
Kernel-based Enhancement of
General Stochastic Network for

Supervised Learning

Diego Fabián Collazos Huertas

Universidad Nacional de Colombia

Faculty of Engineering and Architecture

Department of Electric, Electronic and Computing Engineering

Manizales, Colombia

2016





Kernel-based Enhancement of
General Stochastic Network for

Supervised Learning

Diego Fabián Collazos Huertas

Dissertation submitted as a partial requirement to receive the grade of:

Master in Engineering – Industrial Automation

Advisor:

Prof. Germán Castellanos-Domı́nguez, Ph.D.

Co-Advisor:

Andrés Marino Álvarez-Meza, Ph.D.

Academic Research Group:

Signal Processing and Recognition Group - SPRG

Universidad Nacional de Colombia

Faculty of Engineering and Architecture

Department of Electric, Electronic and Computing Engineering

Manizales, Colombia

2016





Mejoramiento de Redes Estocásticas
Generales para Aprendizaje

Supervisado

Diego Fabián Collazos Huertas

Disertación presentada como requisito parcial para recibir el grado de:

Maestŕıa en Ingenieŕıa – Automatización Industrial

Director:

Prof. Germán Castellanos-Domı́nguez, Ph.D.

Co-Director:

Andrés Marino Álvarez-Meza, Ph.D.

Grupo de Investigación Académica:

Grupo de Control y Procesamiento Digital de Señales - GCPDS

Universidad Nacional de Colombia

Facultad de Ingenieŕıa y Arquitectura

Departmento de Ingenieríıa Eléctrica, Electrónica and Computación

Manizales, Colombia

2016



The Five Never:

Never give up

Never pretend

Never stand still

Never cling to the past

Never stop dreaming

Steve Jobs.



vii

Acknowledgements

I would like to thank God first, for giving me wisdom and guide me always on my way. I

would like to thank especially to my parents for their love and their advice in difficult times,

to my brother and my family for being an unconditional support.

I would like to thank professor Germán Castellanos for his trust and orientation during this

research. Also, I would like to express my deep gratitude to Andrés Meza Alvarez Marino,

“the boss” co-director of this thesis, for his guidance and friendship during this research.

Thanks to all the Signal Processing and Recognition Group (SPRG) of the National Univer-

sity of Colombia in Manizales, for the moments of leisure and academic discussion. Special

gratitude to my friends, Juan David, David, Luisa, Ernesto, Santiago and Jorge Ivan, to my

master partners David Insuasty and Fily for their support during this investigation. Thank

you, Jessi, for being my life partner and my confidante.

Finally, I recognize that this research would not have been possible without the support and

financial support of the Proyecto e-salud regaĺıas: “Plataforma tecnologica para los servicios

de teleasistencia, emergencias medicas, seguimiento y monitoreo permanente de pacientes y

apoyo a los programas de prevencion”, Eje 3 - ARTICA.

Diego Fabián Collazos Huertas

2016





ix

Abstract

In recent years, significant developments have been taking place in high-dimensional data

analysis allowing to support a wide amount of applications in machine learning systems and

signal processing among others. However, it is difficult to interpret the available information

due to its complexity and a large amount of obtained features. Deep learning algorithms

arise as a tool that deals this kind of issue by the extraction of representations (abstrac-

tions) from the data. Artificial neural networks based on deep learning algorithms, i.e.,

Deep Neural Networks (DNN) employ a feature hierarchy approach that increases complex-

ity and abstraction. It makes DNN capable of handling very large, high-dimensional data

sets with billions of parameters that pass through nonlinear functions. Besides, this provides

a better representation, allowing faster learning and more accurate classification. However,

DNNs as well as most of the artificial neural networks, are still vulnerable to Over-fitting.

With respect to this, kernel functions appear as an alternative approach that in the first

place, helps to high dimensional data analysis allowing enhancing representation and data

interpretation, for supporting signal processing and machine learning systems. Moreover,

kernel-based methods develop better-performing solutions by adapting the kernel to a given

problem, which, allows dealing with over-fitting problem present in deep neural networks

learning stage.

In this study, we propose a data representation framework based on kernel functions to

enhance the performance of a kind of Deep Neural Networks, called General Stochastic

Networks in supervised learning systems. Namely, the proposed framework is divided in

two kernel-based methodologies, which aim to enhance network parameter setting accord-

ing to data relationships. First, we develop an automatic architecture selection criterion

based on kernel functions, that allows quantifying the optimal layer size preserving the joint

input-output information. Thus, resulting hidden layer size are highlighted aiming to fa-

vor learning training stages in classification and object recognition tasks. This approach

named Joint spectrum allows exploiting the joint data similarity for a given input sample

set. Second, we introduce a supervised network Pre-training approach that highlights the

relationship between hidden states and target information. Thus, a supervised pre-training

approach based on a CKA-based function is introduced to learn a projection matrix, which

encodes discriminate information from data to get a suitably hidden representation. So,

we seek a pre-training method that captures main variations from the input distribution

to support learning stage. Finally, an enhanced General Stochastic Network was developed

to support supervised learning tasks. The proposal considers two strategies network pa-

rameter setting based on kernel functions, above mentioned, exploiting its main properties.

The resulting network highlights relevant data dependencies and the user prior knowledge

(supervised information). Thus, a generalizable network able to capture a lot of information



x

from input data distribution and encode discriminant patterns is built. Along this study,

the proposed network improvement using a kernel-based framework is applied to image data

as an alternative to support classification systems and image-based object analysis. In fact,

the introduced kernel-based framework improve, in most of the cases, supervised learning

performances, supporting the analysis of a large amount of data using deep learning archi-

tectures.

Keywords: General stochastic network, Kernel-based learning, Supervised learning, Ar-

chitecture selection, Network pre-training.



xi

Resumen

En los últimos años, han tenido lugar avances significativos en el análisis de datos de

alta dimensión que permiten soportar una amplia cantidad de aplicaciones en sistemas de

aprendizaje automático y procesamiento de señales entre otros. Sin embargo, es dif́ıcil de

interpretar la información disponible debido a su complejidad y a la gran cantidad de carac-

teŕısticas obtenidas. Los algoritmos de aprendizaje profundo o Deep learning surgen como

una herramienta que se ocupa de este tipo de problemas mediante la extracción de repre-

sentaciones (abstracciones) a partir de los datos. Las redes neuronales artificiales basadas en

algoritmos de aprendizaje profundo, es decir, las redes neuronales profundas o Deep neural

networks (DNN) emplean un enfoque de jerarqúıa de caracteŕıstica que aumenta la comple-

jidad y la abstracción.

Lo anterior hace a las DNNs capaces de manejar conjuntos de datos muy grandes, de

alta dimensión con miles de millones de parámetros que pasan a través de funciones no lin-

eales. Además, esto proporciona una mejor representación de los datos, lo que permite un

aprendizaje más rápido y una clasificación más precisa. Sin embargo, las DNNs, aśı como la

mayoŕıa de las redes neuronales artificiales, siguen siendo vulnerables a sufrir un over-fitting

o exceso de ajuste. Con respecto a esto, las funciones kernel aparecen como un enfoque

alternativo que, en primer lugar, ayuda al análisis de datos de alta dimensión permitiendo

mejorar la representación y la interpretación de los datos para el apoyo a sistemas de proce-

samiento de señales y de aprendizaje automático. Por otra parte, los métodos basados en

kernel desarrollan soluciones que ofrecen mejores resultados mediante la adaptación del ker-

nel a un problema dado, el cual, permite combatir el problema de over-fitting presente en la

etapa de aprendizaje de las redes neuronales profundas.

En este estudio, proponemos un marco de representación de datos basado en funciones

kernel para mejorar el rendimiento de una especie de redes neuronal profunda, llamada Red

Estocástica General o Red Estocástica Generativa de aprendizaje supervisado. En concreto,

el marco propuesto se divide en dos metodoloǵıas basadas en kernel, que tienen por objeto

mejorar el ajuste de parámetros de la red de acuerdo con las relaciones entre los datos.

En primer lugar, se desarrolla un criterio de selección automática de la arquitectura de

la red basado en funciones kernel, que permita cuantificar el tamaño óptimo de la capa

preservando la información de conjunta entrada-salida. Por lo tanto, el tamaño de la capa

oculta resultante se destaca con el objetivo de favorecer el aprendizaje de las etapas de en-

trenamiento en la clasificación y tareas de reconocimiento de objetos. Este enfoque llamado

Joint Spectrum permite la explotación de la similitud de datos conjunta para un conjunto de

muestras de entrada dado. En segundo lugar, se introduce un enfoque pre-entrenamiento su-

pervisado de la red que resalta la relación entre los estados ocultos y la información objetivo.

Por lo tanto, se introduce un enfoque pre-entrenamiento supervisado basado en una función



xii

kernel CKA para aprender una matriz de proyección, la cual codifica la información discrimi-

nante de los datos para obtener una representación oculta adecuada. Por lo tanto, buscamos

un método de pre-entrenamiento que capta las variaciones principales de la distribución de

entrada para apoyar la etapa de aprendizaje. Por último, una red estocástico generativa

mejorada fue desarrollado para apoyar las tareas de aprendizaje supervisado. La propuesta

considera las dos estrategias de sintonización de parámetros de la red basadas en funciones

kernel antes mencionadas, explotando sus principales propiedades. La red resultante destaca

dependencias de los datos relevantes y el conocimiento previo del usuario (información su-

pervisada). Por lo tanto, se construye una red generalizable capaz de capturar una gran

cantidad de información a partir de la distribución de datos de entrada y codificar patrones

discriminantes.

A lo largo de este estudio, el mejoramiento de red propuesto usando un marco basado

en el kernel se aplica a los datos de imagen como una alternativa para apoyar los sistemas

de clasificación y análisis de objetos basado en la imagen. De hecho, el marco basado en

funciones kernel introducido mejora, en la mayoŕıa de los casos, el rendimiento en tareas

de aprendizaje supervisado, apoyando el análisis de una gran cantidad de datos utilizando

arquitecturas de aprendizaje profundo.

Palabras clave: Red estocástica general, Aprendizaje basado en kernel, Selección de la

arquitectura, Pre-entrenamiento de la red.



Contents

Acknowledgements vii

Abstract ix

Resumen xi

List of Acronyms xv

List of Figures xvii

List of Tables xviii

I. Preliminaries 1

1. Introduction 2

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1. General objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2. Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5. Contributions of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Mathematical preliminaries 10

2.1. Reproducing Kernel Hilbert Spaces in Machine Learning . . . . . . . . . . . 11

2.1.1. Reproducing kernel Hilbert spaces . . . . . . . . . . . . . . . . . . . . 11

2.1.2. The covariance function . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3. Reproducing kernel Hilbert spaces in machine learning . . . . . . . . 14

2.2. Artificial Neural Networks theory . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1. Multi-Layer Neural Networks . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2. Auto-Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Generalizing Denoising Auto-Encoders as Generative Models . . . . . . . . . 18

2.3.1. Definition and training . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



xiv Contents

2.3.3. Walkback Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4. Generalizing the denoising autoencoder to GSNs . . . . . . . . . . . . 20

2.3.5. General Stochastic Networks for Unsupervised Learning . . . . . . . . 20

2.3.6. General Stochastic Networks for Supervised Learning . . . . . . . . . 23

II. Materials and Methods 24

3. Supervised Kernel Approach for Automated Learning using General Stochastic

Networks 25

3.1. General stochastic networks for supervised learning . . . . . . . . . . . . . . 25

3.2. GSN architecture selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2. Selecting the hidden layer size using kernel functions . . . . . . . . . 27

3.3. GSN pre-training stage based on center kernel alignment . . . . . . . . . . . 28

3.3.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2. Pre-training stage using kernel functions . . . . . . . . . . . . . . . . 29

4. Experimental set-up 32

4.1. Testing databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2. Setting of GSN training parameters . . . . . . . . . . . . . . . . . . . . . . . 34

5. Results and Discussion 36

5.1. Results of GSN layer-size optimization . . . . . . . . . . . . . . . . . . . . . 36

5.2. Results of GSN pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6. Summary 45

III. Final remarks 47

7. Conclusions and future work 48

7.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8. Appendix 51

8.1. Gradient descend-based optimization of CKA approach . . . . . . . . . . . . 51



List of Acronyms

AE AutoEncoders

ANN Artificial Neural Network

CKA Center Kernel Alignment

DAE Denoising AutoEncoders

DBN Deep Belief Network

DNN Deep Neural Network

GSN Generative Stochastic Network

ICA Independent Component Analysis

JSR Joint-Spectrum Regularization

MLP Multi-Layer Perceptron

MSE Minimum Squared Error

PCA Principal Component Analysis

Rand Random Weights

RBMs Restricted Boltzmann Machines

RKHS reproducing kernel Hilbert space

SAE Stacked AutoEncoders

SGD Stochastic Gradient Descent

SI Sparse Initialization

SPRG Signal Processing and Recognition Group



List of Figures

1-1. Relevant issues for a suitable topology choice in a DNN scheme. . . . . . . . 4

1-2. Enhanced General Stochastic Network representation framework. The red

boxes corresponds to the main contributions according to the relevant issues

associated with the topology selection of the network. . . . . . . . . . . . . . 9

2-1. kernel-based mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2-2. Multi-layer neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2-3. Denoising Auto-Encoders: schematic representation of the process . . . . . . 17

2-4. Denoising AutoEncoders (DAE) Markov chain . . . . . . . . . . . . . . . . . 21

2-5. GSN Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2-6. GSN Markov chain with multiple layers and backprop-able stochastic units . 22

2-7. dGSN Markov chain for inputXt+0 and target Yt+0 with backprop-able stochas-

tic units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3-1. Schematic representation of a Generative Stochastic Network (GSN) Markov

chain with back-probable stochastic units. – Upward step. – downward step 26

3-2. L-curve criterian for m̃ estimation . . . . . . . . . . . . . . . . . . . . . . . 28

3-3. Diagram of the proposed CKA approach . . . . . . . . . . . . . . . . . . . . 30

4-1. Kernel-based topology optimization guideline used for GSN enhancement. . . 32

4-2. Images of the databases employed. . . . . . . . . . . . . . . . . . . . . . . . 33

5-1. Resulting eigenvalues for the joint spectral decomposition calculated within a

range of m values for each dataset. The highlighted red dot ( ) denotes the

m̃ obtained by the regularization criterion. . . . . . . . . . . . . . . . . . . . 36

5-2. GSN accuracy calculated within a range of m values for each dataset. The

highlighted red dot ( ) denotes the m̃ obtained by the regularization criterion. 37

5-3. Visualization of the pre-training weights at the first layer for considered databases.

In each plot, all weights of the 40 largest hidden units are plotted for AutoEn-

coders (top), Principal Component Analysis (PCA) (middle), and Center Ker-

nel Alignment (CKA) (bottom) approaches. The gray values represent weight

magnitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



List of Figures xvii

5-4. GSN average accuracy and standard deviation vs iterations for the four pre-

training approaches: Random, AutoEncoder, PCA-based projection, and CKA-

based projection. Glass (top), Wine (middle), and Wdbc (bottom) datasets. 41



List of Tables

4-1. Summary of details for the UCI and image datasets. . . . . . . . . . . . . . . 33

5-1. Performed classification accuracy by each considered approach on the tested

databases. Boldface stands for the best result of each learning case. Blank

fields (–) correspond to not provided values or unfeasible calculations. . . . . 38

5-2. GSN classification accuracy for layer size selection criteria and pre-training

approaches. The marked blank fields (–) corresponds to infeasible calculations

where the layer dimension can not enable a pre-training matrix. . . . . . . . 42



Part I.

