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Acronyms List

In the following table, we define relevant acronyms that shall be used along the text:

Acronym Meaning Context and Benchmarks

QFT Quantum Filed Theory Mathematical frameworks for quantum interactions in space-time

QED Quantum Electrodynamics QFT based on the interactions among photons and charged particles

SM Standard Model Fundamental QFT to Particles Interactions: EW plus QCD

EW Electroweak QED plus weak interactions based on SU(2)L × U(1)Y gauge group

QCD Quantum Cromodynamics Strong interactions based on the SU(3)C gauge group

2HDM(s) Two Higgs Doublet Model(s) Next non-trivial extension to Higgs sector of SM

VEV Vacuum Expectation Values Average of a field operator in the vacuum

SSB Spontaneous Symmetry Breaking Physical processes to break a symmetry by the vacuum realization

CP(T) Charge-Parity (Temporal Inversion) Discrete Symmetries related to space-time and internal degrees

FCNC(s) Flavor Changing Neutral Current(s) Experimental constrained Flavor Physics processes

LO Leading Order Zero order in perturbation theory in QFT

NLO Next to Leading Order First level in perturbation theory in QFT

NNLO Next to Next to Leading Order Second level in perturbation theory in QFT

RGE(s) Renormalization Group Equations Differential equations for dependence of couplings with energy scale

GUT Grand Unification Theories High energy-QFTs describing scale for QCD and EW unification

EFT Effective Field Theories QFTs with relevant freedom degrees up to some energy (cut) scale

LHC Large Hadron Collider Most important experiment in Particle Physics so far
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Abstract

In light of the new results from experiments like the ones coming from the Large Hadron Collider (LHC), theoretical
and phenomenological implications are comprehensively studied from an extended scalar sector given by the Two Higgs
Doublet Model. A review and a brief status based on symmetries and Spontaneous Symmetry Breaking patterns are
discussed. By using the hidden reparametrization invariance, we focused our analyses on Higgs potential behavior at
tree level and Next to Leading Order. Particularly, positivity constraints to get a bounded from below Higgs potential
are broadly analyzed. Moreover, since metastable states might be present even at tree level, compatible parameter
space can be discussed from new limits; being this fact pointed out to an improvement of Next to Leading Order
results. Exclusions over parameter space coming from to avoid limiting charge violation vacua scenarios are converted in
complementary studies to whose associated with vacuum stability analyses. Besides these studies, we also consider the
strongest conditions from perturbativity unitarity analyses in scattering processes for the scalar sector. Further, since
brief surveys over unitarity is possible to introduce the concept of fermion mass scale as well as to study its realization in
general Yukawa couplings in the 2HDMs. Besides, this treatment allows tackling the problem of perturbative unitarity in
fermion-antifermion scattering. As a central point, we discussed unitarity bounds over flavor changing neutral currents
couplings, which are compatible with those yielded by perturbativity in renormalization group equations. The most
important feature of these bounds is the independence with Higgs masses and mixing angles.

As a prototypical and realistic example incorporating all fundamentals described above, we present one complete
scanning from vacuum analyses of several parameters spaces in an inert-2HDM with Z2 and U(1) symmetries. For scalar
mass splittings in different zones of parameter space, we focused over stability bounds and described the evolution of
instabilities and non-perturbative zones (yielding possible Landau poles). Moreover, we present new constraints to find
one global minimum in the theory of the inert scenario. We apply a methodology based on reparameterization group
formalism for the Higgs potential in 2HDMs. Bounds established by metastability analyses are evaluated regarding
allowed zones compatible with one loop level studies for vacuum stability and unitarity systematics. All these regions
are also analyzed from several phenomenological realizations and oblique parameters.

Other archetypes scenarios to study the vacuum behavior of an extended Higgs sector are the two Higgs doublet models
under the implementation of a softly broken U(1) global symmetry. The soft term is induced to forbid massless-axion
particles arising when the global symmetry becomes spontaneously broken. 2HDMs with a soft breaking of U(1) global
symmetry have metastability regions through the possible presence of multiple non-degenerate minima. Metastable states
are unwanted from the phenomenological point of view if the other local minima are not long-lived enough. The analysis
of this fact leads to find possible exclusion limits over parameter space of quartic couplings. It improves the individual
behavior of initial conditions for renormalization group equations; also determining unstable zones for the Higgs potential
at one loop level. Besides vacuum stability analyses, the influence of absence of charge violation minima is considered in
all studies. Extremal cases for the model as well as criticality phenomena are comprehensively discussed using relation
among Higgs masses or splittings among them. From vacuum behavior and LHC results, phenomenological aspects in
the searching of charged and heavier Higgs bosons are considered to evaluate the scalar alignment regimen of the two
Higgs doublet model.

Keywords: Extended Higgs sectors, Vacuum stability, Precision tests in High Energy Physics, Pertur-
bative Unitarity, Spontaneous Symmetry Breaking and Gauge Theories
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Introduction

When you teach any branch of physics you must motivate the formalism
- it isn’t any good just to present the formalism and say that it agrees with experiment-

you have to explain to the students why this the way the world is.
Stephen Weinberg

The Standard Model (SM), formulated by Weinberg, Glashow, Salam, with one Higgs doublet is the simplest realization
of electroweak symmetry breaking and provides an excellent description of almost all data collected so far at hadron
and lepton colliders. Current information data includes measurements associated with the recently discovered 125 GeV
scalar boson at the LHC. SM is thus converting into an important benchmark to study fundamental interactions since
it allows describe almost all phenomena existing in the high energy physics. Nevertheless, there are many problems in
High Energy Physics (HEP) to be addressed and what are out the scope of the SM. Outstanding examples of these
unexplained features are the neutrino oscillations determined from solar and long baseline measurements and whose
mechanism emerges by the small masses of neutrinos. Neutrino masses are absent in the SM formalism since these
fermions enter into the theory only with their left chirality components (approximately neutrinos with negative helicity),
while the spontaneous symmetry breaking requires both sectors, left and right handed projections, to get appropriate
massive structures. Another incompatible observation with SM precision measurements is the baryonic asymmetry of
the universe (BAU), whose mechanism can not be explained by the current experimental scenario of the SM with a single
Higgs boson. Another issue of the SM is the absence of dark matter candidates or possible portals and interactions, which
are invoked to explain the outstanding amount of non-baryonic processes as well as other astrophysical and cosmological
constraints (emerging mainly from gravitational lensing or Cosmic Microwave Background observables).

After the discovery of a Higgs boson-like particle, it is also now time to confront possible extensions in the Higgs
sector of the standard model with LHC data (as the first approach to other scenarios of new physics), which might be
electroweak completions to SM that lead some solutions to latter issues. For instance, one of the simplest ways to extend
the typical scalar sector is by adding one more complex doublet to the model. The resulting two Higgs doublet models
(2HDMs) can provide additional CP-violation sources coming from the scalar sector and can also easily originate dark
matter candidates compatible with the typical bounds.

Furthermore from Yukawa sector, the presence of an additional doublet might lead Flavor Changing Neutral Currents,
which are processes highly restricted from experimental studies. Another interesting feature is that more developed
models with other fields and symmetries realization contain a 2HDM like scalar sector - as e.g. in the case of the most
restricted version of Susy- the Minimal Supersymmetric Standard Model. By counting the physical degrees of freedom,
it is very easy to note that 2HDMs have particle spectrum containing two charged and three neutral scalars; it leads to
a significant number of interactions between those fields and therefore it is also translated into a richer phenomenology.
From the 2HDM fundamentals, our primary goal is to study what influence have these couplings and interactions in
the theoretical framework for the model and phenomenology in the particular cases of unitarity and vacuum stability
analyses. Also, we will be taking into account possible phenomenological consequences from the behavior of critical
precision test parameters, which are related with accidental or several explicit symmetries present in different sectors of
the 2HDM-Lagrangian.

Scalar signal compatible with a Higgs hypothesis and favored by the experimental data in CMS and ATLAS leads to
a mass close to 125 GeV [1–4]. This mass region has been studied comprehensively from vacuum analysis at next to
leading order (NLO) [5] and in the most contemporary analysis at next to next to leading order (NNLO) [6–11]. The first
approach relies on two loop renormalization group equations and one loop threshold corrections at the electroweak scale
improved with two loop terms from pure QCD corrections. On the other hand, the NNLO incorporates higher order
corrections in the strong, top Yukawa and Higgs quartic couplings; considering mainly full three loop beta functions for
all SM gauge couplings and the leading terms three loop beta functions in the RG evolution. Moreover, NNLO terms
have an important piece of the vacuum stability analysis that comes from two-loop corrections to quartic coupling at
the weak scale due to QCD and top Yukawa interactions, because such couplings are sizable at low energy scales. With
these computations, absolute stability of the Higgs potential is excluded at 98% C.L. for mh < 126 GeV while quartic
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coupling at the Planck scale is close to zero, which is associated with critical phenomena [6]. Indeed, in the current mass
region for Higgs and top quark, there is a significant preference for metastability of the SM potential [12]. This situation
takes place when the true minimum of the scalar potential is deeper than the standard electroweak minimum, but the
latter has a lifetime that is larger than the age of the universe [13,14].

Figure A: (Left) RG evolution of λ varying mt (top quark mass), mh0 (Higgs mass) and αs by 3σ reported in [6].
(Right) Regions of absolute stability, metastability and instability of the SM vacuum-minimum in the mt −mh0 plane.
This region has been zoomed in the preferred experimental range of mh0 and mt plane (the gray areas denote the allowed
region at 1σ, 2σ, and 3σ). The three boundary lines correspond to αs(mz) = 0.1184±0.0007, and the grading scale of the
colors indicates the size of the theoretical error. The dotted contour lines show the instability scale ΛI in GeV assuming
αs(mz) = 0.1184.

The occurrence of criticality (metastability-stability boundary) for couplings at higher energy scales could be a con-
sequence of symmetry, a fine tuning or a dynamical effect among new parameters from an Extended Higgs Sector of
the Inert Two Higgs Doublet Model (IHDM), for instance. The last one is the primary motivation for our work: try
to understand some limits of this criticality phenomena through of extended models respecting the minimality principle
-wherein the typical scales for SM and the Inert Two Higgs Doublet Model are the same-. Moreover, those analyses
would be involved in the threshold corrections in the study of phenomenology in other models beyond SM sharing a
similar Higgs spectrum (with the decoupling other particle states).

Criticality in our case reflects as the boundary separating the stability and instability behaviors in the effective potential
for the extended Higgs sector. By plotting different combinations of new quartic couplings of extended parameter space,
we analyze the behavior of criticality with energy scales. Since these couplings also depend on measurements for Higgs
boson and top quark masses, the improvement for the precision level of these parameters leads to describing most
accurately mechanisms and principles behind of phase diagrams.

The 2HDM includes two complex doublets with identical quantum numbers and represents the next non-trivial ex-
tension compatible with the gauge invariance and with the Electroweak-Spontaneous Symmetry Breaking (EW-SSB)
in the SM. Therefore in 2HDMs there are eight real fields. By Higgs mechanism, three must become the longitudinal
components of the W± and Z0 bosons after the SSB (in the unitary gauge). Five physical Higgs scalars will remain:
a charged scalar H± and three neutral scalars h0, A0 and another neutral pseudoscalar A0 (CP conserving scenario).
Other motivations to introduce an extended Higgs sector with two doublets are the additional sources either spontaneous
and explicit CP violation; being both outstanding mechanisms to explain baryon asymmetry of the universe (BAU) from
baryogenesis processes [15]. The non-compatibility of SM dynamics consequences with Sackarov conditions -notably the
absence of a strong enough First Order Phase Transition- is a significant failure of the minimal model with one dou-
blet [16, 17]. Besides mechanisms to take into account BAU through Sackarov conditions realization require a complete
study of vacuum structures of extended models, translating both, stability and baryogenesis plausibility, into relevant
frames to limit a feasible parameter space.

As was introduced and motivated above, another crucial consequence with additional Higgs doublets is the possibility
of flavor-changing neutral currents (FCNC). It is well known that FCNCs are highly constrained by the charged current
processes like mesons oscillations, so it would be desirable to “naturally”suppress them in these models. For instance, if

0The parameter ρ ≡ m2
w/m

2
z cos2 θw is a critical piece sensitive to the scalar structure of EWSSB. A splendid feature of models with extra

SU(2) doublets (or singlets) is that they do not break the custodial SU(2) global symmetry, that protects ρ = 1 at tree-level.
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all fermions with the same quantum numbers couple to the same scalar doublet, then FCNC will be avoided. A condition
(necessary and sufficient), leading to an absence of FCNCs at tree level, is all fermions of a specified charge and helicity
transform regarding the same irreducible representation of SU(2)−group; corresponding to the same eigenvalue of the
third component of isospin operator. Hence exist a basis in which fermions receive their contributions in the mass matrix
from a single source [18]. From quark sector in the Yukawa part, we can see two possibilities: All quarks couple to
just one doublet or the up type right-handed quarks couple to one doublet (e.g. Φ2) and the down type right-handed
quarks couple to other (Φ1). The first choice is called the 2HDM type I, and the last model is known as the 2HDM
type II. In the moment of these structures extends to the leptonic sector, it is taken the charged leptons couple to the
same Higgs multiplet as the Q = −1/3 quarks. Although this condition is not necessary to avoid FCNCs. There are
other two possibilities to construct models with natural flavor conservation indeed. In the lepton-specific model, the RH
quarks couple to Φ2 and the RH leptons couple to Φ1. In the flipped model (or Y-2HDM), the Q = 2/3 right-handed
quarks and charged leptons couples to the same doublet (say Φ1), and the Q = −1/3 right handed quarks couple to
Φ2 [19]. In this dissertation, we concentrate on the traditional types I and II 2HDMs and the corresponding extension
to lepton sector, since for these 2HDMs, the considered symmetries are accomplished either Higgs potential and Yukawa
sector. Nevertheless, in our discussion about foundations of 2HDMs will make some phenomenological studies over these
four models with natural flavor conservation (Type I, II, X, Y-2HDMs). Moreover, we will see the possibility of having
FCNCs in the new measurements for Higgs boson coming from run1 data at LHC.

Because of the Higgs mass in SM is becoming measured and limited even more as a result of precision tests performed in
LHC, one might ask how the new scalar free parameters in the 2HDM are constrained by the general vacuum behavior [20].
There are more self-couplings (which could diverge by the unification scale leads to possible Landau poles) and more
directions in field space where an instability in the Higgs potential could arise. Limits of model parameters or splittings
(mass differences) generated depend on mass eigenstates hierarchy in 2HDM and thus of symmetries implemented in the
Higgs potential. Mainly, the first scenario interpreting the vacuum behavior as a threshold correction with significant
phenomenological consequences is the inert Higgs doublet model. To constrain masses of new charged and pseudoscalar
particles (or splittings), we can identify the lighter Higgs with the current signal for Higgs boson and study the remain
directions in the parameter space. This structure form for analysis is a parallel one to the constraints over parameter
space of 2HDM, which have been examined before [21], but the Higgs mass was unknown at the time (different values
from 50 GeV up to about 150 GeV for the Higgs mass were considered).

Other features for the inert-Higgs doublet model have been introduced with the aim to set a Higgs boson (H0) of mass
between 400 and 600 GeV. This choice lifts the divergence of the Higgs radiative corrections beyond the TeV scale. In
such range, new physics is supposed to render the theory natural and convert the Higgs quartic coupling perturbative [22].
The perturbative unitarity bounds for mH0 , mA0 and mH± are near to 700 GeV for models compatible with a inert
2HDM [23], hence the interval to interpret naturalness problem is according to this tree level bound. By using the
constraints from the electroweak precision, data implies to introduce a second inert Higgs doublet is introduced (Φ2).
Although Φ2 has weak and quartic interactions just as in the ordinary 2HDM, it does not acquire a VEV (its minimum
is at (0, 0)), nor it has any other couplings to matter. The inert-2HDM describes one particular class of Type-I 2HDMs.
The Φ2 doublet transforms odd under a novel unbroken parity symmetry, Z2, while all the SM fields have even Z2 parity.
As a consequence, the lightest inert scalar (LIP) (H0 or A0) is stable and a suitable dark matter candidate [24].

In addition to the standard issues in the stability conditions, the 2HDM has a richer vacuum structure wherein
metastable states could be present. This effect is a consequence of relating the number of critical points in the Higgs
potential, which particularly in its minimum consists on the composition of two vacuum expectation values, also depending
on stationary points nature. The scalar potential of 2HDM might have simultaneously two neutral minima, two CP
conserving or two CP violating [25]1. In those cases, from a vacuum state belonging in a local metastable-minimum,
there would be the possibility of decaying later into a deeper minimum. Descriptions of metastability with underlying
two Higgs doublet dynamics focused on formal aspects have been broadly studied in [26–30]. Phenomenological aspects
of the possibility of two global minima have been treated comprehensively in [31,32]. Nonetheless, relevant studies about
vacuum metastability in softly U(1) models have been carried out, comparison among one loop behavior of the effective
Higgs potential and the presence of two neutral minima is still an issued to be addressed. In this direction, recently in [33]
studied the impact of considering a softly breaking term to get stable zones in energies µ > 1010 GeV. For Inert models,
in [34] has been shown as the parameter space compatible with the coexistence of both possible neutral vacua is larger
than the predicted by the tree-level analyses; also demonstrating how the nature of vacuum can change at one loop level

0In 2HDM type II, selection of inert vacuum prevents to down-type fermions to acquire mass. Therefore and how we are interested in to
study effects of down fermions in RGEs, we would consider only the 2HDM type I.

1In 2HDMs exist the possibility of having charge violating critical points. Despite these stationary points must be avoided and coexistence
with normal ones is forbidden, we consider limiting where this vacuum is possibly generated as one assumption to describe hierarchical
structures in scalar masses computed in a neutral-minimum.
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concerning established at tree level. Therefore, potential regions investigated by vacuum stability can be constrained by
the presence of an inert-like vacuum (where fermions are massless) at one loop level.

In the moment of building a model containing a Higgs potential with several distinct neutral minima breaking the same
symmetries, possibility of taking a metastable minimum as a physically acceptable vacuum state is also allowed if this
effect is suppressed by the fact of having a long lived enough minimum state. This lead to describe the masses for particles
in a realistic approach, without being concerned about the tunneling effects changing this phenomenological scenario.
Nevertheless, from a cosmological point of view, the metastable regime of 2HDM could bring many consequences and
issues in baryogenesis mechanisms. For instance, the critical temperature for a strong phase EW transition might have
an ambiguous definition if possible minima of the effective Higgs potential are not considered properly [16]. However,
LHC-phenomenology analyses as decays ratios of new physics could give some information about suppression metastable
states [32] in 2HDMs. Moreover, LHC collaborations have given contours in the measured golden-decays with a good
confidence level [35]. These regions can be used to extract plausible frameworks in the vacua realization for 2HDMs.

Although experimental accessibility is now significant, many possible scenarios of 2HDM remain unknown from the
phenomenological point of view. Hence, theoretical constraints might be obtained by making further fundamental
assumptions on the Quantum Field Theory background of the 2HDM. In addition to the vacuum stability behavior,
triviality, oblique parameters, and the unitarity at the tree level can be used to study parameter space regimes widely.
Triviality bounds rely on the fact that the quartic couplings in the potential remain finite up to large scales of energy
to avoid divergences associated with Landau poles. The condition of vacuum stability requires that some couplings (e.g.

the associated couplings to self-terms: (Φ†iΦi) with i = 1, 2) in the Higgs potential must be positive in all field space
directions for their asymptotically large values, otherwise the potential would be unbounded from below and does not
have a minimum [36,37].

On the other hand, S−matrix unitarity is embodied in all perturbative levels due to the Optical Theorem (OT) [38–40].
Especially for asymptotically flat models (wherein scattering amplitudes do not exhibit any power-like growth in the high
energy limit), leading contributions lie at the tree level. Theoretical constraints are thus ensured through the correct
reliability of perturbation theory in gauge theories.

Perturbative unitarity bounds are derived from the Lee-Quigg-Thacker (LQT) method which shows that if the Higgs
boson mass mη0 exceeds critical values obtained from partial wave decomposition, unitarity is violated at the tree level
for different binary scattering processes p2p1 → p3p4 at high energies, s >> m2

η0 [23, 41–44].
These unitarity constraints have been commonly applied to bosonic scalar and bosonic vectorial sectors because the

unitarity limits emerge from Partial Waves Decomposition, which is only valid for spinless particles (for vector bosons
formalism applies because of the theorem of equivalence). For fermionic Yukawa couplings, it is necessary to introduce
a General Partial Waves Decomposition where different spin states are involved. The Jacob-Wick expansion is the most
natural and simplified method for partial diagonalization in the angular momentum basis since such systematics relies
on the appropriate choice of physical states in the initial characterization of scattering processes [45].

With the aid of these fundamental points, this work would be expected by converting into a well-grounded frame to
analyze new extended Higgs sectors and the respective phenomenological properties for observables like masses, splittings,
mixing angles and production or decays of physical states. This dissertation has also the purpose of giving to model
building relevant scenarios to take into account besides to analysis from current searches for new physics beyond SM.

With the aim to incorporate all concepts systematically, this thesis is organized as follow. In chapter 1, fundamentals of
2HDM are considered, as well as particular cases of an Abelian and non-Abelian global and discrete symmetries for Higgs
potential and Yukawa sector; discussing phenomenological scenarios for different models and making a review of new Higgs
bosons searches. With this essential discussion and examination, in chapter 2, vacuum structures in 2HDMs analyses are
established comprehensively. Loop corrections to study NLO-effective Higgs potential behavior are considered in chapter
3. To make an improvement over typical studies and to determine a proper behavior of scattering amplitudes at high
energies, in chapter 4 we review unitarity constraints and perturbative behavior for general quantum field theories and
the particular case of 2HDMs. By applying all fundamental in these parts, in chapter 5 contours (built up to emulate a
bounded from below effective Higgs potential) and several analyses for couplings are considered in different energy scales
up to GUT and Planck scales- for inert 2HDMs. Similarly, in chapter 6 we discuss phenomenological aspects in the
searching of possible metastable states in the Higgs potential of 2HDM with softly breaking of a U(1) symmetry. Finally,
in the conclusions and remarks, we discuss the influence of our treatments in the interpretation of vacuum, perturbative
unitarity, and electroweak precision tests globally. Additional discussions, description of generalizations of formalisms
and relevant demonstrations for 2HDMs-fundamentals, vacuum stability, oblique parameters, perturbative unitarity, and
phenomenology are respectively considered in appendices A-M.
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1. 2HDM Fundamentals

From new experimental analyses, standard model (SM) has become a primary benchmark to study fundamental interac-
tions since it allows describe almost all phenomena existing in the high energy physics with a high level of accuracy. For
instance, small deviations (< 68% C.L:) from SM couplings of Higgs bosons to gauge bosons and fermions are present in
data from run 1 of LHC, as we can see in Fig. 1.1.
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Figure 1.1.: Likelihood proof for (Cγ , Cg) (left) and (CV , CF ) (right) effective couplings fits using data from the LHC-
run 1 combination [35]. Cγ and Cg describe effective LO couplings for Higgs boson to two photons and two
gluons, respectively. CV and CF are the effective couplings form Higgs boson to EW-gauge bosons (W±, Z0).
The red, orange and yellow color-scaled filled surfaces correspond to the 68% C.L., 97% C.L. and 99% C.L.
regions obtained by Lilith. The black diamond indicates the position of the Lilith best-fit point and the white
circle shows the SM prediction. To build up these compatibility-contours, we have assumed mh = 125.04
GeV.

Nevertheless, there are many problems in High Energy Physics to be addressed and what are out the scope of the SM.
One notable example is the neutrino oscillations, determined from solar and long baseline measurements [46–48]. This
phenomenon arises from the massive character of the neutrinos and their tiny size; features that are not implemented
naturally in the SM formalism. Another relevant observation is the baryonic asymmetry of the universe (BAU), whose
mechanism to yield strong first order phase transitions can not explaining by the current experimental scenario of the
SM (primarily in the Higgs mass around of 125 GeV). Another issue of the SM is the absence of dark matter candidates
or possible portals and interactions to explain the outstanding amount of non-baryonic processes [49].

After the discovery [1,2,50] of a Higgs boson at LHC, it is now time to confront possible extensions of the with data and
reconstructions derived from them. One of the simplest ways to extend the scalar sector of the SM is by adding one more
complex multiplet (N = 2) to the model. The resulting two Higgs doublet models (2HDMs) can provide CP-violation
sources coming from the scalar sector and can also easily originate dark matter candidates compatible with the typical
bounds [51–53]. Besides, 2HDMs could induce suitable scenarios to yield baryogenesis processes by the realization of
EW-Strong First Order Phase Transitions [16,54,55].

Another benchmark point is that 2HDMs could have spontaneous and explicit CP violation sources. Both effects could
generate compatible scenario with baryogenesis processes since Sackarov conditions demand new sources of CP violation
to establish an accurate number of Baryonic Asymmetry of Universe.

Besides to these phenomena, the presence of an additional doublet might lead Flavor Changing Neutral Currents
(FCNCs). Despite the fact that these processes are highly constrained from experimental studies, the 2HDMs framework
would result in investigating the origin of precise suppression mechanisms for them. Another interesting feature is that
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1.1. 2HDM: Fields content and kinetic sector

more evolved models with an additional content of fields and symmetries have a 2HDM like scalar-Higgs sector - as in the
case- of The Minimal Supersymmetric Standard Model (MSSM) and Grand Unification theories1 or Left-Right symmetric
theories. In these cases, 2HDMs are considered as low energy effective theories of the model with more relevant degrees
of freedom.

Recently, electromagnetic form factors for neutrinos have been studied in frames provided by 2HDMs, showing how
these models with flavor conservation have higher contributions than expected by a minimal SM with massive neutrinos;
being them potential frameworks to compare available parameter spaces for 2HDMs with precision measurements for
magnetic dipole moment of tau neutrino [56,57].

Furthermore, 2HDMs have a richer particle spectrum with two charged and three neutral scalars; it leads to a signifi-
cant number of interactions between those fields and therefore it translates into an extensive phenomenology. From the
2HDM fundamentals our primary goal is to study what influence have these couplings and interactions in the theoretical
framework for the model and phenomenology; in the particular cases of unitarity and vacuum stability analyses. Fur-
thermore, we are taking into account possible phenomenological consequences from the behavior of significant precision
test-parameters connected with accidental symmetries belonging in different sectors of the 2HDM-Lagrangian. For ex-
ample, we handle the custodial symmetry behavior in various parts of the 2HDM as well as its realization in the oblique
parameters.

Finally, we make a review of some relevant phenomenological analyses for searches of new physics and the constraints
mainly obtained by the recent data of LHC-collaborations. These include compatibility level studies between different
types of 2HDM with flavor conservation and LHC results; incorporating the so-called type I and type II 2HDMs as well
as lepton-specific and flipped cases. Also, we summarize searches for FCNCs, charged and pseudoscalar Higgs bosons.

1.1. 2HDM: Fields content and kinetic sector

To build up a general 2HDM and to achieve the Spontaneous Symmetry Breaking of EW-gauge group SU(2)L×U(1)Y →
U(1)Q, we add a copy of the first doublet with the same quantum numbers, i.e., the same hypercharges Y1 = Y2 = 1 and
isospin I = 1/2,2

Φ1 =

(
φ+

1

φ0
1

)
; Φ2 =

(
φ+

2

φ0
2

)
. (1.1.1)

In a general scenario, both doublets could acquire VEVs, where a possible case is such that neutral components can be
parameterized in a generic form by

〈Φ1〉0 =
v1√

2
; 〈Φ2〉0 =

v2√
2
eiθ. (1.1.2)

The multiplets can be written regarding eight fields associated with the freedom degrees introduced by the complex
doublets of SU(2)

Φ1 =

(
φ+

1
h1+v1+iη1√

2

)
; Φ2 =

(
φ+

2
h2+v2e

iθ+iη2√
2

)
. (1.1.3)

where θ is a phase parameter, which is connected with a possible spontaneous breaking of CP symmetry. When the
gauge symmetry breaks spontaneously by the Higgs mechanism, the eight degrees of freedom from the SU(2) doublets Φ1

and Φ2 are usually re-expressed in states with definite physical properties. Then, the spectrum contains three Goldstone
modes: G± and G0, which are absorbed (in the unitary gauge) to turn on mass to the gauge bosons W± and Z0,
reducing the number of physical Higgs states to five. Three of these scalars are neutral, of which two (ho and H0, with
mh0 ≤ mH0) are CP-even, and one is CP-odd typically denoted as A03. The remaining two states are a pair of charged

1The MSSM requires a second Higgs doublet to ensure the removal of gauge anomalies. So, the Higgs sector of this model is a 2HDM which
contains two chiral Higgs super-multiplets distinguished by the sign of their hyper-charge. In grand unification theories, we need to break
the Lie group to the SU(3)C × SU(2)L × U(1)Y group. To implement so, the model requires different Higgs representations. In general,
this implies the presence of an extended scalar sector at the electroweak scale. For example, a two-Higgs-doublet model is needed to break
SO(10) to the SM group .

