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Abstract
In the last two decades three-dimensional modeling methods used by artists have been evolv-
ing and developing rapidly thanks to the use of vector operators of differential geometry such
as the Laplacian operator. This operator allows modeling the behavior of complex appli-
cations such as noise reduction, enhancement, remeshing, UV mapping, posing and skele-
tonization, among others, in a simple way. The Laplacian operator is theoretically defined in
a continuous and smooth domain, named manifold. In practice manifolds are often approx-
imated by discrete polygon meshes composed by triangles and quadrangles which represent
the real world three-dimensional objects with which the artists work. In these meshes, spec-
tral structure is calculated using a discrete Laplacian operator, i.e. the discrete version of
the Laplacian operator given by Pinkall in 1993. This approach only worked with triangle
meshes. In 2011 Xiong extended the operator to work exclusively with quad meshes. This
thesis proposes an original extension of the Laplacian operator that allows working with
hybrid meshes composed by triangles and quadrangles.

Along with the operator, this work presents new sculpting and modeling applications based
on enhancement. Additionally, applications on subdivision surfaces which use smoothing,
mesh posing which use differential coordinates and skeletonization which use iterative con-
tractions are developed. This series of applications demonstrates the quality, predictability
and flexibility of the proposed operator.

The proposed operator was successfully used in new software tools in real production envi-
ronment within 3D computer graphics software Blender. Currently these tools are available
as open source software.

Resumen
En las dos últimas décadas los métodos de modelado tridimensional utilizadas por los artistas
han ido evolucionando y desarrollándose rápidamente, en parte gracias al uso de operadores
vectoriales de geometría diferencial, como el operador de Laplace. Este operador permite
modelar de una manera sencilla el comportamiento de aplicaciones complejas tales como
la reducción de ruido, realce, remallado, mapeado UV, posado y esqueletonización, entre
otros. Este operador Laplaciano es teóricamente definido en un dominio continuo y suave
llamado variedad, las variedades son a menudo aproximadas por mallas discretas de polígonos
compuestas por triángulos y cuadrángulos que a su vez representan objetos tridimensionales
del mundo real que los artistas trabajan. En estas mallas se calcula la estructura espectral
con el uso de algún operador Laplaciano discreto, la versión discreta del operador Laplaciano
propuesta por Pinkall en el 1993 trabaja únicamente con mallas compuestas por triángulos,
y la de Xiong en el 2011 trabaja exclusivamente con cuadrángulos. Esta tesis propone
una extensión original del Operador Laplaciano que permite trabajar con mallas híbridas
compuestas por triángulos y cuadrángulos.
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Junto con el operador, este trabajo presenta nuevas aplicaciones en esculpido y modelamiento
con base en el realce, aplicaciones en subdivisión de superficies con el uso de suavizado,
posado de mallas con el uso de coordenadas diferenciales y esqueletonización usando contrac-
ción iterativa. Esta serie de aplicaciones demuestra la calidad, predictibilidad y flexibilidad
del operador propuesto.

El operador propuesto fue usado con exitoso en las nuevas herramientas del software para
gráficos 3D por computadora Blender. Actualmente estas herramientas están disponibles
como programas de código abierto.

Keywords: laplacian operator; smooth; enhance; sculpting; spectral mesh processing
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1 Introduction

The discrete versions of the Laplace Beltrami Operator have been used in recent years for
the development of new geometric modeling tools. Pinkall [29] introduced the cotangent
version of the Laplace operator, which allowed finding the minimal surface when computing
a discrete harmonic map with the Laplacian operator. This version has been widely studied
and applied in various problems of computer geometric modeling. This type of operator was
defined over manifolds, i.e. continuous domains homeomorphic to Rn that are represented
in pratice by polygon meshes. These polygons are generally composed of triangles and
quadrangles. Working with the Laplacian operator in this hybrid composition is not a
mathematical challenge, most research only uses meshes composed by triangles [29, 14, 25, 37,
3, 4, 20]. In recent studies [23, 43], the Laplacian operator may be used in meshes composed
exclusively by quadrangles. However, from an artistic point of view, the topology and the
way the edges, triangles and quadrangles are distributed, directly affects the processes of
animation, interpolation, texturing, etc., as discussed by [26], who uses a manual connection
of a pair of vertices to perform animation processes and interpolation. It is then of paramount
importance to develop operators that easily interact with such meshes, eliminating the need
of preprocessing the mesh to convert it to triangles and change the original topology.

Presently, modeling techniques that are able to generate a variety of realistic shapes are
available [7] . Editing techniques have evolved from affine transformations to advanced
tools such as sculpting [11, 17, 41], editing, creation from sketches [21, 19], and complex
interpolation techniques [37, 45]. Catmull-Clark based methods however require interaction
with a minimum number of control points for any operation to be efficient, or in other
words, a unicity condition is introduced by demanding a smooth surface after any of these
shape operations. Hence, traditional modeling methods for subdividing surfaces from coarse
geometry have become widely popular [9, 40]. These works have generalized a uniform B-
cubic spline knot insertion to meshes. Some of these add some type of control; for instance
with the use of creases to produce sharp edges [13] or the modification of some vertex weights
to locally control the zone of influence [5]. Nevertheless, these methods are difficult to use
as they require a large number of parameters and a very tedious customization.

On the other hand, the proposed applications require a single parameter that controls the
global curvature, which is used to maintain realistic shapes, creating a family of different
versions of the same object and therefore preserving the detail of the original model and a
realistic appearance.
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The shape inflation and shape exaggeration can thus be used as a type of brush in the
sculpting process. When inflating a shape with other brushes the former ends up losing
detail when moving vertices [41]. In contrast, the presented enhance method inflates a mesh
by moving the vertices towards the reverse curvature direction, conserving the shape and
sharp features of the model.

Contributions This work presents an extension of the Laplace Beltrami Operator for hy-
brid quad/triangle meshes that have a larger mesh functionality spectrum than common
triangular or quadrangular meshes. The method eliminates the need of preprocessing and
allows preservation of the original topology. Along with this operator, we propose a method
to generate a family of parameterized shapes, in a robust and predictable way. This method
enables customization of the smoothness and curvature obtained during the subdivision sur-
faces process. Finally, a new brush for inflating the silhouette mesh features in modeling
and sculpting is proposed.

The work is organized as follows: chapter 2 presents works related to the Laplacian operator,
applications in digital sculpting, deformation, and offsetting methods for polygonal meshes.
It also describes the theoretical framework of the Laplacian operator for polygon meshes;
in chapter 3, we show the extension of the Laplacian Operator for hybrid meshes and the
applications of shape inflation ,subdivision of surfaces and sculpting; in chapter 4, we present
an application for mesh smoothing of the Laplacian operator extension here proposed, and
implemented into a well known software for computer modelling. Finally, in chapter 5, we
present a successful application for mesh deformation and model re-posing based on differ-
ential coordinates and the adaptation of this method to work with our Laplacian operator
extension.



2 Mathematical Foundation and
Background

This chapter studies basic mathematical foundations on differential geometry to understand
the differential operators and the Laplace Beltrami operator.

The differential geometry studies curvatures and geodesics [20]. These differential operators
show a deep relationship between the geometry (curvatures, geodesics) and topology of the
manifold. They have been commonly used in computer geometric modeling applications over
recent years [35, 1].

2.1 Related work

Many tools, based on the Laplacian mesh processing, have been developed for modeling.
These tools preserve the surface geometric details when using Laplacian operators for dif-
ferent processes such as smoothing, enhancing, free-form deformation, fusion, morphing and
other applications [34].

The most used discretization of Laplace Beltrami operator ∆Ω over a triangulated mesh Ω

was proposed by Pinkall [29].

∆Ω (u) = 1
2

∑
j∈N1(i) (cotαj + cot βj) (xi − xj)

WhereN1is the 1-ring neighborhood, α and β are the opposite angles to edge between vertex i
and vertex j. In this work the discrete Laplacian operator is used to find the minimal surface
based on energy minimization strategy using the Dirichlet’s energy of the function u over a
manifold represented by triangulated mesh Ω.

ED (u) = 1
2

´
Ω

∣∣∇u∣∣2
Taubin [42] was the first to treat the problem of noise reduction in digital polygonal meshes
from a signal processing point of view. He extended Fourier analysis to signals defined
on polygonal meshes, and observed that Fourier transformation is a decomposition of the
signal into eigenvectors of the Laplacian operator and reconstructs the signal with a linear
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combination of these eigenvectors. Desbrun et al. [14] considered the same approach as
Taubin, but they used a curvature normal (κ̄n) based on a cotangent Laplacian operator
version for noise reduction over a diffusion process. This is the most famous and popular
Laplace Beltrami operator discretization [23]; many works for mesh smoothing and fairing
have been developed based on this Laplace Beltrami Operator (LBO) discretization [15, 25,
36, 27]:

∂xi
∂t

= −κ̄ini

−κ̄ini = 1
A

∑
j∈N1(i) (cotαj + cot βj)

where A is the area surrounding vertex i. This Laplacian operator L was used to reduce the
noise in a mesh X over a diffusion process.

