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Advisor:

Alejandro Molina

Thesis presented as a partial requirement to obtain the degree of:

M.Sc. in Chemical Engineering

Research Group: Bioprocesos y Flujos reactivos

Facultad de Minas, Departamento de Procesos y Enerǵıa
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A simulation Toolbox, exclusively designed for the analysis of different experimental

setups for in-situ combustion (ISC) analysis, was developed. This Toolbox can be tar-

geted for the analysis of chemical kinetics. The models in the Toolbox are based on

fundamental conservation laws, physical correlations for porous media properties and

property databases available in the open literature. The Toolbox, written in Matlab, is

coupled to CANTERA, a software for the analysis of complex chemical mechanisms and

thermodynamics for gas phase reactions.

The toolbox considers three main applications: kinetic cell, plug flow reactor and com-

bustion tube. Each one can be applied to the analysis of different issues in ISC ex-

periments, as illustrated throughout the thesis. The kinetic cell module, as its name

indicates, is particularly suitable for the analysis of these experimental setups. It in-

cludes the ability to follow gas phase reactions. This module is used with the GRI-Mech

3.0, a complex reaction mechanism originally designed to model natural gas combustion,

that includes 325 reactions and 53 species to address the existence of CO oxidation in

the gas phase of ISC experiments. The plug flow reactor module, modeled as a series of

kinetic cells, simplifies computation and is suitable for the design of experiments that

reduce the existence of concentration gradients in a kinetic cell. The last module can

model a combustion tube including Darcy’s flow and fundamentals of flow in porous

media. It captures important phenomena such as oil plugging as it includes pressure

balance, based on volume conservation principles and thermodynamic relations. The

analysis with these three modules represents an ideal complement to reservoir modeling

software that, while suitable for the study of oil production in field has not been designed

for the complex processes that take place in in-situ combustion experiments.
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Láser de las Reacciones Qúımicas de Petróleo Crudo Durante Combustión In-Situ” with

contract RC. No. 0264 2013.

I owe my life, my efforts and all my goals to my family Juan F. Hincapié, Luz A.
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Research problem

In situ combustion (ISC) is an enhanced oil recovery process(EOR) that is usually re-

ferred as a thermal recovery method, where the air is injected to the reservoir to burn a

fraction of the crude oil. Exothermic reactions, particularly coke combustion, increase

the temperature in the process that allows fluids flow due to an important reduction of

their viscosities [1].

Combustion of the crude oil in porous media is a complex process that has not been

completely understood. This complexity is given by the difference in scale (laboratory to

the field) and the unknown phenomena such as chemical reaction pathway, mass transfer,

the heterogeneity of the rock formation, geomechanical issues, phase equilibrium, heat

losses, and other aspects that do not allow a good implementation of pilot projects in

field [2–5].

Current research topics for in situ combustion have focused on understanding the be-

havior of chemical reactions, because they are an important part of the changes in the

reservoir. Combustion of crude oil determines the released heat, the amount of coke

deposition (affecting the porosity), the type and amount of produced gases [6, 7].

Combustion tubes and kinetic cells are the experimental setups most widely used to

characterize ISC. The purpose of the combustion tube is to emulate in laboratory scale

the combustion front, taking into account the behavior of the coupled phenomena of fluid

dynamic and chemical reaction. The kinetic cell is mostly used to study the reactions

that take place in the ISC process [8]. Some studies have developed mechanisms and

reaction kinetics, mostly for bitumen and heavy oil from Canada, is the case for the

simplified model proposed by [9] and a more detailed model based on SARA fractions

(Saturates, Aromatics, Resins and Asphaltenes) as used by [1] in their study.

Kinetic cells have been modeled as a perfectly mixed semi-batch reactor where the

stationary mixture of oil and rock reacts with the air that flows through the reactor.

However, many researchers observed heterogeneities, causing different reaction velocities

along the cell [10–12]. Thus, chemical kinetics can be controlled by mass transfer and

segregation phenomena that the model does not consider, so the kinetic parameters
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should be evaluated in a model that accurately represents the process, instead of usually

calculated models of ideal reactors (batch or semi-batch).

On the other hand, combustion tubes are usually modelled as a simple one-dimensional

reactor. This assumption works accurately well for small laboratory setups, where the

radial effects and heat losses are negligible. But the model cannot represent all the

complex behaviour in the reservoir conditions.

As mentioned above, the modeling of in-situ combustion has many challenges in properly

considering all the complexity of the process. Aditionally, modeling a single experimen-

tal setup does not allow versatility in the study of the process. The simulation toolboxes

have a big potential regarding the design of experiments, as they guarantee a similar

assembly, that makes possible to evaluate different ways to model the process. They

also allow to study different parametric sensitivity to predict problems in the design or

in the experimental setup. The models can be also applied to determine the optimal

experimental conditions and to adjust physical correlations [13]. Therefore, it is neces-

sary to implement a reliable tool to represent and predict the performance of the ISC

process to make better decisions in the operation design.
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Research objectives

Overall objetive

To develop an ISC Simulation Toolbox to predict the behavior of the process on exper-

imental setups.

Specific objetives

• To formulate a mathematical set of equations that describes the reactive flow in

porous media.

• To perform a sensitivity study of parameters and operating conditions for experi-

mental setups.

• To apply numerical methods and algorithms to build the Simulation Toolbox,

which suits the design alternatives.



Chapter 1

Introduction

The purpose of this chapter is to demonstrate the industrial applicability of the in situ

combustion process and to illustrate the importance of lab scale experiments on its study.

Also the main theoretical fundamentals of the process and definitions of the variables

are presented.

1.1 Theoretical framework

1.1.1 Enhanced oil recovery

Traditionally, oil recovery operations have been subdivided as primary, secondary and

tertiary. During primary recovery stage, the natural pressure of the reservoir is enough to

force the production from well to the surface, also natural gas production occurs [14, 15].

When the pressure in reservoir cannot drive the fluid flow and production declines,

another method should be implemented. In secondary recovery stage, the injection

of fluids like water (Waterflood) and immiscible gases, increases reservoir pressure in

order to sweep out the oil. At this step, primary and secondary production can offer

from 35 to 50% OOIP (original oil in place), depending of the physical properties of

fluids (such as density and viscosity) and reservoir conditions. Tertiary production use

miscible gases, chemicals and heat transfer to improve production of the remaining oil

after secondary recovery. The interaction of the injected fluid with the reservoir allows

different mechanisms for fluid flow such as viscosity reduction or wettability modification

[16].

1
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Figure 1.1: Oil recovery stages [17].

Figure 1.1 presents the oil production rate and cumulative oil produced for the main

oil recovery stages. When primary production becomes difficult, the oil production rate

decreases, then a secondary recovery method improves the production rate. Finally,

when secondary recovery does not reach the expected production rate a tertiary stage

(enhanced oil recovery) is required. It is important to note that the difficulty of the

extraction and the process cost, grow as oil production increases.

However, heavy oils have been changing the paradigm for oil recovery, because it is in

most of the cases expensive to start production as a chronological sequence as mentioned

before. Heavy oils are not conducted in the specified order, because if the oil is sufficiently

viscous, it may not flow at primary or secondary conditions and thermal recovery might

be the only way to recover a significant amount of oil. A classification based on process

description and reservoir condition is more useful than chronological sequences.

Tertiary recovery, or a more accepted term “Enhanced oil recovery methods”, increase

the mobility of the crude oil with different kind of technologies, which can be classified

into five categories: mobility control, chemical agents, miscible gas injection, thermal

recovery and special cases such microbial injection.

Mobility control processes as polymer waterflood and some chemical agents as surfac-

tants are designed to change mobility ratios with the oil- water bank and to decrease

the surface tension. These techniques allow a more uniform volumetric sweep and, in

the case of polymer injection, is possible to avoid the free paths (finger paths) of the

water to the production well, because the polymer solution mobility is less than water

mobility. The injection of surfactants to reservoirs have been used to reduce residual oil
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saturation by surface tension mechanisms. It is common to combine the polymer injec-

tion with surfactants in order to have a better performance of the operation. However,

besides the high cost of the chemicals, there are some technical difficulties with this kind

of methods such as sensitivity to salinity concentration and adsorption on the porous

media, reducing the amount of the component in solution and decreasing the effective

permeability [18].

On the other hand, miscible gas injection such as CO2 and Liquefied Petroleum Gas

(LPG) are commonly used to displace oil in a single phase with a lower viscosity than

the original condition. Phase equilibrium is also important in this process, because the

miscibility of the gas in the liquid phase is controlled by temperature, pressure and

composition. Difficulties such as high pressure and viscous fingering of the gas results

in a challenging operation [14, 15]. Nevertheless, injection of CO2 can be also a good

option if the gas is produced by cogeneration or other processes on the field.

Thermal recovery methods like steam injection or in-situ combustion are used to heat the

crude oil, achieving significant viscosity reduction. Some techniques of steam injection

are cyclic stimulation and Steam Assisted Gravity Drainage (SAGD). The advantages

of the steam are the high heat capacity and latent heat, on a per unit mass basis,

steam carries more heat than any other industrial fluid. Also, it is possible to perform

cogeneration with the steam and get electricity for low pressure operations [19]. The

limitations of these methods are related to wellbore heat losses in deep reservoirs (more

or less 5000 ft) and surface operation control. On the other hand, combustion has a big

potential in cases where steam injection is not possible to operate. It is a complex but

very effective technique, because the heat is generated inside the reservoir and water

is not required in large amounts [7]. Also, combustion carries out mechanism from the

other methods as gas drive and steam generation.

The understanding of the chemical reactions for in situ combustion process is a real

challenge. To get reliable results, synergy between different experimental tests for lab

scale research is absolutely necessary to get all the parameters to scale the process to

field applications [20].

As a definition in this thesis, the classification of heavy oil given by Banerjee is shown

as follows [21]:
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• Heavy oil: API gravity between 10◦ - 21◦ and viscosity between 10 cP – 1000 cP.

• Extra Heavy oil: API gravity less than 10◦ and viscosity between 1000 cP – 10,000

cP.

• Tar Sands and Bitumen: API gravity less than 10◦ and viscosity greater than

10,000 cP.

1.1.2 In-situ combustion process

In-situ combustion or fireflooding (movement of a burning front), was patented in 1923

by Wolcott and Howard in the United States, the first field pilot project was recorded

in the old Soviet Union in 1933 [5]. Since 1950, research and field applications allows

many ISC projects in operation like Rumanian fields [22]. However, the number of active

commercial projects decreases, but research in laboratory and numerical simulation, have

been increasing in recent years as Turta mentioned in his recent review paper [5]. Also

this is a technically efficient and attractive process that has to be completely studied to

turn into an economically viable option.

ISC is a thermal oil recovery technique where an oxidizing gas (air or air enriched with

oxygen) is injected into oil reservoirs to generate heat by burning a fraction of the crude

oil, forming a combustion front [6]. For heavy oils, ISC is a very appropriate technique

due to the considerable reduction in oil viscosity with temperature increases. Further-

more, oil production is driven by flue gases and the increasing pressure, as consequence

of chemical reactions [1].

It is important to notice that the HPAI process (High Pressure Air Injection) is often

referred to deep light oil reservoirs, whereas in-situ combustion is commonly used for

heavy oil reservoirs as Khansari clarified in his thesis [6].

In-situ combustion takes advantages over other thermal recovery methods, because the

main energy required to displace the oil, is generated in the reservoir from the heat

released by combustion reactions [23], thus heat losses are quite small at the wellbore.

For very deep reservoirs this process has more advantages than steam injection, because

in the latter the steam is generated at the surface and has to travel along the wellbore

into the reservoir, resulting in important heat losses to the surroundings before it can

reach the oil [7, 24].
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Figure 1.2: Forward combustion zones. Temperature and saturation profiles [13].

In brief, there are two methods of operation for ISC, based on the directions of air flow

and combustion front propagation. When the combustion front advances in the same

direction as the air flow and the ignition is located in the injection well, the process

is usually named forward combustion. Whereas if the combustion front moves against

the air flow and the ignition is located in the producing well, the process is reverse

combustion.

Reverse combustion is an economically unattractive process, because more oxygen is

required to propagate the combustion front due to the dispersive gas flow in the reservoir

before the burning of the oil at the producing well [7]. Further, it is possible that the

unreacted coke behind the combustion front starts to burn, reverting the process to

the other way (forward combustion), then the operation turns uncontrollable even on

laboratory experiments. For this reason the forward combustion is more attractive

process and a more detailed description is presented.

As was mentioned by [24–26] in their works and also in Figure 1.2, for forward com-

bustion, starting from the injection well, fresh air flows through the burned zone that

is clean, due to the combustion front swept. The combustion zone has the highest

temperature in the reservoir due to chemical reactions, where oxygen is consumed by

hydrocarbons and the remaining coke to produce carbon oxides and water. In absence of

oxygen, the zone adjacent to the combustion front is sufficiently hot to promote thermal

cracking (or pyrolysis) and vaporization of volatile compounds, also coke generation in
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this zone allows the process to be self-sustaining, because coke is the main fuel source

for the combustion. The water from combustion and vaporization generates the steam

zone or usually named steam plateau, also heat transfer to the surrounding oil and rock

matrix enables the formation of another zone called hot water bank, where temperature

decreases below saturation. Finally, the last zone in the process is the main volume of

oil, where a fraction is heated by the water bank and the other has the original reservoir

temperature. It is important to notice in Figure 1.2 the oil saturation difference between

initial oil and oil bank due to fluid displacement.

There are two ways to carry out forward combustion, the first one is the previous def-

inition (dry forward combustion), and other way is adding water to the injection (wet

forward injection). For dry forward combustion, large part of the energy generated re-

mains behind the combustion front as heat absorbed by the rock matrix. Thus when

air flows through the burned zone, the heat is not transported efficiently due to the low

heat capacity of gases [27]. Wet forward combustion provides water that can recover

the remaining heat and it could be transferred to the oil bank, making a more defined

temperature profile (as a peak) [13]. For dry forward combustion with a few initial

reservoir water, the steam plateau zone is too small.

