX    //     selBest  or 
MTPY    //        sel1        

Selecturns  //                        

cAB  //  cABma

utils_ActPhase.py

addnoise

qBetIntegral

A1, B1,B1

averii.sdds
averaa.sdds
averia.sdds
averai.sdds

orbit.sdds.new

orbit.sdds.new

1

lattice.asc
triplet.dat

Set up
Фs

Фs

2

3

4

5

6

7

8

lattice.asc
triplet.dat

orbit.sdds.new

Filtering
Band, Svd

9

Figure 6-1.: Modules Scheme for the APJ Method. During this dissertation modules 3, 7,

8 and 9 were created from scratch and as an alternative. Modules 1 and 2 are

written in MAD-x while the others are in PYTHON.

To the multiple orbits some digital filters are applied to reduce noise, before the APJ calcu-

lations. This is done in Module 9, with the filters and their combinations.
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Module 2 is the step to create the LHC model. This is done using MAD-X with parameters

very close to the experimental conditions. Additionally the integrals of the β−function along

the quadrupoles are calculated in Module 3 (and the calculation of φ̂ if the case of the refor-

mulation including different phase advances). The outputs are files lattice.asc and triplet.dat.

From the model, in a manually way, after have decided the equivalent error position, the

phase advances for the selected orbits are identified, this is Module 4.

In Module 7, the orbit TBT, the phase advances at some point closer to the magnetic errors,

and the model are used to select the 4-Type orbits, using the average described previously as

Prom. The four type of chosen orbits, have been already mentioned: ”maxmax”, ”minmax”,

”maxmin” and ”minmin”, in the scheme they are renamed as averaa.sdds, averia.sdds,

averai.sdds and averii.sdds, those are the output of the programs MTP and selecturns,

which initially make the calculations for each plane separately. Alternatively, the selection

of a single orbit is done using the algorithms introduced in this dissertation, equations (5-5)

and (5-6), Best and Sel1 (in Chapter 5).

The calculation of the magnetic errors is done in Module 8, according to the models and for

the orbits previously selected.

Module 6, the utils, contains the basic equations which are discussed in Chapter 4 and pre-

sented in the 2009 paper [2], plus some generic functions used for the other steps or Modules.

During this dissertation, Module 3 was created from scratch based on the given instructions

for previous calculations that were not automatic, Module 8 is replaced by the alternative

equations given by the reformulation of the APJ and Module 9 is introduced to perform

the reduction of noise using digital filters. Also, during the time of this dissertation small

updates were incorporated in some modules.

When analyzing the experimental data from this year 2015, several configurations for the

LHC-II were studied, for the stages where the beam reaches lowest sizes. These optics are

β∗ =1.0, 0.8, 0.65, and 0.40 m at the LHC regions IR5 and IR1.

Tables 6-3 and 6-4 are obtained for the recovery of the magnetic errors installed in three

magnets at IR5 and three magnets at IR1, in the LHC simulator of the 2015’s data. In the

tables, the strength of the magnetic errors installed are reported in the rows labeled Sim.,

the APJ new formulation results are labeled New, while the previous formulation results are

labeled Old.

These results were obtained as the average of APJ results in Beam 1 and Beam 2.
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Table 6-3.: Magnetic Errors Recovery in IR5 using APJ with Ideal Orbits

Case β∗ K1(Q2L5) K1(Q2R5) K1s(MQSL5)

[m] 10−5 [m−2] 10−5 [m−2] 10−4 [m−2]

Sim. 1.0 -1.00 -1.30 3.00

Old 1.0 -0.9993 -1.295 3.019

New 1.0 -0.9955 -1.299 3.008

Sim. 0.80 -1.00 -1.30 3.00

Old 0.80 -0.9996 -1.294 3.019

New 0.80 -0.9953 -1.299 3.008

Sim. 0.65 -1.00 -1.30 3.00

Old 0.65 -1.000 -1.294 3.030

New 0.65 -0.9965 -1.298 3.009

Sim. 0.40 -1.00 -1.30 3.00

Old 0.40 -0.9996 -1.295 3.019

New 0.40 -0.9952 -1.301 3.011

The reported results are consistent to what is expected, and for both formulations, the

recovery values are very closer to the simulated ones. This holds for all the studied LHC

configurations and regions IR5 and IR1.

The orbits used in this analysis can be considered to the ones created by the AC Dipole

because their amplitude does not decrease with the number of turns, as mentioned earlier.
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Table 6-4.: Magnetic Errors Recovery in IR1 using APJ with Ideal Orbits

Case β∗ K1(Q2L1) K1(Q2R1) K1s(MQSL1)

[m] 10−6 [m−2] 10−5 [m−2] 10−5 [m−2]

Sim. 1.0 5.00 -1.00 1.00

Old 1.0 4.987 -0.9974 1.034

New 1.0 4.972 -0.9947 0.9965

Sim. 0.80 5.00 -1.00 1.00

Old 0.80 4.983 -0.9983 1.004

New 0.80 4.968 -0.9945 0.9952

Sim. 0.65 5.00 -1.00 1.00

Old 0.65 4.988 -0.9994 1.121

New 0.65 4.972 -0.9961 1.003

Sim. 0.40 5.00 -1.00 1.00

Old 0.40 5.010 -1.007 1.002

New 0.40 4.968 -0.9959 0.999
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6.4. Comparison Reformulation and Old Formulation

using Noised Orbits

When noise is added to the positions in the trajectories of the simulated orbits, diverse ef-

fects are observed, which will be discussed in this section. First a direct comparison of the

formulations is made and then the results for the different ways to reduce noise are presented.

In the simulations reported along this dissertation, the noise was added directly in the tra-

jectory as a random number, obtained from a normal (also called Gaussian) distribution.

The range for the random number as explained earlier is 0.3 mm according to the discus-

sions studied and reported in [41]. However, in the appendix B interesting results were also

observed when the distribution used for the noise is uniform.

Tables 6-5 and 6-6 present the results for the simulation including noise using orbits where

three magnetic errors had been installed. In the tables, the results for the two formulations

are reported. To obtain the magnetic errors, the noise was reduced using the filter Prom,

and the generation of the orbits is done using the LHC simulator with the configuration for

the experiment in 2010, discussed above in this dissertation.

The statistical average for the obtained three magnetic errors is presented in Table 6-5. Each

average is from 20 values obtained from an equal number of orbits turn-by-turn. In the table,

the rows labeled by w/o Filter correspond to the result obtained for a single orbit selected

using Best and no further filter is applied.

Table 6-5.: Comparison for the Magnetic Errors, obtained using the Old and New Formu-

lation with Simulated Orbits. (β∗ = 2.0 m)

Sim LHC B1 K1(Q2L5) K1(Q2R5) K1s(MQSL5)

noi. 10−6 [ m−2 ] 10−6 [ m−2 ] 10−5 [ m−2 ]

w/o Filter-New -10.5 -12.7 31.4

Prom-New -9.93 -13.1 29.8

w/o Filter-Old -46.1 -5.31 -36.1

Prom-Old -10.1 -12.9 30.0

The results for the corresponding statistical uncertainty are presented in Table 6-6. A similar

notation as the previous table was used.
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Table 6-6.: Comparison for the Uncertainty of the Magnetic Errors, obtained using the Old

and New Formulation with Simulated Orbits. (β∗ = 2.0 m)

Sim. LHC B1 σ K1(Q2L5) σ K1(Q2R5) σK1s(MQSL5)

noi. 10−7 [ m−2 ] 10−7 [ m−2 ] 10−7 [ m−2 ]

w/o Filter-New 20.9 17.5 691

Prom-New 1.55 1.14 59.6

w/o Filter-Old 10718 3569 34817

Prom-Old 2.48 1.58 132

It is observed that the new formulation reduces the uncertainty to almost half of the obtai-

ned value using the previous formulation. This observation is stronger for the magnetic error

given by K1(Q2R5). Also, all the average values obtained using both formulations are like

each other, and at the same time, they are closer to the expected values given by the insta-

lled errors. These values are the ones installed in the simulator: K1(Q2L5)=1.0×10−5 m−2,

K1(Q2R5)=1.3×10−5 m−2 and K1s(MQSL5)=3× 10−4 m−1.

Recently, the results for the comparison between the formulations were presented in a confe-

rence, refer to [45] for more details. The noise reduction observed is notorious for some cases

when using the experimental data, as it is presented in further chapters, and it constitutes

one of the advantages for the new formulation. These results, in some way, deal with the

accuracy to obtain the magnetic errors in the experiments.

The results from all the seven combinations of filters, are summarized to the best com-

binations observed, as below. The procedure to obtain the best combination is explained

and described in appendix B, for uniform noise. The complete sequence of plots for all the

different ways to reduce noise (from normal distribution) is presented in the appendix of [44].

Tables 6-7 and 6-8 presents the results for the different measurements of the magnetic

errors, when using the new formulation of APJ. To a manner of comparison, the results from

the individual filters are included. The best three filters are reported for the measurement

of each magnetic error. A best combination of filters is understood to be the combination

which implies the lesser value of uncertainty, at a particular bandwidth of the filter Band.

In the tables, two bandwidths are reported for the measurements with a same filter, the

first bandwidth implies the lesser value of uncertainty, while the second is the most common

bandwidth from 10 values, the best 5 bandwidths using the new formulation and the other

5 best bandwidths using the APJ old formulation.
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In Table 6-7 the results for the normal quadrupole errors are reported. The first column

corresponds to the analyzed case, the 2nd and 5th correspond to the bandwidth for Band,

∆ω, and it has tune units, while columns 3th and 6th are the statistical average, and, 4th

and 7th are their corresponding statistical uncertainty σ.

Table 6-7.: Results for the Normal Quadrupole Magnetic Errors. Simulated Orbits using

the New Formulation. (β∗ = 2.0 m)

noi. ∆ω K1(Q2L5) σK1(Q2L5) ∆ω K1(Q2R5) σ K1(Q2R5)

Normal Dist. 2π[rad] 10−6 [m−2] 10−7 [m−2] 2π[rad] 10−5 [m−2] 10−7 [m−2]

w/o Filter —— -10.2 20.6 —— -1.28 15.8

Prom —— -9.93 1.54 —— -1.30 1.90

SvdProm —— -9.95 1.28 —— -1.30 1.00

0.0850 -9.91 1.15 0.0130 -1.30 0.587

BandSvdProm 0.0850 ” ” 0.0050 -1.31 0.764

0.0100 -9.94 1.08 0.0130 -1.30 0.695

SvdBandProm 0.0050 -9.93 1.21 0.0130 ” ”

Table 6-8.: Results for the Skew Quadrupole Magnetic Errors. Simulated Orbits using the

New Formulation. (β∗ = 2.0 m)

noi. ∆ω K1s(MQSL5) σ K1s(MQSL5)

Normal Dist. 2π[rad] 10−4 [ m−2 ] 10−6 [ m−2 ]

w/o Filter —— 2.90 78.2

Prom —— 3.01 7.42

SvdProm —— 3.01 4.23

0.0550 3.02 3.34

BandSvdProm 0.0003 3.02 3.43

0.0550 3.02 3.47

SvdBandProm 0.0004 3.04 3.85
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The corresponding results for the skew quadrupole error K1s(MQSL5) are presented in the

Table 6-8. The same scheme and notation as in the previous tables is followed, so the best

bandwidths are selected as if these measurements were independent from the others magne-

tic errors.

Taking the results of the normal quadrupole magnetic error uncertainties (σB1) as the addi-

tion of the uncertainties for K1(Q2L5) and K1(Q2R5), the results for the cases w/o Filter,

SvdProm and SvdBandProm are summarized in a total uncertainty of 36.4, 2.28, and 1.84

10−7 m−2, respectively (the average of the two bands is taken as the final result before taking

the sum). While the same uncertainties for skew quadrupole error are 78.2, 4.23, and 3.66

10−6 m−2, respectively.

In a similar way, the results using the old formulation are reported in Tables 6-9 and 6-10,

for the normal quadrupole errors and the skew quadrupole error, respectively. The orbits

used during the analysis for both formulations are the same.

Using the previous formulation, the total uncertainty for the normal quadrupole errors (σB1)

is 43.1, 2.36, and 1.77 10−7 m−2, for the cases w/o Filter, SvdProm and SvdBandProm, res-

pectively. The uncertainties for the skew quadrupole error are 96.1, 4.8, and 6.18 10−6 m−2,

respectively.

Table 6-9.: Results for the Normal Quadrupole Magnetic Errors. Simulated Orbits using

the Old Formulation. (β∗ = 2.0 m)

noi. ∆ω K1(Q2L5) σK1(Q2L5) ∆ω K1(Q2R5) σK1(Q2R5)

Normal Dist. 2π[rad] 10−6 [m−2] 10−7 [m−2] 2π[rad] 10−5 [m−2] 10−7 [m−2]

w/o Filter —— -99.6 22.9 —— -1.35 20.2

Prom —— -1.01 1.39 —— -1.27 1.35

SvdProm —— -1.02 1.22 —— -1.28 1.14

0.0850 -1.02 1.06 0.0450 -1.28 0.568

BandSvdProm 0.0850 ” ” 0.0050 -1.28 0.852

0.0500 -1.02 1.09 0.0130 -1.28 0.681

SvdBandProm 0.0500 ” ” 0.0130 ” ”

One of the facts observed when the results from both formulations are taking into account,
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Table 6-10.: Results for the Skew Quadrupole Magnetic Errors. Simulated Orbits using the

Old Formulation. (β∗ = 2.0 m)

noi. ∆ω K1s(MQSL5) σK1s(MQSL5)

Normal Dist. 2π[rad] 10−3 [ m−2 ] 10−6 [ m−2 ]

w/o filter —— 3.44 96.1

Prom —— 3.03 5.31

SvdProm —— 3.07 4.80

0.0003 3.14 3.53

BandSvdProm 0.0003 ” ”

0.0004 3.16 6.18

SvdBandProm 0.0004 ” ”

and also all the seven combinations are studied, is that the worst filters are always BandBest

and BandSel1 when ∆ω > 0.03, for every type of magnetic error.

From the reported results in the tables, it is observed that the optimal bandwidth is not

always the same for both formulations, as mentioned above, and neither the same for all the

magnetic errors measurements.

The graphs presented in the following part of this section are the suggested plots to obtain

the optimal bandwidth ∆ω for the best combinations of filters for all the magnetic errors,

BandSvdProm and SvdBandProm. The idea, before analyzing the experimental data, is to

follow two steps. First, to perform a simulation closer to the configuration used in the ex-

periment, and then identify the bandwidth, which imply the lower uncertainty and at the

same time an average close to the expected values. The results for the individual filters are

taking into account, in case the combination gives a worst result than the individual cases.

The plots are for the magnetic error measurement against the bandwidth, and its correspon-

ding uncertainty. In the following plots, Figure 6-2 to Figure 6-5, 20 orbits TBT were used

from where 20 values were averaged, to obtain each point in the plots. The orbits include

noise.

Error bars where added in the plots for the average of the magnetic errors. For each point, a

single value of uncertainty is obtained. While, for the cases of the individual filters that are
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Figure 6-2.: Comparison including Band, for K1 (Q2L5), between individual filters (orbits

selected using Best) and the best combinations of Filters, using the New and

Old (-old) formulations of APJ. Orbits from the simulation of 3 magnetic errors

and noise from normal distribution.
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Figure 6-3.: Comparison between the formulations when the filters and their combinations

are applied, for K1 (Q2L5) (left) and its uncertainty (right) calculation. Re-

sults for simulation including three magnetic errors and noise, using the New

Formulation and the best case using the Old Formulation.
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independent from ∆ω, four error bars with the same width are located at four equidistant

points along the bandwidth range.