The convergence of the Laplace Beltrami operator has been very important in fields such
as numerical analysis, given its implications in the simulation process and geometric partial
differentials equations. Xu et al. [44] established the convergence of several discrete Laplace
Beltrami operators over triangulated meshes with numerical results that support the theoret-
ical analysis. Over quadrilateral meshes, Liu et al. [23] presented a discrete Laplace Beltrami
Operator based on a bilinear interpolation and its convergence over meshes composed only
by quads.

In the work of Sorkine et al. [38] the Laplacian operator was used to re-pose a mesh while
preserving geometry details of the surface. The details were stored in differential coordinates
δi for every vertex vi.

δi =
∑

j∈N1(i)
1
2

(cotαj + cot βj) (vi − vj)

The differential coordinates represent the difference between the absolute coordinate of viand
the center of mass of its immediate neighbors.

Offset methods for polygon meshing, based on the curvature defined by the Laplace Beltrami
operator, have been developed. These methods adjust the shape offset by a constant distance,
with high precision. Nevertheless, these methods fail to conserve sufficient detail because of
the smoothing, a crucial issue which depends on the offset size [46]. In volumetric approaches,
when using point-based representations, the offset boundary computation is based on the
distance field and therefore when calculating such offset, the topology of the model may be
different to the original [10].

Gal et al. [16] proposed automatic feature detection and shape edition with feature inter-
relationship preservation. They defined salient surface features like ridges and valleys, char-
acterized by their first and second order curvature derivatives (see [28]) and angle-based
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thresholds. Likewise, curves have also been classified as planar or non-planar, approximated
by lines, circles, ellipses and other complex shapes. In each case, the user defines an initial
change over several features which is propagated towards other features, based on the classi-
fied shapes and the inter-relationships between them. This method works well with objects
that have sharp edges, composed of basic geometric shapes such as lines, circles or ellipses.
However, the method is very limited when models are smooth since it cannot find the proper
features to edit.

Traditionally, digital sculpting has been approached under a polygonal representation or a
voxel grid-based method. Brushes for inflation operations only depend on the vertex normal
[41]. In grid-based sculpting, other operations allow the addition or removal of voxels, since
production of polygonal meshes requires a processing of isosurfaces from volume [17]. The
drawback comes from the difficulty of maintaining the surface details during larger scale
deformations.

In literature, several studies have described the skeleton extraction systems and different
metrics that identify appropriate methods given a specific application [2]. One of the best
methods reported in literature for the extraction of the skeleton is the Laplacian smoothing
method given its advantages of homotopy representation and hierarchical connections be-
tween parts. The skeleton extraction method permits the simplification of the dimension of
the object while preserving the topological structure [12]. Au et. al. [3] present a skeleton
extraction method based on iterative smoothing-contraction. In this method several con-
straints are used to guarantee that the process converges to a skeleton formed by branches
and joints. The constraints are based on the Laplacian operator; the low frequencies of the
mesh are preserved with the use of an attractor to the original mesh, while the iterative
smoothing process removes high frequencies.

2.2 Manifolds

A manifold is a topological space M with the following properties:

If x ∈M , then there is some neighborhood N (x) and some integer n ≥ 0 such that N(x) is
homeomorphic to Rn [39].

Our work is related to manifolds that represent a surface in an three-dimensional Euclidean
Space. These manifolds are homeomorphic to R2.

The manifolds are represented by polygonal meshes with points connected by triangles and
quads.
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2.3 Laplace Operator

In computer graphics a manifold is often approximated by a discrete mesh [34], it is therefore
necessary to define a discrete Laplacian operator that acts on functions defined by such
meshes.

Consider a smooth compact manifold M of dimension m isometrically embedded in a Eu-
clidean space Rd.

Given a twice continuously differentiable function f ∈ C2 (M), let ∇Mf denote the gradient
vector field of f on M .

The Laplace-Beltrami operator ∆M of f is defined as the divergence of the gradient; that is
[39],

∂2f
∂x2

+ ∂2f
∂y2

+ ∂2f
∂z2

= 0

∇2

Mf = ∆Mf = 0

∆Mf = div
(
∇Mf

)
(2-1)

2.3.1 Discrete Laplace Operator Setting

Discrete Laplacian operators are linear operators that act on functions defined by meshes.
These functions are defined by their values at the vertices.

Thus, if a mesh M has n vertices, then functions on M will be represented by vectors with
n components and a mesh Laplacian will be described by an n× n matrix [34].

Locally, the Laplacian operator takes the difference between the value of a function at a
vertex and a weighted average of its values at the first-order or one-ring neighbor vertices,
therefore a Laplacian matrix L has a local form that is given by

L (f)i = b−1
i

∑
j∈N(i)

wij (fi − fj)

where wijare the weights between the vertex i and the vertex j. b−1
i are the factors depending

on the boundary region over vertex i. N (i) denotes the neighbors that share an edge with
vertex i.
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Abstract

This paper proposes a novel modeling method for a hybrid quad/triangle mesh that allows
to set a family of possible shapes by controlling a single parameter, the global curvature.
The method uses an original extension of the Laplace Beltrami operator that efficiently
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estimates a curvature parameter, which is used to define an inflated shape after a particular
operation performed in certain mesh points. Along with the method, this work presents new
applications in sculpting and modeling, with the subdivision of surfaces and weight vertex
groups. A series of graphics demonstrates the quality, predictability and flexibility of the
method in a real production environment with software Blender.

keywords- laplacian smooth; curvature; sculpting; subdivision surface

3.1 Introduction

Over the last several years, modeling techniques that are able to generate a variety of realistic
shapes, have been developed [7]. Editing techniques have evolved from affine transformations
to advanced tools like sculpting [11, 17, 41], editing, creation from sketches [21, 19], and
complex interpolation techniques [37, 45]. Catmull-Clark based methods however require
interaction with a small number of control points for any operation to be efficient, or in
other words, a unity condition is introduced by demanding a smooth surface after any of
these shape operations. Hence, traditional modeling methods for subdividing surfaces from
coarse geometry have become widely popular [9, 40]. These works have generalized a uniform
B-cubic spline knot insertion to meshes, some of them adding some type of control, for
instance with the use of creases to produce sharp edges [13], or the modification of some
vertex weights to locally control the zone of influence [5]. Nevertheless, these methods are
difficult to deal with since they require a large number of parameters and a very tedious
customization. Instead, the presented method requires a single parameter that controls the
global curvature, which is used to maintain realistic shapes, creating a family of different
versions of the same object and therefore preserving the detail of the original model and a
realistic appearance.

Interest in meshes composed of triangles and quads has lately increased because of the
flexibility of modeling tools such as Blender 3D [6]. Nowadays, many artists use a manual
connection of a couple of vertices to perform animation processes and interpolation [26]. It
is then of paramount importance to develop operators that easily interact with such meshes,
eliminating the need of preprocessing the mesh to convert it to triangles. The shape inflation
and shape exaggeration can thus be used as a brush in the sculpting process, when inflating
a shape, since current brushes end up losing detail when moving vertices [41]. In contrast,
the presented method inflates a mesh by moving the vertices towards the reverse curvature
direction, conserving the shape and sharp features of the model.
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Contributions

This work presents an extension of the Laplace Beltrami operator for hybrid quad/triangle
meshes, representing a larger mesh spectrum from what has been presented so far. The
method eliminates the need of preprocessing and allows preservation of the original topology.
Likewise, along with this operator, a method has been proposed to generate a family of
parametrized shapes, in a robust and predictable way. This method enables customization
of the smoothness and curvature obtained during the subdivision surfaces process. Finally,
a new brush has been proposed for inflating the silhouette mesh features in modeling and
sculpting.

This work is organized as follows: Section 3.2 presents works related to the Laplacian mesh
processing, digital sculpting, and offsetting methods for polygonal meshes; in section 3.3, the
theoretical framework of the Laplacian operator for polygon meshes is described; in section
3.4, the method for shape inflation and applications of subdivision of surfaces and sculpting
is presented; finally some Laplacian operator results using hybrid quad/triangle meshes
are shown graphically, as well as results of the shape inflation applications in sculpting,
subdivision and modeling.

3.2 Related work

Many tools have been developed for modeling, based on the Laplacian mesh processing.
Thanks to the advantages of the Laplacian operator, these different tools preserve the surface
geometric details when being used for different processes such as free-form deformation,
fusion, morphing and other applications [37].

Offset methods for polygon meshing, based on the curvature defined by the Laplace Beltrami
operator, have been developed. With enough precision, these methods adjust the shape
offset by a constant distance. Nevertheless, these methods fail to conserve sufficient detail
because of the smoothing, a crucial issue which depends on the offset size [46]. In volumetric
approaches, in the case of point-based representations, the offset boundary computation is
based on the distance field, and therefore when calculating such offset the topology of the
model may be different to the original [10].

