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Abstract    V 

 

Abstract 

The present thesis work has been carried out with the aim of studying the 

mechanical behavior of Al2O3-13wt.%TiO2 ceramic coating (AT-13) at room and 

elevated temperatures. AT-13 coatings were deposited, with two different standoff 

distances (110 and 140 mm), by the flame spraying technique; their microstructure 

and composition were analyzed by means of optical and scanning electron 

microscopy and X-ray diffraction. The mechanical behavior of the coated systems 

was evaluated by means of tensile tests, micro-  and nano-indentation techniques; 

the critical strain for cracking was found to be between 0.7 and 0.51% for both 

coatings, it was obtained in situ and recorded with the aid of a high resolution 

camera during tensile test at room temperature, as well as the cracking stages A 

(initiation), B (nucleation), C (propagation), and D (saturation), represented on the 

stress-strain curve. The strains relative to the cracking stages (in situ) were applied 

to the coatings, at elevated (~200°C), and evaluated ex situ, finding that the AT-13 

coating systems studied here were prone to delamination due to the poor strain 

compatibility between the substrate and the bond coat. It was found that the degree 

of porosity, highly influenced the critical strain which was higher for the coating with 

the lower porosity, Ɛ=0.70±0.08%, when compared to the coating with the higher 

porosity, Ɛ=0.51±0.05%. 

 

 

 

Keywords: (AT-13, Alumina-titania coating, Mechanical properties, Elevated 

temperature, Critical strain).  

 



Mechanical Behaviour of AT-13 Ceramic Coating at Elevated Temperature 

 

 

 

 

 

 

Resumen 

El presente trabajo fue desarrollado con el fin de estudiar el comportamiento 

mecánico de recubrimientos cerámicos Al2O3-13wt.%TiO2 (AT-13) tanto a 

temperatura ambiente como a alta temperatura. Recubrimientos cerámicos AT-13 

fueron depositados utilizando dos distancias de aspersión de 110 y 140 mm 

mediante la técnica de proyección térmica por llama; su microestructura y 

composición química fueron analizadas mediante SEM y DRX. El comportamiento 

mecánico de los recubrimientos fue caracterizado mediante pruebas de tracción y 

las técnicas de micro- y nano-indentación; la deformación crítica para el 

agrietamiento se encontró entre 0.7 y 0.51% para ambos recubrimientos; obtenida 

in situ, y grabada con la ayuda de una cámara de alta resolución durante las 

pruebas de tensión a temperatura ambiente, así como las etapas de agrietamiento 

A (Iniciación), B (nucleación), C (propagación), y D (saturación), representadas en 

la curva de esfuerzo deformación. Las deformaciones relativas a las etapas de 

agrietamiento (in situ) fueron aplicadas a los recubrimientos a alta temperatura 

(~200°C) y evaluadas ex situ, encontrando que los recubrimientos AT-13 

estudiados en este trabajo fueron susceptibles a delaminación como consecuencia 

de la baja compatibilidad a la deformación entre el sustrato y la capa de anclaje. 

También se encontró que el grado de porosidad influencia el esfuerzo crítico que 

resultó ser mayor para el recubrimiento con la menor porosidad, Ɛ =0.70±0.08%, 

al ser comparado con el de mayor porosidad, Ɛ=0.51±0.05%. 

 

 

Keywords: (AT-13, recubrimiento de alúmina-titania, Propiedades mecánicas, alta 

temperatura, Deformación crítica).
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Introduction 

 

The AT coating systems, Al2O3-TiO2, deposited by the flame spraying technique, as 

well as other coating systems deposited by means of different deposition processes, 

represent a great challenge when it comes to assessing their mechanical 

performance at room and elevated temperatures, mainly because of the large 

number of parameters involved in the production processes, and the dimensions 

and condition of the substrate. The purpose of this writing is to contribute to 

gathering important knowledge that will be useful for the life cycle assessment of 

ceramic coatings deposited by thermal spraying techniques. 

 

The world of coatings is very broad, and the deposition techniques used to produce 

them are many, this without mentioning their applications which are plentiful and 

focused on improving aspects like functional performance, service life and 

component cost. The evolution of ceramic coatings, see Figure 1-1, began its 

persistent breakthrough since the times of the First World War (1914-1918) and the 

Second World War (1939-1945) where the protection of metallic engineering 

materials was a topic of interest due to the need of resistance to high cycle 

temperatures, high cycling forces, sliding, erosion and corrosion on engine parts 

and weapons. During these periods, the usage of materials, such as glass and its 

derivates, with low thermal conductivity was taken as thermal protection, but factors 

like the cost of processing, the low expansion rate and the lack of strength made 

glass not to be a good material for this purpose [1]. 
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Figure 1-1. Historical evolution of ceramic coatings (documents by year) [2]. 

The publication “Review of an investigation of ceramic coatings for metallic turbine 

parts and other high-temperature applications” [3] could be the seminal paper about 

protection against high-temperatures by using a coating, and its aim was the 

development of ceramic coatings to protect and enhance the lifetime of alloys used 

in turbines. Hereupon, during the ‘50s the use of ceramic materials in engines began 

its climbing, but yet still fewer applications were found. During the ‘60s, the demand 

for ceramic coatings was increased thanks to the development of gas turbines 

where the metals and different alloys were not capable of bearing the high-

temperature environments [4]. 

 

In recent years, there have been great improvements in analyzing the degradation 

behavior and the reliability of ceramic coating systems, but there is still some deficit 

in the capability for predicting damage evolution in terms of crack initiation and crack 

growth, which ultimately leads to macroscopic delamination and spallation of the 

coating system. A fundamental understanding of the damage evolution processes 

under different conditions such as isothermal, thermo-cyclic and thermo-mechanical 

loading conditions has to be developed [5]. 

 

Any contribution to the knowledge of the mechanical behavior of ceramic coatings 

at elevated temperatures is of great importance, either for the enhancement of 
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materials service life and for environmental reasons. The proposal of new 

approaches, new models or validation of existing analytical models with a pragmatic 

application are needed to get a benchmark for the prediction of components life 

time, and for the development of new modified coatings that will permit the 

endurance under operating conditions such as high temperature and tough 

environments. 

 

This thesis proposes a protocol for the measurement of the mechanical properties 

of ceramic coatings in general, at room and elevated temperatures; it will be applied 

to the AT-13 coating system. 

In order to achieve the main goal of this work, a re-design of a classical Monsanto 

tensometer, was performed to provide the capability of performing tensile tests at 

high temperatures, up to 1200°C.  

The samples for the tensile test were designed based on the standard ASTM E8 [6] 

having a dog-bone shape. In order to assure a plane stress state, the design of the 

samples was verified by the finite elements method.  

One of the difficulties faced on this work, apart from the costly experimentation was 

the usage of cold grips for performing the tensile tests at elevated temperature. 

 

The content of this thesis starts with the chapter 1 “Ceramic coatings” which gives 

general information concerning to this topic such as the basic structure of a coating 

system and the materials with which it is produced, the spraying techniques used 

for its production, and finishes with the general properties of the ceramic coatings, 

fundamentals and testing. The chapter 2 “Materials and methods” gives the 

necessary information for unbiased future evaluation and reproducibility of the 

evaluation of the coating system. The chapter 3 “Results” explains the main 

outcomes of this study. The chapter 4 “Conclusions and recommendations” states 

the facts found during the entire work and lays feasible future work on the specific 

area covered here in. Additional information can be found in the appendices 

chapters. 
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Objectives 

 

General objective 

Evaluate the mechanical behavior of Al2O3-13 wt.% TiO2 ceramic coating deposited 

by flame spray when submitted to elevated temperatures. 

 

Specific objectives 

 Characterize the Al2O3-13 wt.% TiO2 ceramic coating for morphology, phase 

composition and properties by technics such as optical and SEM microscopy, 

and X-ray diffraction. 

 Study the crack evolution of the coated system by means of in situ micro-

tensile tests at room temperature. 

 Correlate the ex situ cracking patterns of the coated system measured after 

elevated temperature tensile test with the in situ measurements obtained at 

room temperature. 

 Measure the mechanical stiffness of the coated system by means of micro-

tensile test at high temperature. 

 





 

1 Ceramic Coatings 

Ceramic coatings are usually applied onto structural metallic components to give 

them protection against corrosion, wear, erosion and to provide lubrication and 

thermal insulation. Coating systems such as alumina-titania, Al2O3-13wt%TiO2, 

(AT-13) are commonly used to improve wear-, corrosion-, and erosion-resistance 

of steels [7], among other applications. 

 

Figure 1-1 shows the typical surface morphology and the structure at the cross-

section of Al2O3-TiO2 coatings, where the metallic substrate, bond coat and top 

ceramic coat compose the ceramic coating system. 

 

 

Figure 1-1. Typical surface morphology and cross-section structure of Al2O3-TiO2 

coatings [8]. 

 

These coatings are usually applied by techniques such as thermal spraying 

because it is necessary to achieve temperatures high enough to melt the ceramic 

material to form the coating; thermal spraying process is widely used to make thick 
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coatings for various industrial applications [8]. Additionally, ceramic coatings which 

are applied to reduce heat transfer may be divided as thin coatings (up to 0.5 mm) 

and thick coatings (up to 5-6 mm). Thin ceramic coatings are used in gas turbines, 

piston tops, cylinder heads and valves of auto and diesel engines [9]; while thick 

ceramic coatings are used in static engine components like turbine vanes and 

combustors, and can be used for abradable blade outer air seals [10]. 

1.1 Components of the ceramic coating system 

The choice of a thermally sprayed material for an application is more complex than 

selecting a wrought or cast material for the same application because coating 

properties are not as predictable as those of conventional materials, however, the 

optimal pairing of the base material and the surface coating properties allows the 

obtention of characteristics and properties that would not be possible with 

homogeneous materials [11]. 

1.1.1 Substrate material 

High strength aluminum alloys such as AA7075 can potentially be used instead of 

high strength steel to achieve weight reduction in different applications [12], but 

under high temperatures a significant growth of the precipitation particles is 

observed; for the alloy AA7075 it already starts at about 120°C [13]. In this ageing 

stage, the atoms of the alloy, which are in oversaturated solution produce minor 

precipitations by diffusion increasing the strength of the material. Artificial ageing 

temperatures normally vary between 100 and 200° C [14].  

 

In terms of the effect of temperature on the properties of AA7075-T6 substrates, 

Cavaliere and Squillace reported that the hardness of the AA7075-T6 after high 

temperature, caused by friction stir process (FPS), is within the range of 124 and 

141 Hv; the drop in the hardness is as a consequence of the coarsening of 

precipitates (overaging); they also reported a drop of about 62% in the yield strength 

after the FPS with a respective diminishing of the elongation of about 64%  [15]. 
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Different authors have coated AA7075 aluminum alloys by different thermal 

spraying techniques: 

 

Macedo et al, coated a AA7075-T3 by techniques such as HVOF and LVOF and 

reported that thermal spraying of AA7075 alloys is viable because the change in the 

substrate hardness, after the spraying process, is not significant [16]. 