In Figure 6-2 the results for the statistical average at the magnetic error K1 (Q2L5) against

the bandwidth are presented. It is observe that the error bars for Band are the largest com-

pared to other filter or combinations.

To have a better view of the plots, the results for the statistical average at the magnetic error

K1 (Q2L5) against the bandwidth are plotted without the filter Band. This is presented at

the left in Figure 6-3.

The corresponding uncertainties, which have the half size of the error bars, are plotted at

right in Figure 6-3. In this plots it is noticed that the errors bars using Band decrease almost

linearly with the bandwidth, but the best filters have a lesser value of uncertainty.

For the other measurements of the magnetic errors the behavior is almost similar, the diffe-

rences are which filter is the best. Results for K1 (Q2R5) are in Figure 6-4, while the results

for K1s (MQSL5) are in Figure 6-5.
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Figure 6-4.: Comparison between the formulations when the filters and their combinations

are applied, for K1 (Q2R5) (left) and its uncertainty (right) calculation. Re-

sults for simulation including three magnetic errors and noise, using the New

Formulation and the best case using the Old Formulation.
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Figure 6-5.: Comparison between the formulations when the filters and their combinations

are applied, for K1s (MQSL5) (left) and its uncertainty (right) calculation.

Results for simulation including three magnetic errors and noise, using the

New Formulation and the best case using the Old Formulation.

In Figure 6-5, with exception of the results for the filter Svd, the average of the values

recovery for the magnetic errors are closer to the simulated value. This last is presented as

the green straight line, labeled by sim. Even more, including the results when using Svd, the

obtained results are inside the expected range, due to the fact that the error bars crosses

the expected value line.

From all the results, the best combinations found are BandSvdProm and SvdBandProm, and

have similar error bars for any of the APJ formulations used. Also, the results for the best

combinations of filters when the bandwidth is ∆ω > 0.02, is closer to the results given by

Prom, in the case of the dispersion or uncertainty σ. When ∆ω < 0.002 all the best combi-

nations are seen as effective to reduce the uncertainty in the measurement of the magnetic

errors.

Also, for this simulation it is observed that the dispersion for the combination BandSvd-

Prom is greater than the dispersion for SvdBandProm, and this is valid for both the new

and previous formulation. On the other hand the variations for the uncertainty using the

new formulation is lesser than the variations in the uncertainty given by the old formulation.

Results for the comparison between filters, especially for filter Svd are reported in a recent

conference, refer to [46].
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Finally, just to leave no space for doubts the details for the simulations are given. The

magnetic errors were installed in the injection lattice of the LHC, with the modifiers for

β∗ = 2.0 m at IP5 and IP1. Also, the accelerator is arranged to have the transverse tunes

obtained by LHC, during the experiment of April 13th, 2010 with the orbits generated by

the AC Dipole. The number of turns used is 2000. And the magnetic errors were installed

in the LHC simulator optics at the magnets (MQXB.A2.L5, MQXB.B2L5), (MQXB.A2R5,

MQXB.B2R5) and MQSX.3L5, as errors of type K1. These magnets belong to the IR5, and

along this dissertation the notation used is their corresponding quadrupole not-integrated

components, these are: K1(Q2L5), K1(Q2R5) and K1s(MQSL5), respectively.



7. Methods used for Linear Corrections

of Magnetic Errors in the LHC

In the LHC several investigations to obtain magnetic errors have been done, as well as

investigations of methods to guarantee that the beams collide under the expected charac-

teristics. In this dissertation, the results obtained with the main methods used to obtain

the linear magnetic errors in the LHC triplets are presented. The main method is the so

called Segment-by-Segment (SBS), which at the same time incorporated principles from the

Resonance Driving Terms method (RDT).

For a comparison with the APJ method, the SBS method without the RDT is used to ob-

tain the normal quadrupole magnetic errors BI
1 and BII

1 , while the RDT alone or with the

SBS are used to obtain the skew magnetic error A1. The results of the comparison using

experimental data is presented in the next chapter.

Other techniques have been also implemented in the LHC, this is the case of the Model

Iterative Correction in the LHC lattice, refer to [13]. It is based in the Inverse Model Res-

ponse Matrix (IMRM) which has a mathematical description as presented in the following

equation (7-21), but in the general case when the R matrix is not diagonal. The iterative

approach consist in calculate the model phase advance, using the corrections of the previous

iteration and then it is subtracted from the measured phase advance for the next iteration.

7.1. Resonance Driving Terms Method

The trajectory along a storage ring for a non-synchronous particle, after multiple turns of

betatron oscillations, has a rich frequency spectra, if magnetic errors from several types are

presented. In that case, the amplitude of the spectra bands is related with the strength of

the magnetic errors presented. To generate the trajectories for the non-synchronous particle,

a dipole kick can be used.

The Resonance Driving Terms (RDT) Method consists in the measurement of the magnetic

strength from the Fast Fourier Transformation (FFT) of the beam position. The theoretical

part of the Method is based on the Lie Algebra to obtain the generating function of the
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transformation for the trajectory along the elements of the accelerator. With the Generating

Function different observables can be constructed, and the magnetic strengths can be derive

from the amplitude of the spectral FFT lines.

The above is possible because the magnetic strength of the magnets can be related with

the Hamiltonian coefficients and those at the same time are related with the coefficients of

the generating function. In a storage ring the Hamiltonian is mainly given by the magnetic

components, if there is only one magnet presented, the Hamiltonian can be writing as:

Hn = −<
(

1

n!
(Kn−1 + iJn−1)(x+ iy)n

)
(7-1)

where n represents the order of magnet (n=1 for a dipole, n=2 a quadrupole, n=3 a sextu-

pole, n=4 an octupole,...), Kn−1 is the normal component of the magnet, Jn−1 is called the

skew component and corresponds to a rotation of the normal component of the magnet by

an angle of π/(2n), and both are evaluated for a certain position (x, y) in the transverse

plane of the motion direction.

As pointing out in [47] the Hamiltonian can be expressed in a different way, by using the

binomial expansion on the (x+ iy)n term. The binomial coefficients can be split using a new

index set, the expression looks like:

Hn = −<

(
n∑

j+k=0

j+k∑
l+m=0

xj+k(iy)l+m

(l +m)!(j + k)!
(Kn−1 + iJn−1)

)
(7-2)

It is convenient also to change the coordinates to the Courant-Snyder parameters (β,φ), for

a storage ring the transformation looks like:

q =

√
βq

2
(hq− + hq+) =

√
βq

2

√
2Jq(e

−i(φq+φq,0) + ei(φq+φq,0)) (7-3)

where q represents the Cartesian coordinates x or y, βq is the beta (betatron) function

in the axis q, hq−, hq+ are the observables that can be related with: Jq which is the action

for each plane of the phase space q, φq is the phase; and φq,0 is the initial phase of the motion.

The initial change of coordinates to facilitate the above derivation is given by the resonance

basis, this is:

h±x = x̂± ip̂x =
√

2Jxe
∓i(φx+φx0 ) (7-4)

h±y = ŷ ± ip̂y =
√

2Jye
∓i(φy+φy0 ) (7-5)

where x̂, ŷ, p̂x and p̂y are the normalized coordinates.
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As explained in [47], the Hamiltonian contribution for a magnet can be derived to be:

Hn = −

(
n∑

j,k,l,m

hjklm (2Jx)
(j+k)/2(2Jy)

(l+m)/2ei[(φx+φx0 )(j−k)+(φy+φy0 )(l−m)]

)
(7-6)

where hjklm is the Hamiltonian coefficient, and it relates the magnet strengths Kn−1 and

Jn−1 by:

hjklm =
β

(j+k)/2
x β

(l+m)/2
y il+m (Kn−1Ω[l +m+ 1] + iJn−1Ω[l +m])

2(j+k+l+m) k!j!m!l!
(7-7)

where Ω takes the values of 1 or 0 according to:

Ω[w] = 1 if w is even, and Ω[w] = 0 if w is odd (7-8)

The above relation is the same as the equation (3.51) in [17]):

hjklm = Re

{∑
w

−qLw
p

(j + k + l +m− 1)!

2nj!k!l!m!
(bn,w + ian,w)i(l+m)βwe

−i[(j−k)φx,w+(l−m)φy,w]

}
(7-9)

where βw = (βx,w)
j+k

2 (βy,w)
l+m

2 is the β-function product in the magnet, according to the

index used for the coefficients, Lw is the magnetic length of the magnet w, and multipolar

components of the magnetic field associated to the magnet are an or bn, which are given as

discussed in Chapter 2 by An = qBLan/p and Bn = qBLbn/p, where q is beam charge with

generalized momentum p, and total magnetic field magnitude B.

The Hamiltonian coefficients and RDTs

In an accelerator, it is usual to have more than one magnet and more than one type of error is

expected to obtain, therefore the preceding results have to be generalized to many magnets.

This is done by setting a fixed position, b, in the accelerator where the measurements are

going to take place. The total Hamiltonian is just the summation over all magnets of the

same order presented around the ring, this is

Hn
(b) = −

(
n∑

j,k,l,m

hjklm(b) (2Jx)
(j+k)/2(2Jy)

(l+m)/2ei[(φx+φx0 )(j−k)+(φy+φy0 )(l−m)]

)
(7-10)

more or less like equation (7-6) but now there is a new coefficient that depends on the

observation point, given by:

hjklm(b) =
∑
g

hg,jklme
i[∆φbg,x(j−k)+∆φbg,x(l−m)] (7-11)
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where the sum is over all the multipoles presented and each contribution is weighted accor-

ding its position in the ring, hence the relation involves ∆φbg,x and ∆φbg,xy, which are the

phase advances for each magnet g with respect to the point of observation b.

The term hg,jklm, is the called hamiltonian coefficient, and is given as equation (7-7) but

evaluate in each magnet g

hg,jklm =
β

(j+k)/2
x,g β

(l+m)/2
y,g il+m (Kg,n−1Ω[l +m+ 1] + iJg,n−1Ω[l +m])

2(j+k+l+m) k!j!m!l!
(7-12)

This coefficient can be related with the coefficients of the generating function for the trans-

formation that describes the trajectory turn by turn in the storage ring. This is done used

the Lie Algebra, as presented in [17] and [23]. The bottom line is that the lattice of the acce-

lerator form a Taylor Map, which is characterized for been symplectic. A map is the function

that transforms the coordinates from the initial phase space to the final phase space, and

the fact that is symplectic allow to write the transformations as Lie operators.

Using the Dragg Fit theorem, the map that represents the total accelerator can be expressed

as the multiplication of the maps or transformations of the individual elements that composed

the accelerator. These properties allow to express the generating function as:

F (b) =
∑
jklm

f
(b)
jklm (2Ix)

(j+k)/2(2Iy)
(l+m)/2ei[(Φx+Φx0 )(j−k)+(Φy+Φy0 )(l−m)] (7-13)

where Ix, Iy, Φx, Φx are the Action and Phases variables for the coordinates (x,y) on the

accelerator, while Φx0 and Φy0 are the initial arbitrary phases of the motion. The coefficient

fjklm, to first order, is related with the Hamiltonian coefficient by (equation (3.74) in [17]):

f
(b)
jklm =

h
(b)
jklm

1− e2πi[Qx(j−k)+Qy(l−m)]
(7-14)

where Qx and Qy are the horizontals and verticals tune of the accelerator. The denominator

of this expression diverges when Qx(j − k) + Qy(l −m) is an integer. This discontinuity is

known as the resonance and because of that, the factor f
(b)
jklm is called Resonance Driving

Terms (RDT). In the FFT of the beam position this resonance numbers produce the spectral

lines from where the magnetic strength can be obtain.

It was shown in [48] (see also a more detailed proof in [17]) that the resonance basis can be

decompose as a sum of frequency terms given by

h−x (N) =
√

2Ixe
i(2πQxN+φx0 ) + (7-15)

−2i
∑
jklm

jfjklm(2Ix)
(j+k−1)

2 (2Iy)
(l+m)

2 ei[(1−j+k)(2πQxN+φx0 )+(m−l)(2πQyN+φy0 )]
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where N is the number of turns, Iz are the amplitude invariants of the orbits (as the Action

J), Qx and Qy are the decimal part of the accelerator tunes in the corresponding planes X

and Y, and fjklm are the so called resonance driving terms or (RDT).

RDTs for Linear Quadrupole Errors

During this dissertation the RDTs are used to measure the skew quadrupole component.

In general, the quadrupole magnetic errors implies the multipolar component n = 2 and,

from them the coefficients f1001 and f1010 are the RDTs affected by the skew quadrupole error.

Rewriting the equations (7-12) and (7-14) explicitly for f1001, it is obtained [49]:

f1001(s) =
1

1− e−2πi(Qx−Qy)

∑
w

1

4

√
βwx β

w
y Kw(s) ei

(
∆φs,wx −∆φs,wy

)
(7-16)

where the sum is over all the w skew quadrupole magnets with strength Kw(s); βwx , βwy are

the β-function evaluated in the w-th magnet; ∆φs,wx and ∆φs,wy are the phase advance diffe-

rence between the magnet w and the BPM from where the observable had been obtained,

in the longitudinal position given by s in the accelerator.

It is possible to infer that f1001 is keeping a constant value along the accelerator and only

change it when skew quadrupole components are presented.

An example is shown in Figure 7-1. In this, the plots for the RDTs with jklm = 1010 and

1001 along the LHC are shown. There are jumps in an abrupt way at the locations close

to IP1 and IP5, these are the closest regions to where magnetic errors were installed in the

LHC simulator.

The orbits used to generate the plots are obtained from the LHC simulator in MAD-x when

three magnetic errors are installed along the regions IR1 and IR5, simultaneously. The three

magnetic errors are the same selection of three correctors discussed in most of this disserta-

tion.

In addition, in Figure 7-1, the plots show that the contribution given by f1001 is the greatest

contribution far from the contribution given by the other term, f1010. This is not only the

case for the example, most of the times in the LHC the term f1001 is the dominant, see also

Figure 5.21 and Figure 5.22 in [50]. These plots are part of the output obtained from the

package for the SBS analysis [51], the figure is the screen from the corresponding GUI.

To obtain the RDTs along the accelerator, from simulated or experimental orbits, as many

as possible BPMs are used and from each one the quantities h±z are obtained, according to
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Figure 7-1.: RDT for n = 2 along LHC as obtained in the GUI version of SbS. Simulated

orbits including magnetic errors at IR1 and IR5, and the expected noise in the

BPMs.

equations (7-4) and (7-5).

Once the quantities h±z are obtained, they are analyzed to obtain their corresponding spec-

tral distribution (in the frequency space). The band from the spectra can be related with

the resonance driving terms, through simple expressions.

The bands lines of the h±z spectrum are named according to a nomenclature which counts

the resonance conditions. In the spectra, the bands are denoted by:

Horizontal Bands → H(1− j + k , m− l) (7-17)

Vertical Bands → V(−j + k , 1− l +m) (7-18)

In particular, the allowed combinations for the resonance with n = 2, corresponding to the

normal and skew quadrupole components, are presented in Table 7-1 as given by the tables

in [47].

