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Abstract

Human Gait Analysis have become in a relevant field and its findings have been incorporated

to the clinicians’ daily routines. Human Locomotion is evaluated, usually, in laboratories

and with the corresponding protocols, some issues of the kinematics processing need to be

attended, particularly because although there have been developments in analytic tools,

some particularities of the technique lead to error and different opinions depending on the

expertise of the health professional. The aim of this work is integrate information from two

sources, kinematics patterns and markerless video. Two sets of information are evaluated:

normal subjects and Parkinson’s dissease patients.

Keywords:Human Gait Analisys, Markerless Analisys, Pose Recovery, Parkinson

disease, Neurodegenerative diseases

Resumen

El análisis de marcha humana se ha convertido en un campo relevante y sus desarrollos

se han incorporado a la cotidianidad de los profesionales de la salud. El movimiento humano

es evaluado, usualmente, en laboratorios con protocoles correspondientes, algunos asuntos

del procesamiento de información cinemática necesitan especial atención, particularmente

porque a pesar que se ha avanzado en herramientas anaĺıticas, algunas particularidades de

la técnica conllevan a error alto y a diferentes opiniones dependiendo de grado de pericia

del experto. El objetivo de este trabajo es integrar información de dos fuentes: patrones

cinemáticos y video sin marcadores. Dos conjuntos de datos fueron evaluados: sujetos de

control y pacientes de parkinson.

Palabras Clave:Análisis de Marcha Humana, Análisis Sin Marcadores, Esti-

mación de Posturas, Enfermedad de Parkinson, Enfermedades Neurodegener-

ativas



Contents

1 Theoretical Framework vii

1.1 Clinical Gait Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1.2 Human Gait Analisys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1.2.2 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1.2.3 Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1.2.4 Anthropometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1.2.5 Mathematical Analysis Tools . . . . . . . . . . . . . . . . . . . . . . xii

1.2.6 Gait Analysis and Clinical relationship . . . . . . . . . . . . . . . . . xiii

1.3 Parkinson’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1.3.1 Diagnose and clinical treatment of Parkinson’s Disease . . . . . . . . xiv

2 Research Problem and Methodology xv

2.1 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

2.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

2.1.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

2.2.1 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

3 Human Pose estimation during normal and pathological gait analysis by fusing

Prior Kinematic Patterns and Silhouettes descriptors xxiii

4 Conclusions xlvii



1 Theoretical Framework

1.1 Clinical Gait Assessment

Historically, biomechanical studies can be found in classic Greece and Rome were represen-

tation of human body reflected a coherent relation of body and different motion activities.

Renaissance included dissection and rudimental measurements, prominent studies were car-

ried by Da Vinci, Newton and Boreli, in the nineteenth century the Weber brothers from

Germany performed the first formally biomechanical investigation [28]. Since then Gait Anal-

ysis is composed by three main areas; namely: Kinematics, Kinetics, Energy consumption

indicators; and its interaction with engineering mathematics.

In 1983 it was suggested that the term ”Gait assessment” should be applied to the entire

process of a person examination and the suggestions and treatment. While the term ”Gait

Analysis” may be used to refer to the technical side of the gait assessment [23]. Though,

those terms are not universally accepted, are useful to make a distinction between the overall

clinical examination and the part that takes places in a Gait Laboratory provided with

different type of technology to obtain data.

Gait assessment has three basic and fundamental elements: History and Physical Examina-

tion and Special investigation [28]. The first involves Clinical Record consultation, possible

causes of the motion disorder such as traumas or previous surgery procedures. Physical exam-

ination aims to observe under a multi systemic view, but special attention is musculoskeletal

system captures special attention, looking for motor control failure, muscle weakness and

bones deformation. Those two elements are present in every clinical routine, the special in-

vestigation is used as complementary information, generally consists in sensing information

from multiple sources in a facility conditioned for this purpose: The Gait Laboratory.

The multimodal information obtained in a Gait laboratory is summarized as Kinematics,

Kinetics and Energy consumption indicators. In addition to the source of information present

in Gait Laboratories, this chapter covers the most relevant aspects of mathematical tools for

human locomotion analisys, in the subsections ’Anthropometry’ and ’Analysis Tools’; then

a more detailed insight to clinical practice and gait analysis is presented in subsection ’Gait

Analysis and Clinical relationship’, finally Parkinson’s disease overview is covered in the last

section.
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1.2 Human Gait Analisys

The comprehensive study of human locomotion is known as Human Gait Analisys, this field

involves a wide variety of movements that are generated by the synchronization of biological

subsystems. Traditionally, the analysis of human locomotion is performed merely using the

observation of the clinician [17], representing a considerable difficult challenge particularly

because of the quantity of data involved [30]. Biomechanics is a science branch that de-

scribes, analyzes and assesses human motion information using automatized methods, in

other words it reaches a supervised human gait analysis, becoming an important tool for

health professionals, being or particular interest in the following areas: Orthopedics, Sports,

Surgery, Rehabilitation, Therapy and Sport Equipment Design.

There is a variety of sources of information in Human Gait Analysis, usually in conditioned

laboratories a person is asked to walk while different sensors are capturing data. The hu-

man motion information varies between description, monitoring, and analysis. A first aim

is to know the position of a person at a particular moment, the term monitor refers to a

description over the time, while analysis implies the use of mathematical operations or the

combination of information from different sources in order to obtain a parameter that cannot

be directly measured and is also informative.

1.2.1 Kinematics

Kinematics refers to anatomical relationships measured over the time, it includes linear and

angular movements, velocities and acceleration [29]. First reported kinematic measurements

took place in France by Marey and in the United States of America by Muybridge in the 1870s

using still cameras[11], later with the development of cinematography cameras the accuracy

improved, but the major development to obtain kinematic parameters were computers, thus

in early 1980s television cameras linked to computers performed relatively fast calculations.

Kinematics are obtained using a diverse set of direct or indirect techniques and then focusing

in body landmarks, e.g. center of rotation joints or the edge of the limb segments. There

are direct kinematic measurements performed through goniometers, acelerometers and other

transductors attached to the body.

Imaging measurement techniques on the other hand provide a more complete view of the

region of interest. Traditionally, bright spheres are located in very specific body parts in

order to measure the location and inclination of particular anatomical regions. This type of

Marker Analysis is restrained to specific annotated regions. As with many other biological

data, the capture is noisy and the natural walk gestures are affected by the interference of the

markers[2]. Development of informatics in late 20th century; leading to higher computational

performance and the reduction of devices’ cost; allowed the emerge of Markerless Analisys

techniques that has become an alternative with promising successful results. As inferred
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from the name, these methods do not place artifacts over the body, the person is recorded in

a more familiar situation and video processing techniques are applied to recover kinematic

information.

Due to the large quantity of input data usually kinematic data is studied in two-dimensional

planes, Figure 1-1 illustrates the 2-D planes, while Figure 1-2 presents the typical sagittal

plane measurements of a normal person’s Joint Angles, exactly Hip, Knee and Ankle.

Figure 1-1: 2-D Planes tiically used in Human Gait Analisys [29]

Marker based Kinematics

Last three decades of informatics and video recording advances have provided the conditions

to perform indirectly measurements over the body, not only in specialized research university

groups but also in many health care facilities becoming familiar to many physical therapists

and related health professionals. One essential parameter to obtain useful clinical data is

spatio-temporal location of the body, with camera calibration data and a body representa-

tion of line segments and joints, limbs are located in a 3-D coordinate system knowing the

position of a reduced quantity of anatomical areas; considering anatomical restrictions and

trigonometry; angular information complete the limb segments spatial localization, those

anatomical areas that are key to describe limbs’ location are marked with some high con-

trast material attached to the body. Historically, starting as universities group research

efforts, videotapes that needed to be digitalized and then transferred to a computer were
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Figure 1-2: Sagittal plane Joint Angles by normal people during a Gait Cycle [29]

the most advanced option to perform this type of analysis, different alternatives where im-

plemented leading to different type of markers, some of them designed active markers using

light emitting diodes, others took advantage of reflective material placing it over spheres,

forming passive markers. Due to the novelty few groups developed their own protocol, this

providing unique characteristics including measured variables, degrees of freedom and nota-

tion. The ”Newington model” is the pioneer and most used, being the base for commercial

packages [10]. Other relevant protocols are the developed by ”Servizio di Analisi della Fun-

zione Locomotoria”, ”Calibration Anatomical System Technique” (CAST) and ”Laboratorio

per l’Analisi del Movimento nel Bambino”.