Arsenault et al, studied the fatigue integrity of the AA7075 aluminum alloy with an 

arc sprayed protective coating, and reported that it is possible to provide high fatigue 

resistance to metallic coated AA7075-T6; coated and uncoated substrates exhibited 

similar fatigue resistance [17]. 

Mourad et al, deposited cermets by means of HVOF technique onto a 7075-T6 

substrate, and did not report any negative effect on the substrates [18]. 

Barbosa et al, have utilized the technique of Cold Spray to deposit Titanium coatings 

onto AA7075-T6 alloys [19]; in Cold Spray, the gas stream that exits the nozzle has 

relatively low temperatures (300 up to 800°C), and consequently the temperature 

of the particulate material remains below its melting point and therefore the resultant 

coating is formed in the solid state. 

Ambiger and Kumar deposited alumina and zirconia coatings onto AA7075-T6 

substrates by means of plasma spray technique to improve wear resistance of the 

aluminum alloy [20]. 

1.1.2 Bond coat (BC) 

Bond coatings are widely used in many industrial spraying applications with the aim 

of providing a good thermal expansion match between substrate and ceramic 

coating [21], which in turn increases the resistance of the coating to the stress. 

 

1.1.3 Top coat (TC)  

The alumina-titania coating is conventionally used as hard coating due to its 

resistance to chemical and abrasive wear conditions [8], [22]. These coatings can 
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be used in applications where protection against abrasion, erosion, cavitation, wear, 

galling, fretting, friction, etc. is needed [11]. Alumina-titania coatings are usually 

manufactured by the atmospheric plasma spraying technique; coatings with a good 

adherence to the substrate and a low level of porosity can be produced under the 

high temperatures involved in the spraying process, [23], [24]. It is worthy to mention 

that oxides such as Al2O3 are classified among the ultra-high temperature materials 

[25]. 

1.2 Thermal spraying processes 

Thermal spray is a technique that offers the possibility of producing a wide range of 

coatings for diverse applications [26]; it involves a variety of processes and 

materials. The deposition of a coating onto a substrate occurs when applying a 

stream of metallic or ceramic particles (wire or powder) in a flame or plasma jet to 

melt and accelerate them; after this, the particles flatten forming platelets called 

splats; by the application of several layers of these splats, the coating is formed 

[26], [27]. Different spraying techniques exist, but they are complementary and not 

competitive in the majority of cases i.e., an optimal spraying technique exists for a 

specific application [11]. The main objective of the thermal spraying technique is to 

increase the lifetime of materials by improving the performance of a component, 

adding functionality to surfaces. It is a very versatile technology that can be used in 

many types of applications and virtually almost on any component; it can be used 

against wear, corrosion, and aggressive and high-temperature environments, and 

for reparation and restoration of components [28], [22]. 

 

Figure 1-2 and Figure 1-3 show a classification of the thermal spraying processes 

and the temperatures and particle velocities obtained during the different processes; 

they are divided into two main groups: combustion and electric discharge [11], [28]. 

Each of these techniques differ mainly by the source of energy that is used to treat 

the material to be sprayed [29]. 
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Figure 1-2. Classification of thermal spray technologies [11]. 

 

 

Figure 1-3. Gas temperature and velocities obtained with different thermal spray systems 

[11]. 

 

Thermal spraying is considered a potential alternative to traditional coating 

manufacturing techniques, such as hard chrome electroplating, for producing wear-

resistant coatings [30]. The most commonly used thermal spraying processes for 

Al2O3-TiO2 coatings are flame and plasma spraying [8], [24].  
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Figure 1-4. Comparison of different coating processes [28]. 

The differences among all coating properties and processes rely on the thickness, 

substrate temperature achieved during spraying, see Figure 1-4, and coating 

material. 

Table 1-1. Thermal spray techniques comparison [28]. 

 

During the combustion thermal spraying, the coating material is melted in a flame 

that is generated by the combustion of fuel with oxygen; the melted material is 
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atomized by a compressed gas that propels the molten droplets onto a substrate to 

build up a coating, see Figure 1-5, [28], [31]. 

 

During the electric discharge thermal spraying, the introduction of an electric arc 

allows to get to higher temperatures, thus spraying of materials with higher melting 

points is possible [28]. 

 

 

Figure 1-5. Typical morphology of the melted droplets; A) splat (or lamella) structure, B) 

common features [31]. 

Characteristics such as ceramic structure, adhesive strength, service life, thermal 

stresses in ceramic layer, and surface roughness are determined by the ceramic 

layer deposition technique. Coating service life and its performance depend not only 
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on its chemical composition but also on its structure and adhesive strength at the 

TC/BC interface [32], [33]. 

 

Coatings technology can be divided or classified into deposition of thin films (less 

than 20 µm) and deposition of thick films (>30 µm up to several millimeters). Thin 

films give an exceptional enhancement of surface properties; such is the case of 

chemical vapor deposition (CVD) or physical vapor deposition (PVD) that can 

provide surfaces with outstanding properties and corrosion resistance. Thick films 

are used when the component life depends on the layer thickness; thick film 

deposition methods include chemical/electrochemical plating, brazing, weld 

overlays, and thermal spray, among others [11]. 

 

Flame spraying, which belongs to the combustion thermal spray family,  formerly 

called metallizing, is the oldest process, but it is still in common use [11]; it has been 

the basis for the development of more advanced techniques such as HVOF [28]. 

In flame spraying, oxyacetylene torches achieve premixed combustion 

temperatures up to about 3000 K. Spraying materials are introduced generally 

axially into the gun. Flame velocities below 100 m/s characterize this process [11]. 

 

High porosity levels influence negatively the material hardness (the lower the 

porosity, the higher the hardness, and vice versa) [9]. Slight variations in the amount 

of porosity, porosity type, average pore size, grain size, or grain size distribution 

may have a dramatic effect on mechanical, optical, thermal, and electrical properties 

of engineered materials [32]. 

 

Depending on the processing conditions and the structure of the feedstock, the 

coatings may exhibit different properties. The feedstock may be get in the form of 

powders, wires, cords and rods. The powder feedstock morphology and particle 

size distribution depend on their manufacturing route (atomization, fusing and 

crushing, milling and sintering, mechanical alloying and milling, spray drying, 

spheroidization, cladding, etc.) 
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1.3 AT-13 system 

The Al2O3-TiO2 system is an interesting material for obtaining tough ceramics, as 

well, it is well known for its excellent wear and corrosion behavior [34], and it is 

widely used in processes such as APS [22]. Titania is a material with a moderate 

wear resistance, fracture toughness, and hardness when compared to alumina; it 

can be easily thermal sprayed due to its relatively low melting point, 1855°C. 

Alumina-titania AT-13 have a higher melting point of about 2000°C. [24]. Alumina 

or alumina-titania coatings are fairly porous, a characteristic that can be an useful 

feature under harsh working environments [26]. 

Nanostructured ceramic materials show a superior resistance to wear, erosion, 

cracking and spallation [34], indeed, in literature it is agreed that nanostructured AT-

13 coatings, made from nanostructured agglomerated powders deposited by APS 

exhibit a better performance to wear than the conventional AT-13 coatings (made 

from clad powders); nanostructured coatings are not harder than the conventional 

ones, but show a higher toughness which is considered to be the main characteristic 

that is responsible for their good wear performance [35]. 

1.4 Properties of ceramic coatings 

The control of the in-service properties, of ceramic coatings, is sensitive to the large 

number of parameters involved in the deposition process, e.g., spraying process 

generally considers the effect of the energetic parameters that affect the flame 

properties such as enthalpy and velocity and consequently in-flight particle velocity 

and temperature during their flight, coating mechanical properties and consequently 

in-service properties [22]. The true mechanical behavior of the ceramic coating 

depends on different factors as methods for producing the powders, the final 

microstructure and size of the powders, and finally, the method used to project the 

powders onto the substrate. 
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1.4.1 Mechanical properties 

The understanding of the mechanical behavior of ceramic coatings in both as-

sprayed and thermomechanical loading conditions is of great importance for the 

components life prediction. However, it is challenging to determine the true 

mechanical behavior because of the substantial differences between each layer, 

(TC, BC, and substrate). Notwithstanding that the mechanical properties depend, 

as for any other material, on temperature, section thickness, deformation 

characteristics, phase stability under long-term high-temperature exposure, thermal 

cycling, and pollutants that can infiltrate the pores changing the mechanical 

behavior [19], [35]. 

 

Failure of most bodies occurs by the propagation of cracks during service 

conditions, such cracks may be present in the body from manufacture, so that for a 

successful design of coatings or layers with optimum properties, the general 

character of stresses should be known, and also how these stresses depend on 

various factors such as the thickness and mechanical properties of each layer [36].  

 

Features like microstructure, chemical and phase composition, porosity and micro-

crack pattern, coating thickness, adhesion to the substrate (and/or bond coat), and 

residual stresses influence the performance of ceramic coatings. In general, 

residual stresses are detrimental for the mechanical behavior, in fact, residual 

stresses are associated with the primary failure mechanisms (cracking and 

spallation), and influence the adhesion strength and the resistance to thermal and 

mechanical loading conditions. The actual residual stresses result from the 

quenching of the deposits during thermal spraying and the secondary cooling, which 

occurs when the ceramic system mismatches as a result of thermal cycling during 

service [37], [38]. 

 

Residual stresses may be divided into two broad categories: intrinsic stresses and 

thermal stresses. Intrinsic stresses may arise from compositional variations, 
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structural changes or defect generation in the microstructure, and they can play a 

significant role. 

 

The thermal stresses during the spraying process are quite complex and they can 

be present as a stress gradient throughout the thickness; its significance depends 

on the type of cycling that is experienced by each component of the coating. The 

shrinkage of splats is caused by the quenching stresses that are tensile in nature, 

i.e., as the splat cools further after solidification, its thermal contraction is 

constrained by the underlying solid, developing the quenching stress (tensile) in this 

fashion [37], [39], [40], and it occurs due to the cooling from the melting point 

(deposition temperature) to the substrate temperature. In addition, during the 

cooling from deposition temperature to room temperature exists a differential 

thermal contraction (DTC) stress that may be either compressive or tensile 

depending on the sign of the difference between the metal and ceramic thermal 

expansion coefficients. The DTC is triggered by the thermal expansivity mismatch 

between substrate and ceramic, and it is introduced as well by thermal shock or 

thermal cycling effects during operating conditions. 

Residual stresses are modified by various relaxation and redistribution effects that 

occur as a result of creep and yielding, in addition to debonding and sliding at 

interfaces. There are also important effects on the stress of thermal cycling, 

especially when one constituent is metallic and when the temperature range is large 

enough to cause yielding [41]. 

 

Sofiane Guessasma et al, studied the effect of the injection parameters on the wear 

behavior of AT-13 plasma sprayed coatings under different spraying parameters 

using a Pin-On-Disk (POD) test [22]. 