For the case of the resonance driving terms f1010 and f1001, the simple expressions for the
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j k l m Resonance Bands Name

0 0 0 2 (0,-2) —

0 0 1 1 (0,0) V(0,1)

0 0 2 0 (0,2) V(0,-1)

0 2 0 0 (-2,0) —

1 1 0 0 (0,0) H(1,0)

2 0 0 0 (2,0) H(-1,0)

0 1 1 0 (1,-1) V(1,0)

1 0 0 1 (1,-1) H(0,1)

1 0 1 0 (1,1) H(0,-1), V(-1,0)

Table 7-1.: Combinations jklm for n = 2. The observed spectral lines must hold j 6= 0 in

the horizontal plane and l 6= 0 in the vertical plane.

spectra lines given by h±z are:

fHO1010 =
H(0,−1)

2V (0, 1)
; fV E1010 =

V (−1, 0)

2H(1, 0)

fV E0110 =
V(1, 0)

2H(1, 0)
; fHO1001 =

H(0, 1)

2V(0, 1)

Alternatively, the spectra can be calculated with a different observable and although the

mathematical expressions differ from the fjklm terms, the relation between the spectral lines

is preserved. This new observable, although more complex is more precise than the previous

one, refer to [52]. It is given by:

χq =
∑

j>k,l>m

4(jδqx + lδqy)|χq,jklm|(2Ix)(j+k−2δqx)/2(2Iy)
(l+m−2δqy)/2 cos (ρ) (7-19)

with ρ = 2πN(τ1qQx + τ2qQy) + φq,jklm

and τ1q = δqx − j + k , τ2q = δqy − l +m

where δqw is the Kronecker function, Qq is the accelerator tune in plane q, N is the number

of turns, φq,jklm is the phase, while the coefficient χqjklm related the magnetic strengths for

magnets w located between the three BPMs as follows:

χq,jklm =
∑
g

ei[τ1qφxg+τ2qφyg ]hg,jklmSENφqg (7-20)
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where φqg is the phase advance of the magnet with respect to the BPM and SENφqg, equa-

tion 19 in [47], is sinφqg
√

1 + tan2 δ1 if φqg < φq2 − φq1 and sin (φqg − δ1 − δ2)
√

1 + tan2 δ2

in the opposite way.

When the Fourier series are obtained for χq in the equation (7-19), the resonance driving

terms χq,jklm are corresponding to the amplitude of the spectra lines.

An example of the use of this observable to obtain sextupole magnetic errors were also stu-

died and implemented during this dissertation, refer to [53] for the results and details.

Plenty of references are available for the development and specialties of the Resonance Dri-

ving Terms Method, some of these are [47, 52, 54, 23, 48, 50] and also [17, 53].

7.2. Segment-by-Segment Method

As its name implies, the Segment-By-Segment Method (SBS or SBST) is a technique which

consists in the splitting of the entire ring into several segments. Consequently, each segment is

treated as an independent transfer line [13]. In the case of the LHC the partition corresponds

with the splitting of the machine in the arcs and insertion regions (as discussed in section 3.3).

SBS is based on the theoretical principle that the physical quantities measured at any point

along the accelerator must be equal to the expected quantities values given by the theoretical

propagation of the initial conditions up to the particular point. In the basic formulation, it is

consider that the measured α and β functions at the entrance of each segment are the initial

conditions for the optical parameters propagate along the respective segment. The Transfer

Matrix is the usual tool for the propagation of the optical parameters.

The advantage of this method and its procedure described above, is that in this way there

is a reduction of the dimensionality of the problem, because only the variables of each sec-

tor are included in the calculation. This is a valuable advantage, compared to other methods.

The phases advance on the each BPM (∆φ1) are propagated as:
∆φ1

∆φ2

...

∆φN

 = R


∆K1

∆K2

...

∆KN

 =


R1 0 . . . 0

0 R2 . . . 0
...

...
. . .

...

0 0 . . . RN




∆K1

∆K2

...

∆KM

 (7-21)

where the R matrix is a diagonal matrix, with N independent blocks each one represented

as an independent response matrix Ri. The R is multiply by the vector that contains the M
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gradient variables Ki to obtain the phases advances.

The magnetic gradient error is detected (or localized) by direct comparison of the ideal optical

parameters and the propagation of the measured parameters; any deviation of the parame-

ters is consider a gradient error. In the words of the authors The amplitude of the errors

within the segment can be determined by matching the propagated optics to the measured

one via the preferred matching algorithm Page 0810002-4, this include any perturbation or-

der for the equation of motion. In this way this theory can be consider a local approximation.

In the publication of December 2010 [13], this method was successfully used in the LHC,

where a cable swap between the two-beam apertures of a trim quadrupole was identify as

the source of an unexpected large β beating.

To obtain the linear skew magnetic errors and other magnetic errors the SBS uses the Re-

sonance Driving Terms Methods. This is done by obtain the magnetic strengths that match

the measured RDTs. So in the practice, when using the experimental orbits, the function

MATCH in the LHC simulator is used to obtain the parameters instead of inverting the

matrix directly.

The function MATCH is also used in the LHC simulator to obtain the normal quadrupole

magnetic errors, in this case the phase advances are the variables which are mainly involved.

7.2.1. Results using SBS and RDT with Simulated Orbits

To reinforce the acquired knowledge in the main methods used for Linear Corrections in

the LHC, simulations were performed. Those simulations are similar to what is done for the

previous analysis using the APJ method. Magnetic errors are installed in the LHC simulator

to obtain its values back. In particular below are reported the results for the configurations

closer to the Experiments on May 11th, 2015.

The package for the SBS analysis was used to obtain the results, this was done from the

terminal directly without using the GUI interface. A small change in the procedure is done

for Beam 2, due to the fact that the simulation does not give the results in the same way

that the experiments. Therefore, when executing Beam 2 the configuration to use is LHCB4

instead of LHCB2, according to the indications given by the OMC team at CERN, when

the phase advances and other variables are calculated.

The scheme to obtain the magnetic errors is, first to obtain the physical variables at each

longitudinal position of the accelerator from the information measured at the BPMs, then

the spectrum at each transverse plane is obtained and the main orbits are selected, from
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this last the optical measurements like the phases, the beta-functions, and more, are obtai-

ned. The programs that perform these task are Drive God lin and GetLLM. Then the SBS

technique is used and the magnetic errors are determined when using the matching function.

More information for sequence of programs that composed the SbS analysis, in the recent

versions or in detail, is available in [51] or [55].

Table 7-2 presents the results for the recovery of three magnetic errors in the LHC regions

IR5 and IR1, simultaneously. In the simulator, the tunes are set up to be the experimental

tunes given by the AC Dipole. The rows with the label Sim. are the values of the installed

errors in the simulator, while the other rows correspond to the results for the several studied

configurations.

Table 7-2.: Magnetic Errors Recovery using SBS (function SegmentBySegmentMatch.py).

Simulated Orbits without noise.

IR5

Opt. K1(Q2L5) K1(Q2R5) K1s(MQSL5)

β∗ [m] 10−7[m−2] 10−5[m−2] 10−4 [m−2]

Sim. 3.20 -1.87 3.00

0.40 4.146 -1.866 3.0048

0.65 3.341 -1.8673 2.9936

0.80 3.309 -1.8667 2.9937

1.0 3.349 -1.861 3.1068

IR1

Opt. K1(Q2L1) K1(Q2R1) K1s(MQSL1)

β∗ [m] 10−6[m−2] 10−6[m−2] 10−4[m−2]

Sim. -3.10 7.40 1.00

0.40 -2.6922 7.1237 0.99991

0.65 -2.9282 7.3630 0.98706

0.80 -2.9773 7.3859 0.98791

1.0 -2.9509 7.3716 1.0249

According to the results, the differences between the recovered values and the expected ones

are larger than the differences obtained using the APJ method (Table 6-1). In fact, the



7.2 Segment-by-Segment Method 83

results obtained with SBS imply a recovery relative error as higher as 10 %, while the results

using APJ imply just 1 % as the highest recovery relative error. During this investigation the

simulations and configurations were reviewed to establish a reason for the differences but no

further improvements were obtained.

Another difference between the results from the APJ and SBS, is that the analysis using

SbS takes into account the two beams at the same time, therefore only one result is obtained

from each LHC configuration studied.

Nevertheless, the SBS technique also imply a fit to a modified model. The modification in

the model is that the magnetic errors corrections obtained from the experimental data are

added. The fit process is the step forward from what we call in here the first iteration with

the software, and it is done generally by hand and view.

Even more, although the differences in the tables are larger, when doing the fits, all the

curves obtained are closer to each other. This is something unexpected though it is an ex-

planation of the higher relative errors encounter when using the simulated orbits.

It is noteworthy that in the simulator the errors are installed in the skew quadrupoles

MQSX.3L5 and MQSX.3L1, and in the normal quadrupoles MQXB.A2L5, MQXB.B2L5,

MQXB.B2R5, MQXB.A2R5, MQXB.A2L1, MQXB.B2L1, MQXB.B2R1 and MQXB.A2R1,

while the corresponding variables in SbS are kqsx3.l5, kqsx3.l1, ktqx2.l5, ktqx2.r5, ktqx2.l1,

ktqx2.r1, respectively. These variables for the quadrupoles are the same used in previous

analysis with APJ method, and in the table the results are reported with the notation used

along this dissertation.

Also, the sequence of programs and commands used to obtain the local magnetic errors after

the execution of Drive God lin and GetLLM, for instance at IR5, are:

/usr/bin/python2.6 /afs/cern.ch/eng/sl/lintrack/Beta-Beat.src/SegmentBySegmentMatch/ SegmentBySegmentMatch.py variables

–beam1=NORMALANALISIS SUSSIX B1/ –beam2=NORMALANALISIS SUSSIX B2/ –ip=5 –temp=./

To change the variables according to the expected measurements

/usr/bin/python2.6 /afs/cern.ch/eng/sl/lintrack/Beta-Beat.src/SegmentBySegmentMatch/ SegmentBySegmentMatch.py constraints

–beam1=NORMALANALISIS SUSSIX B1/ –beam2=NORMALANALISIS SUSSIX B2/ –ip=5 –temp=./

/usr/bin/python2.6 /afs/cern.ch/eng/sl/lintrack/Beta-Beat.src/SegmentBySegmentMatch/ SegmentBySegmentMatch.py

–beam1=NORMALANALISIS SUSSIX B1/ –beam2 =NORMALANALISIS SUSSIX B2/ –ip=5 –temp=./

/usr/bin/python2.6 /afs/cern.ch/eng/sl/lintrack/Beta-Beat.src/SegmentBySegmentMatch/ SegmentBySegmentMatch.py variables

–mode=coupling –beam1=NORMALANALISIS SUSSIX B1/ –beam2=NORMALANALISIS SUSSIX B2/ –ip=5 –temp=./

To change the variables according to the expected measurements

/usr/bin/python2.6 /afs/cern.ch/eng/sl/lintrack/Beta-Beat.src/SegmentBySegmentMatch/ SegmentBySegmentMatch.py constraints

–mode=coupling –beam1=NORMALANALISIS SUSSIX B1/ –beam2=NORMALANALISIS SUSSIX B2/ –ip=5 –temp=./

/usr/bin/python2.6 /afs/cern.ch/eng/sl/lintrack/Beta-Beat.src/SegmentBySegmentMatch/ SegmentBySegmentMatch.py –mode=coupling

–beam1=NORMALANALISIS SUSSIX B1/ –beam2 =NORMALANALISIS SUSSIX B2/ –ip=5 –temp=./
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The steps To change the variables according to the expected measurements are performed to

guarantee that the only the expected variables, the ones used in the APJ analysis, are taking

into account. And, the option coupling was obtained by taking a look of the written code

because it was not found in the references, although this configuration for SbS was suggested

(by me) during my stay at CERN. The values reported in Table 7-2 are obtained using the

above list of steps.

There are bigger differences in the recovery of the magnetic errors using the SBS technique

rather than the expected differences, for instance like the differences given by the Action and

Phase Method. These results change if the SUSSIX method used is replaced for instance by

SVD, a different option for the SBS method.

Another way to measure the Skew Quadrupole Errors

During this dissertation the RDT method was studied to obtain the skew quadrupole error

in a direct way. This could be done by evaluating the output of the SbS without start the

matching calculations, in this way a value for each beam is obtained separately. Nevertheless,

the results obtained does not improved what is obtained above.

Also, to obtain the coupling in the LHC, the SBS software have different configurations.

One of these includes the fact to make global or local corrections by using knobs or the Skew

quadrupoles at the IRs.

For the configuration for a local measurement of the coupling, the SbS uses all the magnets

MQSX. These last variables are only for the skew magnets at the triplets. As mentioned

earlier, each IR have two skew quadrupoles at each IR.

Table 7-3 reports what it is obtained in IR5, for three simulations with a different strength

of the magnetic error each time. The installed magnetic error is reported in the first column,

while obtained values at the skew quadrupoles are in the second and third column. In the

last column the corresponding total error is reported.

The last column is obtained as the addition of the two previous columns and corresponds to

the total skew quadrupole error for the two triplets. This is possible because the symmetry

of the triplets. Even more, the length of the skew quadrupole is also taking into account in

the total error calculation.

To obtain these results, the subroutine correct coupleDy.py is used, and the LHC configura-

tion in the simulator is β∗ = 0.40 m, with magnetic errors at IR1, IR5 and IR8. The results
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Sim. kqsx3.l5 kqsx3.r5 K1s(MQSL5)

β∗ = 0.40 m [m−1] [m−1] [m−2]

0.0004 -0.0002717 0.00018019 0.0004106

0.0003 -0.0002009 0.0001317 0.0003102

0.0002 -0.00013346 0.000085907 0.0002128

Table 7-3.: Recovery values for the Skew Quadrupole Error in IR5 using co-

rrect coupleDy.py.

corresponds to what it is obtained with beam 1 and a single magnet is not possible to select

for each IR.

The reported values in the Table 7-3 have relative errors from 3 % to 6 %. With this alter-

native way to obtain the skew quadrupole errors, it is not enough to decrease the relative

errors to the levels observed when using APJ.

The observed differences between the results when using APJ and SBS could be explained

by the fact that SbS analyzes the all ring at the same time and do not only locally at each

region. In fact, the magnetic errors are obtained for kqsx3.l2, kqsx3.r2, kqsx3.l5, kqsx3.r5,

kqsx3.l8, kqsx3.r8, kqsx3.l1 kqsx3.r1 at the same time.



8. Analysis of Experimental LHC Orbits

With the update made on the LHC in the year of 2014, new experiments related with the

measurement of magnetic errors have been made. In this dissertation the squeeze configura-

tion of the LHC are analyzed. The results obtained are from the experiments made on April

13th, 2010 and May 11th, 2015. The analysis is made mainly using both formulations of the

APJ method, though a comparison using SBS and RDT is presented for the 2015’s orbits.

All the data presented in this chapter was obtained under the guidelines of the OMC Team

at CERN, to whom a special acknowledgement are given.

8.1. Comparison New and Old APJ Formulation with

2010’s Orbits

To the experimental data from the April 13th, 2010 experiment, the different ways to decrease

the noise in the orbits, described in chapter 6, were applied. In this section the corresponding

results are presented. First, a comparison between the formulations, using the filter Prom is

introduced. And then, results for the best combinations of filters are introduced, using the

same methodology as presented for the analysis with simulated orbits.

Previous analysis on the same experimental orbits were performed before the development of

this dissertation [3]. It was found that the reported magnetic errors given by SBS on the LHC

orbits, for MQXB2.R5 and MQXB2.L5, cannot be adjusted each one individually as it was

wrong assumed [56]. In fact the change in those quadrupoles MQXB2.R5 and MQXB2.L5

implies as well a change in the quadrupoles MQXA2.R5 and MQXA2.L5, because they share

the same power supply. This issue is counted in the analysis presented during this disserta-

tion, so the final magnetic measurements differ from what is reported for Action and Phase

Analysis in the previous comparison presented in [3].