Preliminaries



1. Introduction

1.1. Motivation

Machine learning can be broadly defined as a set of computational methods that uses experi-

ence or information obtained via interaction with the environment (observed data), in order

to improve the performance or to make accurate predictions. In this sense, many learning

algorithms are successfully deployed in a variety of fields and applications including text

or document classification, natural language processing, speech recognition, computational

biology, computer vision tasks, games and medical diagnosis [Mohri et al., 2012]. Unlike the

conventional machine-learning techniques, representation learning includes a set of meth-

ods that allows a machine automatically discover the representations needed for detection

or classification, from the raw data. These methods have turned out to be very good at

discovering intricate structures in high-dimensional data. Deep learning is a representation

learning method with multiple levels of representation, obtained by composing simple but

non-linear modules where each of which transforms the representation at one level into a

representation at a higher, slightly more abstract levels [LeCun et al., 2015].

In a local context, the Signal Processing and Recognition Group (SPRG) of the Universi-

dad Nacional de Colombia has been working in the analysis of bio-signal data and biomedical

image processing, in order to propose machine learning methodologies aimed to support the

development of automatic systems for diagnostic assistance by means of representation learn-

ing [Orbes-Arteaga et al., 2015, Collazos-Huertas et al., 2015]. Deep learning has turned out

to be very good at discovering intricate structures in high-dimensional data and it is, there-

fore, applicable to many tasks. For this reason, the SPRG is also interested in exploiting this

property in high-dimensional problems such as, discover structures in magnetic resonance

images or pattern recognition in an image sequence for video analysis [Cardenas-Pena et al.,

2014, Molina-Giraldo et al., 2015].

Constructing a pattern recognition or machine learning based system demands accurate

engineering. For example, when the processing of input signal that contains a set of specific

properties without considering a suitable representation model, could lead to unstable per-

formance results. Thus, is necessary to design a feature extractor system that transforms

the data into a suitable internal representation allowing to the learning subsystem, often a

classifier, to detect patterns in the input [LeCun et al., 2015].

For the local and global context, it is necessary to continue the development of methodolo-

gies that suitably represent the input distribution, with the additional benefit of improving



1.2 Problem statement 3

the system performance, in terms of classification accuracy and data interpretation.

1.2. Problem statement

Machine learning is programming computers to optimize a performance criterion based on

the data knowledge and environment information (e.g. the training set, or past experience),

allowing to learn a representative model for any particular task. Based on the desired

outcome or the type of inputs available during training, machine learning algorithms can

be organized into different groups, such as supervised learning, unsupervised learning, semi-

supervised learning, reinforcement learning, among others.

Artificial Neural Network (ANN) is an approach to machine learning, that is inspired by

the structure and functional aspects of biological neural networks. The learning in ANN finds

the model parameters, that makes the network assume the desired behavior. Depending on

the problem and how neurons are connected, such behavior may require long and deep layers

of computational stages, where each stage, transforms (often in a non-linear way) the aggre-

gate activation of the network. To deal with the complexity imposed by the learning across

many network stages, Deep learning algorithms have been used due to enables to computa-

tional models that are composed of multiple processing layers, learn representations of data

with multiple levels of abstraction [Schmidhuber, 2015]. In particular, the neural networks

based on deep learning or Deep Neural Network (DNN) exploit the property that many

natural signals are compositional hierarchies, in which higher-level features are obtained by

composing lower-level ones.

Despite the increasing complexity of the problems, deep learning based models have been

well received by the research community due to improvements in the field of unsupervised

learning of representations. Among the most relevant models found the Restricted Boltz-

mann Machines (RBMs) and Deep Belief Network (DBN) for digit classification task pre-

sented in [Hinton et al., 2006, Bengio et al., 2007], the feature extraction model based on

AutoEncoders (AE) proposed in [Vincent et al., 2008] and the Sparse coding introduced

in [Ngiam et al., 2011] evaluated on object and phone classification. In the same way, deep

models have been obtained important improvements in supervised learning problems, such as

speech recognition as exposed in [Seide et al., 2011], computer vision tasks and object iden-

tification using Deep Convolutional Networks by dropout algorithm proposed in [Krizhevsky

et al., 2012].

A new DNN is introduced in [Bengio et al., 2013c] as the result of generalizing the gen-

erative view of DAE by introducing latent variables in the framework, called GSN. GSN

are a deep neural network architecture based on learning the transition distribution of a

Markov chain for estimating the data generating distribution. The combination of noise,

a multi-layer feed-forward neural network, and walkback training makes GSN simplify the

learning problem, be less like density estimation, and resemble more a supervised function

approximation, with gradients that can be obtained by backprob-able stochastic units at



4 1 Introduction

each layer [Alain et al., 2015].

Input data Hidden layers Output

Architecture selection

Network training parameters

Figure 1-1.: Relevant issues for a suitable topology choice in a DNN scheme.

As usual, this kind of generative representation is obtained through a greedy-layerwise

training procedure called contrastive divergence proposed in [Hinton et al., 2006]. In this

case, the network layer learns the representation from the layer below by treating the latter as

static input by walkback algorithm according to Bengio and coworkers [Bengio et al., 2013c].

Recently, an extension of generative stochastic networks to supervised learning of represen-

tations is presented in [Zöhrer and Pernkopf, 2014], in this case, the authors introduce a

hybrid training objective considering a generative and discriminative cost function.

However, to bring proper results, deep neural networks require correct data pre-processing,

architecture selection, and network training [Panchal et al., 2011]. The first aspect deals with

learning data representations better extracting useful information, for which the generative

stochastic model provides an alternative to the conventional maximum likelihood estimator,

resulting in additional temporal information when building classifiers or other predictors. To

open a wider field of new applications for GSN, however, the exploration of the remaining

issues should be carried out [Zöhrer and Pernkopf, 2014]. In this sense, exist two relevant

aspects associated with the topology selection which influences the network performance

and deals with these issues (see fig. 1-1): i) how to choose the number of layers and their

size, and ii) how to deal the non-convexity of the training criterion for the parameter space

searching.

1.3. Literature review

Throughout the literature, architecture selection, and network training problems in conven-

tional neural networks as well as DNN, have been tackled from different perspectives leading

to a myriad of methods and algorithms. Overall, most of the state-of-the-art techniques

seek among other things, to decrease the network complexity, to improve the performance

in terms of highest accuracy and minimal error, and to increase the learning speed.



1.3 Literature review 5

One of the major challenging issues for researchers of neural learning is the network ar-

chitecture selection, that is, how to choose the number of layers and their size, aiming at

reaching the best system performance. Since the hidden neuron can influence the error on

the nodes to which their output is connected, the excessive hidden neurons will cause overfit-

ting; that is, the neural networks have overestimated the complexity of the target problem.

By contrast, the system loses its capability to learn complex class boundaries correctly in

the case of too small networks, making the training algorithm prone to converge to local

minima [Ke and Liu, 2008]. Therefore, either case of a disproportionate number of neurons

usually significantly reduces the classification performance. Overall, the network architecture

influences the performance of used training algorithm through the following factors [Sheela

and Deepa, 2013]: i) input and output dimensions, ii) number of training samples, and iii)

noise injection method.

On a first attempt, the architecture selection can be accomplished by an exhaustive heuris-

tic search that thoroughly examines all combinations, following a given rule of change for

the layer sizes like linear [Sun, 2012] or exponential [Doukim et al., 2010]. The optimal

architecture is chosen based on a predefined performance measure. Nevertheless, exhaustive

approaches are very high time-consuming, limiting their use in practice. Less costly search-

ing procedures have been proposed to reduce the computational load of heuristic strategies.

Thus, the trial-and-error learning explores several variations of the number of hidden units

until the desired performance is achieved [Hunter et al., 2012]. Also, the searching procedure

can be speeded up using quantum parallelism and non-linear quantum operators [da Silva

et al., 2016]. With either searching approach, a priori knowledge of the problem at hand

and certain skills in the network field are required, often resulting suboptimal architec-

tures [Rani B et al., 2012]. With the purpose to achieve a trade-off between the layer size

and system performance, the heuristic pruning approaches had been developed that itera-

tively remove, from a starting architecture with too many neurons, the network parameters

in agreement with an established relevance measure. In a simplistic case, the dropout prun-

ing technique randomly omits a unit from a fully connected network with a probability of

0.5 until a lower bound on the performance is accomplished [Hinton et al., 2012]. A more

elaborate approach cuts out the tree branches based on the entropy gain of the hidden

units [Yuan et al., 2003]. Despite all these enhancements, the heuristic searching algorithms

usually demand substantial computational resources due to the required cross-validation of

multiple architectures [Dahl et al., 2013].

On the other hand, the analytical-based learning approaches had also been proposed

(termed rule-of-thumb) to avoid the computational cost of searching algorithms, which de-

rive the layer size as a function associating network architectures with datasets (input and

output dimensions, the number of samples, among others). The following methods serve as

examples of this strategy. In [Trenn, 2008], an explicit equation resulting from the sensi-

tivity analysis is proposed for the hidden units of a Multi-Layer Perceptron (MLP). Hence,

the layer size is calculated grounded on the desired approximation order and the number



6 1 Introduction

of inputs. In [Ke and Liu, 2008], the number of hidden layers, input dimensions, and sam-

ples are also included. Further, the geometric mean, computed between input and output

sizes, is suggested to fix an appropriate number of hidden neurons [Shibata and Ikeda, 2009].

While these solutions are suitable for concrete cases, such analytics require more theoret-

ical evidence to support the discovery of the optimal structure because the functions are

hypotheses principally formulated for singular testing conditions and problems [Stathakis,

2009]. Moreover, the associating functions cannot be generalized and must be adjusted for

each particular learning task. Nonetheless, the lower and upper bounds of the layer size

can be confined to the number of linear functions required to separate the input sample set

correctly as discussed in [Jiang et al., 2008]. Therefore, the analytical approaches can be

employed for conducting the needed searching so that the number of alternative architectures

is bounded and the tuning process can be speeded up.

The second key issue to improve for deep architectures is the parameter space searching

due to the training criterion is non-convex and involves many local minima, getting worse for

architectures with more than two or three levels [Erhan et al., 2009]. Although a straight-

forward procedure to cope with this issue is the use of multiple random initializations, it

highly increases the time consumption [Bengio, 2012]. A more efficient random initialization

is to establish the distribution and range of network parameters either empirically or to

assume the characteristics of hidden units. In the latter case, the Glorot-style normalized

initialization ensures that each neuron operates in the active region of its saturating func-

tion so that the forward and backward propagated variances are layer-wise fixed [Glorot and

Bengio, 2010]. Yet, this approach promotes the fast parameter saturation during training

of complex problems, decreasing the system performance [Glorot and Bengio, 2010]. With

the purpose of avoiding the saturation of dense initializations, the Sparse Initialization (SI)

technique randomly connects neurons of consecutive layers, draws the weights from a unit

Gaussian, and sets the biases to zero [Martens, 2010]. Despite allowing the use of second

order optimizations, SI is highly sensitive to the established activation function and scale

constant, slowing down the learning speed [Sutskever et al., 2013].

To improve the initialization random approaches, the results obtained in [Erhan et al.,

2010] suggest that unsupervised pretraining guides the learning towards basins of attraction

of minima that support better generalization from the training data set. The layer-wise

pre-training is the most used approach for finding a suitable initialization, aiming to extract

a useful higher-level description of the output of the preceding layer of representation. To

this end, a greedy layer-wise stage of unsupervised learning is firstly carried out, followed by

a fine, supervised tuning [Hinton et al., 2006]. Particularly, this pre-training has been used

for parameter optimization in [Bengio et al., 2007], using the RBMs as building blocks, and

in [Vincent et al., 2008] for estimating the parameters of stacked DAE. As a result, either

supervised learning machine regularizes the fine tuning, depending on the architecture depth

and layer size [Erhan et al., 2010]. Nonetheless, the greedy principle underachieves if the

conditional output distribution is not accurately associated with the input structure [Bengio



1.4 Objectives 7

et al., 2007]. On the other hand, some approaches have been discussed to boost the learning

speed. Thus, the salient features can be extracted by Independent Component Analysis

(ICA) to initialize the first MLP layer though it yields to local minimum solutions [Chen and

Lu, 2013]. In contrast to the layer-wise approaches, the parameters learned simultaneously by

a multilayer generative network can also be employed to initialize the training of a supervised

feed-forward network, increasing the classification accuracy as discussed in [Mohamed et al.,

2011]. Thus, the contractive regularization for pre-training two-layered auto-encoders forces

the system to have small derivatives on the inputs, outperforming greedy methods in data

generalization and classification accuracy [Schulz et al., 2015]. In general terms, the above

discussed unsupervised pre-training approaches generate more useful hidden representations

than the input space, but many of the resulting features may be irrelevant for discrimination

tasks [Weston et al., 2012].

1.4. Objectives

1.4.1. General objective

Develop an improvement framework based on supervised kernel-based learning within a

scheme of General Stochastic Networks, that allows setting network parameters disclosing

relevant patterns from available input data. The developed framework must process the

samples of the data in order to exploit their inherent structure and/or statistical distribu-

tion considering supervised information. In addition, this improvement framework must be

adapted to cope with both network topology issues above-described, focusing on supervised

learning tasks. Thus, the proposed kernel-based learning must summarize and capture the

main input patterns to support classification and object recognition tasks, improving the

network performance in terms of task accuracy, learning speed and generalization ability.

1.4.2. Specific objectives

• Develop a methodology using kernel-based functions that allows determining the hid-

den layer size in a supervised GSN, based on the spectral decomposition of the data

using a regularization method. The aim is to take advantage of the spectral decom-

position property to analyze the joint data similarity (i.e. samples and labels) with a

regularization method and find the suitable architecture or an optimal boundary value

of layer size that support a better learning stage. This methodology is useful because

it reduces the required learning and testing time, in problems with high-dimensional

data while avoiding the over-fitting issue.



8 1 Introduction

• Propose a pre-training strategy based on supervised learning using kernel-based func-

tions, that includes the input data information and prior knowledge regarding the

studied process, e.g., supervised information. The aim is to extract relevant pair-wise

sample relationships and to find a suitable data representation space or projection

matrix. Specifically, this approach must be useful as a weight matrix initialization

technique within a GSN. This approach improves the network learning process (i.e.

more quickly) and favors the system accuracy.

• Integrate the two methodologies for network enhancement based on kernel functions

into a GSN to support supervised learning tasks, e.g., object recognition and classifica-

tion tasks. Thus, the network can be adapted regarding the studied process according

to the needs of the problem, discovering relationships among data samples and their

labels. In this way, we obtain a generalizable framework able to capture a lot of in-

formation from input data. We seek to improve the system performance in terms of

recognition accuracy and to increase the learning speed.

1.5. Contributions of this work

The present work is done within kernel-based enhancement of General Stochastic Network

for supervised learning. We aim to provide some strategies to set network parameters using

kernel functions. We aim to optimize the layer size and develop a supervised pre-training

method to support the weight initialization stage in order to learn efficiently data relations

in multilayer learning systems. With this in mind, the framework can be adapted accord-

ing to data statistical distribution and the learning procedure. In the following, the main

contributions of the work are described:

• An Automatic estimation of the GSN layer size built on the L-curve regularization of

the eigenvalues computed from the joint spectral decomposition of data. Specifically,

we propose the Joint-Spectrum Regularization (JSR) that creates a tensor kernel to

join the information of input and output samples into a single space.