 

Evans and Hutchinson studied the principles governing the thermomechanical 

integrity of multilayers as means for fail-safe design of coated systems; “The 

dissimilar nature of the constituents presents challenges concerning the 
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thermomechanical integrity and reliability, especially when at least one of the 

constituents is brittle” [41]. 

 

Zhu et al, said that the major failure mode for ceramic coatings, like the  Thermal 

Barrier Coatings, under tension, is spallation and delamination of the ceramic 

coating, which results from the nucleation, propagation and coalescence of surface 

cracks and interfacial delamination [42]. 

 

Lima and Marple, evaluated the Vickers hardness and the fracture toughness of 

conventional AT-13 coatings deposited by APS; the Vickers hardness was carried 

out under a 300 g load and 15 s on the cross section of the coatings, and the fracture 

toughness was performed by indentations with a Vickers indenter at a 5 Kg load 

and 15 s. The reported values for Vickers hardness, 1080±58 is similar to the values 

reported by Westgard et al., Luo et al., and Pawloswski, also ∼1000 Hv; fracture 

toughness, 14.0±2.5 MPam1/2 [24]. The values of fracture toughness are highly 

influenced by the microstructure of the powders. 

In conventional coatings, the well-defined splat boundaries provide easy crack 

propagation paths compared to the nanostructured coatings where nano-zones 

help to stop crack propagation increasing the fracture toughness in this fashion. 

1.4.2 Elastic stresses in bimaterial plates 

In the literature, simplified expressions can be found for very thin coatings, where 

the material properties and temperatures do not depend on the coordinates (x and 

y), and the stresses and strains depend only on z, and act only in the plane of the 

plate; the stresses perpendicular to this plane are zero. These simplified 

expressions cannot be applied to thick coatings because they do not take into 

account the coating stiffness and the possibility that the body will be deformed by 

residual stresses that are usually the outcome of differences in thermal expansion 

between coating and substrate that cause deflection or distortion of the body. Even 

if these deformations are small, the associated stresses can be considerable 

because shear stresses that are present in the interface grow with the coating 
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thickness and are the main reason why thick coatings are more prone to spalling 

than thinner ones [36]. 

1.4.3 Stresses caused by differences in thermal expansion 

Most ceramics are brittle at room temperature, but not necessarily at elevated 

temperatures, as the temperature of a material is increased, it is generally found 

that the Young’s modulus slowly decreases as follows: 

𝐸 =  𝐸0 − 𝑏𝑇𝑒𝑥𝑝 (
−𝑇0

𝑇
) 

Where 𝐸0 is the Young’s modulus at absolute zero, 𝑏 and 𝑇0 are empirical constants; 

𝑇0 is about half the Debye temperature (the temperature at which the elastic 

vibration frequency of the atoms in a solid is the maximum). The rapid decrease of 

the Young’s modulus at high temperatures has been attributed to non-elastic effects 

such as grain boundary sliding, and grain boundary softening [43]. 

 

These stresses are present when the substrate temperature differs from the 

temperature at which the coating was produced, as well, after operation regimes at 

high temperature. 

During cooling, after firing, the layer with higher thermal expansion coefficient tries 

to contract more, and the layer with lower expansion coefficient prevents it. As a 

consequence, stresses arise in the component. As long as the temperatures are 

high, these stresses can relax. However, below a certain temperature they remain 

in the body permanently [36]. 

1.4.4 Phase transformation 

Mechanisms that are promoted by temperature, such as phase transformation, in 

the surface, layer along with volume change, also affect residual stresses [36]. 

 

“Cracking and decohesion events expected in a multilayer system can be predicted, 

subject to knowledge about residual stresses, their redistribution, and the external 

loads, as well as the interface response” [41]. 
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For example, the delamination crack path in APS TBCs systems is usually observed 

at different locations near the TGO-layer: it can appear within the TC, or close to 

the TGO, or the interfaces TC/TGO, BC/TGO or within the TGO.  

At first, micro-cracks that already exist in the as-sprayed condition grow after heat 

exposure and/or number of thermal cycles (the crack growth is correlated with the 

exposure time at high temperatures). Ultimately, macro-cracks, which are 

predominantly oriented in the lateral direction, parallel to the TC/TGO interface, 

appear and cause the consequent spallation of the TC. The probable path of 

macroscopic spallation of TBCs depend on the thermal and/or thermo-mechanical 

loading profiles [44], [45].  

 

Under service condition, or thermomechanical loading, when cracks initiate and 

propagate in the TC, the coating would be prone to spallation or delamination and 

the operation becomes impossible due to safety regards. [46]. 

1.4.5 Interface fracture toughness 

Micro-tensile tests have been utilized in experiments carried out at high-

temperatures and this could be an exceptional means of testing the 

thermomechanical behavior of ceramic coatings at high-temperatures. 

 

“It is well known that the failure of TBC systems under thermomechanical loading is 

very complicated because it is influenced by the thermal mismatch, interface 

roughness, creep, sintering and so on” [47]. 

1.4.6 Tensile test for ceramic coatings 

One of the means to evaluate the mechanical behavior is uniaxial tensile test. The 

strain generated in the specimens during uniaxial loading remains uniform over its 

thickness ensuring that the obtained results are easy to interpret [48].  
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A useful method to study the mechanical behavior of films or coatings that are 

deposited on substrates is the measurement of the straining that occurs during 

uniaxial tension at which a sequence of events occurs such as primary cracks, 

increase of the transverse crack density, saturation point and film decohesion [49]. 

The whole coating would break into many small segments by the interface stress 

that is transferred as a consequence of the substrate deformation when loaded at 

tension, and there may be a little dissipation or release of the normal stress σxx 

along the tensile direction in coating, but the external load applied in substrate 

monotonically increases, which results in the increase of the normal stress in 

coating. Finally, more parallel cracks form on the coating surface, as shown in 

Figure 1-6 [50]. 

 

Figure 1-6. Multiple surface cracks observed under tensile loading [42]. 

 

Zhou, M., et al., investigated the failure behavior of APS TBCs, under uniaxial 

tension, by means of a coupled acoustic emission (AE) and digital image correlation 

(DIC) techniques to reveal the real-time damage evolution. They used a shear lag 

model to analyze the relationship between the vertical crack density on the coating 

and the applied strain in the substrate. Figure 1-7 shows a typical stress-strain curve 

of a coating system (substrate, BC, and TC); A, B, C and D show the representative 
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strain maps on the coating surface; these same points reflect the stages of cracking 

in the coating with the increase of the external strain in the substrate (initiation, 

nucleation, and propagation). 

 

Figure 1-7. Typical stress-strain curve of TBCs under tension at room temperature [50]. 

During the initial stage (small 𝜀𝑠) the coating undergoes transient elastic 

deformation; as strain increases, it is heterogeneously distributed (A); when the 

substrate deforms, from elastic to plastic, the strain concentration regions appear 

on the surface and gradually propagate perpendicular to the tensile (x-axis) 

direction; as strain increases further, some strain concentrations domains emerge 

on the surface (E)  [50]. 

Zhou, M., et al. reported that the critical strain is found between 0.4 and 0.5% which 

is in agreement with Eberl, C. et al. who reported a critical strain for fracture in the 

TBC’s top coat between 0.35 and 0.5%, which was measured in micro-beams test 

specimens [51]. This critical strain corresponds to the first stage of cracking, and 

other vertical cracks successively appear under the increasing tensile load, then, 

vertical cracks come to saturation. The effect of shear stress induced by the 



22 Mechanical Behaviour of AT-13 coatings at Elevated Temperature 

 

substrate deformation on the coating gradually vanishes because all interface 

delamination comes to a saturation state. 

 
Mao et al., following previous researches carried out by [52] and [53] (where uniaxial 

tensile tests were done at room temperature) studied the crack nucleation and 

propagation behavior of APS TBCs under uniaxial tension at room and high 

temperature, up to 1000°C, where the heating was achieved with help of an 

oxyacetylene torch towards TC surface. The test specimens, dog-bone samples, 

consisted of a plasma-sprayed 8wt.%YSZ TC, a NiCrAlY BC and a SUS304 

stainless steel substrate [47].  

 

Results reported by Mao et. Al., consisted of seven stages for the stress-strain curve 

of TBC specimens. Nucleation and propagation of transverse cracks correspond to 

the critical points P, A, B, C, D and E shown in Figure 1-8. The evolution of each 

transverse crack can be divided into three phases: initial cracking which occurs at 

A in the stress-strain curve, multiple transverse cracks which occurs between A and 

B, and crack saturation which occurs between B and C in the stress-strain curve. 

In the C-D region the crack-crack spacing reaches a fixed-average space and 

delamination takes place. 

 

 

Figure 1-8. The tensile stress–strain curve of APS TBC system and its substrate material 

(stainless steel) at 1000◦C [47]. 
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In the paper by Wu et al. TBCs samples deposited by EB-PVD with dog bone shape 

(Figure 1-9) were submitted to uniaxial tensile tests at different temperatures (20, 

200, 400, 600, 800°C). Their results are summarized in Figure 1-9 and Figure 1-10, 

[54]. 

 

 

Figure 1-9. Stress-strain curves at different high-temperatures [54]. 

 

Figure 1-10. Stress intensity factors at high-temperatures [54]. 
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The elastic modulus decreases about 80 MPa when temperature reaches 800°C; 

cracks which are normal to the loaded axis appear on the surface and saturate with 

the increasing strain. When the crack tip is close to the TC/BC interface, the crack 

kinks and propagates along this interface producing the spallation of the TC. 

For the calculation of the stress intensity factors they have considered the thermal 

expansion mismatch and utilized the Suo-Hutchinson model which consider the 

interface cracking between two elastic layers, and have treated the bond coat and 

superalloy as a one single layer, hence the TBC system was composed of two 

layers. Basically, this model was based on the assumption that real bodies contain 

regions with different mechanical properties, then, the vicinity of a region with a 

different elastic modulus, and also the presence of an interface with a lower 

strength, have a pronounced influence on the behavior of a crack. Note that the 

stress state in such areas is much more complex than in homogeneous materials 

[36]. 

 

1.5 Weibull statistics 

It is challenging to determine the true mechanical behavior of the ceramic coating 

because of the substantial differences, between each layer (TC, BC, and substrate). 

Weibull statistics is a method that offers good performance for extremely small 

samples, particularly for ceramic materials; this characteristic is important in areas 

such as aerospace industry (for safety problems) and in the development of testing 

methods with small batches, recall that for statistical relevance, larger batches are 

needed [55]. 

 

As it is well known,  fracture in brittle solids usually occurs due to the existence of 

surface flaws or cracks that are in the presence of stress fields [56], when measuring 

properties of ceramic materials, a large scatteredness is observed; the same 

phenomena manifests in the top ceramic coat of ceramic coatings. The strain 

values, Ɛ, (for cracking) of the TC present this scatteredness due to the 
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inhomogeneity and/or anisotropy of the ceramic coatings, their microstructure, size, 

shape, porosity, residual stresses, etc., so that a single value for strain is not a 

reliable parameter to predict the strain for fracture for ceramic coatings. According 

to Weibull statistics, the fracture will occur at the weakest place, so the application 

of this statistics for analyzing the fracture test data is a well recommended practice 

[56]. Weibull statistics, when applied to the fracture of brittle solids, refers to 

instantaneous failure at a particular applied stress [56]. 

