

Análisis Dosimétrico y Radiobiológico para el Aseguramiento de la Calidad en los Tratamientos de Radioterapia para Cáncer de Cabeza y Cuello con IMRT, SIB-IMRT, rapidArc y SIB-rapidArc

M.Sc. Jaime Enrique Castro Rendón

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Física Bogotá, Colombia 2015

Análisis Dosimétrico y Radiobiológico para el Aseguramiento de la Calidad en los Tratamientos de Radioterapia para Cáncer de Cabeza y Cuello con IMRT, SIB-IMRT, rapidArc y SIB-rapidArc

Jaime Enrique Castro Rendón M.Sc.

Trabajo Final de Maestría presentado como requisito para optar al título de: MAGISTER EN FÍSICA MÉDICA

> Director(a): María Cristina Plazas Ph.D. P.D.

Línea de Investigación: Física Médica en Radioterapia Grupo de Investigación: Física Médica

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Física Bogotá, Colombia 2015

A Dios, porque es mi camino.

A Naydu, mi Mamá y mi Papá, quienes por su sacrificio de tiempo, paciencia y esfuerzo hoy estoy aquí.

Agradecimientos

Siempre agradecido con Dios, le ofrezco este Trabajo Final de Maestría.

A Naydu, mi familia, amigos, por su paciencia y continuo ánimo.

A mis Profesores, que con cada grano de conocimiento y sabiduria han contribuido en mi formación como Físico Médico. En especial a mi Profesora María Cristina Plazas por su generosidad y acompañamiento.

Por la ayuda y oportunidades ofrecidas de manera desinteresada, estoy muy agradecido del Hospital Universitario Fundación Santa Fe de Bogotá, en donde he encontrado amigos y amigas. Todos unidos por una causa: curar el cáncer con amor.

Resumen

En el campo de la radioterapia se cuenta con varias alternativas de técnicas de tratamiento para el cáncer con radiaciones ionizantes. Entre las más avanzadas en la actualidad, están las técnicas en que la fluencia del haz es modulada por medio del movimiento de las multiláminas de un acelerador lineal como en el caso de las técnicas IMRT y VMAT (RapidArc). Las planeaciones de radioterapia para casos de cáncer de cabeza y cuello presentan gran complejidad dado que el tejido a irradiar es casi la totalidad de cuello y gran parte de la cabeza. De este modo, la dificultad radica en presentar una planeación dosimétrica óptima que evite al mismo tiempo las altas dosis en los órganos críticos adyacentes.

Para determinar cual técnica es la mejor opción para el tratamiento de radioterapia del cáncer de cabeza y cuello se diseño una herramienta software en C++ que permite calcular índices dosimétricos, radiobiológicos y índices γ adaptados para este fin. En este trabajo final de maestría se muestra un análisis que resalta las similitudes, diferencias, ventajas y desventajas entre las técnicas de planes de tratamiento empleando tanto dosis escalada como dosis con el refuerzo integrado. Se encontró que desde el punto de vista dosimétrico las técnicas con dosis escalada son mejores, mientras que desde el radiobiológico resultaron ser las técnicas con el refuerzo integrado. Finalmente las técnicas con arcos dinámicos son mejores desde el punto de vista de los índices γ adaptados para este análisis.

Palabras clave: (Radioterapia, IMRT, VMAT, Cáncer de cabeza y cuello, Índices dosimétricos, Índices radiobiológicos, DVH, Función gamma, Aseguramiento de la calidad).

Abstract

The Radiotherapy has many techniques for cancer treatment with ionizing radiation. today among the more advanced, are the techniques where the beam fluence is modulated due the multileaf motion of a clinic linear accelerator as the case of Intensity Modulated Radiation Therapy (IMRT) and VMAT (RapidArc). The dosimetric treatment plans for Head and Neck Cancer is highly complex since the tissue to give radiation is almost the entire neck and head largely, thereby, the problem is to present an optimal dosimetric plan and at the same time it avoids the high dose in the adjacent critical organs. To determine which technique is the best choice for the treatment of radiotherapy for head and neck cancer an C++software tool was designed to calculate dosimetric, radiobiological and γ adapted indices for this purpose. In this final master work is shown an analysis that highlights the similarities, differences, advantages and disadvantages between the techniques of radiotherapy treatment plans using both dose escalation and integrated booster dose. It was found that from the point of dosimetric view the techniques with escalating doses are better, while from the radiobiological point of view proved techniques with simultaneous integrated boost. Finally techniques with dynamic arcs are better from the point of view of the indices γ adapted for this analysis.

Keywords: (Radiotherapy, IMRT, VMAT, Head and neck cancer, Dosimetric index, Radiobiology index, DVH, Gamma function, Quality assurance)

Contenido

	Agra	adecimientos	VII
	Resu	umen	іх
	Lista	a de símbolos	xv
1.	Intro	oducción	1
	1.1.	Marco Teórico	2
		1.1.1. Aseguramiento de la Calidad	2
		1.1.2. Cáncer de cabeza y cuello	2
		1.1.3. Definición de estructuras objetivo	3
		1.1.4. Tratamiento de cáncer con IMRT y VMAT	3
	1.2.	Estado del arte	4
	1.3.	Motivación	5
	1.4.	Objetivo General	5
		1.4.1. Objetivos específicos	5
2.	Gen	eración de planes de tratamiento y proceso para anonimizar los datos	6
	2.1.	Introducción	6
	2.2.	Metodología	7
		2.2.1. Materiales	7
		2.2.2. Proceso para anonimizar	8
	2.3.	Resultados y Discusión	11
		2.3.1. Distribución tridimensional de dosis	11
		2.3.2. Plan de tratamiento	12
		2.3.3. Conjunto de estructuras	13
3.	Cálc	culo y análisis comparativo de los índices dosimétricos y radiobiológicos	16
	3.1.	Introducción	16
		3.1.1. Histograma dosis volumen	17
		3.1.2. Índices dosimétricos	17
		3.1.3. Índices radiobiológicos	18
		-	

	3.2.	Metod	lología	21
		3.2.1.	Materiales	21
		3.2.2.	Parámetros dosimétricos de evaluación para las planeaciones dosimétri-	
			cas	21
		3.2.3.	Parámetros radiobiológicos de evaluación para las planeaciones do-	
			simétricas	22
	3.3.	Result	ados y Discusión	22
		3.3.1.	Dosis de prescripción	22
		3.3.2.	Dosis máxima	25
		333	Índices de homogeneidad HI	26
		334	Índices de homogeneidad actualizado HIa	$\frac{-\circ}{28}$
		335	Índices de conformación <i>CL</i>	33
		336	Dosis Uniforme equivalente	35
		$\begin{array}{c} 0.5.0.\\ 3.3.7\end{array}$	Dosis Uniformo equivalente generalizada	$\frac{35}{37}$
	34	Diseue	vión do regultados	37 44
	0.4.	2 4 1	De acuerdo a las ventaises y desventaises	44
		$\begin{array}{c} 0.4.1.\\ 04.0\end{array}$	De acuerdo a las ventajas y desventajas	44
		3.4.2.	De acuerdo a las similitudes y diferencias	40
4	Δná	lisis co	mparativo de las distribuciones de dosis tridimensionales	46
	A 1 Introducción			
	1.1.	4 1 1	Marco teórico	47
		412	Planteamiento del problema	50
	19	Metod		50
	4.2.	1 9 1	Construcción de la imagen de decis ideal	50 50
		4.2.1.	Construcción de la dogia acumulada en planoación escalada	50
		4.2.2.	Evaluación de la función Camma	52 52
	4.9	4.2.3. Damal4		00 50
	4.3.	Result		03 50
		4.3.1.		53
		4.9.9		50
		4.3.2.	Dosis total en planeación escalada	53
		4.3.2. 4.3.3.	Dosis total en planeación escalada	53 55
		4.3.2.4.3.3.4.3.4.	Dosis total en planeación escalada	53 55
		4.3.2. 4.3.3. 4.3.4.	Dosis total en planeación escalada	53 55 57
		4.3.2.4.3.3.4.3.4.4.3.5.	Dosis total en planeación escalada	53 55 57
		 4.3.2. 4.3.3. 4.3.4. 4.3.5. 	Dosis total en planeación escalada	53 55 57 58
		 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6. 	Imagen de dosis ideal por sujeto $\dots \dots \dots$	53 55 57 58
		 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6. 	Imagen de dosis ideal por sujetoDosis total en planeación escaladaComparación tridimensional de distribuciones de dosis con evaluación γ Comparación tridimensional de distribuciones de dosis con evaluación δ_D Comparación tridimensional de distribuciones de dosis con evaluación DTA Comparación tridimensional de distribuciones de dosis con evaluación DTA $Omparación tridimensional de distribuciones de dosis con evaluaciónDTAOmparación tridimensional de distribuciones de dosis con evaluaciónDTAOmparación tridimensional de distribuciones de dosis con evaluación\gamma_{\theta}\cdots$	 53 53 55 57 58 60 60
	4.4.	 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6. Conclusion 	$\begin{array}{c} \text{Dosis total en planeación escalada} \\ \text{Dosis total en planeación escalada} \\ \text{Comparación tridimensional de distribuciones de dosis con evaluación} \\ \gamma \\ \text{Comparación tridimensional de distribuciones de dosis con evaluación} \\ \delta_D \\ \dots \\ $	 53 53 55 57 58 60 65
	4.4.	 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6. Conclution 4.4.1. 	Dosis total en planeación escalada	 53 53 55 57 58 60 65 65

Contenido

5.	Disc	usión y conclusiones	6
	5.1.	Planeaciones dosimétricas	6
	5.2.	Cálculo de índices dosimétricos y radiobiológicos	6
	5.3.	Cálculo y comparación de los índices γ para las distribuciones de dosis tridi-	
		mensionales	6
	5.4.	Análisis comparativo	6
		5.4.1. Valores de dosis	6
		5.4.2. Índices dosimétricos	6
		5.4.3. Índices radiobiológicos	6
		5.4.4. Índices γ adaptados	6
Α.	Plan	ues de Tratamiento	7
	A.1.	Caso 1	7
	A.2.	Caso 2	7.
	A.3.	Caso 3	.7
	A 4	Caso 4	8
	A.5.	Caso 5	8
	A.6.	Caso 6	8
	A.7.	Caso 7	8
	A.8.	Caso 8	9
	A.9.	Case 9	9
	A.10).Caso 10	9
Β.	Dist	ribuciones de dosis	10
	B.1.	Caso 1	10
	B.2.	Caso 2	10
	B.3.	Caso 3	10
	B.4.	Caso 4	10
	B.5.	Caso 5	10
	B.6.	Caso 6	11
	B.7.	Caso 7	11
	B.8.	Caso 8	11
	B.9.	Caso 9	11
	B.10	$Caso 10 \ldots $	11
C.	Dist	ribuciones de dosis ideal	12
	C.1.	Caso 1	12
	C.2.	Caso 2	12
	C.3.	Caso 3	12
	C.4.	Caso 4	12
	C.5.	Caso 5	12

	C.6. Caso 6	. 127
	C.7. Caso 7	. 128
	C.8. Caso 8	. 129
	C.9. Caso 9	. 130
	C.10.Caso 10	. 131
D.	Histogramas dosis volumen	132
	D.1. Caso 1	. 132
	D.2. Caso 2	. 133
	D.3. Caso 3	. 134
	D.4. Caso 4	. 135
	D.5. Caso 5	. 136
	D.6. Caso 6	. 137
	D.7. Caso 7	. 138
	D.8. Caso 8	. 139
	D.9. Caso 9	. 140
	D.10.Caso 10	. 141
Ε.	Dosis y volúmenes de interés	142
F.	Índices Dosimétricos y radiobiológicos	154
G.	Análisis de distribución de dosis	166
	Bibliografía	172

Lista de símbolos

A continuación se presenta los símbolos y abreviaturas que empleados en este Trabajo Final de Maestría en Física Médica.

Símbolo	Término	Unidad SI	Definición
CI	Índice de conformación	1	sección 3.1.2
d	Dosis por fracción del tratamiento	Gy	sección 3.1.3
D	Dosis total del tratamiento	Gy	sección 3.1.3
Ď	Función de tasa de dosis	$\frac{Gy}{min}$	sección 3.1.3
D_2	Dosis absorbida que cubre el 2% del PTV	Gy	sección $3.1.2$
D_{98}	Dosis absorbida que cubre el 98 $\%$ del PTV	Gy	sección $3.1.2$
D_i	i-ésimo elemento de dosis absorbida	Gy	sección 3.1.1
$D_{\rm máx}$	Dosis máxima del PTV	Gy	sección 3.1.2
D_p	Dosis de prescrita para el PTV	Gy	sección $3.1.2$
E	Efecto biológico	1	sección 3.1.3
HI	Índice de homogeneidad	1	ecuación 3-4
n	Número de fracciones del tratamiento	1	sección 3.1.3
S	Fracción de supervivencia celular	1	sección 3.1.3
T	Tiempo total del tratamiento	días	sección 3.1.3
T_d	Tiempo de duplicación tumoral	días	sección 3.1.3
T_f	Tiempo en que se entrega la fracción de dosis	horas	sección 3.1.3
T_i	Tiempo entre las fracciones	horas	sección 3.1.3
T_k	Tiempo inicial de la proliferación acelerada	días	sección 3.1.3
G	Factor de protracción de dosis	días	sección 3.1.3

Símbolos con letras latinas

Símbolo	Término	Unidad SI	Definición
V_T	Volumen del blanco	m^3	sección 3.1.2
v_i	i-ésimo elemento de volumen	m^3	sección 3.1.1
V	Volúmen de la estructura	m^3	$\int \int \int dx dy dz$
VRI	Volumen de isodosis mínimo que cubre al PTV	m^3	sección 3.1.2

Símbolos con letras griegas

Símbolo	Término	Unidad SI	Definición
α	Contribución debida a daño letal en el modelo LQ	$\frac{1}{\text{Gy}}$	sección 3.1.3
β	Contribución debida a daño subletal en el modelo ${\rm LQ}$	$\frac{1}{\mathrm{Gy}^2}$	sección 3.1.3
γ	Tasa de repoblación celular tumoral efectiva	1	ecuación 3-7
μ	Tasa de reparación de las células tumorales		

Abreviaturas

Abreviatura	Término en inglés
AAA	Analytical Anisotropic Algorithm.
aDVH	Acumulative Dose Volume Histogram.
AAPM	The American Association of Physicists in Medicine.
BED	Biologically effective dose.
CTV	Clinical Target Volume.
CT	Computated Tomography.
CBCT	cone-beam CT.
COIN	Clinical Oncology Information Network.
DICOM	Digital Imaging and Communication in Medicine.
DVH	Dose Volume Histogram.
EUD	Equivalent Uniform Dose.
ESTRO	European Society for Therapeutic Radiation Oncology.

Contenido

Abreviatura	
IMRT	Intensity Modulated Radiation Therapy.
ITK	Insight Segmentation and Registration Toolkit.
GDCM	Grassroots DICOM library.
MRI	Magnetic Resonance Image.
MOSFET	Metal Oxide Semiconductor Field Effect Transistor.
NTCP	Normal Tissue Complication Probability.
OAR	Organ at risk.
PET	Positron Emission Tomography.
PTV	Planning Target Volume.
TCP	Tumor Control Probability.
TPS	Treatment Planning System.
QA	Quality Assurance.
VTK	Visualization Toolkit.
WHO	World Health Organization.

Abreviatura Término

1. Introducción

Un acelerador lineal clínico permite la producción de haces de fotones para tratamientos de cáncer con radioterapia de distintas modalidades, tales como radioterapia convencional, radioterapia conformacional, radioterapia de intensidad modulada (IMRT), radioterapia con arcos coplanares y no coplanares de intensidad modulada (VMAT, conocida como RapidArc[®] en VARIAN). Entre estas técnicas, las que tienen el haz modulado ofrecen una mejor conformación de la dosis al volumen de planeación del tratamiento (PTV) y una menor dosis en los órganos a riesgo (OARs). Así, estas técnicas ofrecen una mejor probabilidad de control tumoral (TCP) junto con una reducción de la toxicidad del tratamiento[1].

En un tratamiento de radioterapia la dosis total puede entregarse de dos formas:

En la primera, escalando la dosis por medio de varios planes de tratamiento secuenciales, uno por cada volumen de tratamiento[2]; mientras que en la segunda al no escalar la dosis, en un plan de tratamiento con refuerzo integrado (SIB) todos los volumenes de tratamiento son tratados simultáneamente[3]. En un tratamiento con dosis escalada todos los volúmenes de tratamiento tienen la misma dosis por fracción a lo largo del tratamiento, mientras que en uno con refuerzo integrado cada estructura blanco recibe una dosis por fracción diferente. Además, un tratamiento con refuerzo integrado tiene menos tiempo total de tratamiento que un tratamiento con dosis escalada. Así, considerando las técnicas de radioterapia de intensidad modulada con y sin escalamiento de dosis, hay cuatro opciones de planes de tratamiento disponibles que presentan diferencias desde el punto de vista dosimétrico y radiobiológico.

Entre las herramientas de análisis y comparación de planes de tratamiento que se emplean están los Histogramas Dosis Volumen $(DVH)^1$ y las distribuciones de dosis². Adicionalmente existen índices dosimétricos y radiobiológicos que ofrecen información que permite realzar las bondades y debilidades de algunas técnicas del tratamiento en la búsqueda del aseguramiento de la calidad de los tratamientos de Radioterapia.

A continuación se presenta una descripción de este documento de Trabajo Final de Maestría.

¹Un histograma dosis volumen es un histograma que relaciona la dosis que recibe un volumen de tejido, en el que se puede evaluar el cubrimiento de dosis para cada estructura blanco GTV, CTV y PTV; y la los límites de dosis tolerables por cada OAR

²Una distribución de dosis consiste en un muestreo espacial de la dosis absorbida por el tejido y se muestra mediante un mapa de colores, siendo los colores cálidos para las altas dosis y fríos para las bajas

En las siguientes secciones de este capítulo se muestran un marco teórico y un estado del arte de los tratamientos de radioterapia para cáncer de cabeza y cuello. Seguido de una justificación y los objetivos que se desarrollarán. En el capítulo 2 se presenta un procedimiento para anonimizar la información, en donde se propone un método de transformación para el conjunto de las estructuras empleadas en radioterapia desde polidatos hacia imágenes de estructuras binarias. Luego en el capítulo 3 se presenta la estimación y análisis de los índices dosimétricos y radiobiológicos. Finalmente, en el capítulo 4 se presenta un análisis tridimensional de las distribuciones de dosis por medio de un análisis mediante la función Gamma y un método de análisis comparativo tridimensional propuesto. Para ambos análisis se propone una construcción de una distribución de dosis "ideal" para el tratamiento.

1.1. Marco Teórico

1.1.1. Aseguramiento de la Calidad

La Garantía de Calidad (QA³) en Radioterapia se conoce como "Las acciones que garantizan la consistencia entre la prescripción clínica y su administración al paciente, con respecto a la dosis en el volumen blanco, la dosis mínima en el tejido sano, la exposición mínima de personal, y las verificaciones en el paciente para la determinación del resultado del tratamiento" [4, 5]. El control de calidad (quality control) en radioterapia se define como las acciones llevadas a cabo para recuperar, mantener y/o mejorar la calidad de los tratamiento[4, 5]. Los estándares de calidad en radioterapia son los criterios que deben ser evaluados y han sido establecidos por diferentes organizaciones internacionales tales como la Organización Mundial de la Salud (WHO) en 1988, la Asociación Americana de Física Médica (AAPM) en 1994, la Sociedad Europea para Oncologos Radioterapeutas (ESTRO) en 1995 y la Red de Información de Oncología Clínica (COIN) en 1999[4].

1.1.2. Cáncer de cabeza y cuello

El cáncer de cabeza y cuello comprende un conjunto de enfermedades neoplásicas localizadas en la cavidad oral, cavidad nasal, senos paranasales, nasofaringe, orofaringe, laringe, hipofaringe, faringe, glándulas salivares, tiroides, garganta y ganglios linfáticos en el cuello[2]. En el cáncer de cabeza y cuello, los tratamientos de radioterapia comprometen casi la totalidad del cuello y gran parte de la cabeza. Así, entre los órganos a riesgo que pueden estar comprometidos se encuentran: ojos, cristalinos, nervios ópticos, quiasma, médula, glándulas parótidas, encías, mandíbulas, cavidad oral y esófago. Cada uno de estos órganos responden de manera diferente a la radiación y por lo tanto los valores de dosis tolerables llamados "constraint", son diferentes para cada uno de ellos. Estudios como Quantec, Emami, RTOG

³sigla por las palabras en inglés Quality Assurance

presentan compendios de dosis tolerables que dependen del órgano y la técnica empleada para el tratamiento.[6].

1.1.3. Definición de estructuras objetivo

El tumor o lesión a tratar en radioterapia, se esboza en la región denominada GTV (Gross Tumor Volume), mientras que el volumen clínico es llamado CTV (Clinical Tumor Volume) que comprende tanto el tumor como la extensión subclínica del mismo⁴. Finalmente el volumen de planeación PTV (Planning Tumor Volume) tiene en cuenta un márgen macroscópico del CTV[7]. Estos volúmenes así como sus subdivisiones, ejemplo: GTV11, GTV111, CTV11, CTV111, etc son esbozados por los Oncólogos Radioterapéutas teniendo en cuenta como referencia el ICRU 83 y los protocolos RTOG⁵. Usualmente la región CTV1 incluye la enfermedad primaria más ambos lados del cuello que contienen los ganglios linfáticos hasta la fosa supraclavicular. El CTV11 es la región del cuello del lado donde se encuentra la enfermedad primaria y finalmente, el CTV111 es la región donde se encuentra específicamente la lesión o tumor[11]. Los PTVs respectivos se esbozan dando un márgen a cada uno de los CTVs anteriormente mencionados, garantizando cualquier compromiso microscópico alrededor.

1.1.4. Tratamiento de cáncer con IMRT y VMAT

El tratamiento de cáncer de cabeza y cuello empleando la técnica IMRT, se realiza entregando una alta dosis a la enfermedad primaria⁶ y una baja dosis a la enfermedad subclínica o regiones adyacentes⁷[2]. Por ejemplo para un tratamiento de cáncer de glándula submandíbular, el Oncólogo Radioterapéuta solicita al Físico Médico que al tumor (PTV111) se le entregen 60Gy durante 30 fracciones; así mismo al volumen de mediano riesgo subclínico (PTV11), una dosis de 57Gy y finalmente al volumen de menor riesgo subclínico (PTV1) una dosis de 54Gy.

La cantidad de dosis que se entrega a cada PTV debe ser tal que, al PTV1 se le entregue una dosis menor, al PTV11 una dosis intermedia y al PTV111 una dosis mayor. Por otro lado también lo podemos expresar diciendo que: el PTV111 sea el refuerzo del PTV11 y este a su vez sea el refuerzo del PTV1 como se muestra en la figura **1-1**.

La radioterapia de intensidad modulada (IMRT) entrega una fluencia de energía no uniforme al paciente. Mediante el movimiento continúo de las multihojas en cualquier posición fija del haz de tratamiento se busca optimizar la distribución de dosis.

⁷GTV11, CTV11 y PTV11 y GTV1, CTV1 y PTV1

 $^{^4\}mathrm{La}$ extensión subclínica de un tumor es la región donde esta el lecho tumoral

⁵Los RTOGs se emplean para delimitar las siguientes regiones: el 0022, el cáncer de orofaringe[8]; el 0225, el cáncer de nasofaringe[9] y el 9003, el refuerzo integrado en carcinomas escamosos en cabeza y cuello[10].
⁶GTV111, CTV111 y PTV111

Figura 1-1.: Esquema de los volúmenes clínicos de tratamiento (PTV1, PTV11 y PTV111), en donde las estructuras internas recibirán dosis cada vez mayores.

La radioterapia de intensidad modulada llamada VMAT entrega la fluencia de energía no uniforme al paciente cuando las multiláminas y el gantry del acelerador, se mueven simultáneamente con el fin de optimizar la distribución de dosis. Además en VMAT los parámetros como la tasa de dosis, la velocidad de rotación del gantry y la posición de las multiláminas cambian para modular mientras el gantry gira[12].

1.2. Estado del arte

Los primeros tratamientos de radioterapia para cabeza y cuello se realizaron con ortovoltaje obteniendo buenos resultados (en cuanto a efectos agudos y tardíos)[13]. Luego, el empleo de equipos de cobalto y aceleradores lineales permitieron mejorar la ventana terapéutica[13]. Después, la incorporación del refuerzo con braquiterapia mejoró la distribución de dosis entre el tumor y el tejido sano[13]. Entre 1980 y 2000 el empleo de quimioterapia concurrente a la radioterapia para carcinoma de células escamosas ayudó por ejemplo a preservar la laringe. Dado que el control local depende de la duración del tratamiento total, los esquemas de fraccionamiento acelerado han sido ideados para disminuir la repoblación tumoral[13, 2].

En el año 2000 un estudio aleatorio mostró una mejora del control local regional a dos años libre de enfermedad, mediante un esquema de fraccionamiento acelerado con un refuerzo concomitante retrasado en comparación con el fraccionamiento estándar[13]. La precisión en los tratamientos con la técnica conformal 3D-CRT y las técnicas de planeación inversa IMRT y VMAT principalmente redujeron la morbilidad[13, 2].

1.3. Motivación

En la radioterapia estándar para Cáncer de Cabeza y Cuello, el GTV recibe una dosis alrededor de 70Gy, mientras que alrededor del GTV una dosis entre 50Gy-70Gy y finalmente una dosis de 50Gy en el tejido con presencia de ganglios linfáticos con riesgo de enfermedad subclínica o microscópica[11]. El éxito del tratamiento depende de que las regiones sean suficientemente irradiadas en más de un 90% con la dosis prescrita. Usualmente las dosis por fracción empleadas son 1,8Gy/fx - 2Gy/fx durante 7 semanas o más, con la desventaja de que en la fase del refuerzo hay tejido que rodea a la enfermedad primaria que recibirá una dosis extra[11]. Por otro lado, como resultado de un estudio in-vitro se conoce que un largo tiempo de entrega de tratamiento con IMRT puede reducir la efectividad del tratamiento[14]. Mediante las técnicas de Radioterapia con refuerzo integrado se puede entregar las dosis a volúmenes diferentes variando el esquema de tratamiento y por tanto modificando los parámetros radiobiológicos y dosimétricos del tratamiento.

1.4. Objetivo General

Establecer similitudes, diferencias, ventajas y desventajas entre planes de tratamiento empleando las técnicas de IMRT, SIB-IMRT, rapid $\operatorname{Arc}^{(\mathbb{R})}$ y SIB-rapid $\operatorname{Arc}^{(\mathbb{R})}$, mediante un análisis dosimétrico y radiobiológico que permitan el aseguramiento de la calidad del tratamiento.

1.4.1. Objetivos específicos

- 1. Generar planes de tratamiento con las técnicas IMRT, SIB-IMRT, rapidArc[®] y SIB-rapidArc[®] que satisfacen los requerimientos de aceptación de cubrimiento de las estructuras objetivo y tolerancias de las estructuras de tejidos a riesgo, mediante el análisis gráfico del histograma dosis volumen ejecutado en el ámbito clínico.
- 2. Calcular los índices dosimétricos y radiobiológicos a partir de los histogramas dosis volumen para las cuatro técnicas de planeación de tratamiento y realizar la comparación entre las mismas.
- 3. Realizar el análisis comparativo de las distribuciones de dosis de los planes de tratamiento generados con los cuatro métodos propuestos.
- 4. Presentar un análisis comparativo de los índices dosimétricos y radiobiológicos de múltiples planes de tratamiento, mediante tabulación de datos y gráficas.

El alcance de este trabajo final de Maestría es presentar la comparación dosimétrica y radiobiológica entre las planeaciones de tratamiento con fotones de 6MV empleando las técnicas de IMRT, SIB-IMRT, VMAT (rapidArc[®]) y SIB-VMAT (rapidArc[®]).

2. Generación de planes de tratamiento y proceso para anonimizar los datos

Resumen

Los sistemas de planeación de tratamiento (TPS) de radioterapia permiten exportar las planeaciones dosimétricas como archivos en formatos GDCM y de texto plano. Estos archivos contienen los campos de tratamiento (RT Plan), la distribución de dosis (RT Dose), las estructuras de los órganos a riesgo y blancos a tratar (RT Structure) y el histograma dosis volumen (texto plano). En este capítulo se presenta los métodos para anonimizar los archivos y para generar imágenes binarias con el método de crecimiento de regiones a partir de las estructuras empleadas durante la planeación de radioterapia empleando las librerías GDCM, ITK y VTK en C++. Finalmente se presentan los resultados y discusión de la anonimización de cada tipo de información en forma de tablas de datos y secuencias con mosaico de cortes de la construcción de imágenes binarias y tablas de datos.