[16] proposes automatic feature detection and shape edition with feature inter-relationship
preservation. They define salient surface features like ridges and valleys, characterized by
their first and second order curvature derivatives, see [28], and angle-based threshold. Like-
wise, curves have been also classified as planar or non-planar, approximated by lines, circles,
ellipses and other complex shapes. In such cases, the user defines an initial change over
several features which are propagated towards other features, based on the classified shapes
and the inter-relationships between them. This method works well with objects that have
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sharp edges, composed of basic geometric shapes such as lines, circles or ellipses. However,
the method is very limited when models are smooth since it cannot find the proper features
to edit.

Traditionally, digital sculpting has been approached under a polygonal representation or a
voxel grid-based method. Brushes for inflation operations only depend on the vertex normal
[41]. In grid-based sculpting, some other operations have allowed the addition or removal of
voxels since production of polygonal meshes requires a processing of isosurfaces from volume
[17]. The drawback comes from the difficulty of maintaining the surface details during larger
scale deformations.

3.3 Laplacian Smooth

Computer objects, reconstructed from the real world, are usually noisy. Laplacian Smooth
techniques allow a proper noise reduction on the mesh surface with minimal shape changes,
while still preserving a desirable geometry as well as the original shape.

Many smoothing Laplacian functionals regularize the surface energy by controlling the total
surface curvature S.

E (S) =
´
S
κ2

1 + κ2
2dS

where κ1 and κ2 are the two principal curvatures of the surface S.

3.3.1 Gradient of Voronoi Area

iv

jv

1jv1jv
j j

iv

jv
1jv

1jvj
j

Figure 3-2: Area of the Voronoi region around vi in dark blue.vj belong to the first neigh-
borhood around vi. αj and βj are opposite angles to edge −−−−→vj − vi.
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Consider a surface S composed of a set of triangles around vertex vi. Let us define the
Voronoi region of vi as shown in figure 3-2. The area change produced by the movement of
vi is called the gradient of Voronoi region [29, 14, 25].

∇A =
1

2

∑
j

(cotαj + cot βj) (3-1)

If the gradient in equation (3-1) is normalized by the total area of the 1-ring neighborhood
around vi, the discrete mean curvature normal of a surface S is obtained, as shown in
equation (3-2).

2κn =
∇A
A

(3-2)

3.3.2 Laplace Beltrami Operator

The Laplace Beltrami operator LBO noted as 4 is used for measuring the mean curvature
normal to the Surface S [29].

4S = 2κn (3-3)

The LBO has desirable properties: the LBO points to the reverse direction of the minimal
surface area.

3.4 Proposed Method

This method exaggerates a shape using a Laplacian smoothing operator in the reverse di-
rection, i.e., the new shape is a modified version in which those areas with larger curvature
are magnified. The operator amounts to a generator of a set of models, which conserves
the basic silhouette of the original shape. In addition, the presented approach can be eas-
ily mixed with traditional or uniform subdivision of surfaces. This method is based on an
original extension of the Laplace Beltrami operator for hybrid quad/triangle meshes, mixing
arbitrary types of meshes, exploiting the basic geometrical relationships and ensuring good
results with few algorithm iterations.
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3.4.1 Laplace Beltrami Operator for Hybrid Quad/Triangle Meshes
TQLBO

Given a mesh M = (V,Q, T ), with vertices V , quads Q, triangles T . The area of 1-ring
neighborhood A (vi) corresponds to a sum of the quad faces A (Qvi) and the areas of the
triangular faces A (Tvi) adjacent to vertex vi.

A (vi) = A (Qvi) + A (Tvi)

*

1jt
*

2jt

2j
5j

3j
4j

*

3jt

1j
6j

iv iv

1jv 1jv

jv jv

jv jv jv
jv

1jv

1j
3j

4j

2j

5j

iv
6j

*

4jt

Figure 3-3: t∗j1 ≡M vivjv
′
j, t
∗
j2 ≡M viv

′
jvj+1, t

∗
j3 ≡M vivjvj+1 Triangulations of the quad with

common vertex vi proposed by [Xiong 2011] to define Mean LBO.

Applying the mean average area, according to [43], from all possible triangulations, as show
in figure 3-3, the area for quads A (Qvi) and triangles A (Tvi) is

A (vi) = 1
2m

m∑
j=1

2m−1A (qj) +
r∑

k=1

A (tk)

where q1, q2, ..., qj, ..., qm ∈ Qvi and t1, t2, ..., tk, ..., tr ∈ Tvi

A (vi) =
1

2

m∑
j=1

[
A
(
t∗j1
)

+ A
(
t∗j2
)

+ A
(
t∗j3
)]

+
r∑

k=1

A (tk) (3-4)

Applying the gradient operator to (3-4)

∇A (vi) = 1
2

m∑
j=1

[
∇A

(
t∗j1
)

+∇A
(
t∗j2
)

+∇A
(
t∗j3
)]

+
r∑

k=1

∇A (tk)
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According to (3-1), we have

∇A
(
t∗j1
)

=
cot θj3(vj−vi)+cot θj2(v′j−vi)

2

∇A
(
t∗j2
)

=
cot θj5(v′j−vi)+cot θj4(vj+1−vi)

2

∇A
(
t∗j3
)

=
cot θj6(vj−vi)+cot θj1(vj+1−vi)

2

∇A (tk) = cotαk(vk−vi)+cotβk+1(vk+1−vi)
2

1jV
iV

jV

1jV

jV '

1)1( j

1' jV
4)1( j

6j

3j
1jV

jj

iV

jV

1jV

iV
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1jV

jV '
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2j
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1jV
1jV 6j

3j
j

1jV
iV

jV

1jV

1)1( j

1' jV
4)1( j

j

)(a )(b )(c )(d )(e

jV '

Figure 3-4: The 5 basic triangle-quad cases with common vertex Vi and the relationship with
Vj and V ′j . (a) Two triangles [Desbrun 1999]. (b) (c) Two quads and one quad
[Xiong 2011]. (d) (e) Triangles and quads (TQLBO) our contribution.

Triangle and quad configurations of the 1-ring neighborhood faces, adjacent to vi, can be
simplified to five cases, as shown in figure 3-4.

According to equation (3-2), (3-3), and five simple cases defined in figure 3-4 the TQLBO
(Triangle-Quad LBO) of vi is

4S (vi) = 2κn = ∇A
A

= 1
2A

∑
vj∈N1(vi)

wij (vj − vi)

wij =



(cotαj + cot βj) case a.
1
2

(
cot θ(j−1)1 + cot θ(j−1)4 + cot θj3 + cot θj6

)
case b.

(cot θj2 + cot θj5) case c.
1
2

(cot θj3 + cot θj6) + cot βj case d .
1
2

(
cot θ(j−1)1 + cot θ(j−1)4

)
+ cotαj case e.

(3-5)

We define a TQLBO as a matrix equation
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L (i, j) =


− 1

2Ai
wij if j ∈ N (vi)

1
2Ai

∑
j∈N(vi)

wij if i = j

0 otherwise

(3-6)

where L is a n×n matrix, n is the number of vertices of a given mesh M , wij is the TQLBO
defined in equation (3-5), N (vi) is the 1-ring neighborhood with a shared face to vi and Ai
is the ring area around vi.

Normalized equation of the TQLBO

L (i, j) =


− wij∑

j∈N(vi)
wij

if j ∈ N (vi)

δij otherwise
(3-7)

where δij is the Kronecker delta function.

3.4.2 The Shape Inflation

The shape is inflated using the reverse direction of the curvature flow, moving the vertices
towards those mesh portions with larger curvature. A standard diffusion process is applied:

∂V
∂t

= λL (V )

To solve this equation, implicit integration is used as well as a normalized version of TQLBO
matrix

(I − |λdt|WpL)V ′ = V t (3-8)

V t+1 = V t + sign (λ) (V ′ − V t)

The vertices V t+1 are inflated, along their reverse curvature direction, by solving the linear
system: Ax = b, where A = I − |λdt|WpL, L is the Normalized TQLBO defined in the
equation (3-7), x = V ′ are the smoothing vertices, b = V t are the actual vertices positions,
Wp is a diagonal matrix with vertex weights, and λdt is the inflate factor that supports
negative and positive values: negative for inflation and positive for smoothing.

The method was devised to use with weighted vertex groups, which specify the final shape
inflation of the solution, meaning 0 for no changes and 1 when a maximal change is applied.
The weights modify the influence zones, where the Laplacian is applied, as shown in equation
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3-8 . Interestingly, the generated family of shapes may change substantially with the weights
of specific control points.

The curvature cannot be calculated at the boundary of the meshes that are not closed,
for that reason we use the scale-dependent operator proposed by Desbrun et al. [14], the
inflation factor for boundary is represented by λe.