Table 8-1 shows a comparison between the APJ formulations using the experimental orbits

from April 13th, 2010 at 12:54:09, 12:56:24 and 12:59:18 CEST. In this case, the new for-

mulation does not give a bigger change in the uncertainty and its value could sometimes be

worst, compared to what is observed using the simulated data. One of the reason could be

that there are few experimental orbits available comparing to the simulated case (in here
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there are only 3 orbits corresponding to 6 values, while in the simulation there were 20 orbits

from where 20 values were obtain). For each orbit, three combinations of the 4-type orbits

are selected, from where the measurements are obtained.

Table 8-1.: Results using Old and New Formulations of APJ. LHC-2010’s Experimental

Orbits (β∗ = 2.00 m)

Exp. Data K1s σK1s

Beam 1 K1(Q2L5) σK1(Q2L5) K1(Q2R5) σK1(Q2R5) (MQSL5) (MQSL5)

Apr13/10 10−6 [m−2] 10−7 [m−2] 10−6 [m−2] 10−7 [m−2] 10−4 [m−2] 10−5 [m−2]

New - APJ

w/o Filter -21.0 133 -0.59 1050 6.03 63.00

Prom-New -8.28 6.98 -1.54 92.2 3.06 3.76

Old - APJ

w/o Filter -25.1 140 -0.47 1060 8.64 108

Prom-Old -9.15 3.36 -1.39 78.0 3.19 3.08

When analyzing these experimental data an additional filter was implemented, and it was

used as well in most of the simulations already reported. The filter is applied directly to the

Actions and Phases obtained at the Arcs, before getting their average. It is expected that

the filter removes changes in the variables, for instance produced by collective effects at the

Arcs or experimental issues at the BPMs that prevents to recover a constant value of them.

This filter effect is like a smooth filter for the variables Action and Phase in each region.

On the other hand, the analysis to determine the optimal bandwidth for the best combina-

tions of filters is presented below. This is done as described previously in section 6.4 for the

simulated orbits, by choosing the most common bandwidth and the others aspects.

In Tables 8-2 and 8-3 it is reported the magnetic errors measurements and its uncertainty,

for the LHC region IR5, using the new and previous formulation, respectively.

The first rows of the tables shows the results w/o Filter, this means the noise level or just

the measurements obtained when the selection of the orbits is made using Best and no filter

is applied.

In summary for the new formulation it is found that, taking the total value for the nor-
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Table 8-2.: Results using the New Formulation of APJ. LHC-2010’s Experimental Orbits.

(β∗ = 2.00 m)

Data LHC B1 ∆ω K1(Q2L5) σK1(Q2L5) ∆ω K1(Q2R5) σK1(Q2R5)

Apr13/10 2π[rad] 10−6 [m−2] 10−7 [m−2] 2π[rad] 10−5 [m−2] 10−8 [m−2]

w/o Filter — -21.0 133 — -0.59 1050

Prom — -8.28 6.98 — -1.54 92.2

SvdProm — -8.05 4.34 — -1.54 38.4

0.0013 -8.11 2.49 0.02 -1.54 4.86

BandProm 0.0003 -8.49 2.63 0.02 ” ”

0.1050 -8.33 1.24 0.03 -1.54 5.97

BandSvdProm 0.095 -8.33 1.37 0.015 -1.53 11.1

0.145 -8.03 2.96 0.015 -1.56 32.6

SvdBandProm 0.09 -8.03 2.97 0.125 -1.57 33.3

mal quadrupole magnetic error uncertainties (σK1) as the addition of the uncertainties for

K1(Q2L5) and K1(Q2R5), a total uncertainty of 1183 10−7 m−2 is observed for the case w/o

Filter and it is reduced to 99.18 10−7 m−2 when using the filter SvdProm. On the other hand,

for skew quadrupole error the reduction is from 63 10−5 m−2 to 3.76 10−5 m−2, respectively.

It is observed from the results that using the new formulation the reduction of the un-

certainty is not as large as observed from the simulated case. Nevertheless, when using a

combination of filters, the results show a considerable reduction of uncertainty of about 50 %

when compared to just the Prom case.

Using the previous (Old) formulation, the total uncertainty for the normal quadrupole errors

(σK1) is 1200 and 81.36 10−7 m−2, for the cases w/o Filter and SvdProm, respectively. While

the uncertainty for the skew quadrupole error is 108 and 3.08 10−5 m−2, for the same cases,

respectively.

With the experimental data, the plots for the three magnetic errors against the bandwidth

are presented in Figure 8-1, Figure 8-2, Figure 8-3, and Figure 8-4, when analyzing IR5.

These graphs are similar to the plots obtained for the simulated orbits showed in section 6.4,

however, the best combination of filters is different from what is obtained for the simulated

orbits.
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Table 8-3.: Results using the previous formulation of APJ and Digital Filters. LHC-2010’s

Experimental Orbits. (β∗ = 2.00 m)

Data LHC B1 ∆ω K1(Q2L5) σK1(Q2L5) ∆ω K1(Q2R5) σK1(Q2R5)

Apr13/10 2π[rad] 10−6 [m−2] 10−7 [m−2] 2π[rad] 10−5 [m−2] 10−8 [m−2]

w/o Filter — -25.1 140 — -0.47 1060

Prom — -9.15 3.36 — -1.39 78.0

SvdProm — -8.85 4.37 — -1.40 37.5

0.0013 -8.93 3.01 0.02 -1.40 10.5

BandProm 0.0003 -9.30 3.12 0.02 ” ”

0.1050 -9.14 1.39 0.02 -1.40 6.18

BandSvdProm 0.095 -9.14 1.54 0.015 -1.39 13.3

0.16 -8.84 2.59 0.125 -1.42 32.8

SvdBandProm 0.09 -8.84 2.59 0.125 ” ”

Once again it is observed that the error bars for Band are quite large compared to the others.

This is what it is presented in 8-1 compared to 8-2.left.

A straight green line labeled by SbS is the expected magnetic error measurement. This line

is given by the measurement obtained using the Segment-by-Segment method and reported

in [3] for the analysis performed for the same orbits. The measurements were done for the

normal quadrupole errors only, therefore the plots for the skew quadrupole error are without

this line.

From the normal quadrupole errors plots it is easy to observe that the old formulation is

much closer to the expected values, though the new formulation has almost all its corres-

ponding lines close to each other.

Therefore, for this experimental data the difference between reformulations is more noto-

rious, if the results for the skew quadrupole error are ignored.

Also, it is inferred from the plots that, one of the largest reported uncertainties is the obtai-

ned when only the Svd filter is applied to the orbits, the selection of the orbit in this case is

made with Best.
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Figure 8-1.: Comparison including Band, for K1 (Q2L5), between individual filters (orbits

selected using Best) and the best combinations of Filters, using the New and

Old (-old) formulations of APJ. 2010’s Experimental Orbits.
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Figure 8-2.: Comparison between the formulations when the filters and their combinations

are applied, for K1 (Q2L5) (left) and its uncertainty (right) calculation. Results

for 2010’s Experimental Orbits (obtained three magnetic errors), using the New

Formulation and the best case using the Old Formulation.
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Figure 8-3.: Comparison between the formulations when the filters and their combinations

are applied, forK1 (Q2R5) (left) and its uncertainty (right) calculation. Results

for 2010’s Experimental Orbits (obtained three magnetic errors), using the New

Formulation and the best case using the Old Formulation.
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Figure 8-4.: Comparison between the formulations when the filters and their combinations

are applied, for K1s (MQSL5) (left) and its uncertainty (right) calculation.

Results for 2010’s Experimental Orbits (obtained three magnetic errors), using

the New Formulation and the best case using the Old Formulation.
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8.2. Magnetic Error Measurements using APJ with

2015’s Orbits

In the middle of April/2015, arrangements were made to go along with the experimental

measurements as part of this investigation. It was an opportunity to travel to CERN and

observe how the experiments are made and to share the analysis of the recent orbits.

As mentioned earlier several configurations were taken during the experiments. In particular

for this dissertation the magnetic errors were obtained from four different optics or con-

ditions: β∗ = 1, 0.8, 0.65 and 0.40 m. The analysis are done for the LHC regions IR1 and

IR5. The data are the orbits obtained on May 11th, 2015 when the corrections were removed.

In Tables 8-4 and 8-5 the results obtained for the three magnetic errors measurements using

the previous and new APJ formulations are presented, for the LHC regions IR5 and IR1,

respectively. It is observe that in most cases the new formulation reduce the uncertainty of

the magnetic errors measurements.

Taking the results for any optics and beam, from Table 8-4, the total average uncertainty

for the normal quadrupole errors (< σK1 >) is 2.48×10−7 m−2 for the reformulation and

7.41×10−7 m−2 for the previous formulation (labeled Old). While the uncertainty for the

skew quadrupole error is in average 3.74×10−6 m−2 and 10.7×10−6 m−2 , for the new and

old formulations, respectively.

For both LHC regions IR5 and IR1, it is obtained that the measurements with β∗ =1.0

m show a higher reduction of noise when using the new formulation compared to the pre-

vious one. This reduction of noise is about 50 % for the magnetic error at the quadrupole

K1(Q2R5).
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Table 8-4.: Results for the Magnetic Errors Measurements in IR5. LHC-2015’s Experi-

mental Orbits using the New and Old Formulations of APJ for different LHC

Configurations

LHC Data K1(Q2L5) σK1(Q2L5) K1(Q2R5) σK1(Q2R5) K1s σK1s

May11/15 10−7[m−2] 10−7[m−2] 10−5 [m−2] 10−7 [m−2] 10−5[m−2] 10−6[m−2]

β∗[m] /Beam SvdProm-New

0.40/B1 3.01 2.77 -1.81 1.02 -2.24 3.05

0.40/B2 -0.461 0.329 -1.79 0.472 -7.66 1.53

0.65/B1 3.41 2.37 -1.84 1.42 -2.43 4.95

0.65/B2 -5.50 0.824 -1.86 1.08 -8.18 1.72

0.80/B1 0.352 0.826 -1.84 0.879 -2.40 3.56

0.80/B2 -5.19 1.79 -1.90 1.81 -6.61 6.64

1.0/B1 -0.745 1.04 -1.84 0.664 -2.06 4.28

1.0/B2 -8.34 1.40 -1.93 1.16 -6.02 4.23

β∗[m] /Beam SvdProm-Old

0.40/B1 2.12 2.93 -1.87 1.30 -2.03 4.84

0.40/B2 -1.86 0.238 -1.86 0.290 -8.82 1.09

0.65/B1 3.03 2.25 -1.89 1.23 -2.69 5.83

0.65/B2 -6.82 0.747 -1.92 1.10 -6.98 3.81

0.80/B1 -0.0336 0.859 -1.89 1.17 -2.66 4.47

0.80/B2 -6.13 2.17 -1.95 1.76 -5.00 6.88

1.0/B1 -18.5 30.7 -1.84 9.75 54.7 53.8

1.0/B2 -10.4 1.41 -1.97 1.40 -4.02 4.81
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Table 8-5.: Results for the Magnetic Errors Measurements in IR1. LHC-2015’s Experi-

mental Orbits using the New and Old Formulations of APJ for different LHC

Configurations.

LHC Data K1(Q2L1) σK1(Q2L1) K1(Q2R1) σK1(Q2R1) K1s σK1s

May11/15 10−6 [m−2] 10−7 [m−2] 10−6 [m−2] 10−8 [m−2] 10−4 [m−2] 10−6[m−2]

β∗[m] /Beam SvdProm-New

0.40/B1 -2.69 0.489 7.33 7.10 1.80 5.51

0.40/B2 -2.65 1.09 7.05 5.05 1.54 2.52

0.65/B1 -2.87 1.05 7.25 7.50 2.28 4.33

0.65/B2 -2.94 1.04 6.90 6.19 1.82 3.32

0.80/B1 -2.83 0.763 7.09 9.28 2.38 2.30

0.80/B2 -3.16 1.30 6.99 5.92 2.12 2.01

1.0/B1 -2.93 1.33 7.05 7.45 2.44 6.18

1.0/B2 -3.10 1.40 7.04 11.3 2.29 3.72

β∗[m] /Beam SvdProm-Old

0.40/B1 -2.85 0.528 7.72 9.53 1.90 5.47

0.40/B2 -2.79 1.19 7.44 5.43 1.60 3.02

0.65/B1 -3.03 0.953 7.63 5.19 2.39 4.91

0.65/B2 -3.04 1.13 7.33 6.88 1.86 3.52

0.80/B1 -2.98 0.804 7.48 9.01 2.49 2.82

0.80/B2 -3.21 1.59 7.39 8.46 2.16 2.02

1.0/B1 -3.07 1.48 7.44 11.8 2.54 8.10

1.0/B2 -3.17 1.17 7.47 11.2 2.33 4.63
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Although there is a different number of orbits available for each case, the Action J and

Phase δ values are consistent for every set of orbits. Even more, the experimental plots have

a very small jump or step between the region before and after the magnetic error. For ins-

tance, Figure 8-5 and Figure 8-6 show the case with the strongest jump observed, this is

the measurements for Beam 1 in the LHC region IR5. The variables J and δ are obtained

for the 4-type orbit maxmax as the average for many turns under the same condition.
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Figure 8-5.: Action in Y-axis (Jy) along the LHC. Results for Beam 1, β∗ =0.40 m, with

2015’s Experimental Orbits.

The same behavior was observed for Beam 2. There are few jumps between the regions before

and after the magnetic error, especially for the Action plots. Figure 8-7 shows the case for

the stronger jump observed corresponding to the analysis in IR5. In the plots there are five

orbits plotted, instead of three, the number of orbits in the plots for Beam 1. And the phase

δ is obtained for the same 4-type orbit maxmax.

The experimental conditions for each set of orbits are the same, and the fact that the selected

orbit is an average of many orbits, are the reasons of why, for all the orbits, the plots for

each variable of Action or Phase are almost identical.

The observed differences in the variables for all the LHC configurations or optics are sum-

marized in the plots for IR1 presented in Figure 8-8. The plots are for an individual orbit in

each case and they are obtained for the 4-type orbit maxmax. For other cases it is observed

a larger separations of the lines, as the effect observed for the region after the magnetic error
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Figure 8-6.: Phase in Y-axis (δy) along the LHC. Results for Beam 1, β∗ =0.40 m, with

2015’s Experimental Orbits.
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Figure 8-7.: Action and Phase in X-axis (Jx and δx) along the LHC. Results for Beam 2,

β∗ =0.40 m, with 2015’s Experimental Orbits.

for β∗ =0.40 m in Figure 8-8.
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Figure 8-8.: Phase in Y-axis (δy) along the LHC for several LHC configurations. Results

for Beam 1 from 2015’s Experimental Orbits.

Filters Contributions to the Analysis of Experimental Orbits

According to the presented results, there is a small difference between the formulations which

is evident for the average values and the corresponding statistical uncertainty. In general,

there is a lesser value of the uncertainty when using the new formulation when the reduction

is taken for the three magnetic errors at the same time.

The results for the experimental data of May 11th, 2015, using the filter Band combined

with Prom and Svd, are in Tables 8-6 and 8-7, for the LHC regions IR5 and IR1, respectively.

In each table it is reported the average of the measured magnetic errors and their statisti-

cal uncertainty. For this analysis, the filter SvdBandProm is used, this is according to the

simulated data results for the best filter to reduce noise (the one with least dispersion in the

measurements) from the several filters studied.

As presented previously for the simulations, the results in the tables are obtained for each

beam, in an independent way, and also for each turn-by-turn orbit from the experiment.

Additionally, the results from both APJ formulations are reported, independently also. The

results from the APJ formulations are obtained from the exactly the same selected orbit.