Abstract

The treatment planning systems (TPS) for radiotherapy allows to export dosimetry plannings as format files GDCM and plain text. These files contain the treatment fields (RT Plan), the dose distribution (RT Dose), the structures of the organs at risk and targets to treat (RT Structure) and the dose volume histogram (plane text). This chapter presents methods to anonymize files and to generate binary images with the region growing method from the structures used for planning radiation therapy using the GDCM, ITK and VTK libraries in C ++. Finally, the results and discussion of the anonymity of each type of information as data tables and mosaic sequences for the construction of binary images are presented.

2.1. Introducción

Una planeación dosimétrica realizada en un TPS¹ consiste en modelar la interacción de los campos de radiación de fotones con un tejido, para obtener una distribución de dosis tridimensional calculada con una técnica de planeación en particular. El cálculo realizado con las técnicas IMRT y VMAT requieren de una imagen tridimensional de CT, los contornos esbozados sobre el CT para las estructuras blanco y de tejido sano, la configuración de los

¹TPS por sus siglas en inglés Treatment Planning System

campos propuestos para el tratamiento de radioterapia², la información dosimétrica del acelerador lineal clínico³ y los parámetros de configuración tanto del algoritmo de optimización como de cálculo de la distribución de dosis⁴.

En el TPS Eclipse la información de una planeación dosimétrica se puede exportar en archivos. Para este Trabajo Final de Maestría se exportó: la distribución tridimensional de dosis, el plan de tratamiento, las estructuras de planeación y los histogramas dosis volumen DVH. Cada uno de estos archivos está relacionado con los datos personales del sujeto e institución.

En este capítulo se presenta una metodología para anonimizar y extraer información de los archivos exportados de Eclipse. Entre los métodos, se propone una forma para convertir los contornos de las estructuras esbozadas por los radioterapeutas en imágenes binarias. Las imágenes binarias se construyen en el espacio de la imagen de dosis, para un procesamiento y análisis posterior. También se muestra los resultados en mosaicos de imágenes y finalmente se presenta una discusión de los resultados de anonimización de la información.

2.2. Metodología

2.2.1. Materiales

Distribución tridimensional de dosis

Una distribución tridimensional de dosis se obtiene por el mecanismo de exportación de la dosis 3D en Eclipse y consiste en un archivo en formato DICOM que contiene una matriz tridimensional con valores de la distribución de dosis denominado "RT Dose". Eclipse permite exportar la distribución de dosis relativa o absoluta, para este trabajo se exportó la dosis absoluta con discretización de la dosis en 1cGy. El formato DICOM además permite almacenar en el mismo archivo la información relacionada con la imagen tales como el espaciamiento⁵ y el origen respecto al sistema de coordenadas del CT, datos de adquisición de la imagen y datos del paciente.

²Entre los parametros de configuración de los campos de radiación están el tamaño de campo y los ángulos de la camilla, colimador y gantry.

³La información dosimétrica son requeridos por el algoritmo de cálculo del TPS y se obtienen mediante la dosimetría absoluta y relativa del haz.

⁴Las constantes y configuración del algoritmo de optimización permiten obtener una distribución de dosis óptima.

⁵El espaciamiento es la distancia en mm entre dos puntos consecutivos de la imagen, en el caso de una tridimensional se tiene espaciamiento en los ejes x, y y z.

Plan de tratamiento

El plan de tratamiento se obtiene por el mecanismo de exportación de Eclipse que genera un archivo en formato DICOM denominado "RT Plan". En este archivo se almacena la información del acelerador lineal clínico empleado para el tratamiento, la información de los campos y como se deben ejecutar durante el tratamiento. Entre esta información están los ángulos y posiciones para la camilla, el colimador y el gantry; los movimientos de las multiláminas y la tasa de dosis; y además la posición del paciente durante el tratamiento.

Conjunto de estructuras

El conjunto de estructuras de órganos a riesgo y blanco se obtienen por el mecanismo de exportación de Eclipse que genera un archivo en formato DICOM denominado "RT Structure". Este archivo contiene un conjunto de polidatos⁶, un polidato por cada estructura. Un polidato es un conjunto de contornos por plano de las estructuras esbozadas por los radioterapéutas. Adicionalmente en el archivo se almacena los nombres de las estructuras y las propiedades de visualización y la información del sujeto.

DVH

El histograma dosis volumen (DVH) es generado por Eclipse como una herramienta de análisis y evaluación de los planes de tratamiento. El DVH se puede exportar como un archivo de texto plano que contiene una tabla por cada estructura que relaciona la dosis absorbida por la estructura y el volumen de la estructura comprometido; además contiene información relacionada con el paciente.

2.2.2. Proceso para anonimizar

En la sección anterior se describió la capacidad del formato DICOM para almacenar diferentes tipos de información, así la lectura de los archivos puede ser compleja. La librería $GDCM^7$ es un conjunto de clases desarrolladas en C++ para el manejo del amplio espectro de archivos DICOM. La librería GDCM está disponible para diferentes lenguajes de programación orientados a objetos, entre ellos C++ y Java.

El proceso para anonimizar los archivos se realizó en tres etapas: la lectura del archivo, la eliminación de la información que relacione al sujeto con los datos y finalmente la reescritura del archivo o bien la escritura de un archivo nuevo junto con la eliminación del archivo original.

⁶En programación orientada a objetos un polidato (en inglés *polydata*) es un objeto que contiene un conjunto de puntos en un espacio, que pueden estar distribuidos tridimensionalmente.

⁷GDCM: Grassroots DICOM library

Los procesos que se describen a continuación se realizaron automáticamente mediante un algoritmo desarrollado en C++ para Linux. El algoritmo para anonimizar detecta todos los archivos a anonimizar mediante las librerías "sys/types" y "dirent" de C++ y cuando es necesario eliminar los archivos se empleó la librería "cstdlib" de C++.

Distribuciones de dosis

La lectura del archivo RT Dose se realizó con la librería vtkGDCMImageReader de GDCM, la cual permite obtener la distribución de dosis como una imagen tridimensional consistente en un objeto vtkImageData y la información tanto del paciente como de la imagen en un objeto vtkMedicalImageProperties ambos de VTK. El proceso de anonimizar la imagen consistió en manipular el objeto vtkMedicalImageProperties cambiando la información que relaciona al paciente como el nombre, identificación, edad, sexo, fecha y fecha de nacimiento por un número aleatorio de cuatro cifras. Luego se escribió la imagen vtkImageData con la librería itkImageFileWriter de ITK que permite escribir la imagen en formato Nifty. El archivo RT Dose original se eliminó.

Plan de tratamiento

La lectura del archivo RT Plan se realizó con la librería gdcmReader y gdcmAttribute de GDCM, las cuales permiten obtener la información como el número de campos empleados y sus atributos. Entre los atributos de los campos está: el ángulo del gantry en el caso de IMRT y los ángulos de inicio y fin en el caso de VMAT, la tasa de dosis empleada.

La información está estandarizada mediante Tags⁸. Por ejemplo para el grupo 300a (campo de radiación): el tag (300a,00b0) contiene los datos del haz, el tag (300a,00c2) contiene el nombre del campo, el tag (300a,011e) contiene el ángulo del gantry, el tag (300a,0120) contiene el ángulo del colimador y el tag (300a,0086) contiene las unidades de monitor. La información extraída del RT Plan se almacenó en un archivo de texto plano y el archivo RT Plan original se eliminó.

Conjunto de estructuras

La lectura del archivo RT Structure se desarrolló con la librería vtkGDCMPolyDataReader de GDCM, que permitió extraer el conjunto de polidatos de las estructuras como un conjunto de elementos vtkPolyData. Cada polidato es una secuencia de contornos, los cuales forman una estructura. Para extraer las propiedades de cada estructura se empleó las librerías gdcm-Reader y gdcmAttribute de GDCM. Los tags del grupo polydata (3006) empleados fueron: el

⁸Un tag es una dupla de números en el sistema hexadecimal, en donde el primer número representa un grupo de información; mientras que el segundo representa el elemento de información

tag (3006,0020) que contiene la información de cada estructura, el tag (3006,0022) que contiene el número de la estructura y el tag (3006,0026) que contiene el nombre de la estructura.

Para cada estructura se construyó una imagen con valores de cero consistente en un objeto vtkImageData, la cual tiene los mismos atributos de la imagen de distribución de dosis. Entre los atributos están: el espaciamiento⁹, el origen¹⁰ y las dimensiones¹¹.

Dado que los contornos son un conjunto de puntos en el sistema de coordenadas mundo¹² X_i , se realizó la transformación de coordenadas mundo a coordenadas imagen¹³ x_i para obtener una imagen binaria del contorno de la estructura. La transformación está dada por la expresión:

$$x_i = Integer\left[\frac{X_i - O_i}{s_i}\right] \tag{2-1}$$

donde el operador *Integer* extrae la parte entera de un número decimal, O_i son las coordenadas del origen de la imagen en el sistema de coordenadas mundo y s_i es el espaciamiento de la imagen.

Las imágenes con estructuras huecas se pueden llenar mediante una operación de crecimiento de regiones de procesamiento de imágenes¹⁴. En este caso se aplicó a manera inversa, primero se empleó para obtener una imagen binaria complemento de las estructuras, es decir: se tiene "1s" en todos los puntos exteriores al contorno y "0s" dentro de él. El crecimiento de regiones se aplica en dos dimensiones corte por corte y las semillas seleccionadas fueron las cuatro esquinas de la imagen en el plano como se muestra en la figura **2-2** de los resultados. Así el complemento de cada plano de la imagen binaria S^{\complement} por estructura, se obtiene como:

$$S^{\complement}(x,y) = RG\bigg(C(x,y), seeds\bigg)$$
(2-2)

donde el operador RG realiza el crecimiento de regiones a partir de cada semilla del conjunto seeds hasta que se cumpla la condición de crecimiento. Cada semilla de seeds es un punto a partir del cual crecerá la región y $C^{\complement}(x, y)$ es la imagen binaria complemento por plano

⁹El espaciamiento (*en inglés spacing*) son las distancias entre voxeles, una por cada dimensión de la imagen. De este modo, una imagen tridimensional tiene 3 valores.

¹⁰El origen (*en inglés origin*) son una trina que consisten en las coordenadas en el sistema de coordenadas del mundo, del punto considerado el (0, 0, 0) del sistema de coordenadas de la imagen

¹¹Las dimensiones (*en inglés dimensions*) de la imagen es el tamaño de la matriz que conforma la imagen, en el caso de una imagen tridimensional son tres números enteros.

¹²Las coordenadas en el sistema de coordenadas mundo son valores con punto flotante, es decir son valores continuos

 $^{^{13}}$ Las coordenadas en el sistema de coordenadas imagen son valores enteros, es decir son valores discretos.

¹⁴La operación de crecimiento de regiones consiste en un crecimiento desde unos puntos semilla, completando una región hasta que se cumpla la condición de frenar el crecimiento.

del contorno de la estructura. En la figura **2-4** se muestran los resultados del crecimiento de regiones por planos para las estructuras BODY y PTV11.

Para obtener la imagen con valores de "1s" dentro de la estructura y "0s" fuera de ella, se realiza la operación negativo¹⁵ seguido de la suma de la imagen negativa con el contorno original. Así, la operación empleada para obtener las estructuras como sólidos sin huecos en la imagen S(x, y) es:

$$S(x,y) = Negative\left[RW\left(C(x,y)\right)\right] + C(x,y)$$
(2-3)

donde el operador *Negative* extrae la imagen negativa de una imagen. En la figura **2-5** se muestra las estructuras como resultado de esta operación.

Finalmente, cada una de las imágenes de estructuras se almacenó en un archivo en formato Nifty comprimido por medio de la librería itkImageFileWriter de ITK. El nombre del archivo es el obtenido al leer el archivo de estructuras con las librerías gdcmReader y gdcmAttribute de GDCM. El conjunto de imágenes de estructuras se guardó en una carpeta denominada "structures".

DVH

La lectura del archivo de texto plano se realizó mediante la librería fstream de C++, obteniendo linea tras linea de texto contenida en el archivo. El proceso para anonimizar consistió en identificar y eliminar las lineas que contienen información relacionada con el sujeto, tales como: el nombre (patient name) y su identificación (Patient ID). Finalmente se reescribió el archivo del DVH al emplear la librería fstream de C++.

2.3. Resultados y Discusión

A continuación se presentan los resultados del proceso de anonimizar los diferentes tipos de datos.

2.3.1. Distribución tridimensional de dosis

En la figura 2-1 se muestra una de las distribuciones tridimensionales de dosis como una colección de cortes axiales o mosaico. La distribución de dosis corresponde a un plan realizado con la técnica de IMRT, donde se puede observar las entradas y las salidas de los campos. La visualización como mosaico de imágenes en dos dimensiones se obtuvo con el software libre xmedcon.

 $^{^{15}\}mathrm{La}$ operación negativo cambia el 0 por 1 y viceversa.

Figura 2-1.: Planos axiales de la imagen de distribución tridimensional de dosis D(x, y, z).

2.3.2. Plan de tratamiento

En las tablas del anexo A se muestran las descripciones de los campos extraídas de cada archivo RT Plan en formato DICOM de todos los planes de tratamiento realizados para este Trabajo Final de Maestría. Para la distribución de dosis mostrada en la figura **2-1** la descripciones de los campos se muestran en la tabla **2-1**.

	Técnica: IMRT		
Nombre del campo	Ángulo del gantry	Ángulo del colimador	
Field 1	0°	0°	
Field 2	44°	0°	
Field 3	309°	0°	
Field 4	341°	0°	
Field 5	83°	0°	
Field 6	21°	0°	
Field 7	276°	0°	
Field 8	140°	0°	
Field 9	209°	0°	

Tabla 2-1.: Información extraída del archivo de plan de trata-
miento para el caso de IMRT.

2.3.3. Conjunto de estructuras

A continuación se mostrará los resultados obtenidos en las diferentes etapas descritas en la metodología para anonimizar el conjunto de estructuras.

En la figura **2-2** se muestra las imágenes de contornos para las estructuras BODY y PTV11 obtenidas al aplicar la ecuación 2-1. En esta figura también se muestran las cuatro semillas en las esquinas de cada plano de la imagen. Se puede observar que en cada corte existen una o más regiones conexas en donde hay estructura. Por esta razón se descartó la elección del centro de masa como semilla para el crecimiento de regiones, puesto que en el caso de un corte en donde hay más de una región conexa (por ejemplo en los cortes del 44 al 53 en la estructura PTV11) el centro de masa estaría fuera de la estructura y en estos cortes el resultado sería indeseado como se muestra en la figura **2-3**.

La imagen binaria complemento que se muestra en cortes axiales en la figura 2-4, se obtiene al aplicar la operación de crecimiento de regiones en cada corte de la imagen, sin importar el número de regiones conexas que tenga cada estructura.

Imágenes sólidas de las estructuras

Finalmente se obtiene imágenes binarias de estructuras sólidas como las que se muestran en la figura 2-5, las cuales se almacenaron en archivos de formato Nifty y se emplearon para

Figura 2-2.: Planos axiales de la imagen de contornos C(x, y, z) y sus semillas en las esquinas. La estructura BODY en la izquierda y PTV11 en la derecha.

Figura 2-3.: En la izquierda: Planos axiales de la imagen de contornos C(x, y, z) y sus semillas como centros de masa por plano para la estructura PTV11. En la derecha el crecimiento de regiones con resultado inverso en los cortes desde el 44 al 53.

obtener las distribuciones de dosis ideal del anexo C.

Figura 2-4.: Planos axiales de las imágenes complementos para diferentes estructuras $S^{\complement}(x, y, z)$. La estructura BODY en la izquierda y PTV11 en la derecha.

Figura 2-5.: Planos axiales de la imagen de estructuras sólidas S(x, y, z). La estructura BODY en la izquierda y PTV11 en la derecha.

3. Cálculo y análisis comparativo de los índices dosimétricos y radiobiológicos

Resumen

La radioterapia con fotones cuenta con varias alternativas de técnicas con intensidad modulada para el tratamiento para el cáncer, incluyendo técnicas con el refuerzo integrado. Las planeaciones de radioterapia para casos de cáncer de cabeza y cuello presentan gran complejidad dado que el tejido a irradiar es casi la totalidad de cuello y parte de la cabeza. Así, la dificultad radica en presentar una planeación dosimétrica óptima que evite al mismo tiempo las altas dosis en los órganos críticos adyacentes. En este Trabajo Final de Maestría se pretende, presentar un análisis comparativo de los índices dosimétricos y radiobiológicos calculados a partir de los histogramas dosis volumen para los casos de IMRT, SIB-IMRT, VMAT y SIB-VMAT. El calculo de los índices se realizó con un procesamiento digital del histograma dosis volumen mediante una herramienta desarrollada en C++. Finalmente, se presenta las diferencias, similitudes, ventajas y desventajas de las cuatro técnicas implementadas en 10 pacientes virtuales.

Abstract

Radiotherapy has several alternative techniques with modulated fluence for cancer treatment with ionizing radiation, including simultaneous integrated boost techniques. In the case of head and neck cancer the plannings have very complex given the anatomy. The challenge is to present an optimal dosimetric planning while avoiding high doses in adjacent critical organs. This Master's Final Work presents a comparative analysis of dosimetric and radiobiological indices calculated from the dose volume histograms for the cases of IMRT SIB-IMRT, VMAT and SIB-VMAT. The Index calculation is performed from the digital processing of dose volume histogram with a tool developed in C++. Finally, differences, similarities, advantages and disadvantages of the four techniques for 10 cases with virtual patients are shown.

3.1. Introducción

En este capítulo se presenta la estimación de los índices dosimétricos y radiobiológicos a partir del análisis del histograma dosis volumen (DVH) y los valores radiobiológicos de los tejidos y estructuras empleadas durante las planeaciones. A continuación se presenta un marco teórico de la estimación de los índices. Luego en la metodología se presenta la implementación de un software empleado para la estimación y presentación de los índices dosimétricos y radiobiológicos. Finalmente en la sección de resultados y discusión se presentan las tablas comparativas para las cuatro técnicas propuestos en este Trabajo Final de Maestría.

3.1.1. Histograma dosis volumen

Un histograma dosis volumen (DVH) consiste en una gráfica que representa las curvas del volumen de la estructura versus la dosis que recibe y son una herramienta de evaluación de los planes de tratamiento. Los histogramas generados por el sistema de planeación de tratamiento (TPS)¹ Eclipse son los DVH acumulativos (aDVH).

Al considerar que v_i es el *i*-ésimo elemento de volumen de la estructura, D_i el *i*-ésimo elemento de dosis absorbida en el v_i y V el volumen total de la estructura, el DVH acumulativo está definido como[15]:

$$aDVH = \frac{v_i D_i}{V};\tag{3-1}$$

3.1.2. Índices dosimétricos

Índice de conformación

El índice de conformación describe el grado de cubrimiento de la dosis al volumen tratado y está definido como:

$$CI = \frac{VRI}{V_T},\tag{3-2}$$

siendo VRI el volumen de la mínima superficie de isodosis que cubre al PTV (por ejemplo la isodosis del 95 % definido en el (ICRU 83)) y V_T el volumen de la estructura blanco (PTV). La interpretación del índice de conformación se realiza de acuerdo a:

- CI = 1: El volumen tratado coincide con el volumen del blanco. Es decir: es la conformación ideal.
- CI > 1: El volumen tratado es mayor que el volumen blanco, incluyendo tejidos sanos.
- CI < 1 : El volumen blanco está parcialmente irradiado.
- 1 < CI < 2: El volumen tratado es mayor que el volumen blanco, incluyendo tejidos sanos. Aunque se considera que el tratamiento cumple con el plan de tratamiento.
- 2 < CI < 2,5 o 0.9 < CI < 1: El volumen tratado puede ser mayor o menor que el volumen blanco y se considera que el plan no es óptimo, aunque puede ser aceptable.
- CI < 0.9 o CI > 2.5 El volumen tratado puede ser mayor o menor que el volumen blanco y se considera que el plan no es óptimo, ni aceptable.

Índice de homogeneidad

El índice de homogeneidad describe la uniformidad de la dosis dentro de un volumen tratado y está definido por[?]:

$$HI = \frac{D_{\text{máx}}}{D_p} \tag{3-3}$$

donde $D_{\text{máx}}$ es la dosis máxima (por ejemplo D_2 o D_0) y D_p es la dosis prescrita para el PTV. El índice de homogeneidad de la dosis se puede interpretar teniendo en cuenta que:

- Con $HI \leq 2$ se considera que el tratamiento cumple con el protocolo.
- Con 2 < HI < 2,5 se considera que el tratamiento no cumple con el protocolo.
- Con HI > 2,5 se considera con mayor razón que el tratamiento no cumple con el protocolo.

Los criterios de la anterior definición no conducen a un concepto sólido sobre la homogeneidad de la dosis; por lo cual se utiliza el índice de homogeneidad actualizado dado por[15]:

$$HIa = \frac{D_2 - D_{98}}{D_p} \times 100\%$$
(3-4)

donde D_2 y D_{98} representan respectivamente las isodosis que cubren el 2% y el 98% del PTV y D_p es la dosis prescrita para el PTV. Para este índice los valores bajos representan una mayor homogeneidad de la dosis en el PTV[15].

3.1.3. Índices radiobiológicos

Curvas de supervivencia celular

Las curvas de supervivencia celular para un determinado tipo de células muestra la fracción de las células clonogénicas sobrevivientes, cuando han absorbido una cantidad determinada de dosis al hacerle incidir un haz de radiación. La dosis es la cantidad de energía depositada por unidad de masa y sus unidades en el Sistema Internacional son el Gy[16].

El modelo radiobiológico más comúnmente empleado es el modelo lineal cuadrático, en el cual se consideran las constantes α y β de la población celular. α se asocia a la contribución debida a daño letal de la radiación y en la gráfica corresponde a la tangente del hombro en su parte inicial, mientras que β se asocia a la contribución del daño subletal debido a la radiación y en la gráfica corresponde a la parte cuadrática de la curva. Así, la fracción de supervivencia celular s en función de la dosis D absorbida se define como:

$$s = e^{-\alpha D - \beta D^2}$$

(3-5)

La dosis D puede estar fraccionada en n sesiones, de manera que en cada fracción se administra una dosis d. Considerando la reparación celular y que el efecto biológico de la radiación es dado por $S = e^{-E}$, se puede escribir[14]:

$$E = \alpha D + \beta G D^2 - \gamma (T - T_k) \tag{3-6}$$

donde T es el tiempo total de tratamiento, T_k es el tiempo inicial de la proliferación acelerada ("kick-off" time of accelerated proliferation) y G es el factor de protracción de dosis (the dose protraction factor) que representa tanto la tasa de dosis como la reparación del daño subletal²[14]. γ es la tasa de repoblación celular tumoral efectiva y es dada por[14]:

$$\gamma = \frac{\ln 2}{T_d} \tag{3-7}$$

donde T_d es el tiempo de duplicación tumoral. El factor de protracción de dosis cuando el tiempo de entrega es mucho menor que el tiempo de reparación T_r está dado por[14]:

$$G = \frac{1}{n} \tag{3-8}$$

Por otro lado la dosis efectiva equivalente (BED^3) es[14]:

$$BED = \frac{E}{\alpha} = nd\left(1 + \frac{d}{\alpha/\beta}\right) - \frac{\gamma(T - T_k)}{\alpha}$$
(3-9)

Dosis Uniforme Equivalente y la inhomogeneidad de la dosis

La inhomogeneidad de la dosis se relaciona con el concepto de la dosis uniforme equivalente (EUD), definida como la dosis que al ser distribuida uniformemente lleva al mismo efecto biológico alcanzado por la distribución de dosis real no uniforme. Para contabilizar la heterogeneidad de dosis se tiene que la fracción de supervivencia se calcula con el histograma de dosis volumen DVH como[14]:

$$S = \sum_{i} \frac{V_i}{V_0} S(D_i) \tag{3-10}$$

donde V_0 es el volumen tumoral total, V_i es el subvolumen correspondiente a los intervalos de dosis D_i del DVH[14]. Siendo d la dosis por fracción para un fraccionamiento estándar, se tiene por definición[14]:

$$S = e^{-(\alpha(EUD) + \beta d(EUD) - 1, 4\gamma(\frac{EUD}{d}))}$$
(3-11)

obteniendo:

$$EUD = \frac{-\ln S}{\alpha + \beta d - 1.4\gamma/d}$$
(3-12)

 $^{^{2}\}mathrm{La}$ protracción es la dilución de la dosis en el tiempo.

 $^{^{3}}BED$ por las siglas en inglés de Biologically effective dose
Dosis Uniforme equivalente generalizada

La dosis uniforme equivalente generalizada (gEUD), cuantifica la dosis efectiva biológica para una dosis fraccionada. La dosis uniforme equivalente generalizada se define mediante[17, 18]:

$$gEUD = \left(\sum_{i=1}^{N} v_i D_i^a\right)^{\frac{1}{a}} = \left(\frac{1}{N} \sum_{i=1}^{N} D_i^a\right)^{\frac{1}{a}}$$
(3-13)

donde N es el número de voxeles, v_i y D_i son la fracción de volumen y la dosis para ese volumen, respectivamente. a es un parámetro específico para cada tejido, con valores negativos para los tumorales y positivos para los órganos a riesgo.

3.1.4. Quantec

En radioterapia la optimización en la planeación inversa requiere información sobre el riesgo de complicación en tejido sano con relación a la distribución de dosis, para optimizar la ventana terapéutica, concepto conocido como $\text{Quantec}^4[6]$.

El artículo presentado por Emami et al en 2009 consiste en un compendio de 1062 referencias en donde se encuentran las tolerancias de dosis de un tercio, dos tercios y la totalidad para varios órganos[6]. El modelo de Lyman describe como NTCP depende de la probabilidad de la anulación funcional de de las subunidades funcionales, la estructura de cada órgano, como una suma de la distribución del daño. Kutcher et al diseño el algoritmo de reducción del DVH, permitiendo la extrapolación de los constraints de Emami a cualquier distribución de dosis[6]. El modelo NTCP más ampliamente usado es el de Lyman Kutcher y Burman que combina el modelo de Lyman con el esquema de reducción de DVH de Kutcher-Burman. Modelos probabilísticos introducidos por Schultheiss y Whithers introdujeron el concepto de organización de los tejidos como seriales y paralelos; y subunidades funcionales[6]. En la práctica se ha observado que el DVH tiene la desventaja cuando dentro del órgano las estructuras radiosensibles no están distribuidas uniformemente[6].

El QUANTEC se implementó gracias a la actualización y la revisión de las guías del Emami en la AAPM para cumplir los siguientes objetivos[6]:

- 1. Generar un resumen de los datos cuantitativos dosis-respuesta y las relaciones de dosisvolumen para el efecto definitivo del tejido sano.
- 2. Proveer una guía práctica que permita categorizar el riesgo de toxicidad sobre parámetros dosis - volumen.
- 3. Identificar futuros puntos de investigación sobre los efectos agudos y tardíos de la radioterapia.

⁴QUANTEC siglas del inglés de Quantitative Analyses of Normal Tissue Effects in the Clinic

El hecho de que los constraints dosis - volumen sean empleados en la práctica clínica, no conducen a mejorar el cuidado del tratamiento del cáncer desde la medicina basada en la evidencia[6].

3.2. Metodología

3.2.1. Materiales

Planeaciones dosimétricas

Las planeaciones dosimétricas se realizaron en el TPS Eclipse versión 11 del Hospital Universitario Fundación Santa Fe de Bogotá (HUFSFB). Con la asesoria de los Oncólogos Radioterápicos de esta institución se diseñaron 10 casos de cáncer de cabeza y cuello, cuya distribución de "dosis ideal" se presenta en el anexo C. Para cada caso se realizaron cuatro planeaciones empleando las técnicas con intensidad modulada propuestas en este trabajo.