More sophisticated methods have been developed recently as “Toe to Heel Air Injection”

or THAI process. The operation involves horizontal wells in which air is injected in a

vertical well and oil is produced from a long horizontal well. So, the heated oil is drained

whereas the combustion front advances [23, 25, 28].

1.1.3 Chemical reactions mechanisms

The chemical reactions and the coupled phenomena between oil and air are the most

important parts for ISC. These chemical reactions do not only depend on the type of

oil and rock properties, it is proved that the reactions can be influenced by clays and

metallic catalysts on the rock matrix [6, 29]. Burger and Fassihi investigated the effects

of matrix on the oxidation reactions [30, 31], they found that clays and fine sands enhance

deposition of more fuel because of the adsorption characteristics on a higher surface area.

Also in experiments with higher surface area and fuel dispersion the reactions were found

to be kinetically controlled instead of diffusion controlled. Mamora studied the effect
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of clays and fine sands, but also proposed a new analytical model that considers the

variation of the reactions with surface area for oxygenated hydrocarbons as fuel [32].

There is an overall classification, widely accepted by the scientific community, which

groups the reactions as follows: Low temperature oxidation (LTO), thermal cracking-

pyrolysis and high temperature oxidation (HTO).

LTO is a gas/liquid heterogeneous pseudoreaction which generally operates in the tem-

perature range below 350◦C, it produces oxygenated compounds and a negligible amount

of carbon oxides [33] It is possible to find some hydrocarbons such as alcohols, aldehydes,

hydroperoxides, ketones, carboxylic acids and water as mentioned in these works [6, 34].

The HTO pseudoreaction is referred to the fuel combustion, in which the main products

are carbon dioxide, carbon monoxide and water. The normal temperature is above

350◦C and it is mainly characterized by a heterogeneous solid-gas reaction such as coke

combustion. Moreover, this exothermic reaction is very important, because it provides

the thermal energy to sustain and propagate the combustion front. A complete review

and data about ISC features can be found in Sarathi’s handbook [7]. The chemical

reaction for hydrocarbons combustion at HTO regimen is given by:

CHn +

[
2m+ 1

2(1 +m)
+
n

4

]
O2 −→

[
m

(1 +m)

]
CO2 +

[
1

(1 +m)

]
CO +

[n
2

]
H2O (R1)

where n is the atomic ratio of hydrogen and carbon and m is the molar ratio of produced

CO2 to CO (m equals zero for complete combustion). For detailed values of these

parameters, Mahinpey presents a complete study on this topic [35].

The last reaction type, the thermal cracking, occurs without the presence of an oxidizing

gas. The temperature is usually between the LTO and HTO ranges, but also it is

the responsible for coke deposition and considerable amounts of volatile hydrocarbon

fractions.

A literature review provides several reaction mechanisms that represents the three stages

previously mentioned [6, 36–38]. One of the most used mechanism was proposed by

Belgrave as a comprehensive approach to in-situ combustion modeling [9]. The chemical

compounds involved in the reactions are modeled as pseudo-components.
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Thermal cracking reaction:

Maltenes −→ 0.372Asphaltenes (R2)

Asphaltenes −→ 83.223Coke (R3)

Asphaltenes −→ 37.683Gas (R4)

For LTO R5 and R6 and HTO R7:

Maltenes + 3.431O2 −→ 0.4726Asphaltenes (R5)

Asphaltenes + 7.513O2 −→ 101.539Coke (R6)

Coke + 1.232O2 −→ 0.565H2O + 0.899CO2 + 0.1CO (R7)

A second mechanism, more complex, detailed and based on SARA fractions, was pro-

posed by Freitag and Verkoczy [39] and has been implemented by Kristensen in his work

[13]. This model requires a higher computational cost than the proposed by Belgrave.

Thermal cracking reaction:

Arom −→ 0.06Asph + 1.81Lites (R8)

Resins −→ 0.48H2O + 0.59Arom + 0.17Asph + 0.63Sat + 0.79Lites (R9)

Asph −→ 0.55H2O + 0.18Arom + 0.54Sat + 0.19Lites + 1.43PyrCoke (R10)

For Low temperature oxidation:

Resins + 48.62O2 −→ 29.97H2O + 25.8CO2 + 1.37OxdResAr (R11)

Asph + 91.66O2 −→ 43.87H2O + 63.5CO2 + OxdAsph (R12)

Arom + 18.25O2 −→ 12.75H2O + 7.02CO2 + OxdResAr (R13)

Sat + 18.71O2 −→ 14.54H2O + 10.65CO2 + OxdSat (R14)
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High temperature oxidation:

PyrCoke + 68.3O2 −→ 21.54H2 O + 54.89CO2 (R15)

OxdAsph + 41.92O2 −→ 15.7H2O + 36.5CO2 (R16)

OxdResAr + 26.01O2 −→ 10.72H2O + 24.9CO2 (R17)

OxdSat + 12.9O2 −→ 6.22H2O + 10.65CO2 (R18)

Asph + 133.58O2 −→ 59.56H2O + 100CO2 (R19)

Resins + 84.34O2 −→ 44.68H2O + 60CO2 (R20)

Arom + 44.270O2 −→ 23.47H2O + 31.93CO2 (R21)

Lites + 18.5O2 −→ 13H2O + 12CO2 (R22)

Nesterov provides the kinetic data and stoichiometric coefficients for reactions R8 to

R22 [1].

Additionally, some research results from Stanford University developed isoconversional

techniques providing model-free methods in order to estimate activation energies [37, 38].

They proved that SARA reaction schemes are not suitable to predict properly the process

and also they proposed reaction schemes that match the behavior of the experimental

results. The general scheme that most of the studies follow for many kind of oils is:

Oil + O2 −→ Coke1 (R23)

Coke1 + O2 −→ Coke2 + CO2 + CO + H2O (R24)

Coke2 + O2 −→ CO2 + CO + H2O (R25)

1.1.4 Simulation toolboxes

A simulation toolbox is a compilation of mathematical models and solution algorithms

to predict the behavior for a defined process under specific conditions and assumptions.

The main purpose of these tools is to provide a versatile and useful evaluation of the

process.
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As mentioned above in the research problem, there are no reports for simulation tool-

boxes developed specifically for experimental ISC. The closest to such a toolbox would

be the use of the various commercial and open-source packages for computational fluid

dynamic (CFD) available.

ANSYS (commercial) [40] and OPEN-FOAM (open-source) [41] are powerful tools to

simulate the fluid dynamic, but the goal of these software is not the combustion in

porous media, due to the high computational cost. STARS is a commercial software,

developed by the computer modelling group (CMG) [42], which focuses on reservoir

simulation. STARS provides thermal calculations, phase equilibrium based in K-value,

chemical reactions and geomechanical models. But the cost of the commercial software

is the principal disadvantage to practical use in research applications. Furthermore,

none has been particularly designed to model ISC in experimental systems.

On the other hand, CHEMKIN [43] is a robust simulation toolbox that is used for

reactor design and experimental evaluation. The most important aspect is the facility

to implement modules with different process models for a wide range of applications.

Another similar toolbox for reactors design is CANTERA [44], which solves problems

such as chemical kinetics, thermodynamics and transport process. But these toolboxes

cannot predict the combustion of crude oil in porous media.

1.2 Modeling of ISC

The first approaches on in-situ combustion modeling were made by Bailey and Larkin

[45], the model includes convection effects unlike the previous studies that they made,

in which only heat transfer by conduction was taken into account. The heat balance

equation was applied to linear and radial geometries, where the solution was carried

out by analytical Laplace transformation for time and finite Fourier transformation for

spatial dimensions. Thomas extended the theoretical work to forward combustion in a

radial system having a vertical section of infinite thickness [46].

Later, Gottfried [47] presented a better approach with a generalized mathematical model

which describes the thermal oil recovery. The model includes: a three-phase fluid flow
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under gravity effect, conduction-convection heat transfer, relative permeability and cap-

illary pressure, aqueous phase chance and chemical reaction between oxygen and oil.

Further, the system of equations was solved using a finite difference scheme.

As an extension on the previously work, Couch and Rodriguez presented a method

to estimate the field fuel consumptions by adjusting laboratory data for the effects of

porosity and permeability. The calculations were made for a wide range of crude oil

viscosities, and showed that porosity and permeability have a marked effect on fuel

consumption depending on the oil viscosity [48].

A two-dimensional, multicomponent with three phases simulator was developed by

Farouq Ali [49]. An Arrhenius kinetic model was implemented to represent the com-

plete oxidation. Condensation and vaporization of water were taken into account, but

oil was considered undistillable. The solution employs a finite difference discretization

scheme, implicit solution in time for pressure and explicit solution for the other vari-

ables. The work of Acharya and Somerton [50] was similar to that by Farouq Ali [49]

as it represented a vertical cross section of the reservoir, but including the transport

of oxygen by diffusion. On the other hand, Crookston et al. [51] developed the first

consistent model to represent the ISC process. The model includes condensation and

vaporization for water and oil estimated from liquid-vapor equilibrium. But the high-

light of the research was the inclusion of pseudocomponents like light and heavy crude

oil as precursors of coke, physical properties correlations for temperature changes and

also relative permeability data.

Following more detailed numerical methods, Grabowski [52] presented a fully implicit

general purpose model (ISCOM) developed by the computer modelling group (CMG)

in Calgary. Based on finite difference scheme, ISCOM solved implicit three dimensional

systems with Newtonian iteration and a modified form of Gaussian elimination to solve

the Jacobian matrix.

Coats [3] describes a comprehensive methodology to develop a rigorous ISC model with-

out simplifications. The model can be used to wet or dry conditions, forward or reverse

combustion, and also in one, two or three dimensional geometry. As Grabowski, Coats

included a variable number of components, and allowed the components to be distributed

in any or all of the four phases (water, oil, gas, and coke).
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A novel application of equations of state (EOS) for reservoir simulation was introduced

by Young and Stephenson [53]. They proposed a generalized compositional model ap-

plied to conventional recoveries with the Redlich-Kwong equation with a careful primary

and secondary variable selection. The liquid-vapor equilibrium was modeled as a flash

distillation analogy and the solution was proposed as a complex iterative Newtonian

method with implicit pressure and explicit saturation (IMPES) technique.

A sensitivity study of the effect of the parameters on results from an in situ combustion

simulator was carried out by Anis et al. [54] for one, two and three dimensions. The

parameters were block size, dimensionality of the model, number of reactions, activation

energy, reaction constant and injection rate. The most sensitive parameters were the

block size and dimensionality, which have a strong influence on convection. Even a large

block size could inhibit the ignition of the crude oil.

Using the ISCOM simulator Rubin and Buchanan [55] studied hot water injection, steam

injection, dry combustion, wet combustion in all dimensions with experimental data

validation. Also all the cases applied to Cartesian, radial or curvilinear geometries.

Other both experimental and simulation studies were carried out by Fassihi et al. [30]

and Onyekonwu et al.[56] The main purpose of their works was to study the effects of

important design parameters to determine the best operating conditions. They tested

air requirement, combustion front velocity, fuel concentration, oil and rock physical

properties and heat losses. Also Fassihi, noted that it is important to study oxygen

diffusion, in order to predict if the chemical reactions are kinetically or diffusionally

controlled [30, 56].

Based on the methodology of Coats [3], Genrich and Pope [57] developed a one-dimensional

model with multiphase flow, to perform efficient calculations of fluid production for dry

and wet forward combustion. The model considers four homogenous zones of constant

properties, solved by an explicit scheme. Moreover Le Thiez and Lemonnier [58] in the

SARIP simulator, studied alternatives to improve numerical stability with an accurate

temperature distribution with large gridblock. The contribution of their work was a new

formulation using heat-release curve to represent the combustion front.

Belgrave and Moore [9] noted that combustion tubes had not been standardized, due to

the radial heat transfer problem reported in previous works. They proposed considerable

insights for the heat losses problem such as the higher heat losses results in higher
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oxygen requirements, and also combustion tubes dimensions had an important role in

heat transfer. Later the same author, Belgrave et al. [10] published a comprehensive

approach to in-situ combustion modeling. They presented a consolidation of kinetic

models to represent LTO, RTO and pyrolysis reaction of Athabasca bitumen. Also,

an application of the reaction model in numerical simulations of adiabatic combustion

tubes was included under a RTO test (Ramped Temperature oxidation) without energy

balance equation solving due to the controlled temperature.

To predict performance by computing the production of oil, water and gases, Ocalan

and Kok developed a one-dimensional forward ISC model with experimental validation.

The model is based on the theory of frontal-advance with an analytical description of

fractional flow, phase behavior and heat transfer. The results indicate that similar

recovery factors are obtained between experiment and simulation, and an interesting

result was that the estimated temperature is always lower than the experimental value

[59].

As another point of view, Akkutlu and Yortsos [60] presents a novel ISC model with

analytical solution. Almost with better computational tools than the previous works

of that kind, they studied the self-propagation of the combustion front under both

adiabatic and non-adiabatic boundaries. A comprehensive heat transfer treatment was

used, which considers overall heat transfer coefficients and infinite large surroundings.

As a continuation of their work, Akkutlu and Yortsos [61] studied the propagation of the

combustion front, but with the perspective of the heterogeneity effects to understand

the viability of the process.

A methodology for efficient integration of stiff kinetics in reactive porous media, was

proposed by Kristensen et al. [13]. The aim of the research was the application of

Explicit Singly Diagonal Implicit Runge-Kutta (ESDIRK) method in a virtual kinetic

cell model. They demonstrated that phase changes cause convergence problems, thus

they proposed an algorithm for detection and location of phase changes based on discrete

event system theory. Following the study of phase changes in the kinetic cell as well as

virtual combustion tube, Kristensen et al. [25] presented a fully compositional model

based on an equation of state, where a sensitivity analysis to numerical discretization

and combustion front velocity, was carried out.
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In order to minimize the impact on the environment, ISC fallows new demands to reduce

the emissions of carbon dioxide. Liu [62] presents a model that considers recycling to the

reservoir, part of the carbon dioxide produced by ISC. This operation design increases

the recovery factor and reduce the emissions to the environment.