In the tables, the new formulation results are with the header -New and corresponds to the

first rows, while the previous formulation results are with the header -Old.
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Table 8-6.: Results for the Magnetic Errors Measurements in IR5. LHC-2015’s Experi-

mental Orbits using the New and Old Formulations of APJ for different LHC

Configurations.

LHC Data K1(Q2L5) σK1(Q2L5) K1(Q2R5) σK1(Q2R5) K1s σK1s

May11/15 10−7[m−2] 10−7[m−2] 10−5[m−2] 10−8[m−2] 10−5[m−2] 10−6[m−2]

β∗[m] /Beam SvdBandProm-New

0.40 /B1 4.16 1.19 -1.78 1.05 3.11 3.61

0.40 /B2 1.96 0.327 -1.77 6.21 6.79 1.15

0.65 /B1 12.0 1.07 -1.84 7.50 6.15 0.968

0.65 /B2 -3.53 0.638 -1.84 6.38 6.78 1.84

0.80 /B1 10.4 0.716 -1.85 10.8 5.73 2.90

0.80 /B2 -4.82 0.842 -1.88 11.8 4.28 2.74

1.0 /B1 11.9 1.50 -1.87 8.01 7.88 7.10

1.0 /B2 -7.14 0.517 -1.92 11.3 2.98 4.03

β∗[m] /Beam SvdBandProm-Old

0.40 /B1 3.41 1.20 -1.85 0.652 3.74 5.01

0.40 /B2 1.70 0.320 -1.85 7.14 8.11 0.394

0.65 /B1 11.8 0.774 -1.89 3.32 6.32 3.03

0.65 /B2 -5.32 0.562 -1.90 6.75 5.58 3.25

0.8 /B1 10.4 0.612 -1.90 13.8 5.79 2.13

0.8 /B2 -6.32 1.03 -1.93 6.02 2.58 3.73

1.0 /B1 -2.93 27.1 -1.86 116 11.4 59.0

1.0 /B2 -9.93 1.01 -1.96 13.1 0.855 5.08

When it is included the filter Band, its effect changes from one LHC region to another (IR5

or IR1), although generally it is observed a reduction in the uncertainty. Similarly, it is ob-

served that the average values from each beam are now closer to each other than before.

The greatest evidence of the improvement in the measurement of the magnetic errors is ob-

served in the K1(Q2L) and K1(Q2R) in the LHC regions IR5 and IR1, respectively. These

cases are reported in Table 8-8 and Table 8-9 for IR5 and IR1, respectively. In the tables

every row is for the cases without and with the filter Band under the same conditions. For

this comparison the tables are constructed from the results reported previously in Table 8-6
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Table 8-7.: Results for the Magnetic Errors Measurements in IR1. LHC-2015’s Experi-

mental Orbits using the New and Old Formulations of APJ for different LHC

Configurations.

Data LHC K1(Q2L1) σK1(Q2L1) K1(Q2R1) σK1(Q2R1) K1s σK1s

May11/15 10−6[m−2] 10−8[m−2] 10−6[m−2] 10−8[m−2] 10−4[m−2] 10−6[m−2]

β∗[m] /Beam SvdBandProm-New

0.40 /B1 -3.20 3.29 7.66 6.96 1.89 4.11

0.40 /B2 -2.60 3.41 7.29 4.10 1.40 0.874

0.65 /B1 -3.37 5.30 7.48 5.18 2.32 5.92

0.65 /B2 -2.86 7.88 7.04 5.78 1.75 2.99

0.80 /B1 -3.55 5.42 7.42 4.77 2.32 4.99

0.80 /B2 -3.00 6.12 6.94 2.96 2.25 5.72

1.0 /B1 -3.60 7.30 7.35 7.45 2.41 4.64

1.0 /B2 -3.10 9.32 7.02 8.36 2.43 4.15

β∗[m] /Beam SvdBandProm-Old

0.40 /B1 -3.32 3.12 7.88 7.26 1.96 3.71

0.40 /B2 -2.75 3.49 7.66 3.87 1.47 0.760

0.65 /B1 -3.52 5.24 7.75 5.53 2.42 6.36

0.65 /B2 -2.97 8.42 7.44 5.58 1.78 2.76

0.80 /B1 -3.68 4.79 7.67 3.56 2.42 4.39

0.80 /B2 -3.12 7.96 7.39 5.52 2.30 5.97

1.0 /B1 -3.72 7.61 7.59 7.25 2.50 4.93

1.0 /B2 -3.22 8.27 7.48 7.29 2.48 5.10

and Table 8-7.

To obtain the results including Band, two trials were made to get the optimal bandwidth,

letting for later studies a more precise and deep investigation the complete procedure as it

is described in previous chapters, and as it will show in the next section this bandwidth

selection favors the use of the SBS method.

Taking the results of the optics and beams using the filter SvdBandProm, from Table 8-6 ,

the total uncertainty for the normal quadrupole errors (σK1) is 8.73 for the reformulation
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Table 8-8.: Comparison between Filters for one of the Magnetic Errors at IR5. LHC-2015’s

Experimental Orbits using the New and Old Formulations of APJ for different

LHC Configurations.

SvdProm SvdBandProm

Data LHC K1(Q2R5) σK1(Q2R5) K1(Q2R5) σK1(Q2R5)

May11/15 10−5 [m−2] 10−7[m−2] 10−5[m−2] 10−7[m−2]

β∗[m] /Beam APJ-New

0.40 /B1 -1.81 1.02 -1.78 0.105

0.40 /B2 -1.79 0.472 -1.77 0.621

0.65 /B1 -1.84 1.42 -1.84 0.750

0.65 /B2 -1.86 1.08 -1.84 0.638

0.80 /B1 -1.84 0.879 -1.85 1.08

0.80 /B2 -1.90 1.81 -1.88 1.18

1.0 /B1 -1.84 0.664 -1.87 0.801

1.0 /B2 -1.93 1.16 -1.92 1.13

β∗[m] /Beam APJ-Old

0.40 /B1 -1.87 1.30 -1.85 0.00652

0.40 /B2 -1.86 0.290 -1.85 0.714

0.65 /B1 -1.89 1.23 -1.89 0.332

0.65 /B2 -1.92 1.10 -1.90 0.675

0.80 /B1 -1.89 1.17 -1.90 1.38

0.80 /B2 -1.95 1.76 -1.93 0.602

1.0 /B1 -1.84 9.75 -1.86 11.6

1.0 /B2 -1.97 1.40 -1.96 1.31

and 14.11 10−7 m−2 for previous (old) formulation. While the total uncertainty for the skew

quadrupole error is 3.04 and 10.2 10−6 m−2 , for the new and old formulations, respectively.

The difference in the average of the uncertainties does not come from a remarkable difference

in the uncertainties founded for each optics independently from the formulations used; it is

obtained from one or two values of some particular optics and the filter Band is not able to

suppress that difference. Such case is for instance β∗ =1.0 m as it is clearly shown in Table

8-8. These results are closer to the predicted results from the simulations.
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Table 8-9.: Comparison between Filters for one of the Magnetic Errors at IR1. LHC-2015’s

Experimental Orbits using the New and Old Formulations of APJ for different

LHC Configurations.

SvdProm SvdBandProm

Data LHC K1(Q2L1) σK1(Q2L1) K1(Q2L1) σK1(Q2L1)

May11/15 10−6[ m−2 ] 10−7[ m−2 ] 10−6[ m−2 ] 10−7[m−2]

β∗[m] /Beam APJ-New

0.40 /B1 -2.69 0.489 -3.20 0.329

0.40 /B2 -2.65 1.09 -2.60 0.341

0.65 /B1 -2.87 1.05 -3.37 0.530

0.65 /B2 -2.94 1.04 -2.86 0.788

0.80 /B1 -2.83 0.763 -3.55 0.542

0.80 /B2 -3.16 1.30 -3.00 0.612

1.0 /B1 -2.93 1.33 -3.60 0.730

1.0 /B2 -3.10 1.40 -3.10 0.932

β∗[m] /Beam APJ-Old

0.40 /B1 -2.85 0.528 -3.32 0.312

0.40 /B2 -2.79 1.19 -2.75 0.349

0.65 /B1 -3.03 0.953 -3.52 0.524

0.65 /B2 -3.04 1.13 -2.97 0.842

0.80 /B1 -2.98 0.804 -3.68 0.479

0.80 /B2 -3.21 1.59 -3.12 0.796

1.0 /B1 -3.07 1.48 -3.72 0.761

1.0 /B2 -3.17 1.17 -3.22 0.827

In the case of the region IR1, the use of the filter Band reduce the uncertainty in all cases

for the quadrupole K1(Q2L1), regarding the optics or the formulation of the APJ used, as

presented in Table 8-9. Also the obtained uncertainties are in general slightly lower using

the reformulation of the APJ method.
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8.3. Magnetic Error Measurements using SbS with 2015’s

Orbits

In the following, the results for the analysis using the Orbits of May 11th, 2015 are presen-

ted. The results might differ from an analysis on the same orbits in CERN, initially because

of the configuration used for the filter Svd. For this dissertation the raw data are filtered

using Svd to have the exact same initial orbits as the analysis performed using the Action

and Phase Method. Recent changes in the format of the Svd software have been made, and

mostly a different number of singular values was found as the default in the package of the

SBS method, SbS, so the older version of the filter Svd is kept for the analysis. Nevertheless,

the results obtained in here are quite similar and consistent to the ones obtained at CERN,

as it is presented in the next section.

From the established configurations for the SBS when doing experimental analysis, as des-

cribed previously, the magnetic errors are measured in the exact same magnets used in the

previous APJ analysis, for the same experimental data. Therefore the measurements are

performed in the LHC regions IR5 and IR1.

In Table 8-10 the results for the normal quadrupole magnetic error at the LHC region

IR5 are presented. The results are from the available configuration at the experiments. The

corresponding nomenclature in SbS for the negative value of the magnetic errors at the qua-

drupoles K1 (Q2L5) IR5 and K1 (Q2R5) are dktqx2.l5 and dktqx2.r5, respectively.

Table 8-10.: SBS Results for the Measurement of the Normal Quadrupole Errors at IR5.

LHC-2015’s Experimental Orbits with filter Svd.

Optics dktqx2.l5 K1(Q2L5) dktqx2.r5 K1(Q2R5)

β∗ [m] 10−7 [m−2] 10−7[m−2] 10−5 [m−2] 10−5[m−2]

0.40 7.03 -7.03 1.75 -1.75

0.65 31.0 -31.0 1.74 -1.74

0.80 35.0 -35.0 1.72 -1.72

1.0 -7.31 7.31 1.92 -1.92

The results are obtained using the same segment length for all the optics. Also, the results

are from the first iteration of the program, this means that the obtained values are directly

given by the computer.
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Likewise as presented for the LHC region IR5, the results for IR1 using the same experimen-

tal turn-by-turn orbits are obtained. Now, the corresponding variables in SbS are dktqx2.l1

and dktqx2.r1. The results for the normal quadrupole magnetic errors are shown in Table

8-11.

Table 8-11.: SBS Results for the Measurement of the Normal Quadrupole Errors at IR1.

LHC-2015’s Experimental Orbits with filter Svd.

Optics dktqx2.l1 K1(Q2L1) dktqx2.r1 K1(Q2R1)

β∗ [m] 10−6 [m−1] 10−6 [m−2] 10−6 [m−1] 10−6 [m−2]

1.0 3.88 -3.88 -7.62 7.62

0.40 3.44 -3.44 -7.68 7.68

0.65 12.1 -12.1 -18.6 18.6

0.80 3.17 -3.17 -16.0 16.0

The number of rows in Tables 8-11 and 8-10 are lesser than the previous results on the

same data, using the APJ method. This is because the SBS results are obtained using the

information from the two beams at the same time. This last leads to decrease the possibility

that the corrections obtained from one beam destabilize the other beam.

Before reporting the results for the skew quadrupole magnetic errors, the FFT spectra from

the transverse position are presented. These plots are very close to the spectra used in the

Resonance Driving Terms method to obtain the skew magnetic errors. For each beam and

for each transverse plane, the FFT of the transverse position at the BPM 21L5 is obtained,

and it is expected to get similar spectra with the same bands, for the other positions along

the accelerator. Results for Beam 1 are shown in Figure 8-9, while results for Beam 2 are

shown in Figure 8-10.

In each figure there is an overlap of the results obtained for the FFT from: the experimental

Turn-by-Turn orbit without filtering (labeled Exp.Dat.), the experimental Turn-by-Turn

orbit with the filter Svd (as the configuration established in this investigation), the experi-

mental Turn-by-Turn orbit with the filter SvdBand. For Beam 1, the experimental orbit is

the so called 2015 05 11@12 12 36 corresponding to β∗ =0.80 m in the LHC Experiment of

May 11th, 2015 (Qx=0.265, Qy=0.325). For Beam 2, the experimental orbit is the so called

2015 05 11@12 11 57 corresponding to the same characteristics of beam 1.

Using the RDT method the main bands in the FFT were named, and it is observed that

the expected bands from the normal quadrupole and skew quadrupole magnetic errors are
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Figure 8-9.: FFT of the position with and without filters, for plane X (left) and plane

Y (right). Results for Beam 1 and spectral bands identified using the RDT

Method. 11-05-2015’s Experimental Orbits.
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Figure 8-10.: FFT of the position with and without filters, for plane X (left) and plane

Y (right). Results for Beam 2 and spectral bands identified using the RDT

Method. 11-05-2015’s Experimental Orbits.

very clear. In these plots (Figure 8-9 and Figure 8-10) the bottom part of the spectra is

presented, this is done also to have an idea of the noise presented and subtracted. For beam
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1, the bands reach intensities up to 2400 and 2000 for the two main bands, while for beam

2 the band reach intensities up to 900 and 2500.

Therefore, the plots shown that the noise is reduced in larger amount when just the Svd filter

is applied, but then it is reduced further when SvdBand is used. These plots are the similar

presented in other parts of this dissertation and in [35] and [41], for different magnetic error

simulations where the filter Band was used.

In Table 8-13, results for the magnetic skew quadrupole errors are presented. These are

obtained using SbS for the LHC Regions IR5 and IR1 independently. From the table it is

inferred that there is not a dependency between the results and the analyzed optics. In this

calculations, compared to the previous ones for the normal quadrupole errors, is necessary

to change the segment length for each LHC configuration or optics. This last because there

are BPMs at the IRs which do not reported any measurement, and in particular those mea-

surements are very relevant to obtain the magnetic errors.

According to the results, it is observed that there are variations in the magnetic errors mea-

surements which are very big notorious for each configuration studied. This same behavior,

as mentioned previously, is observed in the analysis using APJ with the same orbits, espe-

cially for the skew quadrupole magnetic errors.

Going a step forward, the results for the filter SvdBand are presented. When the SBS method

is used on experimental data after filtering with SvdBand, it is observed that the results are

even much closer to each other than with the filter Svd. Even more, these results are closer

to what is obtained using APJ, as presented in the next chapter .

Table 8-12 presents results when the measurement of the magnetic errors are obtained using

the SBS method. The results are for the Experimental orbits from May 11th, 2015 (same

Turn-by-turn orbits using the previous analysis using the APJ method).

The most notorious case of improvement in the results, when adding the filter Band, could

be K1(Q2R5): according to results on Table 8-11 the initial range in the results for the

different LHC configurations is from -1.86×10−5 to -7.62×10−6, while now the range in the

magnetic error is only from 1.82×10−5 a 1.84×10−5 m−2.