Software de análisis

El software empleado fue desarrollado en C++ para Linux, empleando las librerías de visualización VTK por el autor. Este software emplea el Histograma Dosis Volumen y las dosis de prescripción con el objetivo de extraer los puntos de dosis y los volúmenes necesarios para calcular los índices dosimétricos y radiobiológicos. Luego de realizar los cálculos con este software se generan las tablas presentadas en los anexos E y F, las gráficas y sus pantallazos presentados en los resultados de este capítulo. El software funciona con linea de comandos de consola linux y requiere argumentos para su correcto funcionamiento, tales como: el folder que contiene los datos, el caso a analizar y el plan a evaluar. Luego se ejecuta una segunda linea de comando que compila las tablas e índices generadas con el anterior comando y que fueron almacenadas en archivos, para calcular las medidas de tendencia central y de dispersión. Finalmente genera las gráficas y tablas que se presentan en los resultados y los anexos E y F.

3.2.2. Parámetros dosimétricos de evaluación para las planeaciones dosimétricas

Las planeaciones dosimétricas realizadas con las técnicas de dosis escaladas e integradas, se compararán desde el punto de vista dosimétrico empleando el histograma dosis volumen para encontrar la dosis de prescripción (D_{95}) , la dosis máxima de la distribución de dosis D_0 , el índice de homogeneidad (HI), el índice de homogeneidad actualizado y el índice de conformación (CI).

3.2.3. Parámetros radiobiológicos de evaluación para las planeaciones dosimétricas

Las planeaciones dosimétricas realizadas para este Trabajo Final de Maestría se compararán mediante la dosis uniforme equivalente EUD, calculada a partir de los histogramas dosis volumen para los volúmenes blanco de tratamiento (PTV) y la dosis uniforme equivalente calculada para los volúmenes blanco de tratamiento (PTV) y los órganos a riesgo (OAR).

3.3. Resultados y Discusión

Las planeaciones dosimétricas que se presentan en este capítulo fueron realizadas con las técnicas IMRT escalada, VMAT escalada, IMRT con refuerzo integrado y VMAT con refuerzo integrado. Empleando las técnicas IMRT escalada y VMAT escalada se realizaron planeaciones por cada volumen blanco PTV1, PTV11 y PTV111 y finalmente el plan suma; mientras que con las técnicas IMRT con refuerzo integrado y VMAT con refuerzo integrado se realizaron una sola planeación para los tres volúmenes blanco. La dosis de prescripción para las planeaciones fueron:

- 1. 44Gy para los volúmenes blanco CTV1 y PTV1.
- 2. 56Gy para los volúmenes blanco CTV11 y PTV11.
- 3. 70Gy para los volúmenes blanco CTV111 y PTV111.

En el anexo A se muestra en resumen todos los planes de tratamiento realizados para este Trabajo Final de Maestría. Adicionalmente en los anexos B y D se muestran las distribuciones de dosis y los Histogramas Dosis Volumen correspondientes al plan total, así en el caso de las técnicas IMRT y escalada y RA escalada se presenta la suma de los planes realizados para PTV1, PTV11 y PTV111.

3.3.1. Dosis de prescripción

Las dosis de prescripción $(D_{95}{}^5)$ para cada una de las estructuras blanco se muestran en la columna 3 de las tablas del anexo E. En la figura **3-1** se muestran la dosis de prescripción para las estructuras blanco (CTV y PTV) y en la tabla **3-1** se muestran los valores de promedio, desviación estándar, mínimo y máximo. Respecto a la dosis de prescripción se puede decir que:

1. Las planeaciones dosimétricas obtenidas con técnicas con refuerzo integrado, son más exactas en entregar las dosis de prescripción en los volumenes blanco clínicos de dosis intermedio y menor obtenidas con las técnicas escaladas, como se evidencia en los datos

 $^{^5}D_{95}$ es la dosis de la isodosis que cubre al 95 % del volumen de la estructura.

Figura 3-1.: Valores de dosis de cubrimiento obtenidas con las cuatro técnicas en los 10 casos para: a) CTV1, b) PTV1, c) CTV11, d) PTV11, e) CTV111 y f) PTV111

Estructura	Plan	$\overline{D_{95}}$	σ	$D_{95_{min}}$	$D_{95_{max}}$
CTV1	escaladoIMRT	4661.37	129.53	4507	4855.5
CTV1	escaladoRA	4800.01	187.393	4598.9	5230.6
CTV1	SIBIMRT	4563.19	45.6821	4499.36	4621.7
CTV1	SIBRA	4586.72	55.5022	4498.32	4678.4
PTV1	escaladoIMRT	4564.1	89.7914	4465.2	4770.6
PTV1	escaladoRA	4685.89	173.026	4516.4	5104.1
PTV1	SIBIMRT	4488.86	42.699	4391.97	4528.76
PTV1	SIBRA	4451.98	60.172	4352.5	4529.64
CTV11	escaladoIMRT	6034.53	334.668	5720.6	6704.8
CTV11	escaladoRA	6169.63	404.055	5809.7	7150.5
CTV11	SIBIMRT	5783.41	60.5994	5702.89	5912.43
CTV11	SIBRA	5869.77	76.5067	5793.54	6027.95
PTV11	escaladoIMRT	5906.82	211.848	5692.2	6368.3
PTV11	escaladoRA	6014.46	253.73	5794.5	6674.6
PTV11	SIBIMRT	5650.99	53.1203	5552.74	5717.6
PTV11	SIBRA	5620.08	51.1869	5545.14	5697.38
CTV111	escaladoIMRT	7196.29	60.1349	7109.3	7304.4
CTV111	escaladoRA	7303.23	158.648	7128.6	7661.3
CTV111	SIBIMRT	7201.28	46.5084	7109.51	7253.78
CTV111	SIBRA	7321.69	61.6117	7246.88	7409.83
PTV111	escaladoIMRT	7167.55	37.2854	7125.8	7228.5
PTV111	escaladoRA	7272.78	140.115	7128.5	7624.1
PTV111	SIBIMRT	7004.96	4.72658	6999	7013.99
PTV111	SIBRA	7006.36	5.99388	6999	7013.88

Tabla 3-1.: Medidas de tendencia central y de dispersión para la dosis de prescripción en
cada estructura blanco por cada técnica.

de la tabla 3.3.1 y las figuras **3-1**a y **3-1**c donde las planeaciones realizadas con las técnicas con el refuerzo integrado, la dosis de prescripción fueron más cercanas a los

44Gy y 56Gy respectivamente. Además la razón por la cual las dosis en estos volúmenes fallan al usar el criterio de D_{95} se debe a la superposición de de las distribuciones dosimétricas al escalar las dosis para el PTV11 y el PTV111.

- 2. Como lo muestran la figura 3-1 y la tabla 3-1, la dosis de prescripción para las estructuras de volumen blanco de planeación (PTVs) fueron las más cercanas a las dosis de prescripción (44Gy, 56Gy y 70Gy) en los planes obtenidos con técnicas de refuerzo integrado, dado que con las técnicas de dosis escaladas (ver figuras 3-1b, 3-1d y 3-1f), las dosis fueron superiores debido a la superposición de las distribuciones de dosis de los PTV11 y PTV111.
- 3. Las planeaciones dosimétricas obtenidas con técnicas de IMRT son más exactas en entregar las dosis de prescripción en los volumenes blanco de alta dosis (en este caso 70Gy) como se evidencia en la figura **3-1**e y la tabla **3-1**.
- 4. En general, las planeaciones realizadas con técnicas de dosis escaladas pueden entregar mayor dosis en las estructuras blanco de planeación, debido a la superposición de campos de irradiación.

Aunque las planeaciones dosimétricas realizadas con diferentes técnicas de planeación pueden entregar una dosis mayor a la prescrita en los volúmenes blanco, siempre se respetan los límites de dosis en los tejidos a riesgo en los planes suma en los casos de las planeaciones dosimétricas obtenidas con la técnica de escalamiento de dosis, tal como se puede verificar en los anexos D y B.

3.3.2. Dosis máxima

Las dosis máximas $(D_0{}^6)$ para cada una de las estructuras blanco se muestran en la columna 5 de las tablas del anexo F. En la tabla **3-2** se muestra las medidas de tendencia central y dispersión del punto de máxima dosis en cada estructura obtenido con cada técnica, donde se puede notar que las técnicas realizadas con el refuerzo integrado presentan en promedio una mayor dosis máxima. Aunque las cuatro técnicas presentaron una dosis máxima en los 10 casos con similar rango de dosis, como se puede observar en los valores de desviación estándar, máximos y mínimos.

En la figura **3-2** se muestran las curvas obtenidas para cada estructura blanco (CTVs y PTVs) en todos los casos estudiados, donde se puede observar que las gráficas para las seis estructuras blanco son iguales, ya que el punto que recibe la máxima dosis se encuentra dentro de los volúmenes blanco más pequeño (CTV111). Esto se debe a que los volúmenes blanco están contenidos uno dentro de otro como se mostró en la figura **1-1**.

 $^{^6}D_0$ es la dosis de la isodosis que cubre al 0 % del volumen de la estructura.

Las dosis máximas obtenidas en las planeaciones dosimétricas realizadas con las técnicas de refuerzo integrado presentan valores menores a 7700cGy, que corresponden a un 10 % mayor que la dosis de prescripción

En la figura **3-2**f) se observa que para las planeaciones dosimétricas realizadas con técnicas de dosis escalada en el caso 1 la dosis máxima fue superior a 7700cGy debido a que en la superposición de campos resulto un punto caliente en la distribución de dosis, mientras que para el resto de casos en general se obtuvieron puntos calientes con menor valor de dosis que los obtenidos con planeaciones dosimétricas realizadas con técnicas con refuerzo integrado. Esto quizá se debió a que al tener la posibilidad de realizar las planeaciones dosimétricas por cada PTV, se contó con más posibilidad de lograr menores gradientes de dosis⁷.

Estructura	Plan	$\overline{D_0}$	σ	$D_{0_{min}}$	$D_{0_{max}}$
TODAS	escaladoIMRT	7605.9	138.594	7432.4	7926.4
TODAS	escaladoRA	7620.19	206.457	7399.5	8102.8
TODAS	SIBIMRT	7674.35	102.564	7476.87	7785.74
TODAS	SIBRA	7695.88	46.7305	7596.83	7772.53

 Tabla 3-2.: Medidas de tendencia central y de dispersión para la dosis máxima en cada estructura blanco por cada técnica.

3.3.3. Índices de homogeneidad *HI*

Los índices de homogeneidad evaluados para cada una de las estructuras blanco en cada planeación de todos los casos, se muestran en la columna 3 de las tablas del anexo F. En la figura **3-3** se muestran los índices de homogeneidad para las seis estructuras blanco y en la tabla **3-3** se muestra los valores promedio, desviación estándar, mínimo y máximo del índice de homogeneidad por cada estructura. Respecto al índice de homogeneidad se puede decir que:

- 1. Se logró valores del índice de homogeneidad de la dosis entre 1 y 2, de forma que todos los planes de tratamiento realizados con las cuatro técnicas cumplieron con el protocolo.
- 2. Los valores del índice de homogeneidad son mayores en las planeaciones dosimétricas realizadas con las técnicas con el refuerzo integrado en todas las estructuras blanco menos en la estructura CTV111.

⁷Se considera gradiente de dosis como la caída de dosis observable en un histograma dosis volumen y está relacionada con la diferencia entre la dosis máxima y la dosis de prescripción

Figura 3-2.: Dosis máxima (D₀) obtenida con las cuatro técnicas en los 10 casos para todos los volumenes blanco a) CTV1, b) PTV1, c) CTV11, d) PTV11, e) CTV111 y f) PTV111.

Figura 3-3.: Índices de homogeneidad (*HI*) obtenidos con las cuatro técnicas en los 10 casos para a) CTV1, b) PTV1, c) CTV11, d) PTV11, e) CTV111 y f) PTV111.

3.3.4. Índices de homogeneidad actualizado HIa

Los índices de homogeneidad actualizado evaluados para cada una de las estructuras blanco con cada planeación en todos los casos, se muestran en la columna 4 de las tablas del anexo

Estructura	Plan	\overline{HI}	σ	HI _{min}	HI _{max}
CTV1	escaladoIMRT	1.6325	0.0417892	1.54112	1.689
CTV1	escaladoRA	1.58862	0.0437709	1.53075	1.65643
CTV1	SIBIMRT	1.68193	0.0268156	1.6262	1.72059
CTV1	SIBRA	1.678	0.0140931	1.66136	1.70989
PTV1	escaladoIMRT	1.66664	0.0224825	1.62375	1.70513
PTV1	escaladoRA	1.62708	0.0399804	1.57621	1.70169
PTV1	SIBIMRT	1.70977	0.0268824	1.6634	1.75717
PTV1	SIBRA	1.72883	0.0167196	1.7031	1.75249
CTV11	escaladoIMRT	1.2631	0.0570338	1.14575	1.31771
CTV11	escaladoRA	1.23824	0.058141	1.13318	1.28944
CTV11	SIBIMRT	1.32713	0.0252835	1.28373	1.3553
CTV11	SIBRA	1.31123	0.0125447	1.28501	1.32409
PTV11	escaladoIMRT	1.28861	0.0345725	1.21665	1.3282
PTV11	escaladoRA	1.26789	0.0310697	1.21194	1.30826
PTV11	SIBIMRT	1.35821	0.0251786	1.31736	1.3947
PTV11	SIBRA	1.36943	0.0117386	1.35118	1.3834
CTV111	escaladoIMRT	1.05695	0.0188657	1.03387	1.0981
CTV111	escaladoRA	1.04333	0.0102399	1.03199	1.05763
CTV111	SIBIMRT	1.06571	0.014394	1.0441	1.08445
CTV111	SIBRA	1.05114	0.00693393	1.03916	1.06137
PTV111	escaladoIMRT	1.06114	0.0169062	1.04138	1.09766
PTV111	escaladoRA	1.04765	0.0105016	1.03402	1.06279
PTV111	SIBIMRT	1.09556	0.0146849	1.06716	1.11241
PTV111	SIBRA	1.09842	0.00705262	1.08316	1.10934

Tabla 3-3.: Medidas de tendencia central y de dispersión para el índice de homogeneidad
en cada estructura blanco por cada técnica.

F; mientras que en la tabla **3-4** se muestran los valores de promedio, desviación estándar, mínimo y máximo para las seis estructuras blanco. En la figura **3-4** se muestran los índices

Figura 3-4.: Índices de homogeneidad actualizado (HIa) obtenidos con las cuatro técnicas en los 10 casos para: a) CTV1, b) PTV1, c) CTV11, d) PTV11, e) CTV111 y f) PTV111.

de conformación para las seis estructuras blanco donde se puede observar que:

- 1. En general, los índices se encuentran entre 0 y 200, de forma que todos los planes de tratamiento realizados con las cuatro técnicas cumplieron con el protocolo para todos los volúmenes blanco de planeación.
- 2. Los valores del índice de homogeneidad actualizado son mayores en las planeaciones realizadas con las técnicas con el refuerzo integrado en todas las estructuras blanco menos en la estructura CTV111. Esto se presentó debido a que se logró distribuciones de dosis con las técnicas de dosis escalada que tienen puntos con dosis máxima menores.
- 3. Cabe resaltar que las planeaciones dosimétricas realizadas con la técnica IMRT con dosis escalada en general presentaron los mejores índices de homogeneidad actualizado en todas las estructuras con excepción de la estructura PTV111, mostrando así que la técnica IMRT con dosis escalada permite obtener planeaciones dosimétricas con bajos gradientes de dosis.
- 4. Las planeaciones realizadas con las técnicas con refuerzo integrado presentaron índices de homogeneidad actualizado más altos. Este resultado es similar al obtenido para el índice de homogeneidad.

Estructura	Plan	HIa	σ	HIa_{min}	HIa _{max}
CTV1	escaladoIMRT	60.309	2.63308	54.67	62.8618
CTV1	escaladoRA	56.7367	3.32448	51.8411	61.0759
CTV1	SIBIMRT	62.3083	1.52441	59.7063	65.3594
CTV1	SIBRA	62.7937	0.824448	61.5137	64.5056
PTV1	escaladoIMRT	63.1993	2.27619	60.0868	66.677
PTV1	escaladoRA	60.773	3.53198	55.9314	66.0128
PTV1	SIBIMRT	64.9759	1.41091	63.0971	67.2214
PTV1	SIBRA	68.1845	2.4703	63.3167	71.8121
CTV11	escaladoIMRT	25.7343	4.91754	15.4831	29.8553
CTV11	escaladoRA	23.6682	4.53811	14.0593	27.8948
CTV11	SIBIMRT	29.4565	1.52288	27.3658	31.9122
CTV11	SIBRA	28.3267	0.629576	27.0137	29.1299
PTV11	escaladoIMRT	27.6551	2.42205	23.606	30.2987
PTV11	escaladoRA	25.9364	2.71085	21.3706	30.3853
PTV11	SIBIMRT	33.0056	2.02396	29.6632	35.894
PTV11	SIBRA	34.4695	0.942226	32.6898	36.3758
CTV111	escaladoIMRT	4.33376	1.30917	2.0822	6.1732
CTV111	escaladoRA	3.22101	0.775034	2.14393	4.33347
CTV111	SIBIMRT	3.65097	1.01321	2.27275	5.12291
CTV111	SIBRA	2.54256	0.380704	2.00405	3.22255
PTV111	escaladoIMRT	5.12	1.05279	3.50282	6.75649
PTV111	escaladoRA	3.97352	0.935499	2.54693	5.16563
PTV111	SIBIMRT	8.27487	1.26334	5.87624	10.0742
PTV111	SIBRA	8.48948	0.807003	7.5078	9.66026

Tabla 3-4.: Medidas de tendencia central y de dispersión para el índice de homogeneidadactualizado en cada estructura blanco por cada técnica.

3.3.5. Índices de conformación CI

Figura 3-5.: Índices de conformación (CI) obtenidos con las cuatro técnicas en los 10 casos para a) CTV1, b) PTV1, c) CTV11, d) PTV11, e) CTV111 y f) PTV111.

Estructura	Plan	\overline{CI}	σ	CI_{min}	CI_{max}
CTV1	escaladoIMRT	0.99998	4.11756e-05	0.999879	1
CTV1	escaladoRA	0.999969	6.82177e-05	0.999796	1
CTV1	SIBIMRT	0.999472	0.000624954	0.998077	1
CTV1	SIBRA	0.998935	0.00130763	0.9964	1
PTV1	escaladoIMRT	0.995411	0.00358593	0.987984	0.999126
PTV1	escaladoRA	0.997351	0.00244768	0.992772	0.999939
PTV1	SIBIMRT	0.98959	0.00776662	0.96885	0.995395
PTV1	SIBRA	0.979859	0.0107672	0.95908	0.993357
CTV11	escaladoIMRT	0.999986	4.49043e-05	0.999858	1
CTV11	escaladoRA	1	0	1	1
CTV11	SIBIMRT	0.99999	2.59991e-05	0.999918	1
CTV11	SIBRA	1	0	1	1
PTV11	escaladoIMRT	0.999794	0.00045526	0.99858	1
PTV11	escaladoRA	0.999708	0.000520861	0.998418	1
PTV11	SIBIMRT	0.987018	0.00961332	0.968199	0.99462
PTV11	SIBRA	0.98568	0.00857147	0.970395	0.997209
CTV111	escaladoIMRT	1	0	1	1
CTV111	escaladoRA	1	0	1	1
CTV111	SIBIMRT	1	0	1	1
CTV111	SIBRA	1	0	1	1
PTV111	escaladoIMRT	0.999909	0.00017955	0.999567	1
PTV111	escaladoRA	0.999767	0.000486698	0.998763	1
PTV111	SIBIMRT	0.986672	0.00326781	0.983351	0.992704
PTV111	SIBRA	0.992159	0.00395799	0.982594	0.997352

Tabla 3-5.: Medidas de tendencia central y de dispersión para el índice de conformación en
cada estructura blanco por cada técnica.

Los índices de conformación evaluados para cada una de las estructuras blanco para todos los casos, se muestran en la columna 3 de las tablas del anexo F y en la tabla **3-5** se muestra

las medidas de tendencia central y desviación del índice de conformación por estructura y técnica empleada durante la planeación dosimétrica. En la figura **3-5** se muestran los índices de conformación para las seis estructuras blanco. Respecto a los índices de conformación se puede decir que:

- 1. Para todas las técnicas se logró una buena conformación de la dosis, ya que el mínimo valor obtenido fue 0,968.
- 2. En la figura **3-5** se pueden evidenciar que para todas las estructuras blanco se logró una mejor conformación de la dosis con las planeaciones realizadas con las técnicas de dosis escalada, debido a que al superponer los campos de tratamiento de las planeaciones dosimétricas de refuerzo como lo son PTV11 y PTV111 las estructuras reciben una dosis adicional que permite una mejor conformación de las estructuras blanco. Aunque las planeaciones dosimétricas obtenidas con técnicas con el refuerzo integrado presentan una excelente conformación de la dosis.

3.3.6. Dosis Uniforme equivalente

En el cálculo de la dosis uniforme equivalente se asumió que para un volumen blanco en cáncer de cabeza y cuello y según el trabajo de Qi et al[14]:

- 1. α tiene un valor de 0,13Gy, β un valor de 0,008125Gy², un tiempo de duplicación celular de $T_d = 4$ días y un tiempo de proliferación acelerada de 28.
- 2. Para las planeaciones realizadas con las técnicas escaladas la dosis por fracción fue siempre constante e igual a 2Gy con 35 fracciones, para un tiempo total de tratamiento de 7 semanas ó 47 días.
- 3. Para las planeaciones realizadas con las técnicas con el refuerzo incluido la dosis por fracción varia para cada volumen de tratamiento. Siendo 1,467Gy para las estructuras CTV1 y PTV1, 1,876Gy para las estructuras CTV11 y PTV11, y 2,333Gy para las estructuras CTV11 y PTV11, y 2,333Gy para las estructuras CTV111 y PTV111. Durante 30 fracciones para un tiempo total de tratamiento de 6 semanas ó 40 días.

La dosis uniforme equivalente evaluadas para cada una de las estructuras blanco en cada planeación en todos los casos, se muestran en la columna 7 de las tablas del anexo F y en la tabla **3-6** se muestra las medidas de tendencia central y desviación estándar para los valores de EUD por estructura y técnica empleada durante la planeación dosimétrica. En la figura **3-6** se muestran los valores de EUD para las seis estructuras blanco. La EUD es la dosis tal que, cuando está distribuida uniformemente sobre el volumen blanco, causa la supervivencia del mismo número de clonógenos como la conseguida con la distribución no uniforme[17]. Al observar los valores de EUD presentados en la figura **3-6** y la tabla **3-6** se puede observar que:

Figura 3-6.: Dosis uniforme equivalente (*EUD*) obtenidos con las cuatro técnicas en los 10 casos para a) CTV1, b) PTV1, c) CTV11, d) PTV11, e) CTV111 y f) PTV111.

1. Para las planeaciones dosimétricas realizadas en todas las estructuras de dosis menores e intermedias los valores de *EUD* son menores a la dosis prescrita de cada estructura.

2. Para las planeaciones dosimétricas realizadas con técnicas de dosis con el refuerzo incluido la *EUD* es menor a la dosis prescrita para las estructuras CTV1 y PTV1.

Se debe considerar que el cálculo de este índice emplea parámetros dosimétricos como el histograma dosis volumen de las estructuras, la dosis por fracción y el número de fracciones, además de parámetros radiobiológicos y temporales de la administración del tratamiento. Teniendo en cuenta que los histogramas generados de las planeaciones dosimétricas en cada caso son parecidos tal como se puede ver en las gráficas del anexo D y que los parámetros radiobiológicos tales como α y que se consideraron constantes e iguales para todos los tratamientos, esta diferencia entre las técnicas con la dosis escalada y con el refuerzo integrado depende de las dosis por fracción y los tiempos de administración del tratamiento. Así la curva de supervivencia celular obtenida pudo presentar una disminución más lenta en las dosis menores a 44Gy en el caso de los tratamientos con la dosis escalada y por esta razón en las estructuras CTV1 y PTV1 el índice EUD es mayor que en las distribuciones de dosis obtenidas aplicando técnicas con el refuerzo integrado. Por otro lado para dosis superiores a 44Gy la curva de supervivencia teórica generada con parámetros correspondientes a técnicas de dosis escalada puede tener una rápida disminución de la supervivencia, mientras que en el caso de la curva de supervivencia estimada para las técnicas con el refuerzo integrado pudo presentar una menor disminución de la supervivencia celular. De manera que los índices obtenidos fueron menores en el caso de las distribuciones de dosis con la dosis escalada.

3.3.7. Dosis Uniforme equivalente generalizada

La dosis uniforme equivalente generalizada o modificada se calculo tanto para las estructuras blanco como para las de órganos a riesgo, asumiendo que según el trabajo realizado por Park et al[17, 18]. Para las glándulas parotidas se tomó el valor de a = 1, para la médula a = 20, para la mandíbula a = 10 y para los volúmenes blanco de planeación (PTV) y volúmenes blanco clínicos (CTV) a = -10.

Según Wu, et al., junto con Niemierko los valores de gEUD tiene la misma interpretación que EUD en los volúmenes blanco, mientras que para los órganos a riesgo representa la dosis uniforme que conduce a la misma probabilidad de lesión tal como la correspondiente distribución de dosis no homogénea[19, 17].

gEUD para volúmenes blanco

La dosis uniforme equivalente generalizada evaluadas para cada una de las estructuras blanco en cada planeación en todos los casos, se muestran en la columna 8 de las tablas del anexo F y en la tabla 3-7 se muestra las medidas de tendencia central y desviación estándar para los valores de gEUD por estructura y técnica empleada durante la planeación dosimétrica.

Plan	Estructura	EUD	σ	EUD_{min}	EUD_{max}
CTV1	escaladoIMRT	34.9658	1.97106	29.9713	39.7086
CTV1	escaladoRA	34.8078	1.9666	30.0868	42.0888
CTV1	SIBIMRT	26.4025	1.71278	23.866	28.0688
CTV1	SIBRA	26.7168	1.72294	25.9511	27.6915
PTV1	escaladoIMRT	34.9752	1.97133	29.1142	40.8736
PTV1	escaladoRA	34.7162	1.96401	28.7839	43.3099
PTV1	SIBIMRT	26.7612	1.72438	24.4526	28.3151
PTV1	SIBRA	27.0986	1.73521	26.4949	27.9124
CTV11	escaladoIMRT	33.2288	1.92148	30.3294	38.5666
CTV11	escaladoRA	33.3116	1.92387	28.9628	41.4033
CTV11	SIBIMRT	47.5824	2.29933	43.0909	50.7812
CTV11	SIBRA	47.9349	2.30783	45.3913	49.5297
PTV11	escaladoIMRT	29.3421	1.80561	24.2232	35.3049
PTV11	escaladoRA	29.547	1.81191	22.0368	37.5853
PTV11	SIBIMRT	48.2623	2.3157	43.7901	51.3171
PTV11	SIBRA	48.6852	2.32583	46.2939	50.0068
CTV111	escaladoIMRT	30.8268	1.85073	26.9804	37.1732
CTV111	escaladoRA	30.9157	1.8534	26.2782	39.8681
CTV111	SIBIMRT	71.4797	2.81819	63.4403	76.534
CTV111	SIBRA	71.9829	2.82809	67.8629	73.9246
PTV111	escaladoIMRT	30.6229	1.8446	26.98	37.1286
PTV111	escaladoRA	30.7019	1.84698	26.2624	39.8939
PTV111	SIBIMRT	71.5895	2.82035	63.5138	76.687
PTV111	SIBRA	72.2024	2.8324	68.0131	74.0446

Tabla 3-6.: Medidas de tendencia central y de dispersión para la dosis uniforme equivalente
en cada estructura blanco por cada técnica.

En la figura 3-7 se muestran los valores de gEUD para las seis estructuras blanco.

Figura 3-7.: Dosis uniforme equivalente generalizada (gEUD) obtenidos con las cuatro técnicas en los 10 casos para a) CTV1, b) PTV1, c) CTV11, d) PTV11, e) CTV111 y f) PTV111.

De acuerdo a Park et al[17] a es negativo en la función gEUD para resaltar los puntos fríos para los tumores, debido a que estos disminuyen la probabilidad de control tumoral (TCP). Así, se desea un valor gEUD mayor o igual a la dosis de prescripción. Por un lado, en la figura **3-7** y tabla **3-7** se puede observar que para la estructura blanco CTV1 todas las planeaciones dosimétricas presentan una gEUD inferior a 44Gy. Por otro lado, solamente la técnica IMRT con el refuerzo incluido presenta una planeación con gEUD = 55,49Gymenor a 56Gy. Finalmente se puede observar que para los volúmenes CTV111 y PTV111 todas las planeaciones dosimétricas presentan una gEUD > 70Gy, aunque las planeaciones dosimétricas realizadas con técnicas con la dosis escalada presentan una mayor gEUDrespecto a las realizadas con técnicas con vMAT presentan una mayor gEUD respecto a las realizadas con técnicas con VMAT presentan una mayor gEUD respecto a las realizadas con técnicas con VMAT presentan una mayor gEUD

gEUD para los órganos a riesgo

En la figura **3-8** y en la tabla **3-8** se muestran los valores de gEUD y las medidas de tendencia central y dispersión correspondientes para los órganos a riesgo, respectivamente.