As a continuation of Kristensen’s works [13, 25], Nesterov et al. [1] included a model

based on SARA fractions with a total of fourteen components, which may undergo fifteen

chemical reactions. The research results shows that a parameter that affects the process

ignition was the activation energy of the oil light fraction.

Recent papers were presented by Youtsos and Mastorakos [63] and Lovett et al. [64]

The first one, solved the equations by the method of lines (discretize the spatial derivate

and solve an ordinary differential equation for time). The second one, developed an ISC

model with adaptive meshing applied to one and two-dimensional lab-scale.
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Simulation Toolbox

Figure 2.1 shows the main structure and functionality of the Toolbox. The planning and

organization of the subroutines was coded in modular blocks in order to use common

calculations between the different reactor models. Input files (default and custom) and

thermodynamic data are feeded to the toolbox to be processed. The results and final

plots depend on the type of reactor. However, the common outputs for all the models are:

moles of species, temperature and numerical information. With the output information

is possible to compute saturation, concentration, ratios and others (Post-Processing).

Cantera works as an external data provider for the toolbox without using models and

special features, only provides properties and reaction rates for gas phase. This chapter

is dedicated exclusively to give some detail about modules contained in the Toolbox and

the models/correlations that are necessary to calculate physical properties, emphasizing

the phase equilibrium.

2.1 Cantera

Cantera is a object-oriented software that involves thermodynamic, kinetic and transport

phenomena data used in calculations for ideal and non ideal conditions [65].

The software can define different phases with its own thermodynamic, transport and

chemical properties in the phase, the inter phase and heterogeneous reactions. It can be

also applied to simulate steady and unsteady reacting flows, but in this thesis Cantera

15
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Figure 2.1: Schematic structure of the Toolbox.

is only used as a data provider and the models are not interesting for our application as

they are not readily applicable to ISC.

Cantera was coupled with the Toolbox through Matlab, using Windows architecture.

A custom gas phase database was created from the GRI-Mech 3.0 and enhanced us-

ing iodine reactive species (file name FRUN.cti) as later explained. GRI-Mech 3.0 is

an optimized mechanism designed to model natural gas combustion, which contains

325 reactions and 53 species [44]. All the rate coefficients, thermochemical data and

transport coefficients are available on the Berkeley University webpage (grimech30.dat,

thermo30.dat, transport.dat).

2.2 Physical properties module

A reaction of ISC involves thermodynamic, kinetic and transport processes, all of them

are highly dependent of temperature, pressure and composition. Then different models

and data are needed to perform the simulation. The models and the source of the data

are explained in this section.
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2.2.1 Porosity and saturation

Porosity is defined as a measure of the void spaces inside the solid material. In the

analyzed system, the space that is not occupied by the solid matter, is filled with gas,

oil, water, and coke (see Figure 2.2). Then the void space or volume of pores is defined

by the volume that liquid and gas phases occupy, and the filled space is defined by the

solid space. The total volume considers the solid matrix, and the pore volume.

Figure 2.2: Schematic composition of the system.

φ =
Pore volume

Total volume
(2.1)

Then as the pores are filled with the liquid and gas phase, a measure of how much of

that phase is in the pore is the saturation, shown in Equation 2.2.

S =
Phase volume

Pore volume
(2.2)

2.2.2 Thermodynamic data

Because in the model different pseudo-components were used to represent the oil, gas

mixture and solid organic compound, it is necessary to determine the physical properties

of these compounds. Table 2.1 shows the properties of the compounds used in the

simulations. This kind of data is required on the physical properties correlations and

was taken from the CMG user’s guide[42]. For oil and coke species, data from Bazargan

was enough to complete the inputs [66].
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Table 2.1: Physico-chemical properties of the pseudo-components used in the model
[42, 66].

Compound Critical Critical Molecular Mass Density
Pressure Temperature weigth

kPa K kg/kmol (kg/m3)

H2O 22048 647.3 18 1000

Oil 1115 767.0 537.6 1008

N2 3394 126.2 28 IG

O2 5046 154.6 32 IG

CO2 7376 304.2 44 IG

CO 3496 132.9 28 IG

Coke1 - - 673.04 1380

Coke2 - - 179.76 1380

2.2.3 Thermal conductivity

All the phases j have a thermal conductivity associated, αj . The effective thermal

conductivity of the porous medium is shown in Equation 2.3 in which a weighted volume

average is computed.

α = φ

∑
j

αjSj

+ (1− φ)αrock (2.3)

To have an idea of the order of the values of thermal conductivity of each phase, Table

2.2 shows typical values, it has to be noted that those values can change with the

thermodynamic conditions of the system.

In order to make easy calculations, The toolbox can be fixed to work with an over-

all value of the thermal conductivity (constant without temperature effects): 258.33

Joulem−1min−1K−1

2.2.4 Internal energy and enthalpy

The phase enthalpy is computed from the ideal gas heat capacity of the pseudo-components

and the vaporization enthalpy. The heat capacity is also highly temperature dependent,
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Table 2.2: Tipical values for thermal conductivity.

Phase Thermal conductivity
[

J
m·min·K

]
Water 37.15

Oil 7.98

Gas 1.25

Coke 312.50

Rock 141.60

and as a consequence it has to be calculated every time that conditions change, the

value for the rock matrix is 1.20572 Joule cm−3K−1 and for the other components is

computed with Equation 2.4. The units of the equation are given in Joulemol−1K−1.

Parameters a,b, c and d are shown in Table 2.3.

Cp = a+ bT + cT 2 + dT 3 (2.4)

Table 2.3: Heat capacity and vaporization enthalpy parameters [42]. See the text for
an explanation of the use of the different terms.

Phase a b c d hv1 hv2

Coke1 17.00 0 0 0 0 0

Coke2 17.00 0 0 0 0 0

Oil 1138.80 0 0 0 8569 0.38

Water 32.24 1.924 × 10−3 1.055 × 10−5 -3.596× 10−9 4820 0.38

N2 31.15 -1.357 × 10−2 2.680 × 10−5 -1.168× 10−8 0 0

O2 28.11 -3.680 × 10−6 1.746 × 10−5 -1.065× 10−8 0 0

CO 30.87 -1.285 × 10−2 2.789 × 10−5 -1.272× 10−8 0 0

CO2 19.80 7.344 × 10−2 5.602 × 10−5 1.715× 10−8 0 0

The enthalpy of the ideal gas pseudo-components is calculated from Equation 2.5, the

vaporization enthalpy is calculated with the correlation presented in Equation 2.6 (only

for T criti >T). For the case of ideal gas, the enthalpy of the phase is calculated with
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Equation 2.7, finally the oil and water phase enthalpies are calculated with Equations

2.8 and 2.9.

hgi =

∫ T

Tref

Cpi(T )dT (2.5)

hvapi = hv1
i (T

crit
i − T )hv

2
i (2.6)

hgi =
∑
i

yih
g
i (2.7)

hoi =
∑

xoi (hgi − hv
vap
i ) (2.8)

hw = (hgw − hvvapw ) (2.9)

The internal energy for phase j is calculated by Equation 2.10.

U j = hj − P

ρ
(2.10)

where P is the pressure, ρ the density and xi is the molar fraction of the component i.

2.2.5 Relative permeability

Permeability is a measure of how easy a fluid can pass through a solid. Now, when the

system has different fluids, each of them reaches different velocities, then the relative

permeability relates the change in flow of the fluid due to the presence of different fluids.

It depends on the porosity and geometry of the pore, wettability, fluid distribution and

fluid saturation.

A model that considers water as the wetting phase is shown in Equation 2.11, in which

the relative permeabilities of the wetting and nonwetting phases (krw, krg), the relative

permeability to oil in the oil-water system (krow) and the relative permeability to oil in

the oil-gas system (krog) are obtained by experiments, and the data are shown in Table

2.4 where SI = SW + SO.

kro = (krow + krw)(krog + krg)− (krw + krg) (2.11)
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Table 2.4: Permeabilities and calculation of relative permeabilities [66].

%SW krw krow SI krg krog

0 0 1 0 0.8975 0

0.068 0 1 0.068 0.8975 0

0.15 0.0077 0.8229 0.1368 0.75 1× 10−3

0.2 0.02 0.7232 0.2 0.6233 0.0077

0.218 0.0259 0.6889 0.25 0.5429 0.02

0.25 0.0381 0.63 0.268 0.5154 0.0259

0.3 0.0619 0.5432 0.3 0.4681 0.0381

0.35 0.0915 0.4629 0.35 0.3989 0.0619

0.4 0.1268 0.3889 0.4 0.3352 0.0915

0.45 0.1679 0.3214 0.45 0.277 0.1268

0.5 0.2148 0.2604 0.5 0.2244 0.1679

0.55 0.2674 0.2057 0.55 0.1773 0.2148

0.6 0.3258 0.1575 0.6 0.1357 0.2674

0.65 0.3899 0.1157 0.65 0.0997 0.3258

0.7 0.4598 0.0804 0.7 0.0693 0.3899

0.75 0.5354 0.0514 0.75 0.0443 0.4598

0.8 0.6168 0.0289 0.8 0.0249 0.5354

0.85 0.704 0.0129 0.85 0.0111 0.6168

0.9 0.7969 0.0032 0.9 0.0028 0.704

1 0.8956 0 1 0 0.8956

2.2.6 Viscosity

The viscosity is defined as the resistance to flow. As flow is related with molecular

movement, the viscosity is highly dependent of the temperature, and as a consequence

some models have been developed in order to calculate the viscosity at a certain temper-

aure, Equation 2.12 show a correlation proposed by Belgrave et al. [10] for component

i in the oil and water phases. The model consider two parameters A and B, which are

determined by experiments.

µi = Ae(
B
T ) (2.12)
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Table 2.5: Viscosity parameters for the components in the oil phase and for the water
phase [10]

Compound A (cp) B (oC)

Oil 4.89 × 10−25 33147

Water 0.00752 1384.86

For the case of gases, the viscosity is calculated using the Sutherland’s formula shown in

Equation 2.13 [67]. The equation has two main parameters a and b, which are calculated

from Sutherland’s constant and the reference temperature, the values of the Sutherland’s

constant, the reference temperature and viscosity for the gases are given in Table 2.6.

µ = µ0

(a
b

)( T
T0

)(3/2)

(2.13)

a = 0.555T0 + C (2.14)

b = 0.555T + C (2.15)

Table 2.6: Sutherland’s constant, reference temperature and viscosityfor gases viscos-
ity calculation [67]

Gas Sutherland’s constant, C To(
oR) µ0 (centipoise)

Standard air 120 524.07 0.01827

CO2 240 527.67 0.01480

CO 118 518.67 0.01720

H2 72 528.93 0.00876

N2 111 540.99 0.01781

O2 127 526.05 0.02018

Aditionally, when the correlation coefficients are not available for the oil, users can make

a viscosity table as an input file in the form of Table 2.7.
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Table 2.7: Oil viscosity table [66].

Temperature ◦C µoil Centipoise Temperature ◦C µoil Centipoise

5 1636262 325 0.75

15 229374 350 0.60

25 54485.9 375 0.50

30 30000 400 0.47

48 10600 425 0.41

65 3000 450 0.36

100 290 475 0.315

150 32 500 0.28

200 7.5 525 0.25

250 2.7 550 0.22

300 1.0 2000 0.12

2.2.7 Coefficient of thermal expansion and compressibility

The concept of this coefficient gives an idea of the compressible properties of substances

and it can be seen as the reciprocal of the elasticity modulus of the bulk, in which gases

are more compressible than the others phases. Isothermal gas compressibility is defined

by Equation 2.16. From the real gases law, Equations 2.17, 2.18 and 2.19, an expression

on terms of z and p is derived and Equation 2.20 is obtained.

cj = − 1

Vj

(
∂Vj
∂p

)
T

(2.16)

(
∂Vj
∂p

)
T

=
nRT

p

(
∂z

∂p

)
T

− znRT

p2
=

(
znRT

p

)
1

z

dz

dp
−
(
znRT

p

)
1

p
... (2.17)

1

Vj
=

p

znRT
(2.18)

1

Vj

(
∂Vj
∂p

)
T

=
1

z

dz

dp
− 1

p
(2.19)

cj =
1

p
− 1

p

dz

dp
(2.20)
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2.3 Phase Equilibrium

As previously mentioned, the combustion process in porous media is complex as it

involves important chemical and physical changes. Without neglecting the importance

of the phases in chemical reactions, we focus our interest on the difference between liquid

and vapor, in terms of mass and energy transport due to the wide gap between physical

properties.

The distribution of components in the vapor and liquid phases, is usually assumed to

be in equilibrium state. This is physically reasonable because the mass transfer occurs

much faster than the fluid flow.

A multicomponent system is in themodynamic equilibrium, when the mixture fugacities

f̂, for each component between phases are equal. Cosider the system with oil, water and

gas presented in Figure 2.3, where oil and water are inmiscible in the liquid phase, the

vapor-liquid equilibrium VLE is represented as follows:

f̂Gi,o = f̂Li,o (2.21)

f̂Gi,w = f̂Li,w (2.22)

Figure 2.3: Phase equilibrium for the system Oil/Water/Gas.

Aqueous components exist in both gas and water phases, while oleic components exist

in the oil and gas phases. In this thesis, we only take into account the vapor-liquid

equilibrium VLE.



CHAPTER 2. SIMULATION TOOLBOX 25

The components fugacities in the gas phase are calculated as follows:

f̂Gi,o = φ̂iyiP (2.23)

where φ̂ is the fugacity coefficient, yi the gas phase mole fraction, and P the pressure.

For the liquid fugacities, we have this expression:

f̂Li,o = aixiφ
sat
i P sati e

Vi(P−Psat
i )

RT (2.24)

where ai is the activity coefficient, xi the liquid molar fraction, Vi is the molar volume

and P sati is the saturation pressure. The exponential part of the equation is a correction

for higher pressures, usually called Poynting factor. If we set the equilibrium state, the

phases interaction are given by:

Ki =
yi
xi

=
aiφ

sat
i P sati e

Vi(P − P sati )

RT
φ
iP

(2.25)

Which is the most general expression for the K- value, also as a function of pressure,

temperature and composition. For ideal liquid phase, the activity coefficient is equal to

the unit, and hence the K-value is only function of pressure and temperature. Also, if

the gas phase is considered as ideal state (fugacity coefficient equals to the unit), the

equilibrium would follows Raoul’s law, where the molar fraction ratio is a function of

partial and saturation pressures.