Considering Ɛ as a random variable which is a property that defines the crack 

extension (or crack stability), each value of Ɛ has a certain probability of occurring 

which is given by the probability function 𝑃(Ɛ = 𝑥) = 𝑓(𝑥). The cumulative 

probability distribution function for the random Ɛ may be defined as 𝑃(Ɛ ≤ 𝑥) =

𝐹(𝑥), and yields the probability that Ɛ takes on some value, less than or equal to 𝑥. 

The strain for fracture distribution may be described using the two-parameter 

Weibull probability distribution given by the following equation: 

𝑃(Ɛ) = 1 − 𝑒
−(

Ɛ
𝐾0

)
𝑚

 

Where Ɛ is the strain for fracture, and 𝑃(Ɛ) is its probability of occurrence (as an 

indicator of the weakest values); the Weibull modulus, m, indicates the 

scatteredness of the data, and 𝐾0 is the characteristic strain for fracture or scale 

parameter (which is a value of the strain for fracture that includes 63% of the test 

data, when Ɛ = 𝐾0).  

The Weibull probability distribution can be rearranged to a linear equation by taking 

two times its natural logarithm as follows: 

𝑙𝑛𝑙𝑛 (
1

1 − 𝑃(Ɛ)
) = 𝑚𝑙𝑛Ɛ − 𝑚𝑙𝑛𝐾0 

The parameters, 𝑚 and 𝐾0, can be estimated by using different methods, but the 

most common is ordering/ranking statistics together with a linear regression. The 

strain for fracture values should be ordered from the smallest to the greatest, 

assigning each one a probability of occurrence based on its ranking, 𝑖, as follows: 

𝑃 =
𝑖 − 0.5

𝑁
 

Where 𝑁 is the total number measurements. 
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With the 𝑃(Ɛ) and Ɛ values, Weibull plots are constructed as 𝑙𝑛 [𝑙𝑛 (
1

1−𝑃(Ɛ)
)] vs 𝑙𝑛(Ɛ). 

Using the least square regression fit were used to calculate the values of 𝑚 and 𝐾0. 

Multiple flaw distributions may be further evidenced by deviation from the linearity 

of the data from a single Weibull distribution [57]. 

 

The Weibull modulus, 𝑚, and the characteristic strain for fracture, 𝐾0, can be 

estimated by plotting 𝑙𝑛 [𝑙𝑛 (
1

1−𝑃(Ɛ)
)] vs 𝑙𝑛(Ɛ) and taking a linear regression of the 

data points. The slope of the regressed line is the Weibull modulus, 𝑚, and its 

intercept is equal to 𝑚𝑙𝑛𝐾0. The graphical representation of this plot is useful for 

making judgements about the validity of the distribution function describing the data 

set. If the data points are clearly non-linear on such plot, then the distribution 

function probability does not adequately describe the behavior, which is an indicator 

of the presence of multiple defect distributions such as porosity, oxide films. 

 

The scale parameter is calculated using 𝐾0 = 𝑒|−
𝑏

𝑚
|
 where 𝑏 is calculated as 

−𝑚𝑙𝑛𝐾0, which is the intercept of the Weibull plot. 

 

 



 

2 Materials and methods 

This chapter deals with materials and steps required to produce and evaluate the 

behavior of the AT-13 coating systems at room and elevated temperatures.  

Elevated temperature is relative to the substrate, i.e., defined as ~40% of the 

melting temperature of the substrate. The chapter starts with the precursors, or raw 

materials, such as powders and substrates, then, the work itself is described from 

the thermal spraying technique with which the coated substrates were produced, 

and finishes with a brief description of the testing procedures and characterization 

techniques that were used during the study; the information contained herein is 

presented with the purpose of unbiased future evaluation and reproducibility. 

 

The characterization of engineering properties out of ceramic coatings is a complex 

issue due to their inherent anisotropy and inhomogeneity. In terms of mechanical 

properties, testing methods may be mechanically simple in concept, but extremely 

sensitive to specimen preparation and test execution procedures. In order to study 

the mechanical behavior of the coated and uncoated substrates, characterization 

techniques such as stereo, optical and SEM microscopy, and X-ray diffraction were 

used to find information about composition, structure and microstructure of the 

samples. 

2.1 Powders 

In this work, AT-13 (Al2O3 - 13% wt.% TiO2) conventional coatings were fabricated 

from commercial powders (METCO 6221, provided by OERLIKON METCO); these 

powders exhibit a spheroidal morphology consisting of agglomerated and sintered 

particles as shown in Figure 2-1. The nominal particle size distribution was between 



28 Mechanical Behaviour of AT-13 coatings at Elevated Temperature 

 

25 and 48 µm, and a d(0.5) = 35.0 µm. The chemical composition of the AT-13 

powders is shown in Table 2-1. 

 

Table 2-1. Chemical composition of the AT-13 powders5. 

Product 

Chemical Composition (nominal wt. %) 

Al2O3 TiO2 
SiO2 

(max) 

Fe2O3 

(max) 

MgO 

(max) 

CaO 

(max) 

Total all others 

(max) 

 

Metco 

6221 
Balance 12.0-14.0 0.1 0.1 0.2 0.1 1.5 

 

 

Figure 2-1. SEM images of AT-13 powders; a) General morphology, b) agglomerated 

components of a single particle. 

The bond coating used to provide adhesion between the substrate and the top 

consisted of a NiCrAl type alloyed powders (Amdry 510, provided by OERLIKON 

METCO); these powders exhibit a spheroidal morphology as shown in Figure 2-2. 

The nominal particle size distribution was between 27 and 50 µm, and a d(0.5) = 

37.0 µm. The chemical composition of the bond coat powders is shown in Table 

2-2. 

                                                 
5 http://www.oerlikon.com/ecomaXL/files/metco/oerlikon_DSMTS-
0084.3_Al2O3_13TiO2.pdf&download=1 
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Table 2-2. Chemical composition of the bond coat powders6. 

Product 

Chemical Composition (nominal wt. %) 

Ni Cr Al 
Others 

(max) 

Orga

nics 

(max) 

Amdry 510 Balance 19.0-25.0 8.0-12.0 2.0 - 

 

 

Figure 2-2. SEM images of bond coat powders; a) General morphology, b) single particle. 

2.2 AA7075 Substrates 

The material used as substrate consisted of an AA7075-T6 aluminum alloy which 

chemical composition is shown in Table 2-3. The chemical composition of the 

aluminum alloy was verified by means of atomic absorption spectroscopy. 

 

Table 2-3. Chemical composition of the AA7075 aluminum alloy7. 

Product 

Chemical Composition (nominal wt. %) 

Zn Mg Cu 
Others 

 

AA7075 6.0 2.4 1.6 90.0 

 

The substrates were previously dry blasted with a corundum powder up to a 

roughness of about 6.71±0.69 µm and cleaned in ultrasonic bath with isopropyl 

                                                 
6 http://www.oerlikon.com/ecomaXL/files/metco/oerlikon_DSMTS-0091.4_NiCrAl.pdf&download=1 
7 ASTECO 
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alcohol in order to ensure the mechanical anchoring between the bond coating and 

the substrate.  

Optical light microscopy, OM, observations were performed in the substrates before 

and after the thermal spraying process to evaluate its effect on the substrates 

microstructure. With the same aim, the Vickers hardness was measured (after and 

before the thermal spraying), according to the ASTM E384 standard and using a 

Vickers indenter with a 300 gf load for 10 s. 

2.3 Deposition technique 

The bond coat and top coat layers were deposited with the aid of an 

acetylene/oxygen flame with a ratio of 1:1.7, and the deposition was carried out with 

a TeroDyn System, see Figure 2-3 (Type 2000 spray coater, Eutectic Castolin - 

USA) facilitated by the GIPIMME research group from the Universidad de Antioquia, 

Colombia. The top coat layer was deposited using two different distances as stand-

off parameter (110 and 140 mm). N2 was used as carrier gas for the powders. The 

AT-13 powders were thermally sprayed over the BC surface. The spraying 

parameters of the bond coat (Amdry 510) and the top coat (METCO 6221) are 

summarized in Table 2-4. 

 

 

Figure 2-3. Flame spraying gun (TeroDyn system). 
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Table 2-4. Flame spraying parameters for both, the bond and the top coat. 

SPRAYING PARAMETERS 

LAYERS 

BC  

(Amdry 510) 

AT-13 

(METCO 6221) 

Ratio acetylene/Oxygen 1:1.7 1:1.7 

Powder feed rate g/min 25 13 

Pressure Oxygen (PSI) 50 (37.4 L/min) 50 (40.8 L/min) 

Pressure Acetylene (PSI) 12 (22 L/min) 12 (24 L/min) 

Height Bille oxygen (mm) 38 40 

Height Bille Acetylene (mm) 60 67 

Spraying distance (mm) 150 110 and 114 

Spraying angle 90 90 

Substrate rotational speed (RPM) 116 (10%) 116 (10%) 

Translational speed of the torch 

(cm/s) 
0.72 (12%) 0.72 (12%) 

Preheating passes 1 1 

Spraying passes 4 5 

Cooling allowed YES N/A 

 

The final samples consisted of: 

i) AA7075-T6 Substrates: Dog-bone-shaped with a cross-section of 25.96 

±0.15 mm2 and a gage length of 25.4 mm. 

ii) AT-13 (110): Dog-bone-shaped with a cross-section of 30.18 ±1.38 mm2 

and a gage length of 25.4 mm. 

iii) AT-13 (140): Dog-bone-shaped with a cross-section of 31.23 ±0.96 mm2 

and a gage length of 25.4 mm. 
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Figure 2-4 shows the dog-bone-shaped samples to be tensile tested at room and 

high temperatures. The structure and dimensions of the coatings are shown in the 

Results chapter. 

 

 

Figure 2-4. Dog-bone samples; AT-13 coating systems (left and right), AA7075-T6 

substrate (center). 

2.4 Re-design of a high temperature tensometer 

A re-design of a classical Monsanto tensometer, was performed in order to be able 

of carrying out tensile tests at elevated temperatures. This equipment is 

instrumented with a gauge unit capable to measure strains with a resolution as low 

as 3 µm. To achieve high-temperatures, the specimen was heated by contact on 

the coating surface, with a MC-GAXP-308 spiral micro-heater, and the temperature 

measurement was carried out with contact thermocouples k-type. See Figure 2-5. 

More information can be found in Appendix A. 

 

                                                 
8 The spyral microheater was bought at Micropyretics Heater International, Inc. 
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Figure 2-5. Monsanto tensometer instrumented and modified for high temperature testing. 

2.5 Mechanical testing 

2.5.1 Tensile testing 

To in situ monitor the strain evolution of the samples during tension, at room 

temperature, a commercial white developer (aerosol paint, Spotcheck® SKD-S2) 

was sprayed on the as-sprayed coating surface. The selection of the developer was 

based on the best contrast achieved in trials with red penetrant dye, white developer 

and no stained samples (or as-sprayed).   