The model volume increases proportionally as the lambda becomes larger and negative, this
can be counteracted with a simple volume preservation. However, the mesh may suffer large
displacements when λ < −1.0 or after multiple iterations. A simple volume conservation
algorithm is: if vt+1

i is a mesh vertex of V t+1 in the t+ 1 iteration, we define v as:

v = 1
n

∑
vi∈V

vi

vis the mesh center, volini is an initial volume, and volt+1 is the volume at the iteration t+1,
n is the number of vertices, then the scale factor

β =
(
volini

volt+1

) 1
3

allows to scale the vertices to:

vt+1
i new = β

(
vt+1
i − v

)
+ v

The shape inflation uses a negative curvature flow that is an unstable process when perform-
ing many iterations, however, our method uses less than 3 iterations to get good results, and
with 3 iterations or less the method behaves in a stable way.

3.5 Sculpting

A new sculpting brush is herein proposed and aims to inflate the shape, magnifying the
shape curvatures of a polygon mesh in real time. This brush works best with the stroke
method Drag Dot, allowing the user to pre-visualize the model changes before the mouse is
released. Also, it allows movement of the mouse along the model to match the shape zone
which is supposed to be inflated.

Brushes that perform a similar inflation can introduce mesh distortions or produce mesh self-
intersections, provided that these brushes only move the vertices along the normal without
any global information. In contrast, the present method searches for an improved inflation
while preserving the global curvature, retaining the original shape and main model features.
In addition, this method simplifies the work required for the inflation since it does not
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need different brushes for inflating, softening or styling. The inflated brush can do all these
operations in a single step. Real-time brushes require the Laplacian matrix to be constructed
with the vertices that are within the sphere radius defined by the user, reducing the matrix
to be processed. The center of this sphere depends on the place where the user clicks on
the canvas and also where the click is projected on the three-dimensional mesh. Special
handling is required for the boundary vertices with neighbors that are not within the brush
radius: these vertices mark the boundary though the curvature is not calculated there, but
they must be included in the matrix so that every vertex has their corresponding neighbors
within the selection. The sculpting Laplacian matrix reads as.

L (i, j) =


− wij∑

j∈N(vi)
wij

if ‖vi − u‖ < r ∧ ‖vj − u‖ < r

0 if ‖vi − u‖ < r ∧ ‖vj − u‖ ≥ r

δij otherwise

where vj ∈ N (vi), u is the sphere center of radius r. The matrices should remove rows and
columns of vertices that are not within the radius.

3.6 Subdivision surfaces

)(c)(a )(b

0.50,0.10  e0.0,0.10  e 0.8,0.80  e

0.0,0.10  e 0.2,0.80  e 0.60,0.50  e

0.0,0.10  e 0.50,0.10  e 0.8,0.80  e

0.60,0.50  e0.2,0.80  e0.0,0.10  e

)(d

Figure 3-5: Family of cups generated with our method, from a coarse model (a), (c): the
shape, obtained from the Catmull-Clark Subdivision (b), (d), is inflated. Soft
constraints, over the coarse model, is drawn in red and blue (c).

The Catmull-Clark subdivision transformation is used to smoothen a surface, as the limit
of a sequence of subdivision steps [40]. This process is governed by a B-spline curve [24],
performing a recursive subdivision transformation that refines the model into a linear in-
terpolation that approximates a smooth surface. The model smoothness is automatically
guaranteed [13].
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Catmull-Clark subdivision surface methods generate smooth and continuous models from a
coarse model and produce quick results because of the simplicity of implementation. Nev-
ertheless, changes to the global curvature are hardly implantable. The Catmull-Clark Sub-
division Surfaces, together with shape inflation, can easily generate families of shapes by
changing a single parameter, allowing a model with very few vertices to be handled. In
practice, this would allow an artist to choose a model from a similar set of options that
would meet their needs without having to change each of the control vertices. Likewise, the
presented method allows the use of vertex weight paint over the control points. The weights
can be applied to a coarse model, followed by a Catmull-Clark subdivision where weights
are interpolated, producing weights with smooth changes in the influence zones, as shown in
figure 3-5.c.

In equation 3-8, Wp is a diagonal matrix with weights corresponding to each vertex. Weights
at each vertex produce a different solution so that the matrix must be placed in the diffusion
equation, since families that are generated may change substantially with the weight of
specific control points.

3.7 Results

The results of the shape inflation method with the extension of the Laplace Beltrami operator
for hybrid quad/triangle meshes with several example models shown in figures: 3-1, 3-5, 3-
6, 3-7, 3-8, 3-10, 3-11, 3-12, 3-9. The shape inflation was assessed with TQLBO method
on a PC with AMD Quad-Core Processor @ 2.40 GHz and 8 GB RAM.

0.12,0.60  e 0.80,0.90  e 0.5,0.200  e 0.100,0.40  e
)(a )(b )(c )(d )(e )( f

Figure 3-6: (a) Original Model, (b) Model with Catmull-Clark Subdivision. Models with
Laplacian smoothing: (c) and (d). Models with a first Laplacian filtering λ =
60.0, λe = 12.0 and before applying shape inflation: (e) and (f).

Figure 3-7 shows the results when applying the Laplace Beltrami Operator TQLBO of
equation (3-6) in a model with a simple subdivision. In column (c) the Laplacian smoothing
was applied to a model consisting of only quads. In column (d) the model was converted
to triangles and then the Laplacian smoothing was applied. In column (e) the model was
randomly converted from some quads into triangles and then the Laplacian smoothing was
applied, showing similar results to those meshes composed only of triangles or quads.
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)(a )(b )(c )(d )(e

Figure 3-7: (a) Original Model. (b) Simple subdivision. (c), (d) (e) Laplacian smoothing
with λ = 7 and 2 iterations: (c) for triangles, (d) for quads, (e) for triangles and
quads chosen randomly.

Methods using the Catmull-Clark Subdivision Surface and inflation allow the modification
of the curvature, as shown in figure 3-5. This test used a coarse cup model, in which the
subdivision was performed, followed by Laplacian smoothing and inflation. Figure 3-5.c, 3-
5.d also shows the use of weight vertex groups over coarse models, with subdivision surfaces
that generate weights for the new interpolated vertices. These new weights were used for
the inflation obtained on the 6 cups that are at the right of the figure 3-5.d.
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0.400
0.30

iterations2,0.50 iteration1,0.200

0.100Original

Figure 3-8: Top row: Original camel model in left. Shape inflation with λ = −30.0, λ =
−100.0, λ = −400.0. Bottom row: Shape inflation with weight vertex group,
λ = −50.0 and 2 iterations for the legs, λ = −200.0 and 1 iteration for the head
and neck.

Laplacian smoothing applied with simple subdivision (see figure 3-6.c.) may produce similar
results to those obtained with Catmull-Clark (see figure 3-6.b.), whose models have average
equal triangles. The one obtained with the Laplacian smoothing is shown in panel (c),
(d) and the curvature modified versions are in (e) and (f). As can be observed, different
versions of the original sketch can be obtained by parameterizing a single model value, a great
advantage of the presented method. Figure 3-8 shows the generation of different versions of
a camel according to the λ parameter. In the top row the shape inflation results are shown.
As λ becomes larger and negative, the resultant shape was inflated on the more convex parts,
as shown in figure 3-1. The larger the λ parameter, the larger the model feature inflations.
The bottom row of figure 3-8 shows the use of weighted vertex groups, specifying which
areas will be inflated. On the left, the inflation of the camel legs produces an organic aspect,
notice that the border is not distorted and smooth.
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Figure 3-9: The method is pose insensitive. The inflation for the different poses are similar
in terms of shape. Top row: Original walk cycle camel model. Bottom row:
Shape inflation with weight vertex group, λ = −400 and 2 iterations.

The inflation of the silhouette’s features is predictable and invariant under isometric trans-
formations, like those classically used in some animations (see Figure 3-9). In this figure, the
animation shows some camel poses during a walk. The inflation is performed at the neck and
legs, as shown in the bottom left camel in figure 3-9. Local modifications produced by the
pose interpolation or animation rigging practically do not affect the result. There is a clear
difference despite the pose of the camel’s legs. The inflation method allows a flesh-like shape
in the original pattern produced by the artist, this is due to the mesh restricted diffusion
process so that small local changes are treated without affecting the global solution. The
method therefore is rotation invariant since it depends exclusively on the normal mesh field.

(a) Original (b) Inflate Brush (c) Enhance Brush  

Figure 3-10: Top row: (a) Original camel leg, (b) Inflate Brush used on leg within blue
circle, (c) Enhance Brush used on leg within red circle. Bottom row: (a)
Original hand, (b) Inflate Brush used on fingers within blue circle, (c) Enhance
Brush used on fingers within red circle.
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Figure 3-11: Performance of our dynamic Enhance Brush in terms of the sculpted vertices
per second. Three models with 12K, 40K, 164K vertices used for sculpting in
real time.