The rigorous calculations of the phase equilibrium are made through cubic equations of

state (EOS), but also it is possible to perform estimations of the K-value using correla-

tions. The most common correlation, used in commercial simulators such as STARS, is

presented in Equation 2.26.

Ki =
yi
xi

=

(
Kv1

P
+Kv2× P +Kv3

)
e(

Kv4
T−Kv5) (2.26)

where Kv1, Kv2, Kv3, Kv4 and Kv5 are constants that can be found in STARS user’s

guide for various industry compounds [42].
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2.3.1 Flash calculations

To have a clear idea of the solution strategy for flash calculations, let’s consider the

overall mass balance for the water without any aqueous components (xw = 1):

mtotal
i =

np∑
j

mij (2.27)

∂

∂t

(
mtotal
w

)
=

∂

∂t

(
mV
w +mL

w

)
= Vtotal

∂

∂t
(ρgSgyw + ρwSw) (2.28)

Thus, for each time step and iteration of the ODE solver, the program has to estimate

the phase distribution by splitting the total mass (oil, water and gas) to vapour and

liquid streams. Figure 2.4 shows a comprehensive scheme of the flash process.

Figure 2.4: Flash distillation.

The flash calculation assumes that the total mass of oil, water and gas is splitted from

the same feed stream. This approach allows to include the interaction, between gas

phase and liquids. Thus, the overall molar fraction in the feed stream can be calculated

as:

Zi =
mtotal
i

mtotal
w +mtotal

o +mtotal
g

(2.29)
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Once the K-value has been estimated with EOS or correlations, the phase distribution

is calculated from flash distillation algorithms, such Rachford and Rice [23], performing

Newton iterations. In terms of computational efficiency and convergence, we use a

modified Rachford and Rice algorithm, where the objective function and molar fractions

are calculated from:

yi =
ZiKi

1 + Ψ(Ki − 1)
(2.30)

xi =
Zi

1 + Ψ(Ki − 1)
(2.31)

Ψ =
V apor

Feed
(2.32)

F (Ψ) =
nc∑
i=1

yi −
nc∑
i=1

xi =
nc∑
i=1

Zi (Ki − 1)

1 + Ψ (Ki − 1)
= 0 (2.33)

where Ψ is the vapour fraction, and it is the only variable necessary to solve the overall

mass balance. Figure 2.5 shows the algorithm that must be followed to find the vapour

fraction.

Figure 2.5: Rachford & Rice algorithm.

The modified Rachford and Rice Objective function has been proven to be a mono-

tonically decreasing function, and therefore guarantees convergence in Newton-Raphson
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iterations. Once the calculations for components mass on each phase are carried out,

the physical properties, saturations and enthalpies can be estimated.

As a final remark of this section, the result of the flash calculation are the molar fractions

and the mass of each component in the gas and liquid phases. However, if we look at

Figure 2.4, The liquid phase contains water and oil, so it is necessary to separate both

phases and recalculate the liquid mole fractions for oleic and aqueous components.

2.4 Solver module

The software developments that solve the mathematical models were written in Matlab

language under Windows architecture [68]. The routine ode15s was implemented to

solve ODEs and routine fsolve was used to solve newton iterations for phase equilibrium

algorithm. Additionally, Matlab offers a great and powerful user interfase with graphical

debugging.

2.4.1 Ordinary differential equations (ODEs)

Regardless of the type of reactor, all the toolbox was codified to generate and solve

coupled systems of ordinary differential equations (ODEs) denoted by Ẋ, where X is

the vector of variables with dimensions nc+ 2.

Ẋ =



∂N1
∂t
...

∂Ni
∂t

∂T
∂t

∂P
∂t


(2.34)

X =



N1

...

Ni

T

P


(2.35)
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The independent variable is time and is necessary to set the initial value for all the

dependent variables X0 on a time interval t0 ≤ t ≤ tf .

X(t0) = X0 (2.36)

Particularly, the in situ combustion process is characterized for the stiffness behavior

which means that most of the common ODE solver will not get a numerically stable

solution. So various numerical strategies should be implemented to avoid this kind of

problem. In this work, a stiff ODE solver was implemented from the Matlab library:

ode15s which is based on efficient numerical differentiation formulas (NDFs).

This kind of solver does not allow a fixed time step sizing, only interval restrictions and

other controls, resulting in a challenging problem when numerical instabilities appear in

the simulation. In Chapter 5 we mention some tips to handle this kind of problems.

A paper from Shampine and Reichelt can be reviewed for further information about the

matlab libraries to solve ODEs [69].



Chapter 3

Toolbox: Kinetic Cell

Kinetic cells are one of the most important equipment for ISC process. With specific

experimental configurations, low oil saturation and accurate temperature control, it is

possible to exclude the fluid and heat transfer dynamics to study chemical kinetics,

ignition temperatures and phase behaviour.

Figure 3.1 shows a normal experiment in a kinetic cell consist on a packed tube with a

mixture of crude oil, sand, clay and water. Under a programmed heating rate with an

external heat source, air is injected at a constant flow rate to burn the oil sample, where

the produced gases and residual solid components are recovered for the analysis. If the

operation is carried out with an inert gas such as nitrogen, pyrolysis reactions can be

also studied.

Figure 3.1: Schematic diagram for Kinetic cell experiment.

30
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The Toolbox was designed to work with flexible operating conditions, when the common

experiments Ramped Temperature Oxidation (RTO) and isothermal oxidation are also

included. With simple changes in the input data, it is possible to simulate Thermo-

gravimetric analysis (TGA) under oxidative or cracking conditions.

In the case of kinetic cells with controlled furnace, it was necessary to include energy

transfer coupled with set point control, because the exothermic reactions occur faster

than the controller action. If this effect is not taken into account, the disturbed tem-

perature profile can cause errors in the kinetic data prediction, as mentioned in [70]. To

simulate a varying temperature coupled with set point control with commercial ther-

mal simulators such as STARS [42] is not a simple ordeal, because these softwares are

designed for reservoir simulation and not for the analysis of experimental data. These

difficulties have been mentioned before, see e.g. [66].

The effect of the heat of reaction on the heating rate can be neglected using an induction

reactor (see Figure 3.2) [71]. The action of the controller is almost instantaneous leading

to a homogeneous temperature condition according to the heating rate. Also the induc-

tion reactor can operate with heating rates over 3◦C/min, which is the usual operating

condition in furnace kinetic cells. The capacity of the induction reactor to operate in

overheating ranges, provides more consistent data, because in the real combustion pro-

cess the temperature profiles shows heating rates in the reaction zone between 15 and

30◦C/min.

Figure 3.2: Kinetic cell heated by induction. FRUN research group, Colombia [72].
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Kinetic cell models have been studied for decades. Previous works used numerical simu-

lation as a tool to understand and predict the oil reactivity in porous media. A simplified

kinetic cell model to match the experimental data with similar reaction schemes such

as that by Dechelette [73] was developed performing simulations with kinetic data from

isoconversional analysis [37, 38, 66]. The concept of virtual kinetic cell (VKC) was in-

troduced by Kristensen [74], who proposed robust integration methods such as ESDIRK

(implicit one-step Explicit Singly Diagonal Implicit Runge-Kutta) to solve composi-

tional stiff kinetics [13]. The VKC model was improved to include phase equilibrium

and then Priyanka [75] continued the work simulating a reaction mechanism based on

SARA fractions.

The kinetic cell model in this work was developed with the chemical engineering per-

spective, based on mole balance. The referred literature could be confusing sometimes,

due to the use of concentrations instead of mole or mass of the component, because some

authors base the calculations on the porous volume and others on rock matrix volume.

The use of overall quantity variables based on mole or mass, leads to a comprehensive

sense of the conservation equations, and also a very straightforward implementation and

understanding of the code.

3.1 Governing equations

The kinetic cell is modeled as a zero-dimensional Semi-Batch reactor (adapted to porous

media and multiphase reactor), where only gas flows through the reactor and oil/solid

phases are considered stationary. A schematic of the cell chamber is shown in Figure

3.1.

Due to the involved timescales, all the processes inside the kinetic cell are considered in

thermodynamic equilibrium, without temperature and pressure gradients. Oil and water

are immiscible, and also molecular diffusion is not taken into account, because Peclet

numbers for typical reservoir flows of interest are often large enough that the effects of

diffusion can be neglected [13].

The general mole balance of species i in the kinetic cell can be expressed as follows:
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dNi

dt
=
∑
j

F ini,j −
∑
j

F outi,j +
∑
r

Λi,rγr [=]
mol

time
(3.1)

where Ni represents the amount of moles in the porous medium of species i. F ini,j and

F outi,j are the inlet and oulet molar flow rates for species i and phase j. Finally, γr and

Λi,r are the reaction rate and the stoichiometric coefficient for species i and reaction r.

For oil and solid phases, there is not inlet and oulet flow. Equation 3.1 can be simplified

as follows:

dNi

dt
=
∑
r

Λi,rγj [=]
mol

time
(3.2)

The implementation of volumetric flow, to estimate the outlet flow may cause mass

conservation problems, due to the change in moles in the gas phase. Due to the high

mobility of the gas in a unconsolidated sand, a good approximation to calculate the

outlet flow is to assume that there is not gas accumulation in the system. So the outlet

molar flow can be estimated from:

F outi,gas = F ini,gas +
∑
r

Λi,rγr (3.3)

For RTO experiments, the heating rate can be affected by reaction heat. To perform a

simulation which can capture heating effects, it is necessary to include a energy balance,

such as that in Equation 3.4, to predict the temperature variation.

∑
i

NiCpi
dT

dt
= −

∑
i

F outi,gasCpi(T − T in) +
∑
r

Λi,rγr 4Hr
reac +Qext (3.4)

where Cpi is the heat capacity of species i, Qext the heat flux from the furnace and

4Hr
reac the reaction enthalpy.

Qext = UVcell(T
setpoint − T ) (3.5)

T setpoint = T initial + θt (3.6)
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The external heat flux is a function of the global heat transfer coefficient U , the cell

volume Vcell and the furnace control set point, which is calculated from the heating rate

θ.

3.2 Model validation

As was mentioned before, several studies have been conducted to understand kinetic

cells such as [6, 8, 37, 38, 66, 73, 76]. These studies present experimental results related

to the measurement of outlet gases and residual stationary components (oil and solids).

Despite the existence of these multiple studies, one of the difficulties to simulate the

ISC process in kinetic cells is to find reliable experimental data in the literature. Most

of the kinetic data and physical properties, required in the simulations, are not given in

detail. Fortunately, to verify the consistency of the numerical solution in the Simulation

Toolbox, the results and input data from Bazargan’s thesis were enough to simulate the

same experimental setup [66].

Table 3.1: Simulation input data for model validation [66].

Parameter Value

Pressure 689.480 kPa

Inlet air flow (atmospheric) 0.4172 mol/min

Reactor Volume (4 cm packed) 3.02× 10−5m3

Oil Molecular weight 537.6 g/mol

Initial temperature 298.15 K

Initial Oil in place 0.0037 mol

In [66], the authors predicted kinetics for RTO experiments, based on the analysis of

the oxygen consumption and conversion. The consumption percent is calculated as

follows from the difference of the molar fractions,yO2, between inlet (usually 0.21 oxygen

molfrac.) and outlet:

O2consumption =
(
yOinlet2 − yOoutlet2

)
× 100 (3.7)
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Table 3.2: Kinetic data used for kinetic cell validation [66].

Reaction Frecuency factor
[

1
min×kPa

]
Activation energy

[
J
mol

]
R26 207.197 63560

R27 552.525 87525

R28 690.656 97575

The kinetic cell has a diameter of 3.1 cm and length of 12 cm, but only 4 cm were

saturated with 2 gr of crude oil and then filled with nitrogen in order to guarantee an

inert medium. The experiment was carried out with an injection of atmospheric air flow.

A summary of operating and initial conditions is presented in Table 3.1.

To obtain the oxygen consumption profile for a heating rate of 3◦C/min, we perform

the simulations with the kinetic data presented in Table 3.2 and the reaction mechanism

from R26 to R28.

Oil + 4.24O2 −→ 0.3659Coke1 (R26)

Coke1 + 33.8O2 −→ 6.8642Coke2 + 19.77CO2 + 26.06CO (R27)

Coke2 + 12.29O2 −→ 9.21CO2 + 6.16CO (R28)

We present the total moles of the components, and also the reaction rate is calculated

multiplying the reaction rate coefficient by the moles of oil or coke in each time step.

With the chemical engineering approach that we use in the Toolbox models and the

presented data is enough to get the oxygen consumption.

Figure 3.3, shows the results of the simulation compared with the data taken from

the thesis of Bazargan [66]. There is a clear match between the two profiles, for LTO

reactions (under 400◦C) and for HTO reactions (over 400◦C). This kind of consump-

tion profile is very useful for isoconversional analysis. Also, it is possible to calculate

the conversion as a function of time and temperature, with just performing numerical

integration over the profile.
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Figure 3.3: Oxygen consumption profile. Comparison between Toolbox (Solid line)
and Bazargan’s results (filled circles). Heating rate of 3◦C/min [66].

3.3 Toolbox Applications

As we mentioned before, the Toolbox is versatile and can be used for different operating

conditions. Once we show that the developed model for the kinetic cell is able to match

the same profiles from the ISC literature, we proceed to study the application of the

Toolbox to three different problems related to ISC: RTO and isothermal experiments,

combustion dynamics with gas phase reactions and single phase flow and halogen injec-

tion for the analysis of CO oxidation. In some of these applications sensitivity analyses

were undertaken to understand the importance of the most important experiment vari-

ables. All the Toolbox applications in this chapter are based on the physical properties

in Chapter 2 and the parameters in Table 3.3. Furthermore, due to small amounts in

moles of some species involved on gas phase reactions, the numerical tolerances were

fixed on 10−10. Operating conditions may vary. However, in that case, changes are

presented in each section.