The tensile tests were carried out with the tensometer described before; it was 

applied to both, uncoated and coated substrates; the Table 2-5 summarizes the 

samples distribution for the tensile tests.  

Table 2-5. Samples used for the tensile tests. 

 SAMPLES 

TEMPERATURE AT-13 (110 mm) AT-13 (140 mm) AA7075 Substrates 

25°C 4 4 4 

~204°C 4 4 4 

 

An 8.0-million-pixel device camera with super-macro function and sensor 1/2.5" 

type CCD was used to in-situ measure the macroscopic morphology and strain 
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evolution of the monitored region (6.5 x 25.4 mm2) with a sampling rate of 30 FPS. 

The standard deviation, within a second, for the measurement of strains, was found 

to be 0.021%, i.e., in a specific second, the measured strain can get ±0.021% error. 

All experimental data are synchronized with the testing time. Four points A, B, C, 

and D where marked along the stress-strains curves of the AT-13 coating systems 

to highlight the crack initiation, nucleation, propagation, and saturation stages in the 

coatings, according to the increasing strain (born by the substrate). 

During the tensile tests at elevated temperatures, as the heating is achieved by 

contact upon the TC’s surface, it was not possible to in situ monitor the strain 

evolution, instead of this, each sample, during the high temperature tensile testing, 

was brought about the critical strain value (reported at room temperature), and the 

extent of the damage was ex situ analyzed on the polished cross-section by OM. 

 

 

Figure 2-6. Elevated temperature setting. 

 

The elevated temperature tensile test (Figure 2-6) consisted of a heating stage, 10 

min heat-up from room temperature up to the desired temperature (25 up to 

~204°C), (see Error! Reference source not found.), and 15 min holding time at t

he high temperature. 
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2.5.2 Micro and nanoindentation 

In order to evaluate the influence of the thermal spraying process in the substrates, 

the Vickers micro-hardness, before and after the thermal spraying, was measured 

with a Zwick-Roell at a load of 1000 gf for 15s, following the ASTM E384 standard. 

 

The hardness and Young’s modulus in the polished transversal section of the TC, 

BC and substrate were determined by nanoindentation test using an IBIS 

nanoindentation system and software (Fischer-Cripps Laboratories Pty Ltd.) 

equipped with a Berkovich tip indenter, following the Oliver and Pharr method. The 

Vickers hardness and Young’s moduli were calculated from the load vs. depth 

curves after area correction. The maximum load was 500 mN; holding times to 

account for creep and thermal drift were used. To prevent the interference between 

the indentations, each indentation was kept separated from the previous one, at 

least five times the diagonal size. To ensure reproducibility of the results, a replica 

of each sample was also tested. 

2.6 Characterization techniques 

The techniques presented herein were used with the aim of characterizing the 

substrates and coated specimen’s behavior before and after the thermal spraying 

deposition process, as well as after the tensile tests. 

2.6.1 Surface roughness 

The surface roughness of the gritted substrates, the sprayed BCs, and TCs were 

measured with a Mitutoyo SJ-20 where a stylus attached to the detector unit of the 

SJ-20 displaces at constant speed across the sample's surface, tracing surface 

irregularities. The chosen parameter for expressing roughness was Ra (arithmetic 

mean of the absolute values of the profile deviation from the center line). 
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2.6.2 Visible-light microscopy 

The internal morphology of ceramic coatings contains different types of defects such 

as porosity and cracks; during metallographic preparation, a great deal of damage 

can be induced into the samples. Sectioning may cause localized cracking, 

delamination, or separation of the coating, as well, grinding and polishing. It is worth 

saying that during all the preparation steps for metallographic analyses some 

internal stresses may be released, and some others may be induced. 

The cross-section of the AT-13 systems was examined, at 20X magnification using 

a visible-light microscope (Axio Scope A1 pol, Carl Zeiss, Germany), giving a 

quantitative and qualitative description of the coating structure.  

The metallographic technique described herein was only used for the evaluation of 

the specimens’ cross-section, and it was carried out with extreme care to avoid 

masklike readings. The steps in this technique were carried out following 

instructions found in the literature and given by the “Thermal Spray Accepted 

Practice Committees”, and “the National Aeronautics and Space Administration 

(NASA)”; further information can be found in references [32], [59], [60], [61], [62], 

[63], [64], and [65]. 

 

All the samples were cold-mounted-vacuum assisted with a low-viscosity polyester, 

which is the most recommended mounting for thermal spray coatings, to achieve 

an effective penetration of the ceramic porous structure and diminish the 

mechanical damage during grinding and polishing. The vacuum impregnation was 

used as a critical method to preserve the coating integrity during subsequent 

preparation stages. 

 

The substrates were prepared, before and after thermal spraying, by standard 

metallographic techniques and etched with Keller’s reagent in order to evaluate the 

effect of the thermal spraying process on them.  

The porosity measurement was carried out in accordance with the ASTM E2109 

standard. 
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The mounted specimens were grinded following the surface preparation protocol 

described in Table 2-6. 

 

Table 2-6. Metallographic procedure for ceramic coatings cross-section. 

Step Media Carrier Time (min) 

1 240 grit SiC paper 10 

2 320 grit SiC paper 10 

3 400 grit SiC paper 10 

4 600 grit SiC paper 10 

5 600 grit SiC paper 10 

6 9 µm Diamond on Synthetic hard cloth 10 

7 6 µm Diamond on Synthetic hard cloth 10 

8 3 µm Diamond on Synthetic hard cloth 10 

9 1 µm Diamond on Synthetic hard cloth 15 

 

2.6.3 Scanning electron microscopy SEM 

To examine the surfaces of the as-sprayed coatings the samples were inspected 

using a scanning electron microscope (SEM, JEOL JSM-5910 LV) equipped with 

BES and SEI detectors. 

2.6.4 X-ray diffraction 

The X-ray technique was used for the identification of the different phases that are 

present in the powders and coatings at room temperature. Phase characterization 

was conducted with a XPert PANalytical Empyrean Series II Diffractometer using a 

Cu Kα1/ Kα2 radiation (λ = 1.5406 Å) within a 20°< 2θ <80° range and step of 

0.013°/70.7 seg. The software used for identification and quantification of the crystal 

phases was X'Pert High Score Plus Version 3.0c by PANalytical B.V. along with the 

database COD, using the Rietveld method as explained in appendix F. It is worth 

mentioning that the strong presence of defects in these materials creates a 

significant background noise.  
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2.7 Weibull statistics 

The Weibull method was used to calculate the Weibull parameters, m and K0, of the 

strain for fracture Ɛ, data for the AT-13 coatings after being submitted to tensile tests 

at room temperature. The Weibull statistics was applied to the strain for fracture to 

obtain the probability of failure. 

 



 

 

3 Results 

3.1 Thermal spraying 

3.1.1 Substrates 

The chemical composition of the AA7075-T6 substrate was examined with a spark 

optical emission spectrometer Bruker Q8 Magellan; results are of a typical AA7075 

alloy as it is shown in Table 3-1. 

Table 3-1. Chemical composition of the AA7075 used as substrate. 

AA7075 Chemical Composition (nominal wt. %) 

Al Zn Mg Cu Fe Cr Si Mn Ti V 

89.72 5.901 2.431 1.175 0.282 0.175 0.146 0.083 0.042 0.017 
 

Sb Ni Zr As B Pb Sn Co P Ca 

0.011 0.0051 0.0047 0.0043 0.002 0.0012 <0.001 <0.001 <0.0005 0.00045 

 

The microstructure of the AA7075 substrates in the as received  and thermally 

sprayed conditions are shown in Figure 3-1; from Figure 3-1 a) is possible to see 

that the substrate in the as received  condition, AA7075-T6, comprises a 

polycrystalline aggregate of grains and second phase particles; second phase 

particles can be divided into inclusions (constituent particles) with dimensions on 

the order of micrometers and precipitates with dimensions on the order of 

nanometers [66]. It is known that second phase particles affect the mechanical and 

corrosion properties of Al alloys [67]. The variation in mechanical and corrosion 

properties has been  
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Figure 3-1. Microstructure of the substrates, in the as received and thermally sprayed 

conditions (grain structure at the left, inclusions at the right). (a, b) AA7075-T6; (c, d) AT-

13 (110), and (e, f) AT-13 (140). 
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attributed to the size, shape, and distribution of precipitates in the alloy 

microstructure [66]. From Figure 3-1 c) and e) it is possible to see that the grain 

structure suffered a change after the thermal spraying processes, exhibiting 

recrystallized equiaxed grains; grains of the substrates that were thermally sprayed 

(Figure 3-1 c, e) look the smaller when compared to the as received  condition 

(Figure 3-1 a). The changes of the grain structure are similar to those observed 

elsewhere after high temperature deformation of friction stir processed 7075 

aluminum alloy [15]. 

No porosity or defects were observed in the samples, but second phases 

precipitated, and this may be explained by the fact that the material underwent a 

thermal treatment that promoted diffusion and rearrangement of defects, similar to 

an annealing-like treatment that softened the alloy. This is confirmed by 

measurements of hardness before and after the thermal spraying process. 

The hardness values of the substrates, measured by micro- and nanoindentation 

techniques, are reported in Figure 3-2. The hardness showed a reduction of about 

24.8% for substrates that were thermally sprayed at 110 mm, and 36.7% for 

substrates that were thermally sprayed at 140 mm with respect to the as received 

condition; the indentations performed by micro-indentation and nanoindentation 

techniques are shown in Figure 3-3. It is concluded that the thermal spraying 

process affected considerably the properties of the substrates as a consequence of 

a heat treatment caused during the thermal spraying,  i.e., overaging promoted the 

softening of the substrates which in turn caused a loss of the mechanical properties 

of the substrates; this result is contradictory with some of those reported in the 

literature (see 1.1.1); The higher the temperature, during the spraying process, the 

smaller the grains in the after-sprayed substrates. In the thermo-mechanically 

affected zone the structure seems recrystallized, in all the after-sprayed substrates 

(Figure 3-1 B, and C). 
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Figure 3-2. Hardness of the AA7075-T6 substrates in the as received and thermally 

sprayed conditions. 

 

 

Figure 3-3. a) Micro-indentations; b) Nano-indentations. 

 

3.1.2 Coatings 

The Table 3-2 shows the characteristic features of the deposited coatings, thickness 

and porosity. The greater value of porosity, observed in the AT-13 (140) coating, 

may have been a consequence of the spreading of the powders during the thermal 

spraying process, which in turn was due to the greater distance between the gun 
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and the substrate, 140 mm; the same phenomenon was responsible for the higher 

thickness of this coating. The spreading of the molten particles depends on the 

temperature and speed at the impact with the substrate, as well the cooling kinetics 

of the substrate. Figure 3-4 and Figure 3-5 show the structure of the AT-13 coatings 

and their surface morphology.  

Table 3-2. Thickness and porosity of the thermally sprayed layers. 