• A supervised layer-wise pre-training to deal with the non-convex cost function. This

stage makes use of the CKA that relies upon the linear projection that best matches

the input samples with available labels, maximizing the information encoded by each

layer. The resulting projections are used to initialize the weight matrices in a GSN.



1.5 Contributions of this work 9

• An enhanced General Stochastic Network is proposed for supervised learning tasks:

classification and object recognition tasks. The kernel-based enhancement consists of

implementing methodologies that: i) select the proper number of hidden neurons in

the layers by regularization method and ii) learn a projection matrix based on Cen-

tered Kernel Alignment (CKA) strategy that improves the accuracy and increases the

convergence speed. The full system seeks to exploit the contained data information

using the prior knowledge regarding the studied learning task in order to encode dis-

criminative features facilitating the classification task and avoiding over-fitting issues.

The plan of this thesis is as follow. First, each one of the proposed methodologies is

evaluated separately within a GSN for supervised learning tasks. Later, the validation

is carried out on datasets from machine learning repositories and the results are compared

against baseline approaches in terms of system accuracy. Such results show that JSR provides

the best trade-off between network complexity and system performance while the CKA-based

pre-training improves both the learning speed and the classification accuracy. Finally, an

enhanced GSN is introduced as the result of the combination of above-mentioned approaches.

The guideline of the contributions in this work is described in fig. 1-2 according to the

supervised kernel-based learning within a framework of General Stochastic Networks. The

agenda of this thesis is organized as follows: We describe the mathematical preliminaries

in Chapter 2, then our proposed approaches are presented in Chapter 3. Chapters 4 and 5

illustrate the results of carried out evaluations on six well-known datasets. Lastly, the

conclusion about this work as well as ideas for a possible future investigation are presented

in Chapter 7.

Input data GSN

JSR

CKA

Learning stage

Prior information

Prior information

Architecture selection

Parameter initialization

Figure 1-2.: Enhanced General Stochastic Network representation framework. The red

boxes corresponds to the main contributions according to the relevant issues

associated with the topology selection of the network.



2. Mathematical preliminaries

In this chapter, we provide a brief account of the introductory concepts of the mathematical

theory of reproducing kernel Hilbert spaces in machine learning systems, artificial neural

networks, as well as the representation learning schemes based on deep learning approaches

(supervised and unsupervised). In particular, we define the deep learning from a represen-

tation learning point of view and then we describe the feature learning algorithms based on

generative learning models. The contents of this chapter are based on the following papers,

for reproducing kernel Hilbert spaces [Kreyszig, 1989, Parzen, 1959, Scholkopf and Smola,

2001] and the investigations carried out by Vincent [Vincent et al., 2008], Bengio [Bengio

et al., 2013a, Bengio et al., 2013c, Bengio et al., 2013b, Bengio, 2009], Alain [Alain and

Bengio, 2014], and Zohrer [Zöhrer and Pernkopf, 2014] within the framework of deep model

representation..

Representation Learning: deep learning approach

Representation learning consists in learning representations of the data that make it easier

to extract useful information when building classifiers or other predictors. Representation-

learning algorithms attempt to characterize the data-generating distribution through the

discovery of a set of features or latent variables whose variations capture most of the structure

of the data-generating distribution. These feature learning algorithms can be stacked to form

deeper and more abstract representations, i.e., deep architectures. Deep learning algorithms

learn multiple levels of representation, where the number of levels is data-dependent. There

are theoretical arguments and much empirical evidence to suggest that when they are well-

trained, deep learning algorithms can perform better than their shallow counterparts, both

in terms of learning features for the purpose of classification tasks and for generating higher-

quality samples.

In recent years, have surged many features learning algorithms (supervised and unsupervised)

that can be used to form deep architectures. In particular, it was empirically observed that

layer-wise stacking of feature extraction often yielded better representations, e.g., in terms

of classification error, quality of the samples generated by a probabilistic model, or in terms

of the invariance properties of the learned features. Specifically, we explore the unsupervised

feature learning algorithms, that are based on minimizing some form of reconstruction error,

such as auto-encoder. Besides, we analyze the auto-encoder properties based on generative

learning models for unsupervised and supervised learning tasks.



2.1 Reproducing Kernel Hilbert Spaces in Machine Learning 11

2.1. Reproducing Kernel Hilbert Spaces in Machine

Learning

2.1.1. Reproducing kernel Hilbert spaces

Let X be a set and F be a vector space of functions from X to the field F; in particular,

let F=R. Then, there exits a reproducing kernel Hilbert space (RKHS) H on X over R, if:

• H is a vector subspace of F .

• H is endowed with an inner product, 〈·, ·〉H , and is complete in the metric induced

by it.

• For every x∈X and f∈H , the linear evaluation functional Fx : H → R, defined as

Fx(f) = f(x), is bounded.

From the Riez theorem [Kreyszig, 1989], it is known that for any bounded functional H

on a Hilbert space H , there exists a unique vector h∈H such that: H(f)=〈h, f〉H for all

f∈H . In turn, for each evaluation functionals Fx there exist a corresponding vector κx∈H .

The bivariate function defined by:

κ(x, x′) = κx(x
′) (2-1)

is called a reproducing kernel for H , with x′∈X . So, it can be verified that

κ(x, x′) = 〈κx, κx′〉H (2-2)

and ‖Fx‖2
H =‖κx‖2

H = 〈κx, κx′〉H =κ(x, x), where ‖ · ‖ stands for the norm operator.

Let H be a RKHS on the set X with kernel κ. The linear span of {κ(x, ·) : x∈X }
is dense in H . This results from the fact that any function f orthogonal to the span of

{κ(x, ·) : x∈X } must satisfy 〈f, κx〉H , and thus f(x)=0.

Lemma 2.1.1. Let {fn} ⊂ H , being n∈N an index counter. If limn→+∞ ‖fn − f‖H = 0,

then f(x)=limn→+∞ fn(x) for every x∈X .

Proof 2.1.1. This is a simple consequence of the reproducing property and Cauchy-Schwarz

inequality:

|fn(x)− f(x)| = |〈fn − f, κx〉H | ≤ ‖fn − f‖H ‖κx‖H → 0

�



12 2 Mathematical preliminaries

Proposition 2.1.1. Let H1 and H2 be RKHS on X with kernels κ1 and κ2, respectively.

If κ1(x, x′)=κ2(x, x′) for all x, x′∈X , then H1=H2 and ‖f‖H1=‖f‖H2 for every f .

Proof 2.1.2. we can take κ(x, x′)=κ1(x, x′)=κ2(x, x′) and thus the Ml=span{κx∈Ml : x∈X }
is dense in Hl, and for any f(x)=

∑
n αnκxn(x) there is no regard about whether f belongs to

either M1 or M2. Note that ‖f‖2
H1

=
∑

n,n′ αnαn′κ(xn, xn′)=‖f‖2
H2
, and thus ‖f‖H1=‖f‖H2 for

every f∈M1=M2. If f∈H1, then there is a sequence of functions {fn} ⊂M1 that converge to

f in norm. Since {fn} is Cauchy in M1 is also Cauchy in M2, so by completeness of H2 there

exist g∈H2 such that fn → g. Then, by Lemma 2.1.1 we have that f(x)=limn→+∞ fn(x)=g(x)

for every x∈X , thus every f∈H1 is also in H2 and vice versa, and H1=H2. Finally, we

can extend ‖f‖H1=‖f‖H2 to all H1 and H2.

�

Thus, two different RKHSs do not have the same reproducing kernel. The following

theorem shows an alternative way to express the reproducing kernel of a RKHS H .

Theorem 2.1.1. Let H have reproducing kernel κ. if {eλ : λ∈Λ} is an orthonormal basis

of H , then:

κ(x, x′) =
∑
λ∈Λ

eλ(x)eλ(x
′), (2-3)

where the series converges point-wise.

Proof 2.1.3. For a fixed {xn} ⊆X , we have:

N∑
n,n′=1

αnαn′κ(xn, xn′) =

〈
N∑
n=1

αnκxn ,

N∑
n′=1

αn′κxn′

〉
H

=

∥∥∥∥∥
N∑
n=1

αnκxn

∥∥∥∥∥
H

≥ 0

�

Added to that, the Moore’s Theorem is introduced, which is the converse to the above

result and provides us a characterization of a positive definite function to be a sufficient

condition for the function to be the reproducing kernel of some RKHS.

Theorem 2.1.2. Let X be a set and κ : X ×X → R be a positive definite function. Then,

there exits a RKHS H of functions on X , such that, κ is the reproducing kernel of H .

Proof 2.1.4. Consider the functions κx(x
′)=κ(x, x′) and the space W spanned by the set

{κx : x∈X }. The following bilinear map B : W ×W → R:

B

(∑
i

αnκxn ,
∑
n′

βn′κxn′

)
=
∑
n,n′

αnβn′κ(xn, xn′),



2.1 Reproducing Kernel Hilbert Spaces in Machine Learning 13

where αnβn′∈R, is well defined on W. To support the above claim, notice that if f(x)=
∑
n

αnκxn(x)

is zero for all x∈X , then by definition B(f, κx)=0 for all x. Conversely, if B(f, w)=0 for

all w∈W, then by taking w=κx it can be seen that f(x)=0. Then, B is well defined.

Since κ is positive definite B(f, f) ≥ 0 and we see that B(f, f)=0 if and only if B(w, f)=0

for all w∈W, therefore f(x)=0 for all X . Now we have shown that W is a pre-Hilbert space

with inner product B. Let H denote the completion of W, we need to show that every element

of H is function on X . Let h∈H be the limit point of a Cauchy sequence {fn} ⊆ W. By

Cauchy-Schwarz inequality:

|fn(x)− fn′(x)| = |B(fn − fn′ , κx)| ≤ ‖fn − fn′‖κ(x, x).

Therefore, the point-wise limit h(x)=limn→+∞ fn(x) is well defined. Concluding, let 〈·, ·〉H be

the inner product on H . Then, we have 〈h, κx〉H =limn→+∞〈fn, κx〉H =limn→+∞B(fn, κx)=h(x).

Thus H is a RHKS with reproducing kernel κ.

�

Combining Proposition 2.1.1 with the Moore’s Theorem (Theorem 2.1.2) shows the cor-

respondence between RKHS’s on the set X and positive definite functions on this set.

2.1.2. The covariance function

Consider a stochastic process {X(t) : t∈τ}, where X(t) are real random variables defined on

a probability space (Ω,B,P) with bounded second order moments, that is:

Et
{
|X(t)|2

}
=

∫
Ω

|X(t)|2dP <∞, (2-4)

where E {·} stands for the expectation operator. Without loss of generality, we can consider

random variables with zero mean, Et {X(t)}=0 for all t∈τ. The covariance function is defined

as:

R(t, t′) = Et,t′ {X(t)X(t′)} =

∫
Ω

X(t)X(t′)dP, (2-5)

where t, t′∈τ . It is easy to verify that R : τ × τ → R is a positive definite function and

therefore defines a RKHS of functions on τ. A result originally due to Loeve and presented

by Parzen in [Parzen, 1959] showed a congruence map between the RKHS induced by the

function R on L2 space that corresponds to the completion of the span of the set {X(t) : t∈τ}
denoted by L2(X(t) : t∈τ).



14 2 Mathematical preliminaries

Theorem 2.1.3. Let {X(t) : t∈τ} be a random process with covariance kernel R. Then

L2(X(t) : t∈τ) is congruent with the RKHS H with reproducing kernel R. Furthermore,

any linear map φR : H → L2(X(t)) which has the property that for any f∈H and any t∈τ

Et {φR(f)X(t)} = f(t) (2-6)

is the congruence from H onto L2(X(t)), which maps R(t, ·) into X(t).

2.1.3. Reproducing kernel Hilbert spaces in machine learning

It is universally acknowledged that the study of positive definite kernels is a topic of interest

for the machine learning community as a generalization of a well body of theory that has

been developed for linear models. In this way, a positive definite kernel κ is an implicit

way to represent the samples of the input space X . Owing to there is a correspondence

between κ and a RKHS of functions H , the kernel can be understood as an indirect way to

compute inner products between elements of a Hilbert space that are the result of mapping

the elements of X to H . So, there is a mapping function ϕ : X →H such that:

κ (x, x′) = 〈ϕ(x), ϕ(x′)〉H . (2-7)

Regarding this, the space H can be viewed as a feature space and ϕ is called the feature

map. Consequently, by performing linear operations in H it is possible to perform nonlinear

manipulations in the input space X , however, there is no need to perform any explicit

computations in H (see Figure 2-1).

x
x

x

x

φ
φ(x)

φ(o)

φ(o)

φ(o) φ(o)

φ(x)

φ(x)

φ(x)
o

o
o

o

Input space RKHS

Figure 2-1.: kernel-based mapping.

Note that this idea is completely different to the congruence map introduced in Theo-

rem 2.1.3. Then, an important property associated with the use of positive definite kernels

in machine learning is the so-called representer theorem[Scholkopf and Smola, 2001]:



2.2 Artificial Neural Networks theory 15

Theorem 2.1.4. Let Ω : [0,+∞)→ R be a strictly monotonic increasing function, X be a

set, and ε : (X ×R2)N → R∪∞ be an arbitrary loss function. Then, each minimizer f∈H

of the regularized risk functional:

ε ((x1, y1, f(x1)), . . . , (xN , yN , f(xN))) + Ω
(
‖f‖2

H

)
, (2-8)

admits a representation of the form:

f(x) =
N∑
n=1

αnκ(xn, x), (2-9)

where each yn∈R is a given output associated with the input xn∈X .

Proof 2.1.5. Let S=span{κ(xn, ·) : xn∈X , n∈[1, N ]} denotes the subspace of H spanned

by the N training samples. Consider the solution f∈H , this solution can be written as:

f=fS + fS⊥ , where fS∈S, fS⊥∈S⊥, and ⊥ stands for the orthogonal symbol. Consequently,

f(xn)=fS(xn) + fS⊥(xn)=fS(xn) + 0. Now, for the second term of the regularized risk fun-

tional:

Ω
(
‖f‖2

H

)
= Ω

(
‖fS‖2

H + ‖fS⊥‖2
H

)
,

since Ω is strictly monotonic increasing it is possible to see that the minimum will be achieved

for ‖fS⊥‖=0, which implies that fS⊥=0.

�

With this in mind, it is possible to conclude that the representer theorem basically states

that the solution of the minimization of the regularized risk functional can be expressed

in term of the so-called training sample {(xn, yn) : n∈[1, N ]}. Therefore, it allows us to

deal with problems that a first glance appear to be infinite dimensional. Nonetheless, the

regularization does not prevent of having local multiple minima, such a property requires

some extra conditions, namely, convexity.

2.2. Artificial Neural Networks theory

2.2.1. Multi-Layer Neural Networks

A typical set of equations for multi-layer neural networks is the following. As illustrated

in figure 2-2, layer k computes an output vector hk using the output hk−1 of the previous

layer, starting with the input x = h0,

hk = tanh(bk + W khk−1) (2-10)



16 2 Mathematical preliminaries

with parameters bk(a vector of offsets) and W k (a matrix of weights). The tanh is applied

element-wise and can be replaced by sigm(u) = 1/(1 + e−u) = 1
2
(tanh(u) + 1) or other

saturating non-linearities. The top layer output hl is used for making a prediction and

is combined with a supervised target y into a loss function L(hl, y), typically convex in

bl + W lhl−1. The output layer might have a non-linearity different from the one used in

others layers, e.g., the softmax x = h0,

hli =
eb

l
i+W l

ih
l−1∑

j e
blj+W l

jh
l−1

(2-11)

where W l
i is the ith row of W l, hli is positive and

∑
i h

l
i = 1. The softmax output hli can

be used as estimator of P (Y = i|x), with the interpretation that Y is the class associated

with input pattern x. In this case one often uses the negative conditional log-likelihood

L(hl, y) = − logP (Y = y|x) = − loghly as a loss, whose expected value over (x, y) pairs is

to be monimized.

h

x

4

...