De acuerdo al trabajo de Park et al[17] el valor de a es positivo en los órganos a riesgo. Para los tejidos normales con la arquitectura funcional de subunidad en serie $a \gg 1$ y para realzar los puntos de dosis calientes. Mientras que para los tejidos normales de arquitectura en paralelos, como las glándulas salivales o parótidas, $a \ge 1$ para obtener la dosis media, ya que se podría determinar la probabilidad de complicaciones tejido normal (NTCP).

Por un lado, al evaluar órganos con arquitectura en paralelo como en la figura **3-8**a y **3-8**b se observa que en general que para las planeaciones dosimétricas la parótida derecha recibe una dosis media inferior a 25Gy, pero para la parótida izquierda la dosis media es superior a 25Gy. Siendo que durante la pleneación en el TPS eclipse se consiguió una dosis media inferior a este umbral.

Por otro lado, al evaluar un órgano en serie como la médula observamos que los valores encontrados para gEUD que se muestran en la figura **3-8**c son menores a 50Gy de manera que no se generaría mielopatía.

Dado que para todos los órganos a riesgo el índice gEUD no presenta diferencias apreciables podemos decir que con las cuatro técnicas se pueden generar planeaciones dosimétricas que respetan los límites de dosis establecidos para los órganos a riesgo. Aunque para la médula la técnica SIB-VMAT consigue una menor dosis gEUD.

Estructura	Plan	\overline{gEUD}	σ	$gEUD_{min}$	$gEUD_{max}$
CTV1	escaladoIMRT	19.5842	5.92984	7.53921	24.9716
CTV1	escaladoRA	21.0372	6.46291	5.82366	26.2809
CTV1	SIBIMRT	20.3688	7.84254	4.86563	24.9783
CTV1	SIBRA	18.9906	6.65677	5.30623	24.656
PTV1	escaladoIMRT	29.5595	16.4604	5.95091	70.7069
PTV1	escaladoRA	29.9622	15.8902	6.64479	70.6242
PTV1	SIBIMRT	29.2939	14.9089	6.25343	67.1159
PTV1	SIBRA	28.4987	14.9621	7.83227	67.1423
CTV11	escaladoIMRT	38.5553	3.84634	31.2841	46.9201
CTV11	escaladoRA	39.6363	2.13742	36.9572	43.8481
CTV11	SIBIMRT	39.2553	2.28297	36.0307	43.8374
CTV11	SIBRA	33.5344	4.11861	26.7107	39.5261
PTV11	escaladoIMRT	64.1215	2.66077	59.0434	68.5304
PTV11	escaladoRA	64.9814	3.51083	58.8064	72.6282
PTV11	SIBIMRT	58.8526	1.43335	55.4932	60.1905
PTV11	SIBRA	59.153	0.757631	58.0821	60.5853
CTV111	escaladoIMRT	73.225	0.624686	72.3391	74.158
CTV111	escaladoRA	73.9362	1.69201	72.148	77.9342
CTV111	SIBIMRT	72.9406	0.546444	72.099	73.5998
CTV111	SIBRA	73.8125	0.542533	73.1527	74.6681
PTV111	escaladoIMRT	72.9056	0.607175	72.1323	73.8619
PTV111	escaladoRA	73.6381	1.56998	71.8845	77.5102
PTV111	SIBIMRT	70.8029	0.874488	69.1763	72.059
PTV111	SIBRA	71.049	0.777317	69.7676	72.0154

Tabla 3-7.: Medidas de tendencia central y de dispersión para la dosis uniforme equivalente
generalizada en cada estructura blanco por cada técnica.

Figura 3-8.: Dosis uniforme equivalente generalizada (gEUD) obtenidos con las cuatro técnicas en los 10 casos.

Plan	Estructura	\overline{gEUD}	σ	$gEUD_{min}$	$gEUD_{max}$
Parotida der	escaladoIMRT	19.58	1.475	7.539	24.97
Parotida der	escaladoRA	21.04	1.529	5.824	26.28
Parotida der	SIBIMRT	20.37	1.504	4.866	24.98
Parotida der	SIBRA	18.99	1.453	5.306	24.66
Parotida izq	escaladoIMRT	29.56	1.812	5.951	70.71
Parotida izq	escaladoRA	29.96	1.825	6.645	70.62
Parotida izq	SIBIMRT	29.29	1.804	6.253	67.12
Parotida izq	SIBRA	28.5	1.779	7.832	67.14
Medula	escaladoIMRT	38.56	2.07	31.28	46.92
Medula	escaladoRA	39.64	2.099	36.96	43.85
Medula	SIBIMRT	39.26	2.088	36.03	43.84
Medula	SIBRA	33.53	1.93	26.71	39.53

Tabla 3-8.: Medidas de tendencia central y de dispersión para la dosis uniforme equivalentegeneralizada en cada estructura de órgano a riesgo por cada técnica.

3.4. Discusión de resultados

A continuación se presenta un resumen de los resultados obtenidos en este capítulo clasificando de acuerdo a si presentan ventajas, desventajas, diferencias y similitudes.

3.4.1. De acuerdo a las ventajas y desventajas

- 1. Las planeaciones dosimétricas realizadas aplicando técnicas con la dosis escalada presentan una **ventaja** frente a las realizadas con técnicas con el refuerzo integrado dado que:
 - a) Al aplicar técnicas con la dosis escalada se realizan planeaciones dosimétricas independientes por cada volumen de planeación de tratamiento se tiene más campos de tratamiento, permitió lograr que la dosis máxima (D_0) sea menor a la conseguida con técnicas con refuerzo integrado. Aunque en la práctica clínica este fenómeno puede ser al contrario.
 - b) Tienen un índice de conformación más alto, debido a que las dosis que cubren el 95% de cada volumen blanco fue mayor debido a la superposición de distribuciones de dosis. Aunque si se prescribe a una dosis mayor en el caso de las planeaciones dosimétricas obtenidas con técnicas del refuerzo integrado se lograría iguales resultados.
 - c) Índices de homogeneidad más cercanos a 1 e índices de homogeneidad actualizado más cercanos a 0, debido a las diferencias entre las dosis máximas y las dosis de prescripción en cada caso fueron menores; aunque todas las planeaciones dosimétricas satisfacen el criterio de aceptación del índice.
- 2. Las planeaciones dosimétricas realizadas usando técnicas con refuerzo integrado presentan una **ventaja** frente a las realizadas con técnicas con la dosis escalada al presentar:
 - a) Una dosis de prescripción más cercana a la deseada, debido a que en la superposición de distribuciones de dosis al obtener un plan suma se aumentó la dosis en las estructuras blanco.
 - b) Las dosis EUD son más cercanas a las dosis de prescripción tal como se observa para los volúmenes de planeación de tratamiento de dosis alta y dosis intermedia en las gráficas d) y f) figura 3-7 y además, estas dosis son menores que las correspondientes a las obtenidas con técnicas de dosis escalada debido a la superposición de los campos.

3.4.2. De acuerdo a las similitudes y diferencias

- Las planeaciones dosimétricas realizadas al usar técnicas con refuerzo integrado (SIB-IMRT y SIB-VMAT) por un lado y las obtenidas con técnicas de dosis escalada (IMRT escalada y VMAT escalada) presentan similitudes al tener:
 - a) Valores de dosis de prescripción cercanos entre si, debido a que así se realizaron las planeaciones con refuerzo integrado en todos los casos y por otro lado las distribuciones de dosis con dosis escalada se obtuvieron al superponer las planeaciones calculadas para cada volumen blanco.
 - b) Valores de dosis máximas cercanos a 10% por encima de la dosis de prescripción con una "baja" desviación estándar para la revisión de los 10 casos en el caso de la dosis con refuerzo integrado y "alta" desviación estándar cuando se trabajo con la dosis escalada.
- 2. En todas las planeaciones dosimétricas presentadas en este trabajo se observó que tienen **similitud** en el hecho de que los valores de índices de homogeneidad e índices de homogeneidad actualizado para las estructuras blanco de planeación son mayores que para las estructuras blanco clínicas debido a que las estructuras clínicas están contenidas en las de planeación, de esta forma para dar cubrimiento a las estructuras de planeación se necesita más dosis y por ello los índices resultan mayores.
- 3. Desde el punto de vista radiobiológico con el índice de gEUD se puede considerar que las cuatro técnicas de tratamiento permiten obtener planeaciones dosimétricas donde los órganos a riesgo más importantes en cabeza y cuello reciben una dosis tolerable para no generar efectos adversos del tratamiento. Esto es posible gracias al proceso de optimización intrínseco que estas técnicas tienen.

4. Análisis comparativo de las distribuciones de dosis tridimensionales

Resumen

Las distribuciones de dosis calculadas con un sistema de planeación de tratamiento consiste en una imagen tridimensional con valores de dosis. Cuando se realiza diferentes planeaciones para un caso de radioterapia usualmente se analizan los constraints con los histogramas dosis volumen y se evalúan visualmente cortes de las distribuciones de dosis. En este capítulo se presentan novedosos métodos de comparación entre las distribuciones de dosis obtenidas durante distintas planeaciones de tratamiento de radioterapia con una distribución de dosis idealizada para el tratamiento aplicando la función γ . La comparación de las distribuciones de dosis se realiza mediante procesamiento digital de imágenes con las librerías GDCM, ITK y VTK. Para el caso de 10 pacientes virtuales de cáncer de cabeza y cuello, se muestra la comparación de las distribuciones de dosis obtenidas con las técnicas de planeación dosimétricas para SIB-IMRT, IMRT, SIB-VMAT (rapidArc[®]) y VMAT (rapidArc[®]).

Abstract

The dose distributions calculated with a treatment planning system consists of a threedimensional image with dose values. When different plans is performed for a case of radiotherapy usually the constraints are analyzed with the dose volume histograms and the dose distributions are visually evaluated. In this chapter is presented novel comparison methods of dose distributions obtained during different dosimetric plannings with an idealized treatment with the γ function. The comparison of dose distributions is done through digital image processing with GDCM, ITK and VTK libraries. In the case of 10 virtual patients with head and neck cancer is shown a dose distributions comparison obtained with dosimetric techniques for SIB-IMRT planning, IMRT, VMAT (rapidArc^(R)) and SIB-VMAT (rapidArc^(R)).

4.1. Introducción

Un análisis comparativo entre distribuciones tridimensionales de dosis puede ser una tarea complicada puesto que cada una de las distribuciones tienen un gran número de valores. Por ejemplo, en el caso de cabeza y cuello el campo de visión¹ de las imágenes puede estar entre 50*cm* de alto, 30*cm* de ancho y 30*cm* de largo y por otro lado el espaciamiento alrededor de 3*mm*, 2,5*mm* y 2,5*mm*. Así las dimensiones de la imagen es de aproximadamente $\frac{50cm}{0,3cm} \approx 150$ cortes de alto, $\frac{30cm}{0,25cm} \approx 100$ cortes de ancho y $\frac{30cm}{0,25cm} \approx 100$ cortes de largo, por lo tanto la imagen posee más de un millón y medio de voxeles o elementos.

En radioterapia una prueba de control de calidad consiste en realizar una verificación de la distribución de dosis mediante una comparación entre una distribución de dosis medida y una estimada. Al principio se empleó la diferencia de dosis como criterio de aceptación, pero es eficiente solo en áreas de bajo gradiente y resulta que la diferencia de dosis es alta a priori[20]. Luego Van Dyk et.al. subdividió la comparación de distribución de dosis en regiones de alto y bajo gradiente, donde con bajo gradiente se hace la comparación punto a punto y con alto gradiente la comparación con los puntos cercanos [20]. Luego, el mismo Dyk et.al. Empleó la distancia de conformidad (distance to agreement DTA) como la distancia entre el punto evaluado y el punto más cercano en la distribución de dosis comparada[20]. Más adelante, Harms et.al. combinó ambas imágenes de evaluación en una imagen y empleó un criterio pass fail para la diferencia de dosis y DTA, en donde[20]: Primero, los puntos que fallan ambos criterios son identificados en una composición binaria. Y segundo, la diferencia de dosis es mostrada con la distribución compuesta binaria resaltando las regiones de inconformidad. Esto presenta la desventaja de que la diferencia puede incrementar el error en las regiones de altos gradientes [20]. Finalmente, Low et. al. incorporó simultáneamente el criterio de dosis y distancia obteniendo un índice de estimación llamada la función gamma [20].

4.1.1. Marco teórico

Existen diferentes métodos para comparar distribuciones de dosis entre los que están:

Comparación de perfiles

Un perfíl de dosis es la curva que representa un barrido de los valores de imagen de dosis a lo largo de cualquiera de los ejes de la imagen. Así en tres dimensiones se puede obtener perfiles a lo largo del eje x, y y z.

La comparación de perfiles de dosis implica técnicas de comparación de curvas.

¹El campo de visión son las dimensiones espaciales que los puntos de la imagen representan. En inglés FOV por sus siglas *Field of View*

Diferencia de dosis

En este caso existen dos opciones, que se describen a continuación.

- 1. Diferencia de dosis absoluta: Para esta comparación se toma el valor absoluto de la diferencia y el criterio de aceptación es el 3% de la dosis máxima.
- 2. Diferencia de dosis relativa: Para esta comparación se toma tanto los valores negativos como positivos de la diferencia y el criterio de aceptación también es el 3 % de la dosis máxima.

Histograma de la diferencia de dosis

En esta método de comparación de distribuciones de dosis se realiza una distribución de valores de diferencia de dosis por cada distribución de dosis. Este método puede revelar potenciales oblicuidades de la diferencia de dosis.

Herramienta de análisis del gradiente de dosis

Este método se desarrollo para evaluar las diferencias de dosis locales basadas en el gradiente de dosis en cada posición de la distribución de dosis. La herramienta de análisis del gradiente de dosis es definida como la suma de los cuadrados de todos los gradientes locales alrededor de cada posición calculada. La vecindad evaluada en 3 dimensiones es la vecindad 6, es decir sin tener en cuenta las diagonales. Para este método:

1. Se estima en cada punto el gradiente generalizado en la posición i dado por:

$$G_i = \sqrt{\sum_{j=1}^n \left(\frac{\Delta d_{ij}}{\Delta x_{ij}}\right)^2} \tag{4-1}$$

donde Δd_{ij} es la diferencia de dosis entre la posición *i* y cada vecino *j*; y Δx_{ij} es la distancia entre la posición *i* y cada vecino *j*.

- 2. Se escoge un parámetro de distancia d_{gc} , como la incertidumbre geométrica (comúnmente 1mm).
- 3. Para remover esta incertidumbre se halla la compensación de gradiente como:

$$DD_{gc} = |DD_i| - (G_i)(d_{gc})$$
(4-2)

donde DD_i es la diferencia absoluta de dosis en el punto *i* de cada distribución.

Distancia al arreglo

Para la distancia al arreglo se estima la distancia espacial entre un punto en la distribución de dosis de referencia y el punto más cercano dentro del arreglo en la distribución de dosis comparado que tiene la misma dosis. Matemáticamente es:

$$DTA(\overrightarrow{r}_{r}) = \min\{|\overrightarrow{r}_{c} - \overrightarrow{r}_{r}|\}, \quad \forall \overrightarrow{r}_{c}$$

$$(4-3)$$

Función Gamma

La función Gamma fue presentada por Low para comparar dos distribuciones de dosis y consiste en una serie de filtros en cascada para evaluación de dos distribuciones de dosis por medio de las correspondientes distribuciones de fluencia (la fluencia calculada y la fluencia administrada)[20]. Como criterio de aceptación de la función Gamma se emplea tanto la diferencia de dosis punto a punto (ΔD), como de una vecindad dentro de la distancia de conformidad DTA por sus siglas en inglés Distance To agreement[20]. Así, una medida cuantitativa de la exactitud de la correspondencia entre distribuciones se determina por el punto con la menor desviación del punto de referencia, es decir, el punto para el cual $\Gamma_r(r_c, D_c)$ es mínima. Siendo $\Gamma_r(r_c, D_c)$ definida como[20]:

$$\Gamma_r(D_c, r_c) = \sqrt{\frac{\Delta r^2}{\Delta d^2} + \frac{\delta^2(\overrightarrow{r}_r, \overrightarrow{r}_c)}{\Delta D^2}} \le 1$$
(4-4)

donde:

- 1. $\Delta r = |r_r r_c|$ es la distancia entre el punto de referencia y el comparado.
- 2. $\delta(\overrightarrow{r}_r, \overrightarrow{r}_c) = D_c(r_c) D_r(r_r)$ es la diferencia de las dosis en los puntos de referencia y comparado.

Tanto el punto r_r como r_c deben estar dentro de la DTA.

Este valor mínimo es referido como el índice de calidad $\gamma(r_r)$ del punto de referencia[20]. El criterio de aceptación es[20]:

- 1. $\gamma(r_r) \leq 1$, la correspondencia está dentro del criterio de aceptación específico.
- 2. $\gamma(r_r) > 1$, cuando no lo está.

Así finalmente, el índice γ es:

$$\gamma(\overrightarrow{r}_r) = \min\{\Gamma_r(D_c, r_c)\}, \quad \forall \overrightarrow{r}_c$$
(4-5)

Los parámetros aceptados son $\triangle D = 3\%$ y DTA = 3mm o bien $\triangle D = 5\%$ y DTA = 5mm.

Criterio de diferencia de dosis local y global Para esta variación de la función gamma el parámetro de variación de dosis se calcula con el máximo local de dosis en el arreglo en lugar de emplear el máximo de toda la distribución de dosis.

Ángulo Gamma $\gamma \theta$ Esta variación de la función gamma fue presentado por Stock et. al. y se define como el ángulo entre el eje de la diferencia de dosis $\vec{\delta}$ y el vector entre $D(\vec{r}_r)$ y $D(\vec{r}_c)[21]$.

Para este cálculo se toma siempre los valores absolutos para las diferencias de manera que el ángulo siempre está entre 0 y $\pi/2$. Si el ángulo gamma está entre 0 y $\pi/4$ el índice gamma está dominado por el criterio Δd y si está entre $\pi/4$ y $\pi/2$ está dominado por el criterio DTA[21].

Histograma Gamma Introducido por primera vez por Spezi y Lewis, presentando el histograma de los índices gamma tanto en frecuencia como en frecuencia acumulada.

4.1.2. Planteamiento del problema

Dado que la función Gamma permite comparar dos distribuciones de dosis tridimensionales en regiones de altos y bajos gradientes, en este capítulo se empleará la función Gamma aplicada como un filtro espacial adaptativo para realizar la comparación de las distribuciones tridimensionales de dosis calculas con cada técnica planteada en este Trabajo Final de Maestría y la distribución tridimensional de dosis ideal construida a partir de las estructuras objetivo empleadas durante la planeación. En la siguiente sección se plantea la metodología para crear la distribución tridimensional de dosis ideal, la creación de la distribución tridimensional de dosis acumulada para los planes calculados para dosis escalada y el cálculo del índice Gamma por medio de la evaluación de la función Gamma. Por último se presenta los resultados y discusión obtenidos.

4.2. Metodología

4.2.1. Construcción de la imagen de dosis ideal

La imagen tridimensional de distribución de dosis ideal propuesta consiste en una imagen con valores esperados para las distintas estructuras importantes desde el punto de vista de la planeación.

Consideraciones

Las dosis prescritas para cada volumen de planeación PTVs son requeridas como datos de configuración y se proveen a través de un archivo de texto plano. Para todos los planes en

este trabajo final de maestría estas dosis son:

- 1. 7000cGy en el PTV111.
- 2. 5600cGy en el PTV11.
- 3. 4400cGy en el PTV1.

y fuera de estas estructuras se espera que la dosis sea la mínima, puesto que ahí se encuentra tejido sano y órganos a riesgo. En la región del BODY fuera de los volúmenes de tratamiento se consideró:

- 1. Una dosis del 30% de la dosis para el PTV1 en la región de tejido sano y órganos a riesgo en los cortes comprometidos con las entradas y salidas de los campos de irradiación².
- 2. Una dosis del 10% de la dosis prescrita para el PTV1, en los cortes no comprometidos por las entradas y salidas de los campos de irradiación.

Procesamiento digital

El procesamiento digital realizado para obtener la reconstrucción de la distribución tridimensional de dosis ideal para cada sujeto se implementó en el método Run de la clase hncStructures2IdealDose (ver documentación Doxygen) y es el siguiente:

- 1. Lectura de las imágenes binarias de las estructuras de interés que se obtuvieron en el proceso de anonimización (cap 2) mediante las librería itkImageFileReader de ITK. Este proceso se implementó en el método ReadImages de la clase hncStructures2IdealDose (ver documentación Doxygen). Estas imágenes son:
 - a) El cuerpo total (BODY).
 - b) El cuerpo comprometido con las entradas y salidas de los campos de irradiación (BODYC).
 - c) El volumen de planeación con dosis menor (PTV1).
 - d) El volumen de planeación con dosis intermedia (PTV11).
 - e) El volumen de planeación con dosis mayor (PTV111).
- 2. Creación de la imagen de distribución tridimensional de dosis ideal con las mismas propiedades que las imágenes de estructuras³ y con valor de "0s" en todos los voxeles. La obtención de la imagen se realiza haciendo uso de la librería vtkImageData de VTK y el este proceso se implementó en el método BuildEmptyImage de la clase hncStructures2IdealDose (ver documentación Doxygen).

 $^{^2 {\}rm Todos}$ los planes para este Trabajo Final de Maestría se realizaron con campos coplanares.

³Las propiedades de una imagen son parámetros como el tamaño de la matriz de puntos (pixeles o voxeles), espaciamiento, origen, tipo de dato almacenado, etc.

- 3. Construcción de la imagen de distribución tridimensional de dosis ideal con los valores de dosis y regiones descritos en la subsección de consideraciones por medio de métodos de la librería vtkImageData de VTK, para ello se empleó la librería itkImageToVTKImageFilter⁴ de ITK.
- 4. Escritura de la imagen de distribución tridimensional de dosis ideal en un archivo de formato NIFTY. Este proceso se implementó en el método WriteImageOutput de la clase hncStructures2IdealDose (ver documentación Doxygen), en donde se utilizó la librería itkImageFileWriter de ITK.

4.2.2. Construcción de la dosis acumulada en planeación escalada

Durante la planeación de un tratamiento con la dosis escalada se realiza un plan por cada volumen de planeación (PTV) y entonces se tiene una imagen de distribución tridimensional de dosis por cada PTV. Una distribución tridimensional de dosis equivalente a una ideal o una realizada durante la planeación con refuerzo integrado sería el resultado de la suma de las distribuciones tridimensionales de dosis obtenidas para el PTV1, PTV11 y PTV111.

Procesamiento digital

El procesamiento digital implementado en las clases hncFileName2PreprocessSearcher y hncTotalDose se desarrolló en las siguientes etapas:

- 1. Identificación de los planes escalados mediante palabras clave IMRT y VMAT con prefijos 1, 11 y 111, este proceso se implementó en el método Run de la clase hncFile-Name2PreprocessSearcher.
- 2. Lectura de las distribuciones tridimensionales de dosis mediante la librería itkImageFileReader de ITK e implementada en el método ReadImages de la clase hncTotalDose.
- 3. Construcción de la imagen de distribución tridimensional de dosis acumulada con valores de 0 en los voxeles y las mismas propiedades de las imágenes de las distribuciones tridimensionales de dosis escaladas, mediante la implementación de la librería itkImageToVTKImageFilter y vtkImageData de ITK y VTK en el método BuildEmptyImage de la clase hncTotalDose.
- 4. Adición de las distribuciones tridimensionales de dosis mediante la implementación de la librería vtkImageData de VTK en el método AddDoseImage de la clase hncTotal-Dose.

⁴Esta librería es puente entre las librerías de ITK y VTK.

5. Escritura de la distribución tridimensional de dosis acumulada en un archivo de imagen de formato NIFTY, mediante la implementación de la librería itkImageFileWriter de ITK en el método WriteImageOutput de la clase hncTotalDose.

4.2.3. Evaluación de la función Gamma

Para este análisis comparativo las distribuciones tridimensional dosis por cada sujeto son:

- 1. La ideal, empleada como patrón de comparación.
- 2. La acumulada y obtenida con la técnica IMRT con dosis escalada.
- 3. La obtenida con la técnica IMRT con refuerzo integrado.
- 4. La acumulada y obtenida con la técnica VMAT con dosis escalada.
- 5. La obtenida con la técnica VMAT con refuerzo integrado.

4.3. Resultados y Discusión

4.3.1. Imagen de dosis ideal por sujeto

En la figura 4-1 se muestra la distribución tridimensional de dosis construida con el procedimiento descrito en la metodología para uno de los casos seleccionado para mostrar los resultados. En el anexo C se muestran las 10 distribuciones de dosis ideales empleadas en este Trabajo Final de Maestría. En color violeta se muestra la región de tejido sano y OAR en los cortes no comprometidos con las entradas y salidas de los campos de irradiación con una dosis de 440cGy. En color azul se muestra la región de tejido sano y OAR en los cortes comprometidos con las entradas y salidas de los campos de irradiación con una dosis de 1320cGy. La región amarilla es la región de PTV1 que no hace parte del PTV11 ni del PTV111 donde se desea una dosis de 4400cGy. En color naranja se presenta la región de PTV11 que no hace parte del PTV111 donde se espera una dosis de 5600cGy. Y finalmente, en rojo se muestra la región de PTV111 en donde la dosis prescrita es de 7000cGy.

4.3.2. Dosis total en planeación escalada

En las figuras **4-2** y **4-4** se muestran los mosaicos de la suma de las distribuciones de dosis obtenidas con las técnicas IMRT y VMAT con la dosis escalada. Mientras que en las figuras **4-3** y **4-5** se muestran solamente los cortes 44 en donde se observa el efecto suavizado de la distribución de dosis que se obtiene con la técnica de VMAT en contraste con la obtenida con la técnica de IMRT.

Figura 4-1.: Distribución tridimensional de dosis ideal reconstruida a partir de las dosis prescritas y el conjunto de estructuras.

IMRT SUMA

En esta sección se puede apreciar y comprender el uso de la tabla de colores empleada en radioterapia, en donde el color rojo siempre es *asignado* al mayor valor de dosis de la distri-

bución tridimensional y el negro para el menor. De este modo se tienen colores desde el rojo hasta el negro en las gráficas de mosaico presentadas tanto para las distribuciones tridimensionales de dosis de cada volumen de planeación como para la distribución tridimensional de dosis acumulada. Por tanto el color es una representación de dosis relativa y el empleo de todo el espectro de colores visibles es apropiado para realizar el análisis visual.

Finalmente, en el anexo B se muestran todas las distribuciones tridimensionales de dosis acumuladas, obtenidas con todas las técnicas de estudio de este Trabajo Final de Maestría.

IMRT PTV1 + IMRT PTV11 + IMRT PTV111 = IMRT SUMA

Figura 4-3.: Corte 44 de la construcción de la distribución tridimensional de dosis acumulativa presentada en la figura 4-2.

4.3.3. Comparación tridimensional de distribuciones de dosis con evaluación γ

Los valores de la función γ se presentan en las tablas del anexo G, en donde se empleó como distribuciones de dosis de referencia las distribuciones de dosis ideal presentadas en el anexo C. Se evaluó la función γ en regiones de interés tales como las estructuras blanco (PTV), en los órganos a riesgo (OAR) y en ambas regiones denominada como la región total (PTV + OAR).

En la figura 4-6 se presenta los valores γ en las regiones de interés obtenidas para las planeaciones realizadas con todas las técnicas de estudio de este trabajo y en la tabla 4-1 se muestra las medidas de tendencia central y de dispersión por regiones de interés. La función γ evaluada en la región de OAR y la función γ evaluada en la región PTV + OAR presentaron similar comportamiento en todos los casos con el criterio de diferencia de dosis de 3% relativa al máximo global de dosis en la distribución de dosis y una distancia DTA de 3mm.

Como se puede observar en la figura **4-6**a) la función γ en la región de PTV las planeaciones dosimétricas obtenidas al aplicar técnicas de refuerzo integrado presentaron un mejor índice γ , debido a que durante el proceso de planeación cada punto de estos volúmenes se optimi-

VMAT SUMA

Figura 4-4.: Mosaico de la construcción de la distribución tridimensional de dosis acumulativa para la planeación con la técnica VMAT escalada.