 Substrates BC AT-13 (110) AT-13 (140) 

Thickness (µm) 3.95±0.02 164.39±16.36 124.23±18.65 141.07±23.27 

Porosity (%) - 18.2±1.4 14.81±3.16 24.51±3.66 

 

The SEM observations of the coatings, deposited by oxyacetylene flame, showed 

a denser microstructure for the coating that was deposited at a shorter distance, 

110 mm, this result is evidenced by the lower porosity level obtained in the AT-13 

(110) coating. Both coatings, AT-13 (110) and AT-13 (140), exhibited a complex 

microstructure of several phases with the presence of porosity and unmelted 

particles. The microstructure of both coatings is constituted by splats/lamellae and 

globular pores and had not macro-cracks since the stresses produced during the 

formation of these multilayers were not enough to produce it, even though the splats 

formed after the quenching of the deposits had some micro-cracking as it is shown 

in Figure 3-5. This micro-cracking was observed in both coatings i.e., coatings 

sprayed at 110 and 140 mm standoff distances. The porosity of the top coat was 

measured by digital image analysis and determined according to the ASTM E2109. 

The porosity depends on the melting point of the powders, that is to say, if the flame 

does not reach the needed temperature to melt the ceramic particles they will not 

be melted efficiently, and consequently, the splats will not be formed adequately 

over unmelted particles, and this fact also explains the higher thickness in the AT-

13 (140). In the absence of temperature and particle velocity measurements, it is 

assumed that the porous structure resulted from the low temperature, high cooling 

rates and low velocity of the sprayed particles, being this more noticeable at the 

greater standoff distance, 140 mm. 
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.  

Figure 3-4. AT-13 coating systems. a) and b) structure and surface morphology of the AT-

13 (110); c) and d) structure and surface morphology of the AT-13 (140). 

 

Figure 3-5. Splat morphology. a) AT-13 (110); b) AT-13 (140). 

The roughness of the coatings was analyzed by using the mean roughness, Ra, as 

a qualitative measurement; values reported in Table 3-3, suggest that the BC was 
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deposited satisfactorily over the substrate (as seen in Figure 3-4), i.e., the Ra values 

of Substrate and BC were close enough; on the other hand, the AT-13 (110 and 

140) coatings registered values 173.2 and 160.4% higher than the BC suggesting 

that the coatings exhibited poor particle melting during the spraying process. 

Table 3-3. Roughness of the samples. 

Layer Roughness 

Ra (µm) 

Substrate 6.71±0.69 

Bond Coat 7.55±0.66 

AT-13 (110) TC 18.33±1.48 

AT-13 (140) TC 17.47±0.72 

 

The results of the XRD for the AT-13 powders (Figure 3-6 a), exhibited typical peaks 

of α-alumina phase, titania, and Al2TiO5. After thermal spraying, it is observed that 

the largest difference between both coatings was due to the spraying distance which 

rendered a notable change in the content of the aluminum titanate (Al2TiO5), which 

was higher for the AT-13 (110). After the spraying process, the α-alumina phase 

suffered a partial transformation to γ-alumina as a consequence temperature 

conditions; these observations were in agreement with those reported in literature 

[68]. 

The alumina-titania systems have high tendency to produce different phases and 

crystallographic structure changes according to the cooling process, deposition 

techniques, material’s spraying conditions, proportion of each component, and the 

characteristics of the coupling layer used; these last also affect the mechanical 

properties of the coatings, as well as the quantity and size of structural defects 

present in the coatings do [69], [70].  

The presence of oxides in the TC generally results in an increase of its hardness 

that can also cause embrittlement because the oxidized splats are generally poorly 

linked with other splats/lamellae; Table 3-4 shows a summary of the phases that 
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were found in the powders and the deposited top coatings; the percentage of 

phases was estimated using the Rietveld method. 

Table 3-4. Summary of phases found in the powders and the sprayed coatings. 

Sample/Phase (%) α-Al2O3  γ-Al2O3 TiO2 Al2TiO5 Error 

AT-13 powders 74.0 - 4.0 22.0 6.82 

AT-13 (110) TC 72.7 15.0 - 12.3 6.69 

AT-13 (140) TC 73.2 23.4 - 3.4 8.13 

 

The hardness of the AT-13 top coatings is presented in Table 3-5; it is observed 

that hardness was higher for the denser coating, AT-13 (110); on the other hand, 

this coating has the highest amount of titanates, Al2TiO5; the greater the density of 

the coating, the greater the hardness. The scatteredness of the hardness values 

results from the differences in particles temperatures and velocities obtained during 

the deposition process, the microstructural defects, and the different phases present 

in the samples. 

Table 3-5. Hv hardness of the top coatings, measured at the cross-section. 

Coating system Hardness (Hv) Young’s Modulus (GPa) 

AT-13 (110)  1008.84±182.76 166.89±18.23 

AT-13 (140)  844.00±249.38 136.11±28.32 

 



Results 47 

 

Figure 3-6. Diffractograms refined by the Rietveld method: a) AT-13 powders, b) AT-13 

(110), and c) AT-13 (140). 
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The values of the Young’s modulus for both AT-13 coatings experienced the same 

effect, where porosity played an important role; according to the literature, higher 

amounts of Al2TiO5 should diminish the values of E [69], but in this case, the lower 

porosity of the AT-13 (110) with respect to the AT-13 (140) was the cause; from 

another point of view, the relatively high porosity and imperfect contact between 

splats of the AT-13 (140) coatings was the consequence of the lower hardness 

and lower Young’s modulus. 

The diffractograms of the BC powders and the sprayed BC are shown in (Figure 

3-7). It is observed a peak broadening due micro-strains introduced into the material 

during the thermal spraying process. As well, it is observed the transformation of 

the AlNi phase to Ni as consequence of the thermal process. Table 3-6 summarizes 

the phases found in the BC coatings and the BC as sprayed. 

Table 3-6. Summary of phases found in the powders and the sprayed BC. 

Sample/Phase (%) Ni rich Cr rich AlNi Error 

BC powders 44.2 28.4 27.5 9.98 

BC as sprayed 99.7 0 0.3 6.54 

 

The values of the Young’s modulus and the hardness of the bond coat are shown 

in Table 3-7. No appreciable changes were found. 

 

Table 3-7. Hv hardness of the bond coat after thermally spraying the AT-13 top coats. 

Bond coat Hardness (Hv) Young’s Modulus (GPa) 

From AT-13 (110) 328.53±35.02 153.30±15.20 

From AT-13 (140) 326.21±27.24 149.95±6.61 
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Figure 3-7. Diffractograms refined by the Rietveld method: a) BC powders, b) BC as 

sprayed. 

3.2 Tensile tests 

3.2.1 Substrates 

The stress-strain curves at room and elevated temperature, for the AA7075-T6 bulk 

material and the coating systems {AT-13 (110) and AT-13 (140)}, are shown in 

Figure 3-8. Table 3-9 shows a summary of the main features extracted from the 

tensile test curves, and Table 3-8 shows the distribution of temperatures during the 
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tensile tests at elevated temperature; the temperature gradients shown in Table 3-8 

were caused by the fact that the substrate material, AA7075, exhibits a high value 

of thermal conductivity; bear in mind that the substrates were in contact with the 

“cold grips” of the tensile testing machine during the runs.  

 

From Table 3-8 it is also concluded that both coatings, AT-13 (110) and AT-13 (140), 

already gave an additional thermal protection to the substrate; due to the high 

values of thermal conductivity offered by the substrate, the Young’s modulus, at 

elevated temperature, must calculated with the average temperature at which 

samples were held in this investigation (see Table 3-9 and Table 3-8). From Table 

3-9 it is seen that the Young’s Modulus of all the substrates experienced a reduction 

of about 26% during the tensile test at elevated temperature, as expected. 

 

Table 3-8. Distribution of temperatures during the tensile tests, at elevated temperature; 

holding time 15 minutes. T1 was measured on the heated surface while T2 was measured 

onto the opposite surface. 

SAMPLE T1 (°C) T2 (°C) T-Average ΔT 

Substrate 260 126.7±16.7 193.3±8.3 133.3±16.7 

AT-13 (110) system 260 143.3±27.2 201.7±13.6 116.7±27.2 

AT-13 (140) system 260 158.7±34.4 209.3±17.2 101.3±34.4 
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Figure 3-8. Stress-strain curves for uncoated and coated substrates. 

Table 3-9. Young’s modulus of AA7075 substrates, in their as received and thermally 

sprayed conditions, extracted from the stress-strain curves and nanoindentation. 

 AA7075 Young’s Moduli (GPa) 

Specimen Room temperature 

(Tensile test) 

Elevated temperature 

(Tensile test) 

Room temperature 

(Nanoindentation) 

AA7075-T6 78.97±1.24 61.79±2.66 82.16±2.58 

AT-13 (110) 83.47±5.20 60.50±2.57 80.72±3.60 

AT-13 (140) 82.80±8.06 58.90±12.91 79.73±2.68 

 

3.2.2 Coating crack evolution (at room temperature) 

The stress-strain curves shown in Figure 3-9 illustrates the cracking stages (or crack 

evolution), obtained in situ, for both AT-13 coating systems at room temperature; 

such cracking stages correspond to specific strain values which are summarized in 

Table 3-10; they consist of four stages A, B, C, and D that were observed with a 

high resolution video camera. 
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As the strain increases, the points A, B, C, and D manifest. It should be taken into 

account that most of the load is born by the substrate. The first transversal crack 

appears, at a critical strain, where the highest strain concentration is located in the 

coating, normal to the TC/BC interface; this critical strain corresponds to the first 

stage of cracking (A), beyond this point, other vertical cracks successively appear 

under the increasing tensile load, then, vertical cracks come to saturation. The effect 

of shear stress induced by the substrate deformation on the coating gradually 

vanishes because all interface delamination comes to a saturation state. 

 

Figure 3-9. Stress-strain curves for the AT-13 (110 and 140) coatings showing the 

cracking stages. 

The main stages observed during the tensile test are described as follows: 

A. Crack initiation: The appearance of initial cracks is evidenced by changes in 

the coating surface, even though they are not completely visible; these 

cracks appear above a critical strain and then propagate throughout the 

coating. 

B. Nucleation: The increase of the strain up to a value which is greater than the 

critical strain results in a rapid increase of the number of cracks, increasing 

the crack density in this fashion. 
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C. Propagation: At strains beyond A) and B), the increase in the transverse 

crack density slows down until it reaches a saturation point; until this point, 

transverse cracks had grown, now propagation stops. 

D. Saturation point: Beyond this point, film decohesion, buckling, spallation, or 

delamination may occur for strips located between two successive 

transverse cracks, as the final stage. 

 

Table 3-10. Cracking stages for AT-13 coatings at room temperature, in situ measured. 