2These quantum number assignments (1, 1/2) are compatible with a non-normalized in Y Gell Mann-Nishijima formula: Q = I3 + Y/2
3The CP-quantum numbers assignment before fermions introduction is the following :

JPC → Field

0++ → H0

0++ → h0

0−+ → A0
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1. 2HDM Fundamentals

Higgs bosons (H±). The charged and pseudoscalar Higgs bosons are a characteristic of the 2HDM that is not present in
the minimal SM. Then, its discovery would be a major signal of physics beyond and it might drive out to models with
higher symmetries to be more constrained.

The model implementation requires the construction of a kinetic Lagrangian and the Higgs potential VH . These parts
of the scalar sector have the following Lagrangian

L = (DµΦ1)
†

(DµΦ1) + (DµΦ2)
†

(DµΦ2)− VH (1.1.4)

The kinetic sector defines interactions among scalars and gauge bosons as well as after SSB their respective mass terms.
For our studies about vacuum stability, the scalar potential would receive special attention, and thus their representations
and symmetries will be treated comprehensively in the next section. Through developments on Higgs potential in the
general formalism, we study Yukawa interactions and their relations with symmetries and basis transformations.

1.2. The Higgs potential in 2HDMs

The Higgs potential determines the SSB structure as well as the anatomy for scalar spectrum (Higgs eigenstates), the
self-interactions among scalars and the vacuum behavior at leading order. Since this sector remains largely unknown
from phenomenological scenarios, theoretical methods should be considered to limit all its free parameters. The number
of free parameters would depend on of the Higgs-potential structure based on the symmetries imposed on this sector [58].
To study this fact we introduce different notations for the Higgs potential and after we shall establish several symmetries
class associated with the global nature of the model 4. The most general Higgs potential, renormalizable (with dimension
two and dimension four terms) and SU (2)L × U (1)Y gauge invariant is given by

V (Φ1,Φ2) = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 +m∗212Φ†2Φ1

]
+
λ1

2

(
Φ†1Φ1

)2

+
λ2

2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

1

2

[
λ5

(
Φ†1Φ2

)2

+ λ∗5

(
Φ†2Φ1

)2
]

+
[
λ6

(
Φ†1Φ1

)(
Φ†1Φ2

)
+ λ∗6

(
Φ†1Φ1

)(
Φ†2Φ1

)]
+
[
λ7

(
Φ†2Φ2

)(
Φ†1Φ2

)
+ λ∗7

(
Φ†2Φ2

)(
Φ†2Φ1

)]
. (1.2.1)

Terms m2
11, m2

22 and λ1234 are real (by hermiticity property), while, m2
12 and λ567 are -in general- complex values. This

potential has fourteen free parameters, but it could be reduced by symmetry arguments as we will discuss below. This
form is an important tool to determine the Feynman rules for scalar-scalar interactions. The Higgs potential in a generic
basis (1.2.1), could be written in a more compact form through bilinears combinations of the doublets [59]:

V (Φ) =

nH=2∑
i,j=1

µijΦ
†
iΦj +

1

2

nH=2∑
m,j,k,l=1

Λjlkm(Φ†jΦk)(Φ†lΦm). (1.2.2)

This structure for the Higgs potential is useful to determine invariants, basis transformations, and symmetries [60]. By
definition

Λjlkm = Λljmk (1.2.3)

Moreover, hermiticity of the Higgs potential implies:

µij = µ∗ji, and Λjlkm =
(

Λjlmk

)∗
(1.2.4)

With these features over bilinears couplings, it is possible to present the correspondence between both forms (1.2.1) and
(1.2.2) of the Higgs potential,

µ11 = m2
11, µ22 = m2

22, µ12 = −m2
12, µ21 = −m∗212

Λ11
11 = λ1, Λ22

22 = λ2, Λ12
12 = Λ12

12 = λ3, Λ21
12 = Λ12

12 = λ4

Λ11
22 = λ5, Λ22

11 = λ∗5, Λ11
21 = Λ11

12 = λ6, Λ12
11 = Λ21

11 = λ∗6, Λ12
22 = Λ21

22 = λ7,Λ
22
12 = Λ22

21 = λ∗7 . (1.2.5)

These equivalences will be used to write symmetries relations and the respective Renormalization Group Equations
(RGEs).

4Relevant systematics of the formalism in this chapter follow the lines shown by Sher et al in [19]
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1.2. The Higgs potential in 2HDMs

Figure 1.2.: Illustration for a basis transformation on 2HDM from an original one identified by blue axis. The red axis
corresponds to a primed coplanar basis (rotated from an orthogonal axis ΦN in the right part). The red points
are possible combinations for doublets seeing from both coordinate frameworks (passive transformation).

1.2.1. Basis Transformations

Since only the scalar mass eigenstates and possible mixing angles are physical observables, any combination of the
doublets which respect the symmetries imposed on the Higgs potential will produce the same physical predictions. To
introduce the basis transformations, we construct all possibles combinations of (Φ1,Φ2) as a basis for the doublets space
5. It is possible to rewrite the potential regarding the new doublets Φ′a, which have been obtained from the original
doublets from a global basis transformation

Φ′a =

2∑
b=1

UabΦb. (1.2.7)

U is a 2× 2 unitary matrix. We illustrate this situation in Fig. (1.2) using a passive transformation point of view.

Now, it is need to study the form in which coefficients inside Higgs potential transform under a basis transformation.
In the compact notation (1.2.2), the couplings and mass terms behave

µ′ij =

2∑
c,d=1

UicµcdU
∗
jd =

(
UµU†

)
ij
, (1.2.8)

Λjlkm =

2∑
e,f,g,h=1

UjeUlgΛegfhU
∗
kfU

∗
mh. (1.2.9)

From (1.2.8) and (1.2.9), we can see that the overall phase of U does not influence the change of the parameters in the
Higgs potential. Hence, we may consider U ∈ SU (2). This fact leads to,

U =

(
eiχ cosψ ei(χ−ξ) sinψ

−ei(ξ−χ) sinψ e−iχ cosψ.

)
. (1.2.10)

A basis transformation may be used to avoid some of the degrees of freedom in the scalar potential. This overcounting
implies that not all the parameters in that potential have physical significance. Thus, three parameters in Eq. (1.2.10)
may be used to extract three out of the 14 parameters in the scalar potential. As a result of this procedure in the general
approach, there are only 11 physical degrees of freedom in the potential and, thus, only 11 independent observables.
Although we are still discussing the most general potential; when a global symmetry on the 2HDM is imposing, the
number of parameters which may be eliminated through basis transformations may even be less than three.

5For instance, we seldom use a basis of Hermitian, gauge invariant operators to expand the 2HDM-Higgs potential:

Φ†1Φ1; Φ†2Φ2; Re
(

Φ†1Φ2

)
; Im

(
Φ†1Φ2

)
(1.2.6)

This basis leads us to construct all possible Hermitian bilinear and quartic interactions compatible with gauge invariance.
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1. 2HDM Fundamentals

1.2.2. Higgs potential symmetries

The large number of free parameters in the scalar potential of the 2HDM reduces the theory’s predictive nature. It is
necessary designing a strategy to search phenomenological relevant information behind of the theoretical model. Likewise,
theoretical constraints (vacuum stability analyses, perturbative unitarity) and any well-grounded symmetry that we may
impose on the 2HDM to constrain its scalar potential shall be therefore a valuable tool to control plausible parameter
spaces. Also, as we discussed in previous sections, the 2HDM is in general plethoric of Flavor-Changing Neutral Currents
(FCNC); however, they may be actively suppressed by imposing an internal symmetry on the 2HDM [61]. Similarly,
those models might or not contain either explicit or spontaneous CP symmetry violation sources, which have broad
consequences in phenomenology like dark matter behavior, strong-CP problem and baryogenesis mechanisms [16]. As
we will see, many global symmetries (some whose lead to FCNC suppression) of the Higgs potential yield absence of CP
violation. The set of symmetries lead to kinetic terms unchanged may be of either two types:

1. Φa relates with Φb through some unitary transformation,

Φa → ΦSa =

2∑
b=1

SabΦb, (1.2.11)

where S is a unitary matrix. This linear transformation is an isomorphism since S maps Φ in itself, i.e., S: V → V .
Therefore, we demand that the Higgs potential to be invariant under this transformation. As a result of this
invariance, the couplings inside the Higgs potential (1.2.2) are given by

µij =

2∑
c,d=1

SicµijS
∗
jd, (1.2.12)

Λjlkm =

2∑
e,f,g,h=1

SjeSlfΛefghS
∗
kgS
∗
mh. (1.2.13)

They are known as Higgs Family (HF) symmetries. This scenario is not the situation considered in eqs. (1.2.7)-
(1.2.9). There, the coefficients of the Lagrangian do change under the transformation. In contrast, eqs. (1.2.11)-
(1.2.13) imply the existence of a HF symmetry of the scalar potential because the coefficients of VH are unchanged.

2. Φa relates with Φ∗b through some unitary transformation,

Φa → ΦGCPa =

2∑
b=1

XabΦ
∗
b . (1.2.14)

X is an arbitrary unitary matrix. Here X transforms a vector space in its complex counterpart. Superscript GCP
corresponds to CP transformations 6. Hence, the potential would be invariant under this symmetry:

µij =

2∑
c,d=1

Xacµ
∗
ijX

∗
bd, (1.2.16)

Λjlkm =

2∑
e,f,g,h=1

XjeXlfΛefghX
∗
kgX

∗
mh (1.2.17)

These are known as GCP symmetries.

Under a basis transformation Φa → Φ′a = UabΦb in eq (1.2.7) the specific forms of the HF and GCP symmetries get
altered, respectively, into:

S′ = USU† (1.2.18)

X ′ = UXU† (1.2.19)

6The standard CP transformation for a Higgs one reads:

Φ(t,x)→ ΦCP (t,x) = Φ∗(t,−x) (1.2.15)

Presence of identical multiplets requires a definition of CP (ΦCP1 = Φ∗1 and ΦCP2 = Φ∗2 in a basis of (Φ1,Φ2)) and it should be preserved
under basis changes. CP-symmetry definition is a motivation to introduce general CP transformations [19,62,63].
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1.2. The Higgs potential in 2HDMs

Class Symmetry m2
11 m2

22 m2
12 λ1 λ2 λ3 λ4 λ5 λ6 λ7 n

I U(2) m2
11 0 λ1 λ1 − λ3 0 0 0 3

II CP3 m2
11 0 λ1 λ1 − λ3 − λ4 0 0 4

III CP2 m2
11 0 λ1 −λ6 5

IV U(1) 0 0 0 0 6
V Z2 0 0 0 7
VI CP1 real real real real 8

Table 1.1.: The six classes of symmetries (I–VI) of the scalar potential and a practical example in each one. The number
in the last column is the minimal number of parameters (n) in the scalar potential, which can be gotten on a
specific basis [19, 60].

Therefore, a symmetry relation among the coefficients of the scalar potential will appear as a distinct link if the coefficients
of the potential are written by using a different basis for the Higgs doublets. Equation (1.2.18) constitutes a conjugacy
relation within the U (2) group. Thus, HF symmetries associated with matrices S and S′ which are in the same conjugacy
class of U(2) correspond to the same model. Moreover, symmetries S and S′ related by an overall phase transformation
(S′ = eiξS) also lead to the same physics, since that overall phase transformation does not affect the bilinears Φ†aΦb. One
may, of course, impose on a theory several HF symmetries and GCP symmetries simultaneously. Nevertheless, in [36]
has been shown that, no matter what combination of HF and/or GCP symmetries imposed on the scalar potential of the
2HDM, they always end up with one of six distinct classes of constrained Higgs potentials. Table 1.1 despites an example
in each of the six categories of symmetries found in [36], and the constraints on the parameters of the potential following
from that particular symmetry. The number of physical parameters in the potential may in general, within each one
of Ivanov’s classes, be even more reduced by choosing a specific basis for the scalar doublets. In the same way, as the
general 2HDM potential has 14 parameters which may, however, be reduced to 11 through a suitable basis choice. We
have organized these classes in a table 1.1, showing the number of physical parameters for each class in the last column.
The respective structures for the symmetries are the following set of transformations:

• U(2) is the most general HF symmetry, whose representation for S matrix in (1.2.11):

S =

(
e−iξ cos θ e−iψ sin θ
−eiψ sin θ eiξ cos θ

)
, where Tr (S) = 2 cos θ cos ξ and det (S) = ±1 (1.2.20)

ξ, θ, and ψ are arbitrary parameters.

• U(1) is a restricted version of the HF symmetry of eq. (1.2.20) with

S =

(
e−iξ 0

0 eiξ

)
, where Tr (S) = 2 cos ξ and det (S) = 1 (1.2.21)

ξ is an arbitrary parameter. Hence, as a possible connexion, it corresponds to take θ = 0 in (1.2.20).

• Z2 is the symmetry under Φ1 → Φ1 and Φ2 → −Φ2 (associated to the cyclic group of order 2),

S =

(
1 0
0 −1

)
, where Tr (S) = 0 and det (S) = −1 (1.2.22)

• CP3 is a GCP symmetry

X =

(
cos θ sin θ
− sin θ cos θ

)
, (1.2.23)

θ belongs in the first quadrant and it is different from the two limit values 0 and π/2. We can assume this symmetry
from a SO (2) -like global transformation.

• CP2 is a GCP symmetry specifying of CP3 with θ = π/2. This leads to

X =

(
0 1
−1 0

)
. (1.2.24)
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1. 2HDM Fundamentals

• CP1 is the standard CP symmetry, with

X =

(
1 0
0 1

)
. (1.2.25)

The introduction of the discrete Z2 symmetry in the quark sector avoids FCNCs, while enforces in the Higgs potential:
m2

12 = 0 and λ6 = λ7 = 0. It is reasonable to consider the Z2 symmetry in a different scalar basis:

Φ′1 =
1√
2

(Φ1 + Φ2) . (1.2.26a)

Φ′2 =
1√
2

(Φ1 − Φ2) . (1.2.26b)

obtaining the interchange symmetry
Π2 : Φ′1 ↔ Φ′2 (1.2.27)

This is equivalent to apply S′ = USU† in the form

1

2

(
1 1
1 −1

)(
1 0
0 −1

)(
1 1
1 −1

)
=

(
0 1
1 0

)
. (1.2.28)

The Π2 symmetry enforces in the Higgs potential m2
11 = m2

22, Im (m2
12 ) = 0, λ1 = λ2, λ∗6 = λ7 , and Im(λ5) = 0. Thus,

the constraints obtained by applying Z2 are apparently different from those achieved by applying Π2. However, the two
symmetries are equivalent, since applying Z2 in a given basis is the same as applying Π2 in a basis obtained from the
first one through the transformation (1.2.27). Hence, the Z2-symmetric and Π2 -symmetric potentials must lead to the
same physical predictions -we say that they are in the same class- because physical observables cannot depend on the
basis in which we choose to write the Higgs doublets. The discrete Z2 symmetry and a continuous U(1) symmetry are
related by a single generator

Φ1 → eiθΦ1, Φ2 → e−iθΦ2 (1.2.29)

for an arbitrary θ. U(1) global symmetry, originally introduced by Peccei and Quinn, is in connection with the strong-
CP problem [64–66]. The Higgs potential invariant under U(1) has m2

12 = 0 and λ5 = λ6 = λ7 = 0 and is therefore
also invariant under Z2. In addition, Z2 and U (1) symmetries could be defined as those that does not allow transitions
between doublets Φ1 → Φ2. It is important to note that, for instance, a potential invariant under

S2/3 =

(
e−i2π/3 0

0 ei2π/3

)
(1.2.30)

which is automatically invariant under the full Peccei-Quinn U(1) group. Even though we only want to enforce symmetry

group Z3 =
{
S2/3, S

2
2/3, S

3
2/3 = 1

}
, getting automatically a potential with full U(1) symmetry. In fact, invariance under

any Zn group, with n > 2, will lead us to a U(1)-invariant potential. Another possibility of obtaining the same result
is to choose an irrational multiple of π for the angle θ in Eq. (1.2.29). This discussion is an important point because
continuous symmetries when they are broken, may lead to massless scalars (Goldstone bosons). An implementation of a
discrete symmetry may have the same effect on the scalar potential as a continuous symmetry and therefore arises the
possibility of undesired massless scalars (associated with possible topological defects in the theory). Nevertheless, the
eigenstates construction can be an aid describing when is possible to lead a parameter space compatible with a massless
(or quasi-massless) scalar; and treat to interpret its behavior in the theory. Moreover, we shall search the compatibility
of those models and their particular parameter spaces with vacuum and perturbativity behaviors in the next chapters.

It is worthwhile to point out one caveat to the discussion in the preceding paragraph. Firstly, in this treatment has
been assumed a renormalizable theory, from which we exclude all terms in the potential with a dimension larger than
four [60,67]. However in a first view, we take the reasonable assumption that the 2HDM is just the low-energy limit of a
larger theory. So, we decide to include effective operators of dimensions five, six, or above. Then the equivalence between
different symmetries (such as the Zn with n > 2, all of them leading to the same U(1)-invariant scalar potential) might
no longer be verified. Another possible issue is connected with the fermionic sector: with a particular symmetry of the
scalar sector, there are in general many ways of extending that symmetry to the fermion sector, often with completely
different effects on the Yukawa terms indeed. It shall comprehensively describe in section 1.3.

On the other hand, by imposing a symmetry with multiple generators on the scalar potential. For example, the
scalar potential invariant under both Z2 and Π2 on the same basis has a parameter space constrained by m2

11 = m2
22 ,

m2
12 = 0 , λ1 = λ2, and λ6 = λ7 =Im(λ5) = 0. Thus, the potential invariant under Z2 × Π2 only has five parameters
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1.3. The Yukawa Lagrangian in 2HDMs

(m2
11, λ1, λ3, λ4, Re(λ5)) and, it is possible to show that it is equivalent to a potential with CP2 symmetry written in

another basis; hence Z2 × Π2 ⇔ CP2. The U(2)-invariant potential may similarly be obtained through the imposition
of the CP3 and U(1) symmetries in the same basis, as can easily be seen in table 1.1. One can also prove that the
existence of either the Z2 (or, equivalently, Π2 ), U (1), or U (2) symmetries is sufficient to guarantee the existence of a
basis choice in which all the parameters of the scalar potential are real. That is, the corresponding scalar Higgs sectors
are explicitly CP-conserving. Therefore, all models belonging to the classes in table 1.1 have CP-conserving scalar Higgs
potentials [60,67]. The potential CP1 results from applying the GCP symmetry with the matrix X in Eq. (1.2.23) with
θ = 0. This leads to Φ1 → Φ∗1 and Φ2 → Φ∗2 standard CP symmetry, which forces all coefficients in the potential to be
real. The potential CP2 arises from applying the GCP symmetry with the matrix X in Eq. (1.2.23) with θ = π/2; being
for the doublets Φ1 → Φ∗2 and Φ2 → Φ∗1. On the other hand, the potential in the CP3-scenario results from applying
the GCP symmetry with any other (arbitrary) angle θ 6= 0, π/2. The theories with symmetry CP2 and CP3 are (of
course) CP-conserving, but they have potentials more restrictive than CP1-scenario. In the CP3 symmetry, if one wants
to extend the CP symmetry to the Yukawa sector, different values of θ will have different consequences for the quark
masses how for instance only θ = π/3 allows six massive quarks after symmetry implementation.

As was mentioned, it is possible to reach class CP2 of 2HDM scalar potentials either by requiring symmetry under the
GCP transformation of Eq. (1.2.24) or, alternatively, by requiring joint symmetry under Z2 and Π2. There are, indeed,
many other ways to obtain this form for scalar potential. For CP3 ⇔ U (1) × Π2. In general, there are many possible
symmetries leading into any of the six classes of constrained 2HDM potentials. The different symmetries are equivalent
concerning the scalar potential, but they may differ when one tries to extend them to the Yukawa sector.

1.3. The Yukawa Lagrangian in 2HDMs

From pure scalar sector analyses, we now study the fermion-scalar interactions and also lepton-quark masses mechanisms
from SSB scenarios. The Yukawa Lagrangian compatible with gauge invariance and renormalizability has the general
form:

−LY = η̃U,0i,j Q̄
0
iLΦ̃′1U

0
jR+η̃D,0i,j Q̄

0
iLΦ′1D

0
jR+ξ̃U,0i,j Q̄

0
iLΦ̃′2U

0
jR+ξ̃D,0i,j Q̄

0
iLΦ′2D

0
jR+η̃E,0i,j L̄

0
iLΦ′1E

0
jR+ξ̃E,0i,j L̄

0
iLΦ′2E

0
jR+h.c. (1.3.1)

Here Φ̃1,2 ≡ iσ2Φ1,2. η̃ and ξ̃ are non diagonal 3 × 3 matrices and i, j denote family indexes. D0
R refers to the three

down type weak isospin quarks singlets D0
R ≡

(
d0
R, s

0
R, b

0
R

)T
, U refers to the three up type weak isospin quark singlets

U0
R ≡

(
u0
R, c

0
R, t

0
R

)
and E0

R =
(
e0
R, µ

0
R, τ

0
R

)
the three charged leptons. Finally, Q̄0

iL, L̄
0
iL denote the quark and lepton

weak isospin left-handed doublets respectively. The superscript 0 labels the fact that the fields are not mass eigenstates
yet. In the SM, diagonalizing the mass matrix also diagonalizes the Yukawa interactions, therefore there are no tree-level
FCNC. For the model described by Lagrangian (1.3.1) has been considered that, in a general case, both Higgs doublets
couple to the up and down sectors simultaneously. However, this fact leads to processes with flavor changing neutral
currents (FCNC) at tree level, since by rotating the fermion gauge eigenstates to get the mass eigenstates we are not
able to diagonalize both coupling matrices η and ξ simultaneously. In other words, FCNC presence is due to general
2HDM structure. Nothing does not ensure the alignment of the fermion mass terms with the neutral changing Yukawa
couplings. In the following we describe the origin of FCNC couplings. The most generic Yukawa interactions for 2HDM
can be written in a more compact form by

LY = −
2∑
j=1

[
Q̄L

(
ΦjY

d
j DR + Φ̃jY

u
j UR

)
+ L̄LΦjY

e
j ER

]
+ h.c. (1.3.2)

In this equation, Φ̃j = iτ2Φ∗j ; QL (quark doublet), LL (lepton doublet), DR (negative charged quarks), UR (positively
charged quarks) and ER (negatively charged leptons) are 3-vector in flavor space. For simplicity and as a first glance,
we have not included the neutrino sector by their smallness mass size; although this condition can be relaxed through
different mechanisms. Besides, Y d,u,ej are generic 3× 3 complex matrices containing the Yukawa couplings, for the down,
up and leptonic sector respectively. In part, almost all develops over quark sector can be extended to the leptonic sector,
we only assume the absence of right part of neutrinos (as a first assumption). It does impossible to describe mass
terms for neutrinos 7. With the Yukawa lagrangian defined by Eq. 1.3.2, it is possible to build up the scalar-fermionic
interactions in the Higgs basis (H1, H2) defining by H1 having vev equal to v/

√
2 while has vanishing vev8. We begin

7Construction of 2HDM taking into account hierarchical neutrino masses has been described in [68,69]
8In a reduced part of the literature have used the term of ”fundamental parametrization” to referring the Higgs basis. In our treatment, the

former term will be employed when the 2HDM type III become introduced. In the symmetries formalism, we use the Higgs basis term.
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with the vacuum expectation value definition in general terms (ṽ1 and ṽ2 are allowed to be complex)

v =

√
|ṽ1|2 + |ṽ2|2. (1.3.3)

It is well known as v related to Fermi’s constant has been measured with high precision, for example in muon decay
measurements [4]. The most typical value for v is 246 GeV, being by definition a real and a positive quantity. The
relevant transformations for the doublets from a generic basis to Higgs basis are

Φ1 =
1

v
(ṽ1H1 + ṽ∗2H2) , (1.3.4a)

Φ2 =
1

v
(ṽ2H1 − ṽ∗1H2) . (1.3.4b)

Defining the matrices for down quarks sector

M̄d =
1√
2

(
ṽ1Y

d
1 + ṽ2Y

d
2

)
, (1.3.5a)

N̄d =
1√
2

(
ṽ∗2Y

d
1 − ṽ∗1Y d2

)
. (1.3.5b)

Moreover, it is possible to compute the term composed by a doublet and the respective Yukawa coupling

2∑
j=1

ΦjY
d
j =

1

v
(ṽ1H1 + ṽ∗2H2)Y d1 +

1

v
(ṽ2H1 − ṽ∗1H2)Y d2 ,

=
1

v

(
ṽ1Y

d
1 + ṽ2Y

d
2

)
H1 +

1

v

(
ṽ∗2Y

d
1 − ṽ∗1Y d2

)
H2,

=

√
2

v

(
M̄dH1 + N̄dH2

)
. (1.3.6)

In a similar way, the up-quarks sector behaves as

2∑
j=1

ΦjY
u
j =

√
2

v

(
M̄uH̃1 + N̄uH̃2

)
. (1.3.7)

where Hi = iσ2H
∗
i , with i = 1, 2. We can translate these matrices into the mass basis of quarks, in which the mass matrices

are diagonal. Hence we perform a bi-unitary transformation over Md and Mu, through rotations on the left-handed and
right-handed quarks fields, where k = u, d:

V k†L M̄kV kR = Mk (1.3.8a)

V k†L N̄kV kR = M̄k (1.3.8b)

Both diagonal matrices Md =diag(md,ms,mb) and Mu =diag(mu,mc,mt) have real and positive diagonal elements.
In general, even if after bi-diagonalization, matrices Nd and Nu are not diagonal, then there will be scalar FCNCs at
tree level in both quark sectors. In the Higgs basis, the FCNC couplings for those interactions are obtained from Nu

and Nd elements. This basis can also be extrapolated to charged leptonic sector. On a generic basis like associated to
original Lagrangian (1.3.2), the FCNC’s absence could be derived from commuting Y i1 and Y i2 matrices i = u, d)9. For
instance, that condition is trivially satisfied when Y i2 = 0, as could occur when a discrete symmetry like Z2 is introduced
in the Yukawa Lagrangian as we discuss below. This implementation can be translated into a sufficient condition, based
on the assumption of all fermions become coupled to just one doublet, originating mass terms uniquely. It is well known
that FCNCs are highly constrained compared with the charged current processes like mesons oscillations. Therefore it
would be viable to “naturally”suppress them in these models. If all fermions with the same quantum numbers couple

9This statement can be shown by the fact that FCNCs are absent both matrices might be diagonalized simultaneously if and only if Yukawa
matrices are represented regarding the linear combinations of a complete set of orthogonal matrices of the same dimensionality of Yukawa
matrices [70].
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1.3. The Yukawa Lagrangian in 2HDMs

to the same scalar multiplet, then FCNC will be absent. In other words, all quarks and leptons of a given charge and
helicity must transform with the same irreducible representation of SU(2) isospin group. This fact is corresponding to
having the same eigenvalue of the third component of isospin operator. The latter ensures the existence of a basis in
which fermions receive their contributions in the mass matrix from a single source [40]. To accomplish this condition, we
invoke an unbroken intrinsic parity symmetry in the fields, Z2, which could be introduced by the SM fields and doublets
in even or odd transformations [19].

From above discussion in the quark sector of 2HDM, we can see two possibilities. i) All quarks become coupled to just
one doublet (here it has been chosen to be Φ1) or ii) the up type right-handed quarks couple to one doublet (e.g. Φ1)
and the down type right-handed quarks couple to other (Φ2). The first scenario is called the 2HDM type I, meanwhile,
the last model is known as the 2HDM type II. Both models are outlined in Fig. (1.3).

Figure 1.3.: Couplings structure in models with flavor conservation. (Up) Type I and (Down) type II models in the
quark sector.

When these structures for symmetries implementations are extended to the leptonic sector, the charged leptons couple
to the same scalar doublet as the Q = −1/3 quarks although this condition is not necessary to avoid FCNCs at tree level.
Nonetheless, there are other two possibilities to construct models with natural flavor conservation. In the lepton-specific
model, the RH quarks couple to Φ2 and the RH leptons couple to Φ1. In the flipped model, the Q = 2/3 right-handed
quarks and charged leptons couples to the same doublet (say Φ1), and the Q = −1/3 right handed quarks are coupled
to Φ2 [19]. In this work, we are focused on the traditional types I and II 2HDMs with flavor conservation and the
corresponding extension to lepton sector10.