VMAT PTV1 + VMAT PTV11 + VMAT PTV111 = VMAT SUMA

Figura 4-5.: Corte 44 de la construcción de la distribución tridimensional de dosis acumulativa presentada en la figura 4-4.

zaron para conseguir las dosis de prescripción, mientras que al escalar la dosis la distribución de dosis tridimensional se obtuvo al superponer las distribuciones de dosis realizadas para cada PTV.

Los valores de la función γ no son comparables con los resultados obtenidos durante la evaluación de planeaciones dosimétricas, puesto que la dosis ideal difiere de las distribuciones de dosis calculadas. Aunque los resultados en general son aceptables puesto en más de la mitad son superiores a 90 % para un criterio de 3 % de diferencia de dosis respecto al máximo global y una distancia al arreglo de 3*mm*.

Figura 4-6.: Valores de la función γ obtenidos para las cuatro técnicas en los 10 casos: a) La región de PTV, b) La región de OAR y c) Ambas regiones.

4.3.4. Comparación tridimensional de distribuciones de dosis con evaluación δ_D

Los valores del índice de diferencia de dosis relativa δ_D , se estimó con un criterio de aceptación de 3% del máximo global de la distribución tridimensional de dosis. Los valores de la función δ_D se presentan en las tablas del anexo G, en donde también se empleó como distribución de dosis de referencia las distribuciones de dosis ideales presentadas en el anexo C.

De forma análoga a la función γ en la figura **4-7** se presenta los valores de δ_D en las regiones de interés, mientras que las medidas de tendencia central y de dispersión por regiones de interés para este índice se muestran en la tabla **4-2**. La función δ_D en la región de órganos a

ROI	Plan	$\overline{\gamma}$	σ	γ_{min}	γ_{max}
PTV	escaladoIMRT	92.0492	3.19808	80.6266	100
PTV	escaladoRA	87.5532	3.11899	75.8327	100
PTV	SIBIMRT	94.3937	3.23855	82.2796	100
PTV	SIBRA	96.7902	3.2794	92.1617	100
OAR	escaladoIMRT	93.0139	3.21479	79.9064	100
OAR	escaladoRA	91.4381	3.18744	81.9784	100
OAR	SIBIMRT	89.2417	3.14893	73.6388	100
OAR	SIBRA	92.2757	3.20201	82.09	99.9658
PTV+OAR	escaladoIMRT	92.9531	3.21374	80.1747	100
PTV+OAR	escaladoRA	91.1246	3.18197	82.0983	100
PTV+OAR	SIBIMRT	89.8233	3.15917	76.3849	100
PTV+OAR	SIBRA	92.7724	3.21061	83.7486	99.9674

Tabla 4-1.: Medidas de tendencia central y de dispersión para el índice γ en cada región de interés (ROI) por cada técnica.

riesgo OAR y en la región PTV + OAR presentan similar comportamiento y se puede apreciar que en estas regiones las planeaciones realizadas con las técnicas de VMAT presentaron una mejor evaluación del índice δ_D . Dado que en la región de OAR de la distribución de dosis ideal los valores son pequeños se puede decir que las planeaciones dosimétricas obtenidas con las técnicas que emplean arcos dinámicos entregan menos dosis a los OAR. Aunque la comparación se realizó punto a punto, no en una vecindad.

Por otro lado, en la región de estructuras blanco se puede observar que la diferencia relativa respecto a la máxima dosis de la distribución las planeaciones realizadas con técnicas con refuerzo integrado presentan mejor evaluación del índice δ_D , aunque con bajos valores. Estos resultados bajos se pueden deber a que la comparación se realiza punto a punto de las distribuciones de dosis.

4.3.5. Comparación tridimensional de distribuciones de dosis con evaluación *DTA*

Los valores del índice de distancia al arreglo DTA se estimó con un criterio de aceptación de 3mm. Los valores de la función DTA se presentan en las tablas del anexo G, en donde

Figura 4-7.: Función δ_D obtenidos con las cuatro técnicas en los 10 casos para a) La región de PTV b) La región de OAR y c) Ambas regiones.

también se empleó como distribución de dosis de referencia la distribución de dosis ideal presentadas en el anexo C.

De forma análoga a la función δ_D en la figura **4-8** se presenta los valores de DTA en las regiones de interés y los valores de tendencia central y dispersión por regiones de interés en la tabla **4-2**. La función DTA en la región de órganos a riesgo OAR y en la región PTV + OAR presentaron similar comportamiento y se puede apreciar que en estas regiones las planeaciones realizadas con las técnicas de VMAT presentaron una mejor evaluación DTA. Así, la distancia al vóxel cercano con la menor diferencia de dosis respecto a la distribución de dosis ideal es menor con las técnicas con arcos dinámicos que con las técnicas de campos estáticos dinámicos.

ROI	Plan	$\overline{\delta_D}$	σ	$\delta_{D_{min}}$	$\delta_{D_{max}}$
PTV	escaladoIMRT	17.0492	1.37636	3.45937	37.8016
PTV	escaladoRA	9.11092	1.00614	0.989033	17.2066
PTV	SIBIMRT	28.2758	1.7725	10.1068	41.0013
PTV	SIBRA	29.926	1.82349	18.8453	41.3114
OAR	escaladoIMRT	12.7568	1.19055	8.32287	19.3952
OAR	escaladoRA	18.1295	1.41929	14.6027	26.139
OAR	SIBIMRT	12.2021	1.16438	7.53121	19.8925
OAR	SIBRA	18.5444	1.43544	12.0375	26.5033
PTV+OAR	escaladoIMRT	13.1319	1.20793	8.38524	18.4368
PTV+OAR	escaladoRA	17.2408	1.38407	13.3897	24.0196
PTV+OAR	SIBIMRT	13.6439	1.23126	8.41789	20.813
PTV+OAR	SIBRA	19.5489	1.4738	12.7792	27.347

Tabla 4-2.: Medidas de tendencia e	central y de	${\rm dispersión}$	para el	l índice δ	$_D$ en	cada	región
de interés (ROI) por ca	ada técnica.						

En relación a la región de estructuras blanco, se puede observar que la distancia al arreglo el criterio DTA presenta un mejor resultado en las planeaciones realizadas con técnicas con refuerzo integrado, tal como ocurrió con el índice δ_D .

4.3.6. Comparación tridimensional de distribuciones de dosis con evaluación γ_{θ}

Los valores del índice del ángulo γ (γ_{θ}), se estimó con un criterio de aceptación de para la distancia del arreglo 3mm y una diferencia de dosis relativa al máximo de la distribución de dosis. Los valores de la función γ_{θ} se presentan en las tablas del anexo G, en donde también se empleó como distribución de dosis de referencia la distribución de dosis ideal presentadas en el anexo C.

En la figura **4-9** se presenta los valores de γ_{θ} en las regiones de interés de volumen blanco de tratamiento, región de órganos a riesgo y en ambas. En la tabla **4-4** se muestran los valores de tendencia central y de dispersión por regiones de interés.

La función γ_{θ} en la región de órganos a riesgo OAR y en la región total también presentaron similar comportamiento con todas las técnicas de planeación y no se puede apreciar diferen-

Figura 4-8.: Valores de función *DTA* obtenidos con las cuatro técnicas en los 10 casos para a) La región de PTV b) La región de OAR y c) PTV + OAR.

cias entre estas.

En relación a la región de estructuras blanco, se puede observar que para cada caso y cada planeación el índice γ_{θ} obtenido es más alto que en la región PTV+OAR y de OAR. Esto significa que el valor de distancia al arreglo es mayor que el valor de la diferencia de dosis relativa al máximo de la distribución en la región de estructuras blanco, ya que implica un ángulo mayor de 45°.

ROI	Plan	\overline{DTA}	σ	DTA_{min}	DTA_{max}
PTV	escaladoIMRT	31.5616	1.87266	7.99861	52.7731
PTV	escaladoRA	21.6973	1.55268	1.67194	37.6409
PTV	SIBIMRT	48.3006	2.31662	25.7369	64.1613
PTV	SIBRA	56.2425	2.49983	40.4427	74.4599
OAR	escaladoIMRT	25.4818	1.68265	16.4353	39.9526
OAR	escaladoRA	32.1066	1.88876	24.0266	44.7053
OAR	SIBIMRT	24.9009	1.66336	15.379	40.5506
OAR	SIBRA	32.5221	1.90094	23.6561	45.0223
PTV+OAR	escaladoIMRT	26.0004	1.69969	17.7197	37.4349
PTV+OAR	escaladoRA	31.0658	1.85789	21.8379	41.8996
PTV+OAR	SIBIMRT	26.9958	1.73192	17.044	41.8542
PTV+OAR	SIBRA	34.6432	1.96195	25.1703	47.0662

Tabla 4-3.: Medidas de tendencia central y de dispersión para el índice DTA en cada región
 de interés (ROI) por cada técnica.

Figura 4-9.: Función Γ_{θ} obtenidos con las cuatro técnicas en los 10 casos para a) La región de PTV b) La región de OAR y c) PTV + OAR.

ROI	Plan	$\overline{\gamma_{ heta}}$	σ	$\gamma_{\theta_{min}}$	$\gamma_{\theta_{max}}$
PTV	escaladoIMRT	71.4427	2.81746	59.9375	80.6312
PTV	escaladoRA	70.4337	2.79749	57.4293	92.6047
PTV	SIBIMRT	55.0475	2.47313	46.1774	61.0862
PTV	SIBRA	55.6489	2.48661	45.5138	66.0748
OAR	escaladoIMRT	52.4719	2.41458	34.2303	73.6753
OAR	escaladoRA	54.4954	2.4607	39.1938	73.205
OAR	SIBIMRT	53.6736	2.44208	33.4381	75.1887
OAR	SIBRA	54.9878	2.47179	39.0165	72.344
PTV+OAR	escaladoIMRT	53.8842	2.44686	36.2931	74.6807
PTV+OAR	escaladoRA	55.6015	2.48555	40.7243	73.0889
PTV+OAR	SIBIMRT	53.5191	2.43856	35.0438	72.4989
PTV+OAR	SIBRA	54.7443	2.46631	40.0746	68.4958

Tabla 4-4.: Medidas de tendencia central y de dispersión para el índice γ_{θ} en cada región de interés (ROI) por cada técnica.

4.4. Conclusiones

4.4.1. De acuerdo a las ventajas y desventajas

Como se puede observar en las figuras 4-6a), 4-7a) y 4-8a) las funciones γ , δ_D y DTA en las regiones de PTV se obtuvo un mejor índice γ y δ_D con las planeaciones dosimétricas obtenidas al aplicar técnicas de refuerzo integrado presentaron, debido a que durante el proceso de planeación cada punto de estos volúmenes se optimizaron para conseguir las dosis de prescripción, mientras que al escalar la dosis la distribución de dosis tridimensional se obtuvo al superponer las distribuciones de dosis realizadas para cada PTV.

Las planeaciones dosimétricas obtenidas con las técnicas que emplean arcos dinámicos (VMAT) pueden entregar la dosis de prescripción como se observo al evaluar el índice γ evaluado en la región de PTV, al mismo tiempo que entregan menos dosis a los OAR tal y como muestra los índices δ_D y *DTA* evaluados para la región de OAR.

4.4.2. De acuerdo a las similitudes y diferencias

Las planeaciones dosimétricas realizadas con todas las técnicas presentan **similares** valores para los índices de criterio γ y γ_{θ} en las regiones de OAR y PTV+OAR en todas las planeaciones dosimétricas y además cumplieron con el criterio ($\gamma > 90\%$).

5. Discusión y conclusiones

En este capítulo se presenta una discusión de los resultados obtenidos en los capítulos anteriores para establecer las ventajas, desventajas, diferencias y semejanzas que las técnicas estudiadas en este trabajo ofrecen para el caso del tratamiento de radioterapia de cáncer de cabeza y cuello.

5.1. Planeaciones dosimétricas

Se realizaron las planeaciones dosimétricas para las estructuras blanco y para los órganos a riesgo de los 10 casos de este trabajo con el TPS Eclipse. Además se obtuvieron los histogramas de dosis volumen que se muestran en el anexo D y corresponden a las distrubuciones de dosis tridimensionales que se presentan en el anexo B.

Los planes de tratamiento, estructuras de planeación, distribuciones de dosis tridimensionales e histogramas dosis volumen exportados desde el TPS Eclipse se lograron anonimizar con un programa en C++ diseñado por el autor, eliminando los datos pertinentes a los pacientes seleccionados.

5.2. Cálculo de índices dosimétricos y radiobiológicos

Como se muestra en el capítulo 3 los índices dosimétricos y radiobiológicos se obtuvieron a partir de los histogramas dosis volumen, empleando un software en C++ realizado por el autor, donde los índices dosimétricos los calcula el programa para las estructuras blanco y los índices radiobiológicos tanto para las estructuras blanco como para los órganos a riesgo. Como es indispensable la comparación de las planeaciones dosimétricas, no solo a partir de los histogramas dosis volumen, sino también de las distribuciones tridimensionales con las funciones γ , la comparación global correspondiente se presenta en la sección final de este capítulo.

5.3. Cálculo y comparación de los índices γ para las distribuciones de dosis tridimensionales

El cálculo de los índices de las distribuciones de dosis tridimensionales, se realizaron adaptando el índice γ aplicado originalmente para comparar distribuciones de dosis calculadas con distribuciones de dosis medidas en la presencia de incertidumbres técnicas y dosimétricas. En la metodología del capítulo 4 se describen los métodos matemáticos para la obtención de los índices γ y sus diferentes componentes (diferencias de dosis absolutas y relativas, distancias de arreglo (DTA) y ángulo γ). Los valores para estos índices γ que se muestran en las tablas del anexo G, tanto para las estructuras blanco como para los OAR, se obtuvieron utilizando el programa diseñado en C++ por el autor.

La empleo del índice γ permite comparar las distribuciones de dosis obtenidas con las cuatro técnicas presentadas en este trabajo versus una "distribución de dosis ideal" construída a partir de las estructuras de planeación para cada caso y se presentan en el anexo C. Dado que las distribuciones de dosis para las cuatro técnicas cumplen clínicamente, no se podría tomar como patrón de referencia alguna de ellas. Por consiguiente se creó una distribución de dosis ideal que permite establecer un índice γ , el cual permitió cuantificar la diferencia entre las diferentes técnicas para los 10 casos presentados. Esta distribución de dosis ideal fue construida con un software en C++ diseñado por el autor.

La distribución de dosis ideal se debió construir en una resolución mayor que las distribuciones calculadas por el TPS Eclipse, porque cada uno de los puntos de estas se debía comparar con la vecindad del mismo punto en la distribución de dosis ideal. Para poder aplicar el índice γ comúnmente usado con criterio de 3mm y 3% y obtener valores aceptables en este rango, se realizó un remuestreo utilizando la libreria vtkImageRasample y obteniéndose una distribución de dosis ideal con resolución de 1mm.

5.4. Análisis comparativo

El análisis comparativo de las planeaciones dosimétricas se puede dividir en cuatro focos de acuerdo a:

- 1. Valores de dosis de las estructuras blanco, teniendo en cuenta las secciones 3.3.1 y 3.3.2.
- 2. Índices dosimétricos estimados para los volúmenes blanco, teniendo en cuenta las secciones 3.3.3, 3.3.4 y 3.3.5.
- 3. Índices radiobiológicos estimados para los volúmenes y órganos a riesgo, teniendo en cuenta las secciones 3.3.6 y 3.3.7.

4. Índices γ adaptados a este análisis para la región de volúmenes blanco y las regiones de tejidos a riesgo, teniendo en cuenta las secciones 4.3.3, 4.3.4, 4.3.5 y 4.3.6.

5.4.1. Valores de dosis

Teniendo en cuenta los valores de dosis D_0 y D_{95} se observa ventaja en el empleo de las técnicas con dosis escalada frente a las de refuerzo integrado en el caso de cáncer de cabeza y cuello, debido a que se puede lograr mayor dosis de cubrimiento a las estructuras blanco con puntos calientes menores que las obtenidas con técnicas de refuerzo integrado. Esto se puede lograr aprovechando la mayor libertad de campos y optimizaciones durante la aplicación de técnicas IMRT y VMAT con cada planeación dosimétrica realizada.

5.4.2. Índices dosimétricos

Las planeaciones dosimétricas realizadas con técnicas de dosis escaladas son mejores en el caso de cáncer de cabeza y cuello al poder lograr distribuciones de dosis con una diferencia menor entre la dosis máxima y la dosis de prescripcion, hecho que se puede observar al comparar los índices de homogeneidad, los índices de homogeneidad actualizado y los índices de conformación.

5.4.3. Índices radiobiológicos

Considerando que en el cálculo del índice radiobiológico EUD hay participación de constantes como el α , β , etc. hay una gran dependencia de lograr obtener una curva de supervivencia adecuada para estimar índices cuando en los tratamientos se planean para altas dosis, ya que es posible que la curva de supervivencia teórica tenga una disminución rápida. Por esta razón en este trabajo no se puede extraer una afirmación a cerca de ventajas o similitudes que alguna técnica de planeación tenga. Aunque para este calculo las planeaciones dosimétricas con el refuerzo integrado resultaron ser mejores.

Para los órganos a riesgo se obtuvo dosis gEUD aceptables para un tratamiento de radioterapia de cáncer de cabeza y cuello que no generarían efectos adversos gracias al proceso de optimización que las técnicas de modulación del haz con multiláminas poseen. Aunque la técnica que permite dosis más bajas es la VMAT con refuerzo integrado, debido a la posibilidad de más entradas de campos durante el giro y las capacidades del algoritmo de optimización de la fluencia de energía del plan completo de manera simultánea.

Para los volúmenes blanco de planeación se observó una dosis gEUD cercanas a las de prescripción en las estructuras de dosis intermedia y alta para todos las distribuciones de dosis, con valores más cercanos y por consiguiente más deseables las planeaciones dosimétricas obtenidas con el refuerzo de dosis integrado.

5.4.4. Índices γ adaptados

Desde el punto de vista de las distribuciones de dosis las planeaciones dosimétricas obtenidas con las técnicas que emplean arcos dinámicos (VMAT) son más convenientes que las de campos fijos dinámicos (IMRT), puesto que permiten entregar la dosis de prescripción (ver índice $\gamma \ y \ \delta_D$ en la región de PTV), mientras que entregan menos dosis a los OAR (ver índices δ_D en la región de OAR).

A. Planes de Tratamiento

A.1. Caso 1

IMRT1				
Campo	θ	ϕ		
1	0 °	0 °		
2	14°	0 °		
3	79°	0 °		
4	173 °	0 °		
5	191°	0 °		
6	281°	0 °		
7	340°	0 °		
8	231 °	0 °		
9	138°	0 °		

Tabla A-1.: Campos del plan IMRT1 para el caso 1 con la técnica escalado IMRT.

IMRT11			
Campo	θ	ϕ	
1	31°	0 °	
2	86°	0 °	
3	173 °	0 °	
4	185°	0 °	
5	275°	0 °	
6	331°	0 °	
7	180°	0 °	
8	139°	0 °	
9	203 °	0 °	

Tabla A-2.: Campos del plan IMRT11 para el caso 1 con la técnica escalado IMRT.

IMRT111			
Campo	θ	ϕ	
1	31°	0 °	
2	86°	0 °	
3	173 °	0 °	
4	185°	0 °	
5	275°	0 °	
6	331 °	0 °	
7	180°	0 °	
8	139°	0 °	
9	203 °	0 °	

Tabla A-3.: Campos del plan IMRT111 para el caso 1 con la técnica escalado IMRT.

RA1				
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido
1	181 °	179°	15°	CW
2	179 °	181 °	345 °	$\mathbf{C}\mathbf{C}$

Tabla A-4.: Campos del plan RA1 para el caso 1 con la técnica escalado RA.

RA11					
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido	
1	181 °	179°	30°	CW	
2	179°	181°	330 °	$\mathbf{C}\mathbf{C}$	

Tabla A-5.: Campos del plan RA11 para el caso 1 con la técnica escalado RA.

RA111					
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido	
1	181 °	179°	30°	CW	
2	179°	181°	330 °	CC	

Tabla A-6.: Campos del plan RA111 para el caso 1 con la técnica escalado RA.

SIBIMRT				
Campo	θ	ϕ		
1	0 °	0 °		
2	14°	0 °		
3	83°	0 °		
4	173°	0 °		
5	191°	0°		
6	271 °	0 °		
7	340 °	0 °		
8	306 °	0 °		
9	54°	0 °		

Tabla A-7.: Campos para el caso 1 con la técnica SIB-IMRT.

SIBRA				
Campo	$ heta_i$	$ heta_{f}$	ϕ	Sentido
1	181 °	179°	30°	CW
2	$179~^{\circ}$	181 °	330 °	CC

Tabla A-8.: Campos para el caso 1 con la técnica SIB-RA.

A.2. Caso 2

IMRT1			
Campo	θ	ϕ	
1	269.8 °	0 °	
2	317.1 °	0 °	
3	335.5 °	0 °	
4	7.1 °	0 °	
5	38.2°	0 °	
6	87°	0 °	
7	124 °	0 °	
8	168°	0 °	
9	214.8 °	0 °	

Tabla A-9.: Campos del plan IMRT1 para el caso 2 con la técnica escalado IMRT.

IMRT11			
Campo	θ	ϕ	
1	342 °	0 °	
2	0 °	0 °	
3	22°	0 °	
4	74°	0 °	
5	118°	0 °	
6	163 °	0 °	
7	190°	0°	

Tabla A-10.: Campos del plan IMRT11 para el caso 2 con la técnica escalado IMRT.

IMRT111		
Campo	θ	ϕ
1	342 °	0 °
2	0 °	0 °
3	22°	0 °
4	55°	0 °
5	118°	0 °
6	163°	0 °
7	190°	0 °

Tabla A-11.: Campos del plan IMRT111 para el caso 2 con la técnica escalado IMRT.

RA1				
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido
1	181 °	179 °	30°	CW
2	179 °	181 °	330 °	CC

Tabla A-12.: Campos del plan RA1 para el caso 2 con la técnica escalado RA.

RA11				
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido
1	181 °	179°	30°	CW
2	179 °	181 °	330°	CC

Tabla A-13.: Campos del plan RA11 para el caso 2 con la técnica escalado RA.

RA111			
Campo θ ϕ MU			
1	181 °	30°	0

SIBIMRT				
Campo	θ	ϕ		
1	342 °	0 °		
2	0 °	0 °		
3	22°	0 °		
4	55°	0 °		
5	118°	0 °		
6	163°	0 °		
7	190°	0 °		

Tabla A-15.: Campos para el caso 2 con la técnica SIB-IMRT.

SIBRA				
Campo	θ_i	$ heta_f$	ϕ	Sentido
1	181 °	179°	30°	CW
2	179°	181 °	330 $^{\circ}$	$\mathbf{C}\mathbf{C}$

Tabla A-16.: Campos para el caso 2 con la técnica SIB-RA.

A.3. Caso 3

IMRT1		
Campo	θ	ϕ
1	0 °	0 °
2	44°	0 °
3	309 °	0 °
4	341 °	0 °
5	83°	0 °
6	21°	0 °
7	276°	0 °
8	140°	0 °
9	209 °	0 °

Tabla A-17.: Campos del plan IMRT1 para el caso 3 con la técnica escalado IMRT.

IMRT11		
Campo	θ	ϕ
1	0 °	0 °
2	81°	0 °
3	115°	0 °
4	244 °	0 °
5	282 °	0 °
6	215°	0 °
7	128°	0 °

Tabla A-18.: Campos del plan IMRT11 para el caso 3 con la técnica escalado IMRT.

IMRT111			
Campo	θ	ϕ	
1	0 °	0 °	
2	74°	0 °	
3	115°	0 °	
4	248°	0 °	
5	285 °	0 °	

Tabla A-19.: Campos del plan IMRT111 para el caso 3 con la técnica escalado IMRT.

RA1				
Campo	$ heta_i$	$ heta_{f}$	ϕ	Sentido
1	181 °	179°	30°	CW
2	179°	181 °	330 °	$\mathbf{C}\mathbf{C}$

Tabla A-20.: Campos del plan RA1 para el caso 3 con la técnica escalado RA.

RA11				
Campo	$ heta_i$	$ heta_{f}$	ϕ	Sentido
1	181 °	179 °	15°	CW
2	179°	181 °	$345~^{\circ}$	$\mathbf{C}\mathbf{C}$

Tabla A-21.: Campos del plan RA11 para el caso 3 con la técnica escalado RA.

RA111				
Campo	θ_i	θ_{f}	ϕ	Sentido
1	270 °	90°	30°	CW
2	90°	270 °	330 °	CC

Tabla A-22.: Campos del plan RA111 para el caso 3 con la técnica escalado RA.

SIBIMRT				
Campo	θ	ϕ		
1	0 °	0 °		
2	44°	0 °		
3	309 °	0 °		
4	220 °	0 °		
5	142°	0 °		
6	87°	0 °		
7	274 °	0 °		

Tabla A-23.: Campos para el caso 3 con la técnica SIB-IMRT.

SIBRA				
Campo	$ heta_i$	θ_{f}	ϕ	Sentido
1	181°	179°	30°	CW
2	179°	181 °	330 °	CC

Tabla A-24.: Campos para el caso 3 con la técnica SIB-RA.

A.4. Caso 4

IMRT1			
Campo	θ	ϕ	
1	180°	0 °	
2	18°	0 °	
3	84°	0 °	
4	142.1 °	0 °	
5	225°	0 °	
6	274 °	0 °	
7	337°	0 °	
8	304 °	0 °	
9	71°	0 °	

Tabla A-25.: Campos del plan IMRT1 para el caso 4 con la técnica escalado IMRT.

IMRT11			
Campo	θ	ϕ	
1	35°	0 °	
2	0 °	0 °	
3	327 °	0 °	
4	267 °	0 °	
5	230 $^\circ$	0 °	

Tabla A-26.: Campos del plan IMRT11 para el caso 4 con la técnica escalado IMRT.

IMRT111			
Campo	θ	ϕ	
1	0 °	0 °	
2	270 $^{\circ}$	0 °	
3	221 °	0 °	
4	330 $^\circ$	0 °	
5	300 $^{\circ}$	0 °	

Tabla A-27.: Campos del plan IMRT111 para el caso 4 con la técnica escalado IMRT.

RA1				
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido
1	181 °	179 °	30°	CW
2	179 °	181 °	330°	CC

Tabla A-28.: Campos del plan RA1 para el caso 4 con la técnica escalado RA.

RA11			
Campo	θ	ϕ	MU
1	181 °	30°	0

Tabla A-29.: Campos del plan RA11 para el caso 4 con la técnica escalado RA.

RA111			
Campo θ ϕ MU			
1	181 °	30°	0

Tabla A-30.: Campos del plan RA111 para el caso 4 con la técnica escalado RA.

SIBIMRT				
Campo	θ	ϕ		
1	0 °	0 °		
2	18°	0 °		
3	84°	0 °		
4	136°	0 °		
5	225 °	0 °		
6	274 °	0 °		
7	337 °	0 °		
8	153 °	0 °		
9	202 °	0 °		

Tabla A-31.: Campos para el caso 4 con la técnica SIB-IMRT.

SIBRA					
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido	
1	181 °	179°	30°	CW	
2	179°	181 °	330 °	$\mathbf{C}\mathbf{C}$	

Tabla A-32.: Campos para el caso 4 con la técnica SIB-RA.

A.5. Caso 5

IMRT1				
Campo	θ	ϕ		
1	145°	0 °		
2	28°	0 °		
3	61°	0 °		
4	161°	0 °		
5	0 °	0 °		
6	191°	0 °		
7	294 °	0 °		
8	328°	0 °		
9	210 °	0 °		

Tabla A-33.: Campos del plan IMRT1 para el caso 5 con la técnica escalado IMRT.

IMRT11				
Campo	θ	ϕ		
1	208 °	0 °		
2	231 °	0 °		
3	323 °	0 °		
4	0 °	0 °		
5	24°	0 °		
6	116°	0 °		
7	148°	0 °		

Tabla A-34.: Campos del plan IMRT11 para el caso 5 con la técnica escalado IMRT.

IMRT111				
Campo	θ	ϕ		
1	208 °	0 °		
2	231 °	0 °		
3	323 °	0 °		
4	0 °	0 °		
5	24°	0 °		
6	116°	0 °		
7	148°	0 °		

Tabla A-35.: Campos del plan IMRT111 para el caso 5 con la técnica escalado IMRT.