Figure 3-10 shows the use of the Enhance Brush for sculpting in real time. One pass was used
with the brush, shown by the blue and red radius. In figure 3-10.b the camel hoof shows the
inflation intersection, which looks like two bubbles, a similar pattern that is observed on the
fingers on the bottom row of the same figure. The silhouette inflation is observed in figure 3-
10.c the main shape is retained together with either its finger or hoof details. Similar results
can be obtained by using different brushes, however it would take several steps, while the
Enhance Brush for shape inflation takes only a single step. For this reason, this new method
can easily inflate organic features like muscles during the sculpting process. In figure 3-11
the Enhance Brush performance is illustrated. In this experiment three models with 12K,
40K and 164K vertices, were used. These models were sculpted with the Enhance Brush,
each time the user selected a variable number of vertices for processing. The processing time
for 800 vertices in the camel hoof (40k model) only took 0.1 seconds, for 2600 vertices in the
leg and neck (model 40k) it took 0.5 seconds. These times are suitable in real applications
since an artist sculpts a model by parts and each part is represented by an average of about
1800 vertices.
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)(a )(b )(c

Figure 3-12: (a) Bottom row: Original Model. Top row: Original model scaled by 4. (b)
Top and bottom row: inflated with Normalized-TQLBO λ = −50 from (a)
respectively (c) Top and bottom row: inflated with TQLBO λ = −50 from (a)
respectively.

Tests with the Laplacian operator (equation 3-6) and its normalized version (equation 3-7),
produce similar results if the triangles or quads that compose the mesh are about the same
size. The normalized version is more stable and predictable because it is not divided by
the area of the ring, which may be very small and cause numerical problems, as shown in
figure 3-12.c bottom row. The shape inflation of the model with the normalized Laplacian
operator results in a more regular pattern. The model can be deformed with a normalized
version of TQLBO with large λ (λ > 400) that can intersect itself but without any peaks.
Figure 3-12.c shows different results due to the quads’ areas in the model. Quads with larger
areas have smaller inflations (figure 3-12.c skull), and smaller quads have larger inflations
(figure 3-12.c chin).

3.8 Implementation

The method was implemented as a modifier for modeling and brush for sculpting, on Blender
software [6] in C and C++ language programming. Working with Blender allowed the
method to be tested interactively against other methods, such as Catmull-Clark, Weight
Vertex Groups and Sculpting System.

To improve the performance, it was worked with the Blender mesh structure, visiting each
triangle or quad and storing its corresponding index and the sum of the Laplacian weights
of the ring in a list so that only two visits were required for the list of mesh faces and two
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times for the edge list, if the mesh was not closed. This drastically reduced calculations,
enabling real-time processing. In the construction of the Laplacian matrix, several indices
were locked at vertices, which had face areas or edge lengths with zero value that could cause
spikes and bad results.

Under these conditions, the matrix of the equation 3-6 is sparse since the number of neighbors
per vertex, corresponding to the number of data per row, is smaller compared to the total
number of vertices in the mesh. To solve the linear system equation 3-8 OpenNL [8] was
used, which is a a library for solving sparse linear systems.

3.9 Conclusion and future work

This work presented an extension of the Laplace Beltrami operator for hybrid quad/triangle
meshes that can be used in production environments and provides results similar to those
obtained by working only with triangles or quads. This paper has introduced a new way
to change silhouettes in a mesh for modeling or sculpting in a few steps by means of the
curvature model modification while preserving its overall shape. In addition, a new modeling
method has also been presented and some possible applications have been illustrated. The
method works properly with isometric transformations, opening the possibility of introducing
it to the process of animation.

We show that this tool may work in early modeling stages, when coarse models are used,
allowing the shape generated by the Catmull-Clark subdivision surfaces to be modified and
thereby avoiding edition of the vertices with a change of a single parameter.

Future work includes the analysis of theoretical relationships between the Catmull-Clark
subdivision surfaces and the Laplacian smoothing since they can produce very similar results.
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4.1 Synopsis

Objects reconstructed from the real world contain undesirable noise in many computer graph-
ics applications. A Mesh smoothing may remove that noise while still preserving the geome-
try and shape of the original model. This project aims to improve the mesh smoothing tools
uses by Blender software, using curvature flow operator in a diffusion equation, allowing
hybrid meshes composed of triangles and quads to be worked with, and using the Laplacian
operator proposed by Pinzón and Romero [33].

4.2 Benefits to Blender

This project proposes a new and robust mesh smoothing tool that improves the appearance
of the surfaces of models. Usually, methods to scan computer graphics objects using the
Kinect ZCam need to remove the noise present at the time of capture. This mesh smoothing
method produces higher quality results without shrinkage, while the smoothing tool currently
used collapses after several iterations.

This mesh smoothing method allows hard and soft constraints on the positions of the mesh
points in order to maintain control over the shape, which facilitates the removal of noise
generated during the sculpting, but without eliminating the desired details of the model.
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4.3 Deliverables

• A new and robust mesh smoothing tool for Blender.

• Some documentation pages to be included in the manual.

• A technical document for developers to improve the method in the future.

• A tutorial explaining the use of the tool.

4.4 Project Details

The mesh smoothing algorithm was implemented as a diffusion equation for specific geometric
structures. The project was divided in four parts:

1. Initialization of data and necessary structures.

2. Computation of the Laplacian Matrix.

3. Definition of the sparse linear system.

4. Solution of the sparse linear system, using a preconditioned bi-conjugated gradient
numerical library.

Integration of the numerical library present in Blender to solve the sparse linear system

Generation of documentation and tutorials.

4.5 Project Schedule

• 3 weeks: Understanding the Blender source code and identifying the key points for the
project.

• 1 week: Definition of the data structures necessary to work with the Blender architec-
ture.

• 1 week: Implementation of the methods for the initial configuration of the smoothing
algorithm. Implementation of the Laplacian matrix calculation.

• 2 weeks: Integration of the numerical library.

• 2 weeks: Formulation of the sparse linear system and implementation of the numerical
method to solve it.

• 3 weeks: Formulation and implementation of the graphical user interface.

• 2 weeks: Testing the tool.

• 3 weeks: Generation of the documentation and tutorials.
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4.6 Mesh Smoothing

A common way of attenuating noise in a polygonal mesh is by a diffusion process [42, 14].
Laplacian smooth techniques allow a proper noise reduction of the mesh surface with minimal
shape changes. The simple idea consists in moving the vertices in the Laplacian direction.
When the cotangent version is used, the vertices are moved in the direction of the curvature
flow. The complexity of the Laplacian smoothing can be linear in time and space with a
fast convergence. The diffusion process can attenuate noise with only one iteration due the
sparseness of the laplacian operator.

∂V

∂t
= λL (V ) (4-1)

Where L is the Laplacian matrix defined in equation 4-3 for meshes composed of triangles or
quads with different sizes or irregular sampling and λ is a scalar that controls the diffusion
process, and smoothing factor. The equation 4-1 can be linearly approximated using implicit
integration with a Laplacian Operator version of TQLBO, the use of implicit integration
makes the system more stable.

Computation of the Laplacian Matrix:

1. Definition of the sparse linear system.

2. Solution of the sparse linear system, using a preconditioned bi-conjugated gradient
numerical library.

(I − λdtL)V n+1 = V n (4-2)

The user may define the region of interest where the Laplacian smooth needs to be applied.
For doing so, we add a diagonal matrix Wp to equation 4-2, where every element in the
diagonal corresponds to the weight for every vertex.

(I − λdtWpL)V n+1 = V n

For non-closed meshes or meshes with holes, the curvature flow cannot be computed. For
this reason, the system smoothes out the edges only in the direction of the diffusion process.
The boundaries are treated as a one-dimensional curve, where the Laplacian is defined as the
weighted difference between the vertex and the two immediate neighbors, ensuring the curve
maintains its original form as much as possible. We define a Laplacian for mesh smoothing
as a matrix equation.
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L(i, j) =



− 1
2Ai
wij if j ∈ N(vi) ∧ vi /∈ Boundary

1
2Ai

∑
j∈N(vi)

wij if i = j ∧ vi /∈ Boundary

−eij if j ∈ N(vi) ∧ {vi, vj} ∈ Boundary
2
Ei

∑
j∈N(vi)

eij if i = j ∧ {vi, vj} ∈ Boundary

0 otherwise

(4-3)

where L is a n×n matrix, n is the number of vertices of a given mesh M , wij is the TQLBO
defined in equation (3-5), N (vi) is the 1-ring neighborhood which has a shared face with vi,
eij = 1

‖vi−vj‖ is the inverse length of the edge between vertices {vi, vj}, Ei =
∑

j∈N(vi)

eij. Ai is

the ring area around vi.

4.7 Results and Conclusions

The developed user interface can be seen in figure 4-1. This tool allows the λ parameters for
inner points and boundaries to be set, as well as to configure soft constraints using weights
defined by vertices in “Vertex Group” and also to set strong constraints by independently
applying the algorithm in the axis X, Y or Z.

Figure 4-1: Panel inside blender user interface of the Laplacian Smooth modifier tool.

The tool developed can set the λdt parameter of equation 4-2. Using a small Lambda factor
(λ < 1.0), noise can be removed without significantly affecting the geometry (see figure 4-
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2.b), while using a large Lambda factor (λ > 1.0) smoothed versions can be obtained at the
cost of losing fine geometry details (see figure 4-2.c and 4-2.d).