1.3.1. Basis transformations and Yukawa couplings

From section 1.2.1, we have seen as the basis transformations change the coefficients in the Higgs potential (1.2.2). Now,
we are focused on the basis change in the Yukawa Lagrangian taken as a guide the basis transformations over Higgs
potential terms. The Yukawa lagrangian (1.3.2) can be written regarding new fields obtained from the original ones by
simple basis changes over doublets

Φa → Φ′a =

2∑
α=1

VaαΦα, (1.3.11)

meanwhile for fermions doublets

10It is important to point out that the Yukawa Lagrangian type I and II can also be generated from a continuous global symmetry. The set
of transformations

Φ1 → eiϕΦ1 and Φ2 → −Φ2 (1.3.9)

DjR → e−iωDjR and UjR → e−iϕUjR (1.3.10)

with ω = ϕ, π/2, yields models type I and type II respectively. Here DR is labeling the three down type weak isospin quark singlets and
UR is applying to the three up type weak isospin quark singlets.
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QL → Q′L = VLQL; (1.3.12)

LL → L′L = V̄LLL. (1.3.13)

For singlets representations of fermions, we have

DR → D′R = VDRDR, UR → U ′R = VURUR, ER → E′R = VERER. (1.3.14)

where V ∈ U (2) is a 2 × 2 unitary matrix and V ≡
{
VL, V̄L, VDR, VUR, VER

}
∈ U(3) are 3 × 3 unitary matrices. The

gauge-kinetic terms are unchanged by basis transformations and the coefficients of the Higgs potential are transformed
in the following way

µ′ij =

2∑
α,β=1

ViαµαβV
∗
bβ =

(
V µV †

)
ij
, (1.3.15a)

Λjlkm =

2∑
α,β,γ,δ=1

VjαVlγΛαγβδ V
∗
kβV

∗
mδ. (1.3.15b)

Then, Yukawa matrices are transformed by

Y da → Y d
′

a =

2∑
α=1

VLY
d
αV
†
DR

(
V †
)
αa
.

Y ua → Y u
′

a =

2∑
α=1

VLY
u
α V
†
UR

(
V T
)
αa
, (1.3.16)

Y ea → Y e
′

a =

2∑
α=1

V̄LY
e
αV
†
ER

(
V †
)
αa
.

In all transformations, we show the indexes explicitly in scalars space while we have used matrix formulation in the
flavor space for fermions.

1.3.2. Yukawa couplings and Symmetries

We have studied in section 1.2.2 as six symmetries (Family and CP) classes arose in the Higgs potential by the realization
of SL (2, C) re-parameterization group of 2HDM. Hence, to this point correspond to study as those symmetries could
be extended to the full Lagrangian. By definition, these symmetries leave out the gauge terms invariant, but in the
Yukawa sector and by coupling structures among fermions and doublets, they might affect Yukawa terms. We review as
Higgs family and CP-symmetries are extended to the Yukawa Lagrangian and how the phenomenology associated with
fermions-scalars interactions is modified by that kind of implementations.

Family symmetries

The main assumptions belong in assuming that the Lagrangian (1.3.2) is invariant under the symmetry transformations
(1.2.11)

Φa → ΦSa =

2∑
b=1

SabΦb. (1.3.17)

i.e. Φa relates with Φb through a unitary matrix 2× 2, S. The fermion fields (doublets) transform according to

QL → QSL = SLQL, (1.3.18a)

LL → LSL = S̄LLL. (1.3.18b)
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while the singlets transform as

DR → DS
R = SDRDR,

UR → USR = SURUR, (1.3.19)

LR → ESR = SERER.

where S ∈ U (2) and S =
{
SL, S̄L, DR, UR, ER

}
∈ U (3) . Trough applications of these transformations, the parameters

of Higgs potential and Yukawa matrices obey the following equations:

µij =

2∑
α,β

SiαµαβS
∗
jβ , (1.3.20a)

Λjlkm =

2∑
e,f,g,h=1

SjαSlγΛβδαγS
∗
kβS

∗
mδ. (1.3.20b)

and the Yukawa couplings for down, up and charged lepton sectors transforming according to

Y da =

2∑
α=1

SLY
d
αS
†
DR

(
S†
)
αa
,

Y ua =

2∑
α=1

SLY
u
α S
†
UR

(
S†
)
αa
, (1.3.21)

Y ea =

2∑
α=1

S̄LY
e
αS
†
ER

(
S†
)
αa
.

With the basis transformations presented in Eqs. (1.3.11), (1.3.12) and (1.3.14), symmetry transformations in doublets
are changed by

S′ = V SV †,

S′L = VLSV
†
L , (1.3.22)

S̄L = V̄LS̄LV
†
L .

while in singlets sectors we get

S′DR = VDRSDRV
†
DR,

S′DR = VURSURV
†
UR, (1.3.23)

S′ER = VERSERV
†
ER.

We are looking for the general way to extend Higgs potential symmetries Higgs family ones) into Yukawa Lagrangian.
For this purpose, a particular set of one symmetry S is considered on some basis. In the case of an Abelian symmetry,
Eq (1.3.17) is translated into a diagonal transformation(

ΦS1
ΦS2

)
=

(
eiθ1 0
0 eiθ2

)(
Φ1

Φ2

)
. (1.3.24)

From a particular choice of {V} , the symmetry in all fields can be parametrized by the following diagonal matrices

S = diag
(
eiθ1 , eiθ2

)
, SL = diag

(
eiα1 , eiα2 , eiα3

)
, S̄L = diag

(
eiᾱ1 , eiᾱ2 , eiᾱ3

)
, (1.3.25a)

SDR = diag
(
eiβ1 , eiβ2 , eiβ3

)
, SUR = diag

(
eiγ1 , eiγ2 , eiγ3

)
, SER = diag

(
eiδ1 , eiδ2 , eiδ3

)
. (1.3.25b)
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An overall phase change has no effect on the symmetry. For example, taking V = eiθI2×2, leaves S′ = S. On the other
hand, we can see from Eqs (1.3.20a)-(1.3.21) that the symmetry

S̃ = eiθ̃S, S̃L = eiα̃SL, S̃L = eiα̃S̄L, (1.3.26a)

S̃DR = eiβ̃SDR, S̃UR = eiγ̃SUR, S̃ER = eiδ̃SER, (1.3.26b)

imposes the same constraints on the Lagrangian as the symmetry set S, as long as

ei(β̃−α̃−θ̃) = 1; ei(γ̃−α̃+θ̃) = 1 and ei(β̃−α̃−θ̃) = 1. (1.3.27)

This can be used to translated Eqs. (1.3.25b) into the forms

S = diag
(
1, eiθ

)
, SL = diag

(
eiα1 , eiα2 , eiα3

)
, S̄L = diag

(
eiᾱ1 , eiᾱ2 , eiᾱ3

)
; (1.3.28a)

SDR = diag
(
eiβ1 , eiβ2 , eiβ3

)
, SUR = diag

(
eiγ1 , eiγ2 , eiγ3

)
, SER = diag

(
eiδ1 , eiδ2 , eiδ3

)
. (1.3.28b)

with α1 = 0 and ᾱ1 = 0. Thus, all the freedom in choosing the fermion transformation laws is reduced to the choice
of the arbitrary phases. Despite immense simplification, these sets of parameters yield even many possibilities to specify
symmetry implementations, which is translated to many different models. However, since constraints as CKM entries
and requirements of six massive quarks, the number of possible models is highly reduced. In the former fact, the reason
for this reduction is that the effect of the phases αi on the CKM matrix, or in the quark squared mass matrices, is
equivalent to setting many entries equal to zero. For θ = π , S =diag(1,−1) leads to the usual Z2 Higgs potential. Any
other value of 0 < θ < 2π, leads to the full U(1) symmetric Higgs potential. For example, with θ = 2/3, S3 = I2, and
a Z3 symmetry is assumed on the scalar fields. Nonetheless, due to the scalar potential only has quadratic and quartic
terms, the resulting Higgs potential has the full U(1) Peccei-Quinn symmetry. As we discussed before, if this symmetry
is spontaneously broken by the vacuum, the spectrum would have massless particles. In consequence, great care must
be taken when imposing what may look like discrete symmetries in models with multi doublets. Substituting Eqs. (
1.3.25b) in Eqs. (1.3.21), these symmetries satisfy

(
Y da
)
ij

= ei(αi−βj−θa)
(
Y da
)
ij
,

(Y ua )ij = ei(αi−γj+θa) (Y ua )ij , (1.3.29)

(Y ea )ij = ei(ᾱi−δj−θa) (Y ea )ij ,

where no sum over i and j indexes is explicit on the right-hand sides. For the simplified form in Eq. (1.3.28b) we set
θ1 = 0 and θ2 = θ. Furthermore, we will always take θ 6= 0 (mod 2π ) since we are only interested in symmetries which
do transform the scalar fields. It will prove useful to keep α1 explicitly, having in mind that it can be set equal to zero
without loss of generality.

1.3.3. CP symmetries in the Yukawa sector

With the aim to study as CP violation phases arise in a general 2HDM, we introduce symmetry operations in the Yukawa
sector for fermion and scalar interactions. As SSB is not achieved yet, we restrict our review in one based on explicit
symmetry transformations. Moreover, these discussions would lead to discriminate the role and the intimate relation
among Yukawa structure and their CP symmetries with FCNC processes. In this treatment, the primary assumption is
that Yukawa Lagrangian (1.3.2) is invariant under the CP symmetry,

Φa →
2∑

α=1

XaαΦ∗α, (1.3.30)

from discussion given in section 1.2.2, this operation relates the doublet Φa with the complex conjugate of Φb → Φ∗b . For
fermionic fields, we can obtain

QL → XLγ
0CQ∗L, (1.3.31a)

LL → X̄Lγ
0CL∗L, (1.3.31b)
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1.3. The Yukawa Lagrangian in 2HDMs

where X is a 2 × 2 unitary matrix and XL and X̄L are arbitrary 3 × 3 unitary matrices. C = iγ2γ0 is the charge
conjugation operator. For singlet representations

DR → XDRγ
0CD∗R,

UR → XURγ
0CU∗R, (1.3.32)

ER → XERγ
0CE∗R,

where {XDR, XUR, XER} are 3× 3 unitary matrices. A result of these transformations is that scalar couplings in the
lagrangian must satisfy

µ∗ij =

2∑
α,β=1

X∗αiµαβXβj , (1.3.33a)

(
Λjlkm

)∗
=

2∑
e,f,g,h=1

X∗kαX
∗
mγΛβδαγXjβXlδ, (1.3.33b)

In the same way for fermionic couplings, we get

Y d∗i =

2∑
α=1

XiαXLY
d
αX

†
DR,

Y u∗i =

2∑
α=1

X∗iαXLY
u
αX

†
UR, (1.3.34)

Y ei =

2∑
α=1

XiαX̄LY
e
αX
†
ER.

Under basis change of Eqs. (1.3.11), (1.3.12) and (1.3.14), CP symmetry transformations are altered by

X ′ = V XV T , X ′L = VLXLV
T
L , X̄L = V̄LX̄LV̄

T
L , (1.3.35a)

XDR = VDRXDRV
T
DR, XUR = VURXURV

T
UR, XER = VERXERV

T
ER. (1.3.35b)

Comparing with Higgs-family symmetries, it is much simpler to extend the three possible scalar GCP symmetries to
the Yukawa sector. In fact, as we discussed in section 1.2.2, any GCP transformation on the doublets can be reduced to
a simple rotation matrix of the form

XCP =

(
cos θ sin θ
− sin θ cos θ

)
. (1.3.36)

That is, it is always possible, through a judicious choice of basis of quark fields (flavor space), to reduce the transformation
matrix of the left doublets to the form

XL =

 cosα sinα 0
− sinα cosα 0

0 0 1

 , (1.3.37)

with some angle 0 ≤ α ≤ π/2. A similar form is obtained for the matrices XDR and XUR in eqs. (1.3.34), with
independent angles β and γ in the same range as α. A quite simple form of the fermion transformation matrices imposes
severe constraints on the Yukawa couplings. In fact, the restrictions are so serious that no ambiguity occurs in the
fermionic sector when one extends the scalar GCP symmetries to it; each of the three GCP models has only one possible
implementation on the fermion sector. Recalling that the three GCP scalar models can be parameterized regarding the
angle θ in the simplified GCP transformation of Eq. (1.3.36), it was concluded that [67]:

• For the CP1 situation, with θ = 0, there is only one way to extend the scalar symmetry to the fermion sector which
does not entail massless quarks or charged leptons: by forcing all Yukawa couplings to be real. We are thus left
with a Lagrangian with real generic matrices Y dj - as such the model has tree-level scalar FCNCs, which are not in
any way “naturally suppressed ”. In this model, CP violation must arise spontaneously, through a relative phase
between the two vevs (as will be exposed in the following chapter).
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• For the CP2 symmetry, with θ = π/2, there is no way to extend the symmetry to the Yukawa sector without
obtaining at least one massless charged fermion. As such, the CP2 model may be considered ruled out by experi-
ment. However, one might also take the point of view that the CP2 symmetry is an approximate one, broken by
some manner of mechanism, and as such the massless fermions it predicts will acquire a (small) mass somehow,
corresponding to the first generations of particles.

• For the CP3 model, with any 0 < θ < π/2, a remarkable effect takes place: all values of θ 6= π/3 lead to massless
quarks or charged leptons. Only θ = π/3 leads to an acceptable fermion mass spectrum with a strict hierarchy. The
Yukawa matrices which result from such a symmetry are extremely constrained - the quark sector ends up depending
only on ten independent parameters (seven moduli and three phases). Nevertheless, this model is compatible with
the fitting all quark masses and the elements of the CKM matrix with relative phases. The model does possess
tree-level FCNC, but they end up being entirely suppressed, in a “natural”way. The model also has a unique
feature, in the sense that CP violation arises in a relatively novel way - through computing Jarlskog invariant 11.
However, the value of the Jarlskog invariant predicted by this model is several orders of magnitude below of its
SM value, which leads to values of the unitarity triangle angles inα and β (in the Euler parametrization of CKM
matrix) practically equal - a prediction of the model in contradiction with the most recent experimental data. This
fact rules out this scenario.

In conclusion, when one extends the three GCP scalar symmetries to the Yukawa sector, one obtains: i) arbitrary
FCNCs for the CP1 case. ii) The model spectrum has massless quarks and charged leptons for the CP2 scenario; a single
CP3 symmetry leading to three massive generations of fermions, with naturally small FCNC but predictions for heavy
meson phenomenology which does not agree with experiment data.

1.4. Custodial Symmetry and Electroweak Oblique Parameters

Once considered relevant sectors of 2HDM from symmetries point of view, our discussion should be focused in as these
several models can be tested by precision measurements carry out in several experiments of high-energy physics. Our
hypothesis to conduct our phenomenological analyses is that 2HDMs parameter space is compatible with alignment
regime, where scalar boson found in LHC is consistent in couplings and mass of h0 (lighter CP-Higgs boson), emulating
at the same time all possible properties of SM-Higgs boson. The formal description of scalar alignment for 2HDM with
non-zero VEVs is discussed in appendix A. One formalism is based on to establish which is the new physics influence in
observables as decays and vector boson masses measurements. These effects could even be present in NLO corrections
for well known EW sector. In general, the contribution to appropriate electroweak corrections from the extra SU(2)
doublet in the 2HDM is small, since scalar doublets (or singlets) do not break the custodial symmetry which protects
the tree-level relation

ρ =
m2
w

m2
z cos2 θw

= 1. (1.4.1)

It is an experimental fact and measured from mz and mw pole masses and precision tests [72,73]. There are many Higgs
representations to satisfy the ρ = 1 constraint at tree level. The general formula is [74]

ρ =
m2
w

m2
z cos2 θw

=

∑
T,Y

[
4T (T + 1)− Y 2

]
|VT,Y |2 cT,Y∑

T,Y 2Y 2 |VT,Y |2
. (1.4.2)

where 〈Φ (T, Y )〉 = VT,Y defines the vacuum expectation value of each neutral Higgs field, and T and Y specify the total
SU (2)L isospin and the hypercharge of the Higgs representation to which it belongs. cT,Y depends on representation
values

cT,Y =

{
1, (T, Y ) ∈ complex representation
1
2 , (T, Y = 0) ∈ real representation

(1.4.3)

11Jarlskog invariant in the quark sector for Hermitian mass matrices is defined as [71]

J =
Im (det [Md,Mu])

2F
(1.3.38)

with

F = (1 + 2m̃2u) (1− m̃1u) (m̃1u + m̃2u) (1 + m̃2d) (1− m̃1d) (m̃1d + m̃2d)

here m̃iq are the quark mass ratios m̃iq = miq/m3q . Being 3 the index for the third family (top or bottom depending on the sector in the
ratio).
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1.4. Custodial Symmetry and Electroweak Oblique Parameters

The requirement that ρ = 1 for arbitrary VT,Y value is

(2T + 1)
2 − 3Y 2 = 1 (1.4.4)

How the custodial symmetry arises in SM can be seen as follows: The left (right) chiral fermions in the SM also
transform according to the global symmetry SU(2)L(R). The scalar-Higgs doublet (with four real fields) is a bi-doublet
under this global symmetry. Before the spontaneous breaking of SU(2)L×U(1)Y gauge group, the Higgs potential has a
global SO (4) ' SU(2)L × SU(2)R symmetry which reduces to SU (2)V

12when the symmetry is broken. This SU (2)V
symmetry is also isomorphic to SO (3) group under which the triplet

(
G±, G0

)
of Goldstone bosons transforms. This

symmetry is not respected by the scalar kinetic terms, in particular, those ones involving the hypercharge coupling g′.
Moreover, the SO (4) symmetry is also broken by Yukawa terms, which are linear in Φ, due to up and down quarks have
different masses (i.e. isospin violation). Thus SO (4) is not a symmetry of the whole Lagrangian, only of its scalar sector.
Since in the scalar sector, SO(4) global symmetry is only broken by small g′ terms in the kinetic part, it is regarded
as an approximate symmetry in the theory. In the most general 2HDM, there is no SO(4) global symmetry because
of the presence of new bilinears and their interactions; thus here arises the possibility of substantial contributions to ρ
parameter coming from scalar sector alone. If one wants to avoid them, one may impose custodial symmetry on the
2HDM potential which yields particular structure in the scalar sector of the Lagrangian. Besides, large mass splitting
between scalar states could induce additional contributions to ρ parameter by including radiative corrections. These
effects can be measured by using EW-oblique parameters. We will come back to the last point when the correlation
between oblique parameters space is used to constraint parameter space of the 2HDM. To extend the first end, we define
the following 2× 2 matrix [75]

Mij =
(

Φ̃i|Φj
)

= (iσ2Φi|Φj) =

(
ϕ0∗
i ϕ†j
−ϕ−i ϕ0

j

)
. (1.4.6)

with i, j = 1, 2. Under SU (2)L × SU (2)R group, these matrices transform as

Mij → ULMijU
†
R (1.4.7)

with UL, UR ∈ SU (2) . We know that tr
(
M†ijMkl

)
=tr
(
URM

†
ijU
†
LULMklU

†
R

)
=tr
(
M†ijMkl

)
are invariant under the full

SU (2)L×SU (2)R group transformations which correspond to the same SO (4) symmetry of the SM scalar potential. By
introducing a new notation for the most general Higgs potential in Eq. (1.2.1)(with λ4 = λ5 and all parameters are real)

V =
1

2
m2

11tr
(
M†11M11

)
+

1

2
m2

22tr
(
M†22M22

)
−m2

12tr
(
M†11M22

)
+

1

8
λ1

[
tr
(
M†11M11

)]2
+

1

8
λ2

[
tr
(
M†22M22

)]2
+

1

4
λ3

[
tr
(
M†11M11

)
tr
(
M†22M22

)]
+

1

2
λ4

[
tr
(
M†11M22

)]2
+

1

2
λ6

[
tr
(
M†11M11

)
tr
(
M†11M22

)]
+

1

2
λ7

[
tr
(
M†22M22

)
tr
(
M†11M22

)]
. (1.4.8)

We have used only M11 and M22 matrices. Here tr
(
M†iiMjj

)
= Φ†iΦj + Φ†jΦi. This potential is also invariant under

SO (4). Now we consider a neutral vacuum 〈ϕ0
i 〉 = vi,

〈Mij〉 =

(
v∗i 0
0 vj

)
. (1.4.9)

This vacuum structure (introduced formally in the following chapter) is not invariant under the full group SU(2)L ×
SU(2)R . However, if v∗i = vj , then 〈Mij〉 is proportional to the 2 × 2 identity matrix and the vacuum preserves a
group SU (2)V corresponding to identical matrices, i.e. UL = UR, in Eq. (1.4.7). This remaining group preserved by the
vacuum is the custodial-symmetry group although it often is attributed to the SU (2)L × SU (2)R group.

On the other hand, we can build up the Higgs potential with M12 matrix alone. It reads

V =
1

2
m2

11tr
(
M†12M12

)
−
[
m2

12det (M12) + h.c.
]

+
1

2
λ1

[
tr
(
M†12M12

)]2
+λ4 det

(
M†12M12

)
+

1

2

[
λ5 det (M12)

2
+ λ6 det (M12) tr

(
M†12M12

)
+ h.c.

]
(1.4.10)

12SU (2)V corresponding to identical matrices (i.e L = R) in bi-unitary transformations for matrices

Mij → VLMijV
†
R (1.4.5)
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where m2
11 = m2

22, λ1 = λ2 = λ3 and λ6 = λ7. Moreover, in this case λ5, λ6, λ7 and m2
12 remain complex. Again a neutral

vacuum preserves SU (2)V if and only if v1 = v2. In both cases, there is a dramatic prediction for the scalar masses:
the charged Higgs H± is degenerate with the pseudoscalar A0. In both cases of Pomarol and Vega [75], the potential
conserves CP, even with the complex couplings of the latter case. Having in mind the CP conserving frame, there is
thus a well-defined pseudoscalar particle in the spectrum. In [76] have proposed a twisted custodial symmetry which
generalizes the formalism presented above. They observed that the transformation matrix UR need not be the same for
M11 and M22 , namely

M11 → ULM11U
†
R and M22 → ULM22U

′†
R (1.4.11)

This extra freedom has a limitation, though: since the hypercharge is proportional to the diagonal generator of SU(2)R,
the matrices UR and U ′R must be related through U

′

R = X†URX, with

X =

(
eiγ/2 0

0 e−iγ/2

)
(1.4.12)

A definite choice for the phase γ yields the custodial mass relation m2
H± = m2

A0 ; but a different selection imposes a
degeneracy between the charged Higgs and one of the CP-even scalars, m2

H± = m2
H0 ; providing the natural frame for

a light A0 within the 2HDM. Equivalently, the substitution of the CP-even H0 for the CP-odd A0, can be understood
concerning a twisted CP symmetry acting on the Higgs field.

1.4.1. Electroweak Oblique Parameters

Having studied the implications of custodial symmetry in 2HDM, we continue analyzing possible measurable effects in
precision tests since new scalar spectrum. Indeed, oblique parameters are intended to constrain models of new physics
from the Electroweak precision observables. It is assumed that the effects of new physics only appear through vacuum
polarization and therefore lead to modified oblique parameters. Most of the effects on electroweak precision observables
can be parameterized by three gauge self-energy parameters (S, T, U) introduced by Peskin and Takeuchi [77]13. Hence,
the correlation among above parameters could be given regarding electroweak observables and leads to analyze different
kind of precision physics, useful to constraint new phenomenology. For instance, we have broadly that

• S describes new physics contributions to neutral current processes at different energy scales.

• T measures the difference between the new physics contributions of neutral and charged current processes at low
energies (i.e., sensitive to isospin violation). This parameter is related to the commonly used parameter

ρ0 =
ρ

ρSM
(1.4.13)

through the relation

ρ0 =
1

1− αT
. (1.4.14)

It thus encodes the departure from the SM value of ρ0 = 1.

• U is only constrained by the W boson mass and its total width. Besides, U is small in new physics models14.
Therefore, the STU parameter space can often be projected down to a two-dimensional parameter space in which
the experimental constraints are easy to visualize.

• S + U describes new physics contributions to charged current processes at different energy scales.

13Despite STU are the most useful parameters, there are other EW-quantities associated with vacuum polarization of W and Z boson [78].
It is worthwhile to point out that when new physics contributions are decoupled, these new oblique parameters vanish.

14In fact, U quantity is related to a dimension-eight operator, while S and T can be given regarding six dimension operators.
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1.4. Custodial Symmetry and Electroweak Oblique Parameters

The 2HDM contributions are defined from relations [79]

S =
16π cos θ2

w

g2

{
ĀZ0Z0(m2

z)− ĀZ0Z0(0)

m2
z

− ∂Āγγ(q2)

∂q2

∣∣∣∣
q2=0

+
cos2 θw − sin2 θ

sin θw cos θw

∂ĀγZ0(q2)

∂q2

∣∣∣∣
q2=0

}
(1.4.15a)

T =
4π

g2 sin2 θw

[
ĀW+W−(0)

m2
w

− ĀZ0Z0

m2
z

]
(1.4.15b)

U =
16π

g2

{
ĀW+W−(m2

w)− ĀW+W−(0)

m2
w

− cos θ2
w

ĀZ0Z0(m2
z)− ĀZ0Z0

m2
z

− sin2 θw
∂Āγγ(q2)

∂q2

∣∣∣∣
q2=0

+ 2 cos θw sin θw
∂ĀγZ0(q2)

∂q2

∣∣∣∣
q2=0

}
(1.4.15c)

Here the AV V ′ are the coefficients for gµν in the vacuum polarization tensors

Πµν
V V ′(q) = gµνAV V ′(q

2) + qµqνBV V ′(q
2). (1.4.16)

With the subtraction from SM contribution,

ĀV V ′′(q
2) = AV V ′(q

2)|
2HDM

−AV V ′(q2)|
SM
. (1.4.17)

Figure 1.4.: Constraints on the oblique parameters S and T , fixing U = 0 parameter fixed in function of all observables
(blue). The thin black stroke indicates the prediction given by SM dynamics (within uncertainties). Single
restrictions are depicted using the asymmetry measurements (yellow), the Z-boson partial and total widths
(green) and W -boson mass and width (red), with confidence levels drawn for one degree of freedom. Figure
is taken from [80]

Formulas for oblique parameters are summarized in appendix B. Constraints on the STU electroweak parameters
are derived from a fit to the electroweak precision data, more details can be found in the most current articles [81–85].
Besides the STU parameters the floating fit parameters are mz = 91.1873±0.0021 GeV, ∆αhad(m

2
z) = 0.02757±0.00010,

and αs(m
2
z) = 0.1192 ± 0.0033. The following fit results are determined from a fit for a reference Standard Model with

mt,ref = 173 GeV and mH,ref = 125 GeV:

S = 0.05± 0.11. (1.4.18)

T = 0.09± 0.13. (1.4.19)

U = 0.01± 0.11. (1.4.20)

The bounds on S and T for a fixed value of U = 0 are shown in Fig. 1.4. This ST contour will be translated into an
important framework to test mass splittings in different models realization and also studied from vacuum and unitarity

35
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Model U iR Di
R EiR

Type I Φ2 Φ2 Φ2

Type II Φ2 Φ1 Φ1

Lepton specific Φ2 Φ2 Φ1

Flipped Φ2 Φ1 Φ2

Table 1.2.: Standard couplings structure for models without FCNC. The i index indicates generation label. By convention,
U iR always couples to Φ2.

analyses. The propagation of the current experimental uncertainties in mh ≡ MH and mt upon the SM dynamics
prediction is illustrated by the small black area at about S = T = 0.

As we will see in the chapter 5, every step here presented would be a valuable tool to measure the compatibility level
of the vacuum behavior predictions with the EW observables and precision tests over them.

1.5. Phenomenological review of the 2HDM realizations

After of the review of some theoretical structures, we shall make an updated summary of experimental searches in the
2HDM realizations.

1.5.1. Studies approaching the Type I and Type II and other 2HDM realizations

Z2 symmetry implementation over Yukawa sector yields Type I and Type 2HDMs, which conserve flavor symmetry when
fermions and scalars couplings become diagonalized. As was discussed before, it is possible to find other two models:
Lepton specific and flipped models. In the first models, leptons couple to one doublet different which quarks couple.
In the flipped model, leptons are coupled to the same doublet that couples with up-type quarks. All structures are
summarized in Table 1.2.