...

...

... h3

h2

h1

Figure 2-2.: Multi-layer neural network

Multi-layer neural network, typically used in supervised learning to make a prediction or

classification, through a series of layers, each of which combines an affine operation and a

non-linearity. Deterministic transformations are computed in a feedforward way from the

input x, through the hidden layers hk, to the network output hl, which gets compared with

a label y to obtain the loss L(hl, y) to be minimized as shown in 2-2.



2.2 Artificial Neural Networks theory 17

2.2.2. Auto-Encoders

An autoencoder takes an input vector x∈[0, 1]d, and first maps it to a hidden representation

y∈[0, 1]d
′

through a deterministic mapping y = fθ(x) = s(Wx + b), parameterized by

θ = {W , b}. W d
′×d is a weight matrix, b is a bias vector and s(·) is an activation function

e.g. sigmoid function s(x) = 1
1+e−x . The resulting latent representation y is then mapped

back to a ”reconstructed” vector z∈[0, 1]d in input space z = gθ′ (y) = s(W
′
y + y) with

θ
′
= {W ′

, b
′}. The weight matrix W

′
of the reverse mapping may optionally be constrained

by W
′
= W T , in which case the autoencoder is said to have tied weights. Each training x(i)

is thus mapped to a corresponding y(i) and a reconstruction z(i) for i training steps. The

parameters of this model are optimized to minimize the average reconstruction error :

θ?, θ
′? = arg min

θ,θ′

1

n

n∑
i=1

L(x(i), z(i))

= arg min
θ,θ′

1

n

n∑
i=1

L(x(i), gθ′ (fθ(x
i))) (2-12)

where L is a loss function such as the traditional squared error L(x, z) =‖ x− z ‖2.

Denoising Auto-Encoders DAE

We will now to train it to reconstruct a clean ”repaired” input from a corrupted, partially

destroyed one. This is done by first corrupting the initial input x to get a partially destroyed

version x̃ by means of a stochastic mapping x̃ ∼ qD(x̃|x). The corrupted input x̃ is the

mapped, as with the basic auto-encoder, to a hidden representation y = fθ(x̃) = s(Wx̃+b)

from which we reconstruct a z = gθ′ (y) = s(W
′
y+b

′
) (in figure 2-3 an example is presented

for a input x such is corrupted to x̃. In this way the auto-encoder maps it to y and attempts

to reconstruct x).

y

x

f g

q
x

θ θ'

~

Figure 2-3.: Denoising Auto-Encoders: schematic representation of the process



18 2 Mathematical preliminaries

2.3. Generalizing Denoising Auto-Encoders as Generative

Models

We start of a probabilistic interpretation of DAEs, which is valid for any data type, any

corruption process (so long as it has broad enough support), and any reconstruction loss (so

long as we can view it as a log-likelihood). The basic idea is that if we corrupt observed

random variable X into X̃ using conditional distribution C(X̃|X), we are really training

the DAE to estimate the reverse conditional P (X|X̃). Combining this estimator with the

known C(X̃|X), we show that we can recover a consistent estimator of P (X) through a

Markov chain that alternates between sampling from P (X|X̃) and sampling from C(X̃|X),

i.e., encode/decode, sample from the reconstruction distribution model P (X|X̃), apply the

stochastic corruption procedure C(X̃|X), and iterate.

2.3.1. Definition and training

Let P(X) be the data-generating distribution over observed random variable X. Let C

be a given corruption process that stochastically maps an X to a X̃ through conditional

distribution C(X̃|X). The training data for the generalized denoising auto-encoder is a set

of pairs (X, X̃) with X ∼ P(X) and X̃ ∼ C(X̃|X). The DAE is trained to predict X

given X̃ through a learned conditional distribution Pθ(X|X̃), by choosing this conditional

distribution within some family of distributions indexed by θ. The training procedure for the

DAE can generally be formulated as learning to predict X given X̃ by possibly regularized

maximum likelihood, i.e., the generalization performance that this training criterion attempts

to minimize is

L(θ) = −E[logPθ(X|X̃)] (2-13)

where the expectation is taken over the joint data-generating distribution

P(X, X̃) = P(X)C(X̃|X). (2-14)

2.3.2. Sampling

We define the following pseudo-Gibbs Markov chain associated with Pθ:

Xt ∼ Pθ(X|X̃t−1)

X̃t ∼ C(X̃|Xt) (2-15)

which can be initialized from an arbitrary choice X0. This is the process by which we are

going to generate samples Xt according to the model implicitly learned by choosing θ. We

define T (Xt|Xt−1) the transition operator that defines a conditional distribution for Xt given

Xt−1, independently of t, so that the sequence of Xt’s forms a homogeneous Markov chain.



2.3 Generalizing Denoising Auto-Encoders as Generative Models 19

Algorithm 1 The generalized denoising Auto-Encoder training algorithm requires a training

set or training distribution D of examples X, a given process C(X̃|X) from which one can

sample, and with which one trains a conditional distribution Pθ(X|X̃) from which one can

sample.

repeat

• sample training example X ∼ D

• sample corrupted input X̃ ∼ C(X̃|X)

• use (X, X̃) as an additional training example towards minimizing the expected value of

− logPθ(X|X̃),e.g., by a gradient step with respect to θ.

until convergence of trining (e.g., as measured by early stopping on out-of-sample negative

log-likelihood)

2.3.3. Walkback Training

Sampling in high-dimensional spaces (like in experiments below) using a simple local cor-

ruption process (such as Gaussian or salt-and-pepper noise) suggests that if the corruption

is too local, the DAE’s behavior far from the training examples can create spurious modes

in the regions insufficiently visited during training. To alleviate this problem, We exploit

knowledge of the currently learned model P (X|X̃) to define the corruption, so as to pick

values of X̃ that would be obtained by following the generative chain: wherever the model

would go if we sampled using the generative Markov chain starting at a training example X,

we consider to be a kind of “negative example” X̃ from which the auto-encoder should move

away (and towards X). This approach is very similar to the CD-k (Contrastive Divergence

with k MCMC steps) procedure proposed to train RBMs [Hinton et al., 2006].

More precisely, the modified corruption process C̃ we propose is the following, based on the

original corruption process C. We use it in a version of the training algorithm called walk-

back, where we replace the corruption process C of Algorithm 1 by the walkback process C̃ of

Algorithm 2. This also provides extra training examples (taking advantage of the X̃ samples

generated along the walk away from X). It is called walkback because it forces the DAE to

learn to walk back from the random walk it generates, towards the X’s in the training set.



20 2 Mathematical preliminaries

Algorithm 2 THE WALKBACK ALGORITHM is based on the walkback corruption pro-

cess C̃(X̃|X), defined below in terms of a generic original corruption process C(X̃|X) and the

current model’s reconstruction conditional distribution P (X|X̃). For each training example

X, it provides a sequence of additional training examples (X, X̃∗) for the DAE. It has a

hyper-parameter that is a geometric distribution parameter 0 < p < 1 controlling the length

of these walks away from X, with p = 0.5 by default. Training by Algorithm 1 is the same,

but using all X̃∗ in the returned list L to form the pairs (X, X̃∗) as training examples instead

of just (X, X̃).

1: X∗ ← X,L← []

2: Sample X̃∗ ∼ C(X̃|X∗)
3: Sample u ∼ Uniform(0, 1)

4: if u > p then

5: Append X̃∗ to L and return L

6: If during training, append X̃∗ to L, so (X, X̃∗) will be an additional training example.

7: Sample X∗ ∼ P (X|X̃∗)
8: goto 2.

2.3.4. Generalizing the denoising autoencoder to GSNs

The denoising auto-encoder Markov chain is defined by X̃t ∼ C(X̃|Xt) andXt+1 ∼ Pθ(X|X̃t),

where Xt alone can serve as the state of the chain. The Generative Stochastic Network (GSN)

framework generalizes this by defining a Markov chain with both a visible Xt and a latent

variable Ht as state variables, of the form

Ht+1 ∼ Pθ1(H|Ht, Xt)

X̃t+1 ∼ Pθ2(X|Ht+1) (2-16)

Denoising auto-encoders are thus a special case of GSNs. Note that, given that the

distribution of Ht+1 depends on a previous value of Ht, we find ourselves with an extra H0

variable added at the beginning of the chain. This H0 complicates things when it comes to

training, but when we are in a sampling regime we can simply wait a sufficient number of

steps to burn in.

2.3.5. General Stochastic Networks for Unsupervised Learning

The input distribution P (X) is sampled to convergence in a Markov chain. In the case

of the DAE, the transition operator first samples the hidden state Ht from a corruption

distribution C(H|X), and generates a reconstruction from the parameterized model, i.e the

density Pθ2(X|H).



2.3 Generalizing Denoising Auto-Encoders as Generative Models 21

Xt

H

P

+0 Xt+1 Xt+2 Xt+3 Xt+4

t+1 Ht+2 Ht+3 Ht+4

θ1

2
Pθ

Pθ1 Pθ1 Pθ1
Pθ1

2
Pθ

2
Pθ

2
Pθ

Figure 2-4.: DAE Markov chain

The resulting DAE Markov chain, shown in figure 2-4, is defined as

Ht+1 ∼ Pθ1(H|Xt+0), Xt+1 ∼ Pθ2(X|Ht+1), (2-17)

where Xt+0 is the input sample X, fed into the chain at time step 0 and Xt+1 is the

reconstruction of X at time step 1. In the case of a GSN, an additional dependency between

the latent variables Ht over time is introduced to the network graph. The GSN Markov

chain is defined as follows:

Ht+1 ∼ Pθ1(H|Ht+0, Xt+0), Xt+1 ∼ Pθ2(X|Ht+1), (2-18)

Figure 2-5 shows the corresponding network graph. This chain can be expressed with

deterministic functions of random variables fθ ⊇ {f̂θ, f̌θ}. In particular, the density fθ is

used to model Ht+1 = fθ(Xt+0, Zt+0, Ht+0), specified for some independent noise source Zt+0,

with the condition that Xt+0 cannot be recovered exactly from Ht+1.

Xt

H

P

+0 Xt+1 Xt+2 Xt+3 Xt+4

t+1 Ht+2 Ht+3 Ht+4

θ1

2
Pθ

Pθ1 Pθ1 Pθ1
Pθ1

2
Pθ

2
Pθ

2
Pθ

Ht+0

Figure 2-5.: GSN Markov chain

We introduce f̂ iθ as a back-probable stochastic non-linearity of the form f̂ iθ = ηout+g(ηin+

âi) with noise processes Zt ⊇ {ηin, ηout} for layer i. The variable âi is the activation for

unit i, where âi = W iI it + bi with a weight matrix W i and bias bi, representing the para-

metric distribution. It is embedded in a non-linear activation function g. The input I it
is either the realization xit of observed sample X i

t or the hidden realization hit of H i
t . In

general, f̂ iθ(I
i
t) specifies an upward path in a GSN for a specific layer i. In the case of

X i
t+1 = f̌ itheta(Zt+0, Ht+1) we define f̌ iθ(H

i
t) = ηout + g(ηin + ǎi) as a downward path in the

network i.e. ǎi = (W i)TH i
t + bi, using the transpose of the weight matrix W i and the

bias bi. This formulation allows to directly back-propagate the reconstruction log-likelihood

P (X|H) for all parameters θ ⊇ {W 0, . . . ,W d, b0, . . . , bd} where d is the number of hid-

den layers. In figure 2-5 the GSN includes a simple hidden layer. This can be extended



22 2 Mathematical preliminaries

to multiple hidden layers requiring multiple deterministic functions of random variables

fθ∈{f̂ 0
θ , . . . , f̂

d
θ , f̌

0
θ , . . . , f̌

d
θ }.

Figure 2-6 visualizes the Markov chain for a multi-layer GSN, inspired by the unfolded

computational graph of a deep Boltzmann machine Gibbs sampling process.

Xt

H

+0 Xt+1 Xt+2 Xt+3 Xt+4

t+1 Ht+2 Ht+3 Ht+4

0 0 0 0 0

Xt+0 L

^

t{ }Xt+1
0 ,Xt+0 Lt{ }Xt+2

0 ,Xt+0 Lt{ }Xt+3
0 ,Xt+0 Lt{ }Xt+4

0 ,Xt+0

f
0 ^

f
0 ^

f
0 ^

f
0 ^

f
0

f
0

^

f
0

^

f
0

^

f
0

^

Ht+2 Ht+3 Ht+4

Ht+3 Ht+4

1 1 1 1

2 2 2

3 3

^
f
1 ^

f
1 ^

f
1 ^

f
1

f
1

^

f
1

^

f
1

^

^
f
2

^
f
2

f
2

^

^
f
2

f
2

^

Figure 2-6.: GSN Markov chain with multiple layers and backprop-able stochastic units

In the training case, alternatively even or odd layers are updated at the same time. The

information is propagated both upwards and downwards for K steps allowing the network to

build higher order representations. An example for this update process is given in figure 2-

6. In the even update (marked in red) H1
t+1 = f̂ 0

θ (X0
t+0). In the odd update (marked in

blue) X0
t+1 = f̌ 0

θ (H1
t+1) and H2

t+2 = f̂ 1
θ (H1

t+1) for k = 0. In the case of k = 1, H1
t+2 =

f̂
′

θ(X
0
t+1) + f̌ 1

θ (H2
t+2) and H3

t+3 = f̂ 2
θ (H2

t+2) in the even update and X0
t+2 = f̌ 0

θ (H1
t+2) and

H2
t+3 = f̂ 1

θ (H1
t+2)+ f̌ 2

θ (H3
t+3) in the odd update. In case of k = 2, H1

t+3 = f̂ 1
θ (X0

t+2)+ f̌ 1
θ (H2

t+3)

and H3
t+4 = f̂ 2

θ (H2
t+3) in the even update and X0

t+3 = f̌ 0
θ (H1

t+3) and H2
t+4 = f̂ 1

θ (H1
t+3) +

f̌ 2
θ (H3

t+4) in the odd update. The cost function of a generative GSN can be written as:

C =
K∑
k=1

Lt{X0
t+k, Xt+0}, (2-19)

Lt is a specific loss-function such as the mean squared error (MSE) at time step t. In

general any arbitrary loss function could be used (as long as they can be seen as a log-

likelihood). X0
t+k is the reconstruction of the input X0

t+0 at layer 0 after k steps. Optimizing

the loss function by building the sum over the costs of multiple corrupted reconstructions

is called walkback training. This form of network training leads to a significant performance

boost when used for input reconstruction. The network is able to handle multi-modal in-

put representations and is therefore considerably more favorable than standard generative

models.



2.3 Generalizing Denoising Auto-Encoders as Generative Models 23

2.3.6. General Stochastic Networks for Supervised Learning

In order to make a GSN suitable for a supervised learning task we introduce the output Y to

the network graph. In this case L = logP (X) + logP (Y |X). Although the target Y is not

fed into the network, it is introduced as an additional cost term. The layer update-process

stays the same.