Markerless Techniques

In recent years sensor and computational advance has allow techniques that do not use mark-

ers to establish the body mechanics, on the other hand, shape and anatomic relationship are

promising. Though there is no standard to follow as in the marker based case, imaging usu-

ally consists in four main stages, Model initialization, Visual Feature extraction, tracking,

and Feature analysis. After video recording, the Model establishes the constraints and set

the parameters of forces, limb length and angles through a biomechanical representation, fea-

ture extraction selects the relevant visual information frame by frame, temporal variation is
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fundamental to obtain Gait analyzable data being Tracking the respective stage where infor-

mation in delimited temporally, finally trough statistic and mathematical methods Feature

Analysis is achieved. The challenge of these techniques is rather related to computational

video processing constraints and occlusion.

1.2.2 Kinetics

Kinetics measures the Forces during gait, using customized transducers. Kinetics considers

both the inner tissue forces and the external ones, v.g. the force produced on the surface when

the foot lies on it or passive loads like wind resistance. Already by 1970s accurate 3-D sensing

devices with electrical output and high frequency response were available. Some studies in

animals have explored surgical techniques that implant transducers ’in vivo’, however for

evident reasons these approaches can not be implemented in human. If proper kinematic

information is known, as well as some anthropometric data and external forces, it is then

possible to obtain the inner muscle-tendinous forces, using a prediction Inverse Solution with

a biomechanical model. Recent kinetic works also include limb acceleration and information

of joint moments and joint power.

1.2.3 Electromyography

Electromyography measures the electrical activity of the muscles, the contraction of a muscle

has an electrical signal produced by the potentials of the muscle fibers. A motor unit

action potential is simply the electrical activity associated to a set of muscle fibers that are

connected to a single neuron and depending on the muscle specialization can go from a couple

of fibers to hundred of them. The electrodes located on the skin or inside the body calculate

the algebraic sum of the nearby motor unit action potentials. The graphic representation of

this signals along the time is called Electromyogram (EMG) and the systematic study of this

signal is Electromyography, early investigations of this kind were performed by a research

group in California in the 1940s and 1950s, since that experimental beginning, nowadays

it has become a widely accepted and performed routinely in gait analysis laboratories. A

considerable variety of models have been proposed to interpret and associate the potential

values and the state of the muscle.

1.2.4 Anthropometry

Anthropometry is the field that studies physical measurements of the human body to deter-

mine characteristics and differences between individuals and groups. Traditionally as part

of the antropology evolution and etnic research, the anthropometric field has expanded to

human-machine interface, space design, armors and similar. Although it is clear that there

are differences according to gender, body building and racial origin, in absence of direct body
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measurements an average of body proportion was presented by Drillis and Contini (1966),

and illustrated in Figure 1-2.

Figure 1-3: Body segments with respect to the Height H [8]

1.2.5 Mathematical Analysis Tools

No matter the sensing method, the biological signals obtained in the laboratory are time-

varing and have to be treated like any other signal. Many times research involves the

comparation between one signal point and the past, present and future values of another

signal. The cross-correlation evaluates how the relationship between two signals is. The

Pearson Moment Correlation Factor (Eq. 1-1) is a well known statistics and is a measure of

the statistical relationship between two sets of data. It determines whether the variables x

and y increases or decreases together (positive correlation) or if x decreases when y increases

(negative correlation). The correlation coefficient indicates the strenght of the relationship

and is a normalized dimensionless magnitude between -1 and 1.

In the Pearson product moment correlation coefficient, Xi and Yi are the ith samples of

x and y, and X̄ and Ȳ are the respective means. Sx and Sy are the standard deviations.

The numerator of this formula is the product of the difference of the variable sample and

its respective mean, if the two variables are not related, the x against y graphic would be

scattered points all over the x-y plane, the sum of the consecutive product would be close to
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zero, on the contrary if there is correlation the (Xi − X̄) and (Yi − Ȳ ) fall in one line in the

x-y plane, obtaining a finite value in the summation, the effect of the number of points is

suppressed dividing by N, an finally it is normalized between -1 and 1 dividing by the SxSy

r =
1
N

∑N
i=1 (Xi − X̄)(Yi − Ȳ )

SxSy

(1-1)

1.2.6 Gait Analysis and Clinical relationship

Gait analysis is rarely used to make medical diagnosis, the quantitative information provided

is used as a medical paraclinic to prescribe treatment and evaluate the improvements. [25].

The main clinical value of Gait Analysis is present in central nervous disorders associated

with spasticity, particularly cerebral palsy in infants. The main goal is to provide reliable

information that help the clinician to take a decision about performing surgical interventions.

As reported by DeLuca, Kay, and Fabry et al, the initial surgical intevention decisions were

changed after considering Gait Analysis data [7] [14] [9]. The success of the spastic cerebral

palsy surgeries introduced the gait analysis information is 14 in 16 children as reported by

Lee et al [16]. The psychological improvements are also part of the benefits of the Human

Gait Analysis. Not all the parameters of a person’s motion analysis must be used, the

ability to detect the relevant information remain being part of the clinician discretionality.

For neorological origin locomotion disorders the gait variability is itself an indicator of the

severity and level of the disease [12]. Knowing quantities of the patients motion state can help

to estimate the effects of medication or other forms of treatment. Clinical motion research

has been proved used also in a wide variety of disorders in other fields such as rheumatology,

orthopedics, endocrinology and neurology [13] [20] [21] [26] [4].

1.3 Parkinson’s Disease

Parkinson’s Disease (PD) is a the second most common neurodegenerative disease, after

Alzheimer’s disease , PD is characterized by the death of selected population of neurons,

among others the dopaminergic areas in the substancia nigra are susceptible and loss is

estimated to be 60 to 70 percent at the time of symptoms observation [15]. The disease

is manifested as a disabling disorder observed in a wide range of the population including

young people [27] [1], accurate diagnosis is critical and remain based on clinical grounds

with no specific diagnostic test is avaliable[19]. The epidemiological figures present variable

diagnostic criteria and study population, nonetheless a prevalence of ∼ 1% to ∼ 2% in the

population older than 60 years or ∼ 0.3% of the general population is accepted. PD cause

is unknown but interaction between genetic and enviromental factors are probably involved,

thus the exposition to pesticides and other toxics, family history and age are the widely

documented so far, this disease exhibits a male-to-female ratio of 3:2 in most of the studies.
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Motor symptoms include four main features: Bradykinesia, rest tremor, rigidity and postural

and gait impairment.

-Bradykinesia: Is the loos of amplitude or speed during attempted rapid movements.

-Rest Tremor: Is an oscillatory involuntary movement that appears when the affected

segment is relaxed and supported by a surface. Rest tremor is usually in the mid-range from

3-6 Hz with variable amplitude from 1cm to 10 cm.

-Rigidity: Refers to increased muscle tone felt in the examination over a passive movement

of the affected segment, limbs or neck.

-Postural and Gait Impairment: Loos of postural reflexes, in some cases extreme truncal

flexion forward. There is also decreased arm swing resulting in slow and transformed in

multiple small steps.

Non-motor symptoms are also perceived after years of PD presence, thus cognitive decline,

depression, autonomic absence, pain and sensory symptoms.

1.3.1 Diagnose and clinical treatment of Parkinson’s Disease

The only reliable method to diagnostic PD is assessing Lewis Bodies in the Substantia Nigra

during an autopsy [24]. In the clinical praxis it relies strongly in the expertise of the physician

or physical therapist, being difficult to assess in early stages. Progress of PD is evaluated

with UPDRS (Unified Parkinson’s Disease Rating Scale), which consideres among others,

cognitive abilities, daily task performance and rigidity. Other scales are ”Hoenh and Yahr”

and ”Schwab and England Activities of daily living”. ”Hoenh and Yahr” scale considers

the advance of the disease according to the side affected and the autonomy of the patient,

despite the effort of defining protocols, evidence have prove that some diagnostic could not

be proven with autopsy .
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This Chapter covers the proposed framework for this project: the research problem, objec-

tives and activities are presented. First, the research question and problem are discussed,

the chapter proceeds with the description of the proposed methodology, then the testing

setup and experimental observations are explained.