The results for the skew quadrupole magnetic error are in Table 8-13 for both LHC regions

IR5 and IR1, and for the filters Svd and SvdBand, at the top and at the bottom of the table,

respectively. Similarly to what is observed for the normal quadrupole errors, the uncertainty

in the magnetic error measurement for the magnet K1s(MQSL5) is reduced with the additio-

nal use of Band, and this holds for all the LHC configurations studied. However, the average
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Table 8-12.: Magnetic Errors Corrections using SBS. LHC-2015’s Experimental Orbits

applying the SvdBand Filter.

IR5

Optics dktqx2.l5 K1(Q2L5) dktqx2.r5 K1(Q2R5)

β∗ [m] 10−7 [m−2] 10−7 [m−2] 10−5 [m−2] 10−5 [m−2]

0.40 2.05 -2.05 -1.82 1.82

0.65 3.60 -3.60 -1.84 1.84

0.80 1.95 -1.95 -1.82 1.82

1.0 8.45 -8.45 -1.83 1.83

IR1

Optics dktqx2.l1 K1(Q2L1) dktqx2.r1 K1(Q2R1)

β∗ [m] 10−6 [m−2] 10−6 [m−2] 10−6 [m−2] 10−6[m−2]

0.40 -3.92 3.92 7.23 -7.23

0.65 -2.85 2.85 6.99 -6.99

0.80 -1.85 1.85 6.94 -6.94

1.0 -4.02 4.02 7.52 -7.52

of the magnetic errors decreases in amount compared to the normal quadrupole error case.

8.4. Summary of Results from the Different Methods

with 2015’s Orbits

The APJ and SBS method share the fact that a theoretical division in the Accelerator is

done, and for each region separately the measurements are made from the BPM’s measure-

ments.

Also, all methods implicate an expected model for the accelerator to obtain the magnetic

errors, despite the fact, that they deal with different physical quantities.

In addition, APJ and RDT methods start with the normalized positions obtained from the

β function of the accelerator model.

Nevertheless, each method uses the measurements in a different way. The SBS uses the in-

formation from three consecutive BPMs while the other takes the information from two or
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Table 8-13.: Magnetic Errors Corrections for Local Coupling using SBS. LHC-2015’s Ex-

perimental Orbits.

β∗ K1s(MQSL5) K1s(MQSL1)

[m] 10−5 [m−2] 10−4 [m−2]

Svd Filter

0.40 -11.5 4.84

0.65 -7.24 3.11

0.80 -5.18 3.67

1.00 -6.46 2.15

SvdBand Filter

0.40 -8.83 5.30

0.65 -5.30 3.00

0.80 -5.38 2.93

1.00 -6.08 1.11

one BPM.

Even more, the theoretical divisions in the accelerators differ from one method to the other.

For instance, the reformulated APJ introduces in this dissertation uses the information from

the BPMs at the LHC Arcs, while the SBS uses the BPMs at the IRs, including the BPMs

at the triplets. The previous formulation of the APJ use only one measurement from the

LHC IR.

As a comparative analysis of the methods studied, Table 8-14 shows a summary of the

quadrupole linear corrections obtained from the measurement of the magnetic errors at IR1

and IR5 for the LHC-2015’s Experimental Orbits. The magnetic error measurements for the

quadrupole K1(Q2L5) is omitted in the table because its average value is as close as its

uncertainty, and also its average value is much lesser compared to the results for the magnet

K1(Q2R5).

Two main observations can be obtained from the general results for the studied IRs. The

first observation is that the calculated magnetic errors for IR5 have a different strength (or

magnitude) in comparison with the obtained values for IR1. The second observation is that

all the magnetic corrections for the IR1 normal quadrupoles are within the same range,

something opposite to what is observed for IR5 where a change in the power of tens for
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K1(Q2R5) and K1(Q2L5) is obtained (see Table 8-12).

In addition, Table 8-14 contains the reported corrections established by the team of experts

at the CERN. These corrections labeled by OMC Correction were calculated by the OMC

team using the same experimental data, although with different filters, [57]. In the table,

the value reported in parenthesis corresponds to the magnetic errors measurements where

more magnets were involved in the same IR (the other magnet has the variable dktqx1.r1

and value of -3.31×10−5).

In the experiment on May 11th, 2011, some corrections in the LHC were performed in IR2,

IR5 and IR8. In particular for IR5 they are:

at MQXB2.R5, 1.9×10−5

at MQXB2.L5, -0.09×10−5

at MQXA1.R5, -2×10−5

at MQXA1.L5, 2×10−5

The corrections performed at LHC, for IR5, are only for normal quadrupole magnetic errors.

More than one magnet is modified by the change in the variables MQXA1.R5 and MQ-

XA1.L5, but because the symmetry of the triplets at the left and right of IP5, there are not

expected greater variations in the predicted corrections without taking into account this mo-

dification. The values for the OMC corrections presented in the Table 8-14 does not report

a change in the quadrupoles given by the variables MQXA1.R5 and MQXA1.L5.

It is clear that most of the values obtained using the Action and Phase method are similar

to the values of the corrections installed in the LHC on May 11th, 2015. Also, there are some

cases where the corrections are similar to the obtained using SBS. The values reported in

the table are obtained from the first iteration with the SbS (as performed with the simulated

orbits), these values are labeled by SBS calc., and the calculation were made from the Linux

terminal and do not from the GUI. As mentioned in the analysis of the simulated data, the

SbS program have been taken with the option SUSSIX, and other options, like SVD, are

available. It is possible that some other option in SbS would imply a closer value do not only

to the Action and Phase Method values but also closer to the other corrections reported in

the LHC with this same data.

Once the magnetic errors are measured and the corrections are determined, plots for the Pha-

se Advance Difference are constructed for each beam and transverse plane. For the above

analysis of the LHC experimental orbits (Table 8-14), the average of the obtained corrections

at the several configurations are taken. This last means that for the APJ method the average
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was taken without taking into account if the measurement was done with Beam 1 or Beam 2.

The results for IR5 are presented in Figure 8-11.left and Figure 8-11.right, for the phase

advances φx and φy , respectively, while the results for IR1 are in Figure 8-12.left and Figure

8-12.right. The reported plots are for the measurements of Beam 2.
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Figure 8-11.: Phase Advance Difference segment by segment at IR5, for the calculated

corrections with the different methods, measured and propagated in planes

Y (left) and X (right). A close-up (center) for the approximations to the data

points (with error bars, 11-05-2015’s Experimental Orbits) is presented. The

same LHC model is used in all cases therefore the plots overlaps at the start.

These plots are obtained when SbS adds the corrections to the LHC model in the simula-

tor. Therefore, it is expected that the line corresponding to the measurement, denoted by

Svd-Mea. be overlapped by the lines corresponding to the corrections. In the plots the mea-

surement line are for the orbits after filtering using Svd. The labels are: Svd-CorrCalc. for the

correction calculated using SbS after filtering with Svd, CorrOMC. for the correction given

by the OMC team at CERN with the orbits treated as they usually do, SvdProm-apjNew for

the correction given by the Reformulation of APJ, SvdProm-apjOld for the correction using

the previous version of APJ, SvdBand-CorrCalc. for the correction given by SBS when the

orbits are also filtering using Band, SvdBandProm-apjNew for the correction given by the

APJ Reformulation on the orbits including Band, and SvdBandProm-apjOld for the correc-

tion given by the previous APJ on the orbits including Band.

In general for the two IRs, it is visually observed that the results using SBS for the orbits

filtered using Svd gives the furthest results from the experimental line. Additionally, alt-

hough it might not be clear from the values on the tables, there is a consistency between

the results obtained using SBS and using APJ. For a better appreciation of the similarities

and differences in the results from the different methods, in upper left corner of the plots, a
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Figure 8-12.: Phase Advance Difference segment by segment at IR1, for the calculated

corrections with the different methods, measured and propagated in planes

Y (left) and X (right). A close-up (center) for the approximations to the data

points (with error bars, 11-05-2015’s Experimental Orbits) is presented. The

same LHC model is used in all cases therefore the plots overlaps at the start.

close-up of the main peaks is presented (the peaks corresponds to the magnetic errors). In

the close-up it is clear to see that none of the calculated corrections are totally effective, in

the sense that there is not a line that overlapped the measured one.

From the results for IR5 all the corrections seems to be equally effective, except for the calcu-

lations obtained as Svd-CorrCalc., while for IR1, the results obtained from both transverse

planes are compensate, and the best correction will be with SvdBandProm-apjNew. These

results are similar to what it is obtained using Beam 1 (see Appendix in [44]).

To remark, the corrections given by SBS using SvdBand are not only much closer to the APJ

results compared to Svd, but also their corresponding line is the closest to the experiment

measurement one.

For the skew quadrupole errors a different comparison analysis is presented. As mentioned

before, the RDT method is used in this case. In Table 8-15, the corrections from the measu-

red magnetic errors for the 2015’s experimental orbits are presented. For this type of errors

there were not a correction performed at LHC in May 11th, 2015.

The results from IR1 seems to be more precise than the results for IR5, according to the

numbers in the table. This might be because the presence of sextupole errors or higher mul-

tipole magnetic errors in IR5 compared to the non-linear errors in IR1.

From a first sight on the values in the Table 8-15, without taking into account the optics or
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the beam involved, there is a similarity in the results obtained from AJP using the traditio-

nal configuration and the results obtained from SBS.

Something that it is very evident in this Table 8-15, and it is noticed in the previous co-

rresponding tables, is the larger difference between the results obtained for MQSL5 when

β∗ =1.0 m and the Beam is 1 using the Old formulation compared to the results for the

others β and Beams using both APJ and SBS. The corresponding value 0.547 ×10−5 m−2 is

obtained from the measurements on 8 orbits, these are: 05 11. Orbit 1 at 11 23 36, orbit 2

at 11 24 45, orbit 3 at 11 26 12, orbit 4 at 11 30 19, orbit 5 at 11 31 33, orbit 6 at 11 32 37,

orbit 7 at 11 33 47, and orbit 8 at 11 35 02. For the filter SvdProm, the values of the first 6

orbits are consistent with is other given an average of 1.44 ×10−6 m−2 (std 6.78×10−8 m−2)

while the last two orbits give an average of -4.62×10−6 m−2 (std 1.40×10−7 m−2).

The above described differences are not observed for the new formulation of APJ, meaning

that this an evidence of the expected consequences when using one formulation or the ot-

her. Taking a further look on the BPMs measurements in the orbits, it is obtained that the

measurements from BPMSY.4L5.B1 (the corresponding central BPM to obtain the magnetic

errors at IR5) are not available for some orbits, in fact, for β∗ =1.0 m there is not measure-

ments for Plane Y in orbit 2, and for Plane X in orbits 7 and 8. Also, for the others β∗, the

measurements are available in both planes for β∗ = 0.40 m, β∗ = 0.65 m, and with exception

of one orbit out of six orbits in Plane Y, the measurements are available in both planes for

β∗ = 0.80 m. Therefore, these results are a proof that the Old formulation is very sensitive

when there is not data for the central BPM in plane X, although, it is an unusual case in

the experiments. This evidence is strong for MQSL5 but the same behavior is expected for

the other magnetic errors obtained for β∗ =1.0 m and Beam 1, and the other cases without

the complete measurements.

Also, some other missing measurements could explained why the measurements obtained for

β∗=1.0 m has the highest uncertainty, without matter the method used.

Comparing the results for both IRs, the strength of the magnetic errors at IR5 seems to be

stronger than for IR1, as observed for the normal quadrupole errors.

The obtained plots for skew magnetic corrections are presented in the following paragraphs.

The sequence of the plots is same as presented in Figure 5.21 and Figure 5.22 in [50] for

the 2010 measurements. The notation used is the same as given for the normal quadrupole

corrections in this dissertation. In this case the vertical axis corresponds to a superimpose

of the resonance driving term f1001 amplitude, its real part and imaginary part.

Figure 8-13 contains the results for the LHC region IR5 and the 2015’s experimental orbits.
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It seems that the fit from Beam 1 is better compared to the one for Beam 2. These plots are

just for the case β∗ =0.65 m, after the BBQ data were filtered using Svd. The plots for the

other optics can be consulted in the appendix of [44].
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Figure 8-13.: Results for the calculated corrections using the different methods for LHC

region IR5. In the plots the real part (Re), the imaginary part (Im) and the

absolute value f1001 are shown. (left) Using Beam 1 and (right) using Beam

2. 11-05-2015’s Experimental Orbits.

For IR1 also, the fit for Beam 1 looks better that the fit for Beam 2. The results are in Figure

8-14. In these case the Results are shown for the case β∗ =0.8 m. The plots for the other

optics can be consulted in the appendix of [44].

Finally, just to remember, the magnetic errors which are corrected using the Action and Pha-

se method or the SBS method are really a very small quantity, even for the scales that the

LHC handles, but the changes produced in the optical properties by these magnetic errors

could has a big significance because of the precision expected by the physics experiments in

the accelerator.
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Figure 8-14.: Results for the calculated corrections using the different methods for LHC

region IR1. In the plots the real part (Re), the imaginary part (Im) and the

absolute value f1001 are shown. Using Beam 1 (at left) and using Beam 2 (at

right) . 11-05-2015’s Experimental Orbits.
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Table 8-14.: Comparison for the Normal Quadrupole Corrections Results, obtained using

the different Methods in IR1 and IR5. LHC-2015’s Experimental Orbits.

LHC Data IR5 IR1

Run II β∗ Beam K1(Q2R5) K1(Q2L1) K1(Q2R1)

May11/15 [m] 10−5 [ m−2 ] 10−6 [ m−2 ] 10−6 [ m−2 ]

SvdProm-New 0.4 1 1.81 2.69 -7.33

SvdProm-Old 0.4 1 1.87 2.85 -7.72

SvdProm-New 0.4 2 1.79 2.65 -7.05

SvdProm-Old 0.4 2 1.86 2.79 -7.44

Svd-SBS calc. 0.4 1.81 3.60 -7.46

SvdBand-SBS calc. 0.4 1.82 3.92 -7.23

SvdProm-New 0.65 1 1.84 2.87 -7.25

SvdProm-Old 0.65 1 1.89 3.03 -7.63

SvdProm-New 0.65 2 1.86 2.94 -6.90

SvdProm-Old 0.65 2 1.92 3.04 -7.33

Svd-SBS calc. 0.65 1.72 6.25 -8.46

SvdBand-SBS calc. 0.65 1.84 2.85 -6.99

SvdProm-New 0.8 1 1.84 2.83 -7.09

SvdProm-Old 0.8 1 1.89 2.98 -7.48

SvdProm-New 0.8 2 1.90 3.16 -6.99

SvdProm-Old 0.8 2 1.95 3.21 -7.39

Svd-SBS calc. 0.8 1.18 15.9 -11.7

SvdBand-SBS calc. 0.8 1.82 1.85 -6.94

SvdProm-New 1.0 1 1.84 2.93 -7.05

SvdProm-Old 1.0 1 1.84 3.07 -7.44

SvdProm-New 1.0 2 1.93 3.10 -7.04

SvdProm-Old 1.0 2 1.97 3.17 -7.47

Svd-SBS calc. 1.0 1.33 18.4 -12.5

SvdBand-SBS calc. 1.0 1.83 4.02 -7.52

OMC Correction [57] 0.4 1.778 (-12.5)

1.8 3.5 -7.0

1.9

1.75

Corrections† in LHC 1.9
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Table 8-15.: Comparison for the Skew Quadrupole Corrections Results, obtained using the

different Methods in IR1 and IR5. LHC-2015’s Experimental Orbits.