Couplings structure depends on mixing angle α between CP even-neutral eigenstates and tanβ = v2/v1 ratio. β is
related to diagonalization angle for charged part and CP -odd-neutral part. With this in mind, doublets in Eq. (1.1.3)
can be written by 15

Φ1 =
1√
2

( √
2 (G+ cosβ −H+ sinβ)

v cosβ − h0 sinα+H cosα+ i
(
G0 cosβ −A0 sinβ

)) (1.5.1)

Φ2 =
1√
2

( √
2 (G+ sinβ +H+ cosβ)

v sinβ + h0 cosα+H sinα+ i
(
G0 sinβ +A0 cosβ

)) (1.5.2)

where v2 = v2
1 + v2

2 . In this general basis, fermion couplings to neutral Higgs h0, H0 and A0 behave as it depicted in
Table 1.3

Coupling/Model Type I Type II Lepton-Specific Flipped

ξuh cosα/ sinβ cosα/ sinβ cosα/ sinβ cosα/ sinβ
ξdh cosα/ sinβ − sinα/ cosβ cosα/ sinβ − sinα/ cosβ
ξlh cosα/ sinβ − sinα/ cosβ − sinα/ cosβ cosα/ sinβ
ξuH sinα/ sinβ sinα/ sinβ sinα/ sinβ sinα/ sinβ
ξdH sinα/ sinβ cosα/ cosβ sinα/ sinβ cosα/ cosβ
ξlH sinα/ sinβ cosα/ cosβ cosα/ cosβ sinα/ sinβ
ξuA cotβ cotβ cotβ cotβ
ξdA − cotβ tanβ − cotβ tanβ
ξlA − cotβ tanβ tanβ − cotβ

Table 1.3.: Yukawa couplings for fermions to the neutral Higgs bosons h0, H0 and A0 in models without FCNC. All
couplings are normalized with respect to the SM Yukawa terms.

Normalized couplings among gauge bosons and neutral Higgs states:

15This parameterization assumes a neutral vacuum for spontaneous symmetry breaking; equivalent to take θ = 0 in (1.1.3). In chapter 2,
neutral vacuum structure and features will comprehensively be studied.
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h0V V → sin(β − α) and H0V V → cos(β − α) (1.5.3)

An important feature of a CP -conserving scenario is the absence of couplings at tree level between A0 and gauge
bosons. Since the discussion presented above in Fig. (1.1), new physics scenarios with extended Higgs sectors can be
highly constrained by data. All models flavor conserving can be tested to establish different compatibility levels with
experimental results.

To investigate the impact of the current Higgs data on 2HDMs, we discuss modifications of the tree-level couplings
due to new Higgs appearance evaluated in a scalar alignment framework for 2HDMs. The alignment regime is based on
saturation of fermion and gauge boson couplings for h0 concerning SM-Higgs ones. Hence, only exist tiny deviations from
SM Higgs couplings. The regimen for the mass is interpreted through the scalar signal detected at LHC. Meanwhile,
other Higgs boson could be settled in any energy scale. The difference with decoupling regimen is that other Higgs are
located in mass scale greater than EW-cut. For details in parameter space choices, see appendix A.
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Figure 1.5.: Fits of cos(β − α) and log(tanβ) plane by Likelihood proof for type I (Left) and II (Right) 2HDMs in a
Higgs mass for h0 of 125.04 GeV. The red, orange and yellow regions are the 68%, 95% and 99.7% CL
regions, respectively. Decays of h0 into new physics particles are assumed to disappear. The best-fit points
are marked as white diamonds (taken as a contour with ∆ (−2 logL < 0.2)). Fits use data stored by Lilith

module [35].

Varying α ∈ [−π/2, π/2] and β ∈ [0, π/2], and assuming that there are no contributions from non-SM particles to the
loop diagrams for Cγ (associated with diphoton decay of Higgs) and Cg (associated with digluon decay of Higgs) 16, we
verify compatibility of these models with LHC data.

The fits results for 2HDMs without FCNCs are shown in Fig. (1.5)-(1.6) for a Higgs with a central mass of 125.04
GeV. h0 lighter CP-even Higgs state is interpreted as the observed scalar state in LHC, and where possible decays to
new physics particles are absent.

In the type I case, we see a high compatibility between data and an alignment scenario for 2HDMs, which is strongly
independent of tanβ values. Other compatible scenarios appear when tanβ > 0.2 (close to the best fit point). For
tanβ > 1, at 95% CL, | cos(β − α)| can be large as 0.5, which is slightly higher than limit reported by [86]. This
discrepancy is due to the fact the new module take into account the most recent results from run 1 in LHC. Additionally,
our results show a second narrow allowed (non-symmetric) contour for 0.3 > tanβ > 0.001, which is compatible with
−0.5 ≤ cos(β−α) ≤ 0 at 95% CL. Nevertheless, best-fit computations with both data sets are just different in the chosen
interval for ∆ (−2 logL) < 0.1.

In the type II 2HDM, all situations differ substantially from the former case. Now, alignment regime is compatible
only at 95% C.L. for tanβ > 0.1. In addition exist three compatible valleys in tanβ − cos(β − α) plane. The first
region belongs around of cos(β − α) = 0 (exact alignment regimen) and with a large deviation in tanβ ≥ 0.5(5) where
cos(β − α) = 0.4 at 95% C.L. Other minimum in the likelihood appears with tanβ = 0.3 where cos(β − α) = 0.5(0.4) at
99% C.L. (95% C.L.). The last minimum belongs in tanβ ≤ 0.2(0.06) where cos(β−α) = −0.4 at 95% C.L. (68% C.L.).

16This implicitly implies that charged Higgs bosons in 2HDMs are heavy and decoupled from SM spectrum
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Figure 1.6.: Fits of cos(β − α) and log(tanβ) plane by Likelihood proof for Lepton specific (Left) and Flipped (Right)
2HDMs in a Higgs mass for h0 of 125.04 GeV. The red, orange and yellow regions are the 68%, 95 and
99.7 CL regions, respectively. Decays of h0 into new physics particles are assumed to disappear. The best-fit
points are marked as white diamonds (∆ (−2 logL) < 0.1). Fits use data stored by Lilith module [35]

For Lepton-specific and Flipped models, the shapes of cos(β−α) and log(tanβ) compatible valleys are slightly different
to the from gotten by type II-2HDM (see Fig. 1.6). Relevant changes are best fit points and the maximum deviation
from alignment regime cos(β − α) → 0; being these models more constrained compared with the type II-2HDM. For
instance, in Lepton specific model, the maximum deviation occurs in tanβ close to 1 where −0.15 ≤ cos(β − α) ≤ 0.1
at 95% CL. Meanwhile for Flipped model, in tanβ = 1, the maximum deviation is in −0.05 ≤ cos(β − α) ≤ 0.2 at 95%
C.L. Nevertheless, the two additional valleys still appearing for tanβ < 0.1 and for tanβ > 1 for intermediate values of
−0.4 < cos(β − α) < 0 and 0 < cos(β − α) < 0.5 at 95% CL. respectively17.

Valleys for cos(β − α) > 0 and tanβ > 0.3 are related to the phenomenology of a “wrong” Yukawa sign in fermion-
scalar couplings for down type quarks indeed. Whereas such a scenario is consistent with current LHC observations, both
future running at the LHC and or future experiments might give new information about phenomenological discrepancies
originated by this sign. Discrimination and differentiation are possible for two reasons. Firstly, the interference labeling
between the b-quark and the t-quark loop contributions to the ggh0 coupling changes sign. Secondly, and relating to
new physics influence, the charged-Higgs loop contribution to the h0 coupling can be significant and relatively constant
up to the largest charged-Higgs mass allowed by tree-level unitarity bounds when the b-quark Yukawa coupling has the
opposite sign concerning the SM one. In the latter, we can assume that the change in sign of the interference terms
between the b-quark loop and the Ws and t-loops having negligible impact [88]

1.5.2. FCNCs: Phenomenological Constraints

Perhaps, the most important consequence inside Yukawa Lagrangian is the presence of new vertices associated with
neutral currents, whose role is yield an admixture between different flavors for quarks and leptons. From observations
in distinct processes, these possible predictions are highly constrained. Moreover and as we have broadly discussed, the
general Yukawa Lagrangian in (1.3.1) leads to processes with Flavor Changing Neutral Currents (FCNC) even at tree
level. Indeed, FCNCs arise because by rotating the down sector of quarks (or up and lepton sectors) to get the mass
eigenstates it is not possible to diagonalize both coupling matrices η0

ij , ξ
0
ij simultaneously. Before to see implications in

higher perturbative corrections, vacuum studies or unitarity behavior, correspond to make a phenomenological overview
of the several restrictions over possible FCNC reactions. Processes containing FCNCs are strongly limited experimentally,
in particular, due to the small KL−KS mass difference. In SM, the FCNC are strongly suppressed by virtue of the GIM
mechanism [89]. In the 2HDM, several mechanisms to suppress FCNC at tree level were proposed. One of them is to
consider the exchange of heavy scalar or pseudoscalar Higgs Fields or by the cancellation of large values with opposite
sign. In 2HDM, one mechanism is provided by Glashow and Weinberg, who implemented in the Yukawa Lagrangian a
discrete symmetry that automatically forbids the couplings among fermions and scalars that generate such rare decays.

17These results are compatible at 95 % CL with experimental fits presented by the CMS collaboration in [87]
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λij Process Assumptions or Origin Bound Reference√
λbsλµτ B → Kµτ Precision Tests Validity . O(10) [95]√
λutλct D − D̄ 100 ≤scalar masses (GeV)≤ 400 ≤ 0.6 [96]
λtt b→ sγ λii = 0 i 6= t, b and mH± ≤ 300 GeV . 1.7 [97,98]
λµτ (g − 2)µ mA0 >> mH0 ,mh0 (10, 80) [99,100]

λeτλµτ (g − 2)µ mA0 >> mH0 ,mh0 < 0.004 [99,100]
λeτ (g − 2)µ mA0 >> mH0 ,mh0 < 10−3 [99, 100]

Table 1.4.: Phenomenological Bounds on Yukawa couplings in the 2HDM type III under Cheng and Sher anzats.

From K − K̄ mixing, as well as many processes involving kaon and muon decays [90], it has been considered that
the heaviest fermion set the scale for the entire matrix of Yukawa couplings. This assumption yields many stringent
bounds for the heavy scalars, for instance, 150 TeV (lower bound) from K − K̄ mixing. However, the most outstanding
feature of the fermion masses is their hierarchical structure. If we expect roughly the same hierarchy in the Yukawa
couplings, setting all the Flavor Changing (FC) couplings to be of the order of the heaviest-fermion Yukawa couplings is
not reliable [19]. From these considerations18, Cheng, and Sher proposed that FC couplings should be of the order of the
geometric mean of the Yukawa couplings of the two fermions. Such anzats leading to a parametrization for the Yukawa
couplings of the form

ξij =
λij
√

2mimj

v
, (1.5.4)

because with the Cheng and Sher anzats we expect that λij ∼ O(1). If the Cheng and Sher anzats is correct, the FCNC
coming from the first two generations are strongly constrained since the associated Yukawa couplings are suppressed
by the EW-scale. As a consequence, the lower bound on Higgs boson masses is reduced [19, 91]. It is usual to assume
the validity of the Cheng and Sher anzats in the 2HDM type III, and to explore its phenomenological implications [61].
Several searches focus on some few specific processes, including ∆mB , t→ ch and h→ t̄c+ c̄t, rare µ, τ, and B decays
(B → Kµτ), µ→ eγ at the two loop level, t→ cγ and t→ cZ0, muon-electron conversion, and b→ sγ. If the Cheng and
Sher anzats is correct, then one would expect from λij to be all of order unity (emulating to SM). This request is very
weak since there are unknown mixing angles. In addition, for many phenomenological limits, several scalar masses enter
in all specific processes. One of the most stringent experimental constraints on the 2HDM comes from flavor physics.
Currently flavor processes have been studied in the LHC from atlas collaboration, where tcγ couplings are limited by
means of diphotonic-Higgs H → γγ channel [2]. For the 2HDM with general (flavor diagonal) Yukawa couplings, and from
the charged Higgs contribution to different transitions such as b → sγ in [92], bounds on |λtt| were found; which must
be less or equal to unity when mH± . 500 GeV. With theoretical and experimental assumptions over SM predictions
(from QCD lattice) of observables involving F − F̄ mixing (with F ≡ K,D,Bd or Bs ) and with the measured meson
mass differences ∆MF [93], constraints over flavor space have been computed. Reference [94] considers that the addition
between SM and the new contribution does not exceed the experimental values, ∆Mexpt

Bd
= (3.337 ± 0.033) × 10−13

GeV and ∆Mexpt
Bs

= (117.0 ± 0.8) × 10−13 GeV, by more than two standard deviations for Bd and Bs systems. This
procedure impose upper bounds on ξdb and ξsb Yukawa couplings. Moreover for K and D systems, in order to obtain the
upper bounds on ξds and ξuc it is required that only the 2HDM contribution does not exceed the experimental values,
∆Mexpt

K = (3.476±0.006)×10−15 GeV and ∆Mexpt
D = (0.95±0.37)×10−14 GeV, by more than two standard deviations.

For a mass degenerate spectrum in neutral scalar and pseudoscalar sector mh0 = mH0 = mA0 = 120 GeV those bounds
are transformed in limits on Cheng-Sher couplings: (λds, λuc, λbd, λbs) ≤ (0.1, 0.2, 0.06, 0.06). Another phenomenological
bounds on Cheng-Sher couplings for quark and leptonic sectors are revised in table 1.4.

New studies on phenomenological constraints of FCNC’s have been done in [101], wherein a comprehensive analysis
of flavor observables in a 2HDM with generic Yukawa structure (in the decoupling limit of the MSSM) is realized. Here
strong bounds over fermionic vertices are obtained for particular values of tanβ and charged Higgs mass mH± . This
review shall be relevant for our studies coming from perturbative unitarity, which will be presented in chapter 4

Besides to these indirect analyses over FCNC couplings, we can make different studies over the possible realization
of diagonal FCNC couplings with the aid of compatibility with LHC data. Using Eq. (1.5.4) and Sher-Cheng anzats,
we express couplings among up (λU ) and down (λD) type fermions and scalars with additional deviation from FCNC’s
presence. For simplicity and without loss of generality, we take the fundamental parametrization, i.e., β = 019. These
compatible valleys are depicted in Fig. (1.7). For λU,D-cos(ᾱ) plane, α = 0 shows a broad valley, which is independent

18All these developments can be settled in the type III-2HDM, which has been considered in appendix C
19This choice is the typical Higgs basis, where one doublet generates mass terms, meanwhile the another doublet yields FCNC couplings (see

appendix C).
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1. 2HDM Fundamentals

of λU,D. Large deviation belong in zones near to λU,D = 0 with | cos(ᾱ)| < 0.3 at 68% C.L. Using one of the best fits
in cos(ᾱ) = 0.012, contours for λU − λD plane. Here 0 < λD < 25 and −80 < λU < 10 are the intervals at 95% C.L.
Therefore, compatibility with constrained FCNCs (λs = 0) in one best fit is only valid at 95% C.L. To make a detailed
study, we need measurements over flavor violation couplings (e.g., whose involving h0 → t̄c decays) in order to construct
a complete FCNC matrix. This extrapolation can be done with the data of run 2 in LHC employing top quark decays
and with leptonic channels [102].
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Figure 1.7.: (Left) Fit of cos(ᾱ) and λU (= λD) plane by Likelihood proof for Type III 2HDMs using Cheng and Sher anzats
in a Higgs mass for h0 of 125.04 GeV. ᾱ is defined as the mixing angle in the fundamental parametrization.
(Right) Fit of λU and λD couplings for cos(ᾱ) = 0.012 (one best fit). The red, orange and yellow regions
are the 68%, 95 and 99.7 CL regions, respectively. Decays of h0 into new physics particles are assumed to
disappear. The best-fit points are marked as white diamonds (∆ (−2 logL) < 0.1). Fits use data stored by
Lilith module [35]

From this phenomenological review, it is clear that bounds on Yukawa couplings depend strongly on the Higgs mass
pattern (and also from other free parameters such as the mixing angles). In chapter 4, we consider a theoretical limit
for the fermionic sector through generalized unitarity constraints. There using a helicity formalism, it is possible to
find bounds on the general structure of Yukawa couplings. We shall see that, despite those limits are weaker than the
phenomenological ones, such limits are independent of the Higgs masses and mixing angles, making them more model
independent.

1.5.3. Charged Higgs boson H± searches

For charged Higgs bosons studies, the latest and most complete results come from CMS and ATLAS collaborations
[103,104] and they are based on the run 1 data20. First analyses are based on charged Higgs production in pp collisions of
up to ∼ 20 fb−1 (at

√
s = 8 TeV) using several final states (leptonic and quarks tagged jets). In the absence of evidence

of some signal, limits could be settled on cross sections and/or branching ratios, some of which have been interpreted as
exclusion of regions in the broad 2HDM parameter space of mH+ , tanβ and mH0 −mH± .

In the former case, most of the searches for H+ production at the LHC are so far based on tH+X channels, focusing
mainly in H+ → τντ decays. Since H+ → cs̄ decay dominates at tanβ < 1 for mH+ , this channel has also been
considered. When a H+ is produced either in the decay of a pair-produced top quark (if mH+ < mt ), or in association
with a individually produced top quark (if mH+ > mt), the event features a t that will decay predominantly according
to the SM: t → W+b. In searching for H+ → τν, one can exploit hadronic decays of the W as well as leptonic,
provided hadronic decays of the τ can be effectively triggered on. All other searches require a prompt lepton (e or µ)
from a W decay for triggering as well as off-line suppression of large QCD background. Most searches do not cover
160 < m+

H(GeV) < 180, due to the unavailability of reliable theoretical treatment of H+ production in that region.

20Before LHC, direct searches at LEP described a lower limit on mH± of about 90 GeV [105], meanwhile Tevatron experiments put upper
limits over B(t→ H+b) in the interval of 0.15 to 0.20 for mH± < mt [106,107].
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1.5. Phenomenological review of the 2HDM realizations

Figure 1.8.: Observed and expected 95% CL upper limits on the production and decay of H+ bosons in the τν final state,
as functions of mH+ , for low-mass region (Left) and high-mass region (Right), from the ATLAS experiment.
The latter take into account both H+ and H− decays [108].

Figure 1.9.: The ratio of the observed 95% CL upper limits imposed on the cross section to the theoretical cross section
for a relatively heavy Higgs boson yielded via gluon-gluon fusion at the SM rate, derived by ATLAS analyses
from its search for pp→ H0 → H±W∓ → h0W+W− → bb̄lνjj [109].

As is shown in Fig. 1.8, comparisons between kinematic distributions of events in data and those expected from
signal+background and background-only hypotheses at different points on the mH+ , tanβ parameter space using a
binned likelihood function and CLs procedure [108] leads to 95% CL upper limits on B(t→ H+b)×B(H+ → τ+ντ ) for
mH+ < mt and σH+ ×Br (H+ → τ+ντ ) for mH+ > mt. The expected limits correspond to a hypothetical data set that
contains no signal.

A fairly model-independent search for charged Higgs bosons in the process pp→ H0 → H±W∓ → h0W+W− → bb̄lνjj
has been performed by ATLAS using 20.3 fb−1 of data at

√
s = 8 TeV [109]. The analysis exploits the di-jet mass

constraint mbb = mh0 = 125 GeV. Once again, the final state is the same as that of semi-leptonic decays of tt̄. The
analysis uses a Boosted Decision Tree trained at 36 different values of mH0 to discriminate signal against SM tt̄ events.
As seen in Fig. 1.9, presently the observed 95% upper limit on the cross section is higher than the theory-predicted cross
section everywhere in the mH0 , m+

H parameter space, but approaching it for larger values of mH0 and m+
H .

1.5.4. Pseudoscalar Higgs boson A0 searches

We make a survey for pseudoscalar Higgs boson searches with the most updated analyses from data of Run I in LHC.
An important channel is associated with A0 → Z∗0h∗0 → l+l−bb̄. The charged leptons (being either e− or µ−) com-
ing from Z∗0 decays, meanwhile the SM-like Higgs boson h0 decays into the pair bb̄. From Fig. 1.10 upper limits
at a 95% CL can be derived on the product of a narrow pseudoscalar boson cross section and branching fraction
σAB

(
A0 → Z∗0h∗0 → l+l−bb̄

)
, which exclude 30 to 3 fb at the low and high ends of the 250−600 GeV mass range.
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1. 2HDM Fundamentals

Figure 1.10.: Measured and expected 95% CL upper limit on σAB
(
A0 → Z∗0h∗0 → l+l−bb̄

)
as a function of pseudoscalar

mass in the narrow-width approximation, including all statistical and systematic uncertainties. The green
and yellow bands are the ±1σ and ±2σ uncertainty bands on the expected limit [110]..

1.6. Overview of 2HDM fundamentals

2HDMs are invoked to solve open issues of SM, as hierarchy problem of fermions, as well as to propose dark matter
and baryogenesis mechanisms. Furthermore, some models for physics beyond have a low energy limit with a non-
minimal Higgs sector similar to those yields by a 2HDM. For instance, at least two Higgs doublets are necessary for
supersymmetric and left-right models and besides the so-called 2HDM type II has the same Yukawa couplings as the
Minimal Supersymmetric Standard Model (MSSM). In particular, if the supersymmetric particles are heavy enough, the
Higgs sector of the MSSM becomes a constrained 2HDM type II at low energies. SUSY models with two Higgs doublets
could provide solutions to some problems of the SM such as the Higgs mass behavior at very high scales (naturalness
problem), the Planck and Electroweak scale hierarchy, the mass hierarchy among fermion families and the existence of
masses of neutrinos and neutrino oscillations.

On the other hand, the 2HDM could induce CP violation either explicitly or spontaneously in the Higgs potential.
However, restricting the discussion on a CP-conserving framework, which is achieved by a limited number of symmetries
over the Higgs potential. These symmetries relate doublets to their complex behavior using particular transformations
associated with singular values of SO(2) symmetries group.

An additional mechanism lying in the general 2HDM is based on the study of some processes called Flavor Changing
Neutral Currents (FCNC). It is well known that such processes are strongly constrained by experimental data, despite
the fact that they seem not to violate any fundamental law of nature. Indeed the processes with FCNC are actively
suppressed by some underlying principle still unknown, being it an open question in particle physics. Correspond to
give alternative scenarios where suppression is natural or compatible with precision tests. Mechanisms to suppress these
FCNCs reactions belonging in the general 2HDM can be proposed based on symmetries, imposed firstly in the Higgs
potential and correspondingly extended to Yukawa sector. However, generation of FCNC processes is still compatible
with the strong enough experimental limits on them and in the light of new LHC there slight deviations from SM
couplings between scalar particle and fermions. Having said that, the presence of FCNC could be an indirect signature
of the existence of an extended Higgs sector like 2HDM.

The most general form of the Higgs sector has a broad parameter space. Symmetries implemented CP and for Higgs
families leading to simpler models for 2HDM, converting into valuable tools to make predictions from fundamentals. We
shall build up systematically these theories analyzing different theoretical and phenomenological implications from them.
Those studies could be extended not only to 2HDM behavior but other models with extended Higgs sectors.

Furthermore of symmetries in the Higgs potential coming from Higgs family and CP transformations, we review the
effect of extending of custodial symmetry of the Higgs potential SM and the corresponding scalar sector in the 2HDMs.
In general, the contribution of the oblique parameters from the extra SU(2) doublet in the 2HDM is tiny since scalar
doublets (or singlets) do not break the custodial symmetry. Since the custodial symmetry is broken by Yukawa and
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kinetic terms, we consider how splitting in mass eigenstates could induce sizable effects in precision EW parameters even
at one loop level. This analysis is implemented defining STU parameters, which constitute a sensitive probe of new
physics coupling to the EW gauge bosons.

Because the description of 2HDM fundamentals, it is possible to face other features of extended Higgs sector as vacuum
structures and their behavior at high energy scales. This fact will be the leitmotiv of the following chapters, where we
consider tree level behavior of minima and stationary points in the Higgs potential as well as its possible radiative
corrections. Both studies leading to analyze all effects in vacuum stability or instability at NLO for Higgs potential in
the field space for different models with different symmetries implementations.
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2. Vacuum structure and stability at tree level for
extended Higgs sectors

2.1. Vacuum stability behavior in Extended Higgs sectors

The vacuum stability condition is one of the most important features for Spontaneous Symmetry Breaking (SSB) sector
since it determines the natural solutions for stationary and minimization equations. For instance in the Standard Model,
this condition is such that the Higgs potential in its dimension fourth part is always positive in the field space. This is
translated into the quartic coupling would be λ > 0, for asymptotical values of |Φ| . This condition at tree level can be
extrapolated to the effective Higgs potential at, e.g., one loop level or at Next to Next Leading Order (NNLO). Under
the use of Renormalization Group Equations for quartic constant, gauge and Yukawa couplings and their simultaneous
solution, it is possible to find out the stability regime for effective Higgs potential on the scale of energy µ. In those
regimes, the Higgs potential shape may change, and it might drive out to the instabilities in fact. The instability scale
can be seen as cut scale where the theory (as a bottom-up approach) is only effective until those energy values, where
new degrees of freedom become relevant to the description of physical properties.

For others models, the general procedure to find positivity structure could be more intricate. For example, in two Higgs
doublet models, the vacuum stability conditions depend on the asymptotical behavior of the extended field space and also
of its possible combinations. Hence, and as will see soon, the consequences over parameter space are more elaborated.
Furthermore, the RG equations at one loop level for scalar and Yukawa couplings are too many, complicated and hard
to control; and they need additional assumptions as initial conditions over the respective space of free parameter. The
last fact is a motivation to introduce other theoretical and phenomenological constraints in the general study of vacuum
stability regions for extended models.

In addition to the standard issues in the stability conditions, the 2HDM has a richer vacuum structure wherein
metastability states at tree level could be present. This effect is a consequence of relating the number of critical points in
the Higgs potential, which particularly in its minimum depends on the composition of two vacuum expectation values and
stationary points nature (being minima, or maximums or saddle points). Even at the moment of building a model with a
Higgs potential with several distinct minima, the possibility of taking a metastable minimum as a physically acceptable
vacuum state is also allowed if this effect is suppressed by the fact of having a long lived enough minimum state, there
possible consequences for the phenomenology of the model. This scenario would describe the mass particles in a realistic
approach without fear of the tunneling effects changing this phenomenological framework. From a cosmological point
of view, the critical temperature of EW-phase transition is defined as the value where Higgs potential minima become
degenerate. Therefore, a metastable regime of 2HDM could bring many consequences in baryogenesis mechanisms, since,
this critical temperature definition might be ambiguous if EW-minimum is not correctly defined.

The six classes of symmetries considered in the last chapter will be a major framework to analyze the stability.
These properties will be further used here in a general way to write a more compact form which is invariant under a
parameterization given by the restricted Lorentz group in the future light cone. By the way and under impositions
extrapolated to Minkowskian space is possible to find out vacuum stability constraints associated with the requirement
at tree level for a bounded from below Higgs potential. Moreover, that covariant form of the Higgs potential yields a
suitable frame to analyze the possibility to reach metastability vacua for two normal minima (with real VEVs).

2.2. Vacuum structure of 2HDM

Before to start the study of vacuum stability behavior, it is convenient to analyze multiple forms in which the vacua in
2HDM theories behave. In SM, theory is invariant under SU (2)L⊗U (1)Y group and its spontaneous symmetry breaking

can be achieved with a doublet where the VEV is settled in the neutral component (real part), i.e., 〈Φ〉0 = v/
√

2. The
consequence of this choice is that Q〈Φ〉 = 0 since the vacuum configuration has not electric charge. If all components
of the doublet, charged and neutral, as well as real and imaginary ones, acquire a VEV the consequence would still
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be a massless photon, because of remainder symmetry in the vacuum. Hence the electromagnetic U (1)em vacuum
configuration can not be broken by just one doublet; where the redefinition of the VEVs in all components would have
the effect of a redefinition of the charge operator. The scheme for vacuum invariant structure SU (2)L⊗U (1)Y → U (1)em
also ensures the non-presence of possible phases that lead spontaneous CP violation [27].

When we add a second doublet, scenarios for vacuum configuration are converted into richer ones. Every parametriza-
tion for two doublets introduces eight fields, which in a general way all can have VEVs. By using gauge structure
SU (2)L ⊗ U (1)Y , it is possible to build the following parametrization for the doublets in the vacuum configuration

〈Φ1〉 =

(
0

v1e
iθ

)
and 〈Φ2〉 =

(
v̄
v2

)
. (2.2.1)

The mass eigenstates for gauge boson matrix now can get all non-zero entries. The mass eigenvalue for photon reads

m2
γ =

1

8

[
v2
(
g2 + g

′2
)
−
√
v4 (g2 + g′2)− 16g2g′2v2

1 v̄
2

]
, (2.2.2)

where v2 = v2
1 + v2

2 + v̄2. By taking v1 = 0 (SM case) or v̄ = 0 (aligned VEVs), otherwise the photon acquires mass
and vacuum violates charge conservation.