2.1 Research Problem

Traditionally Gait Analysis involves different sources of information, Kinetics have tried to

determine the origin of the forces that take part in locomotion, while Energy Consumption

Indicators are another recurrent parameters analyzed frequently used in muscular system

studies, finally Kinematics is one main branch and provides an important source of infor-

mation to health professionals, being studied from different perspectives. Direct observation

requires high skilled personal and there is still high variation on the appreciation on a daily

basis clinical work due to the subjective method [29]. Then, there is a range of technol-

ogy tools that have allowed to reach more precise considerations, from direct measurement;

obtained, for instance; from a Goniometer in anatomical segments; to photogrammetry mea-

surements, Markers approaches have led Kinematic observation [11]. Despite its widespread

usage, there are some considerations that need to be mentioned, this technique; as other

direct measurements; alters the natural gesture of the Human Gait and also there is inher-

ent disturbances in the measurements due to the placement of the markers in soft tissue

[2]. Indirect measurements also face challenges, markerless approaches need to deal with

video processing techniques face occlusion issues, environmental and lighting conditions as a

source of noise and computer algorithms have to be robust and adaptable to the wide range

of human particularities and traces. This work propose integrate kinematic information that

comes from direct measurement and indirect to enhance the perspectives of unsupervised

computational analysis. The research question faced is: How to perform a markerless

analysis integrating prior kinematic patterns with a body segmented from video?

2.1.1 Objective

Integrate kinematic a priori patterns with gait videos within a markerless analysis to obtain

precise localization and detection of lower limbs in a gait cycle.
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2.1.2 Specific Objectives

1. Develop a temporal human posture model during a gait cycle using kinematic a priori

patterns

2. Capture gait Spatio-temporal patterns segmenting markerless video recordings.

3. Integrate the information from the human posture model with the segmented video,this

way enhancing the markerless approach.

4. Validate the testing and experimentation methods.

2.2 Methodology

Kinematic prior information is used to obtain a Map of Poses, in other words a representation

of the human body as a set of possible postures given lower joint angles, a biomechanical sec-

ond order model proposed in a Biomedical Engineering Master thesis by Romero, Cifuentes

and Martinez [18] provide the prior angle lower limbs joint patterns used to create a set of

postures each percentage of the gait cycle, those one hundred postures are recreated using a

human model built with enlarged segments that considered the anthropometric parameters.

Two sets were analyzed in this project, normal control subjects and Parkinson’s disease

patients at stage II and Stage III, the methodology is applied independently though it was

tested in both normal and pathological gaits.

Simultaneously, from markerless video a geometrical representation of the body is obtained,

that process requires the delimitation of the body shape through foreground and background

determination, background subtraction (BS) algorithms most general idea consists in com-

pare one frame with a background model and pixel variation indicates foreground assigning

1 to built a binary image with background values being 0 [22],a fundamental aspect is how

to determine the background model and consider the variation in brightness and translation

of the camera, so Background Model may be dynamical. Among others, Background Sub-

traction models proposed and generally used include Running Average, Gaussian Models,

Gaussian mixtures and Σ − ∆ [5]. Two types of Background Subtraction algorithms were

tested in this project, Σ −∆ and ViBe. Σ −∆ BS is based in the Σ −∆ Modulation well

known for its computational efficiency. This modulation samples the signal at higher rates

than the specified by Nyquist theorem, achieving strongest correlation among adjacent sam-

ples, thus the quantization error power spreads over a wide range while the the signal power

remain within the signal band, allowing good signal-noise separation from the quantization

noise [6]. ViBe Algorithm proposed by Barnich and Von Droogenbroeck consists in compare

frames with a model in a RGB space and a sphere of closeness, if the frame pixel is located

insede the Background model sphere in the RGB space then that frame is assumed to be

also part of the background. The model is updated in time. [3].
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Then based on lower limb minimal loss of details ViBe was choosen. Once the region of

interest is selected in the video, gait cycles frames need to be carefully chosen, heel reach-

ing the floor surface is the indicator either for the beginning or ending of the cycle, using

thirty frames per second might complicate this action and a point immediately after heel

strike shall and adjust later that displacement in the cycle. Once the cycles are delimited,

each shape is located into a Bouding Box, for each experimental of the two sets of informa-

tion; one is the normal and the other is the pathological gait data; the maximum silhouette

values are finding by selecting the highest height and the swing phase moment when the

legs are completely apart from each other. Once the maximum silhouette region is known,

a normalization process is performed, all the cycles heights are normalized respect to the

maximum silhouette region, this is particularly necessary for similarity metrics that are sen-

sible to position of the image regions. Once last consideration was carried in this phase,

a preprocessing stage was made, mathematical morphology tools, particularly opening and

closing enhanced the lower limbs information which after background subtraction and for

environmental reasons were affected and diminish in the process.

Integration of the information used a ground truth, the information assumed as more ac-

curate, to do so, each silhouette from the markerless video cycles were matched to a pose

from the Map of Poses, the matching was performed carefully and in the process there were

consideration not only of similarity but also cycle progression, important to notice that in

this part of the methodology the non-linearity of the human locomotion was observed, the

fact was that for some people right foot standing phase was longer while in the swing phase

postures of the Map of Poses increased faster. A silhouette to silhouette comparison is per-

formed, a new video of a sagittal plane gait with no kinematic information is compared with

the trained data, the most similar matched silhouette will pass the pose to the new video

frame, and with the pose subsequently angle pattern data is associated this time not directly

from an expert but from a comparison algorithm, being that the core of the idea proposed

in the objective of the project, to enhance localization and to obtain accurate measurements

of angle on markerless video. The comparison silhouette to silhouette methods proposed

and then tested were two, one analyses the general characteristics of the body shape, that

is a regional consideration which resulted being highly dependent on the bounding boxes

and its logical and coherent placement previous the comparison. The other similarity metric

explores the geometrical relations among different cycles, but this time the comparison is not

easily affected by the direct placement, since the center of mass is geometrically located in

each silhouette and then successive summaries in a polar coordinate system for each degree.

After a whole 360-degree space covering, each silhouette have been transformed into a space

where a Pearson Correlation is the similarity indicator.

The information integration is validated using the described patterns in biomechanics for

normal behavior, while for the pathological gaits a measurement took place using markers,

that information allows us to obtain an indicator of accuracy respect to one method widely
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used in gait analysis. A summary of the proposed methodology is presented in figure 2-1.

Figure 2-1: Methodology Flow Diagram

2.2.1 Activities

• Delimitation the scope of the human model: This activity included the selection of

the human prior to model information in the sagittal plane, that represents relevant

indicators such a joint flexoextension movements, being the lower limbs and the Hip

and Knee patterns useful and well known in clinical context.

• Generation of the normal gait Map of Postures: Using the biomechanical model and

its resulting angle patterns a human link-model is created, all of the one hundred poses

constitute the Map of Poses for normal testing.

• Generation of the pathological Map of Postures: Similarly to the normal gait case, the

biomechanical model may also recreate gait patterns for hip and knee, another set of

one hundred poses is then obtained.

• Markerless Video Capturing: At UN Gait Laboratory a process of video recording took

place, ten normal control subjects and ten parkinson’s disease patients were gathered

at Medicine Faculty in BogotÃ¡ and they agreed the protocol of measurements, they

signed a consent and shared their data knowing that it would be used for academic
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purposes. The subjects wear tight clothes and the color used were green which provide

high contrast respect to the white wall of the Gait Laboratory.

• Cycle Delimitation: When the video was stored and identified properly, cycles were

specified through the heel strike reaching the floor, this project considers the right

lower limb for analysis, notice that gait is a rhythmical and periodic movement [],

it is possible to propose the assumption that right and left limbs are similar with a

difference in phase of 50 percent of the cycle and still preserve high accuracy. From

each patient two cycles were selected to become part of the video data set.

• Background Subtraction Process: Two algorithms were tested, classical Sigma-Delta

and ViBe, the latter is open to academic projects and was developed by Olivier Barnich

and Marc Van Droogenbroeck, ViBe recovered better the foreground information this

is because the segmented body shape preserve feet data, while the sigma-delta tend to

have a loss in that key anatomical segment for this project.

• Preprocessing: Human body shapes were located in Bounding Boxes, this delimits the

area of interest to a specific and known area, besides regions of interest, silhouettes have

to be comparable so a normalization in height was performed and then Mathematical

Morphology closing and opening operation enhanced the final human body silhouettes

that are delivered to the integration information methods.