RA1					
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido	
1	181°	179°	30°	CW	
2	179°	181°	330 °	CC	

Tabla A-36.: Campos del plan RA1 para el caso 5 con la técnica escalado RA.

RA11					
Campo	$ heta_i$	θ_{f}	ϕ	Sentido	
1	181 °	179°	25°	CW	
2	179 °	181 °	$335~^{\circ}$	CC	

Tabla A-37.: Campos del plan RA11 para el caso 5 con la técnica escalado RA.

RA111				
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido
1	181 °	179 °	25°	CW
2	$179~^{\circ}$	181 °	$335~^{\circ}$	CC

Tabla A-38.: Campos del plan RA111 para el caso 5 con la técnica escalado RA.

SIBIMRT				
Campo	θ	ϕ		
1	145°	0 °		
2	28°	0 °		
3	61°	0 °		
4	161 °	0 °		
5	0 °	0 °		
6	191°	0 °		
7	294°	0 °		
8	328 °	0 °		
9	210 °	0 °		

Tabla A-39.: Campos para el caso 5 con la técnica SIB-IMRT.

SIBRA				
Campo	$ heta_i$	$ heta_{f}$	ϕ	Sentido
1	181 °	179 °	10°	CW
2	179 °	181 °	350 °	CC

Tabla A-40.: Campos para el caso 5 con la técnica SIB-RA.

A.6. Caso 6

IMRT1				
Campo	θ	ϕ		
1	0 °	0 °		
2	30°	0 °		
3	59°	0 °		
4	91°	0 °		
5	182 °	0 °		
6	269°	0 °		
7	314 °	0 °		
8	160°	0 °		
9	214 °	0 °		

Tabla A-41.: Campos del plan IMRT1 para el caso 6 con la técnica escalado IMRT.

IMRT11				
Campo	θ	ϕ		
1	161 °	0 °		
2	8°	0 °		
3	70°	0 °		
4	140°	0 °		
5	327 °	0 °		

Tabla A-42.: Campos del plan IMRT11 para el caso 6 con la técnica escalado IMRT.

IMRT111				
Campo	θ	ϕ		
1	161 °	0 °		
2	8°	0 °		
3	70°	0 °		
4	140°	0 °		
5	327 °	0 °		

Tabla A-43.: Campos del plan IMRT111 para el caso 6 con la técnica escalado IMRT.

RA1					
Campo	$ heta_i$	$ heta_{f}$	ϕ	Sentido	
1	181 °	179 °	20°	CW	
2	179 °	181 °	340 °	CC	

Tabla A-44.: Campos del plan RA1 para el caso 6 con la técnica escalado RA.

RA11					
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido	
1	325 °	179°	30°	CW	
2	179 °	325 °	330 °	CC	

Tabla A-45.: Campos del plan RA11 para el caso 6 con la técnica escalado RA.

RA111					
Campo	$ heta_i$	$ heta_{f}$	ϕ	Sentido	
1	325 °	179 °	30°	CW	
2	$179~^{\circ}$	325 °	330 °	CC	

Tabla A-46.: Campos del plan RA111 para el caso 6 con la técnica escalado RA.

SIBIMRT				
Campo	θ	ϕ		
1	0 °	0 °		
2	30°	0°		
3	59°	0°		
4	91°	0°		
5	182°	0°		
6	269°	0 °		
7	314 °	0 °		
8	160 °	0 °		
9	214 °	0 °		

Tabla A-47.: Campos para el caso 6 con la técnica SIB-IMRT.

SIBRA					
Campo	$ heta_i$	θ_{f}	ϕ	Sentido	
1	181 °	179°	30°	CW	
2	179°	181 °	330 °	CC	

Tabla A-48.: Campos para el caso 6 con la técnica SIB-RA.

A.7. Caso 7

IMRT1				
Campo	θ	ϕ		
1	0 °	0 °		
2	17°	0 °		
3	86°	0 °		
4	133 °	0 °		
5	234 °	0 °		
6	273 °	0 °		
7	347 °	0 °		
8	155°	0 °		
9	205 °	0 °		

Tabla A-49.: Campos del plan IMRT1 para el caso 7 con la técnica escalado IMRT.

IMRT11				
Campo	θ	ϕ		
1	28°	0 °		
2	7 °	0 °		
3	341 °	0 °		
4	247 °	0 °		
5	213°	0 °		
6	195°	0 °		
7	174 °	0 °		

Tabla A-50.: Campos del plan IMRT11 para el caso 7 con la técnica escalado IMRT.

IMRT111				
Campo	θ	ϕ		
1	28°	0 °		
2	9°	0 °		
3	327 °	0 °		
4	289°	0 °		
5	235 °	0 °		

Tabla A-51.: Campos del plan IMRT111 para el caso 7 con la técnica escalado IMRT.

	RA1				
Campo	$ heta_i$	θ_{f}	ϕ	Sentido	
1	181 °	179°	10°	CW	
2	179 °	181 °	350 °	$\mathbf{C}\mathbf{C}$	

Tabla A-52.: Campos del plan RA1 para el caso 7 con la técnica escalado RA.

RA11					
Campo	$ heta_i$	$ heta_{f}$	ϕ	Sentido	
1	181 °	179 °	30°	CW	
2	179°	181 °	330 °	$\mathbf{C}\mathbf{C}$	

Tabla A-53.: Campos del plan RA11 para el caso 7 con la técnica escalado RA.

RA111					
Campo	θ_i	θ_{f}	ϕ	Sentido	
1	181 °	179°	30°	CW	
2	179 °	181 °	330 °	CC	

Tabla A-54.: Campos del plan RA111 para el caso 7 con la técnica escalado RA.

SIBIMRT				
Campo	θ	ϕ		
1	0 °	0 °		
2	17°	0 °		
3	86°	0 °		
4	133 °	0 °		
5	234 °	0 °		
6	273 °	0 °		
7	347 °	0 °		
8	140 °	0 °		
9	217°	0 °		

Tabla A-55.: Campos para el caso 7 con la técnica SIB-IMRT.

SIBRA				
Campo	θ_i	$ heta_{f}$	ϕ	Sentido
1	181 °	179°	30°	CW
2	$179~^{\circ}$	181 °	330 °	CC

Tabla A-56.: Campos para el caso 7 con la técnica SIB-RA.
A.8. Caso 8

IMRT1				
Campo	Campo θ			
1	0 °	0 °		
2	40°	0 °		
3	120°	0 °		
4	160°	0 °		
5	200 °	0 °		
6	240°	0 °		
7	320 °	0 °		
8	78.5°	0 °		
9	279.8 °	0 °		

Tabla A-57.: Campos del plan IMRT1 para el caso 8 con la técnica escalado IMRT.

IMRT11			
Campo	θ	ϕ	
1	53°	0 °	
2	258 °	0 °	
3	271 °	0 °	
4	317°	0 °	
5	0 °	0 °	

Tabla A-58.: Campos del plan IMRT11 para el caso 8 con la técnica escalado IMRT.

IMRT111			
Campo	θ	ϕ	
1	50°	0 °	
2	254 °	0 °	
3	271 °	0 °	
4	322 °	0 °	
5	0 °	0 °	

Tabla A-59.: Campos del plan IMRT111 para el caso 8 con la técnica escalado IMRT.

RA1				
Campo	$ heta_i$	$ heta_{f}$	ϕ	Sentido
1	181 °	179 °	30°	CW
2	$179~^{\circ}$	181 °	330 °	CC

Tabla A-60.: Campos del plan RA1 para el caso 8 con la técnica escalado RA.

RA11				
Campo	$ heta_i$	$ heta_{f}$	ϕ	Sentido
1	181 °	179 °	30°	CW
2	179 °	181 °	330 °	CC

Tabla A-61.: Campos del plan RA11 para el caso 8 con la técnica escalado RA.

RA111				
Campo θ_i θ_f ϕ Sentido				
1	181 °	0 °	30°	CW
2	0 °	181 °	330 °	CC

Tabla A-62.: Campos del plan RA111 para el caso 8 con la técnica escalado RA.

SIBIMRT				
Campo	θ	ϕ		
1	0 °	0 °		
2	22°	0 °		
3	335 °	0 °		
4	87°	0 °		
5	272°	0 °		
6	150°	0 °		
7	199°	0 °		

Tabla A-63.: Campos para el caso 8 con la técnica SIB-IMRT.

SIBRA				
Campo	θ_i	$ heta_f$	ϕ	Sentido
1	181°	179°	30°	CW
2	179°	181 °	330 °	$\mathbf{C}\mathbf{C}$

Tabla A-64.: Campos para el caso 8 con la técnica SIB-RA.

IMRT1				
Campo	Campo θ			
1	5 °	0 °		
2	59°	0 °		
3	78°	0 °		
4	147°	0 °		
5	203 °	0 °		
6	282 °	0 °		
7	340 °	0 °		
8	232 °	0 °		
9	118°	0 °		

A.9. Caso 9

Tabla A-65.: Campos del plan IMRT1 para el caso 9 con la técnica escalado IMRT.

IMRT11				
Campo	θ	ϕ		
1	0 °	0 °		
2	26°	0 °		
3	328 °	0 °		
4	133°	0 °		
5	224 °	0 °		
6	258°	0 °		
7	98°	0 °		

Tabla A-66.: Campos del plan IMRT11 para el caso 9 con la técnica escalado IMRT.

IMRT111			
Campo	θ	ϕ	
1	328 °	0 °	
2	0 °	0 °	
3	37°	0 °	
4	253 °	0 °	
5	276 $^\circ$	0 °	
6	99°	0 °	
7	128 °	0 °	

Tabla A-67.: Campos del plan IMRT111 para el caso 9 con la técnica escalado IMRT.

RA1				
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido
1	181°	179°	10°	CW
2	179°	181°	350 °	CC

Tabla A-68.: Campos del plan RA1 para el caso 9 con la técnica escalado RA.

RA11						
Campo	$ heta_i$	θ_{f}	ϕ	Sentido		
1	181 °	179°	10°	CW		
2	179 °	181 °	$350~^{\circ}$	$\mathbf{C}\mathbf{C}$		

Tabla A-69.: Campos del plan RA11 para el caso 9 con la técnica escalado RA.

RA111					
Campo	$ heta_i$	$ heta_{f}$	ϕ	Sentido	
1	181 °	179°	30°	CW	
2	$179~^{\circ}$	181 °	330°	$\mathbf{C}\mathbf{C}$	

Tabla A-70.: Campos del plan RA111 para el caso 9 con la técnica escalado RA.

SIBIMRT				
Campo	θ	ϕ		
1	0 °	0 °		
2	11°	0 °		
3	85°	0 °		
4	143 °	0 °		
5	214 °	0 °		
6	278°	0 °		
7	338 °	0 °		

Tabla A-71.: Campos para el caso 9 con la técnica SIB-IMRT.

SIBRA						
Campo	$ heta_i$	$ heta_{f}$	ϕ	Sentido		
1	181 °	179 °	15°	CW		
2	179 °	181 °	345 °	CC		

Tabla A-72.: Campos para el caso 9 con la técnica SIB-RA.

A.10. Caso 10

IMRT1					
Campo	θ	ϕ			
1	7 °	0 °			
2	25°	0 °			
3	46°	0 °			
4	91°	0 °			
5	142 °	0 °			
6	233 °	0 °			
7	269°	0 °			
8	294°	0 °			
9	335 °	0 °			

Tabla A-73.: Campos del plan IMRT1 para el caso 10 con la técnica escalado IMRT.

IMRT11				
Campo	θ	ϕ		
1	0 °	0 °		
2	23°	0 °		
3	$151~^{\circ}$	0 °		
4	207 °	0 °		
5	346 $^\circ$	0 °		
6	114 °	0 °		
7	239°	0 °		
8	275 °	0 °		
9	85°	0 °		

Tabla A-74.: Campos del plan IMRT11 para el caso 10 con la técnica escalado IMRT.

IMRT111				
Campo	θ	ϕ		
1	294 °	0 °		
2	$337~^{\circ}$	0 °		
3	0 °	0 °		
4	23°	0 °		
5	49°	0 °		
6	151 °	0 °		
7	170 $^{\circ}$	0 °		

Tabla A-75.: Campos del plan IMRT111 para el caso 10 con la técnica escalado IMRT.

RA1						
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido		
1	181 °	179 °	10°	CW		
2	179 °	181°	350°	CC		

Tabla A-76.: Campos del plan RA1 para el caso 10 con la técnica escalado RA.

RA11						
Campo	$ heta_i$	$ heta_f$	ϕ	Sentido		
1	181°	179°	30°	CW		
2	$179~^{\circ}$	181 °	330°	CC		

Tabla A-77.: Campos del plan RA11 para el caso 10 con la técnica escalado RA.

RA111						
Campo	θ_i	$ heta_f$	ϕ	Sentido		
1	181 °	179°	30°	CW		
2	179°	181 °	330 °	$\mathbf{C}\mathbf{C}$		

Tabla A-78.: Campos del plan RA111 para el caso 10 con la técnica escalado RA.

SIBIMRT				
Campo	θ	ϕ		
1	0 °	0 °		
2	15°	0 °		
3	116°	0 °		
4	146 $^{\circ}$	0 °		
5	213 °	0 °		
6	247 °	0 °		
7	343 °	0°		

Tabla A-79.: Campos para el caso 10 con la técnica SIB-IMRT.

SIBRA						
Campo	θ_i	$ heta_f$	ϕ	Sentido		
1	181°	179°	10°	CW		
2	179°	181 °	$350~^{\circ}$	$\mathbf{C}\mathbf{C}$		

Tabla A-80.: Campos para el caso 10 con la técnica SIB-RA.

B. Distribuciones de dosis

B.1. Caso 1

Figura B-1.: Distribución de dosis para el caso 1 con la técnica escalado IMRT.

Figura B-2.: Distribución de dosis para el caso 1 con la técnica escalado VMAT.

Figura B-3.: Distribución de dosis para el caso 1 con la técnica SIB-IMRT.

Figura B-4.: Distribución de dosis para el caso 1 con la técnica SIB-VMAT.

B.2. Caso 2

Figura B-5.: Distribución de dosis para el caso 2 con la técnica escalado IMRT.

Figura B-6.: Distribución de dosis para el caso 2 con la técnica escalado RA.

Figura B-7.: Distribución de dosis para el caso 2 con la técnica SIB-IMRT.

Figura B-8.: Distribución de dosis para el caso 2 con la técnica SIB-RA.

B.3. Caso 3

Figura B-9.: Distribución de dosis para el caso 3 con la técnica escalado IMRT.

Figura B-10.: Distribución de dosis para el caso 3 con la técnica escalado RA.

Figura B-11.: Distribución de dosis para el caso 3 con la técnica SIB-IMRT.

Figura B-12.: Distribución de dosis para el caso 3 con la técnica SIB-RA.

B.4. Caso 4

Figura B-13.: Distribución de dosis para el caso 4 con la técnica escalado IMRT.

Figura B-14.: Distribución de dosis para el caso 4 con la técnica escalado RA.

Figura B-15.: Distribución de dosis para el caso 4 con la técnica SIB-IMRT.

Figura B-16.: Distribución de dosis para el caso 4 con la técnica SIB-RA.

B.5. Caso 5

Figura B-17.: Distribución de dosis para el caso 5 con la técnica escalado IMRT.

Figura B-18.: Distribución de dosis para el caso 5 con la técnica escalado RA.

Figura B-19.: Distribución de dosis para el caso 5 con la técnica SIB-IMRT.

Figura B-20.: Distribución de dosis para el caso 5 con la técnica SIB-RA.

B.6. Caso 6

Figura B-21.: Distribución de dosis para el caso 6 con la técnica escalado IMRT.

Figura B-22.: Distribución de dosis para el caso 6 con la técnica escalado RA.

Figura B-23.: Distribución de dosis para el caso 6 con la técnica SIB-IMRT.

Figura B-24.: Distribución de dosis para el caso 6 con la técnica SIB-RA.

B.7. Caso 7

Figura B-25.: Distribución de dosis para el caso 7 con la técnica escalado IMRT.

Figura B-26.: Distribución de dosis para el caso 7 con la técnica escalado RA.

Figura B-27.: Distribución de dosis para el caso 7 con la técnica SIB-IMRT.

Figura B-28.: Distribución de dosis para el caso 7 con la técnica SIB-RA.

B.8. Caso 8

Figura B-29.: Distribución de dosis para el caso 8 con la técnica escalado IMRT.

Figura B-30.: Distribución de dosis para el caso 8 con la técnica escalado RA.

Figura B-31.: Distribución de dosis para el caso 8 con la técnica SIB-IMRT.

Figura B-32.: Distribución de dosis para el caso 8 con la técnica SIB-RA.

B.9. Caso 9

Figura B-33.: Distribución de dosis para el caso 9 con la técnica escalado IMRT.

Figura B-34.: Distribución de dosis para el caso 9 con la técnica escalado RA.

Figura B-35.: Distribución de dosis para el caso 9 con la técnica SIB-IMRT.

Figura B-36.: Distribución de dosis para el caso 9 con la técnica SIB-RA.

B.10. Caso 10

Figura B-37.: Distribución de dosis para el caso 10 con la técnica escalado IMRT.

Figura B-38.: Distribución de dosis para el caso 10 con la técnica escalado RA.

Figura B-39.: Distribución de dosis para el caso 10 con la técnica SIB-IMRT.

Figura B-40.: Distribución de dosis para el caso 10 con la técnica SIB-RA.

C. Distribuciones de dosis ideal

C.1. Caso 1

Figura C-1.: Distribución de dosis ideal para el caso 1.

C.2. Caso 2

Figura C-2.: Distribución de dosis ideal para el caso 2.

C.3. Caso 3

Figura C-3.: Distribución de dosis ideal para el caso 3.

C.4. Caso 4

1	2	3	4	5	6	7	8	9	10	11	12	13
14	15	16	17	18	19	20	21	22	23	24	25	26
27	28	29	30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49	50	51	52
53	54	55	56	57	58	59	6 0	5 1	6 2	6 3	6 4	5
66	67	68 68	69 💎	70 👽	71 💎	72 🏹	73 🏹	74	75 👻	76 👻	77 👻	78 🟹
79 💙	80	81	82	83	84	85	86	87 🔫		89	90	91
92	93	94	95	96	97	98	99	100	101	102	103	104
105	106	107	108	109	110	111	112	113	114	115	116	117
118	119	120	121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156

Figura C-4.: Distribución de dosis ideal para el caso 4.

C.5. Caso 5

Figura C-5.: Distribución de dosis ideal para el caso 5.

C.6. Caso 6

Figura C-6.: Distribución de dosis ideal para el caso 6.
C.7. Caso 7

Figura C-7.: Distribución de dosis ideal para el caso 7.

C.8. Caso 8

Figura C-8.: Distribución de dosis ideal para el caso 8.

C.9. Caso 9

Figura C-9.: Distribución de dosis ideal para el caso 9.

C.10. Caso 10

Figura C-10.: Distribución de dosis ideal para el caso 10.

D. Histogramas dosis volumen

D.1. Caso 1

Figura D-1.: Histogramas dosis volumen para el caso 1 con las técnicas escalado IMRT (arriba a la izquierda), escalado RA (arriba a la derecha), SIB-IMRT (abajo a la izquierda) y SIB-RA (abajo a la derecha).

D.2. Caso 2

Figura D-2.: Histogramas dosis volumen para el caso 2 con las técnicas escalado IMRT (arriba a la izquierda), escalado RA (arriba a la derecha), SIB-IMRT (abajo a la izquierda) y SIB-RA (abajo a la derecha).

D.3. Caso 3

Figura D-3.: Histogramas dosis volumen para el caso 3 con las técnicas escalado IMRT (arriba a la izquierda), escalado RA (arriba a la derecha), SIB-IMRT (abajo a la izquierda) y SIB-RA (abajo a la derecha).

D.4. Caso 4

Figura D-4.: Histogramas dosis volumen para el caso 4 con las técnicas escalado IMRT (arriba a la izquierda), escalado RA (arriba a la derecha), SIB-IMRT (abajo a la izquierda) y SIB-RA (abajo a la derecha).

D.5. Caso 5

Figura D-5.: Histogramas dosis volumen para el caso 5 con las técnicas escalado IMRT (arriba a la izquierda), escalado RA (arriba a la derecha), SIB-IMRT (abajo a la izquierda) y SIB-RA (abajo a la derecha).

D.6. Caso 6

Figura D-6.: Histogramas dosis volumen para el caso 6 con las técnicas escalado IMRT (arriba a la izquierda), escalado RA (arriba a la derecha), SIB-IMRT (abajo a la izquierda) y SIB-RA (abajo a la derecha).

D.7. Caso 7

Figura D-7.: Histogramas dosis volumen para el caso 7 con las técnicas escalado IMRT (arriba a la izquierda), escalado RA (arriba a la derecha), SIB-IMRT (abajo a la izquierda) y SIB-RA (abajo a la derecha).

D.8. Caso 8

Figura D-8.: Histogramas dosis volumen para el caso 8 con las técnicas escalado IMRT (arriba a la izquierda), escalado RA (arriba a la derecha), SIB-IMRT (abajo a la izquierda) y SIB-RA (abajo a la derecha).

D.9. Caso 9

Figura D-9.: Histogramas dosis volumen para el caso 9 con las técnicas escalado IMRT (arriba a la izquierda), escalado RA (arriba a la derecha), SIB-IMRT (abajo a la izquierda) y SIB-RA (abajo a la derecha).

D.10. Caso 10

Figura D-10.: Histogramas dosis volumen para el caso 10 con las técnicas escalado IMRT (arriba a la izquierda), escalado RA (arriba a la derecha), SIB-IMRT (abajo a la izquierda) y SIB-RA (abajo a la derecha).

E. Dosis y volúmenes de interés

	CTV1	D_{95}	D_2	D_0	V ₉₈	V_{95}
N N	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
1	escaladoIMRT	4853.2	7565.6	7926.3	100	94.9995
$\parallel 1$	escaladoRA	5230.6	7885.6	8102.7	100	94.9953
$\parallel 1$	SIBIMRT	4616.04	7411.15	7665.93	99.9874	94.9101
1	SIBRA	4653.55	7521.87	7738.49	99.984	94.736
2	escaladoIMRT	4707.6	7451.6	7551.7	99.9879	94.9992
2	escaladoRA	4850.9	7304.5	7425.4	99.9796	94.9989
2	SIBIMRT	4548.6	7381.17	7643.45	99.9248	94.6211
2	SIBRA	4588.07	7386.21	7663.83	99.9171	94.9155
3	escaladoIMRT	4724.5	7530.8	7680.7	100	94.9967
3	escaladoRA	4745	7411	7552.6	100	94.999
3	SIBIMRT	4588.65	7440.65	7717.61	99.9924	94.6022
3	SIBRA	4583.03	7416.3	7694.51	99.9686	94.7826
4	escaladoIMRT	4855.5	7368.4	7482.8	100	94.9994
4	escaladoRA	4820.6	7271.1	7399.4	100	94.9983
4	SIBIMRT	4621.7	7375.53	7508.42	100	94.6898
4	SIBRA	4606.94	7464.12	7700.38	100	94.8833
5	escaladoIMRT	4557.3	7388	7697.2	100	94.9943
5	escaladoRA	4598.9	7358.2	7538.7	99.9998	94.9921
5	SIBIMRT	4601.68	7444.32	7778.32	99.9989	94.7121
5	SIBRA	4611.46	7482.46	7690.72	99.9835	94.6186

Tabla E-1.: Índices dosimétricos en los casos del 1 al 5 para la estructura CTV1.

	CTV1	D_{95}	D_2	D_0	V_{98}	V_{95}
N	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
6	escaladoIMRT	4589.5	7417.8	7615.7	99.9933	94.9886
6	escaladoRA	4639.8	7439.4	7685.4	99.9901	94.987
6	SIBIMRT	4508.83	7264.23	7691.53	99.9613	94.1062
6	SIBRA	4498.32	7334.37	7684.32	99.64	94.8043
7	escaladoIMRT	4539.7	7296.4	7538	99.9987	94.9914
7	escaladoRA	4855.9	7578.1	7752.5	100	94.9962
7	SIBIMRT	4499.36	7234.26	7469.52	99.9015	94.9261
7	SIBRA	4536.93	7371.6	7663.83	99.9176	94.7802
8	escaladoIMRT	4507	7216.6	7432.3	100	94.9896
8	escaladoRA	4630.2	7319.6	7456.1	99.9997	94.9941
8	SIBIMRT	4540.09	7198.97	7710.01	99.8077	94.717
8	SIBRA	4527.48	7254.17	7589.54	99.671	94.3847
9	escaladoIMRT	4725.8	7367.3	7578.3	100	94.9989
9	escaladoRA	4928.4	7499.8	7683.3	99.9999	94.9997
9	SIBIMRT	4518.34	7412.44	7766.82	99.9055	94.6955
9	SIBRA	4678.4	7527.09	7765.1	99.885	94.431
10	escaladoIMRT	4553.6	7368	7555	100	94.9933
10	escaladoRA	4699.8	7443.9	7604.8	100	94.9893
10	SIBIMRT	4678.6	7384.47	7717.04	99.896	94.7555
10	SIBRA	4656.08	7497.33	7698.16	100	94.4759

Tabla E-2.: Índices dosimétricos en los casos del 1 al 5 para la estructura CTV1.

	PTV1	D_{95}	D_2	D_0	V ₉₈	V_{95}
N N	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
1	escaladoIMRT	4770.6	7534.3	7926.3	99.7638	94.9997
$\parallel 1$	escaladoRA	5104.1	7863.3	8102.7	99.9148	94.9983
$\parallel 1$	SIBIMRT	4503.64	7396.16	7665.93	98.5886	94.7235
$\parallel 1$	SIBRA	4451.87	7499.46	7738.49	97.7555	94.8833
2	escaladoIMRT	4533.5	7433.6	7551.7	99.7579	94.9996
2	escaladoRA	4696.1	7294.5	7425.4	99.9158	94.9955
2	SIBIMRT	4473.66	7366.19	7643.45	99.0737	94.5937
2	SIBRA	4398.12	7364.29	7663.83	97.178	94.8846
3	escaladoIMRT	4625.9	7510.7	7680.7	99.6653	94.9944
3	escaladoRA	4647.9	7395.6	7552.6	99.8968	94.9942
3	SIBIMRT	4528.76	7410.71	7717.61	99.3131	94.9904
3	SIBRA	4495.17	7394.34	7694.51	99.028	94.7311
4	escaladoIMRT	4608.4	7328	7482.8	99.7213	94.9998
4	escaladoRA	4694.5	7245.9	7399.4	99.9939	94.9989
$\parallel 4$	SIBIMRT	4518.34	7331.23	7508.42	99.3019	94.6349
$\parallel 4$	SIBRA	4525.72	7427.21	7700.38	99.3357	94.8882
5	escaladoIMRT	4514.2	7361.4	7697.2	99.4779	94.9983
5	escaladoRA	4531.8	7339.7	7538.7	99.2772	94.9978
5	SIBIMRT	4527.45	7399.79	7778.32	99.5395	94.949
5	SIBRA	4455.26	7460.15	7690.72	98.0722	94.7932

Tabla E-3.: Índices dosimétricos en los casos del 1 al 5 para la estructura PTV1.

	PTV1	D_{95}	D_2	D_0	V_{98}	V_{95}
N	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
6	escaladoIMRT	4498.1	7380.2	7615.7	98.7984	94.9982
6	escaladoRA	4516.4	7405.8	7685.4	99.4823	94.9968
6	SIBIMRT	4471.99	7227.39	7691.53	99.0171	94.4462
6	SIBRA	4388.96	7305.21	7684.32	97.1403	94.7598
7	escaladoIMRT	4519	7254.5	7538	99.8151	94.9938
7	escaladoRA	4752.6	7549.1	7752.5	99.5873	94.9995
7	SIBIMRT	4462.6	7204.85	7469.52	99.1011	94.9603
7	SIBRA	4427.34	7327.76	7663.83	97.6605	94.8107
8	escaladoIMRT	4465.2	7172.4	7432.3	99.4413	94.9982
8	escaladoRA	4541.4	7266	7456.1	99.5875	94.9956
8	SIBIMRT	4391.97	7043.44	7710.01	96.885	94.8795
8	SIBRA	4352.5	6977.13	7589.54	95.908	94.7528
9	escaladoIMRT	4599.4	7346.1	7578.3	99.9126	94.9929
9	escaladoRA	4774	7479.1	7683.3	99.9866	94.9982
9	SIBIMRT	4481.43	7382.91	7766.82	99.4571	94.6681
9	SIBRA	4529.64	7512.21	7765.1	98.7528	94.9748
10	escaladoIMRT	4506.7	7345.8	7555	99.0572	94.9983
10	escaladoRA	4600.1	7428.9	7604.8	99.7092	94.9993
10	SIBIMRT	4625.69	7354.24	7717.04	99.4012	94.806
10	SIBRA	4559.39	7467.58	7698.16	99.3185	94.7393

Tabla E-4.: Índices dosimétricos en los casos del 1 al 5 para la estructura PTV1.