 Strain values (%) 

Coating system/Cracking stages A B C D 

AT-13 (110) 0.70±0.08 1.00±0.09 1.21±0.11 1.77±0.19 

AT-13 (140) 0.51±0.05 0.78±0.10 0.90±0.14 1.19±0.12 

 

The Figure 3-10 shows the in situ observations of the cracking stages for the AT-13 

(110) and AT-13 (140) coatings during room temperature tensile tests. The actual 

values obtained for the cracking stages A, B, C, and D, are summarized in Table 

3-10. These values are in agreement with those reported by Zhou, M., et al. and 

Eberl, C. et al. whose reports rendered values between 0.35 and 0.50% for the 

critical strain (stage A) in ceramic coating systems [50], [51]; It should be born in 

mind that the spraying processes used by them, APS and EB-PVD, have higher 

energies for the deposition, i.e., higher temperatures and particle velocities, being 

enough to melt the ceramic particles and produce denser coatings. 
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Figure 3-10. In situ observation of cracking stages during the tensile tests at room 

temperature. 

It is observed that both coatings, AT-13 (110) and AT-13 (140), exhibited a similar 

behavior (at the surface) during the tensile test at room temperature; the main 

difference between them is the crack density beyond stage C, it was higher for the 

AT-13 (110) with a value of 0.7 cracks/mm; the AT-13 (140) had a value of about 

0.44 cracks/mm meaning that the shear stresses are better transmitted to the AT-

13 (110) coated system, i.e., the AT-13 (140) is more prone to delamination. This 

will be corroborated by metallographic cross sections in next chapter. Appendix D, 

includes the panoramic micrographs of stage C. 
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3.2.3 Coating crack evolution (after high temperature tensile test) 

In order to have a good comparison of the failure at room temperature and elevated 

temperature during the tensile tests, the AT-13 (110) and AT-13 (140) coatings were 

loaded up to the strain corresponding to the cracking stage C which was previously 

observed in situ where the measurement of the crack density is easily 

accomplished. 

Figure 3-11 shows the cross-sectional micrographs of the coatings AT-13 (110) and 

AT-13 (140) at the cracking stage C where the respective strains are 1.21±0.11% 

and 0.90±0.14%, according to the in situ measurements at room temperature. At 

this stage, it is observed that the cracks in the BC have increased their number i.e., 

the crack density; most of the cracks have passed through the BC which confirms 

that the failure initiates at the bond coating. This behavior is promoted due to the 

great difference in the Young’s moduli (measured by nanoindentation) of the 

AA7075 substrates and BC coatings, ~80 and ~150 GPa respectively, which reveals 

that the strain compatibility between them is poor. On the other hand, it is important 

to note that the value of the Young’s modulus for the BC is much closer to the AT-

13 coatings {AT-13 (110), ~170 GPa; AT-13 (140), ~140 GPa} than that of the 

substrates, which means that the strain compatibility between BC and TC is better 

than between BC and substrate. 

Table 3-11 summarizes the different values of crack density obtained either at room 

temperature and elevated temperature for both coatings. It is worth mentioning, that 

the crack density values, after elevated temperature tests (obtained ex situ), were 

focused on the vertical cracking observed in the BC, and they do not differ that much 

from those obtained during the in situ observation, which have lower resolution. 
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Figure 3-11. Ex situ observations of cracking stage “C” for both coatings after room and 

elevated temperature testing. Vacuum impregnated samples. 

 

Table 3-11. Comparison of in situ and ex situ measures for crack density (cracks/mm) at 

stage C.  

Temperature Coating In situ Ex situ 

Room temperature AT-13 (110) 0.70 1.03 

Elevated temperature N/A 0.91 

Room temperature AT-13 (140) 0.44 0.56 

Elevated temperature N/A 0.58 
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A comparison between both coatings after the room temperature tensile testing 

shows that the crack density, measured in situ, of the AT-13 (140) is 37.14% smaller 

than that of the AT-13 (110); a similar value was obtained in the ex situ 

measurement, 56.4% for the same coating. At elevated temperature, the ex situ 

observation showed that the drop of the crack density is still having a similar trend, 

63% for the AT-13 (140). These results reveal that the crack density, cracking in 

general, depends on the deformation of the substrate in first instance: Note that in 

Appendix D, in regions near to the clamps (low deformation: trough transversal 

cracks) the crack patterns differ from that on the middle of the sample (high 

deformation: delamination plus trough transversal cracks). On the other hand, the 

intrinsic characteristics of a thermally sprayed coating, such as porosity, and the 

level of bonding between splats and/or unmelted particles, play an important role 

on how the interface stress (during tensile test) is distributed. The strength of a 

porous material depends on pore distribution, pore morphology, and pore size, with 

high porosity generally leading to lower strength [71], [72]. Then, the intrinsic 

characteristics of the coating also control the way cracks initiate and propagate. 

Note for example that the BC/substrate interface has small cracks in the AT-13 

(110) system than in the AT-13 (140) one, in other words the interface fracture 

toughness is bigger for AT 13 (110) which produces a good load transmission and 

therefore a bigger crack density. 

These results for crack density are in agreement with the work carried out by [73], 

where three different TBC coatings (in terms fracture strength) were evaluated (see 

Figure 3-12). 
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Figure 3-12. Crack density during tensile tests of TBCs. Higher fracture strength (red line), 

middle (magenta line), lower (blue line) [73]. 

 

Figure 3-13. Crack morphology for both coatings after room and elevated temperature 

tensile testing. a) and b) AT-13 (110); c) and d) AT-13 (140). 
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Figure 3-13 shows a close-up of the features of cracking that were observed in both 

coatings. It is seen that the cracks travelled between lamellae due to the poor 

bonding of the splats after the spraying process as discussed earlier. In Figure 3-13 

a, is seen that the initial cracking started at the BC/Substrate interface where the 

higher shear stress is located. The coating AT-13 (140), the one with the higher 

porosity, which suffered the poorest bonding of the coating due to the great number 

of unmelted particles and porosity, showed smaller crack density values since it had 

some delamination cracking that appeared upon the TC/BC interface and some 

cracks did not show up at the surface in spite of their extent; this is attributed to the 

inadequate transmission of the shear stress at the interface [45], [41]. 

The micrographs shown in Figure 3-11 and Figure 3-13 revealed that the place 

where the coating, when submitted to tension at room or high temperature, was 

susceptible to spallation, it was mainly in the BC/substrate interface which confirms 

that the BC does not exhibit strain compatibility compared to that of the substrate. 

However, elevated temperature promoted delamination cracking between BC and 

TC, particularly for the AT-13 (140) system, which is confirmed by the drop in the 

crack density at elevated temperature; again, it is an effect of the shear stress that 

was diminished as consequence of the temperature.  

3.2.4 Weibull statistics 

Weibull statistics was used to estimate the mechanical behavior of the coatings 

through the cracking stages A, B, C, and D. The Weibull plots (Figure 3-14 b and c) 

show that, in general terms, despite of the differences found in both coatings, the 

cracking stages for the AT-13 (110) and the AT-13 (140) exhibit a similar behavior. 
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Figure 3-14. a) Weibull moduli of the cracking stages, A, B, C, and D; b) and c) Weibull 

plots of both coatings. 

For having a better glance of their performance, the Weibull moduli was used 

(Figure 3-14 a).  Weibull modulus gives a direct indication of the scatteredness, the 

higher the Weibull modulus, the more consistent the values for the cracking stages, 

i.e., the higher the Weibull modulus, the lower the standard deviation and the 

scatteredness of the data with respect to the average value. Table 3-12 presents a 

summary of the values obtained from the tensile tests (strain and stress) along with 

the Weibull moduli for both coating systems. 

 

Table 3-12. Weibull moduli summary of the cracking stages A, B, C, and D, for the At-13 

(110) and AT-13 (140) coatings. 

CRACKING STAGE 
AT-13 (110) COATING SYSTEM 

Weibull moduli Strain (%) Stress (MPa) 

A 9.59 0.70±0.08 224.47±20.16 

B 11.78 1.00±0.09 245.14±15.33 

C 12.87 1.21±0.11 256.83±16.65 

D 10.58 1.77±0.19 280.01±13.92 
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CRACKING STAGE 
AT-13 (140) COATING SYSTEM 

Weibull moduli Strain (%) Stress (MPa) 

A 11.88 0.51±0.05 190.38±13.25 

B 8.73 0.78±0.10 212.53±18.82 

C 7.21 0.90±0.14 219.96±20.40 

D 11.72 1.19±0.12 236.21±17.93 

 

A quick view of the measured Weibull moduli for both coatings, may give a wrong 

interpretation of the results, but this is explained as follows: 

At cracking stage A (crack nucleation), the Weibull modulus of the AT-13 (140) 

suggests lower scatteredness, compared to its counterpart; in this coating the 

obtention of the strain values had lower scatter because it exhibited the lower 

bonding between unmelted particles and splats, favoring the spreading of the 

cracks, also, the shear stress that was transferred from the substrate to the 

overlaying layers is better distributed in the AT-13 (110); this last coating, AT-13 

(110), is capable of withstanding further strain and higher loads than those born by 

the AT-13 (140), where shear is not well distributed, having regions with higher 

concentration of shear stress which will fail the first. It should be taken into account 

that at this stage, the shear stress is still being homogenized and the cracks are 

growing (or nucleating) i.e., they are not completely visible at the surface, which 

makes it difficult to perform an accurate reading from the in situ video. 

On the other hand, it is seen that both coatings have an opposite trend for the 

cracking stages B, and C; the scatteredness of the data decreases for the AT-13 

(110) and increases for the AT-13 (140) as a general trend. At cracking stage B 

(crack multiplication), once the shear stress has been transferred homogeneously 

to the denser coating AT-13 (110), the crack multiplication is easier to follow, but in 

the coating AT-13 (140), as the shear stress transfer was not optimum from a start, 

A, it affects notoriously the following stages. 

Finally, at stage D, the Weibull modulus is bigger for the AT-(140), but the values 

for strain must not be considered for the evaluation, because from stage D (crack 

saturation), the observations are more susceptible to subjective measurement (the 
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shear stresses have been distributed between the individual segments, far beyond, 

the only change that will be observed is the increase of the cracks’ spacing. At this 

stage, the spalling also makes the readings more difficult, i.e., not reliable. 

On the other hand, the intrinsic characteristics of a thermally sprayed coating, such 

as porosity, and the level of bonding between splats and/or unmelted particles, play 

an important role on how the interface stress (during tensile test) is homogeneously 

distributed at the interfaces; the surface crack density depends on the fracture 

strength of the ceramic coating, the shear strength of the interface and the residual 

strain in the ceramic coating. It is concluded that the cracking stages may be used 

to evaluate the adhesion strength of the coatings, at least, as a comparison between 

batches of coatings. 

At elevated temperatures, as shown in Figure 3-11, both coatings were susceptible 

to delamination cracking which in turn is caused by a loss of transfer of the shear 

stress at the interface; this is confirmed by the diminution in the crack density values 

at elevated temperature (see Table 3-11). 

In general terms the coating system AT-13 (110), when compared to the AT-13 

(140), had a better bonding to the substrate, and a higher fracture strength this 

confirmed by the values of crack density; this coating system may be a good 

candidate for protecting abradable components. On the other hand, the coating 

system AT-13 (140) may be a good candidate for high temperature protection of 

static components, given its elevated porosity that could offer additional thermal 

protection, though, it has the lower fracture strength. 