• Silhouette Training: A Leave One Out scheme was proposed to validate the methodol-

ogy that enhances new markerless videos with prior kinematic information, this scheme

requires all the cycles to be trained in this case each silhouette is associated to one

of the Poses of the Map of Poses. One of the trained cycles is said to be Out, each

of the frames of that Outed Cycle is compared with all the frames of the trained and

included cycles. Normal gait set is composed by 18 cycles for 9 patients, looking for-

ward to avoid biased results each cycle leave out also the another cycle of the same

subject, this is each outed cycle search similarity with a number of 16 cycles. After 18

repetitions results are ready to be analyzed. Pathological case was divided into Stages

II and III, ten cycles from five patients each, and the same anti bias precaution was

applied. One important remark to mention in this point is how the association shows

the non-linearity of the motion, some particularities of the gait imply the non equal

variation on the frames over the percentage on the cycle, for instance in the right foot

support phase one increment in frame resulted in steps equally distanced on poses from

the map, while in the swing phase the accelerated and decelerated reported behavior

represented irregular steps in the change of pose from the map of poses,

• Regional Comparison Algorithm: This integration method considered a pixel by pixel

comparation, the general idea is quantify three regions when comparing two silhouettes,

one that is common to both silhouettes or in other words the overlapping region, Y t,
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the other two regions are the non-overlapping regions of each silhouette, Rt and Bt,

to do so, first it was required matching carefully the each boundind box, this was

placing the region of interest to the right and the blank space to the left, vertically all

silhouette covered the same space. Once the matching was done, a similarity metric is

proposed, equation 2-4 is supported by equation from 2-1 to 2-3.

Rt =
∑

p

MA(p)(1−MB(p)) (2-1)

Bt =
∑

p

MB(p)(1−MA(p)) (2-2)

Having two silhouettes Ai and Bi that are being compared, functions Rt and Bt are

a per-pixel p calculation of the information solely in silhouettes Ai or in Bi, respec-

tivelly: And then a function Y t computes the overlapping between the two compared

silhouettes as:

Y t =
∑

p

(MA(p))(MB(p)) (2-3)

Finally, the similarity metric is approximated by the fraction, notice that this is a

spacial comparison so the matching is a key aspect for the good performance in this

point, the comparison metric takes the minimum value and it requires not only having

high overlapping region but also computes the not shared pixels and expects that those

two regions to be little. a is a coefficient that allows to give more weight to one of the

two silhouettes, either A or B and penalize higher if one of the non-overlapping areas

results significantly higher than the other two quantified regions:

(a)
Bt

Bt+ Y t
+ (1− a)

Rt

Rt+ Y t
(2-4)

After testing a values from 0 to 1 with steps of 0.25; 0.5 exhibited best performance

achieving the best results, there is no reason to privilege the trained silhouette over

the silhouette that have no pose information associated, the information that they are

not sharing compared with the overlapping area is then equal no matter from which

silhouette comes from.
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• Geometrical Comparison Algorithm: This algorithm is translational invariant , it is

certainly sensible to rotation over the center of mass but that kind of movement is

assumed to be nonexistent in the scope of gait and the matter of this project. The

idea is to calculate the geometrical centroid, in a plane the centroid is the arithmetical

mean position of the points of the shape, the centroid of the human body shape is

corresponds to the Center of mass, assuming uniformity of the body density and having

constant Gravitational Field, the Center of Mass is the same Center of Gravity the

point where the Gravity force applies its effect on the whole person. Having both, a

geometrical consideration or statics perspective and a force consideration or dynamical

perspective, the centroid is a fundamental point, that considering some assumptions,

comprehends human locomotion for some analysis. This project is comparing human

silhouettes of people walking and reproducing gait in similar Static and Dynamical

conditions, considering that the centroid is the key point to establish the geometrical

comparison, once the centroid is located for each frame, the silhouette is mapped to

another space, consecutive line integrals are calculated having steps of one degree from

0 to 360, thus covering the whole image. In 2-5 equation the transformation is specified,

in 2-6 equation the mathematical formulation for each line direction is reported.

F (θ) =

∫

C

fds; 0 ≤ Θ < 360 (2-5)

∫

C

fds =

∫ b

a

f(r(θ))|r′(θ)|dθ (2-6)

Once all the silhouette are transformed, the similarity metric chosen was the Pearson’s

Correlation coefficient, this mathematical tool is invariant to the magnitude of the

functions being compared, this coefficient represents similarity over the X axis of the

functions being compared, simultaneous increments or decrements provide positive

PCC, the closer to one the more similar the functions are, in this case what was

compared where silhouettes in the defined space.

ρ(θ) =
1
N

∑N
i=1 (Ai − Ā)(Bi − B̄)

SaSb

(2-7)

• Leave One Out Scheme Testing: The activity ”Silhouette Training” was the first part

of the Leave One Out Scheme for validate the proposed methodology, as it was stated

in that section one cycle is left out of the cycles that have kinematical information, each

frame of the outed cycle is compared with the whole set of frames from the cycles that
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have been associated to poses from de Map of poses, the most similar silhouette from

the trained data delivers and assigns its kinematic information to the frame from the

outed cycle, when all the frames are compared kinematic information for that cycle

have been associated and consequently the lower limbs located spatially. Then the

outed cycle enter to the trained set and another cycle is left out. When all the cycles

have been left out, the test finished.



3 Human Pose estimation during normal

and pathological gait analysis by

fusing Prior Kinematic Patterns and

Silhouettes descriptors

The complete Results Analysis and Perspectives are found in this chapter, that consists in

an article submitted to a peer-reviewed journal, one fundamental aspect in research field.

The article is titled ”Human Pose Estimation of Normal and Pathological Gaits by Fusing

Kinematic Patterns and Silhouette Descriptors” and was submitted to the Journal ”Medical

Engineering and Physics”. The article contain a fully review of this project, a detailed

Results analysis is found in ”Evaluation and Results”, while the ”Discussion” section is a

starter point to find Conclusions and future work of this thesis.
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Abstract

Quantification of gait patterns is crucial for assessing and following up motion disorders. A

kinematic gait analysis may capture spatio-temporal posture patterns whose characterization and

quantification might be useful for improving the current description of a wide range of pathologies.

Currently, markerless strategies are appealing techniques that recover human poses by using the

recorded video and human shape information. This work presents a novel markerless pose esti-

mation that follows normal and Parkinson’s Dissease (PD) gaits recorded in sagittal plane video

sequences. A structural kinematic model is run to emulate different gait dynamics allowing to

recover a prior represented as a set of synthetic poses. For the whole recorded sequence, a per-

frame-human shape is firstly recovered, characterized and mapped to a previously learned space of

poses. The most likely pose is then recovered for each frame, until the whole recorded sequence is

described and a set of kinematic patterns is computed from the recovered poses. The performance

of the proposed approach was evaluated by comparing the obtained sequence with ground truth

patterns from control and PD gaits, diagnosed at stage 2 and 3. Experiments were performed

with real data from 10 controls and 10 PD patients, considering two gait cycles per patient. The

proposed approach achieves an average correlation coefficient of 0.97 and 0.86 for control and PD

gaits, respectively.
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I. BACKGROUND

The human gait, that fluid and continuous movement with a natural repeating character,

can be understood from complex interactions between musculoskeletal structures that are

perfectly coordinated by neuro-motor commands [18, 24]. Estimation of human poses during

locomotion simplifies such comprehension by determining a set of relevant spatio-temporal

patterns of the different gait variables, namely joint angles, limb velocities and anatomical

relationships, among others. These patterns identify and characterize gait pathologies with

a certain confidence [15, 16] that makes they might be used as an evaluation base. A

sequence of poses can be used as the main source to carried out kinematic analysis in the

most important parts of the gait cycle and highlight intra and inter subject differences..

Classically, a gait analysis is carried out using a set of markers carefully placed upon some

specific anatomical repairs. However, this conventional procedure is invasive and alters the

natural movement gestures, restricting the analysis to a set of temporal trajectories while

introducing errors from the variability of both soft tissues and marker locations. [3, 14].

In this context, markerless techniques may be appealing as an alternative that recovers

gait motion patterns using only human shape dynamic information. These strategies have

successfully labeled activities in outdoor scenes or recognized gestures for identification ap-

plications. [4]. From a clinical perspective, these techniques may capture classical patterns

while opening the possibility of finding out hidden spatio-temporal relationships during the

locomotion. However, such kinematic characterization in clinical scenarios is still an open

and challenging problem.