	CTV11	D_{95}	D_2	D_0	V_{98}	V_{95}
Ν	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
1	escaladoIMRT	6704.8	7655	7926.3	100	94.9989
1	escaladoRA	7150.5	7952.1	8102.7	100	94.9995
1	SIBIMRT	5912.43	7493.58	7665.93	100	94.6758
1	SIBRA	6027.95	7589.1	7738.49	100	94.7446
2	escaladoIMRT	5823.8	7491.2	7551.7	100	94.9891
2	escaladoRA	5809.7	7332.2	7425.4	100	94.9962
2	SIBIMRT	5770.05	7433.63	7643.45	100	93.7412
2	SIBRA	5830.06	7444.66	7663.83	100	93.707
3	escaladoIMRT	6113.6	7568.7	7680.7	100	94.9989
3	escaladoRA	6082.9	7450.2	7552.6	100	94.9988
3	SIBIMRT	5793.82	7500.53	7717.61	100	94.5057
3	SIBRA	5820.3	7460.23	7694.51	100	94.5958
4	escaladoIMRT	6531	7411	7482.8	100	94.9975
4	escaladoRA	6525.2	7302.3	7399.4	100	94.9987
4	SIBIMRT	5854.65	7419.83	7508.42	100	94.6301
4	SIBRA	5898.95	7508.42	7700.38	100	94.4317
5	escaladoIMRT	5846.5	7497.2	7697.2	100	94.997
5	escaladoRA	5909.7	7405.3	7538.7	100	94.9964
5	SIBIMRT	5744.67	7533.39	7778.32	100	94.3141
5	SIBRA	5927.95	7534.52	7690.72	100	94.2498

Tabla E-5.: Índices dosimétricos en los casos del 1 al 5 para la estructura CTV11.

	CTV11	D_{95}	D_2	D_0	V_{98}	V_{95}
N	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
6	escaladoIMRT	6020.6	7499	7615.7	100	94.9989
6	escaladoRA	6088.7	7547.1	7685.4	100	94.9938
6	SIBIMRT	5768.65	7418.94	7691.53	100	94.4399
6	SIBRA	5832.5	7458.31	7684.32	100	94.9549
7	escaladoIMRT	5720.6	7380.5	7538	100	94.9916
7	escaladoRA	6012.4	7631.3	7752.5	100	94.9945
7	SIBIMRT	5749.18	7293.08	7469.52	100	94.9399
7	SIBRA	5793.54	7437.35	7663.83	100	94.2569
8	escaladoIMRT	5727.9	7341.7	7432.3	100	94.9911
8	escaladoRA	5812.2	7401	7456.1	100	94.9929
8	SIBIMRT	5702.89	7376.72	7710.01	99.998	94.6203
8	SIBRA	5803.34	7465.6	7589.54	100	93.8754
9	escaladoIMRT	6002.1	7404	7578.3	100	94.9995
9	escaladoRA	6243.5	7550.2	7683.3	100	94.9998
9	SIBIMRT	5743.91	7478.89	7766.82	99.9918	94.8263
9	SIBRA	5942.83	7586.59	7765.1	100	94.899
10	escaladoIMRT	5854.4	7423	7555	99.9858	94.9999
10	escaladoRA	6061.5	7489.5	7604.8	100	94.9975
10	SIBIMRT	5895.49	7444.94	7717.04	99.4719	94.5221
10	SIBRA	5861.01	7556.84	7698.16	100	94.817

Tabla E-6.: Índices dosimétricos en los casos del 1 al 5 para la estructura CTV11.

	PTV11	D_{95}	D_2	D_0	V ₉₈	V_{95}
N N	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
1	escaladoIMRT	6368.3	7621.1	7926.3	100	94.9999
1	escaladoRA	6674.6	7925.5	8102.7	100	94.998
1	SIBIMRT	5717.6	7456.11	7665.93	99.462	94.9298
1	SIBRA	5691.82	7559.22	7738.49	99.7209	94.8486
2	escaladoIMRT	5805.5	7471.2	7551.7	99.9965	94.9946
2	escaladoRA	5794.5	7317.2	7425.4	99.9796	94.9856
2	SIBIMRT	5552.74	7403.65	7643.45	96.8199	94.8562
2	SIBRA	5559.75	7408.13	7663.83	97.2322	94.6939
3	escaladoIMRT	5959.5	7554.5	7680.7	100	94.9959
3	escaladoRA	5925.7	7431.1	7552.6	99.9982	94.9954
3	SIBIMRT	5659.08	7478.08	7717.61	98.6641	94.7881
3	SIBRA	5600.66	7452.91	7694.51	98.5721	94.7555
4	escaladoIMRT	6150.4	7386	7482.8	100	94.999
4	escaladoRA	6105.5	7284.4	7399.4	100	94.9998
4	SIBIMRT	5692.22	7390.29	7508.42	99.3311	94.6288
4	SIBRA	5618.4	7478.89	7700.38	98.8053	94.9754
5	escaladoIMRT	5795.3	7496.7	7697.2	100	94.9947
5	escaladoRA	5884	7395.1	7538.7	100	94.9915
5	SIBIMRT	5663.03	7533.39	7778.32	99.036	94.8204
5	SIBRA	5697.38	7519.65	7690.72	99.0606	94.7479

Tabla E-7.: Índices dosimétricos en los casos del 1 al 5 para la estructura PTV11.

	PTV11	D_{95}	D_2	D_0	V_{98}	V_{95}
N	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
6	escaladoIMRT	5962.8	7482.7	7615.7	100	94.9962
6	escaladoRA	5991.4	7519.3	7685.4	99.9698	94.9969
6	SIBIMRT	5694.98	7404.21	7691.53	99.4374	94.875
6	SIBRA	5664.82	7421.86	7684.32	99.3197	94.7637
7	escaladoIMRT	5692.2	7356	7538	99.9487	94.9941
7	escaladoRA	5925.9	7610.1	7752.5	99.8418	94.9995
7	SIBIMRT	5675.66	7271.02	7469.52	99.2165	94.8743
7	SIBRA	5545.14	7408.13	7663.83	97.0395	94.9749
8	escaladoIMRT	5711.3	7306.5	7432.3	100	94.9852
8	escaladoRA	5795.2	7387.5	7456.1	100	94.9916
8	SIBIMRT	5621.42	7324.88	7710.01	99.281	94.7053
8	SIBRA	5599.2	7421.86	7589.54	99.0488	94.9067
9	escaladoIMRT	5827.7	7389.4	7578.3	99.991	94.9957
9	escaladoRA	6076	7525.2	7683.3	99.919	94.998
9	SIBIMRT	5574.1	7449.36	7766.82	97.1062	94.9788
9	SIBRA	5623	7556.84	7765.1	98.3087	94.7442
10	escaladoIMRT	5795.2	7405.5	7555	99.858	94.9949
10	escaladoRA	5971.8	7471.6	7604.8	100	94.9974
10	SIBIMRT	5698.97	7437.38	7717.04	97.9536	94.844
10	SIBRA	5608.13	7534.52	7698.16	98.7078	94.968

Tabla E-8.: Índices dosimétricos en los casos del 1 al 5 para la estructura PTV11.

	CTV111	D_{95}	D_2	D_0	V_{98}	V_{95}
Ν	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
1	escaladoIMRT	7218.3	7638	7926.3	100	94.9905
1	escaladoRA	7661.3	7958.1	8102.7	100	94.9906
1	SIBIMRT	7246.29	7516.06	7665.93	100	94.8803
1	SIBRA	7409.83	7611.51	7738.49	100	94.8253
2	escaladoIMRT	7304.4	7516.7	7551.7	100	94.9982
2	escaladoRA	7192.4	7334.9	7425.4	100	94.9753
2	SIBIMRT	7253.78	7403.65	7643.45	100	93.9618
2	SIBRA	7291.23	7422.74	7663.83	100	93.0029
3	escaladoIMRT	7284.4	7588.4	7680.7	100	94.9941
3	escaladoRA	7203.1	7453.9	7552.6	100	94.9919
3	SIBIMRT	7223.57	7500.53	7717.61	100	93.8816
3	SIBRA	7277.2	7445.59	7694.51	100	94.0026
4	escaladoIMRT	7185.3	7408.7	7482.8	100	94.9949
4	escaladoRA	7128.6	7304.9	7399.4	100	94.9895
4	SIBIMRT	7198.34	7427.21	7508.42	100	94.5551
4	SIBRA	7353.38	7523.19	7700.38	100	93.7076
5	escaladoIMRT	7211	7578.7	7697.2	100	94.9951
5	escaladoRA	7236	7432.6	7538.7	100	94.9864
5	SIBIMRT	7243.93	7585.34	7778.32	100	93.9319
5	SIBRA	7408.08	7541.96	7690.72	100	93.6732

Tabla E-9.: Índices dosimétricos en los casos del 1 al 5 para la estructura CTV111.

	CTV111	D_{95}	D_2	D_0	V ₉₈	V_{95}
N	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
6	escaladoIMRT	7109.3	7488.8	7615.7	100	94.9996
6	escaladoRA	7280.3	7542.3	7685.4	100	94.9911
6	SIBIMRT	7109.51	7360	7691.53	100	94.3639
6	SIBRA	7246.88	7421.86	7684.32	100	94.897
7	escaladoIMRT	7166.9	7415.4	7538	100	94.981
7	escaladoRA	7480.8	7679.1	7752.5	100	94.9944
7	SIBIMRT	7153.39	7315.13	7469.52	100	93.696
7	SIBRA	7298.54	7466.57	7663.83	100	94.2484
8	escaladoIMRT	7165.5	7296.1	7432.3	100	94.9899
8	escaladoRA	7225.1	7375.8	7456.1	100	94.9928
8	SIBIMRT	7191.57	7347.1	7710.01	100	94.2083
8	SIBRA	7268.75	7414.57	7589.54	100	94.3092
9	escaladoIMRT	7165.9	7425.7	7578.3	100	94.9891
9	escaladoRA	7275.9	7551.8	7683.3	100	94.9999
9	SIBIMRT	7168.81	7493.66	7766.82	100	94.6367
9	SIBRA	7385.77	7601.46	7765.1	100	93.9427
10	escaladoIMRT	7151.9	7448.3	7555	100	94.9964
10	escaladoRA	7348.8	7521.3	7604.8	100	94.9983
10	SIBIMRT	7240.87	7475.17	7717.04	100	94.767
10	SIBRA	7408.08	7601.46	7698.16	100	94.7613

Tabla E-10.: Índices dosimétricos en los casos del 1 al 5 para la estructura CTV111.

	PTV111	D_{95}	D_2	D_0	V_{98}	V_{95}
N N	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
1	escaladoIMRT	7221.2	7673.9	7926.3	100	94.9886
$\parallel 1$	escaladoRA	7624.1	7965.1	8102.7	100	94.9973
$\parallel 1$	SIBIMRT	7006.49	7516.06	7665.93	98.3369	94.8257
$\parallel 1$	SIBRA	7006.47	7596.57	7738.49	99.1965	94.5887
2	escaladoIMRT	7228.5	7506.2	7551.7	100	94.9933
2	escaladoRA	7181.2	7342.8	7425.4	100	94.9905
2	SIBIMRT	7013.99	7463.6	7643.45	98.8037	94.7165
2	SIBRA	7006.31	7466.57	7663.83	99.492	94.6123
3	escaladoIMRT	7203.4	7584.8	7680.7	100	94.9929
3	escaladoRA	7221.4	7464.6	7552.6	100	94.9956
3	SIBIMRT	7006.49	7545.45	7717.61	98.3659	94.8201
3	SIBRA	6999	7511.48	7694.51	99.1675	94.9745
4	escaladoIMRT	7166.5	7430.4	7482.8	100	94.9956
$\parallel 4$	escaladoRA	7128.5	7319.8	7399.4	100	94.9871
$\parallel 4$	SIBIMRT	6999	7449.36	7508.42	98.6237	94.9467
$\parallel 4$	SIBRA	6999	7537.95	7700.38	99.379	94.9465
5	escaladoIMRT	7166.8	7572.7	7697.2	99.9954	94.9917
5	escaladoRA	7196.4	7422.2	7538.7	99.9975	94.991
5	SIBIMRT	6999	7592.76	7778.32	98.3351	94.9993
5	SIBRA	7013.88	7549.4	7690.72	98.2594	94.7999

Tabla E-11.: Índices dosimétricos en los casos del 1 al 5 para la estructura PTV111.

	PTV111	D_{95}	D_2	D_0	V_{98}	V_{95}
N	Plan	(cGy)	(cGy)	(cGy)	(%)	(%)
6	escaladoIMRT	7125.8	7513	7615.7	99.9994	94.9941
6	escaladoRA	7263.1	7555.9	7685.4	100	94.9978
6	SIBIMRT	7006.37	7477.88	7691.53	99.0404	94.9841
6	SIBRA	7013.58	7480.18	7684.32	99.5152	94.6043
7	escaladoIMRT	7141	7445.9	7538	99.9567	94.9922
7	escaladoRA	7371.8	7667.4	7752.5	99.893	94.9978
7	SIBIMRT	7006.35	7344.54	7469.52	99.2704	94.9329
7	SIBRA	7006.31	7495.8	7663.83	99.1963	94.6339
8	escaladoIMRT	7137.1	7364.1	7432.3	100	94.9923
8	escaladoRA	7205.5	7408.9	7456.1	100	94.9905
8	SIBIMRT	6999	7406.35	7710.01	98.8581	94.833
8	SIBRA	7013.58	7480.18	7589.54	99.7352	94.5147
9	escaladoIMRT	7145	7425.5	7578.3	99.9571	94.9971
9	escaladoRA	7244.3	7563.6	7683.3	99.8763	94.9918
9	SIBIMRT	7006.38	7508.42	7766.82	98.672	94.787
9	SIBRA	7006.44	7601.46	7765.1	99.0501	94.6566
10	escaladoIMRT	7140.2	7448.9	7555	100	94.9997
10	escaladoRA	7291.5	7509.7	7604.8	100	94.9962
10	SIBIMRT	7006.56	7497.85	7717.04	97.9962	94.8575
10	SIBRA	7006.44	7586.59	7698.16	98.7275	94.7774

Tabla E-12.: Índices dosimétricos en los casos del 1 al 5 para la estructura PTV111.

F. Índices Dosimétricos y radiobiológicos

	CTV1	HI	HIa	CI	CoI	EUD	gEUD
N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
1	escaladoIMRT	1.63321	57.3292	1	0.985597	39.7086	23.6516
1	escaladoRA	1.5491	51.8411	1	0.989179	42.0888	25.6267
1	SIBIMRT	1.66072	61.3639	0.999874	0.991883	26.5676	24.6163
1	SIBRA	1.66292	62.9214	0.99984	0.987158	26.6664	23.4988
2	escaladoIMRT	1.60415	61.8702	0.999879	0.964186	32.8205	12.3796
2	escaladoRA	1.53073	53.6292	0.999796	0.969511	30.1679	13.174
2	SIBIMRT	1.6804	63.0972	0.999248	0.991762	26.3897	4.86563
2	SIBRA	1.67038	62.1019	0.999171	0.988854	26.6121	8.73287
3	escaladoIMRT	1.62572	60.9313	1	0.984676	35.4788	24.9716
3	escaladoRA	1.5917	57.7028	1	0.984826	32.9349	24.6093
3	SIBIMRT	1.68189	62.9691	0.999924	0.991843	26.5622	24.9783
3	SIBRA	1.67891	62.6197	0.999686	0.992012	26.9055	24.656
4	escaladoIMRT	1.5411	54.67	1	0.970837	31.6375	7.53921
4	escaladoRA	1.53495	52.3649	1	0.984691	30.0868	5.82366
4	SIBIMRT	1.6246	61.0224	1	0.985624	23.866	6.24614
4	SIBRA	1.67147	62.8204	1	0.991986	25.9511	5.30623
5	escaladoIMRT	1.68898	62.8618	1	0.992517	38.4017	23.4836
5	escaladoRA	1.63924	60.6297	0.999998	0.993694	35.2866	22.5005
5	SIBIMRT	1.69032	62.9031	0.999989	0.988708	28.0688	24.8209
5	SIBRA	1.66774	63.3871	0.999835	0.988709	26.7999	19.8264

Tabla F-1.: Índices dosimétricos en los casos del 1 al 5 para la estructura CTV1.

	CTV1	HI	HIa	CI	CoI	EUD	gEUD
N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
6	escaladoIMRT	1.65937	62.3009	0.999933	0.993245	37.7973	22.6323
6	escaladoRA	1.65641	61.0759	0.999901	0.992629	38.9075	22.8202
6	SIBIMRT	1.70588	61.7648	0.999613	0.993464	26.7518	23.8108
6	SIBRA	1.70826	64.5056	0.9964	0.985412	27.6915	22.3613
7	escaladoIMRT	1.66046	61.5305	0.999987	0.991938	35.7932	22.4537
7	escaladoRA	1.59651	57.2644	1	0.987953	38.375	22.6884
7	SIBIMRT	1.66013	61.9281	0.999015	0.988561	24.3037	23.3545
7	SIBRA	1.68921	63.2851	0.999176	0.991948	27.3113	23.9624
8	escaladoIMRT	1.64906	60.6279	1	0.994919	34.7259	14.997
8	escaladoRA	1.61032	58.7642	0.999997	0.993197	34.6226	24.3934
8	SIBIMRT	1.69821	59.7063	0.998077	0.988582	27.057	24.4793
8	SIBRA	1.67633	61.5137	0.99671	0.987116	26.3174	17.9456
9	escaladoIMRT	1.6036	58.6462	1	0.972491	33.3231	24.0711
9	escaladoRA	1.55898	55.1457	0.999999	0.970295	35.0254	26.2809
9	SIBIMRT	1.71895	65.3594	0.999055	0.986929	27.358	23.6368
9	SIBRA	1.65978	62.1623	0.99885	0.98728	26.2758	21.5247
10	escaladoIMRT	1.65913	62.3221	1	0.994839	29.9713	19.6626
10	escaladoRA	1.61811	58.9493	1	0.994383	30.5821	22.4553
10	SIBIMRT	1.64943	58.6428	0.99896	0.991923	27.1003	22.8794
10	SIBRA	1.65336	61.9807	1	0.990417	26.637	22.0918

Tabla F-2.: Índices dosimétricos en los casos del 5 al 10 para la estructura CTV1.

	PTV1	HI	HIa	CI	CoI	EUD	gEUD
N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
1	escaladoIMRT	60.0868	1.66149	0.997638	0.978451	40.8736	31.1872
1	escaladoRA	56.9444	1.58749	0.999148	0.971141	43.3099	31.0794
1	SIBIMRT	67.2214	1.70216	0.985886	0.970049	26.9954	29.0931
1	SIBRA	71.8121	1.73826	0.977555	0.966443	27.1288	29.3228
2	escaladoIMRT	65.3005	1.66575	0.997579	0.986699	34.5834	70.7069
2	escaladoRA	56.8685	1.58118	0.999158	0.984626	31.9147	70.6242
2	SIBIMRT	66.6669	1.70855	0.990737	0.9799	26.9061	67.1159
2	SIBRA	70.0995	1.74252	0.97178	0.973423	27.1589	67.1423
3	escaladoIMRT	63.927	1.66037	0.996653	0.984349	31.8875	27.9623
3	escaladoRA	60.7672	1.62495	0.998968	0.983498	28.7839	26.8469
3	SIBIMRT	65.4548	1.70413	0.993131	0.981818	27.014	28.0884
3	SIBRA	66.7752	1.71173	0.99028	0.9772	27.3785	28.1998
4	escaladoIMRT	61.6309	1.62373	0.997213	0.97383	33.4872	5.95091
4	escaladoRA	55.9314	1.57618	0.999939	0.984173	32.0518	6.64479
4	SIBIMRT	64.2156	1.66177	0.993019	0.980393	24.4526	6.25343
4	SIBRA	66.2317	1.70147	0.993357	0.978795	26.4949	7.83227
5	escaladoIMRT	64.7158	1.70511	0.994779	0.983563	34.0314	29.6067
5	escaladoRA	64.2548	1.66351	0.992772	0.977051	30.2218	28.1778
5	SIBIMRT	65.0821	1.71804	0.995395	0.983607	28.3151	27.1241
5	SIBRA	70.4509	1.72621	0.980722	0.96995	27.1038	26.5136

Tabla F-3.: Índices dosimétricos en los casos del 1 al 5 para la estructura PTV1.

	PTV1	HI	HIa	CI	CoI	EUD	gEUD
N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
6	escaladoIMRT	66.677	1.69309	0.987984	0.973967	38.7181	30.2173
6	escaladoRA	66.0128	1.70167	0.994823	0.97963	39.8106	28.8575
6	SIBIMRT	63.4268	1.71993	0.990171	0.981878	26.9585	28.7162
6	SIBRA	68.9368	1.75083	0.971403	0.975083	27.9124	28.5861
7	escaladoIMRT	61.6176	1.66807	0.998151	0.989157	36.4676	24.6148
7	escaladoRA	62.5258	1.63121	0.995873	0.963157	39.2052	27.8752
7	SIBIMRT	63.0971	1.6738	0.991011	0.983525	24.5588	27.3813
7	SIBRA	68.3169	1.73102	0.976605	0.971947	27.5592	24.7038
8	escaladoIMRT	61.9771	1.66449	0.994413	0.986518	29.1142	17.0162
8	escaladoRA	61.9567	1.64181	0.995875	0.98038	29.2733	22.8766
8	SIBIMRT	63.4064	1.75548	0.96885	0.969645	27.3417	24.9036
8	SIBRA	63.3167	1.74372	0.95908	0.96985	26.5914	20.712
9	escaladoIMRT	60.6753	1.64767	0.999126	0.990434	34.7471	29.5495
9	escaladoRA	58.5463	1.60941	0.999866	0.981169	36.3985	28.137
9	SIBIMRT	65.733	1.73311	0.994571	0.990115	27.728	26.7429
9	SIBRA	69.1298	1.71429	0.987528	0.967159	26.7419	24.9935
10	escaladoIMRT	65.3849	1.67639	0.990572	0.976124	35.8419	28.7836
10	escaladoRA	63.9225	1.65318	0.997092	0.975718	36.192	28.5031
10	SIBIMRT	60.6208	1.6683	0.994012	0.983661	27.3423	27.5203
10	SIBRA	66.3946	1.68842	0.993185	0.9739	26.9166	26.981

Tabla F-4.: Índices dosimétricos en los casos del 5 al 10 para la estructura PTV1.

	CTV11	HI	HIa	CI	CoI	EUD	gEUD
N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
1	escaladoIMRT	1.18218	18.3272	1	0.958448	38.5666	46.9201
1	escaladoRA	1.13317	17.2953	1	0.939151	41.4033	40.5622
1	SIBIMRT	1.29658	27.7568	1	0.98986	47.8083	40.0712
1	SIBRA	1.28377	27.0137	1	0.988849	47.7802	39.5261
2	escaladoIMRT	1.2967	29.2867	1	0.993441	32.3714	38.994
2	escaladoRA	1.2781	26.5797	1	0.996265	29.9485	38.9537
2	SIBIMRT	1.32468	29.3507	1	0.994806	48.261	37.2619
2	SIBRA	1.31454	28.1956	1	0.994988	48.7383	33.3434
3	escaladoIMRT	1.25633	26.2186	1	0.975824	34.3824	38.6384
3	escaladoRA	1.24161	24.4768	1	0.98001	31.9767	40.9789
3	SIBIMRT	1.33204	30.2326	1	0.992249	48.4672	40.9102
3	SIBRA	1.32201	28.6793	1	0.994968	49.0868	39.0337
4	escaladoIMRT	1.14574	15.4831	1	0.979911	30.5836	38.8677
4	escaladoRA	1.13397	14.0593	1	0.978499	28.9628	37.3009
4	SIBIMRT	1.28247	27.6167	1	0.991173	43.0909	36.0307
4	SIBRA	1.30538	28.035	1	0.99249	47.0813	26.7107
5	escaladoIMRT	1.31655	29.4655	1	0.987685	35.0341	39.865
5	escaladoRA	1.27565	26.1435	1	0.991641	31.9377	40.3597
5	SIBIMRT	1.35401	31.9122	1	0.992248	50.7812	40.0284
5	SIBRA	1.29737	27.729	1	0.993726	47.5305	33.5397

Tabla F-5.: Índices dosimétricos en los casos del 1 al 5 para la estructura CTV11.

	CTV11	HI	HIa	CI	CoI	EUD	gEUD
N N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
6	escaladoIMRT	1.26494	25.5423	1	0.990134	33.1279	38.1529
6	escaladoRA	1.26224	24.8296	1	0.99123	34.3807	38.6846
6	SIBIMRT	1.33333	28.991	1	0.996169	46.5546	36.8428
6	SIBRA	1.3175	28.375	1	0.995	48.253	36.7262
7	escaladoIMRT	1.31769	29.8553	1	0.991609	32.6987	36.0621
7	escaladoRA	1.28942	27.4982	1	0.994278	36.2392	43.8481
7	SIBIMRT	1.29923	27.3658	1	0.994884	43.367	39.1451
7	SIBRA	1.32282	29.1299	1	0.992433	49.5297	32.53
8	escaladoIMRT	1.29756	28.5969	1	0.995775	30.3294	31.2841
8	escaladoRA	1.28284	27.8948	1	0.994408	30.6193	41.0962
8	SIBIMRT	1.35195	30.1298	0.99998	0.992207	47.6846	40.1354
8	SIBRA	1.30779	29.02	1	0.996231	45.3913	28.4522
9	escaladoIMRT	1.26261	26.614	1	0.967428	32.5628	37.4201
9	escaladoRA	1.23061	22.7068	1	0.982222	34.3783	37.6214
9	SIBIMRT	1.35218	30.9768	0.999918	0.992287	50.1097	38.2902
9	SIBRA	1.30663	28.4105	1	0.99249	47.7927	31.8353
10	escaladoIMRT	1.29048	27.9533	0.999858	0.988402	32.6306	39.3491
10	escaladoRA	1.25461	25.1984	1	0.983601	33.2696	36.9572
10	SIBIMRT	1.30897	27.5641	0.994719	0.987178	49.6995	43.8374
10	SIBRA	1.31345	29.8223	1	0.991118	48.165	33.6464

Tabla F-6.: Índices dosimétricos en los casos del 5 al 10 para la estructura CTV11.

	PTV11	HI	HIa	CI	CoI	EUD	gEUD
N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
1	escaladoIMRT	23.606	1.24465	1	0.960665	34.3279	68.5304
1	escaladoRA	21.3706	1.21396	1	0.973706	37.5853	72.6282
1	SIBIMRT	32.1102	1.34076	0.99462	0.982961	48.7026	60.0875
1	SIBRA	34.3832	1.35958	0.997209	0.984253	48.7189	60.5853
2	escaladoIMRT	29.4066	1.30078	0.999965	0.992852	26.3668	63.3611
2	escaladoRA	26.765	1.28146	0.999796	0.995133	23.1669	63.2356
2	SIBIMRT	35.2226	1.37652	0.968199	0.981107	49.0531	58.448
2	SIBRA	34.8226	1.37845	0.972322	0.984231	49.5123	59.1377
3	escaladoIMRT	27.9285	1.28882	1	0.988355	34.6941	65.7566
3	escaladoRA	26.5437	1.27455	0.999982	0.988609	32.3231	65.0699
3	SIBIMRT	34.1271	1.36376	0.986641	0.980159	49.12	59.9919
3	SIBRA	34.5099	1.37386	0.985721	0.985621	49.7526	59.5375
4	escaladoIMRT	23.6895	1.21664	1	0.964002	24.2232	65.7299
4	escaladoRA	21.6231	1.21192	1	0.976857	22.0368	65.3257
4	SIBIMRT	31.5174	1.31907	0.993311	0.98314	43.9682	58.652
4	SIBRA	34.5598	1.37056	0.988053	0.985544	47.96	58.0821
5	escaladoIMRT	30.2987	1.32818	1	0.990596	35.3049	63.6696
5	escaladoRA	26.4191	1.28122	1	0.992624	32.1532	64.4288
5	SIBIMRT	34.4692	1.37353	0.99036	0.985584	51.3171	60.1905
5	SIBRA	34.0732	1.34987	0.990606	0.979111	48.2238	59.6074

Tabla F-7.: Índices dosimétricos en los casos del 1 al 5 para la estructura PTV11.