LHC Data K1s (MQSL5) K1s (MQSL1)

Run II β∗ Beam Svd SvdBand Svd SvdBand

May11/15 [m] 10−5 [m−2] 10−5 [m−2] 10−4 [m−2] 10−4 [m−2]

APJ-New 0.4 1 -2.24 3.11 1.80 1.89

APJ-Old 0.4 1 -2.03 3.74 1.90 1.96

APJ-New 0.4 2 -7.66 -6.79 1.54 1.40

APJ-Old 0.4 2 -8.82 -8.11 1.60 1.47

Svd-SBS calc. 0.4 -11.5 -8.83 4.84 5.30

APJ-New 0.65 1 -2.43 6.15 2.28 2.32

APJ-Old 0.65 1 -2.69 6.32 2.39 2.42

APJ-New 0.65 2 -8.18 -6.78 1.82 1.75

APJ-Old 0.65 2 -6.98 -5.58 1.86 1.78

Svd-SBS calc. 0.65 -7.24 -5.30 3.11 3.00

APJ-New 0.8 1 -2.40 5.73 2.38 2.32

APJ-Old 0.8 1 -2.66 5.79 2.49 2.42

APJ-New 0.8 2 -6.61 -4.28 2.12 2.25

APJ-Old 0.8 2 -5.00 -2.58 2.16 2.30

Svd-SBS calc. 0.8 -5.18 -5.39 3.67 2.93

APJ-New 1.0 1 -2.06 7.88 2.44 2.41

APJ-Old 1.0 1 0.547 11.4 2.54 2.50

APJ-New 1.0 2 -6.02 -2.98 2.29 2.43

APJ-Old 1.0 2 -4.02 -0.855 2.33 2.48

Svd-SBS calc. 1.0 -6.46 -6.08 2.15 1.11



9. Conclusion and Future Direction

Up to now, all the proposed objectives for this dissertation have been developed, and the main

results have been presented. These studies were made from August 2010 to November 2015

without interruption. In this chapter the conclusions encountered during the development of

this dissertation are summarized and further suggestions as future direction are presented.

9.1. Conclusions

A reformulation of the Action and Phase Jump (APJ) Analysis Method have been introdu-

ced during this dissertation, in order to obtain and estimate the magnetic errors presented at

the LHC region IR5 and IR1, using simulated turn-by-turn orbits from the LHC simulator

in MAD-x and experimental orbits from the LHC.

Theoretical equations have been established where the central BPM dependency measure-

ment is removed. An implementation of the equations (in Python) were developed as an

extension of the already tested software for the APJ analysis on LHC orbits. Simulated and

experimental orbits were analyzed to test and to evaluate the reformulation. Results show

an initial contradiction for the effectiveness of the reformulation compared to the previous

formulation, this is when the measurements from the 2010’s orbits and the corresponding

simulated orbits are taken into account. Nevertheless, for the 2015’s orbits an improvement

in the uncertainty values of the measurement is obtained. Even more, taking into account

BPMs experimental issues, an advantage of the reformulation over the previous formulation

is directly observed using simulations; for instance, the relative error in the recovered measu-

rement of a single magnetic error is 3.896 % using the old formulation with an orbit without

the measurements of the BPMs at the corresponding triplet, while the relative error using

the reformulation with this same orbit is 0.1734 %. Certainly, if it is expected to get the

magnetic corrections without paying attention of missing measurements from the BPMs, the

reformulation is the best choice.

All the experimental LHC data analyzed during this dissertation is obtained using an AC

Dipole, and its effect on the magnetic error measurements have been studied in this dis-

sertation from the APJ analysis point of view. Results show that the measurements of the

magnetic errors are not affected when the AC Dipole is included in the model of the accele-

rator, or, when the measurements are done without taking the AC Dipole into account. As
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long as the AC Dipole or any other kicker is far away from the location of the magnetic errors

that are measured, and betatron oscillations are provided, the APJ method can measure the

magnetic errors successfully.

An additional aspect have been considered in the reformulation of the APJ method presented

in this dissertation. This is, to include the possibility of having different phase advances in

the quadrupoles at the LHC triplets. Results for the measurement of two normal quadrupole

errors, using orbits from simulations, leads to a significant reduction in the relative errors,

when using the reformulation compare to the previous formulation, from a relative error of

10 % to around 1 %; but for other trials the relative error is around 4 % which is greater

than 1 %, the acceptable value for the relative errors using the APJ for other configurations.

Therefore, the discussed results about the reformulation are understood to be from the for-

mulation that eliminates the BPM measurement at the IR assuming a very small change in

the phase advances at the quadrupoles.

The contributions of this dissertation are involved also in the reduction of noise using di-

gital filters on the orbits. In this sense, an exploration of the possible ways to reduce the

noise of the orbit data, presented at the LHC, by testing digital filters have been performed.

Trials were made initially using simulated orbits obtained as the ideal orbits from the LHC

simulator plus some random values as the noise presented, and then the trials are made on

experimental orbits. A design of a band-pass filter was developed and results show that the

best configuration is using a dual-band, otherwise a higher uncertainty in the recovery of

the magnetic errors is reached, when the simulation is done for two magnetic errors with

the thin lens approximation. Also, the corresponding signal-to-noise ratio for the filter was

obtained and studied in simulated orbits, and its results show that the filter does not change

the main jumps expected in the Action and Phase variables, and that the characteristic ratio

does not change between the APJ regions, before and after the error, which are analyzed.

The designed filter was combined with the other proven effective filters in the LHC. In total

seven combinations of filters were studied and the filters that imply the least uncertainty

were presented together, for each magnetic error measurement. A proposal of the curves to

obtain the optimal bandwidth was also introduced in this dissertation, although a different

bandwidth ∆w is obtained for each magnetic error. According to the simulated orbits with

noise, the best combination of filters is the SvdBandProm which reduce the uncertainty furt-

her than the previous filter Prom when ∆ω < 0.02 2π rad, but this result is not obvious

when using experimental orbits.

During the development of this dissertation a study of the alternative methods to estimate

the magnetic errors at the LHC have been performed. Analysis on simulated and experimen-

tal orbits using the technique Segment-by-Segment (SBS) and Resonance Driving Terms

(RDT) method were made. Although some initial implementation of the RDT method were
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made [53], all the analysis presented in this dissertation were done using the CERN soft-

ware written and used at the LHC by the OMC team. Following the indications provided

for the use of the software and the options presented in the code, the magnetic errors at

the same locations studied for the APJ method were obtained, and a comparison of the

results for the same orbits were made. Results show that similar magnetic error measure-

ments are obtained using all the methods, including APJ, in the 2015’s orbits analysis. For

the normal quadrupole magnetic errors, plots for the difference in phase advance ∆φ for

the studied cases were obtained, while plots for f1001 were obtained for the skew quadru-

pole error. In the graphs the difference between the fits given by the different methods is

almost imperceptible despite the fact of a perceptible change in the observed averages. This

last might imply that a broad range uncertainty is accepted in the measurements judging

from the used tools, although as already mentioned, the results from the methods are similar.

Also, it has been found that the use of the filter SvdBand favors more the results given by the

SBS technique in the experimental data, than the results given by the APJ method. In the

SBS procedure, it is also available the module Tune Cleaning which can give similar results

than the band -pass filter and that was not used in this dissertation. A deeper analysis can

be performed to confirm this last, and it might be relevant because the observed reduction

in the uncertainty is significant.

Although the obtained results for the magnetic error measurements can be interpreted in

a subjective way due to the small quantities that are handled, there is one last remark on

the results using experimental orbits. For the comparison between the APJ formulations, it

have been obtained that the filter SvdProm is enough to have lesser values of uncertainty,

when comparing to other filters and keeping into account the results for both LHC beams.

In general, the biggest difference between the APJ formulations are obtained in the skew

magnetic error measurement. Also, in summary, the uncertainty in the IR5 measurements

with the 2015’s orbits for the quadrupole magnetic errors have a total average (< σK1 >

obtained from the two magnetic errors measurements) of 7.41×10−7 m−2 using the previous

formulation, and 2.48×10−7 m−2 using the reformulation, while the uncertainty for the skew

quadrupole error changes in average from 10.7×10−6 m−2 given by the previous formulation

to 3.74×10−6 m−2 using the reformulation. Therefore an experimental evidence that sup-

ports the reformulation of the APJ have been obtained.

9.2. Future Direction

The studies reported along this dissertation on magnetic errors measurements in an acce-

lerator like the LHC, ensures that the beams have a good quality and are focused on the

expected points of collision. In this way damages in the accelerator components are forewar-
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ned and the analysis of physical events recorded are improved. For future research, it is left

to obtain what happens in the other IRs LHC wherever possible to apply the APJ method,

this can be done with the same experimental data or with new ones; Also, more detailed

studies can be developed, for example, to find explanations to discard orbits that are already

selected under the method conditions, in order to improve the accuracy and precision of the

APJ method and also in the results of the already analyzed data.



A. The Best A1,B1,B1 Combination

In the LHC, to obtain more fine beams, magnetic error measurements and corrections are

done, and as discussed during this dissertation the Action and Phase Jump Method is one

the techniques available to obtain the magnetic errors. Nevertheless, during this processes it

is not convenient to move all the magnets, from an operative point of view in the machine

and also because new errors might be introduced.

From the nature of the LHC triplets at the regions IR5 and IR1, description discussed in

section 3.3.1, using the collision LHC optics, it is possible to assume that the magnetic errors

at all quadrupoles of one triplet can be summarized to one normal quadrupole and one skew

quadrupole error. This means that for each IR, all the magnetic quadrupole errors can be

summarized into two normal quadrupole correctors, one at the left and one at the right of

the IP, and one skew quadrupole corrector.

According to the number and type of quadrupoles in the two triplets for each region of the

LHC, see Table 3-1, there are 30 combinations of correctors to obtain the specific set of three

quadrupoles, called in here A1B1B1, one skew quadrupole error and two normal quadrupole

errors. The combinations are organized from 1 to 15 for the sets that include the left skew

quadrupole while the combinations from 16 to 30 corresponds to sets that include the right

skew quadrupole.

The explicit combinations are written in the generic way in Table A-1, where the number

of the combination between 1 and 30 is reported in the first column according to the skew

quadrupole Q3 in last column. To keep the table in a short size, each row contents two combi-

nations. Each quadrupole Q1, Q2 or Q3 corresponds to the LHC quadrupoles as given in 3-1.

Using the LHC simulator in MAD-x [5], small magnetic errors were installed in the triplets’

quadrupoles at each side of the IP 1 and IP 5. With the traditional configuration of the APJ

the magnetic errors are recovered and then corrected using three quadrupoles, two normal

quadrupole correctors and one skew quadrupole corrector, for each of the 30 combinations.

The magnetic errors installed in the quadrupoles are 4.0×10−5 m2 for the normal quadrupole

magnets and 2.0×10−4 m2 for the skew quadrupole magnets. For each IR, a total of eight

magnetic errors are installed in ten magnets.
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Table A-1.: Generic Combinations A1B1B1 of Quadrupoles from Two LHC Triplets

Num , Num Q1 Q2 Q3 , Q3

Comb.

1 , 16 3L 2L SQ.L , SQ.R

2 , 17 3L 1L SQ.L , SQ.R

3 , 18 3L 1R SQ.L , SQ.R

4 , 19 3L 2R SQ.L , SQ.R

5 , 20 3L 3R SQ.L , SQ.R

6 , 21 2L 1L SQ.L , SQ.R

7 , 22 2L 1R SQ.L , SQ.R

8 , 23 2L 2R SQ.L , SQ.R

9 , 24 2L 3R SQ.L , SQ.R

10 , 25 1L 1R SQ.L , SQ.R

11 , 26 1L 2R SQ.L , SQ.R

12 , 27 1L 3R SQ.L , SQ.R

13 , 28 1R 2R SQ.L , SQ.R

14 , 29 1R 3R SQ.L , SQ.R

15 , 30 2R 3R SQ.L , SQ.R
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Using the APJ method for Beam 1 the corrections are obtained for each combination of three

correctors. The optics used for the LHC is the injection (V.6.5) with β∗ =2 m and tunes of

Qx =64.284 and Qy =59.274, after the magnetic error are installed.

The quantity of merit given to the magnetic corrections is giving by the β-beating. This quan-

tity is a measurement of the relative errors obtained, point by point, for the beta-function

along the accelerator, it is the difference between the expected and observed value divided

by the expected value.

Theoretically, the β-beating can be related with the magnetic errors presented in the accele-

rator. After taking the root-mean-squared RMS along the accelerator, it can be shown that

([19]):

(
∆β

β

)
RMS

=
1

2
√

2| sin (2πν)|

(∑
i

q2
i β

2
i

)0.5

(A-1)

where ν is the decimal part of the accelerator tune in the transverse plane which are been

analyzed, while qi are the magnetic strengths for the magnet i with magnetic error in the

accelerator, and βi are the corresponding β function. To obtain this relation it is assumed

that the quadrupole length is approximately zero. From the table of the LHC triplets (Table

3-1), it is observed that the distances between the quadrupoles are very small compare to

the 27 Km of the ring, and at the same time, the length of the quadrupoles can be consider

to be zero so the above approximation holds.

In Figure A-1 the results for the β-beating for some representative cases are presented. In

Figure A-1.left the results for the plane X are shown while in Figure A-1.right the results

for plane Y are shown. From the results it is clear that the β-beating for the combination 3

is much larger compared to the other combinations.

Therefore, although all the quadrupoles have the same amount of magnetic error, the β-

beating results show that do not all the combinations are equally effective to obtain the

magnetic error corrections.

Also, as seen in the plots, there is a combination that decrease the β-beating almost to zero

in both planes. This means that it is possible to correct all the errors at two triples in one

IR using just three magnets.

Previous studies reported in [34], show the ability of the APJ to decrease the β-beating

after the corrections of the magnetic errors. Nevertheless those studies were done without
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Figure A-1.: Beta-beating after Corrections along the LHC for some combinations A1B1B1,

in IR5 transverse planes X (left) and Y (right)

taking into account the skew quadrupole error, and only the result from one plane is reported.

To establish the best combinations, the additions of the β-beating RMS in each plane is

obtained, and in here this quantity is called
∑

. After the calculations, the combinations

are organized according to their
∑

= RMS(∆βy/βy) + RMS(∆βx/βx) from the highest to the

lowest. It is understood that the lower the quantity
∑

is, the better magnetic corrections

are made.

In Figure A-2 the results for both IRs are presented. From the plots it is evident that the

best combinations of quadrupoles are the ones that have the quadrupoles 2L and 2R with

any of the skew correctors, for both IR5 and IR1.

The lowest value for
∑

in IR5 is 0.4009 while in IR1 the lowest is 0.3676. These corresponds to

the combination 23 in IR5, and the combination 8 in IR1. Nevertheless, both combinations 23

and 8 are the best two combinations for any of the IRs, this implies that the best combination

A1B1B1 for both IRs is always when the quadrupoles Q2L and Q2R are involved, as presented

along this dissertation.
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Figure A-2.: RMS for the Beta-beating obtained for the Different Combinations of Qua-

drupoles A1B1B1, as given in Table A-1, for regions IR5 and IR1.



B. APJ on Uniform Noised Orbits

If in some way the measurement of the positions, which are obtained with the LHC BPM

system, can be restricted to have a more accurately measurement, in the sense that the final

normal (Gaussian) distribution of the measurements are within the experimental ±σ/4 range

or with a very small σ, or just that the presented noise in the orbits could be approximately

to have an uniform distribution, a slightly different results are obtained. Additional results

comparing the two ways to simulate the noise are reported in [41], for the filter Band case

alone and as part for this dissertation.