Markerless approaches have used either appearance information or structural and motion

priors. Temporal appearance methods have been reserved to applications where a coarse

recognition is acceptable and people identification is likely [2]. This is however insufficient

for those clinical purposes that demand an accurate joint labeling and following up. Pose

recovery strategies, in contrast, have estimated geometrical joint localization using structural

prior information. Chengkai Wan et al. recover a human body from an active contour

strategy, for which an initial rigid structure formed by line segments is deformed to any

possible posture. Such method captures relatively well static poses from a fixed position

but the technique is totally appearance-dependent. Lu et al proposed a layered deformable

model for gait analysis that integrates poses with silhouettes using a likelihood measure
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that determines the correspondence of each limb. This approach might estimate some joint

angular patterns from the estimated pose but the deformable model could hardly match

fuzzy borders in noisy images .

Fathi and Mori split the observed silhouette into a set of patches [Fathi and Mori], each

characterized by classical spatial moments. A set of trained patches coupled with artificial

poses is used to classify a new video. This approach results sensitive to the captured sil-

houette angle since moments depend on geometrical transformations while relevant shape

attributes may be lost by this local representation. Additionally, Radwan et al proposed

a pose recovery strategy from a graph representation using a support vector machine that

learns similarity features from videos [22], a strategy that depends on the appearance and

the number of samples. Other approaches have used geometrical descriptors in the frequency

domain, for a correspondence with a pose map can be established [7, 21]. These approaches

however may fail if local changes contaminate observations or background. Additionally,

dynamic gait models associate visual poses to particular video-sequences under a markerless

framework. Kakadiaris et al uses a classical kalman filter that tracks a 3D human structure

[13]. This filter however is a well known first order predictor which could hardly capture

important non-linear gait features. In other work, James M. Rehg et al integrate a rigid

model of the human body with three synchronized cameras [23], but focusing exclusively

on static depth estimations. Additionally, Wachtert and H.-H. track, by using a particle

filtering, a rigid body model from different sequences captured with synchronized cameras.

This method is computationally expensive and several errors appear when simultaneously

tracking the rigid body from different points of view.

This paper presents a novel markerless strategy that follows normal and pathological gaits

by mapping the temporal visual descriptors of a particular frame to a previously enriched

space of poses. A main contribution of this work is the function that maps a silhouette frame

descriptor to a most similar learned silhouette which is coupled to a particular pose. This

strategy allows us to quantify different normal and pathological kinematic gait patterns,

including non linear features, under a framework that is quite robust to noise. The method

starts by firstly building a map of poses for normal and Parkinson’s Disease gaits (Hereinafter

referred to as PD gaits) during a cycle. A previously developed biomechanical model [17]

generates the set of poses that simulates normal and PD gaits which are then associated to

the corresponding set of silhouettes obtained from an actual video. The result is that both
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normal and pathological cycles are described by a set of silhouettes, each with its respective

pose. An additional step consists in constructing a silhouette descriptor by identifying local

and global features at the silhouette. The local part of the descriptor is composed of those

pixels belonging to the silhouette boundary while the global part is defined as the radial

distance from the silhouette gravity center to the boundary, in a radial space formed by

lines passing through the gravity center every 1 ◦. The descriptor metrics is then defined as

a combination of the overlapping degree between two local descriptors and the correlation

coefficient between two global parts. The rest of this paper is structured as follows: Section II

describes the proposed approach. The evaluation, results and effectiveness obtained by our

approach are shown in section III . The section IV presents a discussion and potential

future work.

II. MATERIALS AND METHODS

The proposed markerless strategy obtains a sequence of kinematic patterns by selecting

the most likely series of temporal poses that can be associated to actual gait videos. Firstly,

a space of probable poses is built by running a previously developed biomechanical model

[17] that generates sequences of poses for normal and PD gaits (Figure 1 (A)). These suc-

cessions of poses are then assigned to their corresponding silhouettes, drawn from a set of

video sequences during a previous training step (see Figure 1 (B)). For a new gait video, a

background subtraction algorithm obtains a coarse human shape from which a global shape

estimator and a geometrical characterization are generated for each frame of the whole se-

quence (Figure 1-C). This characterization is mapped to the space of silhouettes using a

pose similarity cost function, composed of two metrics, one that compares regions straight-

forwardly and a second that transforms silhouettes to an alternative space representation

where the most likely pose is determined, as illustrated in fig 3. Once the gait video is

completely associated to a set of poses, different kinematic estimators are computed from

markerless point of view. The pipeline of the proposed approach is illustrated in Figure 1.
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FIG. 1: Pipeline of the proposed method. Firstly, a space of artificial poses is generated by

running a biomechanical gait model (B). For a new walking video (A), a background

subtraction algorithm recovers a global shape estimator and a geometrical characterization

(C), Finally, a family of global and local metrics associates the most probable pose for the

previoiusly characterized silhouette.

A. Modeling Poses

Gait is commonly characterized from kinematic and kinetic points of view, facilitating un-

derstanding of both gait spatio-temporal patterns and forces that regulate gait displacements

[8]. The kinematic analysis describes a wide range of gait pathologies, for instance, crouch

gait, cerebral palsy, neurodegenerative diseases and prosthetic movements [12] [4]. Classical

kinematic analysis approximates the human body to a rigid structure which describes nor-

mal and pathological patterns as a set of joint displacement and movements/velocities of

the lower limbs [13]. Such rigid structure P is usually composed of a set of rigid limbs that

are articulated by limited joints, reason by which rigid transformations may be considered

under Euclidean metrics.

In the clinical practice, such rigid structure is typically recovered for each patient from

a set of markers placed on the human body, following specific protocols [Note1] . However,

this methodology is quite invasive, requires a large number of anatomical points and alters

natural locomotion gestures [3]. The locomotion study has then been restricted to hospital

environments with devoted devices and customized spaces that more or less meet what is
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currently known as gait laboratory. These markerless strategies open up the possibility of

studying any disease pattern in no controlled conditions which is closer to the actual disorder

patterns.

In this work, this structure P is reduced to four segments that represent the lower

limbs, {k1 . . . k4}, and four rigid segments that stand for the upper limbs, from {k5 . . . k8},
while a set of joints couples different limbs with a trunk and head, as illustrated in Fig-

ure 2. This structure, hip and left-right knee joints, allows for joint angular measures as

{A1(t), A2(t) . . . A4(t)}. A set of poses, generated by a previously developed biomechanical

model [17] defines the whole gait cycle, including the single and double stance. At a any

time i, a Pose is defined by its structural and dynamical configurations, represented by the

feature vector: Pi = (k1, k2, ..k10, A1(i), A2(i), ..A4(i)). In Figure 2 a typical recovered pose

is shown. The structure P simulates normal and pathological patterns with a reduced set

of parameters [11] by fusing real-learned trajectories with a physical representation of lo-

comotion, consisting in a spring mass system coupled to a double inverted pendulum that

captures the sequence of muscle activation in the single and double support phases [17].

These poses describe kinematic patterns as the angle trajectory of the right and left hips,

or the right and left knee angular trajectories or even more, the velocities and accelerations

of each limb.

B. Video Data Segmentation

A coarse human shape is recovered by a background strategy that obtains a silhouette per

frame. The Visual Background Extraction (ViBe) algorithm was herein applied because this

strategy has demonstrated accurate foreground detection in several applications [6]. In the

ViBe approach, each pixel is mapped to an Euclidean color space (ECS) and compared with

a background pixel model, represented by the set of neighboring pixels in the previous frame.

The foreground/background labeling of each pixel is then defined as the pixel cardinality

w.r.t the set of neighboring pixels in the precedent frame, i.e., the number of background

pixels that matches within a radius R and w.r.t to a previously selected threshold t. The

whole silhouette sequence is bounded and normalized in the space of poses. A set of poses

captured with ViBe approach is illustrated in Figure 3− b.
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FIG. 2: Left: Angle patterns in a video Frame. Center: Pose associated to the current

frame. Right: Centroid rererenced as a) while image Edge Points as b)

C. Assigning silhouettes to Poses: the prior

The set of poses, previously generated by a biomechanical gait model, was associated

with a temporal sequence of human silhouettes, computed from a set of control and PD

videos. A total of hundred poses describe well an entire gait cycle, i.e., at this temporal

resolution changes were observable. At each time of the gait cycle, a pose is associated

with the most similar silhouette of a training video-sequence, a task performed by an expert

who assigned the mot probable pose for a particular gait phase and leg configuration. In

general, video-sequences have a larger sampling frequency, that is to say, the number of

video frames per second is larger than the number of poses generated by the biomechanical

model. Therefore, a particular pose may be associated to a set of silhouettes and the expert

simply picks the most similar. It is worthy to mention that such silhouettes are very alike

among them since human gait movements can be considered as relatively slow with respect

to the typical sampling frequency of a video, i.e., 30 fps. Yet this task was performed by an
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expert, it can be stated that for a given pose, any of the silhouettes associated to that pose

might be considered as equivalent. Finally, the space of poses is composed of a succession

of poses with their respective associated silhouettes.