Xt

H

+0 Xt+1 Xt+2 Xt+3 Xt+4

t+1 Ht+2 Ht+3 Ht+4

0 0 0 0 0

Xt+0 L

^

t{ }Xt+1
0 ,Xt+0 Lt{ }Xt+2

0 ,Xt+0 Lt{ }Xt+3
0 ,Xt+0 Lt{ }Xt+4

0 ,Xt+0

f
0 ^

f
0 ^

f
0 ^

f
0 ^

f
0

f
0

^

f
0

^

f
0

^

f
0

^

Ht+2 Ht+3 Ht+4

Ht+3 Ht+4

1 1 1 1

2 2 2

3 3

^
f
1 ^

f
1 ^

f
1 ^

f
1

f
1

^

f
1

^

f
1

^

^
f
2

^
f
2

f
2

^

^
f
2

f
2

^

Lt{ }Xt+1
3 , Y t+0 Lt{ }Xt+2

3 , Y t+0

Figure 2-7.: dGSN Markov chain for inputXt+0 and target Yt+0 with backprop-able stochas-

tic units

We define the following cost function for a 3-layer dGSN:

C =
λ

K

K∑
k=1

Lt{X0
t+k, Xt+0}+

1− λ
K − d+ 1

K∑
k=d

Lt{H3
t+k, Yt+0} (2-20)

This is a non-convex multi-objective optimization problem, where λ weights the generative

and discriminative part of C. The parameter d specifies the number of network layers i.e.

depth of the network. Scaling the mean loss in 2-20 is not mandatory, but allows to equally

balance both loss terms with λ = 0.5 for input Xt+0 and target Yt+0 scaled to the same range.

Again figure 2-7 shows the corresponding network graph for supervised learning with red

and blue edges denoting the even and odd network updates. In general the hybrid objective

optimization criterion is not restricted to 〈X, Y 〉, as additional input and output terms could

be introduced to the network.



Part II.

Materials and Methods



3. Supervised Kernel Approach for

Automated Learning using General

Stochastic Networks

3.1. General stochastic networks for supervised learning

Provided the input distribution P (X) for which we only have empirical samples X⊂X, Gen-

eral stochastic networks (GSN) combines a multi-layer feed-forward neural network, noisy

propagations, and walkback training for estimating the corresponding transition operator of

a Markov chain. Figure 3-1 illustrates a GSN Markov chain for an L-layered deep net-

work, where Xt∈RN×P is the input matrix sampled at time instants t∈T time, Sl
t∈RN×ml

is the l-th hidden state matrix at time step t and ml∈N is the size of the l-th layer so that

l∈L and T>L. Matrix Sl
t holds N vectors slt,i∈Rml , mapping the input samples to the layer l.

Further, the dependency among available latent variables (hidden states) Sl
t are encoded

in the GSN graph through the following set of upward/downward iterations [Zöhrer and

Pernkopf, 2014].


Sl
t = ςout + φl(bl + Sl−1

t−1W
l + ςin)

Sl−1
t = ςout + ϕl(al + Sl

t

(
W l
)>

+ ςin)

S0
t = Xt

(3-1)

where bl∈Rml and al∈Rml−1 are the offset vectors, W l∈Rml−1×ml is the l-th linear projec-

tion, ςout∈RN×ml , ςin∈RN×ml−1 are independent noise sources, and the functions φl(·)∈R and

ϕl(·)∈R apply saturating, non-linear, element-wise operations.

We will define an L-layered GSN for classification through the following cost function:

v(X,Y)=log (P (X)) + log (P (Y|X)) (3-2)

where P (Y|X) is the conditional probability distribution between the input set and the output

Y that is introduced to make a GSN suitable for a supervised learning task. Note that both

distributions are sampled to guarantee convergence, namely, X⊂X with X∈RN×P , holds



26
3 Supervised Kernel Approach for Automated Learning using General Stochastic

Networks

ν(SL
L ,Y ) ν(SL

T ,Y )

SL SL
T

Sl
t Sl

L Sl
T

S1
1 S1

t S1
L S1

T

X X1 Xt XL XT

ν(X1,X) ν(Xt,X) ν(XL,X) ν(XT ,X)

Figure 3-1.: Schematic representation of a GSN Markov chain with back-probable stochas-

tic units. – Upward step. – downward step

N input vectors xi∈RP (i∈N) and Y ⊂Y with Y ∈[0, 1]N×C that contains N output vectors

yi∈[0, 1]C representing C mutually exclusive classes. Hence, the last layer is fixed to the

output dimension, respectively, i.e. mL=C.

Due to the target Y cannot be forward propagated through the graph network, it is instead

introduced in the cost function so that the Markov chain is updated using the so-termed

back-probable units [Alain et al., 2015]. Grounded on the walkback training approach, we

compute for an L-layered GSN in eq. (3-2) the following hybrid multiobjective training

criterion, dividing the cost function into a generative and discriminative:

ṽ = ζE {ν (Xt,X) : ∀t∈[1 . . . T ]}+ (1− ζ)E
{
ν
(
SL
t ,Y

)
: ∀t∈[L . . . T ]

}
(3-3)

where the real-valued parameter ζ∈[0, 1] is the trade-off that searchers for a compromise

between the generative (first term) and discriminative (second term) parts of eq. (3-3),

notation E {·} stands for the expectation operator, and ν(·, ·) can be assumed as a loss-

function, approximating the marginal and conditional log-likelihoods in eq. (3-2).



3.2 GSN architecture selection 27

3.2. GSN architecture selection

3.2.1. Motivation

One of biggest challenges facing researchers is the selection of hidden neurons in Multi-layer

neural networks. An exceeding number of hidden neurons made on the network deepens the

local minima problem [Sun, 2012]. Besides, the system would have a large generalization

error due to over-fitting and high variance. In contrast, if the number of hidden neurons

becomes too small, the hidden units becomes unstable. For this reason, various criteria

have been proposed to fix the number of hidden neurons by researchers during the last

couple of decades. The techniques most popular are: trial rule, heuristic and exhaustive

search, analytical approaches and pruning algorithms. Each one has specific properties in

order to enhance the problems above mentioned. Nevertheless, these techniques can not be

generalized because they are not always valid for all training cases.

Considering the importance of the choice of network architecture, we introduce in this section

a tuning criterion for choose the proper number of the hidden nodes on a layer, based on the

spectral decomposition of the data. We use the L-curve regularization of the eigenvalues of

the tensor kernel matrix to obtain an optimum layer size. The main objective is to minimize

error an to improve classification accuracy.

3.2.2. Selecting the hidden layer size using kernel functions

Here, we rely on a kernel-based similarity to quantify the hidden layer size value upon the

joint sample set ξ={(xi,yi):i, j∈N} through the following eigen-spectrum analysis:

Kξ = V ∆V > (3-4)

where the columns of V ∈RN×N and diagonal of ∆∈RN×N hold the eigenvectors and eigen-

values {λn∈R+:n∈N} of the introduced kernel matrix Kξ∈RN×N , respectively.

Generally speaking, we aim to quantify the optimal layer size that allows preserving the

joint input-output information, encoded on the elements of Kξ, and computed as the fol-

lowing tensor product kernel:

kξij = κx (xi,xj)κ
y (yi,yj) ;∀i, j∈N, (3-5)

where κx:RN×RN 7→R and κy:[0, 1]C×[0, 1]C 7→R are the corresponding positive definite kernel

functions defined in RN and RC , respectively.

Therefore, to face a trade-off between system complexity and data information preserved

in kernel matrix Kξ, we employ the widely-known L-curve regularization framework as below



28
3 Supervised Kernel Approach for Automated Learning using General Stochastic

Networks

(see Figure 3-2) [Hansen et al., 2007]:

m̃ = arg min
∀n∈N

∥∥∥∥ λn
‖∆‖∞

− n

N

∥∥∥∥
2

, (3-6)

where m̃∈N is the estimated value for the optimal layer size and notation ‖ · ‖q stands for

the lq-norm.

trade-off

ξ
Κ

e
ig

e
n
v
a
lu

e
s

System complexity

Figure 3-2.: L-curve criterian for m̃ estimation

As a result, the supervised kernel-based analysis described above allows properly estimat-

ing the network architecture. Thus, the regularization criterion determines the optimal size

m̃ of the projected space from the spectral decomposition of the sample set ξ so that the

joint information is maximally preserved. To this criterion, we have called Joint Spectrum

Regularization (JSR).

3.3. GSN pre-training stage based on center kernel

alignment

3.3.1. Motivation

In recent researches, DNN have shown significantly to outperform comparable but shallow

competitors and often match or beat the state of the art in challenging artificial intelligence

or AI related tasks such as computer vision, natural language processing and information

retrieval. However, in virtually all instances of deep learning, the objective function is a

highly non-convex function of the parameters, with the potential for many distinct local

minimal in the model parameter space [Erhan et al., 2010].

To deal with this issue, an essential procedure for deep learning methods implementation

is the initializing deep architecture (termed pre-training) that can be carried out by train-

ing a network to optimize directly only the supervised objective of interest, starting from



3.3 GSN pre-training stage based on center kernel alignment 29

a set of randomly-initialized parameters. This procedure arose as a phase of the training

strategies for deep architectures with the algorithms for training DBN and Stacked AutoEn-

coders (SAE), which are all based on a similar approach: greedy layer-wise unsupervised

pre-training followed by supervised fine-tuning. However, this strategy performs poorly in

practice [Vincent et al., 2010]. Particular examples that use unsupervised representation

learning are the following: RBMs, AE, sparse AE [Ranzato et al., 2007], and the greedy

layer-wise that is the most common approach that learns one layer of a deep architecture

at a time [Bengio, 2012]. Although the unsupervised pre-training generates hidden repre-

sentations that are more useful than the input space, many of the resulting features may be

irrelevant for the discrimination task [Weston et al., 2012, Mohamed et al., 2011].

In this section we develop a pre-training stage in order to learn a projection matrix using the

data distribution and prior data information. To this end, we compute the weight matrix

W̃
l

maximizing the alignment between both centered kernels, label and projected data.

3.3.2. Pre-training stage using kernel functions

Kernel functions are bivariate measures of similarity based on the inner product between

samples embedded in a Hilbert space, such as described above in Section 2.1.1. For a given

domain S l containing the input feature estimation of a given machine learning task, a kernel

κSl :S l×S l→R is assumed to be a positive-definite function, which defines an implicit map-

ping φSl :S l→HSl that embeds any element sl∈S l into the element φSl(sl)∈HSl of some

Reproducing Kernel Hilbert Space RKHS noted as HSl .

Also, we set a positive definite kernel κY :Y×Y 7→over a target space Y related to the user

prior knowledge, e.g., the label space. Then, the RKHS HY defines the implicit mapping

φY :Y 7→HY , which maps any element y∈Y into the element φY (l)∈HY .

After estimation of m̃ in Section 3.2.2, we obtain the set of kernel matrices {K l:l∈L},
accounting for similarity between a given pair of latent samples

{
slt,i, s

l
t,j

}
as follows:

klij = κl
(
dl
(
slt,i, s

l
t,j

))
(3-7)

where dl:Rml×Rml→R+ is a certain distance operator introduced to implement the positive

definite kernel function κl(·). Upon the assumption of linearity between the GSN layer tran-

sitions, we apply the Mahalanobis distance that is defined for P -dimensional spaces by the

following inverse covariance matrix W lW l>:

dl
(
slt,i, s

l
t,j

)
=
(
slt,i − slt,j

)
W lW l> (slt,i − slt,j

)>
(3-8)

where W l∈Rml−l×ml holds the linear projection zlt,i=slt,iW
l, with zlt,i∈Rml , under assumption

that ml≤P.



30
3 Supervised Kernel Approach for Automated Learning using General Stochastic

Networks

( ).

( ).

Y H

y
i
y
j

ΦY

ΦY yi(   ) Y

ΦY yj(   )

Sl

si

sj

z

i

j

z

SΦ l

HS lΦS si(     )Wl
l

l

l

l

Figure 3-3.: Diagram of the proposed CKA approach

With the purpose of improving the system performance regarding the learning speed and

classification accuracy, we introduce the available supervised knowledge into the pre-training

stage. Consequently, we further enclose the output similarities in a matrix Ky with elements:

kyij = κy (yi,yj) . (3-9)

However, we must encode the discriminative information to get a suitable W l, favoring

the system performance. To this end, we also propose each matrix W l to be learned by

maximizing the similarity between K l and Ky through the following real-valued function,

ρ (·, ·)∈[0, 1], that is termed as centered kernel alignment (CKA) [Brockmeier et al., 2014]:

ρ
(
K l,Ky

)
=

〈
HK lH ,HKyH

〉
F

‖HK lH‖F ‖HKyH‖F
, (3-10)

where H=I − N−111> is a centering matrix (H∈RN×N), 1∈RN is an all-ones vector, and

notations 〈·, ·〉F and ‖·, ·‖F stand for the Frobenius inner product and norm, respectively. In

Figure 3-3 describes the introduced CKA approach.

Due to the CKA cost function in eq. (3-10) builds a set of projected features that match

the best all provided target classes from each hidden state Sl
t, we devise the following opti-

mization problem to compute, at the end, the projection matrix:

W̃
l
= arg max

W l

ρ
(
K l,Ky

)
, (3-11)



3.3 GSN pre-training stage based on center kernel alignment 31

where the pre-trained W̃
l

initializes each l-th network layer. Section 8.1 describes the

optimization details for Equation (3-11).

As a result, the supervised kernel-based analysis described above allows properly esti-

mating an initial training setup. Thus, the maximization of the centered kernel alignment

score, ρ, provides an assembly of discriminative linear projections {W l}, better matching

the relations between hidden states Sl and target information Y .



4. Experimental set-up

We validate the introduced kernel-based approach for GSN enhancement within a classifi-

cation framework. In this regard, we follow the scheme shown in Figure 4-1 that comprises

the following stages: i) Layer size optimization based on the eigenspectrum analysis of joint

input-output kernel similarities, ii) Layer-wise pre-training of the linear projections through

the alignment maximization between the latent sample kernel and supervised kernel (i.e.,

labels), iii) Fine parameter tuning by minimizing the GSN cost function. Figure 4-1 outlines

a red box that includes both stages of topology configuration that are under investigation:

Joint Spectrum Regularization (JSR) in the layer size optimization and Centered Kernel

Alignment (CKA) in the layer-wise pre-training.

GSN architecture

Input

data

Topology configuration:

-Layer size setting

-Layer-wise pre-training

Learning stage:

-Walkback training
Score

Figure 4-1.: Kernel-based topology optimization guideline used for GSN enhancement.

4.1. Testing databases

The proposed GSN approach is validated on six widely studied classification datasets: Three

data collections from the well-known UCI machine learning repository1, and three image

collections used for object recognition:

i) Glass [Evett and Spiehler, 1987]. This collection is the results of a study of classification

of types of glass (building windows and vehicle windows) that was motivated by the

criminological investigation. Thus, a set of 6 types of glass were defined in terms of

their oxide content (i.e. Na, Fe, K, etc).

ii) Wine [Lichman, 2013]. These data are the results of a chemical analysis of wines grown

in the same region in Italy but derived from three different cultivars. The analysis

determines the quantities of 13 constituents found in each of the three types of wines.