3.3.1 RTO experiments

RTO experiments are widely used to understand the oil reactivity in a similar environ-

ment as the real process. The heating rates can change drastically in the reaction zone,

even taking values about 30◦C/min [66]. RTO experiments and isothermal analysis, can
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Table 3.3: Kinetic cell parameters. FRUN research group.

Parameter Value

Diameter 0.0127m

Length 0.12m

Reactor Volume 1.5201× 10−5m3

Porosity 0.378

Initial temperature 298.15K

Pressure (constant) 101.13kPa

be used to infer kinetic parameters which are important to predict and upscale the pro-

cess. It is, therefore, of interest to understand the response of the Toolbox to different

heating ramps. Such simulations, carried out using the kinetic parameters from Table

3.2, are presented below.

Simulation conditions (RUN-1): Gas volumetric injection rate of 2L(SATP)/min with

a composition of yO2: 0.21, yH2O: 0.001 and yN2: 0.789. Heating rates of 2, 10, 30,

50◦C/min. The initial gas saturation was fixed as 0.8, while oil saturation as 0.2. The

kinetic cell initial pressure was 101.13 kPa and remained constant.
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Figure 3.4: Kinetic cell profiles versus temperature for different heating rates. Oil
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and yCO molar fractions.
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Figure 3.4 shows the results for the RTO experiments. The duration of each exper-

iment is totally different, so for better comparison between the experiments, all the

profiles were plotted versus temperature. For large heating rates, the decrease in the

oxygen molar fraction is more important than lower rates. But also, the total oxygen

consumption, calculated from the numerical integration of the profile, is the same for

all the heating rates. In this case, the series of fuel formation reactions (sequence of

Oil → Coke1 → Coke2) demand that all the fuel will be burned, even if the process

of coke formation takes few minutes or hours. Therefore, the oxygen consumed will be

the stoichiometric from the chemical coke oxidation reactions. While the independence

of oxygen consumption on heating rate, agrees with the particular reaction mechanism

from R26 to R28, that may not be the case for ISC experiments nor for other gases.

Even if we do not consider thermal cracking and also reactions competing at low oxygen

concentrations, gas phase reactions, such as carbon monoxide oxidation, can change the

profiles as described below.

3.3.2 Combustion dynamics with gas phase reactions

As mentioned above, gas phase reactions could affect the gas concentration profiles. This

phenomena can be captured by coupling the Toolbox and Cantera, which can easily add

gas-phase carbon monoxide reactions with kinetic data from GRI-Mech 3.0 to a typical

ISC mechanism.

To evaluate possible differences that any extent of gas-phase CO oxidation may cause

on typical ISC simulations that only consider heterogeneous chemistry, and to illustrate

the simplicity of these calculations in the toolbox, a combined RTO-Isothermal thought

experiment was designed to oxidize both oil and carbon monoxide. Additionally, another

experiment was conducted only under isothermal conditions.

Simulation conditions (RUN-2): Volumetric injection rate of 300 mL(SATD)/min with

a composition of yO2 : 0.21, yH2O: 0.001 and yN2: 0.789. Heating rate of 30◦C/min

until 800◦C, then isothermal operation at 800◦C. The initial gas saturation was fixed at

0.9, while oil saturation at 0.1.

Note the presence of water in the oxidizer stream. That is due to the importance of

the hydroxyl radical (OH∗) on carbon monoxide oxidation. The analysis, in Figure 3.5,



Chapter 3. Kinetic Cell 39

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

y
O

2

Time [min]
0 10 20 30 40 50

0

0.05

0.1

0.15

0.2

0.25

y
C
O

2

Time [min]

Cantera: OFF
Cantera: ON

0 10 20 30 40 50
0

0.025

0.05

0.075

0.1

0.125

0.15

y
C
O

Time [min]
0 10 20 30 40 50

0

200

400

600

800

1000

T
em

p
er
a
tu
re

[◦
C
]

Time [min]

Figure 3.5: In situ combustion profiles for a combined RTO-isothermal experiment.
Gas phase reactions activated and deactivated.

of the simulation for RUN-2, compares the results when considering or not gas phase

reactions. At temperatures higher than 700◦C CO oxidation becomes important, as

CO concentration is less than the expected in a regular combustion without Cantera

reactions, and also carbon dioxide shows an increase because is the final product in the

CO oxidation. The oxygen profile is slightly different compared to the normal oxygen

profile, although in Figure 3.6, it is possible to identify the oxidation of Coke2 at the

same time that CO oxidation (between 22 and 40 minutes). So the coke combustion

requires more oxygen than carbon monoxide.

In order to make a further research in the carbon monoxide oxidation, we formulated a

second experiment under isothermal conditions. In this case an analysis of temperature

sensitivity was performed.

Simulation conditions (RUN-3): Volumetric injection rate of 700 mL(SATD)/min with

a composition of yO2 : 0.21, yH2O: 0.001 and yN2: 0.789. Time dynamics for different

isothermal simulations. The initial gas saturation was fixed on 0.7857, water saturation

0.05 and oil saturation on 0.1643. A more complete understanding on the effect of

CO oxidation in the gas phase is evident in Figure 3.7, that maps different isothermal

experiments and the temporal behavior.
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Figure 3.7: Oxidation profiles for isothermal experiments at 101.13kPa. Contour
plots for yO2

and yCO molar fractions.

For example, at 700◦C, the highest CO concentration is 0.1 (average mole fraction)

between minute 2 and 7, then after minute 21 the combustion process ends. This

behavior is also consistent with the oxygen profile, as the low concentration matches

with the reaction zone before the first 7 minutes. In a more general analysis, it is possible

to identify, that the most reactive zone corresponds to the higher temperature, which

occurs faster and hence the maximum CO production is obtained for short time. This

analysis is useful to determine operating conditions with the lowest CO concentration

for environmental studies for an ISC project. They are also useful in determining the

effect that the existence of gas-phase reactions may have on lab scale ISC experiments.
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3.3.3 Single phase flow and halogen injection for CO oxidation

The purpose of this section is to illustrate how simple it is to management custom

reactive species in the Toolbox. Two cases are specially designed to show what users

can do with the simulator. RUN-4, includes new halogen species and reactions to the

mechanism database in order to study reaction quenching in CO oxidation. RUN-

5 introduces a different way to model the process with the perspective of chemical

engineering.

Simulation conditions (RUN-4): Volumetric injection rate of 1L(SATD)/min with a

composition of yCO: 0.08, yO2: 0.14, yH2O: 0.001, yN2: 0.769, yI2: 0.01. Single phase

flow (Sg=1) through a porous media under a heating rate of 5◦C/min until 800◦C, then

isothermal operation on that temperature. The case represents a continuous reactor

which reaches steady state. In the case without iodine, the compositions are yCO: 0.08,

yO2: 0.14, yH2O: 0.001 and yN2: 0.779.

Halogen addition, in this case iodine (I2), suppresses carbon monoxide reactions in the

reactor due to quenching of the hydroxyl radical (OH∗) mentioned before. The chemistry

input file for CO oxidation with iodine considered GRI-Mech 3.0 and iodine species

(I2, HI, I, IO, IOH) and 28 reactions [77–79]. The Toolbox file FRUN.cti, includes the

GRI-Mech 3.0 and also the halogen reactions. As a summary of important reactions,

the mechanism begin with the dissociation of I2, followed by hydrogen iodide formation

(HI):

I2 + M −→ I + I + M (R29)

I2 + H −→ HI + I (R30)

H + I + M −→ HI + M (R31)

This scheme is defined by three-body reactions, where M is an unspecified collision

partner that carries away excess energy to stabilize the molecules. Quenching of hydroxyl

radicals is represented by the following reactions:

HI + H −→ I + H2 (R32)

HI + O −→ OH + I (R33)

HI + OH −→ I + H2O (R34)
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Figure 3.8: Influence of iodine injection in the oxidation of carbon monoxide. RTO
experiment with a heating rate of 5◦C/min.

The results of the simulation are presented in Figure 3.9. For a heating rate of 5◦C/min,

before the first 135 minutes, the temperature in the cell was not enough to activate the

reactions, but then at 700◦C the oxidation of CO begins, but only at 775◦C (150min)

the oxidation reaches 1% of CO consumption. The process goes to steady state when

the isothermal operation at 800◦C is performed. When iodine is injected to the cell,

reaction quenching is strong enough to avoid the oxidation. The practical use of iodine

injection on experimental setups is to control CO oxidation to study the influence of gas

phase reactions in the quality and reliability of the measured data after the combustion

process.

Finally, the previous results show that residence time is important to determine the

progress of the reaction. In RUN-5, using chemical engineering theory, we find a way

to model different residence times for the same experiment, just fixing different reactor

volumes. So, the basic idea is to get the profile for the total reactor (0.12 m length),

by simulating different lengths from 0 to 0.12 m with the same diameter. For example,

the first reactor has a length of 0.01 m and the next reactor a length of 0.01 + ∆Z. We

perform these sums until the total reactor length. This procedure is done for all the

isothermal points. In this case we have single phase flow without halogens.



Chapter 3. Kinetic Cell 43

Simulation conditions (RUN-5): Volumetric injection rate of 700 mL(SATD)/min with

a composition of yCO: 0.08, yO2: 0.14, yH2O: 0.001 and yN2: 0.779. Single phase

flow (Sg=1) through a porous media under isothermal condition. The case represents a

continuous reactor which reaches steady state.
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Figure 3.9: 1-Dimensional analysis for carbon monoxide oxidation in porous media.

From Figure 3.9, that presents results for the simulation of the isothermal oxidation

for different residence times, it is possible to conclude that kinetic cell presents spatial

compositions gradients, that can be important for certain operating conditions. This is a

more generalized case of the steady state reached in RUN-4, because different isothermal

experiments were carried out. For the analyzed temperature in the last case, if the

temperature is 775◦C the contour shows that at the exit of the kinetic cell, the CO

concentration is about 0.07 (corresponding to the 1% of CO consumption). Additionally,

as it is expected, higher temperatures about 800◦C lead to more important gradients in

the cell.

Also the new modeling approach leads to perform a more detailed analysis of the 1-

Dimensional reactor. The chemical reactors perspective allows to model an ideal plug

flow reactor as a sum in series of simple homogeneous 0-D reactors. This RUN-5 is the

precursor of the reactor model developed in 4.

3.4 Conclusions

The main contribution of the work developed in this chapter is to provide a tool for

study of chemical reactions in porous media coupled with in situ combustion reactions.
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We provide an alternative that commercial software such as STARS do not have.

Carbon monoxide, as shown in the results is very sensible to operating conditions as flow,

concentration (O2 and CO partial pressures) and even more to temperature. Results

show that changes in the CO profile, due to oxidation can be reached over 700◦C at

atmospheric pressure.



Chapter 4

Toolbox: Plug Flow Reactor

In Chemical engineering literature, a plug flow reactor (PFR) represents a continuous

differential reactor, often used to obtain spatial profiles for a steady state reaction pro-

cess. As a differential reactor, it is possible to model the space behavior with a sum of

small reactors in series [80]. In analogy for the case of multiphase flow in porous media,

each small reactor unit is essentially a kinetic cell.

Figure 4.1: Schematic diagram for Plug Flow Reactor.

Figure 4.1 shows a scheme of the reactor modeling. The complete plug flow reactor

is modeled as a number of small kinetic cells in series considering stationary oil/solid

phases, and only gas flows through the reactor. As a way to improve the model, to obtain

a more realistic behavior of the gradients of the process, is to include in the equations

module one that considers the energy balance, including heat transfer by conduction

and convection. With this PFR module in the Toolbox, it is possible to simulate steady

45
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or unsteady RTO experiments, isothermal operations and also combustion fronts. Fur-

thermore, it is an interesting modeling option, because the complexity is between that

of a kinetic cell and a rigorous combustion process, which is described in Chapter 5.

Even though many authors [6, 8, 10, 11, 66] have studied 1-Dimensional kinetic cells and

combustion tubes, this kind of modelling based on PFR reactors is not well implemented

yet on ISC literature. Kinetic cells have been studied using reactor models based on

compositional and full equation of state formulation, but most neglected the energy bal-

ance [8]. Complex software for computational fluid dynamics, such as ANSYS-Fluent,

has been used to study homogeneity criteria on 1-D kinetic cell by using dimensionless

Damköhler number [11]. However, this kind of software is not completely designed for

this application, so the computational cost is really high for the simplest RTO experi-

ment.

4.1 Governing equations

The plug flow reactor model is useful to study temperature gradients and composition

in a kinetic cell. It is also useful to have quick estimates about the performance of a

combustion tube. Equation notation is the same as Chapter 3, new terms are explained

in each subsection. For more details about units and notation, refer to Symbols section.

The main assumptions are:

- Thermodynamic equilibrium.

- Pressure can be considered as uniform and constant, or constant pressure gradient

(MPMz ) in a fixed value.

- Oil/water immiscible, non molecular diffusion.

- Oil is static, viscosity −→∞, and the viscosity does not change with temperature.

- No Darcy flow, gas flows with no accumulation, just like in the kinetic cell from Chap-

ter 3.

The mole balance for each reactor is defined by

∂Nk
i

∂t
=
∑
j

F in,kij −
∑
j

F out,kij +
∑
r

Λi,rγi,r[=]
mole

time
(4.1)
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The grid blocks k are in this case kinetic cells with the same volume as a normal block.

F in,kij = F out,k−1
ij (4.2)

F out,kij = F in,kij +
∑
r

Λi,rγi,r (4.3)

Note that eventually
∂Nk

i
∂t = 0 for gases (no accumulation). But the ODE algorithm still

needs the derivative. Other methods as differential algebraic equation (DAEs) are also

useful for this kind of equation.

For oil/solid phases:
∂Nk

i

∂t
=
∑
r

Λi,rγi,r[=]
mole

time
(4.4)

The energy balance for gas phase in the plug flow reactor is similar to the kinetic cell,

but in this case heat transfer by conduction is considered.