D. Assigning Poses to video-sequences: the likelihood

Any gait video should then be described by a sequence of poses, a task accomplished by

setting the most similar silhouette - from the space of silhouettes -to each frame of the video.

The most similar pose is recovered by considering regional and geometrical metrics, regional

by taking into account a degree of neighboring overlapping and geometrical by comparing a

signature of the silhouette in a polar space. A more detailed description of the two metrics

are presented hereafter:

1. A Regional Metrics for Comparing Silhouettes

The prior space of poses was built by assigning a single silhouette to each pose, a refer-

ence silhouette that stands for a statistical population of silhouettes. A main hypothesis is

then that a set of captured silhouettes should maximally intersect the reference silhouette

associated to a representative pose. For this reason, a bidirectional cost function is herein

proposed for silhouettes to be compared, on the one side w.r.t every silhouette in the space

of poses, but on the other side w.r.t the observed silhouette.

The cost function performs a per pixel p comparison between the silhouette obtained for

each new frame At and the set of silhouettes Bi coupled to the pose posei. The silhouette

metrics takes into account both the matching areas and the non-overlapping regions. For

doing so, the silhouettes obtained from the video are firstly surrounded by a bounding box

and then spatially aligned w.r.t the space-of-poses. A function Rt measures the per-pixel p

non-overlapping area between silhouette At and the set of silhouettes Bi, i.e., the silhouette

information exclusively contained in At as:

Rt =
∑

p

MA(p)(1−MB(p)) (1)

Likewise, a function Bt per-pixel p calculates information solely in silhouettes Bi, as:
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Bt =
∑

p

MB(p)(1−MA(p)) (2)

And then a function Y t computes the overlapping between the two compared silhouettes as:

Y t =
∑

p

(MA(p))(MB(p)) (3)

Finally, a negative log likelihood is approximated [5] by:

gs = −logpd(MA|MB) ∝ (a)
Bt

Bt+ Y t
+ (1− a)

Rt

Rt+ Y t
(4)

The negative log likelihood stores the silhouette relationship between the non-overlapped

(Bt or Y t) and the total shared area, including the overlapped zone (Y t). The parameter a

is a coefficient that takes values between 0 and 1 and establishes the balance weight of the

particular non-overlapping area, either silhouette At or Bi . Regarding this area comparison,

in this approach two silhouettes sharing the same characteristics are compared but none of

the associated silhouettes is preferred, either the one of the trained set or the non associated

markerless video silhouette.

2. Geometrical Silhouette Comparison

A geometrical comparison is performed by mapping each silhouette to a polar space. For

doing so and using the silhouette centroid as the reference, a line integral is computed every

degree. This representation is defined as:

F (Θ) =

∫

C

fds; 0 ≤ Θ < 360 (5)

Where F (θ) is the set of line integrals defined by a θ varying in the interval [0, 360] with

counter-clock-wise increments of one degree.

∫

C

fds =

∫ b

a

f(r(θ))|r′(θ)|dθ (6)

Each line integral is defined by equation 6. The integral requires an interval [a, b] of the

parameter r in a reference frame located at the centroid. The point a was set at the silhouette
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centroid and the b point was assigned to the edge of the box enclosing such silhouette. r(θ)

represents the angle described by the line connecting the points a and b.

This representation allows us to obtain coarse-to-fine contour shape representations by

changing the step θ. Each frame of a new sequence is then mapped to the space of poses.

A Pearson correlation coefficient defines the degree of similarity between silhouettes as:

ρ(θ) =
1
N

∑N
i=1 (Ai − Ā)(Bi − B̄)

SaSb

(7)

where Ai and Bi are the polar-geometrical representation of the pose computed at frame

t and the i-th pose in the space-of-poses, respectively. This Pearson correlation coefficient

measures the degree to which two random variables vary together or to which they draw

apart together, performing the concordance level of the polar shape representation.

Finally the most likely pose is obtained by fusing the two previously defined scores,

namely the per-pixel overlapping and the geometrical polar comparison, as follows:

Λ = αρ(θ)− (1− α)gs (8)

where α is again a parameter between 0 and 1 that weights the metric.

E. Experimental Setup

The proposed approach was evaluated by quantifying the difference between a standard

marker protocol, as ground truth, and two kinematic gait patterns, the knee and the hip

temporal angular variations, obtained from the set of temporal poses selected with the

proposed approach. The whole experimentation was carried out in a gait laboratory where

sagittal videos captured from the left and right views, using IEEE cameras (320× 240 and

30fps), under semi-controlled illumination conditions. Each subject walked along a standard

gait platform of 7.1m at least six times under both, marker and markerless conditions. In the

marker protocol case, patients were recorded while walking with a set of 30 markers attached

to the body, following the plug in gait Vicon protocol [10]. The markerless sequences were

obtained with patients wearing a customized suit, as illustrated in Figure 2. For each

recorded subject, at least two different gait cycles were considered.

The database collected for this work consisted in videos captured from 20 subjects, in-

cluding 10 controls and 10 patients diagnosed with PD as follows; 5 of them were diagnosed

10



FIG. 3: Results of the pose recovery computed from a typical sequence of a control subject.

Panel A) the raw video frames, B) the segmented video and C) the approach results

in stage 2 and 5 patients in stage 3. A total of 40 gait cycles were captured with an aver-

age of 18 frames per cycle. The ethics committee of the school of medicine at Universidad

Nacional de Colombia approved the informed consent following the Declaration of Helsinki

and each patient was informed about the procedure. The average age of the group of pa-

tients was ∼ 26 years for the normal set, ∼ 65 for the Parkinson’s Disease stage II and III

groups. Both groups, control and PD, were equally distributed by genre. The disease stage

was determined according to Hoehn and Yahr scale by using the retropulsion test. The

patients classified as stage 3 presented some balance impairment but they were Physically

independent at the examination time.

III. EVALUATION AND RESULTS

The performance of the proposed approach was assessed by comparing the recovered gait

patterns using the herein proposed markerless strategy w.r.t the gait patterns obtained by

the conventional marker method, under a leave-one-out cross validation scheme, i.e., at each

run, a different video-sequence was set aside for evaluation and the rest of video sequences,

control and PD independently, were used to build the prior space of poses [Note2].

Figure 3 shows a typical pose recovery with the proposed approach (third row), obtained
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by computing a set of silhouettes (second row) for a gait video-sequence. As illustrated in

Figure 3, even with a very blurred and incomplete silhouette segmentation, the similarity

metrics are capable of setting an appropriate sequence of temporal poses to describe the

dynamics of a complete gait cycle in a control subject. When a leg occludes the other,

the corresponding recovered silhouette hardly matches the actual video silhouette, an effect

produced by the multiple regional mismatches between the two silhouettes. Nevertheless,

the proposed approach does succeed about capturing the global gait patterns such as the hip

and knee flexion/extension during most of the cycle duration, achieving a reliable clinical

estimation that in this case describes both the associated locomotion abnormality and the

level of compromise.

A quantitative evaluation was carried out by comparing kinematic variables of interest,

v.g. the flexion/extension motion for the knee or hip , during a complete gait cycle for

both, the presented pose recovery strategy and the standard marker protocol. Firstly, for

each group of study, the obtained kinematic patterns were plotted as a temporal series of

statistical box-plots representing the whole gait cycle, being the average value the red line

and the blue lower and upper boxes the spread of data among subjects (inter-quartile range).

The dashed green lines show the normal distribution boundaries computed using the marker

protocol, i.e., the ground truth [25].

Figure 4i illustrates the patterns obtained for the flexion-extension hip motion, during the

full gait cycle for the three groups of subjects and different descriptors. Each column shows

the obtained result for each of the evaluated descriptors, being (a) the regional descriptor,

(b) the geometrical descriptor and (c) the integration of both descriptors. In the control

group (top row), the top-left panel displays the biomechanical patterns obtained using the

overlapping pose recovery. Notice in this case the strong correlation w.r.t. the normal

patterns (green lines) during the whole gait cycle. Between the 70 % and 90 % of the

cycle there is a more variability, likely associated to the force required when speeding up the

motion for starting the limb swing. The top-middle panel presents the performance achieved

by the geometrical descriptor and again, for most of the cycle the pattern is quite aligned

with the expected normal model (green lines). However, at the beginning and end of the

cycle, the temporal variance is almost null, an observation that might be attributed to the

difficulty of capturing small changes between consecutive frames. Interestingly, when both

descriptors (right panel) were combined, the results remarkably improved, the alignment
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was more precise and the variance was smaller in average.