To analyze CP symmetry behavior, we start by defining a transformation in the sense previously introduced in the
last chapter Φi → Φ∗i . Therefore, the possible configurations for vacuum can be classified in the following structures:
Neutral vacua

〈Φ1〉N =

(
0
v1

)
; 〈Φ2〉N =

(
0
v2

)
. (2.2.3)

The spontaneous CP breaking configuration has the following structure ,

〈Φ2〉CP =

(
0

v1 + iδ

)
; 〈Φ2〉CP =

(
0
v2

)
. (2.2.4)

Finally, the charge breaking configuration

〈Φ2〉CB =

(
0
v1

)
; 〈Φ2〉CB =

(
α
v2

)
. (2.2.5)

Vacua with α and δ simultaneously non-zero are not considered because the minimization conditions of the CP-
conserving Higgs potential forbid them. Henceforth we will only be concentrated in normal and CP breaking vacuum-
configurations.

2.2.1. Vacuum properties from Higgs potential structure

Because of gauge invariance, it is possible to write the Higgs potential in 2HDM regarding four bilinear: x1 = Φ†1Φ1,

x2 = Φ†2Φ2, x3 =Re
(

Φ†1Φ2

)
and x4 =Im

(
Φ†1Φ2

)
. Hence the most general Higgs potential

V = a1x1 + a2x2 + a3x3 + a4x4 + b11x
2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4

+ b12x1x2 + b13x1x3 + b23x2x3 + b14x1x4 + b24x2x4 + b34x3x4. (2.2.6)

More developments in this form of the Higgs potential are presented in Appendix D. Here is also exposed the relations
among ai and bij parameters with quartic a bilinear couplings of traditional notation for Higgs otential1. By seeing this
Higgs potential, terms linear in x4 break CP explicitly. Taking these terms equal to zero, we get a CP-conserving Higgs
potential with ten parameters:

V = a1x1 + a2x2 + a3x3 + b11x
2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4 + b12x1x2 + b13x1x3 + b23x2x3. (2.2.7)

The stationary condition with a CP breaking vacuum structure is given by

b13

(
v2

1 + δ2
)

+ b23v
2
2 + (b33 − b44) v1v2 = a3. (2.2.8)

1By means of Morse’ inequalities, notation in bilinears is also a useful tool to determine how many critical points can exist in the Higgs
potential as well as the origin of these stationary points. This formalism is presented in Appendix H.
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Renormalizability in the Higgs potential forces b13 and b23 are simultaneously either zero or nonzero. Here, we ask
what models without explicit CP violation protect vacuum against spontaneous CP violation. We first note that there
are regions in the space parameters where solutions for this equation are absent at all,

b13 = b23 = a3 = 0 and b33 6= b44, (2.2.9a)

b13 = b23 = b33 − b44 = 0 and a3 6= 0. (2.2.9b)

Respectively, each parameter space is induced by the symmetries:

Φ1 → −Φ1 and Φ2 → Φ2. (2.2.10a)

Φ1 → eiθΦ1 and Φ2 → Φ2. (2.2.10b)

Hence, CP-breaking minimum is avoided with two phenomenologically different seven-parameter potentials, with U (1)
(softly broken) and Z2 global symmetries. Besides, when this symmetry is extended to Yukawa Lagrangian sector the
FCNC processes at tree level can be suppressed through Weinberg-Glashow mechanism. There other two Higgs potentials:
U (1) exact global symmetry or a potential with a Z2 symmetry broken softly. The second case has the following Higgs
potential

V Z2−soft
H = a1x1 + a2x2 + a3x3 + b11x

2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4 + b12x1x2. (2.2.11)

All models to avoid a CP breaking vacua can be obtained from different limits of V Z2−soft
H . By means of the Higgs

mass eigenstates, tanβ and α (rotation angle in the CP-even sector) and a3, and to recover easily the models U (1)(softly
broken) and Z2 and U (1) exact, it is necessary to take:

U (1) (softly-broken) → b33 = b44, a3 = − m2
A

sin 2β

U(1) → b33 = b44 and a3 = 0, (2.2.12)

Z2 → a3 = 0.

2.2.2. Stationary points of different nature

In SM, gauge invariance and renormalizability lead to one unique vacuum. Contrary 2HDMs can have several stationary
points. It is possible to ask about the possibility of having different nature to the same parameter set. This fact yields
to the possibility of tunneling among these stationary points. Hence it is necessary to study the way of these critical
points arise. We compute many relations about differences between possible stationary points in the appendices D-E. For
example, when a CP symmetry can be described as a good quantum number the differences between a normal vacuum
VN and a CP vacuum VCP get the form

VCP − VN =
m2
A

2v2

[
(v1v

′
2 − v2v

′
1)

2
+ δ2v2

2

]
. (2.2.13)

The value of pseudo-scalar mass is evaluated at the normal stationary point. If the normal stationary point is a minimum,
positivity of m2

A ensures that the CP stationary point is above it. Furthermore, in such case, the CP-critical point is
a saddle point. Perhaps the main result is that the stability of the normal minimum against tunneling to a deeper CP
breaking stationary point is thus ensured in 2HDM. The method extends straightforward to other vacuum structures
differences, like one between CP and CB configurations (see appendix F). If a CP breaking stationary point is a minimum,
the competing normal and charge breaking critical points are saddle points above it - the CP breaking minimum is then
a global one.

2.2.3. Stationary points of the same nature

Now we consider the case of having simultaneously two normal vacua. This effect will be translated in the main corner
of the metastability analysis. In 2HDMs, one of the most relevant consequences of the stationary points is the fact of
minima of different nature can not coexist. Contrary to CP minima (linear equations in VEVs), normal minima are not
uniquely determined; it is possible to find out two patterns for SSB with different masses for gauge bosons [30]. The
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2.3. Minkowskian Structure of the 2HDM Higgs Potential

stationarity conditions are always a set of two coupled cubic equations. From the general Higgs potential with terms
that break the CP-symmetry explicitly (2.2.6), the relation between two normal vacuum N1 and N2 is given by

VN2
− VN1

=
1

2

[(
m2
H±

v2

)
N1

−
(
m2
H±

v2

)
N2

] [
(v1v

′
2 − v2v

′
1)

2
+ δ2v2

2

]
. (2.2.14)

where v2
N1

= v2
1 + v2

2 and v2
N2

= v
′2
1 + v

′2
2 + δ2 are the VEVs in each vacua, and

(
m2
H±

)
N12,

is the charged Higgs

masses evaluated in different vacuum configurations. Hence the deepest minimum is characterized by the highest value
of charged Higgs mass and the VEV ratio.

2.3. Minkowskian Structure of the 2HDM Higgs Potential

We have seen as multiple structure for vacuum in 2HDM arises for the complex form of the Higgs potential. These forms
also yield several relation between minima and saddle points of the same or different nature. In this section, we study
as the obtention of these properties are connected with the more general basis transformations of the model. Firstly,
we should introduce a brief discussion on notation: though writing the 2HDM potential regarding doublets (manifestly
gauge covariant) quoted in Eq. (1.2.1),

VH = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 +
1

2
λ1

(
Φ†1Φ1

)2

+
1

2
λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

{
1

2
λ5

(
Φ†1Φ2

)2

+ λ6

(
Φ†1Φ1

)(
Φ†1Φ2

)
+ λ7

(
Φ†2Φ2

)(
Φ†1Φ2

)
−m2

12Φ†1Φ2 + h.c.

}
, (2.3.1)

Here couplings λi with i = 1, 2, 3, 4 and m2
jj with j = 1, 2 are real, while λk where k = 5, 6, 7 and m2

i,j where i, j = 1, 2
and different between them can be in general complex numbers. It is worthwhile point out different points in this
14-dimensional parameter space do not necessarily correspond to distinct physical predictions [36]. Now if we perform
any linear transformation between doublets Φ1 and Φ2, the 2.3.1 becomes the same generic potential with redefined
coefficients, which still corresponds to the same set of physical observables. Those operations were discussed in the
section 1.2.2 of the last chapter 1. Thus, the systematics of minimizing the Higgs potential has a reparameterization
invariance embedded in a group GL (2, C) 2. To see it in more detail, we first introduce the four-vector

rµ = (r0, ri) =
(
Φ†Φ,Φ†σiΦ

)
, (2.3.2)

where

Φ =

(
Φ1

Φ2

)
. (2.3.3)

which is a 2-dimensional vector Higgs bi-doublet, usually called Higgs field space. σi are the Pauli matrices. Finally, rµ

is gauge invariant and lead to parametrize the gauge orbits in the space of the Higgs fields.
On the other hand, the general reparametrization group GL(2, C) can be written as

C∗ × SL (2, C) , (2.3.4)

where C∗ is the group of simultaneous multiplication of both Φi with the same non-zero complex number and SL(2, C)
is the special linear transformation group containing all unit determinant transformation matrices. We know that
multiplication of both doublets by the same number gives a freedom to rescale rµ, however, it does not modify the
standard structure of the general Higgs potential. The special linear group SL (2, C), on the contrary leads to non-trivial
changes of the pure scalar potential, and in the subsequent analysis in that we shall focus on it [111].

It is very convenient to switch from the fundamental to the adjoint representation of SU(2). The corresponding
decomposition is given by

2We consider the following statements:

• GL (n, F ) the general linear group of degree n is the set of n × n invertible matrices, together with the operation of ordinary matrix
multiplication (in the particular case this is defined in the field C).

• The special linear group, written SL(n, F ) is the subgroup of GL(n, F ) representing by matrices with a determinant of 1.

• This property is an extension of an earlier identification of re-phasing U (1), and unitary reparameterization U (2), invariance of the
model. It starts with the observation of the internal Minkowski-space structure behind 2HDM.
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2. Vacuum structure and stability at tree level for extended Higgs sectors

2⊗ 2̄ = 3⊕ 1 (2.3.5)

Hence the relevant quantities might form a triplet and a singlet representation. Using the well-known SU(2) → SO(3)
mapping, one maps them (triplet and singlet) into a scalar and a real-valued vector:

r0 = Φ† Φ =
(

Φ†1Φ1 + Φ†2Φ2

)
, (2.3.6)

ri = Φ†σi Φ =

 Φ†1Φ2 + Φ†2Φ1

−i
[
Φ†1Φ2 − Φ†2Φ1

]
Φ†1Φ1 − Φ†2Φ2

 . (2.3.7)

The Higgs potential can be now written as

V = −Miri −M0r0 +Aijrirj +Birir0 + Cr2
0. (2.3.8)

where Mi and M0 contain the mass coefficients, while Aij , Bi and C are composed of quartic couplings λi. From this
formalism, it is possible to extract the following features:

• This representation already displays some structure in the space of all possible 2HDM, i.e. the space of all free
parameters of the potential.

• A SU(2) rotation induces a corresponding SO(3) rotation of the basis in 3D space, under which ri, Mi, Bi transform
as vectors, meanwhile Aij transforms as a symmetric tensor, but the value of the potential remains the same.

Considering the largest group of invertible linear transformations GL(2, C) of a complex-valued 2-vector, we can do
this decomposition in a more general way. By the quartic part of the Higgs potential contains all possible fourth order
terms, an arbitrary linear transformation between the two doublets keeps it unchanged; only up to reparameterization
operation. Therefore, the group under which the Higgs potential is reparameterization-invariant is GL(2, C), not just
U(2) as usually it is assumed in the literature [29,36].

Moreover, the subgroup C∗(i.e. overall multiplication by a non-zero complex number) of GL(2, C) is over-determinate
for the description of the Higgs potential. Therefore the product of all the fields by the same real non-zero constant yields
to a rescaling of all the observables, without changing the fundamental structure of the model, while the global phase
rotations have no effect on the Higgs potential. It is its factor group SL(2, C) that encodes all non-trivial transformations
and generates interesting symmetries. These properties are useful to study Higgs potential realizations and to establish
possible connections with phenomenology and other theoretical analyses.

Consequently, from adjoint representation of SL(2, C) it is possible to induce proper Lorentz group SO(1, 3)3. Apart
from the 3D rotations, induced by SU(2), we have also boost-transformations along the three axes. The scalar r0 and
vector ri now become parts of a single irreducible representation of SO(1, 3):

rµ = (r0, ri) . (2.3.9)

The orbit space (generated by all possible four-vectors rµ) is equipped with the Minkowski space structure. The
covariant and contravariant vectors are related by the metric tensor gµν =diag(1,−1,−1,−1) (i.e. signature equal to
−2).

2.3.1. The orbit gauge space

The orbit space in 2HDM is not the entire Minkowski space; since the square of the 4-vector rµ is invariant under any
proper Lorentz transformation and it is non-negative due to the Schwartz inequality for the product of the doublets,

r2 ≡ rµrµ = r2
0 − r2

i = 4
[(

Φ†1Φ1

)(
Φ†2Φ2

)]
=

(
Φ†1Φ1 + Φ†2Φ2

)2

−
(

Φ†1Φ2 + Φ†2Φ1

)2

+
(

Φ†1Φ2 − Φ†2Φ1

)2

−
(

Φ†1Φ1 − Φ†2Φ2

)2

= 4
(

Φ†1Φ1

)(
Φ†2Φ2

)
− 4

(
Φ†1Φ2

)(
Φ†2Φ1

)
≥ 0, (2.3.10)

3The restricted Lorentz group consists of Lorentz transformations, boosts or rotations in four dimensions, that preserve the orientation of
space and direction of time besides to the quadratic form .
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2.3. Minkowskian Structure of the 2HDM Higgs Potential

and hence temporal component of cuadrivector

r0 = Φ†1Φ1 + Φ†2Φ2 ≥ 0. (2.3.11)

Therefore, the physical field configurations lie inside and on the border of the future lightcone (LC+) in the Minkowski
space.

Figure 2.1.: Geometrical point of view for orbit space consistent with Schwartz inequality for doublets. Because of Schwartz
inequalities, the gauge orbit space for 2HDM belongs only in the frontier and inside of the future light cone
LC+.

The surface of LC+, r2 = 0, corresponds to the situation when the two Higgs multiplets are proportional to each
other. In particular, if a vector rµ indicates a stationary point (e.g. EW vacuum) of the potential, then r2 means that
the vacuum is electrically neutral. r2 > 0 can be realized only when the two doublets are not proportional; a vacuum
solution with r2 > 0 would correspond to the charge-breaking vacuum as we will see soon (another discussion is presented
in Appendix G). From (2.3.8), the Higgs potential in the rµ-gauge orbit space can be written in a very compact form:

VH = −Mµr
µ +

1

2
Λµνr

µrν . (2.3.12)

Here the four-vector Mµ is built from parameters m2
ij in (2.3.1), while the symmetric four-tensor Λµν is constructed

from the quartic coefficients λi.

2.3.2. Properties of Λµν

The positivity constraint on the Higgs potential requires it to be bounded from below in all possible directions of the
field space conformed by (Φ1,Φ2). These constraints presented as a list of inequalities among different λ′s, which can be
gotten from different arguments of variational calculus [112]. Every restriction has been summarized in Table 2.1.

Condition Lagrange multiplier (Normal vacuum) Main assumption or Consequence

λ1 > 0 No |Φ1| → ∞ and |Φ2| → 0
λ2 > 0 No |Φ1| → 0 and |Φ2| → ∞
λ3 > −

√
λ1λ2 No Φ†1Φ2 = 0 (orthogonal)

λ4 + λ3 + λ5 > −
√
λ1λ2 Yes→ Λ1 Re

(
Φ†1Φ2

)
= 0

λ4 + λ3 − λ5 > −
√
λ1λ2 Yes→ Λ1 Im

(
Φ†1Φ2

)
= 0

Table 2.1.: Vacuum stability constraints in the field space for quartic couplings in a general CP-conserving Higgs potential
obtained from variational methods [20, 113, 114].

We should look for a formalism or properties for SO(1, 3) representations to ensure that Higgs potential is bounded
from below. In the language of the gauge orbits equipped with Minkowskian metric, the positivity constraint for the
Higgs potential in Eq. (2.3.12) is given by a single statement: The tensor Λµν is positive definite on the future light-cone.
This fact is equivalent to the following set of requirements:

• Tensor Λµν is diagonalizable by a SO(1, 3) transformation,
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2. Vacuum structure and stability at tree level for extended Higgs sectors

• the time-like eigenvalue Λ0 is positive and

• all spacelike eigenvalues Λi are smaller than Λ0.

In other words, there always exists a SO(1, 3) transformation that brings Λµν to
Λ0 0 0 0
0 −Λ1 0 0
0 0 −Λ2 0
0 0 0 −Λ3

 , with Λ0 > 0, and Λ0 > Λi (2.3.13)

Note that Λi are bounded only from above. The negative values of Λi with arbitrary large absolute values are allowed.
In particular, all Λi < 0 if and only if Λµν is positive definite in the entire Minkowski space. The demonstration of these
implications has been given in the appendix G.

2.4. CP-Conserving Potential and Minkowskian structure

In section 2.2.1 was naively demonstrated, considering the 2HDM potential regarding doublets from (2.3.1) is extremely
useful for many calculations (e.g. everything dealing with the fermion sector) and to get Feynman rules. However, in
some instances, a different notation - in which the potential written in terms of gauge bilinear invariants - can be crucial
in find out possible symmetries relations in the Higgs potential itself and its stationary points. For instance, by taking
δ = 0 in Eq. (2.2.14), the comparison of values of potentials at different vacua

VN1
− VN2

=
1

2

[(
M2
H±

v′2

)
N2

−
(
M2
H±

v′2

)
N2

] [
(β1v2 − β2v1)

2
]
, (2.4.1)

it is simple to obtain in the bilinears notation, but extremely intricate to do in the former (2.3.1). In the same way, the
conditions for existence of dual minima are far easier to establish in the bilinear formalism, which we have introduced
in appendices D-E. As we studied in sections (2.3) and (2.3.1), a outstanding feature of this notation in bilinears is
the fact that the 2HDM potential has a hidden Minkowski-like structure, when it is written in terms of gauge invariant
bilinears which form a covariant 4−vector in a Minkowski space, rµ (µ = 0, .., 3) defined in (2.3.6)-(2.3.7); it arises from
reparameterization group SL (2, C). Moreover, the allowed vectors rµ =

(
r0,−ri

)
fill the forward lightcone LC+ defined

by r0 ≥ 0 and rµrµ ≥ 0. The apex of this cone regards to the EW symmetric vacuum, meanwhile its surface corresponds
to the neutral vacua, and its interior corresponds to charge-breaking vacua [115].

In the CP-conserving case for the Higgs potential written in the Minkowskian bilinears form (2.3.12), the 4−vector
Mµ and the tensor Λµν are given by

Mµ = (M0,Mi) =

(
−1

2

(
m2

11 +m2
22

)
,Re

(
m2

12

)
, 0,

1

2

(
m2

22 −m2
11

))
. (2.4.2)

with Mµ = (M0,−Mi) and

Λµν =


λ1+λ2

2 + λ3 λ6 + λ7 0 λ1−λ2

2
λ6 + λ7 λ4 + λ5 0 λ6 − λ7

0 0 λ4 − λ5 0
λ1−λ2

2 λ6 − λ7 0 λ1+λ2

2 − λ3

 . (2.4.3)

As we mentioned earlier, Higgs potential belongs on a basis where all parameters are real, which causes the appearance
of several zeros in Λµν and Mµ. This fact is a sufficient condition to avoid explicit CP violation in the Higgs potential.
With the notation established here, it is possible to give the preliminary steps required to verify whether or not the
most general CP -conserving potential can have two neutral minima [29], and if one of them is a metastable vacuum
characterized by a deeper minimum (true-false vacua tension).

• The first step in the systematic is the diagonalization of the tensor of the quartic couplings. Due to the Minkowski
indexes, this is achieved via a combination of rotations and Lorentz-like boosts. To achieve it exist a much simpler
systematic : Define the matrix Λ = Λ ν

µ ; it is obtained from eq. (2.4.3) by simply make a flipping of the sign of the
three last columns. The 4× 4 matrix has eigenvalues Λa (a = 1, 2, 3, 4) determined by the usual equation,

det (Λ− ΛaI) = 0, (2.4.4)
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2.4. CP-Conserving Potential and Minkowskian structure

with eigenvectors, V (a) which satisfy (no sum indexes)

ΛV (a) = ΛaV
(a). (2.4.5)

Perhaps solving for the eigenvectors and eigenvalues of Λ could be implemented within any numerical calculation
package. Since the matrix Λ is not symmetric anymore, its eigenvalues and eigenvectors are -in general- complex. In
particular, this condition shall be translated onto separate conditions for vacuum stability on independent directions
for Φ1 − Φ2 space.

• The next step is ensuring that the potential is bounded from below or determining the stability conditions. In
these cases, the eigenvalues of Λ must obey the conditions:

All eigenvalues must be real (2.4.6a)

Λ0 > 0, (2.4.6b)

Λ0 > {Λ1,Λ2,Λ3} . (2.4.6c)

• The eigenvectors obtained in (2.4.5) are then real and can be normalized in such a way that one of them is time-like
one, the others are space-like ones. Meaning, if the eigenvector referring to the largest eigenvalue Λ0, obtained in
(2.4.5) is given by V (0) = (v00, v10, v20, v30), its overall normalization is such that, with our conventions,∣∣∣V (0)

∣∣∣2 = v2
00 − v2

10 − v2
20 − v2

30 = 1, (2.4.7)

whereas, for the other three eigenvectors V (i), we must have∣∣∣V (i)
∣∣∣2 = v2

0i − v2
1i − v2

2i − v2
3i = −1. (2.4.8)

• We now build up a rotation matrix O, with the eigenvectors V (a) serving as its columns. Which means, with the
coefficients v used in eqs. (2.4.7) and (2.4.8), Oab = vab. This matrix O satisfies

O−1ΛO = diag (Λ0,Λ1,Λ2,Λ3) . (2.4.9)

We now build up a rotation matrix O, where the eigenvectors V (a) serving as its columns. Which means, with the
coefficients v used in eqs. (2.4.7) and (2.4.8), Oab = vab. This matrix O satisfies

M̂0

M̂1

M̂2

M̂3

 = OT


− 1

2

(
m2

11 +m2
22

)
−Re

(
m2

12

)
0

1
2

(
m2

11 −m2
22

)
 ,


r̂0

r̂1

r̂2

r̂3

 = OT


1
2

(
v2

1 + v2
2

)
v1v2

0
1
2

(
v2

1 − v2
2

)
 . (2.4.10)

Thus M̂0 = M̂0, M̂ i = −M̂i, etc. Since we began with the CP-conserving potential of eqs. (2.4.2) and (2.4.3), we

are guaranteed to obtain M̂2 = r̂2 = 0.

r̂µr̂
µ = r̂2

0 − r̂2
1 − r̂2

3 =
1

4

(
v2

1 + v2
2

)2 − v2
1v

2
2 −

1

4

(
v2

1 − v2
2

)2
= 0. (2.4.11)

Now in possession of the values of the eigenvalues Λ0, Λi; of the rotated quadratic coefficients M̂0, M̂ i; and of the
rotated VEVs r̂0, r̂i, the necessary conditions for the existence of two neutral minima are very simple to write:

If M̂0 > 0 and
3
√
x2 + 3

√
y2 ≤ 1, with

x =
M̂1 (Λ0 − Λ3)

M̂0 (Λ3 − Λ1)
, y =

M̂3 (Λ0 − Λ1)

M̂0 (Λ3 − Λ1)
. (2.4.12)
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2. Vacuum structure and stability at tree level for extended Higgs sectors

Then the potential can have two neutral minima. We emphasize that these are necessary conditions for the existence
of two neutral minima (see demonstration in Appendix F) - although they are necessary and sufficient conditions
for the existence of four normal stationary points. Remarkably, we have a necessary and sufficient condition to
verify the global nature of our minimum - to know whether our {v1, v2} vacuum is the global minimum of the
potential, we need only do the following:

Let us define a discriminant D, given by

D = M̂1M̂3r̂1r̂3 (2.4.13)

Our vacuum is the global minimum of the potential if and only ifD > 0

It is simple to verify that this procedure leads to the conditions laid out for the softly broken Peccei-Quinn -like-
model in the following section. Unfortunately for the most general Z2−model with a softly term and λ5 complex
coupling, the diagonalization procedure explained above renders analytical expressions for the bounds inviable.
Nevertheless, the formalism treated in this section is quite easy to implement in a numerical way 4.

2.4.1. Lower half space: M̂0 < 0

Here we show that, if M̂0 < 0 in the Λµν-diagonal basis, then the potential has only one non-zero stationary point, which
behaves as the global minimum in the theory [36, 115, 117]. Finding neutral extreme of the potential in Eq. (2.3.12),
that is, with values of rµ restricted to the surface of lightcone, rµrµ = 0 - benefits from using a Lagrange multiplier
ζ associated with this constraint. Therefore, we consider an auxiliary potential V̄ taking into account the respective
restriction

V̄ = V − ζ

2
rµrµ = −Mµr

µ +
1

2
Λµνr

µrν − ζ

2
rµrµ. (2.4.14)

The minimization conditions with respect to vectors and Lagrange multiplier are thus

∂V

∂rµ
= −Mµ + Λµνr

ν − ζrµ = 0. (2.4.15)

∂V

∂ζ
= rµrµ = 0. (2.4.16)

The last condition is the original constraint to get solutions on the frontier of the lightcone. By using the explicit
coefficients of the potential in the Λµν-diagonal frame, the stationary conditions become

(Λ0 − ζ) r̂0 = M̂0, (2.4.17)

(Λi − ζ) r̂i = M̂i. (2.4.18)

Notice that, because of the potential is CP conserving and no CP spontaneous breaking is being considered, M̂2 = 0
and r̂2 = 0. Thus in these stationary equations, we can reduce spatial conditions

(Λ1 − ζ) r̂1 = M̂1, (2.4.19)

(Λ3 − ζ) r̂3 = M̂3. (2.4.20)

This system has therefore three independent variables ζ, r1, r3, while the value of r̂0 is then expressed as the positive
square root of r̂2

0 =
∑
ι r̂

2
i . Since r̂0 is necessarily positive (taking r̂0 means we are excluding the trivial solution, where

all r̂µ = 0), the equation (2.4.17) implies that, if M̂0 < 0, the solution is found for a value of the Lagrange multiplier
ζ > Λ0. The condition r̂2

0 =
∑
ι r̂

2
i can be rewritten as

∑
i

(
Λ0 − ζ
Λi − ζ

)2
(
M̂i

M̂0

)2

≡
∑
i

Ωi = 1. (2.4.21)

This form is a single algebraic equation of fourth order in ζ, and it will be converted in a crucial relation to study
stability and metastability conditions in models established in a CP -conserving frame. Nevertheless without solving it

4We have followed the formalism, the discussion, and method exposed by Ivanov in [36,116]
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2.4. CP-Conserving Potential and Minkowskian structure

explicitly, we can extract some features for extremal cases of, for instance, a Lagrange multiplier. Thus, by varying the
value of ζ from Λ0 to infinity, the following ranges are found

when ζ = Λ0 →
ζ − Λ0

ζ − Λi
= 0, (2.4.22)

when ζ → ∞→ ζ − Λ0

ζ − Λi
= 1. (2.4.23)

(Λ0 > Λi from vacuum stability conditions) hence ζ is increasing, in a monotonous function, from zero (in Λ0) up to
one (ζ >> Λ0). The expression on the left of (2.4.21) is therefore a monotonous function of ζ, and it grows from zero to
a maximum equal to ∑

ι

(
M̂i

M̂0

)2

when ζ goes to ∞. (2.4.24)

We can, therefore, say that

• If M̂0 < 0 and M̂µM̂
µ ≥ 0,

M̂2
0 −

∑
i

M̂2
i ≥ 0→

∑
i

(
M̂i

M̂0

)2

≤ 1. (2.4.25)

and from

(Λ0 − ζ) r̂0 = M̂0 < 0 and r̂0 > 0 therefore ζ > Λ0, (2.4.26)

hence the equation (2.4.21) has no solution in the region ζ > Λ0 (only for
∑
i M̂

2
i = M̂2

0 ). Thus, the potential has
no non-trivial extreme. The only extremum - the global minimum - lies at the apex rµ = 0, and no electroweak
breaking occurs. This situation is physically uninteresting (for our purposes) since theory remains in a non-breaking
phase where Goldstone bosons have not incorporated into longitudinal components of gauge bosons to yield their
respective masses.