1https://archive.ics.uci.edu/ml/datasets.html



4.1 Testing databases 33

iii) Wdbc [Street et al., 1993]. This database describes the features computed from a digitized

image of a fine needle aspirate (FNA) of a breast mass. The collection describes the

characteristics of the cell nuclei present in the image. A set of 569 images were processed

yielding a database of 30 dimensional points.

iv) MNIST [LeCun et al., 1995]. This collection holds 3000 handwritten digit images of

size 28×28 pixels and 256 level grayscale of digits between 0 and 9. Data are evenly

distributed with 300 representative images for every one of the ten digits, for which

some examples are shown in Figure 4.2a. For testing, we extract 784 pixels from each

non-processed image to feed the GSN inputs together with the provided label set that

holds the same cardinal for the tested image data set.

v) Columbia COIL-20 [Nene et al., 1996]. This database includes 20 common household

objects. Each object was placed on a turntable and photographed at 32×32 pixels every

five degrees of rotation for a total of 72 views as shown in Figure 4.2b. The full set

contains 1440 gray-scale images picked up for 20 objects.

vi) Olivetti [Samaria and Harter, 1994]. It holds 400 intensity-value pictures picked up

for 40 individuals (males and females) with small variations in viewpoint, significant

variation in expression, and the occasional addition of glasses. There are ten images

sizing 112×92 per person, some examples are shown in Figure 4.2c.

Table 4-1 summarizes the dataset characteristics regarding the number of samples, fea-

tures, and classes:

Description
Dataset

Glass Wine Wdbc MNIST COIL-20 Olivetti

#samples (N) 214 178 569 3000 1440 400

#features (P ) 8 13 30 784 1024 10304

#classes (C) 6 3 2 10 20 40

Table 4-1.: Summary of details for the UCI and image datasets.

a MNIST b Columbia COIL-20 c Olivetti

Figure 4-2.: Images of the databases employed.



34 4 Experimental set-up

4.2. Setting of GSN training parameters

Particularly for image classification, we train the generative stochastic model by feeding

P pixels in gray-scale from each non-processed image and estimating the provided label

set that holds the same cardinal for the testing image. Namely, P={784, 1024, 10304} for

MNIST, COIL-20, and Olivetti databases, respectively. Also, we carry out validation under

the 3-fold cross-validation scheme for the MNIST and Columbia COIL-20 databases, while a

5-fold cross-validation scheme is applied for the Olivetti collection. All GSN simulations

are then executed on a GPU with the help of the mathematical expression compiler Theano2

for the following parameter setting:

i) Number of layers: Two hidden layers (L=2) with m1=m2=m̃ for all experimental set-

tings.

ii) Loss-function ν(·, ·) for approximating the learned marginal and conditional likelihoods

in Equation (3-2). We employ the Minimum Squared Error (MSE) since its properties

have been widely studied:

ν(Xt,X) = E
{
‖xt,i − x0,i‖2

2 : ∀i ∈ [1, . . . , N ]
}

(4-1)

iii) GSNs (see Equation (3-3)) and CKA (Equation (3-11)) optimization. Due to its ef-

ficiency on large scale problems and ease of implementation, we use the Stochastic

Gradient Descent (SGD) [Bottou, 2010], for which the following working parameters

are fixed: Learning rate is 0.1 for MNIST dataset as suggested in [Zöhrer and Pernkopf,

2014], and the value 1 is empirically set for COIL-20 and Olivetti. The batch size is

1, the momentum term is 0.9, and the multiplicative annealing factor is 0.99.

iv) Activation function of the hidden states. tanh is chosen that is described as follows:

φl(u) =
exp(2u)− 1

exp(2u) + 1
, ∀l ∈ [1, . . . , L− 1]. (4-2)

For the output layer (l=L), we choose function softmax that in our case operates like

a classifier so that:

φL(uc) =
exp(uc)∑C
c′=1 exp(uc′)

, ∀c ∈ [1, . . . , C] (4-3)

v) Fine tuning of parameters. This optimization procedure is accomplished using walkback

training approach with the rule T=2L=4 that is sufficient for convergence [Zöhrer and

Pernkopf, 2014]. Note that we do not apply pre- nor post-activation noise in the network

training setup since our goal is to test the performance of pre-training approaches.

2http://deeplearning.net/software/theano/



4.2 Setting of GSN training parameters 35

In the case of kernel functions, the following setup is considered:

i) For the layer size estimation (see Equation (3-6)), we encode the nonlinear dependencies

among input-output variables computed as a tensor product kernel for the Gaussian and

delta function-based kernels, respectively described as follows:

κx (xi,xj) = exp
(
‖xi − xj‖2

2/2σ
2
x

)
(4-4a)

κy (yi,yj) = δ (yi − yj) (4-4b)

where δ (yi − yj)=1 if yi=yj, otherwise, δ (yi − yj)=0, and the bandwidth σx∈R+ is

computed as the median value of the input set L2 distances.

ii) Layer-wise pre-training of the weighting matrices (see Equation (3-11)). The Gaussian

kernel is also considered in Equation (3-7) as follows:

κl
(
dl
(
slt,i, s

l
t,j

))
= exp

(
− d2

l

(
slt,i, s

l
t,j

)
/2σ2

l

)
(4-5)

where σl∈R+ is adjusted to the median value of the Mahalanobis distances dl
(
slt,i, s

l
t,j

)
.



5. Results and Discussion

5.1. Results of GSN layer-size optimization

In this case, we analyze the GSN performance, in terms of classification accuracy and network

complexity, achieved by the proposed JSR as architecture selection. To this end, we firstly

estimate the spectral decomposition eigenvalues of Equation (3-4). On the basis of Equa-

tion (3-6), we then calculate the hidden layer size, yielding m̃={6, 11, 11, 41, 50, 45} for Wine,

Glass, Wdbc, MNIST, COIL-20, and Olivetti, respectively. Note that JSR selects the largest

eigenvalues in all cases as shown in Figure 5-1, meaning that it holds most of information

using the lowest number of components.

20 40 60 80 100

-4

-1

lo
g
λ
p

Glass

Wine

Wdbc

a UCI repository databases

50 100 150 200 250

MNIST

COIL-20

Olivetti

b Image collections

Figure 5-1.: Resulting eigenvalues for the joint spectral decomposition calculated within a

range of m values for each dataset. The highlighted red dot ( ) denotes the m̃

obtained by the regularization criterion.

As a means to evaluate the use of JSR for estimating the GSN layer size, we contrast its

performed classification accuracy with the conventional exhaustive search along with three

widely used analytic selection strategies: Linear dependency estimation [Li et al., 1995],

Geometric mean [Shibata and Ikeda, 2009], and Theoretical stability analysis [Ke and Liu,

2008]. Also, the comparison is carried out with two semi-supervised classification approaches

that have network architecture similar to the GSN learning approach, and their performance

has been reported on the same data tested in this paper. Namely, a deep-learning baseline

method that feeds a transductive semi-supervised maximum margin clustering with a non-



5.1 Results of GSN layer-size optimization 37

linear data representation (TSN) [Chen, 2015], and the reference network-based classification,

or TAGnet, that emulates the sparse coding-based clustering pipeline using a feed-forward

network structure (just for testing of image databases) [Wang et al., 2015].

Regarding the exhaustive searching procedure, validation is carried out within a framed

range of layer sizes, namely, m=[4, . . . , N ] for the UCI repository and m=[4, . . . , 250] for the

image data sets. As seen in Figure 5-2, the JSR criterion provides rather a small number

of neurons m (marked with a red dot), allowing to reach a performance that is comparable

to the highest accuracy obtained by the exhaustive search in almost all databases. Note

that the computed layer sizes are bigger for image collections than UCI databases due to

the larger variability present in the image classes. However, the estimated small m is not

enough to reach the best performance of the exhaustive search for glass collection that has

the most complicated data structure. Therefore, the optimal number of neurons that is the

highest accuracy for which the least network complexity is achieved depends on the class

distribution.

40 80 120 160 200

40

60

80

100

A
c

Glass
Wine
Wdbc

a UCI repository databases

50 100 150 200 250

MNIST
COIL-20
Olivetti

b Image collections

Figure 5-2.: GSN accuracy calculated within a range of m values for each dataset. The

highlighted red dot ( ) denotes the m̃ obtained by the regularization criterion.

Table 5-1 summarizes the performance, regarding the estimated number of hidden neu-

rons m̃ and achieved classifier accuracy Ac, accomplished by the other compared learning

approaches. Note that we keep the same setup of the TSN testing reported in the literature.

Specifically, we consider a single-layered network and m=64 for UCI datasets, a single-

layered network and m=100 for COIL-20, and a three-layered network (m=[400, 200, 100])

for MNIST. Due to the label information is not employed, both semi-supervised classification

approaches produce the worst accuracy for all databases (besides TSN in Wine data) despite

they demand more complex architectures. As expected, the incorporation of label informa-

tion leads the analytical approaches to improve the reached GSN accuracy. However, the

classifier performance depends on the added number of neurons. Thus, while the theoretical

stability analysis demands a larger m̃ to reach a better accuracy, the linear dependency esti-

mation demands the lowest m̃ but yields the worst accuracy. Note that very high layer sizes



38 5 Results and Discussion

overtrain the network, yielding a performance dropping as it is the case for the theoretical

stability analysis approach in COIL-20. By contrast, the proposed JSR procedure outper-

forms above approaches attaining the highest accuracy at the smallest network complexity

with the benefit of avoiding the network overtraining and time-consuming exhaustive search.

Approach Layer size m Ac m Ac m Ac
UCI database Glass Wine Wdbc

[Li et al., 1995]
√

1 + 8P − 1)/2 4 36.8±4.7 4 97.5±2.1 7 95.7±0.7

[Ke and Liu, 2008] (P +
√
N/L) 11 52.6±1.9 13 98.4±0.9 26 95.9±1.3

[Shibata and Ikeda, 2009]
√
PC 7 49.2±4.4 6 98.4±1.3 7 95.7±0.7

[Chen, 2015] Empirically set 64 50.9 64 98.8 64 91.5

JSR Equation (3-6) 11 52.6±1.9 6 98.4±1.3 11 96.0±0.7

Image collection MNIST COIL-20 Olivetti

[Li et al., 1995]
√

1 + 8P − 1)/2 39 87.3±1.2 44 94.7±1.1 143 85.0±1.7

[Ke and Liu, 2008] (P +
√
N/L) 413 91.0±1.1 527 37.3±1.2 5160 –

[Shibata and Ikeda, 2009]
√
PC 88 89.8±1.0 143 96.2±0.7 641 95.0±2.6

[Chen, 2015] Empirically set 100 78.0 – 68.0 – –

[Wang et al., 2015] Convolutional Net – 69.22 – 89.91 – –

Exhaustive search – 372 91.0±1.1 93 96.2±0.7 596 95.0±2.6

JSR Equation (3-6) 41 88.4±0.9 50 96.1±1.7 45 83.2±6.2

Table 5-1.: Performed classification accuracy by each considered approach on the tested

databases. Boldface stands for the best result of each learning case. Blank fields

(–) correspond to not provided values or unfeasible calculations.

Discussion

In this work, we propose an approach to enhance General Stochastic Networks using super-

vised kernel-based learning for classification tasks. In this regard, we introduce an automatic

tuning criterion for the layer size, aiming at enhancing network configuration and perfor-

mance. From the obtained results upon datasets from machine learning repositories, some

important aspects of implementing are to be considered, which we comment in more detail

below.

The layer size setting is the first stage of GSN topology configuration under study. For

achieving the best trade-off between the network complexity and system performance, we

propose the L-curve regularization that is intended to provide the smallest number of rep-

resentative components. Also, we propose the eigenvalue extraction from the tensor kernel

matrix that relies upon the spectral decomposition of the joint input-output sample set,

maximally preserving the mutual information and making more discriminating the obtained

decomposition. Validation on the testing data shows that the introduced Joint Spectrum

Regularization (JSR) allows improving the network performance regarding classification ac-

curacy and network complexity as compared with other state-of-the-art architecture selection



5.2 Results of GSN pre-training 39

approaches. Another plus is that the proposed JSR has been developed as an automatic ar-

chitecture selection strategy, taking advantage of the free-parameter procedures for the used

regularization and kernel alignment.

Although JSR provides the best accuracy for the Glass collection, its value remains poor

as compared with other datasets. Two main reasons may account for this performance.

Firstly, the L-curve approach must be calculated for a large number of eigenvalues to find an

appropriate level of regularization, and this dataset holds the lowest number of samples per

class (just a few dozen). Secondly, some data points clearly yield different clusters having

low similarity within the same class, making unreliable the estimation of kernel bandwidth

that assumes just one homogeneous cluster per class. Hence, the median of data distances

increases the kernel bandwidth parameter in Equation (4-4a) and reduces the eigenvalues

obtained for the decomposition in Equation (3-4).

The above-mentioned aspects indicate that the proposed criterion sets a component trade-off

as an optimal boundary of architecture selection, in which the network has a stable behavior

and improve the classification accuracy. Besides, the hidden layer size m̃ attained by JSR,

prevents the hidden units from becoming unstable due to problems of under-over fitting.

5.2. Results of GSN pre-training

The purpose of this section is to investigate the influence on GSN classification accuracy

performed by the proposed CKA-based pre-training that is compared against other baseline

pre-training methods: Random Weights (Rand), PCA, and AutoEncoders (AE) [Vincent

et al., 2010]. During the performance evaluation, the above-examined selection strategies

are also reflected that determine the size of projection matrices to be computed: W 1∈RP×m̃,

W 2∈Rm̃×m̃, and W 3∈Rm̃×C , where m̃ is chosen from Table 5-1.

Figure 5-3 visually illustrates the influence produced by each pre-training approach on the

data projection, that is, the weights estimated for the first hidden layer. Thus, the first 40

neurons, ranked in descending order of their norm values, are compared for AutoEncoders

(top), PCA (middle), and CKA (bottom) for each image dataset. Evidently, while resulting

AE weights are highly scattered, PCA and CKA approaches identify dynamic structures

of the input distribution. Specifically, the computed PCA-based units tend to hold the

main variations so that the first PCA eigenvectors encode the turning table movement of

COIL-20 database (see Figure 5.3k) and the principal face shapes (also known as eigenfaces)

of Olivetti collection. By contrast, the CKA-based units present more discriminating

features. As shown in Figure 5.3l for Olivetti dataset, each neuron emphasizes the areas

that discriminate the most every face like eyes and mouth.

Further, we evaluate the pre-training influence on the learning speed by calculating the

number of training epochs that must be carried out until the algorithm converges to the

maximum accuracy value. As seen in Figure 5-4 that displays the network performance

reached within the range of 500 successive epochs, CKA performs the highest accuracy for



40 5 Results and Discussion

j MNIST k COIL-20 l Olivetti

Figure 5-3.: Visualization of the pre-training weights at the first layer for considered

databases. In each plot, all weights of the 40 largest hidden units are plot-

ted for AutoEncoders (top), PCA (middle), and CKA (bottom) approaches.

The gray values represent weight magnitudes.

all databases except in the case of Wdbc. Thus, our proposal increases the performance in

∼19.6% points for Glass. Note that the accuracy deviation achieved by CKA is much lower

almost in all cases. At the same time, the CKA learning speed is surely the fastest besides in

Wine and Wdbc data, for which all considered pre-training approaches converge quite rapidly.

Table 5-2 presents the GSN classification accuracy reached by each one of the evaluated

pre-training methods (i.e., PCA, AE, and CKA) where the best performance estimated

is denoted in bold for each database. For easier interpretation, the studied architecture

selection strategies are also ranked in ascending order of the estimated hidden layer size.