Middle row of Figure 4i corresponds to the hip patterns obtained for the group of subjects

with PD stage II. In general terms, a coherent description of the biomechanical patterns

was accomplished since the obtained poses are usually within the interval defined by the

model (boundaries green lines). However, the hip pattern recovered by the proposed ap-

proach shows an increasing variability among subjects, from about the 20 % to 40 % of

the gait cycle, an observation probably related with the limitation of the physical model to

generate poses that describe tremor patterns, the PD characteristic at early stages. It is

however worthy to note that in terms of the disease this interval of the cycle, the limb swing,

is associated to some control and stability loses. The trajectories captured by the overlap-

ping descriptor (mid-left panel) show few variability and follow very close the PD patterns.

Likewise, the geometrical descriptor (mid-mid panel) produces patterns that during most of

the cycle are aligned within the control model, and unlike the previous descriptor, the re-

sultant trajectories are more flexible and closely track the test patterns. Finally, when both

descriptors are integrated (right panel), a much better performance is observed concerning

the produced PD gait patterns, obtaining more flexible curves, with smaller variance and

well aligned with the control gait patterns. Finally, the bottom row of figure 4i shows the

computed hip patterns obtained for the group of subjects with PD stage III. At this ad-

vanced stage, patients present a strong tremor during the locomotion and in some patients

even during the rest state. The disease at this degree is characterized by a high variability,

i.e., the captured patterns depend on many factors such as the analyzed body hemisphere,

the followed treatment, the level of rigidity and tremor states, among others. The recovered

hip pattern using the overlapping method (left-bottom panel) follows the global trend of the

ground truth patterns. Observe however that during a first part of the cycle (0 %− 40 %),

the variability is quite increased, a finding that may be explained by the different stabi-

lization each patient requires during the limb swing phase and the variable effort moments

produced by the heel strike when the change to double stance is needed. The geometrical

method (bottom-mid panel ) achieves a more robust tracking with little variability, probably

because this descriptor reduces the set of possible poses, i.e. results in a more sparse geo-

metrical coding. Finally, the combination of both approaches result in a better description

of PD patterns at this advanced stage of the disease.

Figure 5i illustrates the flexo-extension knee patterns obtained for the different groups
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(a) Hip results using regional

silhouette comparison

(b) Hip results using

geometrical sil. comparison

(c) Hip Results fusing a) and

b), α=0.5

(d) Hip Results using region

Silhouette Comparison

(e) Hip Results using

geometrical sil. comparison

(f) Hip Results fusing d) and

region e), α=0.5

(g) Hip Results using region

Silhouette Comparison

(h) Hip Results using

geometrical sil. comparison

(i) Hip Results fusing g) and

h), α=0.5

FIG. 4: Hip Results. Columns represent one metric for comparison, having Regional,

Geometrical and Integrated metric from left to right, respectively. Rows are organized as

follow: First Row for the Normal subjects results. Second Row for PD stage II patients.

Third Row for PD stage III patients

of patients and different descriptors considered in the present study, namely, the left col-

umn corresponds to those patterns computed using the regional descriptor, the mid column

shows the outcome computed with the geometrical descriptor and the right column reports

the results obtained when both descriptors are integrated. The first row stands for the

experimentation performed with control subjects. The top-left panel then shows the over-

lapping descriptor, evidencing how the pattern fits well within the boundaries established

by the ground truth (green lines), with an increasing variability observed at the end of the

cycle, likely because of the variable speeding up required for each patient to start the limb
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swing. The geometrical descriptor (top-mid panel) shows a strong correlation w.r.t. the

ground truth patterns and only little differences are observed at the end of the cycle, prob-

ably because of the leg occlusion effect. The integration of both descriptors result in a quite

perfect approximation to the knee-pattern.

The middle row of Figure 5i shows the computed patterns for the knee from patients

with PD stage II, using the different descriptors, i.e., the overlapping, the geometrical and

the integrated. In the mid-left panel, the overlapping descriptor coherently follows the

normal pattern for almost every gait phase but showing certain stiffness of the average

curve. Between the 30% to 50 % of the gait cycle, it is observed the larger inter subject

variability, an effect that might be probably attributed to the heel strike effort developed

by each patient to achieve stability. In contrast, the geometrical descriptor is more flexible

at following the control pattern, even though a high variability of the evaluated patients

makes the pattern exceeds the boundaries established by the marker protocol. Finally, the

integration of both descriptors in column (c) achieves a a more precise description, even

with the previously described stiffness at the beginning and end of the gait cycle.

Finally, the bottom row of Figure 5i reports the knee trajectories computed from patients

at advanced PD stage, characterized by an important restriction of flexion movements that

leads to stiffer gait cycle periods with a large inter-subject variability. As expected, the

overlapping descriptor globally follows the knee pattern, but with a high variability because

of the required increasing gait efforts to maintain stability, specially when changing to the

double support and limb swing phases. As in previous cases, the geometrical descriptor

tracks better the different gait phases. This descriptor is well associated with poses dur-

ing the gait cycle, highlighting some of the main poses that result fundamental to follow

knee-patterns. The integration of both descriptors again shows a better representation of

trajectories, with a natural shift phase produced by the pose prediction model, patterns

globally obtained even during the occlusion phases of one leg with respect to the other.

Secondly, a global quantitative analysis was carried out by measuring the degree of sta-

tistical dependence between the computed mean trajectories (red lines) and the established

ground truth (mean green lines), using the Pearson Correlation Coefficient (PCC) and the

root mean square error (RMSE). The PCC measures the degree to which two estimated

kinematic patterns vary together or to which two patterns draw apart. This PCC evalu-

ation is specially important in gait analysis since it establishes a quantitative relationship
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(a) Knee results regional

silhouette comparison

(b) Knee results using

geometrical sil. comparison

(c) Knee results fusing a) and

b), α=0.5

(d) Knee Results using region

silhouette comparison

(e) Knee Results using

geometrical sil. comparison

(f) Knee Results fusing d) and

e). α=0.5

(g) Knee Results using region

silhouette comparison

(h) Knee Results using

geometrical sil. comparison

(i) Knee Results fusing g) and

h), α =0.5

FIG. 5: Knee Results. Columns represent one metric for comparison, having Regional,

Geometrical and Integrated metric from left to right, respectively. Rows are organized as

follow: First Row for the Normal subjects results. Second Row for PD stage II patients.

Third Row for PD stage III patients

between an estimated kinematic variable and a particular pathological pattern. The corre-

lation is calculated then between the average of the marker protocol measurements (green

trajectories) and the mean of the obtained patterns for the whole group of patients (red

lines). On the other hand, the RMSE is commonly used to measure the local differences

between two signals, allowing us to measure the level of error in particular intervals of the

gait cycle.

Table I summarizes the PCC and RMSE indexes obtained for both descriptors as well as

for the integration of them. In general terms, the PCC and RMSE show the close relationship
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evidenced in the previous analysis, between the computed patterns and the ground truth. In

average, the descriptor configurations achieve an averaged PCC of 97.3, suggesting a good

match between the mean trajectories. In RMSE terms, which accounts for the local variation

w.r.t the ground patterns, a maximum local error of 2.93 degrees was obtained for the hip

and 7.5 degrees for the knee, figures that can meet clinic requirements in actual scenarios.

The fusion of global and local representations in all cases allows a better correlation w.r.t.

ground patterns and also a reduction of the local error.

For the trajectories computed for PD stage II population, Table II shows the perfor-

mance obtained in terms of the PCC and RMSE. Despite these trajectories present much

more variations, probably because the aforementioned typical tremor during gait, an aver-

age correlation of 0.86 is observed for all patterns, being the overlapping descriptor more

effective for following the kinematic patterns. Interestingly, the global correlation is better

for the overlapping descriptor than for the integrated one, probably because of the recurrent

local variation introduced by the geometrical trajectories along the gait cycle. Again, the

three biomechanic markerless descriptions can be included as part of an evaluation clinical

protocol.