• If M̂0 < 0 and M̂µM̂
µ < 0, therefore ∑

i

(
M̂i

M̂0

)2

> 1, (2.4.27)

and the equation (2.4.21) has only one solution in the region ζ > Λ0. Here M̂µ lies outside of the past lightcone
but still in the lower half space, there exists a unique non-zero neutral extremum, which is necessarily the global
minimum. Thus, there are no two minima in this situation.

Furthermore, in the lower half-plane exists only one surface of phase transitions, i.e., the past lightcone LC−, at which
the EW-breaking or one restoring phase transition might take place.

In conclusion, M̂0 > 0 is a condition necessary to get two minima in the Higgs potential, implying from stationary
conditions (2.4.21) that ζ < Λ0. The next subsection is devoted to showing additional conditions to have minima in the
Higgs potential for the upper half space in the temporal component of bilinear terms.

2.4.2. Upper half space: M̂0 > 0

For M̂0 > 0, the geometrical phase diagram is more complex than associated with M̂0 < 0. To describe and see it, let us
introduce the 3-vector mi, i = 1, 2, 3 :

mi =
1

M̂0

(
M̂1, M̂2, M̂3

)
. (2.4.28)

and it allows showing the phase diagram in the mi-space. There are two generic cases to consider: i) When all spatial
components in diagonal tensor Λi < 0 and ii) One at least Λi < 0. Both cases are displayed in Fig. 2.2.
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2. Vacuum structure and stability at tree level for extended Higgs sectors

Figure 2.2.: The phase diagram for vacuum structures in the mi-space. Left: all Λi < 0, the ellipsoid separates the
charge-breaking and the neutral vacua. Right: Λ2 is positive and greater than Λ1 and Λ3. Inside the dark
ellipse, the discrete symmetry of the potential V is spontaneously broken [36].

All Λi < 0

The condition Λ1,Λ2,Λ3 < 0 is the necessary condition for the charge-violating minimum to exist [118,119] (see also G).
Whether this minimum is realized, depends on mi, i.e. on the point of the phase diagram. Indeed, in the Λµν -diagonal
frame, equations for extremal condition are now

Λ0r̂0 = M̂0, (2.4.29)

Λir̂i = M̂i. (2.4.30)

Since the solution r̂µ must lie inside the forward lightcone, one obtains that the charge-breaking phase in the phase
diagrams lies inside the ellipsoid

m2
1

a2
1

+
m2

2

a2
2

+
m2

3

a2
3

< 1, (2.4.31)

This can be obtained from

r̂µr̂
µ > 0; translated to

∑
i

(
M̂i

Λi

)2(
Λ0

M̂0

)2

< 1 with ai = |Λi| /Λ0. (2.4.32)

This relation is depicted in Fig. 2.2, left. If mi lies outside ellipsoid (2.4.31), then the vacuum is neutral. The surface
of the ellipsoid is thus the locus of the critical points of the phase diagram, at which the second order charge-breaking
or charge-restoring phase transition takes place.

At least one Λi > 0

If at least one Λi is positive, then the minimum always corresponds to a neutral vacuum and its position satisfies the
following equations

(Λ0 − ζ) r̂0 = M̂0, (2.4.33)

(Λi − ζ) r̂i = M̂i. (2.4.34)

By writing the vacuum position in gauge orbit space through r̂µ = r̂0 (1, n1, n2, n3) , with unitary vector |−→n | = 1. Since
we are concern to the lightcone surface r̂µr̂

µ = 0 one can eliminate the Lagrange multiplier and to develop the spatial
terms [

(Λi − Λ0) r̂0 + M̂0

]
ni = M̂i. (2.4.35)

The requirement that n̂ is an unit vector can be written as∑
i

m2
i[

(Λi − Λ0) r̂0
M̂0

+ 1
]2 = 1. (2.4.36)
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2.4. CP-Conserving Potential and Minkowskian structure

This is a sixth order equation for r0. In a general case, the system cannot be solved exactly. However, the geometrical
approach to critical points analyses still allows understanding the structure of the phase diagram. First, if mi lies on
one of the principal planes, then the potential has an additional discrete symmetry. The solutions of (2.4.35) can either
conserve or violate this symmetry. From relation (2.4.21), a necessary and sufficient condition for violation of this
symmetry, e.g. in the case m2 = 0 is given by

m2
1

b21
+

m2
3

b23
< 1 where bi =

Λi − ζ
Λ3 − ζ

. (2.4.37)

From spatial stationary conditions (2.4.18), and for M̂i=2 = 0, first we consider r̂i 6= 0, hence Λ2 = ζ. Therefore

m2
1

b21
+

m2
3

b22
< 1 where bi =

Λi − Λ2

Λ3 − Λ2
. (2.4.38)

Thus, symmetry-violating extreme appear, if mi lies inside ellipse on one of the principal planes. It was proved that
these symmetry-violating extreme are minima, if and only if the corresponding eigenvalue of Λµν ( Λ2 for m2 = 0)
is positive and is the biggest of all Λi. So, when constructing the phase diagram, we should first identify the largest
eigenvalue and then consider only the ellipse that lies in the plane orthogonal to the corresponding eigenvector, as it
is shown in Fig. 2.2, right. For points lying strictly inside the ellipse, two different degenerate minima exist. In both
of them, the discrete symmetry is spontaneously broken. For points in the (m1,m3) plane outside the ellipse only one
minimum exists and the discrete symmetry is preserved. So, if mi lies strictly on the plane and moves from outside into
the ellipse, a symmetry-breaking second-order phase transition takes place.

For the points just above (m2 > 0) or just below (m2 < 0) the ellipse have two minima at different depths. So, if mi

lies above the ellipse and moves through it downwards, the relative depth between the two minima changes sign, and a
first-order phase transition takes place. Thus, the interior of the ellipse is the locus of the first-order phase transitions,
while its boundary is the locus of the second-order phase transitions.

2.4.3. The astroid condition

Here we shall show that for the 2HDM scalar potential to have two normal minima, the values of the parameters in the
Higgs potential must be such that we are inside a region of space limited by the astroid curve defined as

3
√
x2 + 3

√
y2 ≤ 1. (2.4.39)

where x and y are functions of Λ′s, M̂ ′s and r̂′s. We will use the geometric approach to counting solutions of the
minimization equations (2.4.21) developed in [115], showing the astroid condition. As a first glance, we are only interested
in an extreme with VEVs without any relative phase, thus r̂2 = 0. Since the existence of a normal minimum forbids
a CP-breaking one (see section 2.2.2), meaning that a more global analysis would discover a greater number of saddle
points. But restricting ourselves to the r̂2 = 0 case has no impact on the counting of possible normal minima. The
analysis has a subtlety or caveat associated with the ordering of the eigenvalues Λi. Hence in a first glance, let us start
with the case where Λ1 > Λ3.

Eq. (2.4.21) can be seen as defining an ellipse. In fact, if we define the variables m1 = M̂1/M̂0 and m3 = M̂3/M̂0, the
semi-axes of the ellipse depends on ζ and will be given by

a1 (ζ) =
|Λ1 − ζ|
Λ0 − ζ

, a3 (ζ) =
|Λ3 − ζ|
Λ0 − ζ

. (2.4.40)

In terms of these new variables eq. (2.4.21) thus it becomes

m2
1

a2
1

+
m2

3

a2
3

= 1, (2.4.41)

which is the equation describing an ellipse in the (m1,m3) region. Considering now the family of obtained ellipses when
we take all values of the Lagrange multiplier −∞ < ζ < Λ0 and count how many times this family of ellipses crosses
a particular point (a, b) in the (m1,m3) plane. When an ellipse passes by that juncture, Eq. (2.4.41) has a solution,
meaning that the Higgs potential has a critical point. Then, the number of times the ellipses cross the stage (a, b) will
give us the number of non-trivial extrema of the potential. Also, it has been shown that the larger ζ is, the smaller the
value of the potential.

So, as ζ changes from −∞ to , Λ0 we have:
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2. Vacuum structure and stability at tree level for extended Higgs sectors

Figure 2.3.: Example of a geometric representation of the ellipse evolution defined by the condition 2.4.21. In this case
−∞ < ζ < Λ3. (Right) Ellipse evolution in arbitrary projection plane for spatial ordering Λa < Λb < λc
and ζ < Λa [29]

• In the limit ζ → −∞, a1 → 1 and a3 → 1

m2
1 + m2

3 = 1, (2.4.42)

the ellipse is just the unit circle. This occurs because the semi-axes a1 and a3 tend to one in this limit (solid blue
line in figure 2.3).

• As ζ increases, the ellipse shrinks. It shrinks most quickly along the direction of the smallest semi-axis - and since
Λ1 > Λ3 (first case), then according to Eq. (2.4.40)

m2
1

a2
1

+
m2

3

a2
3

= 1, (2.4.43)

this relation means that the ellipse is contracting faster along the axis m3 (dashed red line in figure 2.3).

• As ζ increases further, the ellipse on the (m1,m3)-plane shrinks even more. At ζ = Λ3 the ellipse collapses to a
line segment (dot-dashed black line in Fig. 2.3):

a3 = 0, a1 =
Λ1 − Λ3

Λ0 − Λ3
. (2.4.44)

or equivalently

m3 = 0, |m1| ≤ m∗1 =
Λ1 − Λ3

Λ0 − Λ3
. (2.4.45)

• Notice that over the interval −∞ < ζ < Λ3 the ellipses sweep once all points inside the unit circle. For instance,
there is only one ellipse passing by the juncture (a, b) marked with a “X” in Fig. 2.3. A single crossing means
that in this space there is only one non-trivial solution of the minimization relation for this region of values of the
Lagrange multiplier ζ:

For Λ3 < ζ < Λ1 the situation is different:

• For ζ > Λ3 the line segment again becomes an ellipse. When ζ increase further, Λ3 < ζ < Λ1, the ellipse shrinks
along the m1 axis and grows along m3 axis (solid blue and dashed red lines in figure, 2.4).

• At ζ = Λ1 the ellipses collapse to another line segment (dot-dashed black line in figure, 2.4):

m1 = 0, |m3| ≤ m∗3 =
Λ1 − Λ3

Λ0 − Λ1
> m∗1 (2.4.46)

• During this evolution, the ellipses sweep a particular area in the (m1,m3)-plane, and each point inside this place is
crossed twice (see, for instance, the point marked with a “X”in Fig. 2.4).
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2.4. CP-Conserving Potential and Minkowskian structure

Figure 2.4.: (Left) Example of a geometric representation of the ellipse evolution defined by the condition 2.4.21. In this
case Λ3 < ζ < Λ1. (Right) Ellipse evolution in arbitrary projection plane for spatial ordering Λa < Λb < λc
and ζ ∈ [Λa,Λb] [29]

• Furthermore, it is possible to show (see the following section) that, of these two crossings, one is a critical point
labeled as a saddle point and, if we impose further conditions on the parameters, the other can be a minimum.

Finally, when Λ1 < ζ < Λ0, the ellipse grows infinitely (the semi-axes a1 and a3 tend to infinity when ζ → Λ0 ), and
the entire (m1,m3)-plane is covered. But each point of the plane is crossed by an ellipse one single time. And since the
last crossing systematics corresponds to the largest value of ζ to yield an extremum, it will lead be the global minimum
of the potential. It is worthwhile to emphasize that regardless of whether the latter critical points exist or not, this one
is always present in minima structure, and it is the global minimum of the Higgs potential.

All indicates that exists the possibility of two minima. One may lie in the region where Λ3 < ζ < Λ1 (imposing further
constraints on the parameters of the potential), another exists (guaranteed) for values of ζ such that Λ1 < ζ < Λ0. By
considering the case where Λ3 > Λ1, we would have similar conclusions: the figures obtained for that situation would
be analogous to those in Fig. 2.3, but rotated by π/2, and both minima should be found for values of the Lagrange
multiplier in the ranges Λ1 < ζ < Λ3 and Λ3 < ζ < Λ0. All is ensuring with two conditions

3
√
x2 + 3

√
y2 ≤ 1 (2.4.47)

D = M̂1M̂3r̂1r̂3 > 0, (2.4.48)

Translating into the existence of four normal-stationary points, with one of them being the global minimum of the
potential. Making that one of the remaining critical points is the second minimum, we would need additional conditions.

Two neutral minima are a realization if, in the (m1,m3)-plane, the values of the parameters of the Higgs potential
are such that we are at a point inside the area covered by intersecting ellipses such as the two shown in Fig. 2.4. The
covering region is given by all of those ellipses delimited by the astroid curve given in Eq. (2.4.47)

3
√
x2 + 3

√
y2 ≤ 1 (2.4.49)

x =
M̂1 (Λ0 − Λ3)

M̂0 (Λ3 − Λ1)
, y =

M̂3 (Λ0 − Λ1)

M̂0 (Λ3 − Λ1)
(2.4.50)

To show this, we apply the standard method of finding the envelope of a family of curves. The family of ellipses in
question is described by an equation of the form F (m1,m3, ζ) = 0, and we also need to consider the tangent to these
ellipses at each point, determined by ∂F/∂ζ = 0. Explicitly, the function to solve is the following

F (m1,m3, ζ) =
m2

1

(Λ1 − ζ)
2 +

m2
3

(Λ3 − ζ)
2 −

1

(Λ0 − ζ)
2 = 0

and the tangent curves
∂F (m1,m3, ζ)

∂ζ
=

2m2
1

(Λ1 − ζ)
3 +

2m2
3

(Λ3 − ζ)
3 −

2

(Λ0 − ζ)
3 = 0 (2.4.51)
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2. Vacuum structure and stability at tree level for extended Higgs sectors

To solve these equations, we define the following angles

cosϕ =
Λ0 − ζ
Λ1 − ζ

m1, sinϕ =
Λ0 − ζ
Λ3 − ζ

m3. (2.4.52)

From the second condition (2.4.51) is possible to find out the form of Lagrange multiplier

ζ =
Λ1

(Λ3−Λ0)
(Λ0−Λ1) tan2 ϕ− Λ3[

(Λ3−Λ0)
(Λ0−Λ1) tan2 ϕ− 1

] . (2.4.53)

and from this result and by defining

x =
Λ0 − Λ3

Λ1 − Λ3
m1 and y =

Λ0 − Λ1

Λ3 − Λ1
m3. (2.4.54)

We can write finally
x2/3 + y2/3 = 1, (2.4.55)

which is the boundary of an astroid, associated to combinations of quartic couplings and mass term for Higgs potential.

2.4.4. Metastability condition

The necessary and sufficient conditions for the existence of metastable vacua can be considered by themselves, where is
claimed the need to verify whether or not the potential has two minima. To show systematically this fact, let us begin
with the case Λ1 > {Λ2,Λ3}. As we have seen in the previous section, in this situation the several possible stationary
points obey the following relations:

• The global minimum (simple minimum) occurs for a value of the Lagrange multiplier, ζG , such that ζG > Λ1 > Λ3.

• If another local minimum exists, it can only occur for a given value of the Lagrange multiplier, ζL , such that
Λ3 < ζL < Λ1.

And this is all the information required. Recalling the minimization conditions of the potential (2.4.14), written in
terms of the Lagrange multiplier,

(Λ0 − ζ) r̂0 = M̂0, (2.4.56)

(Λi − ζ) r̂i = M̂i, (2.4.57)

at this point we define the following discriminants,

D1 = −r̂1M̂1, D3 = −r̂3M̂3, D = D1D3 (2.4.58)

Given the minimization conditions, we can write

D1 = −r̂1M̂1 = (ζ − Λ1) r̂2
1 (2.4.59)

D3 = −r̂3M̂3 = (ζ − Λ3) r̂2
3 (2.4.60)

These discriminants can be computed for any minimum, i.e. for any given value of ζ. Then, we see that:

• In the global minimum ζ = ζG.

• Given that ζG > Λ1 > Λ3, we will have D1 > 0 and D3 > 0

• Thus, at the global minimum, D = D1D3 > 0.

• If the second local minimum exists, it occurs for ζ = ζL

• Since Λ3 < ζL < Λ1, we will necessarily have D1 < 0 and D3 > 0.

• Thus, at the local minimum, D = D1D3 < 0.
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2.4. CP-Conserving Potential and Minkowskian structure

And so we see that the sign of D1 discriminates between the local and the global minima, while the sign of D3 does
not. If it happens that the potential has only one minimum, it will correspond to the case Di > 0. Also, in the case
where M̂0 < 0 and there is a single minimum with ζG > Λ0, already discussed above, both D1 and D3 are guaranteed to
be positive, given that boundedness from below implies Λ0 > {Λ1,Λ3}.

Suppose we now have Λ3 > Λ1. The demonstration for this case is analogous to the one we have just given, with the
following differences: the global minimum is now at ζ = ζG > Λ3 > Λ1; the local minimum, if it exists, corresponds to a
Lagrange multiplier Λ1 < ζL < Λ3; at the global minimum we will have D1 > 0 and D3 > 0, at the local one D1 > 0 and
D3 < 0. Thus, in this case, the sign of D3 does discriminate between the local and the global minima, but the sign of
D1 does not. In any case, D = D1D3 is positive at the global minimum and negative at the local one. In conclusion, the
product of D1 and D3 is a quantity able to discriminate between the two normal minima. If it is computed at a given
minimum and if D = D1D3 > 0 is found, that minimum is the global minimum of the potential; D < 0, the minimum is
local. Thus the conditions are proven:

If M̂0 > 0 and
3
√
x2 + 3

√
y2 ≤ 1, with (2.4.61)

x =
M̂1 (Λ0 − Λ3)

M̂0 (Λ3 − Λ1)
, y =

M̂3 (Λ0 − Λ1)

M̂0 (Λ3 − Λ1)
. (2.4.62)

• Then the potential can have two neutral minima. To keep the problem in mind, we should like to emphasize
that these structures are necessary conditions for the existence of two neutral minima (see a demonstration in
Appendix F) - although they are necessary and sufficient conditions for the existence of four normal stationary
points. Remarkably, we have a necessary and sufficient condition to verify the global nature of our minimum. to
know whether our {v1, v2} vacuum is the global minimum of the potential, we need only do the following: Let us

define a discriminant D = M̂1M̂3r̂1r̂3, and sweep the parameter space in such a way that D > 0.

The systematic for a general case can be a quite more intricate. The following procedure [29] can be used for the most
general Higgs potential, where only is involved the computing of eigenvalues of Λµν . Λα characterize these eigenvalues,
and it is necessary to address which are associated with 0 index. By considering the following projector operator, one
for each eigenvalue Λα of Λdiag (

P̂α
)
µν

=
∏
β 6=α

1

Λα − Λβ
(Λµν − Λβgµν) , (2.4.63)

• obeying (for Λα ∈ R) properties for a projection operator

P̂αP̂ β = δαβP̂
α and

∑
α

P̂α = 1.

P̂ is the projection operator into the subspace generated by the eigenvector corresponding to Λα. Projection operators
are symmetric in the indexes µ, ν. For example for an arbitrary four vector (lµ = (1, 0, 0, 0)) . The new vector

l0ν =
(
P̂ 0
)
νµ
lµ,

lies along the eigenvector of Λ0, and, thus, it is timelike:

0 <
(
l0
)ν
l0ν = lµ

′
(
P̂ 0
) ν

µ′

(
P̂ 0
)
νµ
lµ = lµ

′
(
P̂ 0
)
µ′µ

lµ.

Similarly,

lkν =
(
P̂ k
)
νµ
lν .

for k = 1, 2, 3 lies along the eigenvector of Λk, and thus, it is spacelike:(
lk
)ν
lkν = lµ

′
(
P̂ k
)
µ′µ

lµ < 0.

This relation is true for any vector lµ, apart, of course, from the case when the vector is accidentally chosen to be
orthogonal to some eigenvector. Choosing the simplest case for lµ = (1, 0, 0, 0) , means of

sα = sign
[(
P̂α
)

00

]
.
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2. Vacuum structure and stability at tree level for extended Higgs sectors

which is positive if and only if α = 0. Hence sα will be positive for only one value of α; the corresponding eigenvalue
is the time-like Λ0. Now from Higgs potential with auxiliary function given in (2.4.14) and minimizing it with respect to
rµ and ζ, yielding the same relation in (2.4.15)

Λµνr
ν −Mµ = ζrµ

Any component of this relation can be used to compute the auxiliary function ζ. In any neutral stationary point ζ is
connected with charged Higgs mass by

m2
H± = ζv2

Our new discriminant is given by
D = −det (ΛE − ζ1)

where 1 is the four dimensional identity matrix. Writing ΛE in the diagonal basis,

D = (Λ0 − ζ) (ζ − Λ1) (ζ − Λ2) (ζ − Λ3)

If D > 0 is ensured a global minimum in the Higgs potential (see Appendix I). For negative D < 0 scenario, excluding
negative cases for eigenvalues of ΛE and from stability conditions for ”covariant” Higgs potential; for a global minimum
it is needed that

ζ > Λ0

2.5. Comments and remarks about vacuum structures and stability

Vacuum behavior at tree level in SM is determined by the behavior of a Higgs potential structure, and just one stationary
point enables few properties; where only a normal configuration for vacuum and λ > 0 condition define its original nature
completely. The first feature is a consequence of the gauge invariance of the EW theory and the scheme of SSB, which
lead to absorb vacuum phases. By contrast, in 2HDMs exist new vacuum configurations besides to the normal one, the
CP and charge breaking structures. The appropriate choice of the initial free parameters can be used to eliminate both
possibilities, even the CP breaking vacua connected with spontaneous symmetry breaking in the theory. Then departure
of this condition will be a valuable tool to study new sources of CP violation and processes with, e.g. in baryogenesis or
leptogenesis mechanisms.

Nevertheless in 2HDMs, it is possible to show that two minima of different nature can not coexist. These minima
are related to the spontaneous breaking of various symmetries in the Higgs potential. Furthermore from CP and charge
breaking minima, there is no possible to have two simultaneous solutions for stationary and minimum equations. This
scenario is the contrary case for the Higgs potential for normal vacua, where high order equations for stationary points
lead to having two possible normal vacua of different depths. In this configuration, EW fields properties like gauge
bosons, or fermion masses could not be the same. This point would be a central framework for the remainder discussions
evaluating the vacuum behavior and scenarios for the stability of the Higgs potential.

On the other hand, the extension of the scalar sector yields to analyze new directions in the field space where possible
vacuum instabilities might arise. By using a reparameterization invariance SL(2, C) where the doublets can be organized
in a gauge orbit space of the scalar sector of 2HDM, it is straightforward to establish general sufficient conditions to
ensure a bounded from below Higgs potential [36]. The same formalism allows determining whether potential might
have metastable zones even at tree level. We would implement all these concepts to constrain the parameter in the
Higgs potential as well as possible phenomenology belongs in different model-realizations. Before to do that, we must
investigate and to clarify the role of the constraints for the Higgs potential stability and metastability (improved from
tree-level analysis) at higher perturbative orders. This fact is the primary goal for the following chapter.
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3. One loop effects over vacuum stability

Once motivated the study of fundamentals of extended Higgs sectors as 2HDMs from symmetries point of view and study
of vacuum structure in the previous chapters, henceforth we shall focus on the one loop effects over Higgs potential. Now
since phenomenology over Higgs mass from LHC seem to indicate the existence of Metastability vacuum for SM; we
should study the possibility of having additional scalar fields leads to new stability regimes (evaluated from EW scale)
for an extended Higgs potential with initial conditions defined in mZ scale. Behind of this statement, which could relate
initial conditions for different couplings between SM and 2HDMs, is the Minimality Principle for extended Higgs sectors:
Physics from SM and 2HDM is connected with the same energy scale (i.e. scale for electroweak effects).

The vacuum behavior at NLO gives us the way in which RG flow leads to instabilities in all sectors as well as the
phenomenology arising in 2HDMs might be constrained.

3.1. Radiative corrections forms for 2HDMs

In this section, we summarize the full mathematical origin of RGEs at one loop level for the Two Higgs Doublet Model.
Although many articles have shown how these RGE could be obtained [113, 120–127], we introduce valuable comments
and the relevant diagrams to understand the origin of the respective contributions and their influence on vacuum stability
behavior of the Higgs potential.

As a general point of view, we know that the RGE are first-order differential equations which give the evolution
of the couplings of a model defined at tree level and relative to t = lnµ. Here µ is the mass parameter used in the
dimensional regularization of ultraviolet-divergent integrals in four dimensions. These standard integrals are based on
Passarino-Veltmann structures A0(m0), B

(
p2,m1,m2

)
, C (p1, p2,m1,m2,m3) and D (p1, p2, p3,m1,m2,m3,m4) defined

in D-dimensions by

A0 (m0) =

∫
dDq

(q2 −m2
0 + iε)

(3.1.1a)

B0;µ;µν (p1,m1,m2) =

∫
dDq

(q2 −m2
1)

1; qµ; qµqν
[(q + p1)2 −m2

2]
(3.1.1b)

C0;µ;µν;µνα (p1, p2,m1,m2,m3) =

∫
dDq

(q2 −m2
1)

1; qµ; qµqν ; qµqµqα
[(q + p1)2 −m2

2] [(q + p1 + p2)2 −m2
3]

(3.1.1c)

D0;µ;µν;µνα;µναβ (p1, p2, p3,m1,m2,m3,m4) =

∫
dDq

(q2 −m2
1)

1; qµ; qµqν ; qµqνqα; qµqνqαqβ
[(q + p1)2 −m2

2] [(q + p1 + p2)2 −m2
3] [(q + p)2 −m2

4]
(3.1.1d)

In all integrals, we have factorized out κ = (2πµ)
ε
/iπ2. Here pi are typical momenta (all incoming in vertices) and mi

are typical masses defining in the loops, and ε = 4−D. In the last integral p = p1 + p2 + p3. To describe the solution of
these standard integrals, it is useful to know the divergent part of the Passarino-Veltmann scalar forms:

DivA0 (m0) = ∆εm
2
0 (3.1.2a)

DivB0 (p,m1,m2) = ∆ε (3.1.2b)

DivC00 (p1, p2,m1,m2,m3) =
∆ε

4
(3.1.2c)

DivD0000 (p1, p2, p3,m1,m2,m3,m4) =
∆ε

24
(3.1.2d)

where ∆ε = 2/ε− γE + ln 4π. Some specific results for integrals are1

1The finite result for the integral in B function in the case of equal masses is∫ 1

0
dx ln

[
−x(1− x)p2 + xm2 + (1− x)m2

µ2

]
= ln

m2

µ2
+

√
4m2 − p2

p
arctan

(
p√

4m2 − p2

)
− 2 (3.1.3)
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A0

(
m2

0

)
= m2

0

(
∆ε + 1− ln

m2
0

µ2

)
(3.1.4a)

B0 (p,m1,m2) = ∆ε −
∫ 1

0

dx ln

[
−x(1− x)p2 + xm2

2 + (1− x)m2
1

µ2

]
(3.1.4b)

For three point and four point explicit reductions, the reader can found them in the reviews [128, 129]. Our dis-
cussion focuses on obtaining coefficients of logarithmic dependence of energy scale µ, for counterterms gotten in the
renormalization procedure. β functions can be achieved indeed by derivating these conterterms with respect to µ, i.e.,

βi = µ
∂δi
∂µ
≡ κi (3.1.5)

with κi the coefficient product of respective couplings and multiplicity factor for each NLO contribution. In practice,
β functions encode different infinitesimal RG transformations. It is worthwhile point out that these beta functions are
only functions of the couplings themselves and only depend on the energy scale implicitly through the couplings. The
one loop β-functions in 2HDM are also discussed employing an algebraic procedure in appendix J.