In this section, the results for the magnetic errors from the LHC simulator using the Action

and Phase Method, and orbits with noise from a uniform distribution between ± 0.3 mm

are presented. The analysis for the orbits were made in a similar way than the presented for

normal distribution during this dissertation. First, the plots for the different ways to reduce

noise, using digital filters are presented, then the corresponding summarized tables for the

best combinations are presented.

The simulation used is the similar to the experimental data from 2010, when the tunes were

adjusted to be same as the experimental orbits generated by the AC dipole for Beam 1, in

the case of injection orbits with V6.5.seq and the modifiers to have β∗ = 2 m at IR1 and

IR5 (Initial position of the orbits at x=0.001, y=0.001 in the PTC TRACK), and the model

is taken as the modified one with the new tunes, as performed previously for the normal noise.

A first look in the frequency plots of some orbits gives the view for the amount of noise that

is reduced using just the filter Band, designed for this dissertation, and presented in Chapter

5. In the same plots there are presented the case for the simulation without noise (labeled

by nom).

In Figure B-1 it is observe that in the horizontal plane X, the amount of noise in the data

from 2010 experiment (dat) has almost same quantities that the simulation case (sim2 ),

with a better representation that what it is observed for the simulated normal distribution

(sim).

In Figure B-1, for the vertical plane it is observed that each case of noise distribution implies

a small amount of noise compare to what it is presented in the experimental data.
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Figure B-1.: Frequency Space for the Transverse Position in the LHC Arcs. The simulated

orbit close to the experimental data is denoted by sim., while the experimental

orbits taken at 12:54:09 (Apr. 13th, 2010) are denoted by dat. Simulated orbits

with noise are also presented and they are denoted by noi when using a normal

distribution and noi. uni. when using an uniform distribution.

The plots for the different ways to reduce noise with uniform distribution against the band-

width, for the magnetic error measurements, using the new formulation of the Action and

Phase Jump Method are in Figure B-2, Figure B-3 and Figure B-4.

In a similar way, the plots for the several ways to reduce noise with uniform distribution,

using the previous formulation of the Action and Phase Jump Method are in Figure B-5,

Figure B-6, and Figure B-9.
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Figure B-2.: Comparison between the filters measurements for K1 (Q2L5) (left) and its

uncertainty (right). Results for the simulation including three magnetic errors

and noise from Uniform distribution, using the New Formulation of APJ.
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Figure B-3.: Comparison between the filters measurements for K1 (Q2R5) (left) and its

uncertainty (right). Results for the simulation including three magnetic errors

and noise from Uniform distribution, using the New Formulation of APJ.
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Figure B-4.: Comparison between the filters measurements for K1s (MQSL5) (left) and its

uncertainty (right). Results for the simulation including three magnetic errors

and noise from Uniform distribution, using the New Formulation of APJ.
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Figure B-5.: Comparison between the filters measurements for K1 (Q2L5) (left) and its

uncertainty (right). Results for the simulation including three magnetic errors

and noise from Uniform distribution, using the Old Formulation of APJ.
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Figure B-6.: Comparison between the filters measurements for K1 (Q2R5) (left) and its

uncertainty (right). Results for the simulation including three magnetic errors

and noise from Uniform distribution, using the Old Formulation of APJ.
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Figure B-7.: Comparison between the filters measurements for K1s (MQSL5) (left) and its

uncertainty (right). Results for the simulation including three magnetic errors

and noise from Uniform distribution, using the Old Formulation of APJ.
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B.1. Best Combinations of Filters for the Simulation with

Uniform Noise.

Table B-1 presents the summary for the best ways to reduce noise, ranked according to the

lesser value of uncertainty. The measurement of the magnetic errors were made using the

Action and Phase Method as given in the labels.

New Formulation σ K1 (Q2L5) σ K1 (Q2R5) σ K1s(MQSL5)

sim. Uniform

Best combination BandSvdProm SvdProm SvdProm

2nd best combination SvdBandProm SvdBandProm SvdBandProm

3rd best combination SvdProm BandSvdProm BandSvdProm

4th best combination BandProm BandProm BandProm

5th best combination Prom or SvdBandBest SvdBandBest

SvdBandBest ∆ω < 0.025 ∆ω < 0.01 or

∆ω <0.001 Prom

Old Formulation σ K1(Q2L5) σ K1 (Q2R5) σ K1s(MQSL5)

sim. Uniform

Best combination SvdBandProm BandSvdProm BandSvdProm

2nd best combination BandSvdProm SvdBandProm SvdProm

3rd best combination SvdProm BandProm BandProm

4th best combination BandProm SvdProm SvdBandProm

5th best combination SvdBandBest SvdBandBest SvdBandBest

∆ω <0.01 ∆ω <0.015 ∆ω < 0.003

Table B-1.: Uncertainty for the Magnetic Errors Measurements using the New and Old

Formulation of APJ

These results (Table B-1) , and their corresponding plots from the previous section, imply

that the statistical uncertainty is highly reduced in principle with any of the reported com-

binations to reduce noise, but, the fact that all filters gives similar results could means that

there is a limit in the reduction of the uniform noise (compare to the normal case).
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The plots for the individual filters and the best filters, using the new formulation compare

to the best one obtained using the old formulation case are presented in Figure B-8 so forth

to Figure B-11, for the magnetic errors measurement.
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Figure B-8.: Comparison including Band, for K1 (Q2L5), between individual filters (orbits

selected using Best) and the best combinations of Filters, using the New and

Old (-old) formulations of APJ. Orbits from the simulation of 3 magnetic

errors and noise from uniform distribution.

Figure B-8, the first one, presents the results for K1(Q2L5) with all the different ways to

reduce noise, including the Band filter. And for a better appreciation the plots, the ones

corresponding to the statistical average are plotted without the Band filter, in a similar way

as previously did for the normal noise analysis results.

For each magnetic measurement the plot with the results for the statistical average is fo-

llowed by the plot with the statistical uncertainty for each magnetic error. First the results

for K1(Q2L5) are given in Figure B-9, then, in Figure B-10 the plots for K1(Q2R5) are

presented and finally the plots for the skew quadrupole error are in Figure B-11.
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Figure B-9.: Comparison between the formulations when the filters and their combinations

are applied, for K1 (Q2L5) (left) and its uncertainty (right) calculation. Re-

sults for simulation including three magnetic errors and noise from Uniform

distribution, using the New Formulation and the best case using the Old

Formulation.
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Figure B-10.: Comparison between the formulations when the filters and their combinations

are applied, for K1 (Q2R5) (left) and its uncertainty (right) calculation. Re-

sults for simulation including three magnetic errors and noise from Uniform

distribution, using the New Formulation and the best case using the Old

Formulation.
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Figure B-11.: Comparison between the formulations when the filters and their combinations

are applied, for K1s (MQSL5) (left) and its uncertainty (right) calculation.

Results for simulation including three magnetic errors and noise from Uni-

form distribution, using the New Formulation and the best case using the

Old Formulation.

Taking the best five band-widths, from the best combination of filters, when using each of the

two Action and Phase formulations, Table B-2, Table B-3 and Table B-5, are constructed.

Similar tables were obtained when analyzing experimental data of 2010 and the simulated

orbits with noise from normal distribution. This process is the previous step to get Table

6-7 so forth and Table 8-2 so forth.
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∆ω K1(Q2L5) σK1(Q2L5) ∆ω K1(Q2L5)-old σK1(Q2L5)-old

[2π rad] 10−5 [m−2] 10−7 [m−2] [2π rad] 10−5 [m−2] 10−7 [m−2]

0.0750 -1.00 1.55 0.0200 -1.01 1.72

0.0200 -0.999 1.80 0.0750 -1.01 1.82

0.0130 -1.01 2.06 0.0130 -1.02 1.95

0.0900 -0.993 2.19 0.0650 -1.01 2.18

0.0650 -1.01 2.19 0.1100 -1.01 2.21

∆ω K1(Q2R5) σK1(Q2R5) ∆ω K1(Q2R5)-old σK1(Q2R5)-old

[2π rad] 10−5 [m−2] 10−7 [m−2] [2π rad] 10−5 [m−2] 10−7 [m−2]

0.0006 -1.31 1.35 0.1550 -1.26 1.26

0.0550 -1.30 1.40 0.0400 -1.27 1.49

0.0450 -1.30 1.42 0.1350 -1.27 1.55

0.0300 -1.30 1.55 0.0300 -1.26 1.55

0.0130 -1.30 1.57 0.0006 -1.29 1.55

∆ω K1s(MQSL5) σK1s(MQSL5) ∆ω K1s(MQSL5)-old σK1s(MQSL5)-old

[2π rad] 10−4 [m−2] 10−6 [m−2] [2π rad] 10−3 [m−2] 10−6 [m−2]

0.0700 3.01 5.94 0.0300 3.02 6.07

0.1400 3.01 7.04 0.0500 3.02 7.12

0.0300 3.03 7.13 0.0700 3.01 7.13

0.0500 3.01 7.14 0.0750 3.02 7.45

0.0650 3.02 8.53 0.0850 3.02 7.66

Table B-2.: Results for the First Five (the ones with the least statistical uncertainty) band-

widths using the Filter Combination BandProm. Simulated Orbits with Noise

from Uniform Distribution.
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∆ω K1(Q2L5) σK1(Q2L5) ∆ω K1(Q2L5)-old σK1(Q2L5)-old

[2π rad] 10−6 [m−2] 10−7 [m−2] [2π rad] 10−5 [m−2] 10−7 [m−2]

0.0200 -9.99 1.79 0.0200 -1.01 1.69

0.0550 -9.93 1.86 0.0300 -1.01 1.89

0.0300 -9.99 1.91 0.0550 -1.01 1.93

0.1150 -9.97 1.93 0.0650 -1.01 1.93

0.1250 -9.94 2.01 0.0130 -1.02 2.01

∆ω K1(Q2R5) σK1(Q2R5) ∆ω K1(Q2R5)-old σK1(Q2R5)-old

[2π rad] 10−5 [m−2] 10−7 [m−2] [2π rad] 10−5 [m−2] 10−7 [m−2]

0.0550 -1.30 1.26 0.1450 -1.27 1.33

0.0300 -1.30 1.28 0.0750 -1.27 1.35

0.0006 -1.31 1.34 0.0550 -1.27 1.37

0.1450 -1.31 1.38 0.0300 -1.26 1.41

0.0200 -1.31 1.47 0.0010 -1.27 1.50

∆ω K1s(MQSL5) σK1s(MQSL5) ∆ω K1s(MQSL5)-old σK1s(MQSL5)-old

[2π rad] 10−4 [m−2] 10−6 [m−2] [2π rad] 10−3 [m−2] 10−6 [m−2]

0.1400 3.00 5.60 0.0300 3.03 5.96

0.0300 3.03 5.83 0.1400 3.02 6.09

0.0700 3.00 6.15 0.0700 3.00 6.11

0.0650 3.03 6.46 0.0650 3.03 6.44

0.0850 3.02 6.55 0.0850 3.04 6.71

Table B-3.: Results for the First Five (the ones with the least statistical uncertainty) band-

widths using the Filter Combination BandSvdProm. Simulated Orbits with Noi-

se from Uniform Distribution.
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Simulation K1(Q2L5) σ K1(Q2L5) K1(Q2L5) -old σ K1(Q2L5)-old

Unif. Noise 10−6 [ m−2 ] 10−7 [ m−2 ] 10−6 [ m−2 ] 10−7 [ m−2 ]

Noise Level -11.2 35.9 -11.8 26.2

Prom -9.85 3.21 -9.98 3.54

SvdProm -9.88 2.34 -9.98 2.61

-10.0 1.55 -10.1 1.72

BandProm -10.1 2.06 -10.2 1.95

-9.99 1.79 -10.1 1.69

BandSvdProm ” ” ” ”

-9.96 1.77 -10.1 1.69

SvdBandProm -9.93 1.94 -9.97 1.87

Table B-4.: Summary of Results for the Best Combinations of Digital Filters for K1(Q2L5).

Simulated Orbits with noise from Uniform Distribution
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∆ω K1(Q2L5) σK1(Q2L5) ∆ω K1(Q2L5)-old σK1(Q2L5)-old

[2π rad] 10−6 [m−2] 10−7 [m−2] [2π rad] 10−5 [m−2] 10−7 [m−2]

0.0300 -9.96 1.77 0.0300 -1.01 1.69

0.0006 -9.93 1.94 0.0006 -0.997 1.87

0.0950 -10.0 1.98 0.0950 -1.01 1.92

0.0200 -10.0 2.01 0.0200 -1.01 1.92

0.0650 -9.97 2.06 0.0130 -1.01 1.94

∆ω K1(Q2R5) σK1(Q2R5) ∆ω K1(Q2R5)-old σK1(Q2R5)-old

[2π rad] 10−5 [m−2] 10−7 [m−2] [2π rad] 10−5 [m−2] 10−7 [m−2]

0.0550 -1.30 0.966 0.0550 -1.27 1.24

0.0006 -1.31 1.30 0.0006 -1.28 1.29

0.0300 -1.30 1.37 0.1450 -1.27 1.33

0.0750 -1.30 1.43 0.0200 -1.27 1.45

0.0650 -1.31 1.43 0.0400 -1.26 1.46

∆ω K1s(MQSL5) σK1s(MQSL5) ∆ω K1s(MQSL5)-old σK1s(MQSL5)-old

[2π rad] 10−4 [m−2] 10−6 [m−2] [2π rad] 10−3 [m−2] 10−6 [m−2]

0.0300 3.02 6.16 0.0700 2.99 6.36

0.1400 3.00 6.92 0.1250 3.01 6.49

0.0700 3.00 7.20 0.1400 2.99 6.36

0.0650 3.02 7.48 0.0300 3.01 7.16

0.0500 3.00 7.64 0.0650 3.02 7.27

Table B-5.: Results for the First Five (the ones with the least statistical uncertainty) Band-

widths using the Filter Combination SvdBandProm. Simulated Orbits with Noi-

se from Uniform Distribution.
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Simulation K1(Q2R5) σ K1(Q2R5) K1(Q2R5) -old σ K1(Q2R5)-old

Unif. Noise 10−5 [ m−2 ] 10−7 [ m−2 ] 10−5 [ m−2 ] 10−7 [ m−2 ]

w/o Filter -1.23 34.8 -1.16 30.3

Prom -1.31 2.96 -1.27 2.59

SvdProm -1.31 1.40 -1.27 1.87

-1.31 1.35 -1.26 1.26

BandProm ” ” -1.29 1.55

-1.30 1.26 -1.27 1.33

BandSvdProm -1.30 1.28 -1.26 1.41

-1.30 0.966 -1.27 1.24

SvdBandProm -1.31 1.30 -1.28 1.29

Table B-6.: Summary of Results for the Best Combinations of Digital Filters for K1(Q2R5).

Simulated Orbits with noise from Uniform Distribution

Simulation K1s(MQSL5) σ K1s(MQSL5) K1s(MQSL5) -old σ K1s(MQSL5)-old

Unif. Noise 10−4 [ m−2 ] 10−6 [ m−2 ] 10−3 [ m−2 ] 10−6 [ m−2 ]

w/o Filter 3.34 143 3.50 151

Prom 3.01 12.2 2.98 15.2

SvdProm 3.02 8.80 3.02 9.73

3.01 5.94 3.02 6.07

BandProm 3.03 7.13 ” ”

3.00 5.60 3.03 5.96

BandSvdProm 3.03 5.83 ” ”

3.02 6.16 2.99 6.36

SvdBandProm ” ” 3.01 7.16

Table B-7.: Summary of Results for the Best Combinations of Digital Filters for

K1s(MQSL5). Simulated Orbits with noise from Uniform Distribution
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Bogotá, D.C., 01.11.2015

A.C. Garćıa B.