(a) (b) (c) (d) 

Figure 4-2: Noise attenuation in face model with Laplacian smoothing tool using only one
iteration and changing λ. (a) Original Model. (b) Smoothing λ = 0.5. (c)
Smoothing λ = 2.5 (d) Smoothing with λ = 5.0.

The user can smooth the boundaries by configuring the parameter “Border”, seen in figure
4-1. Boundaries are treated differently since there is no way to calculate the boundary
curvature flow. For this reason the Lambda factor “Border” just smooths them. The change
of this parameter and the results seen in figure 4-3, illustrate how the boundary inside the
red circle is smoothed.

(a) (b) (c) (d) 

Figure 4-3: Smoothing boundary changing λBorder factor. (a) Original Model. (b) Smooth-
ing λBorder = 1.0. (c) Smoothing λBorder = 2.5 (d) Smoothing with λBorder =
10.0.

The tool allows the user to add soft constraints using weights for each vertex, this allows
regions of interest where you want to apply the algorithm to be defined. In figure 4-4.c, the
red region corresponds to the desired region and figure 4-4.d stands for those smoothened
vertices in the red region.
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(a) (b) (c) (d) 

Figure 4-4: Use of weights per vertex to constrain the effect of mesh smoothing. (a) Original
Model. (b) Smoothing with λ = 1.5 (c) red vertices weight = 1.0, blue vertices
weight = 0.0. (d) Smoothing with λ = 2.5. The red vertices were the only
vertices smoothed.

This module was developed as a tool for Blender software to remove noise in the most efficient
way. The state-of-the-art methods remove noise only if the mesh is composed by triangles,
in contrast, with the developed tool, artists can now remove the noise even if the mesh is
composed of triangles and quadrangles.
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Deform

This work was accepted and completed for Blender [6] software, which is an open source 3D
application for modeling, animation, rendering, composing, video editing and game creation.
In the Google Summer of Code 2013 program which was administered by Google Inc.

5.1 Synopsis

The mesh editing is generally done with affine transformations. Blender3D offers some tools
that can transform vertices, such as “proportional editing object mode” with which the
transformation of some vertices is interpolated with the other vertices that are connected
with the use of simple distance functions.

This project proposes to implement a method for mesh editing based on sketching lines
defined by the user and preserving the geometric details of the surface.

This method captures the geometric details using differential coordinates representations.
The differential coordinates captures the local geometric information (curvature and direc-
tion) of the vertex based on its neighbors. This method allows you to retrieve the best
possible original model after changing the positions of some vertices by using the differential
coordinates of the original model.

5.2 Benefits to Blender

This project proposes a new tool for Blender users that requires the preservation of geometric
details of the surface during modeling, transformation and definition of the shape keys of
the mesh vertices.

The method will allow novice users to edit any polygon mesh preserving the surface details.

This method allows the user to define new shape keys in a faster and more intuitive way.
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5.3 Deliverables

• A new mesh editing tool for Blender.

• Some pages of documentation to be included in the manual

• A technical document for developers to improve the method in the future.

• A tutorial explaining the use of the tool.

5.4 Project Details

The project is divided into eight parts:

1. Calculate the differential coordinates.

2. Store the fixed vertices (Hard constraints).

3. Store positions of the edited vertices.

4. Store the most representative vertex to retrieve rotation of every differential coordinate.

5. Solve the initial solution – in least-squares sense.

6. Rotate the differential coordinates based on initial solution and the most representative
vertex.

7. Reconstruct the surface – in least-squares sense.

8. Generation of the documentation and tutorials.

5.5 Project Schedule

• 2 Weeks: Calculate the differential coordinates.

• 2 Weeks: Store the fixed vertices (Hard constraints).

• 2 Weeks: Store positions of the edited vertices.

• 2 Weeks: Compute initial solution.

• 2 Weeks: Rotate differential coordinates.

• 2 Weeks: Reconstruct the surface – in least-squares sense.

• 1 Week: Testing the tool and Define and implement graphical user integration.

• 2 Weeks: Generation of the documentation and tutorials.
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5.6 Laplacian Deform

The Laplacian deformation facilitates mesh visualization while preserving the geometric
surface details. In this method the user defines a set of anchor vertices which serve to re-
pose the mesh by translating some of them. The system keeps the anchor vertices in fixed
positions and calculates the best possible locations of the other vertices so that the shape
preserves the original geometric details. This work adapts the method proposed by Sorkine
et al. [37] for mesh deformations by deleting the use of static vertices. The method has also
been applied to hybrid meshes composed of triangles and quads, using the proposed TQLBO.
In particular, the geometric details are captured using differential coordinates representations
that contain the local geometric information (curvature and direction) of the vertex and its
neighbors, as shown in figure 5-1.

i

1v

2v

mv

jv

iv Differential Coordinate 

Figure 5-1: Difference between vi and the center of mass of its neighbors v1, ..., v.

δi =
m∑
j=1

wij (vi − vj) (5-1)

where δi is the differential coordinate for vertex vi. The vj are the immediate neighbors of
vi, and wij is the weight between vertex vi and vj defined in equation 3-5 that is TQLBO.

Then the linear system for finding the new pose of a mesh is.

[
wlL

Wc

]
X =

[
δ

WcC

]
(5-2)

Where wl is the Laplacian Matrix weight L, and the Laplacian matrix L was defined in
equation 3-6 . Wc is a matrix that has only ones in the indices of anchor vertices. C is a
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vector with coordinates of anchor vertices after several transformations. δ are the differential
coordinates defined in equation 5-1.

5.7 Testing Solvers

For this project we chose a numerical solver to be included in the Blender software after an
evaluation of the initial factorization of the Laplacian deformation system.

Linear equation system to solve [
wlL

Wc

]
X =

[
δ

WcC

]
Solving the sparse linear system

Ax = b

Where:

A =

[
wlL

Wc

]

x = V

b =

[
δ

WcC

]

5.7.1 Hardware Specification

• Processor: AMD Quad-Core 2.40 GHz

• RAM: 8.0 GB

• OS: Windows 7 Professional

• Graphics controller: NVIDIA Quadro FX 570

5.7.2 Software Specification

CGAL Computational Geometry Algorithms Library

Graphite Research platform for computer graphics
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5.7.3 Numeric Solvers Used

CG: Conjugate gradient method.

BICGSTAB: Biconjugate gradient stabilized method.

GMRES: Generalized minimal residual method.

SUPERLU: Sparse Direct Solver, LU decomposition with partial pivoting.

TAUCS_LDLT: A library of sparse linear solvers with LDLT factorization.

CHOLMOD: Supernodal sparse Cholesky factorization.

LU factorization is a numerical method that works with large, sparse, non-symmetric systems
of linear equations [22]. We chose the implementation of LU factorization in an OpenNL-
SuperLU library because this method showed better performance in the computation of a
solution for a Laplacian Deform linear system of equations presented in equation 5-2 which
can be seen in the table and plots 5-1 and 5-2. OpenNL SuperLU can function with the
Graphics Unit Processor GPU in order to exploit the capacity of GPU to be able to work
with parallel structures, faster than a traditional CPU.

Model Vertices CG BICGSTAB GMRES SUPERLU TAUCS CHOLMOD
Cross 24 0.05 0.05 0.04 0.04 0.05 0.05
King 538 0.83 0.63 0.71 0.61 0.68 0.79

YModel 4770 19.60 16.44 16.93 16.06 16.88 17.95
Man 10002 33.43 27.76 29.91 28.54 29.53 30.80

Neptune 28052 133.97 136.46 136.39 133.21 142.87 142.76
Armadillo 34594 194.48 174.88 175.80 169.92 181.70 183.49

Table 5-1: Vertices Vs Seconds, Laplacian Deform initial factorization performance.
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Figure 5-2: Plot of Vertices Vs Seconds, Initial factorization performance.

5.8 Results

The user interface for Blender software can be seen in figure (5-3). In this tool, the user
defines the anchor vertices and, with the use of a vertex, groups the features offered by
Blender. The user configures this name in the field Anchors Vertex Group. The Bind option
initiates the system and captures the geometry details in the form of differential coordinates
and computes the factorization of the linear system, after that the system is ready to pose
meshes in a real-time interaction session.

Figure 5-3: Panel inside Blender user interface of the Laplacian Deform modifier tool.
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Figure (5-4) shows the Laplacian Deformation applied to a model with 173K vertices, only
anchor vertices were used and are represented in blue. When the user applies several trans-
formations (location, rotation, scale) to these anchor-vertices, the system finds a solution
and estimates the position of the vertices (in yellow). This method works in real time and

for doing so the matrix
[
wlL

Wc

]
in equation (5-2) is LU decomposed only once, with LU fac-

torization, when the system initiates. Once the matrix is factorized, the system can solve the
unknown variables in the order of milliseconds. Results are improved by solving the system
of equations several times, without LU factorization at every iteration, just the differential
coordinates are adjusted since the differential coordinates can be rotated. Only four itera-
tions were necessary for obtaining figure (5-4) but the system finds proper solutions with
only one iteration, when the angle of rotations are less thanπ.