3.2. Formal definitions from 2HDM-fundamentals

To determine the form of the one-loop contributions, we discuss the structure of the entire scalar sector, quoting relevant
results presented in chapter 1. Let the scalar potential (1.2.1) written in a compact form (1.2.2),

V =
∑
j,k

µjk

(
Φ†jΦk

)
+

1

2

∑
j,k,l,m

Λjlkm

(
Φ†jΦk

)(
Φ†lΦm

)
. (3.2.1)

The following properties are satisfied by the coefficients Λjlkm and µjk

Λjlkm = Λljmk; Λjlkm =
(
Λkmjl

)∗
; µjk = (µkj)

∗
(3.2.2)

The last two conditions are consequences of the Higgs potential hermiticity. The kinetic sector described in section
(1.1) is

LK =

nH=2∑
k=1

(DµΦk)
†

(DµΦk) . (3.2.3)

The covariant derivative is for SU (2)L × U (1)Y standard model

Dµ = ∂µ − igτiW i
µ −

ig′

2
Y Bµ. (3.2.4)

where τi are the generators of SU (2) group with associated gauge fields W i
µ. Bµ is the four-vector field associated to

the Y generator i.e. the U(1)Y symmetry. g and g′ are coupling strengths associated to W i
µ and Bµ respectively. Here

W i
µ and Bµ are gauge eigenstates. Expanding the kinetic Lagrangian, we get

∑
k

(DµΦk)
†

(DµΦk) =

(
∂µΦk − igτiW i

µΦk −
ig′

2
Y BµΦk

)†(
∂µΦk − igτiW iµΦk −

ig′

2
Y BµΦk

)
= (∂µΦk)

†
(∂µΦk)− (∂µΦk)

† (
igτiW

iµΦk
)
− 1

2
(∂µΦk)

†
(ig′Y BµΦk)

−
(
igτiW

i
µΦk

)†
(∂µΦk) +

(
igτiW

i
µΦk

)† (
igτiW

iµΦk
)

+
1

2

(
igτiW

i
µΦk

)†
(ig′Y BµΦk)

−1

2
(ig′Y BµΦk)

†
(∂µΦk) +

1

2
(ig′Y BµΦk)

† (
igτiW

iµΦk
)

+
1

4
(ig′Y BµΦk)

†
(ig′Y BµΦk)

(3.2.5)

which is valid in the region p2 < 4m2.
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3.2. Formal definitions from 2HDM-fundamentals

This sector endows the gauge bosons with mass and provides the interactions among gauge and Higgs bosons. Moreover,
this part of the Lagrangian is invariant under charge conjugation as well as under CP and Higgs family symmetries.

The most generic Yukawa interactions for 2HDM, in a compact form by, is

LY = −
2∑
j=1

[
Q̄L

(
ΦjY

d
j DR + Φ̃jY

u
j UR

)
+ L̄LΦjY

e
j ER

]
+ h.c. (3.2.6)

Quoting the discussion presented in section 1.3, Φ̃j = iτ2Φ∗j ; QL (quark doublet), LL (lepton doublet), DR (negative
charged quarks), UR (positively charged quarks) and ER (negatively charged leptons) are 3-vector in flavor space. For
simplicity, we have not included the neutrino sector by their smallness mass size. Although this condition might be relaxed
through different mechanisms explaining hierarchical structure among leptons, e.g., the neutrino-specific model2 [68,130]

. Besides, Y d,u,ej are generic 3 × 3 complex matrices containing the Yukawa couplings, for the down, up and leptonic
sector respectively.

To conserve generality in our procedure, we construct radiative corrections in term of all these structures for couplings
(build up with gauge invariance). When scalar and fermionic doublets are expressed regarding physical fields (i.e.
eigenstates mass), diagrammatic must be agree with charge conservation and momentum flux in each vertex. This
general systematics is consistent in the UV-limit of integrals, where we are interested in to compute the scale dependence
of contributions.

3.2.1. RGEs for scalar couplings

Some comments about the structure of the respective conterterms should be made. The first one is that the Feynman
rules used come from the general Lagrangian written as gauge invariant terms. As mass eigenstates were not used, the
dimensional regularization required a regulator function (treated as a mass scale) in the propagators. The last fact is to
get the own energy dependence of the conterterm and thus the respective RGEs. Also, the regularized diagrams are those
fields inside doublets in every possible parameterization compatible with charge and momentum fluxes in each vertex.

The one-loop RG equations for the quartic couplings are [131]

16π2 dΛjlkm
dt

≡ DΛjlkm = IS + IG + IEG + IF + IEF . (3.2.7)

The IS is a contribution for pure scalar loops, IG for gauge loops, IEG is the external scalar lines correction by gauge
bosons, IF is the contribution by fermion boxes and IEF is the correction to the scalar external lines by fermion loops.
Contributions IS , IG and IEG are based mainly on integrals reduction given by B−integrals of Eq. (3.1.1b). Meanwhile,
IF contributions are based on the reducing from D-functions quoted in (3.1.1d).

We shall examine term by term in RGEs explicitly. The scalar loop contribution (s, t, u channels) IS contains the
following structure:

IS = 2

nH∑
p,q=1

(
2ΛjpkqΛ

ql
pm + ΛjpkqΛ

lq
pm + ΛjpqkΛqlpm + ΛqjmpΛ

pl
kq + ΛpqkmΛljpq

)
. (3.2.8)

where the first three terms come from the s channel. The fourth term originates from the t channel, while the fifth
term derives from the u channel. These contributions are shown in the Figure 3.1. The overall factor is due to the
renormalization procedure. The element 2 in front of ΛjpkqΛ

ql
pm coupling appears by the multiplicity generated inside of

the scalar loop.

IG are the contributions by gauge bosons in the loops:

IG =
9g4 + 3g

′4

4
δjkδ

l
m + 3g2g

′2

(
δjmδ

l
k −

1

2
δjkδ

l
m

)
. (3.2.9)

From kinetic Lagrangian of (3.2.5), we extract the quartic interactions among scalar and gauge bosons

2In this simple model, Dirac neutrinos are coupled to one doublet (e.g. Φ1) and the remaining leptons are coupled to another doublet (Φ2),
the same that quark sector couples. The small size of neutrino masses is given by choice of a small VEV for the doublet that couples with
neutral leptons [56]. Most sophisticated models based on this structure must introduce plausible mechanisms to explain naturalness and
hierarchy structure for masses, which carry out to build models compatible with neutrino oscillation measurements.
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3. One loop effects over vacuum stability

Figure 3.1.: Scalar (with s, t, u channels) corrections at one loop level to quartic couplings in the Higgs potential. Couplings
among physical scalars of the doublets are done in consistency with charge conservation in each vertex.

Figure 3.2.: Gauge bosons (s, t-channels) corrections at one loop level to quartic couplings from the kinetic sector (re-
garding gauge eigenstates). The t channel is due to the Wµ and Bµ loop. Couplings among physical scalars
of the doublets and gauge bosons are done in consistency with charge conservation in each vertex.
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3.2. Formal definitions from 2HDM-fundamentals

LG =
(
igτiW

i
µΦk

)† (
igτiW

iµΦk
)

+
1

2

(
igτiW

i
µΦk

)†
(ig′Y BµΦk)

+
1

2
(ig′Y BµΦk)

† (
igτiW

iµΦk
)

+
1

4
(ig′Y BµΦk)

†
(ig′Y BµΦk) (3.2.10)

Since the form of the interactions among scalars doublets and gauge bosons, the u−channel vanishes. On the other
hand, interactions from the contribution for the right figure are

s-channel: ηp
(
igτiW

i
µΦj

)† (
igτiW

iµΦk
)
δjk
(
igτaW

a
µΦl

)†
(igτaW

aµΦm) δlm

= g4ηp

[
Φ†j
(
W i
µ

)† (
τ †i τi

) (
W iµ

)
Φk

]
δjk

[
Φ†l
(
W a
µ

)†
τ †aτa (W aµ) Φm

]
δlm

=
3ηpg

4

16

[
Φ†j
(
W i
µ

)† (
W iµ

)
Φk

]
δjk

[
Φ†l
(
W i
µ

)† (
W iµ

)
Φm

]
δlm

ηp are the polarization degrees of freedom for gauge bosons. Moreover, from renormalization procedure, we find an

additional factor of two. For the second rule
(
WµW

µΦ†jΦk

)
s-channel:

1

2
ηp
(
igτiW

i
µΦj

)†
(ig′Y BµΦk)

1

2

(
igτiW

i
µΦl
)†

(ig′Y BµΦm)

t-channel:
1

2
ηp (ig′Y BµΦj)

† (
igτiW

iµΦk
) (
igτiW

i
µΦl
)†

(ig′Y BµΦm)

s + t channels =
1

16
ηpg

2g
′2
[
Φ†j
(
W i
µ

)†
BµΦkΦ†lB

†
µW

iµΦm

]
δjkδ

l
m

+
1

16
ηpg

2g
′2
[
Φ†jB

†
µW

iµΦkΦ†l
(
W i
µ

)†
BµΦm

]
δlkδ

j
m

Hence the contribution due to one W and one B fields inside the loop is finally

s + t-channel: 3g2g
′2δlkδ

j
m −

3

2
g2g

′2δjkδ
l
m (3.2.11)

For the third rule
(
BµB

µΦ†jΦk

)
, it is possible to get

s-channel:
ηpg

′4Y 4

16
(BµΦj)

†
(BµΦk) (BµΦl)

†
(BµΦm) (3.2.12)

Therefore, the coefficients associated are a consequence of the gauge structure of the standard model and the multiplicity
inside of the loop due to the gauge bosons.

Figure 3.3.: External corrections at one loop level to the scalar legs from gauge bosons (gauge eigenstates). Couplings
among physical scalars of the doublets and gauge bosons are settled respecting charge conservation in each
vertex.

On the other side IEG are the external corrections to the legs due to gauge bosons (Fig. 3.3):
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3. One loop effects over vacuum stability

IEG = −
(

3ηpg
2 + ηpg

′2
)

Λjlkm (3.2.13)

The first factor of three appears by the number of gauge of bosons, i.e. the number of group SU (2) generators. These
terms come from the Lagrangian (which describes the interactions among two scalar doubles and one gauge bosons)

L = − (∂µΦk)
† (
igτiW

iµΦk
)
−
(
igτiW

i
µΦk

)†
(∂µΦk)− 1

2
(∂µΦk)

†
(ig′Y BµΦk)− 1

2
(ig′Y BµΦk)

†
(∂µΦk) (3.2.14)

For fermions we get the box contributions (Nc is the number of colors)

Figure 3.4.: Fermion box corrections to quartic couplings. The contributions come from the general Yukawa couplings
written regarding gauge eigenstates. Couplings between fermions and scalars presented by the specific com-
ponents are respecting charge conservation in each vertex.

IFQ = −4NcTr
[
Y d†j Y dk Y

d†
l Y dm + Y u†k Y uj Y

u†
m Y ul + Y d†j Y ul Y

u†
m Y dk

+Y u†k Y dmY
d†
l Y uj − Y u†m Y dk Y

d†
l Y uj − Y

d†
j Y ul Y

u†
k Y dm

]
.

Likewise for leptons, we can obtain in a similar way

IFl = −4Tr
[
Y e†j Y ek Y

e†
l Y em

]
. (3.2.15)

For fermion external legs corrections

IEF =

2∑
p=1

(
TmpΛ

jl
kp + TkpΛ

jl
pm + T ∗jpΛ

pl
km + T ∗lpΛ

jp
km

)
. (3.2.16)

Figure 3.5.: External corrections to scalar doublets from fermion loops. These contributions have been written regarding
the gauge eigenstates of the Yukawa sector. Couplings among components of Higgs doublets with fermion
doublets and fermion singlets respect charge conservation.

with Tij terms for traces with Yukawa couplings for quarks and leptons

Tij = NcTr
[
Y u†i Y uj + Y d†i Y d†j

]
+ Tr

[
Y e†i Y ej

]
(3.2.17)
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3.3. RGEs for Yukawa couplings

3.3. RGEs for Yukawa couplings

To find the RGEs for Yukawa coupling at one loop, we need to compute the three point Green function G(3). Taking
propagator corrections into account, the full connected Green’s function, at one loop level, has the overall form

G(3) =

(
tree level
diagram

)
+

(
external leg
corrections

)
+

(
1PI loop
diagrams

)
+

(
vertex

counterterm

)
. (3.3.1)

We often use the modified minimal subtraction; wherein one absorbs the divergent part plus a universal constant (which
always arises along with the divergence in Feynman diagram calculations) into the counterterms. The contribution of
three points structure is based on C-functions (3.1.1c) reduction.

In analogy with scalar couplings, the RGEs associated to the different Yukawa couplings can be written by

16π2 dY

dt
≡ DY = YEL + YEF + YV + YG. (3.3.2)

Here YEL are the external corrections for scalars with fermionic loops. YEF are the external corrections from fermionic
legs with a scalar field. YV are the vertex corrections to the respective Yukawa couplings. YG are the contribution due
to gauge bosons, whose contribution is the same of SM. The external corrections for scalars from fermionic loops YEL in
the scalar part are depicted in Fig. 3.6.

Figure 3.6.: Diagrams contributing to the external corrections to the quarks Yukawa couplings from fermionic loops. Inside
the fermionic loops exist contributions from quarks up and down, as well as charged leptons. Couplings among
components of Higgs doublets with fermion doublets and fermion singlets respect charge conservation in each
vertex.

This part has been extrapolated from the analogous part in the correction of the quartic part of the Higgs potential
presented in Eq. (3.2.16). In the fermionic loops exist contributions for quarks type up, down and leptonic sectors:

YEL =

2∑
i=1

TikYk. (3.3.3)

with

Tik = NcTr
[
Y u†i Y uj + Y d†i Y d†j

]
+ Tr

[
Y e†i Y ej

]
. (3.3.4)

The external corrections for scalar doublets in the doublet and singlet parts are displayed in Fig. 3.7; which are part
of the contribution YEF in the general RGE (3.3.2).

For Yukawa couplings renormalization, the external legs corrections have the contributions of the fermion field renor-
malization with diagrams (for instance DR and UR evolution) shown in the Figure 3.8. Moreover, we have the right part
for both contributions (up and down singlets). The respective β function for these diagrams is

β1 = 2YkY
†
k

1

(4π)
2 . (3.3.5)

Hence the respective contributions are namely
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3. One loop effects over vacuum stability

Figure 3.7.: External corrections to the fermionic legs for up and down sectors from scalar doublets contributions. Cou-
plings among components of Higgs doublets with fermion doublets and fermion singlets respect charge con-
servation in each vertex.

Figure 3.8.: Analysis for external corrections (Fig. 3.7) to the fermionic (doublets and singlets respectively) part of the
Yukawa couplings. Couplings among components of Higgs doublets with fermion doublets and fermion singlets
respect charge conservation in each vertex.
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3.3. RGEs for Yukawa couplings

YEF =
1

2
Y dj

2∑
k=1

(
Y uk Y

u†
k + Y dk Y

d†
k

)
+

2∑
k=1

Y dk Y
d†
k Y dj . (3.3.6)

The 1PI diagrams for Y dl and Y ul vertices come from Figure 3.9. When the evolution in the RGE is for the Yukawa
coupling Y ul (Y dl ), the diagrams for up (down) type singlet inside the loop vanish by symmetry in the Yukawa couplings
and their Hermitian conjugate. In other words, this contribution is antisymmetric to the exchange of two Yukawa
couplings.

Figure 3.9.: 1PI vertex correction to Yukawa couplings for up and down quarks respectively. Topologies can also be
extrapolated to the lepton sector in the massless neutrino regime. Couplings among components of Higgs
doublets with fermion doublets and fermion singlets are in consistency with charge conservation in each
vertex.

In the same way, for Y
u(d)
l vertex the contributions of up (down) type singlet have to vanish. This sector is represented

by YV in the RGE (3.3.2). For leptons, due to there are no right-handed neutrinos in the EW scale at least, these kind
of diagrams are not present in the 2HDM. The βY function associated to those diagrams is

βY =
∂

∂ lnM
δY = −2YkY

†
l Yk

1

(4π)
2 . (3.3.7)

The contribution only from quarks up as external legs (first four diagrams left to right and up to down in Fig. 3.9)

YuV = −2

2∑
k=1

(
Y uk Y

u†
j Y uk + Y dk Y

u†
k Y dj

)
. (3.3.8)

For down quarks in the external legs (later four diagrams left to right and up to down in Fig. 3.9), it is only necessary
to change u↔ d in the product of Yukawa couplings [132]. Finally, we discuss how to get contributions to the β function
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3. One loop effects over vacuum stability

from couplings with the electroweak gauge bosons and gluons. Extrapolating the analog SM sector, we can write gauge
interactions with fermions through

L = iQ̄Liγ
µ

(
∂µ − igτiW i

µ −
ig′

2
Y Bµ

)
QLi + iL̄Liγ

µ

(
∂µ − igτiW i

µ −
ig′

2
Y Bµ

)
Li

+iĒRiγ
µ

(
∂µ −

1

2
ig′BµYL

)
ERi + iD̄Riγ

µ

(
∂µ −

1

2
ig′BµYD

)
DRi + iŪRiγ

µ

(
∂µ −

1

2
ig′BµYU

)
URi.(3.3.9)

Plus the QCD-SU(3) sector. The possible EW-NLO contributions are shown in Figs. 3.10-3.12. Similar topologies in
Figs. 3.11-3.12 are presented by gluon-fermion-antifermion couplings. Again, we have chosen massless neutrinos. Thus
the corresponding right-handed chiral component is absent in this minimal structure. With the last fact in mind, only is
necessary change DR ↔ ER and QL ↔ LL

Figure 3.10.: External corrections for Yukawa coupling from quark-gauge sector correction to the scalar propagator.
Topologies can also be extrapolated to the lepton sector in the massless neutrino regime. Couplings among
components of Higgs doublets with fermion doublets and fermion singlets are in consistency with charge
conservation in each vertex.

Figure 3.11.: 1PI vertex corrections for Yukawa coupling from quark-gauge sector interactions. Topologies can also be
extrapolated to the lepton sector in the massless neutrino regime. Couplings among components of Higgs
doublets with fermion doublets and fermion singlets are in consistency with charge conservation in each
vertex.

Taking into account these couplings, the contributions from the gauge part YG are given by

YG = −AQ,lYQ,l (3.3.10)

where

AQ =

{
3
N2
C−1
NC

g2
s + 9

4g
2 + 17

12g
′2 for Q = U

3
N2
C−1
NC

g2
s + 9

4g
2 + 5

12g
′2 for Q = D

(3.3.11)

Al =
9

4
g2 +

15

4
g
′2 (3.3.12)
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3.4. Explicit couplings evolution: Pure gauge sector in 2HDM

Figure 3.12.: External corrections for Yukawa coupling from gauge sector interactions. Topologies can also be extrapolated
to the lepton sector in the massless neutrino regime. Couplings among components of gauge bosons with
fermion doublets and fermion singlets are in consistency with charge conservation in each vertex.

3.3.1. RGE for bilinear couplings

From the Higgs potential given in notation (3.2.1), the couplings for the bilinear terms (m2
ij and µjk respectively) have

the following RGE equation

16π2 dµ
j
k

dt
≡ Dµjk = 2

2∑
p,q=1

µqp

(
2Λjqkp + Λjqpk

)
. (3.3.13)

This structure comes from the contributions from the diagram shown in Figure (3.13)

Figure 3.13.: One loop correction to bilinear terms in the Higgs potential. Couplings among physical scalars of the doublets
are done in consistency with charge conservation in each vertex.

The RGE for µjk comes from the correction to the momentum independent mass term of the Higgs potential and it is
based on contributions regarding A0-tadpole functions of standard integral (3.1.1a). This evolution will be substantial
for the metastability analysis of the Higgs potential.

3.4. Explicit couplings evolution: Pure gauge sector in 2HDM

One-loop corrections are relatively easy to evaluate and visualize. In this section, we shall present an evaluation of RGEs
in each sector, starting with whose independent of the evolution of remaining ones. Hence, for the gauge boson part, we
have for 2HDMs

dg

dt
=

1

16π2

(
4

3
nf +

1

6
nH −

22

3

)
g3 = −3g3, (3.4.1)

dg′

dt
=

1

16π2

(
20

9
nF +

1

6
nH

)
g
′3 = 7g

′3, (3.4.2)

dgs
dt

=
1

16π2

(
4

3
nf − 11

)
g3
s = −7g3

s . (3.4.3)

In the SM there are three families Nfam = 3 and one Higgs doublet NHiggs = 1. From these formulae we see that
the QCD coupling gs is asymptotically free and is therefore weak in the UV. Besides, it runs to a strong coupling in the
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3. One loop effects over vacuum stability

IR. The SU(2) coupling running, emulating a roughly asymptotic free behavior, is also affected by the Higgs mechanism
which leads to SSB. The net effect on the RG evolution is to give a mass to the gauge bosons W± and Z0. Denoting
this as a collective mass scale called M , we analyze the following statements for gauge couplings runnings. For RG
scales µ > M , the W± and Z gauge bosons participate in the running of the gauge couplings as in the mathematical
structures shown above. Nevertheless, for µ << M , the W± and Z0 gauge bosons decouple and can be integrated out.
The appropiate gauge coupling controlating weak interaction at those scales no lunger runs and it frozen. This is the
reason of why, unlike QCD coupling evolution, the weak relevant coupling does not become large in the IR. Besides, at
charactering regimes, when weak gauge bosons are decoupled they leave relics in the low energy effective theory in the
form of the weak four fermion interactions [133].

Since for 2HDM, nH = 2 and nf = 3 (the same fermionic content of SM). In all equations t = logµ. Figure 3.14 shows
gauge couplings energy evolution: wherein exist a important set of attributes. One of them is that the GU triangle
is located between 1017 ≤ µ (GeV) ≤ 1022. The lower point correspond to the unification between SU (3) and SU (2),
followed of the unification between SU (3) and U (1) and finally the unification between SU (2) and U (1) interactions.
The last two points of unification are beyond of Planck scales; being an important problem for compatibility with
physics from Cosmology. Indeed, in early Universe, we can interpret these evolution from possible phase transitions
occurring at those energy scales. For instance, predictions from these running must be according to other effects that
have been discarded in the foundations for those energy values, as mechanisms associated to Quantum Gravity. All these
arguments are motivations to introduce NNLO corrections, which give information about UV completions for 2HDMs
and their compatibility with cosmology.

Figure 3.14.: Evolution for gauge couplings in the 2HDM. Initial conditions for gauge couplings have been established in
Tab. 3.1.

As in the SM behavior, the NNLO corrections could set the GU triangle in lower energy scales, as can be seen in [6].

3.5. Explicit couplings evolution: Yukawa sector

The following sector to analyze is the Yukawa part. RGEs are dependent on symmetries implemented and gauge couplings
evolution. However, RGE’s structure at one loop level is independent of quartic couplings of the Higgs potential. Thus,
we can extract some relevant information without involving many assumptions over another point in the parameter space.
Indeed, RG evolution is a useful tool to analyze different 2HDMs on a reliability of underlying assumptions. A quick
appearance of Landau poles or large deviations of diagonal Yukawa coupling under RG evolution may indicate the model
is either fine tuned or incomplete, e.g., needing new particles appearing at high energy scales.

From our description and developments to suppress FCNC processes, we begin describing the type I and type II
-2HDMs. Thus for Yukawa couplings of the type I-2HDM and from Eq. (3.3.2) and its explicit parts, the leptonic sector
reads

DξL = Alξ
L + T11ξ

L +
3

2
ξLηL†ηL. (3.5.1)
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3.5. Explicit couplings evolution: Yukawa sector

Coupling (mz) Standard Expression Numerical value Updated Parameters (GeV)

gs (mz) 4παs (mz) 1.2367

g (mz)
(

4m2
w

v2

)1/2

0.6504 mw = 80.385± 0.015

g′ (mz)
(

4m2
z

v2 −
4m2

w

v2

)1/2

0.3560 mz = 91.1876± 0.0021

λ (mz)
m2
h

2v2 (0.1290− 0.1312) mho = 125− 126 (125.7± 0.4)

yt (mz)
√

2mt
v (0.9922− 0.9997) mt = 173.21± 0.51± 0.71

yb (mz)
√

2mb
v 0.0240 mb = 4.18± 0.03

yτ (mz)
√

2mτ
v 0.0067 mτ = 1.776± 0.001

Table 3.1.: Initial conditions for running of RGE in the SM and 2HDMs. Only gauge part constraints are extrapolated
to running couplings of 2HDMs. The parameters values are taken from [4].

In the same way, for the down sector

DξD = ADξ
D + T11ξ

D +
3

2
ξDξD†ξD − 3

2
ξUξU†ξD. (3.5.2)

and for the up sector

DξU = Auξ
U + T11ξ

U +
3

2
ξUξU†ξU − 3

2
ξDξD†ξU . (3.5.3)

Here we have eliminated one coupling matrix. Since large part of the literature choose Φ2, the doublet to be coupled
fermions, in a general way, we shall take this prescription in non-inert models. Nevertheless, in the inert models, we
adopt whose wherein only Φ1 couples to fermions. This fact is due to vacuum structure where 〈Φ1〉0 = v/

√
2 and

〈Φ2〉0 = 0. This choice lead to establish the compatibility with symmetries to build up a Yukawa Lagrangian free of
FCNCs. Therefore, for non-inert models, the Type I-RGEs are given by

Dξτ = Aτξτ + T11ξτ +
3

2
ξ3
τ

Dξb = Abξb + T11ξb +
3

2
ξ3
b −

3

2
ξ2
t ξb

Dξt = Atξt + T11ξt +
3

2
ξ3
t −

3

2
ξ2
b ξt

Initial conditions for type I Yukawa couplings can be chosen in the following way (without QCD threshold corrections)

ητ (mZ) =
1

sinβ

√
2mτ

v
(3.5.4a)

ηb(mZ) =
1

sinβ

√
2mb

v
(3.5.4b)

ηt(mZ) =
1

sinβ

√
2mt

v
(3.5.4c)

Evolutions for relevant Yukawa couplings are depicted in Fig. 3.15.
In the same way for type II 2HDM, we finally get

Dητ = aeητ + T22ητ +
3

2
η3
τ

Dηb = abηb + T22ηb +
3

2
η3
b +

1

2
ξ2
t ηb

Dξt = atξt + T11ξt +
3

2
ξ3
t +

1

2
η2
b ξt

With the initial conditions
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Figure 3.15.: Yukawa couplings evolution for top (Left) and bottom (Right) quarks in the type I-2HDM. We have taken
the initial conditions without threshold corrections given by QCD. Width in each curve is due to top quark
uncertainty. In addition, we have varied β mixing angle in the following values π/6, π/4, π/3,→ π/2.

ητ (mZ) =
1

cosβ

√
2mτ

v
(3.5.5a)

ηb(mZ) =
1

cosβ

√
2mb

v
(3.5.5b)

ξt(mZ) =
1

sinβ

√
2mt

v
(3.5.5c)

Figure 3.16 shows energy evolution of Yukawa couplings in the type II 2HDM. Because of initial conditions, there
exist remarkable differences with the type I in the case of bottom quark evolution. In angles less to β < π/4 (at least)
appear divergences, in particular values of µI , likewise in type I 2HDM. These possible Landau poles are essentially
due to t-quark Yukawa evolution. Besides, at high energy values and for angles β ≥ π/3, b-Yukawa couplings present
asymptotic freedom. Differences regarding the type I arises, and just before of the non-analytic behavior, the relevant
evolution is given for larger β mixing angles, as we expect by the initial conditions structure.

For the top quark evolution, significant differences arise for β ≥ π/3, e.g. it is possible to see the distance between
both curves (β = π/3 and β → π/2) is highly reduced in comparison with the evolution of the type I scenario. This fact
is an effect of b− quark Yukawa evolution.

3.5.1. Yukawa evolution for the type III-2HDM

Employing Eq. (1.3.1) and taking the Higgs basis where Φ1 generates mass terms and Φ2 produces FCNC couplings (in
the fundamental parameterization)3, it is possible to get the general Yukawa couplings RGEs: In the case of the leptonic
sector

DηL = aeη
L + T11η

L + T12ξ
L +

3

2
ηLηL†ηL + ηLξL†ξL +

1

2
ξLξL†ηL (3.5.6)

DξL = aeξ
L + T21η

L + T22ξ
L +

3

2
ξLξL†ξL + ξLηL†ηL +

1

2
ηLηL†ξL (3.5.7)

for down-quarks sector

DηD = adη
D + T11η

D + T12ξ
D +

3

2
ηDηD†ηD − 3

2
ηUηU†ηD

− 2ξUηU†ξD +
1

2
ξUξU†ηD + ηDξD†ξD +

1

2
ξDξD†ηD (3.5.8)

3A detailed discussion of Type III and FCNC’s origin is presented at Appendix C
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3.5. Explicit couplings evolution: Yukawa sector
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Figure 3.16.: Yukawa couplings evolution for top (Left) and bottom (Right) quarks in the type II-2HDM. We have taken
the initial conditions without threshold corrections given by QCD in the EW scale. The width in each curve
is due to the minimum and maximum values taken for top masses (172.5 − 174.1 GeV). In addition, we
have varied β mixing angle in the following values π/6, π/4, π/3,→ π/2.