∑
i

Nk
i Cp

k
i

dT k

dt
= Q̇inconv − Q̇outconv + Q̇incond − Q̇outcond +

∑
r

Λi,rγi,r∆Hr
reac (4.5)

Q̇inconv =
∑
i

F in,ki,gasCpgas(T
k−1 − Tref ) (4.6)

Q̇outconv =
∑
i

F out,ki,gas Cpgas(T
k − Tref ) (4.7)

Q̇incond = −αA(T k − T k−1)

∆z
(4.8)

Q̇outcond = −αA(T k+1 − T k)
∆z

(4.9)

Boundary conditions for inlet (k = 1) and outlet (k = NR) are presented from Equation

4.10 to 4.13.

k = 1


F in,kij = F injectionij (4.10)

T k−1 = Tinjection (4.11)

Q̇incond = 0 (4.12)

k = NR
{
Q̇outcond = 0 (4.13)
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4.2 Model validation

The PFR model was validated in a controlled system without chemical reactions using

the commercial software STARS. The main purpose was to verify that the gas flow and

heat transfer capture the phenomena involved in the process. The model was based on

the kinetic cell (already validated). Temperature profiles were important in order to

validate the system dynamics, because the energy balance is highly dependent on mass

conservation. If the temperature matches with STARS results, the mass transport is

working as well.

In order to ensure that the gas flows freely in the system, a virtual high permeability

was fixed over all the Cartesian domain. The parameters and STARS code can be found

in appendix A. Dimensions of the reactor and main operating conditions are given in

Table 4.1. The pressure drop is considered linear between the inlet and outlet pressure.

Table 4.1: Reactor parameters

Parameter Value

Cross sectional area 0.062m × 0.062m

Reactor length 1.204 m

Porosity 0.378

Volumetric air flow 10 L(SATP)/min

Injection temperature 500◦C

Inlet Pressure (L=0m) 105 kPa

Outlet Pressure (L=1.2m) 101.13kPa

Only heat transfer by conduction and convection was considered in a system with inert

oil saturation of 0.05, and 0.95 for gas. So basically, the experiment consist in rock (and

little portion of oil) heated by hot air injection.

Figure 4.2, shows the comparison of the results obtained with the toolbox and the STARS

simulation. Initially the system is at ambient temperature and then, when hot air flows

through the reactor, the rock takes the heat to increase slowly the local temperature.

The results of the toolbox match very well the STARS profile for different simulation

times. The process reaches steady state passed 400 min from injection.
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Figure 4.2: Plug Flow Reactor model validation. Comparison with STARS at 120
and 200 min.

4.3 Toolbox Applications

As in the previous chapter, this section illustrates the use of the plug flow reactor

application of this toolbox with two examples. A 1-Dimensional kinetic cell and a

combustion tube with a fixed pressure profile.

4.3.1 1-Dimensional kinetic cell

As we mentioned at the beginning of the chapter, this kind of reactor model can be

used to simulate a 1-Dimensional combustion tube, but also a 1-Dimensional kinetic cell

as long as oil flow can be neglected. In this toolbox application, we consider the same

kinetic cell simulated before, but now we study the behavior under an unsteady RTO

experiment.

Simulation conditions: Volumetric injection rate of 100 mL (SATD)/min with a compo-

sition of yO2: 0.21 and yN2: 0.79. Heating rate of 5◦C/min until 800◦C, then isothermal

operation at 800◦C. The initial gas saturation was fixed at 0.75, while oil saturation at

0.25. The pressure was kept constant at 1.01MPa.

For a comprehensive understanding of the experiment, we present in Figure 4.3, the

oxygen molar fraction as a function of distance and time. At a heating rate of 5◦C/min,

when the temperature is enough to activate the oxidation reactions (above 275◦C),



CHAPTER 4. PLUG FLOW REACTOR 50

0
50

100
150

200

0

0.03

0.06

0.09

0.12

0

0.1

0.2

0.3

Time [min]

Distance [m]

y
O

2

Figure 4.3: 3-Dimensional view of the oxygen mol fraction for a 5◦C/min RTO ex-
periment.

oxygen decreases almost to zero. After that, all the oxygen that is injected is consumed

by the remaining oil in the kinetic cell. Basically, we identify two stages of the reaction

presented in a two dimensional view in Figure 4.4. The first stage (Figure 4.4A) is

before 100 min, at shorter times and lower temperatures, the reaction rates are low,

so the oxygen in the system is in excess. As temperature increases, oxygen is strongly

consumed. Eventually, after 100 min (Figure 4.4B), the concavity changes and the

process is carried out in a different way.
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Figure 4.4: yO2 profile for different times in the RTO experiment. A)times from 40
min to 80 min. B)times from 120 min to 200 min.

As Figure 4.5 shows, at the beginning of the experiment, oil was homogeneously con-

sumed, due to the high oxygen concentration in kinetic cell. After that for high temper-

atures, all the injected oxygen reacts with oil and coke in the first 2 cm of the reactor.
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The process after 100 min is piston like, so the oxygen moves through the cell following

a clear combustion front.
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Figure 4.5: Oil saturation profile for different times in the RTO experiment.

For the experiment conditions, the combustion in the kinetic cell is not homogeneous.

Different strategies as increase the air flow or saturate the core with low amount of oil

can control gradients inside the cell, as described in [11].

4.3.2 Combustion tube with fixed pressure

This case of study corresponds to the same simulation from the PRF validation; but

now, chemical reactions are activated in order to show the utility of the toolbox to have

quick estimations of the combustion process. The result showed in Figure 4.6 , was

obtained with the kinetic model and data from [73].

As we have shown in the validation section, the energy balance equation in the toolbox

represents the main physic phenomena involved. In Figure 4.6, for short times, the

toolbox matches the STARS profile, because the fixed pressure was quite similar for

both simulators. But this is not the case at 200 min when the pressure profile along the

tube departs from that of a linear pressure drop assumed as Figure 4.7 shows. While the

difference is barely noticeable, this result indicates that pressure is important in order

to have a good estimation of the reaction rate. Even with this profile deviation, is clear

that we can perform quick combustion tube simulations, under the assumptions of the

PFR. The computational speed in the calculations is really high (1 to 5 minutes with
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Figure 4.6: Combustion tube simulation with the PFR model. Comparison with
STARS at 120 and 200 min.

100 reactors with Intel R© CoreTM- i7 Processor), compared to complex combustion with

energy, pressure and species balances that can take several hours in non-commercial

academic developments.
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Figure 4.7: Pressure drop profile for the PFR model (MP
Mz = 3.32kPa ·m−1). Com-

parison with STARS at 120 and 200 min.

This case shows that calculation of the pressure profile along any experimental setups

used to study the in-situ combustion process is important. This conclusion serves as a

perfect introduction to Chapter 5, in which the application of the pressure equation and

Darcy flow in the Toolbox is described.
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4.4 Conclusions

The PFR model, designed for combustion in porous media, could be a very interesting

and reliable alternative to model high permeable reactors (or low pressure drops) with

low oil saturation.

With the toolbox it is possible to predict the behaviour of kinetic cells relaxing the

assumption of perfect mixture. In this case, in agreement with that described in [11],

1-D profiles are evident for typical ISC experiments. This ability renders the toolbox

particularly useful in the design experiments that avoid the gradients in the cell and

simplify data analysis.



Chapter 5

Toolbox: Combustion Tube

The applications of the toolbox described so far, perform really well in the absence of

pressure gradients. In this section a more complex model based on Darcy flow theory is

developed. The emphasis of this Chapter is the combustion tube, and the mathematical

model is based on multiphase flow in porous media equations that can be applied to

study gradients in kinetic cells or any kind of reactor.

As mentioned before, lab scale experiments are mandatory in order to get estimations

to design field operations [20]. The importance of the combustion tubes is due to their

capability to study air and fuel requirements, combustion front stability and temperature

and pressure profiles along the combustion tube. Combustion tubes cannot be directly

correlated and scaled to reservoir; however, under similar conditions such as reservoir

rock and fluids, the process could be quite similar in both cases. The problem between

scales are related to the flow of fluids under reservoir heterogeneities and heat transfer.

Many authors present more information about predictability and scale up of the process

[23, 66, 81].

The experimental set-up for combustion tubes is usually as shown in Figure 5.1. Different

sizes and configurations can be also founded in the literature. A normal experiment

consists on an insulated stainless steel tube packed with native sand, clay and a mixture

oil/water, where the ignition and propagation begins with electrical heating in the inlet

zone until self propagation is reached. The advance of the combustion front can be

recorded using a set of thermocouples uniformly spaced through the tube. Air injection

54
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is controlled by fixing volumetric flow or inlet pressure as we discuss later. Finally outlet

gases are analyzed and oil/water production measured.

Figure 5.1: Combustion tube experiment [24].

Several studies of combustion tubes have been developed, trying to fit experiments

and numerical simulations, sometimes without a good match. As we mentioned in the

literature review in Chapter 1, the numerical simulation for this kind of process had a

lot of analytical and predictive approaches. Robust simulators for laboratory studies as

the work of Ramazan[59] , have been developed since 1990. Also new trends in porous

media modelling appear in order to get reliable predictions, most of the new techniques

include Coats and Crookston formulations [3, 51] as the model basis.

In a summary of studies for combustion tube simulations it is important to highlight the

VCT (virtual combustion tube) developed by Krisensen with equation of state formula-

tion and sophisticated numerical methods [25]. Artificial neural networks and intelligent

methods were implemented by several authors in order to predict lab scale profiles and

match experimenta data [82, 83]. Adaptive mesh refinement was conducted by Lovett

[64] for compositional flow in porous media, while a new method based on a non-Arrheius

reaction upscaling approach with streamlines simulation was performed by Zhu [23]. We

present a novel approach, not described in the refereed literature, that model the com-

bustion tube with a finite volume discretization.
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5.1 Governing equations

5.1.1 Mass conservation

The model is based on transport in porous media theory without diffusional transport.

We started from the formulation of the PFR reactor as is shown in Figure 5.2. In this

case oil, gas and water can flow. The mole balance is presented as the temporal change

of the concentration for specie i. Equation 5.1 considers the contribution of all phases j

for each species which is presented as the moles of specie over the reactor volume that

includes rock matrix and fluid space. Equation notation remains the same as previous

chapters and symbols table, new terms are explained as well.

Figure 5.2: Schematic diagram for Combustion tube discretization.

The mole balance equation is given by:

∂

∂t
(Ci) =

∂

∂t
(
∑
j

ρjφSjyi,j) = −∇ · (
∑
j

ρjujyi,j) + q̂i[=]
moles

TotalV ol − time
=

Ni

VT t
(5.1)

Equation 5.1 must be solved for each species for all phases without any other simplifi-

cation. A common procedure to solve this kind of partial differential equations is the

finite volume method. First, we integrated Equation 5.1 over a control volume Ω, and

applying the divergence theorem change the volume integral into a surface integral for

the convective term as is shown in Equation 5.2.

∫
Ω

∂

∂t
(Ci)dΩ =

∫
S
∇ · (

∑
j

ρjujyi,j) · ndS +

∫
Ω
q̂idΩ (5.2)
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The discretization scheme and notation was shown in Figure 5.2, the problem in this

thesis is one dimensional, the cross sectional area is the same as that of the combustion

tube experiment and the finite volume is defined by the number of blocks in axial

direction. The discretization nomenclature for the model is based on the computational

fluid dynamics literature when the central block k, left block position is k − 1, right

position is k + 1, left block interface is k − 1/2 and right interface is k + 1/2.

After the integration of the convective term, the equation is reduced to the balance

between the inlet and oulet fluxes.

VB
∂

∂t
(Cki ) =

∂(Nk
i )

∂t
= −

[
ρuy|k+1/2 − ρuy|k−1/2

]
A+ qi (5.3)

where VB is the block volume, q the moles generated/consumed per unit of time, A the

cross sectional area and u the Darcy velocity.

At this point, the model was not complete, because in the convective term the velocity

is an unknown variable. The porous media theory suggest that the velocity of phases

should be evaluated with Darcy’s equation, which transform the fluxes through the cross

sectional area of the block interface into a function depending of the pressure gradient

and the transport coefficient [84].

∂(Nk
i )

∂t
=

[
ρKkry

µ

∣∣∣∣
k+1/2

∂P

∂Z

∣∣∣∣
k+1/2

− ρKkry

µ

∣∣∣∣
k−1/2

∂P

∂Z

∣∣∣∣
k−1/2

]
A+ qi (5.4)

The pressure gradient can be approximated using central difference scheme (CDS),

∂(Nk
i )

∂t
=
ρKkryA

µ

∣∣∣∣
k+1/2

Pk+1 − Pk
∆Z

− ρKkryA

µ

∣∣∣∣
k−1/2

Pk − Pk−1

∆Z
+ qi (5.5)

As the pressure gradient is a negative term (Pk+1 < Pk and Pk < Pk−1), Equation 5.5

can be presented in the short form as

∂(Nk
i )

∂t
=
∑
j

Ṅ in
i,j −

∑
j

Ṅout
i,j + qi (5.6)
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where Ṅ in
i,j is the molar flow through the block face k − 1/2 and Ṅout

i,j the molar flow

through the block face k + 1/2, for species i in phase j. Notice that the formulation is

very intuitive, because is the same mole balance as the kinetic cell (Equation 3.1) and

PFR reactor (Equation 4.1), the only difference is the way to estimate the phase flow,

in this case with Darcy.

Ṅ in
i,j =

−ρjKkryiA
µj

∣∣∣∣
k−1/2

Pk − Pk−1

∆Z
(5.7)

Ṅout
i,j =

−ρjKkryiA
µj

∣∣∣∣
k+1/2

Pk+1 − Pk
∆Z

(5.8)

The boundary conditions for the inlet and outlet flow are shown in Equations 5.9 and

5.10. The outlet flow (Z = L) calculated from Equation 5.10, presents a problem for

pressure evaluated at k+ 1, because it is out of the reactor domain. A common strategy

is to move this position to the edge k + 1/2 and change the grid size to the half.

Inlet : ˙N in
i = Fk−1/2 = Ṅinjection (5.9)

Outlet : ˙Nout
i = Fk+1/2 =

ρKkry

µ

∣∣∣∣
k=N

A
Pwell − Pk=N

0.5∆Z
(5.10)

5.1.2 Energy balance

The energy balance is given by:

∂

∂t

(1− φ)Ur + φ

np∑
j=1

ρjSjUj

+∇ ·
np∑
j=1

hjρjuj +∇ · (−α∇T ) = qh,i (5.11)

The internal energy of the rock is Ur, Uj is the internal energy of phase j, hj is the

enthalpy of the phase j, α is the thermal conductivity and qh,i is a term that represents

the thermal sinks and sources.