Thus, in the case of Wine, the architecture selection in Li [Li et al., 1995] provides the



5.2 Results of GSN pre-training 41

100 200 300 400 epochs

50

100

A
c

Rand

AE

CKA

a Glass

100 200 300 400 epochs

80

100

Rand

PCA

AE

CKA

b MNIST

100 200 300 400 epochs

95

100

A
c

Rand

PCA

AE

CKA

c Wine

100 200 300 400 epochs

50

100

Rand

PCA

AE

CKA

d COIL-20

100 200 300 400 epochs

95

100

A
c

Rand

PCA

AE

CKA

e Wdbc

100 200 300 400 epochs

50

100

Rand

PCA

AE

CKA

f Olivetti

Figure 5-4.: GSN average accuracy and standard deviation vs iterations for the four pre-

training approaches: Random, AutoEncoder, PCA-based projection, and

CKA-based projection. Glass (top), Wine (middle), and Wdbc (bottom)

datasets.

lowest network complexity while approaches in JSR and Shibata [Shibata and Ikeda, 2009]

perform the best accuracy. Nonetheless, the linear dependency estimation is not carried out

as architecture selection in the case of Glass dataset due to the computed hidden layer size



42 5 Results and Discussion

Method m̃
Pre-training Approach

PCA AE CKA

Wine

[Li et al., 1995] 4 97.6±1.3 97.6±1.6 99.0±0.7

[Shibata and Ikeda, 2009] 6 99.0±0.7 98.3±0.8 99.5±0.5

[Ke and Liu, 2008] 13 94.3±1.3 96.9±1.6 98.3±0.8

[Chen, 2015] 64 – 97.4±0.9 98.3±0.8

Glass

[Shibata and Ikeda, 2009] 7 35.1±1.8 35.8±3.4 41.3±4.9

JSR/[Ke and Liu, 2008] 11 – 37.8±3.5 71.4±4.3

[Chen, 2015] 64 – 40.0±1.9 65.0±6.7

Wdbc

[Shibata and Ikeda, 2009][Li et al., 1995] 7 95.5±1.5 94.5±1.6 96.5±0.2

JSR 11 96.9±1.1 95.5±1.6 97.1±0.4

[Ke and Liu, 2008] 26 96.7±0.6 96.1±1.0 97.7±0.8

[Chen, 2015] 64 – 96.3±1.8 97.2±1.2

MNIST

[Li et al., 1995] 39 86.1±0.4 83.9±2.2 88.1±0.4

JSR 41 87.6±0.4 85.2±2.0 89.9±0.4

[Shibata and Ikeda, 2009] 88 86.3±0.5 87.1±1.2 90.0±1.0

[Chen, 2015] 100 85.8±0.5 87.6±0.6 89.9±0.6

[Ke and Liu, 2008] 413 87.0±0.7 88.8±1.6 91.2±0.7

COIL-20

[Li et al., 1995] 44 89.0±2.3 88.9±2.3 95.8±2.8

JSR 50 95.7±0.2 89.4±3.5 97.7±0.3

[Chen, 2015] 100 95.1±0.3 87.3±4.1 97.4±0.7

[Shibata and Ikeda, 2009] 143 91.5±0.7 83.6±6.2 97.6±0.5

[Ke and Liu, 2008] 527 96.7±0.3 62.2±17.0 97.2±0.7

Olivetti

JSR 45 87.8±1.0 89.0±3.8 90.0±1.0

[Li et al., 1995] 143 87.6±3.9 81.0±2.7 88.0±5.3

[Shibata and Ikeda, 2009] 641 – 92.5±2.9 89.6±2.1

Average 84.2±1.02 83.0±2.90 90.1±1.57

Table 5-2.: GSN classification accuracy for layer size selection criteria and pre-training ap-

proaches. The marked blank fields (–) corresponds to infeasible calculations

where the layer dimension can not enable a pre-training matrix.

is smaller than the number of classes. Such cases are not contemplated for classification

tasks based on neural networks.

As seen in the bottom row of Table 5-2 that shows the mean value of performed accuracy

for all testing data, the AE approach performs the worst (83.0±2.9) though it can be employed

for all testing data. Then, PCA improves a little (84.2±1.02) may be limited by the lack

of label information in the matrix computations. However, PCA has the largest amount of

cases with unfeasible calculations (marked with blank fields –), meaning that the computed

hidden dimensions are bigger than the inputs so that PCA can not enable a pre-training



5.2 Results of GSN pre-training 43

matrix. Lastly, CKA clearly performs the best (90.1±1.57), enabling training in all cases

too. Moreover, CKA presents the most significant classification improvement on Glass,

increasing twice the accuracy as compared with another pre-training methods.

Noteworthy that all pre-training approaches, regardless of the tested database, reach their

best accuracy concurrently for the same architecture selection strategy, that is, the proposed

JSR approach. Therefore, the proposed CKA approach allows producing the best accuracy

for almost the smallest network complexity. Furthermore, some achieved layer sizes larger

than JSR leads to a small accuracy improvement (as in Wdbc and MNIST) or even decreases the

performance because of the emerged overfitting (see Wine, Glass, COIL-20, and Olivetti).

Discussion

The second stage of GSN topology configuration regards the layer-wise pre-training, for which

we propose to carry out using the Centered Kernel Alignment (CKA) in order to enhance

further the system classification accuracy as well as its learning speed. In this sense, the set

of projection matrices is computed to maximize the alignment between both, the label and

projected data, centered kernels. The projection matrices obtained shown that pre-trained

networks learn qualitatively different features (see Figure 5-3). However, supervised CKA-

based pre-training focuses attention on identifying localized features in a certain region of

weight space. For this reason, CKA-based projection detects more interesting structures

present in data highlighting the representation of discriminant features.

Later, we study the effect generated by the pre-training stage over optimization problem and

testing accuracy. Based on the results described in Figure 5-4, we conclude that the starting

point in the non-convex optimization problem is indeed quite important. In this sense, the

CKA-based matrices capture most of the complex dependencies between parameters, increase

the convergence speed in the learning stage, and enhance the class discrimination. Resulting

training curves prove that our proposal converges faster than the baseline approaches for a

given GSN architecture.

In addition, CKA improves classification accuracy of all the studied architecture selection

methods, attaining the best result at the JSR-based layer size. In the particular case of Glass

data, the combination of CKA and JSR significantly increases the achieved classification

accuracy (as much as twice) due to the following reasons: Firstly, the estimated layer-sizes

are larger than the number of classes and features, increasing the separability among data

points. Secondly, learning of the projection matrices within discriminative scheme forces

each coordinate of the hidden space to represent a different cluster of the dataset.

On the other hand, though the introduction of a pre-training stage speeds the walkback

training procedure, there is a need for an additional computing of the initial projection

matrices. In this sense, the iterative optimization adopted used by CKA makes the GSN pre-

training more expensive than the known cost for PCA. The observations in this experiment

confirm that starting the supervised optimization from pre-trained weights that use the data



44 5 Results and Discussion

distribution and prior knowledge regarding the studied process, e.g., supervised information,

achieves good performance in classification and object recognition tasks , provides a better

optimization, increases convergence speed and improve the network stability rather than

from randomly and unsupervised pre-training methods.



6. Summary

In this work, we propose an automated topology estimation of Generative Stochastic Net-

works (GSN) for classification tasks through the introduction of kernel theory in order to

improve the network performance and to increase the learning speed.

First, we analyze the influence of the network architecture selection procedure in the system

performance. To this, we introduce a tuning criterion named Joint-Spectrum Regulariza-

tion (JSR) to estimate automatically the GSN layer size built on the regularization of the

eigenvalues computed from the joint spectral decomposition of data. JSR creates a tensor

kernel to join the information of input and output samples into a single space and obtains

the least number of hidden units as a trade-off component between network performance

and architecture complexity. For the sake of comparison, our proposal is validated against

analytical architecture setup approaches in six widely use data sets of the UCI repository

databases and image-based collections. The evaluation and the learning process is the same

for all considered datasets using Walkback training and SGD for the optimization problem.

Obtained results show that the estimated m̃ provides a proper number of hidden neurons

in comparison with the baselines methods. Therefore, proposed approach is a suitable al-

ternative to support automatic parameter selection related to fixing the suitable number of

hidden neurons in a DNN, achieving enhance the classification accuracy while avoiding both

the over-fitting produced by a poor parameter selection and the costly heuristic exhaustive

searches.

On the other hand, since the GSN training is carried out using iterative algorithms, the

network accuracy and convergence speed, depend on the initial set of parameters due to

the non-convexity of the cost function. In this sense, we introduce supervised step-wise

pre-training stage, to learn projection matrices using the data distribution and prior in-

formation making use of the Center Kernel Alignment (CKA). To this end, we compute a

weight matrices set {W l} maximizing the alignment between both centered kernels, label

and projected data. Thus, the information encoded by each network layer is maximized.

The validation of the proposed approach is carried out for supervised learning tasks using

three pre-training strategies (AE, PCA, and CKA). From the obtained results we noted that

supervised CKA-based pre-training stage is an important procedure due to its ability to

capture main variations from the input data. Besides, CKA influences the system behav-

ior by tuning the starting point in the non-convex optimization problem and capturing the

dependencies between the parameters of the model. Thus, the proposed approach achieves

more discriminative representation spaces which improve the learning speed and the network



46 6 Summary

performance in terms of accuracy.

Finally, we combine the above-mentioned kernel-based methodologies to enhance the GSN

setup and examine the effect on system performance. According to hidden layer size, net-

works pre-trained tend to improve their performance in terms of classification although in

some cases the high complexity of architecture leads to network over-fitting reducing its ac-

curacy. So, set layer size using JSR together with CKA-based pre-training method proves to

be the best network topology. This configuration allows learning hidden representation more

discriminant due to highlights different localized features focus interest in areas that contains

the major data information, i.e, major variation. Therefore, the enhanced GSN outperforms

state-of-the-art strategies in terms of system accuracy and increases the convergence speed

of the fine tuning stage.



Part III.

Final remarks



7. Conclusions and future work

7.1. Conclusions

This work highlighted an automated topology estimation of Generative Stochastic Networks

for classification tasks through the introduction of kernel theory in the architecture selection

and pre-training stages. In this sense, two kernel strategies were proposed to learn auto-

matically relevant data relations that are then used to set the parameters in GSNs. The

introduced approaches naturally lead to data-dependent processing tuned to the particular

samples restrictions and to the considered learning scenario, focusing on supervised tasks.

Besides, the introduced kernel-based enhancement framework is tested in some classifica-

tion and object recognition tasks related to data processing and image analysis applications.

Overall, attained results demonstrated that proposed approaches allow summarizing and

capturing the main input patterns, favoring the learning performance, increasing the con-

vergence speed in comparison to state-of-the-art methods. Following, the main concluding

remarks regarding each provided representation strategy are described:

• An automatic architecture selection criterion based on kernel functions that allows

to quantify the optimal layer size holding the most mutual information shared by the

input and output spaces was presented. The considered joint spectral decomposition of

the data tensor kernel allows gathering both, input and output samples, into a single

space, and the L-curve regularization reduces the number of hidden units required

for discriminating the classes. The proposed Joint Spectrum Regularization criterion

is tested as hidden layer size selection strategy to support classification and object

recognition tasks. Attained results at this stage prove that our proposal provides the

best trade-off between network complexity and system performance, in comparison

with analytical architecture setup approaches, with the additional benefit of avoiding

the costly heuristic exhaustive searches.



7.2 Future work 49

• Aiming to cope with the non-convex cost function, we capture the complex label de-

pendencies at each layer using supervised step-wise pre-training stage that maximizes

the centered kernel alignment between sample and label kernels. Our approach, learns

a discriminative projection matrix based on a CKA-based function that encode the dis-

criminative information to get a suitable hidden representation. Thereby, CKA-based

pre-training builds a set of projected features that match the best all provided target

classes from each hidden state. The introduced pre-training method was tested on clas-

sification and object recognition based on image analysis. As a result, linear projection

matrices better matching samples with their corresponding class improve the learning

speed of the fine tuning and reduce the classification errors for high-dimensional pattern

recognition problems.

• An enhanced General Stochastic Network was developed to support supervised learn-

ing tasks. Regarding this, the proposed framework considers the two kernel-based

strategies above mentioned (JSR and CKA-based pre-training approach). Our pro-

posal highlights the properties of joint information by the samples and labels to find

a suitable layer dimension preserving the maximal information. Then, we use the re-

sulting layer size to learn the projection matrix computed by the CKA-based function

that initializes the weight matrices in a GSN. As a result, an enhance network able to

capture a lot of information from input data distribution and encode discriminant pat-

terns is built. According to our experiments, the proposed supervised kernel approach

for automated learning outperforms, in most of the cases, state-of-the-art strategies in

terms of system accuracy and learning speed.

7.2. Future work

We have illustrated a kernel-based representation framework aiming to enhance General

Stochastic Networks setup in supervised machine learning tasks. However, from the attained

theoretical and experimental results, there are still many issues that can be led to improve the

network performance in terms of system accuracy. In particular, the following considerations

could be of interest for future work approaches:

• We plan to improve the proposed layer size estimation using more complex kernel

functions, like multiple kernel ensemble and multi-dimensional Gaussian, to build the

spectral representation, aiming to accurately capture all point similarities within the

same class. Furthermore, JSR can be tested especially as a relevant data representation

approach to support dimensionality reduction. Besides, the proposed criterion can be

used as a tool of feature ranking to support feature selection algorithms.

• Two important remarks for further research is related to evaluated the quality of CKA-

based pre-training method. Firstly, we will extend the pre-training scheme to various



50 7 Conclusions and future work

supervised tasks (like regression and forecasting) by adapting the target kernel function

to the output relations. Secondly, the proposed supervised pre-training methodology

can be used to learn initial projection matrices in others DNN as RBMs and SAE.

• An interesting line of future work involves the evaluation of the introduced GSN by

employing a loss function based on information measures, e.g., cross-entropy. Besides,

we will introduce kernel-based cost functions, as the centered kernel alignment, into

the fine tuning stage for improving the network performance. Furthermore, it would be

interesting to investigate the possibility of employing others non-convex multi-objective

optimization strategies.



8. Appendix

8.1. Gradient descend-based optimization of CKA

approach

The explicit objective function of the empirical CKA in Equation (3-10) yields [Brockmeier

et al., 2014]:

ρ
(
K l,Ky

)
= log

(
tr
(
K l(W l)HKyH

))
− 1

2
log
(
tr
(
K l(W l)HK l(W l)H

))
+ρ0, (8-1)

where ρ0∈R is a constant that we assume independent on W l. Consequently, a gradient

descent algorithm iteratively solves the optimization at hand, for the gradient of the objective

function in Equation (8-1) results in the form:

∇W l

(
ρ
(
K l,Ky

))
= −4

(
W l
)> ((

G ◦K l(W l)
)
−diag

(
1>
(
G ◦K l(W l)

)))
W l, (8-2)

where notations diag(·) and ◦ denote the diagonal operator and the Hadamard product,

respectively. G∈RN×N is the gradient of the objective function with respect to K l, calculated

as follows:

G = ∇Kl

(
ρ
(
K l,Ky

))
=

HKyH

tr (K lHKyH)
− HK lH

tr (K lHK lH)
. (8-3)

Then, the updating rule for estimating W l, provided the initial guess W l
o, becomes:

W l
t+1 = W l

t − µt∇W l
t

(
ρ
(
K l,Ky

))
, (8-4)

where µt∈R+ is the step size of the learning rule at optimization epoch t.



Bibliography

[Alain and Bengio, 2014] Alain, G. and Bengio, Y. (2014). What regularized auto-encoders learn

from the data-generating distribution. The Journal of Machine Learning Research, 15(1):3563–

3593. (Cited on page 10)

[Alain et al., 2015] Alain, G., Bengio, Y., Yao, L., Yosinski, J., Thibodeau-Laufer, E., Zhang, S.,

and Vincent, P. (2015). Gsns: Generative stochastic networks. arXiv preprint arXiv:1503.05571.