(a) (b) (c) (d) 

Figure 5-4: Anchor vertices in blue. (a) Original Model, (b,c,d) new poses only change the
anchor-vertices, the system finds positions for vertices in yellow.

Figure 5-5 shows a comparison after making a single transformation that rotates the parts
in blue 70º to the right. Results using a bicubic interpolation are shown in 5-5.b observe
how the main trunk loses its shape when rotated. The propagation of changes made by the
Laplacian deformation (figure 5-5.c) for the same transformation, shows better results.
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70º 

70º 

(a) (b) (c) 

Figure 5-5: (a) Original cactus model. (b) Blue segments are rotated 70º to the right and
afterwards a basic interpolation is applied to the parts in yellow (c) Blue seg-
ments are rotated 70º to the right and afterwards a Laplacian deform tool is
applied to the parts in yellow.

The Laplacian Deformation tool allows the user to change the model’s pose while preserving
the geometry details. In figure 5-6.b and 5-6.c observe the horse’s new pose after five
transformations and one head rotation. In figure 5-6.b the shape and details are lost at every
change using basic interpolation. In constrast, figure 5-6..c illustrates how the new pose of
the horse looks more natural, above all for the body and neck. This comparison indicates
that the Laplacian Deform method allows any transformation to be applied without any loss
of detail.

(a) (b) (c) 

g g g 

Figure 5-6: (a) Original Horse model. (b) The blue segments are translated and rotated and
then basic interpolation is applied to the yellow parts (c) The blue segments
are translated and rotated and then the Laplacian Deform tool is applied to the
yellow parts.



6 Skeleton Extraction

Part of this work was accepted and presented as a poster titled Software para la Extracción
del Esqueleto por Contracción y Suavizado [Software for Skeleton Extraction by Contraction
and Smoothing] at 7th International Seminar on Medical Image Processing and Analysis
SIPAIM 2011. The conference was held on December 6-8 of 2011, in Bucaramanga, Colombia
[31], the poster thumbnail is shown in figure 6-1.

Part of this work was accepted and presented as a poster titled Análisis Experimental de la
Extracción del Esqueleto por Contracción con Suavizado Laplaciano [Experimental Analysis
of Skeleton Extraction by Contraction and Laplacian Smoothing] at the 6th International
Seminar on Medical Image Processing and Analysis SIPAIM 2010. The conference was held
on December 1-4 of 2010, in the city of Bogotá, Colombia [30], the poster thumbnail is shown
in figure 6-2.

6.1 Background

Skeleton extraction not only reduces the dimensionality but also represents a three-dimensional
object as a uni-dimensional structure [12].

Skeleton extraction uses the natural shrink produced by Laplacian smoothing [25], to itera-
tively contract the mesh until the volume inside the surface is about zero (see figure 6-3).
This method stretches the mesh to guarantee that the object preserves, as much as possible,
the original topology constraint [3].
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Software para la Extracción del Esqueleto porSoftware para la Extracción del Esqueleto por

Contracción y SuavizadoContracción y Suavizado
Alexander Pinzón, Eduardo Romero

AbstractAbstract

Este articulo presenta un software para el procesamiento, visualización, yEste articulo presenta un software para el procesamiento, visualización, y

extracción del esqueleto desde mallas de polígonos. El software se diseño

con base en un sistema de plugins y filtros, se implemento un plugin que

contenía un filtro para la extracción del esqueleto por contracción encontenía un filtro para la extracción del esqueleto por contracción en

dirección gradiente con suavizado Laplaciano. El software producido

proporciona una plataforma flexible para el diseño e implementación deproporciona una plataforma flexible para el diseño e implementación de

plugins.

Métodos de Suavizado de MallasMétodos de Suavizado de Mallas

Los métodos para suavizar mallas reducen el ruido, o permitenLos métodos para suavizar mallas reducen el ruido, o permiten

iterativamente eliminar frecuencias altas presentes en el muestreo

tridimensional de los modelos.

Métodos Laplacianos

∂La idea básica consiste en mover un vértice en la

misma dirección del Laplaciano .
( ) ( )XL

t

X
Eq λ=

∂
∂

1
misma dirección del Laplaciano .

La ecuación 1 se implementa como la

ecuación de diferencias hacia adelante así:

t∂

( ) ( ) tt XLIXEq λ+=+12
ecuación de diferencias hacia adelante así:

Donde X es el conjunto de vértices, L es el Laplaciano, y λ Є es la

velocidad de difusión.

( ) ( ) tt XLIXEq λ+=+12

ℜvelocidad de difusión.

Y la aproximación discreta de la ecuación 2 es:

ℜ

( ) ( ) ( ) ( )∑ ∈−= ijijiji xVecinosxxxwxLEq ,3

Aproximación del Laplaciano mediante la Curvatura normal

Con para el vértice xi y sus vecinos xj

Software SkeletonizerSoftware Skeletonizer

sjSkeletonizer es el software desarrollado en el

grupo Bioingenium para el procesamiento,grupo Bioingenium para el procesamiento,

visualización y extracción del esqueleto desde

mallas de polígonos.mallas de polígonos.

• Usa CGAL (Computational Geometry

Algorithms Library)

•Usa Graphite (Software de Geometría Numérica

y Computación Grafica)

• Se integraron las siguientes librerías de• Se integraron las siguientes librerías de

procesamiento numérico: ACE, AMD, ARPACK,

ARPACK_UTIL, CBLAS, CCOLAMD, CHOLMOD, CLAPACK,ARPACK_UTIL, CBLAS, CCOLAMD, CHOLMOD, CLAPACK,

COLAMD, F2CLIBS, METIS, MISC, NL, SUPERLU, TAUCS

ContactoContacto

Alexander Pinzón Fernández apinzonf@gmail.comAlexander Pinzón Fernández apinzonf@gmail.com

Grupo de Investigación Bioingenium www.bioingenium.unal.edu.co

Universidad Nacional de Colombia www.unal.edu.co

Facultad de Medicina, Edificio 471 Primer PisoFacultad de Medicina, Edificio 471 Primer Piso

Software para la Extracción del Esqueleto porSoftware para la Extracción del Esqueleto por

Contracción y SuavizadoContracción y Suavizado
Alexander Pinzón, Eduardo Romero

Implementación para la extracción del esqueletoImplementación para la extracción del esqueleto

La Esqueletonización reduce la dimensionalidad y representa un cuerpo

como un estructura uní-dimensional.como un estructura uní-dimensional.

El esqueleto puede ser obtenido suavizando la malla pero bajo dosEl esqueleto puede ser obtenido suavizando la malla pero bajo dos

restricciones, WL que da peso al Laplaciano y WH que mantiene los

vértices en su localización original.vértices en su localización original.

Extracción del esqueleto.

Donde L(X) = Suavizado Laplaciano con wij

basado en la curvatura de flujobasado en la curvatura de flujo

Y la nueva restricción propuesta en este trabajo

Tratar de suavizar los vértices a lo largo de la línea

La distancia del punto a la lineaLa distancia del punto a la linea

Cada punto en un plano satisface esta ecuación

ResultadosResultados

•Los vértices se pueden mover a lo largo de la línea.•Los vértices se pueden mover a lo largo de la línea.

•El esqueleto tiene muchas ramas.

•Muchas mas ecuaciones que incógnitas.

La solución debe ser restringida a una región particular de la línea.•La solución debe ser restringida a una región particular de la línea.
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Análisis Experimental de la Extracción del Esqueleto 

por Contracción con Suavizado Laplaciano
Alexander Pinzón, Fabio Martínez, Eduardo Romero

Abstract

Este articulo presenta un análisis sistemático del método de extracción del esqueleto por medio de la contracción de un volumen con suavizado Laplaciano. El trabajo realiza una

aproximación experimental al problema de la extracción del esqueleto, para encontrar el rendimiento del método evaluado frente a cambios isométricos, y durante la fase de

simplificación.

Esta evaluación utilizo el modelo tridimensional animado de una persona que realizaba una caminata, a este modelo se le extrajo el esqueleto y se compararon las diferencias en

distintos instantes de la animación, y distintas configuraciones del proceso de simplificación. Los resultados muestran un óptimo rendimiento del método frente a las

transformaciones isométricas, y múltiples problemas en la fase de simplificación de mallas.

Referencias y Agradecimientos

Experimentación

Se uso la implementación hecha en Oscar Kin-Chung Au et al. Por los autores, para

realizar la extracción del esqueleto de un modelo tridimensional que fue obtenido

mediante el método de recuperación de forma desde las siluetas realizado por

Vlasic et al. De este modelo se registro una caminata durante 240 cuadros.

Para evaluar el proceso de simplificación se variaron el numero de nodos usados

para describir uniones en el esqueleto (ver figura 3) y se clasificaron las uniones así

ver figura 2.