In order to get a more comprehensive model, it is possible to apply finite volume method

as the mole balance for convective and conductive heat transfer, in this case the con-

duction is given by the temperature gradient and the derivative can be estimated by
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CDS discretization. The mathematical procedure is the same as the mole conservation

equation, for the generic block k the equation is reduced to the difference between the

inlet and outlet for both ways of heat transfer and also the generation of heat due to

chemical reactions and external sources:

∑
i

∑
j

Nk
i Cp

k
i

dT k

dt
= Q̇inconv − Q̇outconv + Q̇incond − Q̇outcond +

∑
r

Λi,rγi,r∆Hr
reac (5.12)

where the convective and conductive terms are calculated with Equations 5.13 to 5.16.

Q̇inconv =
∑
i

∑
j

Ṅ in
i,jhj

∣∣∣
k−1/2

(5.13)

Q̇outconv =
∑
i

∑
j

Ṅout
i,j hj

∣∣∣
k+1/2

(5.14)

The outlet temperature is assumed to be the same as the block temperature, so in

Equation 5.14, the temperature for enthalpy is evaluated at k.

Q̇incond = −αA|k−1/2

(T k − T k−1)

∆z
(5.15)

Q̇outcond = −αA|k+1/2

(T k+1 − T k)
∆z

(5.16)

5.1.3 Pressure equation

In a control volume, it is known that the fluid occupies the whole porous volume, conse-

quently a relation between volume and porosity can be obtained as shown in Equation

5.17 . The total volume conservation is an equation of state that bounds the evolu-

tion of mass and energy conservation. Therefore, looking for a concordance with the

state equation, the pressure change can be expressed as a function of thermodynamic

properties.

The change of the porous volume is a function of pressure, composition and temperature

and can be related with the total volume using the next equations:

VP = VP (P,Ni, T ) = φVT (5.17)
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∂VP
∂t

=
∂φVT
∂t

(5.18)

with the assumption that the porosity is a function of pressure and that the temperature

variation has a negligible effect, Equation 5.18 can be presented as follows,

∂φVT
∂t

= VT
∂φ

∂P

∂P

∂t
(5.19)

The same derivative expansion is applied to the porous volume,

∂VP
∂t

=
∂VP
∂P

∂P

∂t
+
∂VP
∂T

∂T

∂t
+

nc∑
i=1

∂VP
∂Ni

∂Ni

∂t
(5.20)

Equations 5.19 and 5.20 describe the change of the porous volume, so it is possible to

equalize both expressions. After term grouping the resulting equation is presented as:

(
VT

∂φ

∂P
− ∂VP

∂P

)
∂P

∂t
=
∂VP
∂T

∂T

∂t
+

nc∑
i=1

∂VP
∂Ni

∂Ni

∂t
(5.21)

To get a more comprehensive and straightforward expression we define average proper-

ties. First, the average fluid compressibility is defined as

ĉf = − 1

VP

∂VP
∂P

(5.22)

ĉf =
∑
j

Sjcj (5.23)

The rock compressibility is related to the porosity change due to pressure as

ĉR = − 1

VR

∂VR
∂P

=
1

1− φ
∂φ

∂P
(5.24)

∂φ

∂P
= ĉR (1− φ) (5.25)

The thermal expansion coefficient is defined as

ĉT =
1

VP

∂VP
∂T

(5.26)
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Including equations 5.22, 5.25 and 5.26 into Equation 5.21, we obtain:

(VT ĉR (1− φ) + VP ĉf )
∂P

∂t
= VP ĉT

∂T

∂t
+

nc∑
i=1

∂VP
∂Ni

∂Ni

∂t
(5.27)

Finally, Equation 5.27 is divided by the total volume VT and then the porosity definition

is applied.

(ĉR (1− φ) + φĉf )
∂P

∂t
= φĉT

∂T

∂t
+

1

VT

nc∑
i=1

∂VP
∂Ni

∂Ni

∂t
(5.28)

Notice that in this sequential formulation, to solve the pressure equation, the mole and

energy balances need to have been previously calculated, so that the terms
∂Ni

∂t
and

∂T

∂t

are known. Also the term
∂VP
∂Ni

is the specific volume property for component i.

Now, in the discrete formulation, the balance for the reactor (or grid block k) is pre-

sented, where the total volume is changed by the block volume.

(ĉR (1− φ) + φĉf )
∂P k

∂t
= φĉT

∂T k

∂t
+

1

Vb

nc∑
i=1

∂VP
∂Ni

∂Nk
i

∂t
(5.29)

5.2 Model validation

To ensure the validity of the new set of equations, we performed a comparison with

STARS under a controlled system. To this, we designed a virtual experiment as simple as

possible, in order to have the same variables and properties in both simulators. Basically,

we took the case of study at the end of the Chapter 4, but now, the purpose was to

match with the new approach the temperature, pressure and composition profiles. All

the data required to simulate the process in this chapter and STARS inputs can be found

in Appendix A.

First, we considered the oil as a stationary phase and then we show that the model is

capable to predict oil mobility. There are mainly two options to make ignition in the

combustion tube. The first one is to set electrical heating in the reactor inlet and also

is possible to inject hot air to burn the oil. The electrical heating in this case is not a
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Figure 5.3: Combustion tube validation with STARS.

good option because the heater models that STARS uses were unknown which makes

impossible any comparison. Contrary, the injection of the hot air at 500◦C guarantees

ignition and facilitates comparison.

Figure 5.3 presents the comparison with STARS for two simulation times. We got perfect

match in most of the profiles and just negligible differences in the combustion front that

could be caused by subtle differences in gases properties in STARS as some values for

physical properties were not readily available in that software.
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5.3 Toolbox Applications

As in the last two chapters, this section presents examples of applications of the com-

bustion tube Toolbox. Due to the high complexity of the model and the large change of

gradients along the tube, the computational cost, in this case, is between 10 to 12 hours

with an Intel R© CoreTM- i7 Processor.

5.3.1 Pressure analysis in the Combustion tube

Once we check the validity of the numerical solution, we proceeded to simulate a more

realistic condition. In this case a normal combustion tube run packed with a mixture of

heavy oil, sand and clay was simulated.

Simulation conditions: Volumetric injection rate of 10 L (SATD)/min with a composition

of yO2: 0.21 and yN2: 0.79. The initial gas saturation was fixed on 0.75, while oil

saturation on 0.25. The initial pressure and temperature were 101.13 kPa and 25◦C

respectively. Components properties, kinetic models and rock parameters are presented

in Chapter 2.

In this kind of systems we have different options with the pressure equations. First,

it is possible to fix the inlet pressure in an arbitrary value, but the inlet flow must be

changed by the algorithm in order to secure mass and volume conservation. A more

intuitive option is to fix the injection flow, then due to mass accumulation, the pressure

will rise for the same reasons mentioned before. Depending on the study and the desire

operating conditions, the pressure set-up should be carefully selected. In this particular

case, an injection flow was fixed.

For regular combustion tube runs, once we have a combustion front, the heated oil moved

by the pressure potential and allowed by the viscosity reduction, is accumulated just

next to the combustion front. Oil accumulation is usually referred as an oil bank. The

problem with highly viscous oils, which does not move properly at reservoir conditions,

is related to the large oil bank formed, sometimes plugging the reactor. Figure 5.4 shows

the oil saturation profiles for different process times. It is clear the large oil bank formed

at 120 min, in which the saturation is three times more than the initial saturation.
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Figure 5.4: Oil saturation and pressure profiles for a combustion tube run.

As mentioned before in the modeling section, particularly in the pressure equation, the

pressure is very sensitive to strong changes in the porous volume. With the results of

Figure 5.4, we can set three zones in the pressure profile characteristic of longer times.

The first zone for the 120 min profile, corresponding to the first 0.4 m of the tube,

belongs to a free burned volume in which the gas will flow more easily due to the oil

disappearance. The next 0.2 m of reactor corresponds to a transition zone, where the

gas has to cross through the small volume due to the oil bank. This phenomena is the

bottleneck of the flow and causes the major pressure increase. The last zone, from 0.8 m

to 1.2 m, corresponds to the gas relief zone with an ideal linear pressure drop (normal in

gases and steady state operations), in which no important phenomena occurs and also

no flow restrictions appear until the discharge or well pressure.

5.3.2 Air injection with electrical heating

In order to simulate a regular combustion tube experiment, in this application air injec-

tion with electrical heating for ignition was performed. The electrical heaters are placed
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in the first part of the packed tube, the idea is to set a controlled heating of the mixture

in the same way as the kinetic cell, but in this case only the first grid blocks from the

tube model are artificially controlled for a required time, the others follow the energy

balance.

The chemical reactions used in this application are presented in equations R35 to R37

which are enough to represent LTO and HTO stages. The implementation of this short

scheme is useful in order to get better computational efficiency.

Oil + 4.24O2 −→ Coke1 (R35)

Coke1 + 33.8O2 −→ Coke2 + 23.77CO2 + 4.75CO + 22H2O (R36)

Coke2 + 12.29O2 −→ 8.56CO2 + 6.161.73 + 8H2O (R37)

The kinetic data required to simulate the combustion process is presented in Table 5.1.

The sign of the reaction enthalpy is already fixed in the code, for exothermic reactions

the sign must be positive.

Table 5.1: Kinetic data used for the combustion tube simulation.

Reaction Frecuency factor
[

1
min×kPa

]
Activation energy

[
J
mol

]
∆Hreac

[
J
mol

]
R1 0.01 22560 8.78×105

R2 250 67525 7.04×106

R3 220 87575 7.04×106

Simulation conditions: Horizontal tube test with air injection at 25◦C, volumetric in-

jection rate of 10L (SATD)/min with a composition of yO2: 0.21 and yN2: 0.79. The

initial oil saturation was 0.2 and the physical properties for components and rock are

the same as the previous applications (Appendix A and Chapter 2). The initial pressure

and temperature were 101.13 k Pa and 25◦C respectively. The heater set point was a

linear ramped temperature with a rate of 20K/min for 30 minutes in the first 10 cm of

the tube, then heaters are turned off for self-sustaining process.

The results for particular times of the combustion tube run are presented in Figure

5.5. The obtained profile shows the combustion front peak and a clear steam plateau

zone. After the action of the heaters, the combustion front propagation is stable for the
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time simulated. In this case the air flow at low temperature from the inlet is cooling

the burned zone. It is important to notice that in the literature is possible to find

combustion tube simulations with large temperature profiles [85], this is due to heat

transfer problems. When the heat transfer properties of the rock matrix are low and

heat losses are not considered, the temperature for the burned zone does not decrease

normally.
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Figure 5.5: Temperature profile for cold air injection.

Figure 5.6 shows the variation of temperature with time. Only the maximum tempera-

ture is presented in order to follow the combustion front peak. The dashed line which

increases linearly over the time is the ignition process with electrical heating. The set

point is programmed to 625◦C to make sure that combustion starts. After 30 minutes,

the heaters are turned off and the chemical reactions for oil oxidation take control. The

process after ignition takes other 30 minutes to reach a pseudo-stable state. It is possible

to determine this pseudo-stable state from the figure, with an average temperature peak

of 534.2◦C.

5.4 Conclusions

The main contribution of this chapter is the implementation of the pressure equation.

Many authors simulate the combustion tube only from the overall gas balance that leads

several modeling problems [26, 63]. It is clear that gas phase is one of the most important
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Figure 5.6: Temperature control in the combustion tube with electrical ignition pro-
cess.

component responsible of the pressure changes in the combustion, but we demonstrate

that oil plugging is also important, and the behavior is only captured with the volume

conservation principle.

We develop a rigorous combustion tube model able to predict temperature, composi-

tion and pressure behavior, based on the chemical reactors approach and conservation

equations. The toolbox is also designed to work for several operating conditions and

ignitions process.



Chapter 6

Overall conclusions

The dissertation addressed the importance of the lab scale research in order to under-

stand the process of in-situ combustion and the chemical reactions involved. The results

in this document demonstrated the versatility and the utility of the simulation Toolbox

developed to predict the ISC process on several experimental setups.

The main contributions of this work are the mathematical models based on fundamental

laws and conservation equations, the facility of implement chemical reactions for ISC and

gas phase reactions by Cantera coupling. Also the code and the algorithm structure to

couple all the subroutines, source files and input data are considered an important con-

tribution to the scientific community. The overall conclusions that fulfill the objectives

of this study are summarized next.

• To formulate a mathematical set of equations that describes the reactive flow in

porous media.

We present a new way to model the reactive flow in porous media from the chem-

ical engineering perspective, it was possible to show the features of the simulator

from the simplest case in Chapter 3 (only gas flow without accumulation) to a

more sophisticated formulation based on Darcy flow in Chapter 5. The kinetic

cell, PFR and combustion tube models can be adapted to several configurations

and operating conditions in order to predict and design the experiments.

68
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• To perform a sensitivity study of parameters and operating conditions for experi-

mental setups.

The study of parameters and operating conditions was carried out in the toolbox

applications as a way to prove that the simulator can reach realistic solutions

for the different models and variables of the experiments. For the kinetic cell

was found that concentration gradients can be important and it implies that the

reactor is not working homogeneously, also some strategies to avoid the problem

can be studied in the simulator such as increasing the air flow or saturate the core

with low amount of oil.

Regarding the application with Cantera, it was studied the oxidation regions for

carbon monoxide, where at 700◦C the gas phase reactions are activated properly

and this process can be quenched using halogens as iodine.

For combustion tubes, we are able to make ignition of the oil with a controlled

heating and then track the process and determine if a stable combustion front is

reached. Besides we also noticed that in horizontal configurations the reactor can

be plugged up if the oil bank does not flow at the experiment conditions.

• To apply numerical methods and algorithms to build the simulation toolbox, which

suits the design alternatives.