Finally, table III presents the PCC and RMSE for the trajectories computed for patients

with PD at stage III. The geometrical descriptor achieves a better representation of these

pathological trajectories, with and average of 0.88 and 8.15 in PCC and RMSE, respectively.

The integration of both descriptors also allows the stabilization of the pose prediction and

therefore a proper correlation for the biomechanic patterns, reporting in average a CPP of

0.87 and RMSE of 8.3.

TABLE I: Quantitative Results for Geometrical, Overlapping Silhouette comparison and

Integrating both:Normal walks

Geometrical Regional Integrated, α=0.5

Joint Angle PCCRMSE PCCRMSEPCCRMSE

Right Hip 0.99 2.9 0.98 3.2 0.99 2.7

Right Knee 0.96 6.6 0.95 7.9 0.97 7.0
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TABLE II: Quantitative Results for Geometrical, Overlapping Silhouette comparison and

Integrating both:Parkinson Stage II

Overlapping Geometrical Integrated, α=0.5

Joint Angle PCCRMSE PCCRMSE PCCRMSE

Right Hip 0.99 2.27 0.9 5.66 0.97 3.67

Right Knee 0.94 7.91 0.54 15.75 0.82 11.6

TABLE III: Quantitative Results for Geometrical, Overlapping Silhouette comparison and

Integrating both:Parkinson Stage III

Overlapping Geometrical Integrated,α=0.5

Joint Angle PCCRMSE PCCRMSE PCCRMSE

Right Hip 0.95 5.48 0.96 4.94 0.97 5.0

Right Knee 0.71 12.2 0.8 11.35 0.77 11.6

IV. DISCUSSION

This work has presented a markerless approach capable of recovering the most probable

pose associated to actual gait sequences. The method performs an objective assessment of

the biomechanic gait patterns in control and Parkinson patients at stages II and III. The

proposed approach starts by computing a set of silhouettes, representing the patient gait

observations from an ordinary video-sequence, which are coded by using regional and global

descriptions that highlight relevant shape features at each video sequence time. These coarse

characteristics are mapped to a space of poses, generated by a biomechanic model, where

the metrics matches the most likely pose associated to a particular moment of the gait

cycle. Temporal matched poses produced the biomechanics for the knee and the hip, from

which flexion/extension patterns are estimated. The proposed markerless approach follows

control and Parkinsonian gaits even under noisy conditions, i.e., occluded legs or silhouettes

contaminated with background noise. In average the proposed approach achieved a PCC of
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0.90 for the whole cycle and group of subjects considered, demonstrating the potentiality of

this tool for quantitatively support the expert diagnostic.

Gait analysis is typically carried out by using marker strategies, for which a set of reference

points are tracked during a gait sequence while biomechanic correspondences are set by

integrating the marker trajectories. Afterward, the patient trajectories are compared with

typical gold standard patterns that help the physician to support a particular diagnosis

or clinic decision. This method is however limited by the fixed relationships between the

markers and the requirement that each marker must be properly localized upon a particular

bone prominence. Overall, this method is invasive since the patient gait is captured under

controlled conditions, with custom devices attached to the body, preventing the natural

gait gesture. Particularly, the subtle differences among several disease stages are hardly

detected and become therefore highly dependent on the physician expertise. Currently,

markerless strategies have emerged as a potential solution to precisely track and determine

motion patterns by exclusively using video-sequences. In general, these strategies code

spatio-temporal video-descriptors with local, regional or global features, facilitating a further

analysis of hidden kinematic patterns. On the one hand, markerless methods based on local

features compute salient time-space blocks, resulting in a dynamic description from the

video, independently of any geometrical dependency [1]. These strategies are flexible and

characterize different kinds of motions but at the cost of losing spatial relationships, which

are fundamental in case of gait analysis. On the other hand, global approaches are focused

on the spatio-temporal characterization of the object shape. These approaches overcome the

occlusion problems appeared when using classical tracking strategies, but many times they

admit non-natural human poses because of their flexibility to describe deformed objects.

This feature results restrictive for a biomechanic analysis since in this case it is always

important a careful pose characterization.

In the proposed approach, the integration of a physical prior model allows the presented

strategy to track normal and pathological gaits by matching poses along the time. This

structural gait representation is fully correlated w.r.t the energy consumption pattern de-

scribed for different gait types and locomotion abnormalities. This physical model generates

a set of spatio-temporal poses constrained by the energy efficiency of the produced pattern.

This set of poses with certain gait variability allows the method to associate the silhouettes

to different Parkinson’s disease stages, but avoiding non-natural body configurations, for
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instance, a set of poses that describes a complete rotation of the knee, i.e. a free rotation of

360o.

On the other hand, gait observations are captured by using a background/foreground

detection, robust to illumination changes and computationally efficient. Every estimated

silhouette is characterized by using regional and global shape descriptors. These descriptors

are used to search the most probable poses by the learned model and to match current

video-sequences. The sequence of recovered poses permits to measure kinematic variables

that can be used to analyze the gait. Additionally, the herein proposed strategy opens up

the possibility to carry out further analysis about the dynamic silhouette changes along the

time without the restriction of locating specific prominent points.

The proposed approach tracks abnormal locomotion patterns, such as parkinsonian move-

ments in middle and advanced stages of the disease, even superimposed with tremor state

patterns. Some difficulties are present when the legs are occluded because the shape de-

scriptors could be ambiguous and several poses can be retrieved from the learned space.

However, a causal pose restriction might overcome this limitation by following to temporal

history of previous predicted poses. Likewise, when some types of gaits present large periods

of resting state, corresponding to very advanced stages of the PD, the choice of poses may be

mislead, but these abnormal patterns might be detected by the model by accounting for long

periods of minimal temporal variance. Additionally, the method could be enriched by using

more sophisticated skeletal methods but at the price of introducing many control variables,

impractical in a clinical scenario. Likewise, this method could be easily adapted to other gait

pathologies with some sort of muskulo-skeletal deficiency, for instance in case of diplegic gait,

associated with spastic cerebral palsy, approximated by restricting the spring-mass system

of the physical model.

V. CONCLUSIONS

This work has introduced a novel markerless strategy that computes biomechanical pat-

terns of control and parkinsonian patients. The approach associates artificial poses generated

by a physical model with noisy observations computed from video-sequences. The method

was successfully assessed in a population of patients diagnosed with Parkinson disease at

stage II and III. In general, the method matches the biomechanical patterns even for ad-
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vanced stages of the disease and even tough Parkinson’s disease diagnosis relies highly on

each expert knowledge also it was observed high intra-variability, particularly in the upper

body, in the analyzed stages. Future works include the analysis of other gait pathologies

and the extension of multi-view tracking to compute 3D biomechanical patterns.
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4 Conclusions

• This thesis integrated kinematics patterns with markerless video silhouettes, the video

data recorded at UN Laboratory was divided into normal and pathological gait mo-

tions, the proposed methodology was tested separately and the results followed the

angle patterns behavior through a gait cycle, particularly it was obtained better per-

formance in the normal control subject’s motion, the correlation between the recovered

poses for Parkinson’s dissease and measured angle patterns may be considered as an

indicator that the method follows up flexo-extension of hip and knee joints.

• The proposed methodology locate successfully the lower limbs in markerless gait anal-

ysis with a Pearson correlation coefficient higher than 0.95 for normal gaits and 0.70

for pathological gait motion, the geometrical comparison algorithm reach higher cor-

relation in normal gaits, this due to the fact that is invariant to translation, for that

reason the matching among silhouettes is not a fundamental step. Compared with

reviewed methods, this projects integrate data from kinematics to enhance an indirect

measurement method, usually two separate fields in biomechanics.

• Although the work was focused on lower limbs the methodology may be expanded to

other patterns, such as upper body limbs, and to different views. It is precisely the

upper limbs spatio-temporal information one important difference in the two sets of

data: Normal and pathological. Analyzing the normal subjects’ gaits this parameters

may be considered uniform and similar in the cycles recorded, while in the Parkinson’s

dissease patients upper limbs exhibited irregular movement, having different levels of

rigidity in one or both sides of the body, ane even sometimes the variability was ob-

served in the same patient.

• There is also a possibility to use ofthe same methodology in other type of motion, that

would require the use either a biomechanical model or directly measured kinematics to

obtain the prior information for the Map of Poses, of the other pathologies or specified

actions, such as Sport Gestures; one important field that may be explored. Then, this

project is not static nor it is already delimited, indeed it is clean canvas that may

continue exploring human motion as a tool with a high potential.
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