	PTV11	HI	HIa	CI	CoI	EUD	gEUD
N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
6	escaladoIMRT	26.2377	1.2772	1	0.99252	27.3501	66.0582
6	escaladoRA	26.76	1.28274	0.999698	0.987415	28.9975	66.4621
6	SIBIMRT	31.4361	1.35058	0.994374	0.985768	47.3828	59.9639
6	SIBRA	32.6898	1.3565	0.993197	0.983269	49.0698	59.5028
7	escaladoIMRT	30.0341	1.32427	0.999487	0.991954	27.0486	59.0434
7	escaladoRA	30.3853	1.30824	0.998418	0.980357	31.6473	58.8064
7	SIBIMRT	29.6632	1.31606	0.992165	0.984456	43.7901	55.4932
7	SIBRA	35.0462	1.38208	0.970395	0.985506	50.0068	58.2645
8	escaladoIMRT	28.3175	1.30133	1	0.99613	30.5678	61.6452
8	escaladoRA	28.0215	1.2866	1	0.994547	30.8661	62.5808
8	SIBIMRT	31.4888	1.37154	0.99281	0.988142	48.3872	58.7164
8	SIBRA	33.7241	1.35547	0.990488	0.98828	46.2939	58.3848
9	escaladoIMRT	27.8257	1.30039	0.99991	0.989722	26.7233	64.7659
9	escaladoRA	25.237	1.26453	0.99919	0.986142	29.0551	66.6461
9	SIBIMRT	35.894	1.39338	0.971062	0.977483	50.8423	57.8304
9	SIBRA	36.3758	1.38095	0.983087	0.980158	48.6561	58.9863
10	escaladoIMRT	29.2069	1.30367	0.99858	0.985799	26.8144	62.6549
10	escaladoRA	26.2383	1.27345	1	0.988764	27.6391	64.6309
10	SIBIMRT	34.0848	1.35411	0.979536	0.964192	50.0597	59.152
10	SIBRA	35.8089	1.37268	0.987078	0.98541	48.6578	59.4419

Tabla F-8.: Índices dosimétricos en los casos del 5 al 10 para la estructura PTV11.

	CTV111	HI	HIa	CI	CoI	EUD	gEUD
N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
1	escaladoIMRT	1.09808	6.1732	1	0.996412	37.1732	73.922
1	escaladoRA	1.05761	4.33347	1	0.995405	39.8681	77.9342
1	SIBIMRT	1.05791	4.0331	1	0.996898	72.6486	73.4702
1	SIBRA	1.04435	3.02423	1	0.996976	72.4665	74.5977
2	escaladoIMRT	1.03386	3.23367	1	0.996728	29.2449	73.9262
2	escaladoRA	1.0324	2.14393	1	0.998373	26.731	72.5242
2	SIBIMRT	1.05372	2.27275	1	0.997933	72.5304	73.2098
2	SIBRA	1.0511	2.00405	1	0.997996	73.3679	73.3841
3	escaladoIMRT	1.0544	4.74027	1	0.99433	32.0444	74.158
3	escaladoRA	1.04852	3.90526	1	0.995766	29.4669	73.2053
3	SIBIMRT	1.06839	4.14504	1	0.996891	73.0073	73.1845
3	SIBRA	1.05734	2.6157	1	0.996982	73.9246	73.4101
4	escaladoIMRT	1.0414	3.32206	1	0.997871	28.0656	72.799
4	escaladoRA	1.03799	2.67795	1	0.997952	26.2782	72.148
4	SIBIMRT	1.04308	3.38467	1	0.997948	64.2444	73.0856
4	SIBRA	1.04719	2.51014	1	0.997991	70.5197	73.8102
5	escaladoIMRT	1.06742	5.49161	1	0.996075	32.6205	73.4641
5	escaladoRA	1.04183	3.00857	1	0.997084	29.1341	73.1782
5	SIBIMRT	1.07377	5.12291	1	0.995901	76.534	73.5998
5	SIBRA	1.03815	2.10837	1	0.996988	71.4829	74.2346

Tabla F-9.: Índices dosimétricos en los casos del 1 al 5 para la estructura CTV111.

	CTV111	HI	HIa	CI	CoI	EUD	gEUD
N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
6	escaladoIMRT	1.07123	5.90494	1	0.994331	30.8734	73.195
6	escaladoRA	1.05564	3.80341	1	0.997953	32.2287	73.7778
6	SIBIMRT	1.08186	3.7305	1	0.997928	70.6529	72.099
6	SIBRA	1.06036	2.61575	1	0.997988	73.2837	73.1527
7	escaladoIMRT	1.05178	3.6236	1	0.998437	29.3045	72.576
7	escaladoRA	1.03632	3.10929	1	0.995415	33.3064	75.5664
7	SIBIMRT	1.04419	2.46652	1	0.997945	63.4403	72.1857
7	SIBRA	1.05005	2.50242	1	0.997998	73.3135	73.6063
8	escaladoIMRT	1.03723	2.0822	1	0.997404	26.9804	72.3391
8	escaladoRA	1.03197	2.45118	1	0.996346	27.3106	73.0749
8	SIBIMRT	1.07209	2.36875	1	0.997939	71.5001	72.4637
8	SIBRA	1.04413	2.20671	1	0.997994	67.8629	73.2894
9	escaladoIMRT	1.05755	4.02601	1	0.995995	30.2193	72.7763
9	escaladoRA	1.05599	4.16306	1	0.996289	32.2132	73.8119
9	SIBIMRT	1.08342	4.84041	1	0.99691	75.8697	72.6746
9	SIBRA	1.05136	3.22255	1	0.996978	72.1042	73.9718
10	escaladoIMRT	1.05636	4.74	1	0.994044	31.7422	73.0938
10	escaladoRA	1.03484	2.61403	1	0.997333	32.6194	74.1409
10	SIBIMRT	1.06576	3.44461	1	0.997912	74.369	73.4336
10	SIBRA	1.03916	2.81112	1	0.997993	71.5034	74.6681

Tabla F-10.: Índices dosimétricos en los casos del 5 al 10 para la estructura CTV111.
	PTV111	HI	HIa	CI	CoI	EUD	gEUD
N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
1	escaladoIMRT	6.75649	1.09764	1	0.995125	37.1286	73.8619
1	escaladoRA	5.04322	1.06277	1	0.994294	39.8939	77.5102
1	SIBIMRT	8.98396	1.09412	0.983369	0.982889	72.8018	70.6895
1	SIBRA	9.48837	1.10448	0.991965	0.989338	72.8198	71.4634
2	escaladoIMRT	4.60676	1.04471	1	0.99235	29.3333	73.3373
2	escaladoRA	2.54693	1.03401	1	0.997034	26.7288	72.3717
2	SIBIMRT	7.79913	1.08974	0.988037	0.986111	72.6485	71.3861
2	SIBRA	7.5078	1.09385	0.99492	0.990614	73.5288	71.7849
3	escaladoIMRT	5.91804	1.06626	1	0.993767	32.1112	73.6874
3	escaladoRA	3.76658	1.04586	1	0.996012	29.4292	73.1823
3	SIBIMRT	9.40171	1.10149	0.983659	0.982906	73.0822	72.059
3	SIBRA	8.3682	1.09937	0.991675	0.98954	74.0446	72.0154
4	escaladoIMRT	4.00474	1.04414	1	0.996777	28.0419	72.5297
4	escaladoRA	2.95995	1.038	1	0.997236	26.2624	71.8845
4	SIBIMRT	7.80597	1.07278	0.986237	0.986287	64.3851	70.4606
4	SIBRA	8.64981	1.10021	0.99379	0.990506	70.8063	69.7676
5	escaladoIMRT	6.085	1.07401	0.999954	0.995786	32.6738	73.0001
5	escaladoRA	3.83803	1.04757	0.999975	0.992996	29.1819	72.8261
5	SIBIMRT	10.0742	1.11135	0.983351	0.984093	76.687	71.9658
5	SIBRA	9.438	1.0965	0.982594	0.981971	71.7335	70.848

Tabla F-11.: Índices dosimétricos en los casos del 1 al 5 para la estructura PTV111.

	PTV111	HI	HIa	CI	CoI	EUD	gEUD
N	Plan	(%)	(%)	(%)	(%)	(Gy)	(Gy)
6	escaladoIMRT	6.11861	1.06875	0.999994	0.993152	30.8256	73.1513
6	escaladoRA	4.43062	1.05814	1	0.996007	32.2197	73.6095
6	SIBIMRT	7.88639	1.09779	0.990404	0.988433	70.6676	70.341
6	SIBRA	7.69236	1.09563	0.995152	0.989604	73.408	70.8255
7	escaladoIMRT	4.6282	1.05559	0.999567	0.996415	29.3177	72.1323
7	escaladoRA	5.16563	1.05164	0.99893	0.988442	33.3706	74.6903
7	SIBIMRT	5.87624	1.06611	0.992704	0.989507	63.5138	70.1156
7	SIBRA	8.13353	1.09385	0.991963	0.988529	73.4872	71.6237
8	escaladoIMRT	3.50282	1.04136	1	0.996777	26.98	72.159
8	escaladoRA	3.26972	1.03478	1	0.995531	27.2854	72.922
8	SIBIMRT	6.98414	1.10159	0.988581	0.98836	71.6399	70.6679
8	SIBRA	7.58828	1.08212	0.997352	0.990645	68.0131	70.9565
9	escaladoIMRT	4.51645	1.06064	0.999571	0.994094	30.2247	72.4383
9	escaladoRA	5.12817	1.0606	0.998763	0.992794	32.218	73.5978
9	SIBIMRT	8.53522	1.10854	0.98672	0.986302	75.9614	69.1763
9	SIBRA	9.66026	1.10828	0.990501	0.988322	72.3812	69.7898
10	escaladoIMRT	5.06288	1.05809	1	0.992605	29.5923	72.759
10	escaladoRA	3.58637	1.04297	1	0.994062	30.4292	73.7869
10	SIBIMRT	9.06151	1.1014	0.979962	0.979503	74.5075	71.1669
10	SIBRA	9.66026	1.09873	0.987275	0.9862	71.8011	71.4151

Tabla F-12.: Índices dosimétricos en los casos del 5 al 10 para la estructura PTV111.

G. Análisis de distribución de dosis

	Region: Global, δ_D : 0.03, DTA : 3									
E	Plan	Pts eval	γ	δ_D	DTA	$\gamma \theta$	$Diff_{out}$	$Diff_{in}$		
1	escaladoIMRT	1003070	87.5315	10.317	21.5292	49.8169	6.17614	11.539		
$\parallel 1$	escaladoRA	1000860	99.3939	13.3897	26.6003	52.4969	7.10843	13.0849		
1	SIBIMRT	992213	87.8421	10.6229	24.1774	49.726	2.12857	3.206		
1	SIBRA	991989	90.8541	16.0529	30.0889	48.7577	1.97629	3.42271		
2	escaladoIMRT	543738	99.8531	11.4254	22.4231	37.0103	1.42986	2.00271		
2	escaladoRA	544423	91.9394	15.3912	28.3958	42.2161	1.40443	2.328		
2	SIBIMRT	538683	92.8245	13.2915	24.9924	35.0438	0.746	0.756143		
2	SIBRA	540304	92.926	17.1246	31.0242	40.22	0.839	0.680429		
3	escaladoIMRT	402817	88.75	17.9779	37.4349	64.0353	1.91286	2.99429		
3	escaladoRA	405956	99.6172	24.0196	41.8996	64.3447	1.89829	2.97971		
3	SIBIMRT	400481	99.7371	20.813	41.8542	62.0521	0.752857	1.11571		
3	SIBRA	400519	91.6329	27.347	47.0662	64.0911	0.793143	1.19257		
4	escaladoIMRT	804211	100	8.38524	17.7197	36.2931	1.47329	2.48		
4	escaladoRA	824549	99.7634	16.2199	29.4298	40.7243	1.15157	2.58386		
4	SIBIMRT	797504	99.8089	8.41789	18.7138	37.587	0.831143	1.27629		
4	SIBRA	818044	99.5323	17.4131	31.2921	40.9914	1.06029	1.927		
5	escaladoIMRT	988255	90.9016	9.31359	18.0214	37.7834	2.20371	5.67486		
5	escaladoRA	991141	92.8337	15.04	27.1454	41.5742	2.34157	5.02157		
5	SIBIMRT	977525	90.6483	8.55743	17.044	36.2718	0.911571	2.31914		
5	SIBRA	983944	92.5632	12.7792	25.1703	40.0746	1.60129	3.15757		

Tabla G-1.: Análisis 3D global de las distribuciones de dosis en los casos del 1 al 5.

	Region: Global, δ_D : 0.03, DTA : 3									
Е	Plan	Pts eval	γ	δ_D	DTA	$\gamma \theta$	Diffout	$Diff_{in}$		
6	escaladoIMRT	614984	79.8413	11.6541	24.7893	59.6858	1.53443	2.32471		
6	escaladoRA	614807	99.7014	17.6125	30.8803	59.6161	1.435	2.478		
6	SIBIMRT	612229	99.7517	13.1245	26.5133	62.5839	0.953571	1.56357		
6	SIBRA	612311	86.8601	21.208	35.9825	61.2075	1.208	1.27557		
7	escaladoIMRT	1138840	100	13.3193	27.9839	54.4551	2.03771	5.623		
7	escaladoRA	1138230	99.2386	14.8928	29.6145	54.7781	2.89129	9.44429		
7	SIBIMRT	1127540	100	13.0649	27.8663	53.8303	1.46886	2.75914		
7	SIBRA	1128850	100	21.1543	38.4632	58.0511	1.75043	4.64886		
8	escaladoIMRT	624113	99.8864	16.1444	34.4234	59.4133	1.49229	1.21457		
8	escaladoRA	623920	99.6431	22.658	40.6102	61.593	1.40143	2.52614		
8	SIBIMRT	618190	99.8785	14.806	34.271	58.231	1.47386	0.815714		
8	SIBRA	618124	91.5454	26.202	45.3213	61.0534	1.65914	0.692857		
9	escaladoIMRT	406441	92.1937	14.3453	22.8498	74.6807	2.75	5.295		
9	escaladoRA	402447	98.9959	13.6169	21.8379	73.0889	3.19571	6.49		
9	SIBIMRT	396712	98.876	16.6783	25.826	72.4989	1.67757	4.30986		
9	SIBRA	396773	83.7076	16.6481	26.9043	68.4958	1.765	2.74071		
10	escaladoIMRT	784274	83.3808	18.4368	32.8296	65.6679	2.584	5.17171		
10	escaladoRA	784779	84.6384	19.5674	34.2439	65.5829	2.81157	5.57771		
10	SIBIMRT	782288	83.7804	17.0628	28.6994	67.366	1.17286	5.078		
10	SIBRA	781824	86.0351	19.5599	35.1194	64.5001	1.103	2.43843		

Tabla G-2.: Análisis 3D global de las distribuciones de dosis en los casos del 6 al 10.

	Region: PTV, δ_D : 0.03, DTA : 3								
E	Plan	Pts eval	γ	δ_D	DTA	$\gamma \theta$			
1	escaladoIMRT	89178	86.0616	3.45937	7.99861	73.3466			
1	escaladoRA	89178	100	0.989033	1.67194	92.6047			
1	SIBIMRT	89178	91.0482	21.6948	42.6832	55.8636			
1	SIBRA	89178	92.1617	21.3719	40.4427	47.8986			
2	escaladoIMRT	33355	100	12.9756	25.6034	74.0369			
2	escaladoRA	33355	75.8327	9.72568	28.8622	85.7772			
2	SIBIMRT	33355	95.8987	41.0013	64.1613	59.3704			
2	SIBRA	33355	95.7008	35.8987	63.6306	58.51			
3	escaladoIMRT	44733	81.6109	6.63269	17.2803	68.0057			
3	escaladoRA	44733	100	6.90542	19.2431	70.543			
3	SIBIMRT	44733	100	28.1336	52.221	55.876			
3	SIBRA	44733	95.2541	34.0576	63.3224	61.6391			
4	escaladoIMRT	37540	100	9.65903	18.407	78.4204			
4	escaladoRA	37540	100	9.94939	19.3207	72.8103			
4	SIBIMRT	37540	100	24.5951	41.862	46.1774			
4	SIBRA	37540	100	25.6074	52.5786	57.0298			
5	escaladoIMRT	73832	87.4052	18.7602	37.6652	68.7006			
5	escaladoRA	73832	88.4928	16.4671	37.6409	69.3507			
5	SIBIMRT	73832	91.975	21.1182	37.4228	50.3075			
5	SIBRA	73832	95.2202	21.9214	43.836	46.9959			

Tabla G-3.: Análisis 3D en región de PTV de las distribuciones de dosis en los casos del 1 al 5.

	Region: PTV, δ_D : 0.03, DTA : 3								
Е	Plan	Pts eval	γ	δ_D	DTA	$\gamma \theta$			
6	escaladoIMRT	57892	93.037	18.1942	40.6757	59.9375			
6	escaladoRA	57892	99.9948	15.0055	37.0137	57.4293			
6	SIBIMRT	57892	99.9948	38.8655	58.9356	61.0862			
6	SIBRA	57892	97.6076	41.3114	74.4058	66.0748			
7	escaladoIMRT	95989	100	26.0738	46.0459	67.7755			
7	escaladoRA	95989	100	4.08276	7.59254	60.5892			
7	SIBIMRT	95989	100	32.3673	56.4679	56.2169			
7	SIBRA	95989	100	37.3928	68.6089	63.6427			
8	escaladoIMRT	69706	100	37.8016	52.7731	67.2066			
8	escaladoRA	69706	100	17.2066	36.9939	62.6244			
8	SIBIMRT	69706	100	32.1823	52.6956	51.7287			
8	SIBRA	69706	98.6587	41.2977	74.4599	62.8296			
9	escaladoIMRT	58749	91.622	12.8377	25.5068	80.6312			
9	escaladoRA	58749	100	2.90047	9.03335	72.4097			
9	SIBIMRT	58749	100	32.6933	50.8196	57.0257			
9	SIBRA	58749	93.2918	21.5561	40.5692	46.3548			
10	escaladoIMRT	73960	87.381	24.0982	43.6601	76.3656			
10	escaladoRA	73960	86.4346	7.87723	19.6011	60.1988			
10	SIBIMRT	73960	82.2796	10.1068	25.7369	56.8226			
10	SIBRA	73960	94.036	18.8453	40.5706	45.5138			

Tabla G-4.: Análisis 3D en región de PTV de las distribuciones de dosis en los casos del 6 al 10.

	Region: OAR, δ_D : 0.03, DTA : 3								
E	Plan	Pts eval	γ_{OAR}	$\delta_{D_{OAR}}$	DTA_{OAR}	$\gamma \theta_{OAR}$			
1	escaladoIMRT	913895	87.675	10.9862	22.8496	47.5209			
1	escaladoRA	911681	99.3346	14.6027	29.0387	48.5737			
1	SIBIMRT	903035	87.5255	9.52953	22.3499	49.1199			
1	SIBRA	902811	90.725	15.5275	29.0662	48.8426			
2	escaladoIMRT	510383	99.8434	11.324	22.2153	34.5905			
2	escaladoRA	511068	92.9906	15.7609	28.3653	39.373			
2	SIBIMRT	505328	92.6216	11.4625	22.407	33.4381			
2	SIBRA	506949	92.7435	15.8894	28.8788	39.0165			
3	escaladoIMRT	358084	89.6418	19.3952	39.9526	63.5393			
3	escaladoRA	361223	99.5698	26.139	44.7053	63.5771			
3	SIBIMRT	355748	99.704	19.8925	40.5506	62.8287			
3	SIBRA	355786	91.1776	26.5033	45.0223	64.3994			
4	escaladoIMRT	766671	100	8.32287	17.6861	34.2303			
4	escaladoRA	787009	99.7521	16.519	29.912	39.1938			
4	SIBIMRT	759964	99.7995	7.61878	17.5703	37.1627			
4	SIBRA	780504	99.5098	17.019	30.2683	40.22			
5	escaladoIMRT	914423	91.1839	8.55086	16.4353	35.2871			
5	escaladoRA	917309	93.1831	14.9252	26.3006	39.3385			
5	SIBIMRT	903693	90.5399	7.53121	15.379	35.1251			
5	SIBRA	910112	92.3476	12.0375	23.6561	39.5132			

Tabla G-5.: Análisis 3D en región de OAR de las distribuciones de dosis en los casos del 1 al 5.

	Region: OAR, δ_D : 0.03, DTA : 3								
Е	Plan	Pts eval	γ_{OAR}	$\delta_{D_{OAR}}$	DTA _{OAR}	$\gamma \theta_{OAR}$			
6	escaladoIMRT	557092	78.47	10.9745	23.1384	59.6596			
6	escaladoRA	556915	99.6709	17.8835	30.2427	59.8434			
6	SIBIMRT	554337	99.7263	10.4363	23.1273	62.7404			
6	SIBRA	554419	85.7379	19.1088	31.9704	60.6992			
7	escaladoIMRT	1042850	100	12.1454	26.3214	53.229			
7	escaladoRA	1042240	99.1684	15.8884	31.6427	54.2429			
7	SIBIMRT	1031560	100	11.2687	25.2049	53.6082			
7	SIBRA	1032860	100	19.6451	35.6616	57.5315			
8	escaladoIMRT	554407	99.8721	13.4214	32.1163	58.4334			
8	escaladoRA	554214	99.5982	23.3437	41.065	61.4633			
8	SIBIMRT	548484	99.8631	12.5976	31.9295	59.0573			
8	SIBRA	548418	90.6413	24.2833	41.6177	60.8277			
9	escaladoIMRT	347692	92.2903	14.6	22.4009	73.6753			
9	escaladoRA	343698	98.8243	15.4487	24.0266	73.205			
9	SIBIMRT	337963	98.6806	13.8944	21.4813	75.1887			
9	SIBRA	338024	82.0418	15.795	24.5293	72.344			
10	escaladoIMRT	710314	82.9643	17.8473	31.7019	64.554			
10	escaladoRA	710819	84.4515	20.7838	35.7675	66.1431			
10	SIBIMRT	708328	83.9371	17.7891	29.0087	68.4669			
10	SIBRA	707864	85.1991	19.6346	34.5499	66.4838			

Tabla G-6.: Análisis 3D en región de OAR de las distribuciones de dosis en los casos del 6 al 10.

Bibliografía

- [1] J E Scaife, G C Barnett, D J Noble, R Jena, S J Thomas, C M L West, and N G Burnet. Exploiting biological and physical determinants of radiotherapy toxicity to individualize treatment. *The British Journal of Radiology*, 88(1051):20150172, 2015. PMID: 26084351.
- [2] K kian and Adam S. Garden. Radiotherapy for Head and Neck Cancer. Wolters Kluwer and Lippincott Williams & Wilkins, 2012.
- [3] Ester Orlandi, Mauro Palazzi, Emanuele Pignoli, Carlo Fallai, Antonella Giostra, and Patrizia Olmi. Radiobiological basis and clinical results of the simultaneous integrated boost (sib) in intensity modulated radiotherapy (imrt) for head and neck cancer: A review. Critical Reviews in Oncology/Hematology, 73(2):111 – 125, 2010.
- [4] D. I. Thwaites, Department Of Oncology Physics, B. J. Mijnheer, and J. A. Mills. Quality assurance of external beam radiotherapy.
- [5] OIEA, editor. Aspectos FÁsicos de la GarantÃa de Calidad en Radioterapia: Protocolo de Control de Calidad. OIEA, 2000.
- [6] SA, ren M. Bentzen, Louis S. Constine, Joseph O. Deasy, Avi Eisbruch, Andrew Jackson, Lawrence B. Marks, Randall K. Ten Haken, and Ellen D. Yorke. Quantitative analyses of normal tissue effects in the clinic (quantec): An introduction to the scientific issues. *International Journal of Radiation Oncology*Biology*Physics*, 76(3, Supplement):S3 – S9, 2010. Quantitative Analyses of Normal Tissue Effects in the Clinic.
- [7] AAPM, J.R. Palta, and T.R. Mackie. Intensity-modulated Radiation Therapy: The State of the Art: American Association of Physicists in Medicine 2003 Summer School Proceedings, Colorado College, Colorado Springs, Colorado, June 22-26, 2003, chapter Target and Critical Structure Definitions, Dose Prescription, and Reporting for IMRT. Medical Physics Monograph. American Association of Physicists in Medicine, 2003.
- [8] Avraham Eisbruch, K.S. Clifford Chao, and Adam Garden, editors. PHASE I/II STUDY OF CONFORMAL AND INTENSITY MODULATED IRRADIATION FOR OROPHARYNGEAL CANCER. RADIATION THERAPY ONCOLOGY GROUP, 2005.

- [9] Nancy Lee, Adam Garden, Alan Kramer, and Ping Xia, editors. A PHASE II STUDY OF INTENSITY MODULATED RADIATION THERAPY (IMRT) +/- CHEMOT-HERAPY FOR NASOPHARYNGEAL CANCER. RADIATION THERAPY ONCO-LOGY GROUP, 2005.
- [10] K. Kian Ang, M. Elizabeth Hammond, and Jackie Fisher, editors. A PHASE III RANDOMIZED STUDY TO COMPARE TWICE DAILY HYPERFRACTIONATION, ACCELERATED HYPERFRACTIONATION WITH A SPLIT AND ACCELERA-TED FRACTIONATION WITH CONCOMITANT BOOST TO STANDARD FRAC-TIONATION RADIOTHERAPY FOR SQUAMOUS CELL CARCINOMAS OF THE HEAD AND NECK. RADIATION THERAPY ONCOLOGY GROUP, 2005.
- [11] Radhe Mohan, Qiuwen Wu, Matthew Manning, and Rupert Schmidt-Ullrich. Radiobiological considerations in the design of fractionation strategies for intensity-modulated radiation therapy of head and neck cancers. *International Journal of Radiation Onco*logy*Biology*Physics, 46(3):619 – 630, 2000.
- [12] VARIAN Medical System, editor. RapidArc 11 Operations rev 1.1. VARIAN Medical System, 2012.
- [13] L.M. Chong and M.A. Hunt, editors. *IMRT for head and neck cancer*. Medical Physics Publishing, 2002.
- [14] X. Sharon Qi, Qiuhui Yang, Steve P. Lee, X. Allen Li, and Dian Wang. An estimation of radiobiological parameters for head-and-neck cancer cells and the clinical implications. *Cancers*, 4(2):566–580, 2012.
- [15] Myonggeun Yoon. A new homogeneity index based on the statistical analysis of dose volume histogram. Journal of Applied Clinical Medical Physics, 8(2), 2007.
- [16] DamiAjn Guirado Lorente. Radiobiología clínica. Sociedad Espanola de Física Médica, 2003.
- [17] Clinton S. Park, Yongbok Kim, Nancy Lee, Kara M. Bucci, Jeanne M. Quivey, Lynn J. Verhey, and Ping Xia. Method to account for dose fractionation in analysis of {IMRT} plans: Modified equivalent uniform dose. International Journal of Radiation Oncology*Biology*Physics, 62(3):925 – 932, 2005.
- [18] X. Allen Li, Markus Alber, Joseph O. Deasy, Andrew Jackson, Kyung-Wook Ken Jee, Lawrence B. Marks, Mary K. Martel, Charles Mayo, Vitali Moiseenko, Alan E. Nahum, Andrzej Niemierko, Vladimir A. Semenenko, and Ellen D. Yorke. The use and qa of biologically related models for treatment planning: Short report of the tg-166 of the therapy physics committee of the aapm a). *Medical Physics*, 39(3):1386–1409, 2012.

- [19] Qiuwen Wu, Radhe Mohan, Andrzej Niemierko, and Rupert Schmidt-Ullrich. Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. International Journal of Radiation Oncology*Biology*Physics, 52(1):224 – 235, 2002.
- [20] Tom Depuydt, Ann Van Esch, and Dominique Pierre Huyskens. A quantitative evaluation of {IMRT} dose distributions: refinement and clinical assessment of the gamma evaluation. *Radiotherapy and Oncology*, 62(3):309 – 319, 2002.
- [21] Jonas Bengtsson Scherman. Development and evaluation of methods for comparison of dose distributions in radiotherapy using calculated, synthetic and simulated measured dose distributions. Master's thesis, Lund University, Lund, Sweden, 10 2009.