 



 

4 Conclusions and recommendations 

4.1 Conclusions 

The thermal spraying process affected considerably the mechanical properties of 

the AA7075 substrates as a consequence of the heat treatment caused during the 

exposition to the thermic conditions that produced an overaging of the base metal.  

 

The greater value of porosity observed in the AT-13 (140) coating may have been 

a consequence of the spreading of the powders during the thermal spraying 

process, which in turn was due to the greater distance between the gun and the 

substrate. The same phenomenon was responsible for the higher values measured 

in the thickness in this coating (bigger porosity). Also, the flame did not reach the 

needed temperature to melt the ceramic particles which rendered coatings with high 

values of porosity, affecting also the thickness of the coatings. 

 

The parameters used for the deposition of the AT-13 coatings onto AA7075 

substrates were not efficient due to the formation of microcracks in the 

splats/lamellae, and the high values of porosity that were achieved. 

 

The methodology presented herein, showed to be accurate enough for measuring 

critical strains in coating systems, and rendered a good result showing that the 

adhesion of the coating may be influenced be the spraying distance, and evaluated 

by crack density. 

 

Both coatings provided thermal insulation to the substrates, being the coating with 

the highest porosity the one with the better performance in terms of thermal 
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insulation, but at elevated temperatures, both coatings were susceptible to 

delamination cracking which in turn is caused by the loss of shear stress transfer 

from the substrate to the coating system; this was confirmed by the diminution in 

the crack density values at elevated temperature. 

 

In general terms the coating system AT-13 (110), when compared to the AT-13 

(140), had a better bonding to the substrate, and a higher fracture strength, this 

confirmed by the values of crack density. 

 

The AT-13 (110) coating system may be a good candidate for protecting abradable 

components. On the other hand, the coating system AT-13 (140) may be a good 

candidate for high temperature protection, given its elevated porosity that could offer 

additional thermal protection, though, it has the lower fracture strength which is a 

bad characteristic for demanding applications. 

 

The bond coat used in this study showed a poor strain compatibility with the 

substrate due to the differences in the Young’s modulus; this behavior was the main 

cause of failure of the coatings. 

 

The intrinsic characteristics of a thermally sprayed coating, such as porosity, and 

the level of bonding between splats and/or unmelted particles, play an important 

role on how the interface stress is transferred; the surface crack density depends 

on the fracture strength of the ceramic coating and the adhesion between layers. 
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4.2 Recommendations 

The improvement of methods for measuring, in situ, the real behavior of ceramic 

coatings may be developed by the introduction of different techniques such as 

acoustic emission, and better image acquisition equipment and techniques, e.g., 

digital image correlation, and acoustic emission. 

 

The implementation of hot grips, for the tensile testing at high temperatures will 

reduce considerably the error that is caused by the thermal transfer between the 

hot samples and the “cold grips”. 

 

Study performance of the AT-13 coatings proposed in here when deposited onto 

different substrates, with different thermal conductivities, as well as evaluating a 

wide range of spraying standoff distances. 

 

Study the compatibility between the BC and the AA7075 substrates, and/or thermal 

treatments that may ensure the strain compatibility between them. 

 

Study the effect of the porosity in the thermal isolation and mechanical properties 

during tensile tests at high temperatures. 

 

 

 





 

A. Appendix: Tensile test machine 

A re-design of a classical Monsanto tensometer was performed in order to be able 

of carrying out tensile tests at high temperatures. 

The poster titled “CLAMPS MATERIAL SELECTION FOR A HOUNSFIELD 

TENSILE TEST MACHINE: REDESIGN FOR HIGH TEMPERATURE TENSILE 

TEST CONDITIONS” was presented at the VIII Congreso Internacional de 

Materiales - CIM 2015 that was held at Paipa - Boyacá – Colombia, October 28 – 

30, 2015. 

  

Abstract: Currently, many materials are required to operate at high temperatures 

so that the knowledge of their mechanical properties at these temperatures is 

essential. This work shows the materials selection method for the clamps of a 

Hounsfield W-type tensile test machine that was adapted to perform tests at 

temperatures up to 1000°C. The structure of the machine including the source of 

heat was modelled using Ansys FE software in order to get the Von Mises stresses 

and temperature distributions in the clamps. A maximum temperature of 104°C at 

the maximum Misses stress zone of 1078 MPa was found. The Ashby’s method for 

materials selection was implemented defining as objective function, for a contact 

situation, to minimize the cost given a yield stress strength and as a constraint the 

maximum operating temperature and resistance to oxidation at 500°C. The selected 

material was an AISI 420 stainless steel quench and tempered at 204°C, which is 

reported as the recommended material in the literature for this application. This 

confirms that the Ashby’s method is a powerful tool for materials selection, 

particularly because of it is easy to implement, resulting in efficiency and cost 

reduction in the design of machines. 
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Keywords: Tensile test, high temperature, materials selection, clamps, Ashby’s 

method.  

 

 

This equipment is instrumented with a gauge unit capable to measure strains, with 

a resolution as low as 3 µm. To achieve the high-temperatures, the specimen is 

heated, with a MC-GAXP-309 spiral micro-heater, upon the coating surface and the 

temperature measurement is carried out with contact thermocouples k-type. 

 

 

Figure 4-1. Original Monsanto Tensometer. 

 

 

 

Figure 4-2. Monsanto tensometer modified for high temperature testing.  

                                                 
9 The spyral microheater was bought at Micropyretics Heater International, Inc. 
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B. Appendix: Another works - Poster 

The poster titled “MICROMECHANICAL BEHAVIOR OF THERMAL BARRIER 

COATINGS AFTER ISOTHERMAL OXIDATION” was presented in the 

Nanomechanical Testing in Materials Research and Development V that was held 

at Albufeira, Portugal, October 4 – 9, 2015. 

 

Abstract: Thermal protection of metallic components by using ceramic coatings like 

thermal barrier coatings (TBCs) is widely used, in rocket engines, aircraft industry 

and gas turbines for power generation to reduce the substrate temperature up to 

165°C. This technology diminishes the heat transfer in combustor, initial rotor 

blades and nozzles guide vanes, so that turbines have taken special advantage of 

these coatings to meet increasing demands for greater fuel efficiency, lower NOx 

emissions and higher power and thrust (Ciniviz, Canli, Kose, Salman, & Solmaz, 

2012). Thermal barrier coatings, apart from thermal protection are also used to 

protect against abrasion, oxidation and corrosion (Evans & Hutchinson, 1995). 

 

The understanding of the mechanical behavior of TBCs in both as-sprayed and 

thermal loading conditions is of great importance for the evaluation of components 

life. However, it is challenging to determine the true mechanical behavior because 

of the substantial differences, between each layer (TC, BC, and substrate), since 

the difficulty to prepare the sample´s surface and its high contents of pores, cracks 

and defects. 

 

This work reports on the mechanical characterization of APS 6-8 wt.% yttria 

stabilized zirconia (YSZ) as top layer bonded by an HVOF NiCoCrAlY layer to a 
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superalloy substrate (Inconel 625) using the micro- and nano-indentation 

techniques on test specimens after being subjected to isothermal-oxidation at 

1100°C and different time exposition (0, 200, 400, 600, 800, 1000, and 1700 hours). 

 

Observations under optical and SEM microscopy were performed in order to study 

the variation of the mechanical properties such as hardness, young’s modulus, and 

fracture toughness within the ceramic top layer after isothermal oxidation. 

 

The hardness and Young’s modulus of the ceramic layer showed an increase until 

600h exposition which can be explained by sintering phenomenon. From 600h up 

to 1700h the Young’s showed a stabilization due to the equilibrium of sintering and 

phase transformation mechanisms, but hardness continued its increasing rate. 

The fracture toughness of the ceramic coating showed a softening condition of 

about 23% during the whole range of time for isothermal oxidation as a 

consequence of the detriment of the ceramic layer. 

 

Results show that sintering phenomena, TGO growth and phase transformation 

give a complex state of stresses of the coating system which will have great 

influence on its performance during regime operation. It is concluded damage of the 

coating is proportional to the extent of time exposition. 

 

Key Words: Thermal barrier coatings, fracture toughness, mechanical behavior, 

nanoindentation, thermal aging. 
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C. Appendix: Rietveld refinement 

Next, are presented the single steps that were used for the Rietveld refinement of 

the diffractograms using the software HighScore Plus 3.0c; The database COD10 

was used for the phase identification. The Rietveld refinement was performed using 

the semi-automatic refinement mode in the software. These steps were based upon 

the training presentations11 for X-ray facilities of the Center for Materials Science 

and Engineering of the Massachusetts Institute of Technology, MIT. 

 

Rietveld refinement steps: 

 

(1.1) Background fitting (polynomial): Granularity 7, bending factor 1. 

(1.2) Searching peaks. 

(1.3) Finding reference parameters from the COD (search and match). 

(1.4) Setting refinement to semi-automatic mode and converting COD patterns to 

phases. 

 

(2.1) Refinement of Scale Factors only. 

(2.2) Refinement of Flat Background. 

(2.3) Refinement of Flat Background + Coefficient 1. 

(2.4) Refinement of Flat Background + Coefficient 1 + Coefficient 2 + Coefficient 3. 

(2.5) Refinement of Flat Background + Coefficient 1 + Coefficient 2 + Coefficient 3 

+ Coefficient 4. 

                                                 
10 http://www.crystallography.net/cod/ 
11 http://prism.mit.edu/xray/education/downloads.html 
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(2.6) Refinement of Flat Background + Coefficient 1 + Coefficient 2 + Coefficient 3 

+ Coefficient 4 + 1/X Background. 

(2.7) Refinement of previous parameters + specimen displacement. 

(2.8) Refinement of previous parameters - specimen displacement + zero shift 

(2theta). 

 

Keeping all previous parameters: 

(3.1) Refinement of Cagliotti parameters one at a time (W only, V only and U only) 

(3.2) Refinement of Peak Shape 1 (not refining any Cagliotti parameters) 

(3.3) Refinement of asymmetry (Rietveld). 

(3.4) Repeat (3.1) and (3.2) at least three times. 

 

(4.1) Refinement of unit cell parameters. 

(4.2) Refinement of W. 

(4.3) Refinement of W +V. 

(4.4) Refinement of W +V + U. 

(4.5) Refinement of W +V + U + Peak Shape 1. 

(4.6) Repeat (4.2) up to (4.5) at least 3 times. 

 

To evaluate the quality of the refinement, the Weighted R profile should be less than 

10% and as close to the R expected value as possible; R expected is an estimation 

of the best possible R profile based on the statistical noise of the experimental 

diffraction pattern. 

 

 



 

D. Appendix: Micrographic 
panoramas 

In order to have a good comparison between failure at room temperature and 

elevated temperature after the tensile test, the AT-13 (110) and AT-13 (140) 

coatings were loaded beyond the critical strain (A), up to (C). 

Microscopic panoramas are shown of the (C) stage are shown below. 
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