En el segundo experimento se seleccionaron diferentes poses para observar la

correspondencia topológica entre los esqueletos extraídos y analizar el

comportamiento del método frente a transformaciones isométricas de la geometría

de un cuerpo.

Resultados

El método recupera de forma óptima el esqueleto de un cuerpo bajo

transformaciones isométricas, ver la tabla 1, se recuperaron en promedio 19.71

nodos de los 21 necesarios para reconstruir el esqueleto en diferentes poses.

El método no pudo recuperar 1.86 nodos de los necesarios para reconstruir

totalmente el esqueleto. La línea verde en la figura 3 describe el numero de nodos

que hacen falta para recuperar el modelo.

Contracción con suavizado Laplaciano

Este método contrae iterativamente una malla de polígonos por medio del

suavizado laplaciano hasta tener un volumen de cero ver figura 1.

La contracción es tomada como un problema de minimización de energía, con los

siguientes términos.

• L: Operador Lapaciano para remover las frecuencias altas, es decir suavizar los 

detalles de la geometría 

• WH: Fuerza de atracción que usa los vértices, para mantener información clave

de la geometría durante la contracción.

• WL: Fuerza de contracción que hace que la forma tridimensional pierda volumen.

Fig. 1. Proceso de extracción del esqueleto

Fig. 2. Proceso de extracción del esqueleto Fig. 3. Variación del numero de nodos
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Validos Erróneos Faltantes

Media 19.71 4.83 1.86

SD 1.47 1.47 1.47

Min 17 3 0

Max 21 7 4
0
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Tabla 1. Resultados obtenidos al realizar 

transformaciones isométricas

Fig. 3. Gráfico de la variación de nodos validos, 

erróneos y faltantes durante la fase de simplificación

Conclusiones y Trabajo Futuro

El método de extracción mostró ser robusto y tener baja sensibilidad frente a cambios isométricos de la geometría, el método puede trabajar de forma automática a o largo de

todos los cuadros. El método recupera de forma eficiente el esqueleto sin hacer uso de un modelo, eliminando la necesidad de estimar la pose. El método permite realizar de

forma sencilla y automática el seguimiento del esqueleto a lo largo del vídeo.

Como trabajo futuro es posible mejorar la recuperación de información haciendo uso de la coherencia espacio temporal no presente en la técnica de extracción, para superar la

perdida de información entre cuadros de vídeo. Es posible automatizar el proceso de simplificación para encontrar el numero óptimo de nodos con lo cual puede ser representado

el esqueleto, haciendo uso de algoritmos de partición de mallas.

Figure 6-2: Poster Análisis Experimental de la Extracción del Esqueleto por Contracción con
Suavizado Laplaciano [Experimental Analysis of Skeleton Extraction by Con-
traction and Laplacian Smoothing] presented at the 6th International Seminar
on Medical Image Processing and Analysis SIPAIM 2010.
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Figure 6-3: From left to right iterative mesh contraction.

The Laplacian smooth process moves the vertices in the direction of the Laplacian. If the
cotangent Laplacian operator is used, the vertices move in the direction of minimal surface
[29] following the curvature flow of the mesh surface.

Au et al. [3] propose the next system of equations to iteratively contract the mesh until the
volume is zero and a skeleton appears.

[
WLL

WH

]
Xt+1 =

[
0

WHXt

]
(6-1)

where L is the Laplacian matrix described in equation 3-6, WL is the smoothing factor and
WH is the attraction constraint factor.

WL and WH change at every iteration. The contraction and smoothing constraint W t+1
L =

SLW
t
L with SL = 2.0. The attraction constraint W t+1

H,i = W 0
H,i

√
A0

i

At
i
.

Ati y A0
i are the current area and initial area of the ring surrounding xi.

6.2 Contribution

This work proposes an additional constraint: it seeks to move the vertices along a normal
line. This constraint eliminates the need to adjust the final skeleton, taking each skeleton
node and moving it to the center of the local mesh region.

The basic idea is to move the vertices along a normal line, estimated at every vertex, based
on the average of the normals of the faces.
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𝐧𝑖  

𝑥𝑖 
𝑥𝑗 𝑥𝑗+1 

𝑙𝑖𝑛𝑒 = 𝑥𝑖 + 𝑎𝐧𝑖  

𝑥𝑖∗  

𝐧𝑖  
𝑥𝑖 

𝑑1 
𝑑2 

𝑃𝑙𝑎𝑛𝑒 1 𝑃𝑙𝑎𝑛𝑒 2 

Figure 6-4: Left: The vertex xi moves along the line constraint. Right: the distance of
vertex xi to plane 1 and plane 2 when the position in every iteration changes.

This line can be seen as an intersection of two planes (see figure 6-4) created with the
information of the vertex xi, the normal −→ni and neighbors xj of xi.

The plane equation.

ax + b0y + c0z + d0 = 0

There are various methods that build a plane equation using three non-collinear points.
These three points were herein chosen using the vertex xi, the normal −→ni and neighbors xj
of xi.

P1 = xi, P2 = xj when xj ∈ Neighbors (xi) and P3 = P1 −−→ni .

An equation plane only requires three non-collinear points{P1, P2, P3} and we can solve the
next system of equations to find the a, b, c variables.

ax1 + by1 + cz1 + d = 0

ax2 + by2 + cz2 + d = 0

ax3 + by3 + cz3 + d = 0

The distance of point P0 = {x0, y0, z0} to a plane Π = ax + b0y + c0z + d0.

|Π− P0| =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
(6-2)

In the equation above, every point P0 = {x0, y0, z0} that belongs to the plane exists when
equation (6-2) is null. If the point P0 is not in the plane, the value of the plane equation
(6-2) changes, and the absolute value is increased if P0 is far from the plane. Let us use
this simple relationship to build a valid constraint that can be put in the form of the linear
equation Ax = B. Where A is the matrix with values

∣∣a b c
∣∣ the x value corresponds to
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(a) (b) (c) 

Figure 6-5: sjSkeletonizer interface. (a) Open and display mesh. (b) Mesh contracted after
4 iterations. (c) Skeleton obtained after surface simplification.

every vertex in mesh {x0, y0, z0} and B stands for the d value of the plane equation. Provided
that the linear system presented in equation 6-1 has many solutions, the system solves it
in the least-squares sense. With the new constraint, the system then tries to minimize the
distance between the new vertex positions and the two planes.

The new system of equations proposed


WLL

WH

WDΠ1

WDΠ2

Xt+1 =


0

WHXt

−D1

−D2

 (6-3)

whereWD is the weight for Π1 and Π2 constraints, which forces the vertices to move along the
normal line of every vertex. Π1 and Π2 are matrix that contain a, b, c values of the equation
of the plane for every vertex. D1 and D2 are the vectors with d values of the equations of
the planes for every vertex.

6.3 Results and Conclusions

As a result of this work, the software sjSkeletonizer [32] permits the processing, visualization
and extraction of the skeleton from polygonal hybrid meshes composed of triangles and
quads. In figure 6-5, the software interface can be observed. The sjSkeletonizer software
allows meshes in an interactive viewer to be opened and displayed. This software contracts a
mesh with the use of two different Laplacian operators: the cotangent operator and umbrella
operator, where the user can customize the number of iterations. The software allows a user
to visualize the original mesh and contract mesh after a particular number of iterations
(figure 6-5.b). In the final step of the process, the software simplifies the mesh (figure 6-5.c)
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(a) (b) (c) (d) 

Figure 6-7: Skeleton extracted from different models. (a) Dog model (b) Character model.
(c) Person model. (d) Clay model.

using the same method proposed by Au et al. [3] that consists of a modified version of
quadric error metrics by Garland et al. [18] .

Figure 6-6: Model with different poses and skeleton obtained with our skeleton extraction
software.

Figure 6-7 shows the skeleton extracted from different models using our method. Every
skeleton accurately represents the topology and geometry of the original meshes. The ex-
tracted skeletons are homotopic to the original shapes. Our method also allows the skeleton
to be simplified to the user’s requirement in order to guarantee that every node in the
skeleton closely represents every core part of the original model.

The method proposed is robust under isometric transformations ( figure 6-6) so that if
some global transformations, such as rotations of central parts of the mesh, are made, the
extracted skeletons will be similar because the Laplacian operator properties are invariant
under rotations. The figure shows similar skeletons for different poses of the same model,
these skeletons show identical branching structure.



7 Conclusion

This work presented a novel extension of the Laplace Beltrami operator for hybrid quad/triangle
meshes, and the successful application of such principles in different types of problems in
computer geometric modelling like smoothing, enhancing, sculpting, deformation, reposing
and skeleton extraction.

We have largely demonstrated that our method has good performance, stability and ro-
bustness of the extension proposed. This novel extension of the Laplace Beltrami operator
was introduced in the computer modeling industry inside the Blender 3D computer graphics
software, in order to facilitate artists who work with different tools developed using TQLBO,
for any kinds of meshes, i.e., triangular meshes, quadrilateral meshes or hybrid meshes.
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