Referring to the numerical methods, the ODE formulation and the choice of Matlab

as programming language, allowed an excellent mathematical control of the solver

variables that made easy the implementation of the GRI-MECH 3.0, because the

values and rates for radicals and gas species are extremely low compared to the

other variables, and also the control of the tolerances played an important roll in

order to get a realistic solution in the less time possible.

Also an important contribution of the toolbox formulation was the modeling of

the phase equilibrium as a flash separation unit. This approach made easier the

treatment of the equations for every specie and the programming of the module

was more intuitive.
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Future work

Many problems and challenges encountered in this dissertation have been outside the

scope. So, that can be the starting point for future works. We have grouped the most

important aspects in different categories:

• Toolbox applications.

Most of the effort in the present work was dedicated to the formulation of the

reactor models and the programming of the algorithms, we would have liked to

do more applications and variation to many important parameters. We provide

the toolbox working for different reactors and conditions, so it would be desirable

to perform specific and detailed works in only one single case of study, in this

way the design and optimization of the process will be possible. In that order of

ideas, we recommend to work with an oil well characterized in terms of physical

properties, avoiding to take unreliable data from literature, which was one of the

difficulties during this work. Some topics that would be interesting to address

with the Toolbox are: wet combustion, gravity effects on vertical tubes and oil

recovery. Our purpose was to bring a useful toolbox that can be applied to real

reactors, so experimental matching would be interesting. Finally, future studies

should consider the effects and amount of polluting gases such as NOx, H2S and

CH4 during the ISC process. Cantera module can be used to predict the gas phase

reactions for these species and also it is possible to improve the GRI-Mech 3.0 with

custom reactions as we prove in Chapter 3.

70
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• Reactor models.

There is always a lot of work be carried out in the modeling part. Future studies

should be focused in a more exclusive models specifically designed for the equip-

ment in the laboratory. We also think that multidimensional models with heat

losses are also important in the lab scale, because the environment in the reservoir

and the lab are not the same. Regarding the pressure analysis in Chapter 5, we

noticed that the toolbox should be adapted specifically to the pressure controllers

in a real lab, in order to predict and match experimental results. Besides the grav-

ity term in Darcy equation, should be included in future works in order to predict

vertical combustion tubes and other reactors.

• Numerical methods.

This is a challenging category and is currently one of the most investigated topic in

reservoir simulation. The stiff ODE formulation based in numerical differentiation

formulas, was used in the solver module of the toolbox with good accuracy in the

solution, but in the case of the combustion tube, the computational cost was more

than the expected. We also tried an implicit solution, using Newton iterations,

with constant time stepping and grid size, but the ODE formulation was more

efficient. We highly recommend the implementation in future works of adaptive

mesh refinement and variable time step (based on the gradients). Other kind

of improvement of the toolbox could be a better discretization scheme, to avoid

possible numerical instabilities with the ODE solver.



Appendix A

STARS input data - Toolbox

validation

The DAT input file that is required by STARS is presented below. This simulation was

used in Chapters 4 and 5 to validate the results of the Toolbox. All the properties and

experiment conditions, necessary to perform the simulations can be founded in this code.

For more information of the syntax see STARS user’s guide [42].

**———————-INPUT-OUTPUT CONTROL————————————-

*TITLE1 ’TOOLBOX VALIDATION WITH STARS - COMBUSTION TUBE ’

*CASEID ’Model 1-cartesian’

**CHECKONLY

*INUNIT *LAB

*OUTUNIT *LAB

*WPRN *GRID *TIME

*WPRN *ITER *TIME

72
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*OUTPRN *GRID *PRES *SW *SO *SG *TEMP *Y *X *MASS *SOLCONC

*OUTPRN *WELL *WELLCOMP

*OUTPRN *ITER *BRIEF

*WSRF *GRID *TIME

*WSRF *WELL 1

OUTSRF WELL MASS COMPONENT ALL

OUTSRF GRID PRES SG SO MASS SOLCONC SW TEMP X Y

OUTSRF SPECIAL MATBAL CURRENT ’CO’

OUTSRF SPECIAL MATBAL CURRENT ’CO2’

OUTSRF SPECIAL MATBAL CURRENT ’N2’

OUTSRF SPECIAL MATBAL CURRENT ’O2’

OUTSRF SPECIAL MATBAL CURRENT ’WATER’

OUTSRF SPECIAL MATBAL REACTION ’CO’

OUTSRF SPECIAL MATBAL REACTION ’CO2’

OUTSRF SPECIAL MATBAL REACTION ’O2’

OUTSRF SPECIAL MATBAL REACTION ’COKE1’

OUTSRF SPECIAL MATBAL REACTION ’COKE2’

*INTERRUPT *STOP

**————————-RESERVOIR DESCRIPTION———————————-

*GRID *CART 1 1 1204

**——IDIR *DOWN

*DI *CON 6.2

*DJ *CON 6.2

*DK *KVAR 1204*0.1

NULL CON 1



Chapter 7. Future work 74

*POR *KVAR 1204*0.378

*PERMI *CON 10000

*PERMJ *CON 10000

*PERMK *CON 10000

PINCHOUTARRAY CON 1

*END-GRID

ROCKTYPE 1

**———————OTHER RESERVOIR PROPERTIES—————————-

*CPOR 0

*CTPOR 0

ROCKCP 1.20572 0

*THCONR 2.5833

THCONW 0.0

*THCONO 0.0

THCONG 0.0

*THCONS 0.0

**——————–COMPONENT PROPERTIES————————————

** Model and number of components

** Model and number of components

** Model and number of components

** Model and number of components

** Model and number of components

** Model and number of components

** Model and number of components

MODEL 8 6 2 1

COMPNAME ’WATER’ ’OIL’ ’CO’ ’CO2’ ’N2’ ’O2’ ’COKE1’ ’COKE2’

** ——- —– —- —– —- —- ——- ——-

CMM

0 0.5376 0.028 0.044 0.028 0.032 0.67304 0.17976
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IDEALGAS

TCRIT

0 1472 -140.25 31.05 -146.95 -118.55

KV1

0 0

KV2

0 0

KV3

0 0

KV4

1 0

KV5

0 0

PRSR 101

TEMR 25

PSURF 101

TSURF 25

** Surface conditions

SURFLASH W O G G G G

** ’WATER’ ’OIL’ ’CO’ ’CO2’ ’N2’ ’O2’ ’COKE1’ ’COKE2’

** ——- —– —- —– —- —- ——- ——-

CPG1

0 1138.8 29.987 16.864 30.288 27.627

CPG2

0 0 0 0 0 0

CPG3

0 0 0 0 0 0

CPG4

0 0 0 0 0 0

SOLID DEN ’COKE1’ 0.0326265 0 0

SOLID DEN ’COKE2’ 0.0088 0 0

SOLID CP ’COKE1’ 17.0 0
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SOLID CP ’COKE2’ 17.0 0

MASSDEN

0 1.008E-3

CP

0 0

CT1

0 0

CT2

0 0

VISCTABLE

** temp

5 0 1636262

15 0 229374

25 0 54485.9

30 0 30000

48 0 10600

65 0 3000

100 0 290

150 0 32

200 0 7.5

250 0 2.7

300 0 1.0

325 0 0.75

350 0 0.60

375 0 0.50

400 0 0.47

425 0 0.41

450 0 0.36

475 0 0.315

500 0 0.28

525 0 0.25
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550 0 0.22

2000 0 0.12

** ’WATER’ ’OIL’ ’CO’ ’CO2’ ’N2’ ’O2’ ’COKE1’ ’COKE2’

** ——- —– —- —– —- —- ——- ——-

** Reaction 1: OIL + 4.24 O2 –¿ 1 ’COKE1’

** Reaction specification

STOREAC

0.0 1.0 0.0 0.0 0.0 4.24 0.0 0.0

STOPROD

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

RPHASE

0 2 0 0 0 3 0 0

RORDER

0 1 0 0 0 1 0 0

**1/kPa-MIN

FREQFAC 0.01

** J/gmol

RENTH 1.597E6

**J/gmol

EACT 22560

RTEMUPR 5000

O2PP ’O2’

** ’WATER’ ’OIL’ ’CO’ ’CO2’ ’N2’ ’O2’ ’COKE1’ ’COKE2’

** ——- —– —- —– —- —- ——- ——-

** R2: ’Coke1’ + 33.8 O2 –¿ 4.75 CO + 23.77 CO2 + 22 WATER + 1’COKE2’

** Reaction specification

STOREAC

0.0 0.0 0.0 0.0 0.0 33.8 1.0 0.0

STOPROD

0 0.0 4.75 23.77 0.0 0.0 0.0 1.0

RPHASE

0 0 0 0 0 3 4 0
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RORDER

0 0 0 0 0 1 1 0

**1/kPa-MIN

FREQFAC 250

** J/gmol

RENTH 1.28E7

**J/gmol

EACT 67525

RTEMUPR 5000

O2PP ’O2’

** ’WATER’ ’OIL’ ’CO’ ’CO2’ ’N2’ ’O2’ ’COKE1’ ’COKE2’

** ——- —– —- —– —- —- ——- ——-

** Reaction 3: ’COKE2’ + 12.29 O2 –¿ 1.73 CO + 8.56 CO2 + 8 Water

** Reaction specification

STOREAC

0.0 0.0 0.0 0.0 0.0 12.29 0.0 1.0

STOPROD

0 0.0 1.73 8.56 0.0 0.0 0.0 0.0

RPHASE

0 0 0 0 0 3 0 4

RORDER

0 0 0 0 0 1 0 1

**1/kPa-MIN

FREQFAC 220

** J/gmol

RENTH 4.85E6

**J/gmol

EACT 87575

RTEMUPR 5000

O2CONC ’CO2’

O2PP ’O2’
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**———————————-ROCK FLUID DATA———————————–

*ROCKFLUID

*RPT 1 *LININTERP *OILWET

** Sw Krw Krow Pcow

** —- — —- —-

*SWT

0.068 0.0000 1.0000 0

0.15 0.0077 0.8229 0

0.2 0.0200 0.7232 0

0.218 0.0259 0.6889 0

0.25 0.0381 0.6300 0

0.3 0.0619 0.5432 0

0.35 0.0915 0.4629 0

0.4 0.1268 0.3889 0

0.45 0.1679 0.3214 0

0.5 0.2148 0.2604 0

0.55 0.2674 0.2057 0

0.6 0.3258 0.1575 0

0.65 0.3899 0.1157 0

0.7 0.4598 0.0804 0

0.75 0.5354 0.0514 0

0.8 0.6168 0.0289 0

0.85 0.7040 0.0129 0

0.9 0.7969 0.0032 0

0.932 0.8956 0.0000 0

*SLT

** Sl Krg Krog Pcgo

** – — —- —-

0.068 0.8975 0 0

0.1368 0.6845 1E-3 0

0.2 0.6233 0.0077 0
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0.25 0.5429 0.0200 0

0.268 0.5154 0.0259 0

0.3 0.4681 0.0381 0

0.35 0.3989 0.0619 0

0.4 0.3352 0.0915 0

0.45 0.277 0.1268 0

0.5 0.2244 0.1679 0

0.55 0.1773 0.2148 0

0.6 0.1357 0.2674 0

0.65 0.0997 0.3258 0

0.7 0.0693 0.3899 0

0.75 0.0443 0.4598 0

0.8 0.0249 0.5354 0

0.85 0.0111 0.6168 0

0.9 0.0028 0.7040 0

0.932 1E-3 0.7969 0

1 0 0.8956 0

**—————————INITIAL CONDITION————————————–

*INITIAL

VERTICAL OFF

INITREGION 1

*PRES *CON 780

*TEMP *CON 25

*SW *CON 0.0

*SO *CON 0.2

*SG *CON 0.8

MFRAC WAT ’WATER’ CON 1

MFRAC OIL ’OIL’ CON 1

MFRAC GAS ’O2’ CON 0
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MFRAC GAS ’N2’ CON 1

MFRAC GAS ’CO2’ CON 0

MFRAC GAS ’CO’ CON 0

**—————————-NUMERICAL CONTROL——————————–

*NUMERICAL

MAXSTEPS 100000

MAXTEMP 5000

**DTMAX 0.1

DTMIN 0.000001

**————————–RECURRENT DATA—————————————-

*RUN

*TIME 0

DTWELL 0.01

*WELL ’MB-INJECTOR’

*WELL ’MB-PRODUCER’

**————- INJECTION PERIOD——————-

*PRODUCER ’MB-PRODUCER’

*OPERATE *MAX *BHP 780

** rad geofac wfrac skin

GEOMETRY K 0.5 1.0 1.0 0.0

PERF TUBE-END ’MB-PRODUCER’

** UBA ff Status Connection

1 1 1204 1.0 OPEN FLOW-TO ’SURFACE’

*INJECTOR ’MB-INJECTOR’

*TINJW 500

*PINJW 780

*INCOMP *GAS 0 0 0 0 0.79 0.21
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*OPERATE *STG 10000

** rad geofac wfrac skin

GEOMETRY K 0.5 1.0 1.0 0.0

PERF TUBE-END ’MB-INJECTOR’

** UBA ff Status Connection

1 1 1 1.0 OPEN FLOW-FROM ’SURFACE’

*TIME 10

*TIME 79

*TIME 80

*TIME 81

*TIME 82

*TIME 83

*TIME 84

*TIME 85

*TIME 86

*TIME 87

*TIME 88

*TIME 89

*TIME 90

*TIME 91

*TIME 92

*TIME 93

*TIME 94

*TIME 95

*TIME 96

*TIME 97

*TIME 98

*TIME 99

*TIME 100

*TIME 101

*TIME 102

*TIME 103
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*TIME 104

*TIME 211

*TIME 212

*TIME 213

*TIME 214

*STOP



Appendix B

Simulation Toolbox: Matlab code

The Matlab code that contains all the subroutines to characterize the process and

reactor models is open to the academic community. It can be required by email to

main authors Juan Hincapie (jufhincapieal@unal.edu.co) and Alejandro Molina (amoli-

nao@unal.edu.co). The web page of the research group (Bioprocesos y Flujos Reactivos)

contains the files in the repository.

The installation guide of Cantera can be found in: www.cantera.org
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