(Cited on pages 4 and 26)

[Bengio, 2009] Bengio, Y. (2009). Learning deep architectures for ai. Foundations and trends R© in

Machine Learning, 2(1):1–127. (Cited on page 10)

[Bengio, 2012] Bengio, Y. (2012). Practical recommendations for gradient-based training of deep

architectures. In Neural Networks: Tricks of the Trade, pages 437–478. Springer. (Cited on

pages 6 and 29)

[Bengio et al., 2013a] Bengio, Y., Courville, A., and Vincent, P. (2013a). Representation learning:

A review and new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 35(8):1798–1828. (Cited on page 10)

[Bengio et al., 2007] Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al. (2007). Greedy

layer-wise training of deep networks. Advances in neural information processing systems, 19:153.

(Cited on pages 3, 6, and 7)

[Bengio et al., 2013b] Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. (2013b). Deep

generative stochastic networks trainable by backprop. arXiv preprint arXiv:1306.1091. (Cited

on page 10)

[Bengio et al., 2013c] Bengio, Y., Yao, L., Alain, G., and Vincent, P. (2013c). Generalized denoising

auto-encoders as generative models. In Advances in Neural Information Processing Systems,

pages 899–907. (Cited on pages 3, 4, and 10)

[Bottou, 2010] Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT’2010, pages 177–186. Springer. (Cited on page 34)

[Brockmeier et al., 2014] Brockmeier, A., Choi, J., Kriminger, E., Francis, J., and Principe, J.

(2014). Neural decoding with kernel-based metric learning. Neural Computation, 26:–. (Cited

on pages 30 and 51)

[Cardenas-Pena et al., 2014] Cardenas-Pena, D., Orbes-Arteaga, M., Castro-Ospina, A., Alvarez-

Meza, A., and Castellanos-Dominguez, G. (2014). A kernel-based representation to support 3d



Bibliography 53

mri unsupervised clustering. In Pattern Recognition (ICPR), 2014 22nd International Conference

on, pages 3203–3208. IEEE. (Cited on page 2)

[Chen, 2015] Chen, G. (2015). Deep transductive semi-supervised maximum margin clustering.

arXiv preprint arXiv:1501.06237. (Cited on pages 37, 38, and 42)

[Chen and Lu, 2013] Chen, L.-Y. and Lu, C.-J. (2013). An improved independent component

analysis algorithm based on artificial immune system. International Journal of Machine Learning

and Computing, 3(1):93–97. (Cited on page 7)

[Collazos-Huertas et al., 2015] Collazos-Huertas, D., Álvarez-Meza, A., Gaviria-Gómez, N., and

Castellanos-Dominguez, G. (2015). Kernel-based feature relevance analysis for ecg beat classifi-

cation. In Pattern Recognition and Image Analysis, pages 291–299. Springer. (Cited on page 2)

[da Silva et al., 2016] da Silva, A. J., Ludermir, T. B., and de Oliveira, W. R. (2016). Quantum

perceptron over a field and neural network architecture selection in a quantum computer. Neural

Networks, 76:55–64. (Cited on page 5)

[Dahl et al., 2013] Dahl, G. E., Sainath, T. N., and Hinton, G. E. (2013). Improving deep neural

networks for lvcsr using rectified linear units and dropout. In Acoustics, Speech and Signal

Processing (ICASSP), 2013 IEEE International Conference on, pages 8609–8613. IEEE. (Cited

on page 5)

[Doukim et al., 2010] Doukim, C. A., Dargham, J. A., and Chekima, A. (2010). Finding the

number of hidden neurons for an mlp neural network using coarse to fine search technique. In

Information Sciences Signal Processing and their Applications (ISSPA), 2010 10th International

Conference on, pages 606–609. IEEE. (Cited on page 5)

[Erhan et al., 2010] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio,

S. (2010). Why does unsupervised pre-training help deep learning? The Journal of Machine

Learning Research, 11:625–660. (Cited on pages 6 and 28)

[Erhan et al., 2009] Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., and Vincent, P. (2009).

The difficulty of training deep architectures and the effect of unsupervised pre-training. In

International Conference on artificial intelligence and statistics, pages 153–160. (Cited on page 6)

[Evett and Spiehler, 1987] Evett, I. W. and Spiehler, E. (1987). Rule induction in forensic science.

KBS in Goverment, Online Publications, pages 107–118. (Cited on page 32)

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of train-

ing deep feedforward neural networks. In International conference on artificial intelligence and

statistics, pages 249–256. (Cited on page 6)

[Hansen et al., 2007] Hansen, P. C., Jensen, T. K., and Rodriguez, G. (2007). An adaptive pruning

algorithm for the discrete l-curve criterion. Journal of computational and applied mathematics,

198(2):483–492. (Cited on page 28)



54 Bibliography

[Hinton et al., 2006] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm

for deep belief nets. Neural computation, 18(7):1527–1554. (Cited on pages 3, 4, 6, and 19)

[Hinton et al., 2012] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdi-

nov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors.

arXiv preprint arXiv:1207.0580. (Cited on page 5)

[Hunter et al., 2012] Hunter, D., Yu, H., Pukish III, M. S., Kolbusz, J., and Wilamowski, B. M.

(2012). Selection of proper neural network sizes and architectures—a comparative study. Indus-

trial Informatics, IEEE Transactions on, 8(2):228–240. (Cited on page 5)

[Jiang et al., 2008] Jiang, N., Zhang, Z., Ma, X., and Wang, J. (2008). The lower bound on the

number of hidden neurons in multi-valued multi-threshold neural networks. In Intelligent Infor-

mation Technology Application, 2008. IITA’08. Second International Symposium on, volume 1,

pages 103–107. IEEE. (Cited on page 6)

[Ke and Liu, 2008] Ke, J. and Liu, X. (2008). Empirical analysis of optimal hidden neurons in

neural network modeling for stock prediction. In Computational Intelligence and Industrial Ap-

plication, 2008. PACIIA’08. Pacific-Asia Workshop on, volume 2, pages 828–832. IEEE. (Cited

on pages 5, 6, 36, 38, and 42)

[Kreyszig, 1989] Kreyszig, E. (1989). Introductory functional analysis with applications, volume 81.

wiley New York. (Cited on pages 10 and 11)

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classi-

fication with deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105. (Cited on page 3)

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,

521(7553):436–444. (Cited on page 2)

[LeCun et al., 1995] LeCun, Y., Jackel, L., Bottou, L., Cortes, C., Denker, J. S., Drucker, H.,

Guyon, I., Muller, U., Sackinger, E., Simard, P., et al. (1995). Learning algorithms for classifica-

tion: A comparison on handwritten digit recognition. Neural networks: the statistical mechanics

perspective, 261:276. (Cited on page 33)

[Li et al., 1995] Li, J.-Y., Chow, T. W., and Yu, Y.-L. (1995). The estimation theory and optimiza-

tion algorithm for the number of hidden units in the higher-order feedforward neural network.

In Neural Networks, 1995. Proceedings., IEEE International Conference on, volume 3, pages

1229–1233. IEEE. (Cited on pages 36, 38, 40, and 42)

[Lichman, 2013] Lichman, M. (2013). UCI machine learning repository. (Cited on page 32)

[Martens, 2010] Martens, J. (2010). Deep learning via hessian-free optimization. In Proceedings of

the 27th International Conference on Machine Learning (ICML-10), pages 735–742. (Cited on

page 6)



Bibliography 55

[Mohamed et al., 2011] Mohamed, A.-r., Sainath, T. N., Dahl, G., Ramabhadran, B., Hinton,

G. E., Picheny, M., et al. (2011). Deep belief networks using discriminative features for phone

recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International

Conference on, pages 5060–5063. IEEE. (Cited on pages 7 and 29)

[Mohri et al., 2012] Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of ma-

chine learning. MIT press. (Cited on page 2)

[Molina-Giraldo et al., 2015] Molina-Giraldo, S., Carvajal-González, J., Álvarez-Meza, A., and

Castellanos-Domı́nguez, G. (2015). Video segmentation framework based on multi-kernel repre-

sentations and feature relevance analysis for object classification. In Pattern Recognition Appli-

cations and Methods, pages 273–283. Springer. (Cited on page 2)

[Nene et al., 1996] Nene, S. A., Nayar, S. K., Murase, H., et al. (1996). Columbia object image

library (coil-20). Technical report. (Cited on page 33)

[Ngiam et al., 2011] Ngiam, J., Chen, Z., Bhaskar, S. A., Koh, P. W., and Ng, A. Y. (2011). Sparse

filtering. In Advances in Neural Information Processing Systems, pages 1125–1133. (Cited on

page 3)

[Orbes-Arteaga et al., 2015] Orbes-Arteaga, M., Cárdenas-Peña, D., Álvarez, M. A., Orozco, A. A.,

and Castellanos-Dominguez, G. (2015). Kernel centered alignment supervised metric for multi-

atlas segmentation. In Image Analysis and Processing—ICIAP 2015, pages 658–667. Springer

International Publishing. (Cited on page 2)

[Panchal et al., 2011] Panchal, G., Ganatra, A., Kosta, Y., and Panchal, D. (2011). Behaviour

analysis of multilayer perceptrons with multiple hidden neurons and hidden layers. International

Journal of Computer Theory and Engineering, 3(2):332–337. (Cited on page 4)

[Parzen, 1959] Parzen, E. (1959). Statistical inference on time series by Hilbert space methods.

Stanford Univ. (Cited on pages 10 and 13)

[Rani B et al., 2012] Rani B, S. et al. (2012). Role of hidden neurons in an elman recurrent neural

network in classification of cavitation signals. International Journal of Computer Applications,

37(7):9–13. (Cited on page 5)

[Ranzato et al., 2007] Ranzato, M. A., Poultney, C., Chopra, S., and LeCun, Y. (2007). Efficient

learning of sparse representations with an energy-based model. In Proceedings of NIPS. (Cited

on page 29)

[Samaria and Harter, 1994] Samaria, F. S. and Harter, A. C. (1994). Parameterisation of a stochas-

tic model for human face identification. In Applications of Computer Vision, 1994., Proceedings

of the Second IEEE Workshop on, pages 138–142. IEEE. (Cited on page 33)

[Schmidhuber, 2015] Schmidhuber, J. (2015). Deep learning in neural networks: An overview.

Neural Networks, 61:85–117. (Cited on page 3)



56 Bibliography

[Scholkopf and Smola, 2001] Scholkopf, B. and Smola, A. J. (2001). Learning with kernels: support

vector machines, regularization, optimization, and beyond. MIT press. (Cited on pages 10 and 14)

[Schulz et al., 2015] Schulz, H., Cho, K., Raiko, T., and Behnke, S. (2015). Two-layer contractive

encodings for learning stable nonlinear features. Neural Networks, 64:4–11. (Cited on page 7)

[Seide et al., 2011] Seide, F., Li, G., and Yu, D. (2011). Conversational speech transcription using

context-dependent deep neural networks. In Interspeech, pages 437–440. (Cited on page 3)

[Sheela and Deepa, 2013] Sheela, K. G. and Deepa, S. (2013). Review on methods to fix number

of hidden neurons in neural networks. Mathematical Problems in Engineering, 2013. (Cited on

page 5)

[Shibata and Ikeda, 2009] Shibata, K. and Ikeda, Y. (2009). Effect of number of hidden neurons on

learning in large-scale layered neural networks. In ICCAS-SICE, 2009, pages 5008–5013. IEEE.

(Cited on pages 6, 36, 38, 41, and 42)

[Stathakis, 2009] Stathakis, D. (2009). How many hidden layers and nodes? International Journal

of Remote Sensing, 30(8):2133–2147. (Cited on page 6)

[Street et al., 1993] Street, W. N., Wolberg, W. H., and Mangasarian, O. L. (1993). Nuclear feature

extraction for breast tumor diagnosis. In Acharya, R. S. and Goldgof, D. B., editors, Biomedical

Image Processing and Biomedical Visualization. SPIE-Intl Soc Optical Eng. (Cited on page 33)

[Sun, 2012] Sun, J. (2012). Learning algorithm and hidden node selection scheme for local coupled

feedforward neural network classifier. Neurocomputing, 79:158–163. (Cited on pages 5 and 27)

[Sutskever et al., 2013] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the impor-

tance of initialization and momentum in deep learning. In Proceedings of the 30th international

conference on machine learning (ICML-13), pages 1139–1147. (Cited on page 6)

[Trenn, 2008] Trenn, S. (2008). Multilayer perceptrons: approximation order and necessary number

of hidden units. Neural Networks, IEEE Transactions on, 19(5):836–844. (Cited on page 5)

[Vincent et al., 2008] Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Ex-

tracting and composing robust features with denoising autoencoders. In Proceedings of the 25th

international conference on Machine learning, pages 1096–1103. ACM. (Cited on pages 3, 6,

and 10)

[Vincent et al., 2010] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A.

(2010). Stacked denoising autoencoders: Learning useful representations in a deep network with

a local denoising criterion. The Journal of Machine Learning Research, 11:3371–3408. (Cited on

pages 29 and 39)

[Wang et al., 2015] Wang, Z., Chang, S., Zhou, J., and Huang, T. S. (2015). Learning a task-

specific deep architecture for clustering. arXiv preprint arXiv:1509.00151. (Cited on pages 37

and 38)



Bibliography 57

[Weston et al., 2012] Weston, J., Ratle, F., Mobahi, H., and Collobert, R. (2012). Deep learning via

semi-supervised embedding. In Neural Networks: Tricks of the Trade, pages 639–655. Springer.

(Cited on pages 7 and 29)

[Yuan et al., 2003] Yuan, H., Xiong, F., and Huai, X. (2003). A method for estimating the number

of hidden neurons in feed-forward neural networks based on information entropy. Computers and

Electronics in Agriculture, 40(1):57–64. (Cited on page 5)

[Zöhrer and Pernkopf, 2014] Zöhrer, M. and Pernkopf, F. (2014). General stochastic networks for

classification. In Advances in Neural Information Processing Systems, pages 2015–2023. (Cited

on pages 4, 10, 25, and 34)


	Acknowledgements
	Abstract
	Resumen
	List of Acronyms
	List of Figures
	List of Tables
	Preliminaries
	Introduction
	Motivation
	Problem statement
	Literature review
	Objectives
	General objective
	Specific objectives

	Contributions of this work

	Mathematical preliminaries
	Reproducing Kernel Hilbert Spaces in Machine Learning
	Reproducing kernel Hilbert spaces
	The covariance function
	Reproducing kernel Hilbert spaces in machine learning

	Artificial Neural Networks theory
	Multi-Layer Neural Networks
	Auto-Encoders

	Generalizing Denoising Auto-Encoders as Generative Models
	Definition and training
	Sampling
	Walkback Training
	Generalizing the denoising autoencoder to GSNs
	General Stochastic Networks for Unsupervised Learning
	General Stochastic Networks for Supervised Learning



	Materials and Methods
	Supervised Kernel Approach for Automated Learning using General Stochastic Networks
	General stochastic networks for supervised learning
	GSN architecture selection
	Motivation
	Selecting the hidden layer size using kernel functions

	GSN pre-training stage based on center kernel alignment
	Motivation
	Pre-training stage using kernel functions


	Experimental set-up
	Testing databases
	Setting of GSN training parameters

	Results and Discussion
	Results of GSN layer-size optimization
	Results of GSN pre-training

	Summary

	Final remarks
	Conclusions and future work
	Conclusions
	Future work

	Appendix
	Gradient descend-based optimization of CKA approach