DξD = adξ
D + T21η

D + T22ξ
D +

3

2
ξDξD†ξD − 3

2
ξUξU†ξD

− 2ηUξU†ηD +
1

2
ηUηU†ξD + ξD2 η

D†ηD +
1

2
ηDηD†ξD (3.5.9)

and for up-quarks sector

DηU = auη
U + T11η

U + T12ξ
U +

3

2
ηUηU†ηU − 3

2
ηDηD†ηU

− 2ξDηD†ξU +
1

2
ξDξD†ηU + ηUξU†ξU +

1

2
ξUξU†ηU (3.5.10)

DξU = auξ
U + T21η

U + T22ξ
U +

3

2
ξUξU†ξU − 3

2
ξDξD†ξU

− 2ηDξD†ηU +
1

2
ηDηD†ξU + ξU2 η

U†ηU +
1

2
ηUηU†ξU (3.5.11)

For now and since Yukawa couplings, we consider the following textures for FCNC matrices (four zero textures)

ξU =

 0 × 0
× 0 ×
0 × ×

 .

ξD =

 0 × 0
× 0 ×
0 × ×

 .

ξL =

 0 × 0
× 0 ×
0 × ×

 .

These FCNC matrices satisfy the typical form of Fritzsch structure [134, 135]. The Sher and Cheng anzats presents
the assumption that the FCNC couplings are proportional to λij

√
mimj with λij couplings being the O(1). That fact

preserves the hierarchical structure of the Yukawa couplings in the mass couplings. Hence the simplest way to implement
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3. One loop effects over vacuum stability

the anzats in the case of the real Yukawa couplings is through the matrices

ξU =

√
2

v

 0 λuc
√
mumc 0

λuc
√
mumc 0 λct

√
mcmt

0 λct
√
mcmt λttmt

 .

ξD =

√
2

v

 0 λds
√
mdms 0

λds
√
mdms 0 λbs

√
mbms

0 λbs
√
mbms λbbmb

 .

ξL =

√
2

v

 0 λeµ
√
memµ 0

λeµ
√
memµ 0 λµτ

√
mµmτ

0 λµτ
√
mµmτ λττmτ

 .

The coefficients λij are of order unity. Taking into account only the diagonal terms in the third family, we can
summarize all RGEs for Yukawa couplings through

Dητ = aτητ +
(
3
(
η2
t + η2

b

)
+ η2

τ

)
ητ + (3 (ηtξtt + ηbξbb) + ητξττ ) ξττ

+
3

2
η3
τ +

3

2
ξ2
ττητ

Dξττ = aτξττ + (3 (ηtξtt + ηbξbb) + ητξττ ) ητ +
(
3
(
ξ2
tt + ξ2

bb

)
+ ξ2

ττ

)
ξττ

+
3

2
ξ3
ττ +

3

2
ξττη

2
τ

Dηb = abηb +
(
3
(
η2
t + η2

b

)
+ η2

τ

)
ηb + (3 (ηtξtt + ηbξbb) + ητξττ ) ξbb

+
3

2
η3
b −

3

2
η2
t ηb − 2ξbbηtξtt +

1

2
ξ2
ttηb +

3

2
ξ2
bbηb

Dξbb = adξbb + (3 (ηtξtt + ηbξbb) + ητξττ ) ηb +
(
3
(
ξ2
tt + ξ2

bb

)
+ ξ2

ττ

)
ξbb

+
3

2
ξ3
bb −

3

2
ξ2
ttξbb − 2ηtηbξtt +

1

2
η2
t ξbb +

3

2
ξbbη

2
b

Dηt = atηt +
(
3
(
η2
t + η2

b

)
+ η2

τ

)
ηt + (3 (ηtξtt + ηbξbb) + ητξττ ) ξtt

+
3

2
η3
t −

3

2
η2
bηt − 2ξbbηbξtt +

1

2
ξ2
bbηt +

3

2
ξ2
ttηt

Dξtt = auξtt + (3 (ηtξtt + ηbξbb) + ητξττ ) ηt +
(
3
(
ξ2
tt + ξ2

bb

)
+ ξ2

ττ

)
ξtt

+
3

2
ξ3
tt −

3

2
ξ2
bbξtt − 2ηbξbbηt +

1

2
η2
b ξtt + ξttη

2
t +

1

2
η2
t ξtt

The solutions from these RGEs for top and bottom quarks are shown in Figs. 3.17-3.18. Here, we have used the
following initial conditions for mass couplings

ξτ (mZ) =

√
2mτ

v
(3.5.12a)

ξb(mZ) =

√
2mb

v
(3.5.12b)

ξt(mZ) =

√
2mt

v
(3.5.12c)

In this step, we have not taken into account QCD corrections yet. Figures 3.17-3.18 show Yukawa couplings RG
evolution for different choices of initial conditions of FCNC couplings. For the top quark scenario, we can see the
influence of FCNC couplings in the mass term evolution in regimes where ξtt > 0.6 and µ > 1010 GeV. This effect can be
extrapolated to the FCNC sector, where for high energy scales exist relevant discrepancies for couplings in ξtt(mz) > 0.5.
For lower values ξtt-evolution is approximately constant for fixed values of ξii(mz).

The corresponding RG evolutions for bottom quark couplings are settled in Fig. 3.18. In this case discrepancies in
the FCNC sector appears in low energy scales (as is shown in the right part). The evolution-ξbb become constant in high
energy scales. Here, η couplings RG evolution are located in values of one order of magnitude below with respect the
same mass coupling for the top quark. Meanwhile, FCNC couplings belong in the same scale. It is worthwhile to point
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3.6. Inclusion of QCD improvements for Yukawa couplings
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Figure 3.17.: The top-Yukawa couplings energy evolution in the type III-2HDM for (Left) mass terms and (Right) FCNC
couplings. The width in the family of curves is due to initial conditions in FCNC couplings 0.2 ≤ ξtt(mz) ≤
0.8. In addition, we have taken ξbb = ξττ = 0.2.
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Figure 3.18.: The bottom-Yukawa couplings energy evolution in the type III-2HDM for (Left) mass terms and (Right)
FCNC couplings. The width in the family of curves is due to initial conditions in FCNC couplings 0.2 ≤
ξb(mz) ≤ 0.8. In addition, we have taken ξt(mz) = ξττ (mz) = 0.2

out that any evolution in the type III scenario shows Landau poles up to Grand Unification or Planck scales; perhaps by
taking FCNC coupling in mz with higher values we might begin to see these divergences appearance. This fact gives us
limiting values over those unknown structures, which must also be consistent with other theoretical analyses, like those
coming from perturbative unitarity.

3.6. Inclusion of QCD improvements for Yukawa couplings

In this section, we make similar analysis to those presented in later sections, but introducing threshold corrections in
the EW scale for Yukawa-quarks couplings given by QCD improvement. Our primary goal is to compute the influence
of these corrections in perturbative analyses made above; to address the origin of these improvements in the Yukawa
coupling definition for initial conditions.

The quark masses, in particular, the top and bottom quark masses are input parameters in SM and 2HDMs. Our
prior discussions have been based on the fact these masses coming from Higgs mechanism in those models. Nevertheless,
the value cannot be computed from SM or 2HDM foundations. Instead, quark masses have to be determined from the
comparison between theoretical predictions and experimental behavior of several processes involving these particles.

It is relevant to stress that there is no a unique definition of quark masses. Because of quarks cannot be observed as
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3. One loop effects over vacuum stability

free particles like charged leptons, the quark mass is a theoretical concept and depends on the concept adopted for its
right definition. The best-known definitions are the derived in the pole mass and the M̄S mass. The pole mass should
not be used because it has the renormalon ambiguity and cannot be determined more accurately than 0.3 − 0.4 GeV
4. Actually and to establish the origin of renormalon ambiguity, we may relate the pole with some short distance mass
scale like the M̄S mass scale µ0 which for “large β0” approximation by

mpole = µ0

{
1 +

∑
mn

(
β0αs
4π

)n}
(3.6.1)

We can see the meaning of this relation with the following statements [137]: Although the top quark lifetime is much
less than the strong interaction time scale, ΛQCD, there are non-perturbative contributions to the top-quark pole mass,
just as in the case of a stable heavy quark. These non-perturbative contributions are signaled by the divergent behavior
at large orders of an expansion in a = β0αs(mR)/4π. This fact leads to an unavoidable ambiguity of O(ΛQCD) in the
pole mass of the top quark. The short-distance mass, such as the M̄S mass, can in principle be measured with arbitrary
accuracy. This concept may require non-perturbative information, depending on the measurement. It is feasible to adopt
the M̄S mass as the standard definition of the top-quark mass. The relation between the top-quark pole mass and the
M̄S mass evaluated at the pole mass m̄ = m̄ (mpole) is known up to two loops

mpole = m̄ (mpole)

[
1 +

4

3

ᾱs(mpole)

π
+ 10.95

(
ᾱs(mpole)

π

)2

+ ...

]
+O(ΛQCD) (3.6.2)

where the last term reminds us that the pole mass has an unavoidable ambiguity of O(ΛQCD). Given that the pole
mass is ambiguous itself, we suggest as the standard M̄S mass evaluated at the M̄S mass, which is related to the pole
mass by

mpole = m̄ (m̄)

[
1 +

4

3

ᾱs(m̄)

π
+ 8.28

(
ᾱs(m̄)

π

)2

+ ...

]
+O(ΛQCD) (3.6.3)

The difference in the coefficients of the two α2
s terms above is exactly 8/3. Same appears to happen for all quark mass

dependent observables. It is thus clear that pole mass is an irrelevant concept and leads to artificially significant correc-
tions in higher orders. In areas of high energy physics, where heavy quark masses need to be known with uncertainties
below GeV, short-distance frameworks for masses must be used. The short distance mass schemes have the following
generic form

msd (µ) = mpole −R (µ)

[
a1
αs(µ)

4π
+ a2

(
αs(µ)

4π

)2

+ ...

]
(3.6.4)

In the M̄S scheme 5, R = m̄(µ) and a1 = 16/3+4 lnµ2/m2. All ai are chosen in such a way that renormalon ambiguity
is removed of the respective quark mass definition.

3.6.1. RGEs evolution within M̄S scheme for quark masses definition

Taking as the basis our above discussion, and by means up to NLO terms in Eq. (3.6.4) in the M̄S scheme, the evaluation
for RGEs of last sections is based on the new initial conditions:

4The top quark mass enters the relation between the electroweak precision observables indirectly through loop effects. The global electroweak
fit of the SM requires having very accurate input data to make a constraint for the masses of undiscovered particles, such as Higgs bosons
within 2HDM scalar spectrum. The increase in the accuracy of the top quark mass will improve the precision tests on the Higgs masses.
This fact is important in the correct description of the phase diagram of stability in SM (presented in our Introduction) and 2HDM
(following chapters). Besides, we can study possible deviations from the SM with the aid of anomalous couplings, CP violation or extra
dimensions [136]

5This scheme is useful when involved processes have heavy quarks off-shell and with higher momentum (UV Regime). In a regime near to a
single resonance, heavy quarks are very close to their mass shell and in this case R = ΓQ (i.e. the resonance width).
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3.6. Inclusion of QCD improvements for Yukawa couplings

ξτ (mZ) =

√
2mτ

v sinβ
(3.6.5a)

ξb(mZ) =

√
2mb

v sinβ
[1− δQCD(mz)] (3.6.5b)

ξt(mZ) =

√
2mt

v sinβ
[1− δQCD(mz)] , (3.6.5c)

in the type I scenario. Results are depicted in Fig. 3.19. Comparing with type I running evolution of Yukawa couplings
without QCD corrections (Fig. 3.15), we see as the convergence of numerical evaluation increases in the energy scale
for some values of β. For β = π/4, the energy value where possible Landau poles appear in ηb and ξt is now located
in µ ∼ 1016 GeV, which is four magnitude order above of the energy scale of divergences for the RG evolution without
QCD threshold corrections. A less dramatic case occurs in π/3, where the increases of energy scale for perturbativity
is only around of one magnitude order. For these β values, QCD correction additionally yields a broader dependence of
top mass uncertainty for Yukawa couplings evolution. For β → π/2, the effect of QCD improvement is negligible.
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Figure 3.19.: Yukawa couplings evolution for top (Left) and bottom (Right) quarks in the type I-2HDM. We have taken
initial conditions with threshold corrections given by QCD in the EW scale. The width in each curve is due
to the top mass uncertainty (173.2 ± 0.9 GeV-Tevatron) . In addition, we have varied β mixing angle in
the following values π/6, π/4, π/3,→ π/2.

For the type II case, the QCD corrections to initial conditions are

ητ (mZ) =

√
2mτ

v cosβ
(3.6.6a)

ηb(mZ) =

√
2mb

v cosβ
[1− δQCD(mz)] (3.6.6b)

ξt(mZ) =

√
2mt

v sinβ
[1− δQCD(mz)] (3.6.6c)

Figure 3.20 shows the evolution of Yukawa couplings for top and bottom quarks. For β = π/4 in both evolutions, the
scale of perturbativity changes in four order of magnitude, which is now µpert ≤ 1016 GeV. For values β → π/2, QCD
corrections does not have a different effect on RGE evolution for top and bottom quarks.

In the type III scenario, QCD corrections on initial conditions in µ0 = mZ are given by
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Figure 3.20.: Yukawa couplings evolution for top (Left) and bottom (Right) quarks in the type II-2HDM. We have taken
the initial conditions with threshold corrections given by QCD. The width in each curve is due to the top
mass uncertainty (173.3 ± 0.8 GeV). In addition, we have varied β mixing angle in the following values
π/6, π/4, π/3,→ π/2.

ητ (mZ) =

√
2mτ

v
(3.6.7a)

ηb(mZ) =

√
2mb

v
[1− δQCD(mZ)] (3.6.7b)

ηt(mZ) =

√
2mt

v
[1− δQCD(mZ)] (3.6.7c)

The influence of QCD corrections in type III scenario are shown in Figs. 3.21-3.22
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Figure 3.21.: Yukawa evolution for top mass (Left) and top-FCNC (Right) couplings in the type III-2HDM. We have
taken the initial conditions with threshold corrections given by QCD. The width in the family of curves is
due to initial conditions in FCNC couplings 0.2 ≤ ξt(mz) ≤ 0.8. In addition, we have taken ξbb = ξττ = 0.2.

We see as quark mass definition affects slightly RG evolution at high energy scales for top and bottom mass and FCNCs
like couplings. In these behaviors for higher values of ξtt, new small discrepancies among different curves approaching
the maximum value avoid non-perturbative behavior at larger scales. It is worthwhile to point out that FCNC evolution
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Figure 3.22.: Yukawa evolution for bottom mass (Left) and bottom-FCNC (Right) couplings in the type III-2HDM.
We have taken the initial conditions with threshold corrections given by QCD. The width in the family of
curves is due to initial conditions in FCNC couplings 0.2 ≤ ξb(mz) ≤ 0.8. In addition, we have taken
ξt(mz) = ξττ (mz) = 0.2

depends on other Yukawa couplings evolution, and that initial conditions in EW scale give us relevant information for
the study of these processes in cosmological scenarios (which can be belong at those energy values).

3.7. Structure of radiative corrections: A general overview

We have studied all relevant β functions and those independent of Higgs potential couplings have been evolving with
energy scale. With the aim of establishing the influence of this evolution in particular models, from the fundamentals we
study which is the structure of the effective Higgs potential 6. Let us first review the form of the radiative corrections in
the context of a theory with a single scalar field, the real scalar φ4-model, with

Vcl =
m2

2
φ2 +

λ

4!
φ4 (3.7.1)

The effective Higgs potential up to one loop level is

Veff = Vcl +
V
′′

cl (φ)
2

64π2
ln

(
V
′′

cl (φ)

µ2

)
+ ... (3.7.2)

If m2 > 0, we should explore in what values of φ it is possible to compute Veff . Suppose we have chosen a RG-scale
µ ∼ m and that λ is small on that scale so that perturbation theory in λ is valid. Then evidently we can calculate V as
φ→ 0 by just retaining µ ∼ m since the one loop correction is obviously small. Thus the origin remains a minimum, as
was the case for the tree potential.

Now, if φ >> m,the one-loop correction now becomes large, because of the logarithm, so that one must improve on
this perturbation expansion. RG improvement amounts, in fact, to exploiting the freedom to choose the renormalization
scale to take µ2 ∼ V ′′cl (φ), or φ ∼ µ for large φ. Then to a good approximation at large φ we will have

V =
λ (φ)

4!
φ4 (3.7.3)

and this will be perturbatively believable as long as λ (φ) is small. Now in this simple model λ becomes large at large
scales, approaching to a Landau pole, and so perturbation breaks down eventually in spite of our RG improvement. Thus
we cannot say what form the potential takes at sufficiently large φ.

In a more complicated theory, there are two main issues to take into consideration. Firstly, if the potential depends on
more than one scalar field, it is not immediately apparent in which directions in field space we will be able to describe

6This discussion follows the formalism presented in [114]
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3. One loop effects over vacuum stability

the large-field potential since we have only one scale at our disposal. Secondly, the behavior of the λi (φ) for large φ may
be quite different from that in the simple φ4-model. In the SM, for instance, an appropriate direction is oriented with
the one where the SSB occurs. Besides, fermions and vector gauge boson contribute to the second derivative of classical
potential in the logarithmic part. Despite these issues, one loop RG improvement for Higgs potential can be computed
directly knowing βλ function, the anomalous dimension, and the function γm to one loop level

VRGI ' 1

2
m2

[
1 +

12λ

32π2
ln

(
Λ2

µ2

)]
φ2
c (µ)

+
1

4

[
λ+

1

16π2

(
12λ2 +

3

8
g4 +

3

16

(
g2 + g

′2
)
− 3jη4

t

)
ln

(
Λ2

µ2

)]
φ4
c (µ)

where Λ is some energy scale much larger than µ (the scale that fixed the initial conditions of the ODEs).
In particular, in the 2HDM the large size of the top quark Yukawa coupling, and the sign of its contribution to the

β-function of λ1 drives down the value of that parameter as one goes up in renormalization scale µ. If the starting point
of λ1 is sufficiently small, λ1 may become negative at a given high value of µ, which mean that any minimum present for
lower renormalization scales would in fact be unstable. This fact drives out that the potential would either be unbounded
from below or develop a much deeper minimum at large φ1. In fact, for the kinds of theories we consider here, the latter
is generally the scenario because the positive contribution of the gauge coupling contributions to their β-functions causes
λi to recover to positive values at yet higher scales.

A traditional approach to correct the tree-level potential at one-loop is by adding to the tree level 2HDM Higgs
potential the Coleman-Weinberg potential

V1-loop (φ) =
∑
i

±ni
64π2

mi(φ)2

(
mi(φ)2

µ2
− 1

2

)
(3.7.4)

The overhead sign refers to bosons and the lower sign to fermions; we sum over all particles of the theory, ni is the
degree of freedom for particle i and mi(φ) is its field dependent mass; µ is the renormalization scale. It is necessary
adding counterterms to the potential,

V (Φ) =

nH=2∑
i,j=1

δµijΦ
†
iΦj +

1

2

nH=2∑
m,j,k,l=1

δΛjlkm(Φ†jΦk)(Φ†lΦm), (3.7.5)

to ensure that the minimum of the tree-level potential together with the scalar masses are not changed by the 1-loop
correction. We have used the compact form of Eq. (1.2.2). This approach has two unappealing features. First of all, the
choice of renormalization scale µ is rather arbitrary. The assumption behind this is that µ is a residual scale dependence
which shows up because we are not performing a complete renormalization, in fact, we are only renormalizing at 1 loop.
The choice of this scale should not affect the physics at one-loop, only at two loops levels and hence it should not matter
at our order of accuracy. Nonetheless, we are focused on the location of the minimum of this potential and since the
potential clearly depends on this scale. This arbitrary selection might affect final conclusions and results [138]7. A
second issue is that the conditions which fix the parameters introduced in equation (3.7.5) leads to several nonlinear
equations (RGEs described above) which must be solved numerically. These forms strongly depend on treated model.
A third caveat is that divergences show up when one is fixing the parameters. This fact is because we need to calculate
derivatives of the potential in the Coleman-Weinberg form (3.7.4).

[(
mi(φ)2

)2
ln

(
mi(φ)2

µ2

)]′′
= 2

(
mi(φ)2′

)2

ln

(
mi(φ)2

µ2

)
+ ... (3.7.6)

where mi(φ)2 can be zero values at the same time as derivative mi(φ)
′2 is different to zero. Taking a simple scalar-field

theory [139], it is possible consider quantum corrections and conterterms by means of

V1-loop (φ) + VCT (φ) =
∑
i

±ni
64π2

mi(φ)2

[(
mi(φ)2

mi(v)2
− 3

2

)
+ 2mi(φ)2mi(v)

]
. (3.7.7)

7In fact, as we will see in chapter 5, this occurs in the Inert-2HDM [34] where even nature of minima might change at one loop level.
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3.8. Comments about NLO analyses

We should to choose the counterterms such that the location of the minimum is the same as for the tree-level potential
(as above), and that the tree level masses are preserved. Here v is the place of the minimum, which means that mi(v)
is the physical mass of the particle. Note that all residual scale dependence vanishes from the potential, due to being
absorbed in the added counterterms.

We shall assume that the stability conditions shown in Tab. 2.1 must hold at all renormalization scales µ up to the
gauge unification or Planck scales. This fact will be sufficient to yield a Higgs potential bounded from below. Demanding
the stability of the scalar potential at all energy scales will thus, typically, impose lower limits on the values of its quartic
couplings.

Another way of defining the values of the λi is by requiring that they remain small enough for perturbative reliability
at higher energy scales. Hence, if the initial values of λi are too large, their β-functions will be positive and their
renormalization scale evolution will drive them to ever higher values. Requiring that the λi remain small at all energy
scales will thus impose upper bounds on their values. How small should “small” be? Here we enter a somewhat
arbitrary region, but requiring initially that all λi remain less than 4π at all renormalization scales seems a reasonable
requirement. Nevertheless, our analyses are driven in such a way that numerical convergence could give values even
smaller for couplings, and thus more constrained zones in different realizations of parameter space.

We will impose both stability and perturbativity bounds on the quartic parameters of the 2HDM at all scales between
the weak-scale mZ and mU . Such analyses have been made before in the following works: these ideas were applied to
the SM [11,49, 140–143], SUSY models [5, 144, 145] and also to a simple 2HDM [20,21, 33, 146,147]. In this work we are
interested in studying the differences that the application of these bounds will have on the several possible two-Higgs
doublet models, and on the possible vacua therein.

3.8. Comments about NLO analyses

The presence of an additional doublet yields new zones in the parameter space to be analyzed by the behavior of
extended quartic couplings. β functions at one loop level lead to study evolution of extended parameters concerning
a UV energy scale µ. Vacuum analyses at this level are based on the fulfillment of constraints, gotten at tree level
for a bounded from below extended Higgs potential, over quartic couplings now depending on µ. Moreover, possible
divergences in the evolution of scalar couplings give us information of perturbation theory develops in the new Higgs
sectors. Obtaining these evolutions require the simultaneous solution of all RGEs, i.e., scalar, gauge, and Yukawa
sector. Since at one loop level gauge and extended Yukawa sectors are independent of scalar couplings, we obtained
relevant information independent of symmetries in the Higgs potential over energy-evolution for these couplings. Due to
its relevance in the vacuum and perturbativity analyses, we focused on the fermion-scalar sector wherein we analyzed
couplings structures behavior for models with (type I-II) and without natural flavor conservation (type III). Furthermore,
we study ambiguities-free definition of quark masses, which is crucial in the interpretation of RGEs results for vacuum
stability. The strong dependence of these corrections is relevant in type I and II 2HDMs when tanβ < 1 due to for these
values divergences appearance scale is shifted to values one to four magnitude orders upper. Therefore, we can see it as
an improvement of energy scales for perturbation theory validity. Nevertheless, for models with alternative mechanism
to suppress FCNCs, this QCD improvement for heavier quark masses is only relevant in the highest scales analyzed.
However, these improvements in the evolution for FCNC couplings can be appropriate to study them in cosmological
scenarios, where perhaps precision shall become relevant.

Finally with these developments in mind and from diagrammatic systematics here performed and from an algebraic
approach to RGEs treated in Appendix J, symmetries, and vacuum choices leading construct well-motivated scalar
models which will be studied regarding stability, metastability and perturbativity concepts in the next chapters. Before
that, we will introduce perturbative unitarity from the S matrix, which are complementary studies to constrain and to
interpret these models correctly.
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4. S−matrix unitarity and constraints to 2HDM

Relativistic quantum field theories arise from different mathematical principles and systematics. These foundations allow
analyzing several phenomenologies of elementary particles at a wide range of energy scales. One of them is the Poincaré’s
covariant construction of the space-time scenario where interactions take place. This relativistic invariance includes all
translations, rotations and boosts in four dimensions operations leaving unaffected intervals between events. Besides,
interactions what are described by quantum mechanics foundations must satisfy the probability conservation principle.
Both statements, Poincaré’s invariance and probability conservation, lead to define the scattering matrix or S −matrix
for interactions between elemental fields; which are intimately related each to other by the S−matrix unitarity properties
itself. This picture for interactions is the traditional one based on the structure of the correlation functions of the bosons
or fermion fields in the theory. Scattering matrix unitarity is a necessary and sufficient condition to ensure probability
conservation in the Hilbert space and also allows to define to the S matrix as a space-temporal invariant. In this chapter,
we discuss the fundamentals behind S − matrix definition and the behavior of specific processes where unitarity has
been implemented. To that end, we take into account some discussions of the perturbative character of the unitarity for
realistic models in high energy physics, as well as the influence in the searching of possible strongly interacting sectors
or dynamical resonances. Furthermore with these foundations, we incorporate the perturbative unitarity in scattering
processes in a general and particular cases of 2HDMs. By using perturbative unitarity in models with SSB, we study
potential mechanisms and models describing possible fermion mass scales using these analyses into the annihilation of
two fermions in polarized gauge bosons. Having in mind the above discussions, we introduce the study of the behavior
of general Yukawa couplings for 2HDMs in fermion-antifermion scattering.

4.1. S−matrix: The framework for the interactions in High Energy Physics

Our initial objective is to determine how asymptotic initial (e.g. two particles k −momenta) and final (multi-particle
state with pi −momenta) states develop in a scattering process. To compute the change, we initially take both states
relating to a temporal translation:

out 〈p1p2... |kAkB〉in = lim
T→∞

〈p1p2...︸ ︷︷ ︸
T

−T︷ ︸︸ ︷
|kAkB〉

= lim
T→∞

〈p1p2... | e−iH(2T ) |kAkB〉 . (4.1.1)

In the last line, both asymptotic states are referred to the same temporal system. Therefore, the in and out states are
connected by a sequence of unitary operators. This set is called the S matrix:

out 〈p1p2... |kAkB〉in ≡ 〈p1p2... |S |kAkB〉 . (4.1.2)

In other words, the S-matrix transforms initial arbitrary free particle states

(in− states)|α; ini〉 = |k1, ...kn; ini〉. (4.1.3)

into final particle states
(out− states)|β; out〉 = |p1, ...pm; out〉. (4.1.4)

Hence, it is possible to make

Sβα ≡ 〈β; out|α; in〉 ⇔ 〈β; in|S = 〈β; out| and |α; in〉 = S|α; out〉, (4.1.5)

The S-matrix has the following formal features: i) The vacuum is trivially invariant, i.e., |S00| = 1. ii) The one particle
state is also invariant. By definition, these invariances are a consequence of energy-momentum conservation and four-
dimensional translation invariance of Poincaré group. iii) S is unitary, i.e., it conserves the scalar product from initial
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4.2. S matrix unitarity

to a final state; it is equivalent to say that in and out Hilbert spaces are isomorphic1. And finally, iv) The S−matrix is
also Poincaré’s invariant, i.e.

U (ω, a)SU−1 (ω, a) = S. (4.1.6)

with U (ω, a) the unitary representation of the Poincaré’s group, obtained exponentiating the algebra [148]:

U (ω, a) = exp

(
i

2
ωµνM

µν + iaµP
µ

)
. (4.1.7)

The operatorsMµν generate the algebra SO(d, 1) of Lorentz (orthogonal) transformations in d+1 spacetime dimensions.
The spatial components Mjk generate the algebra SO (d) of rotations in d spatial dimensions. The overall representation
includes Spin+ (d, 1) , the double cover of the proper orthochronous Lorentz group, along with translations.

4.2. S matrix unitarity

The S matrix unitarity reflects the fundamental principle of probability conservation in quantum mechanics. All relevant
physical quantities are equivalent to positive-norm states preserved through their time evolution in, for instance, a scat-
tering, annihilation or decay process. This fact has significant consequences in the computations of physical observables,
like the optical theorem and dispersion relations. To see those relationships in detail, first we establish the restrictions
imposed by S −matrix unitarity:

SS† = S†S = I. (4.2.1)

The S matrix is the identity when there are no interactions. Even under existence of interactions, the particles has a
some probability to become lost one another, for instance through some mechanism breaking the initial correlations. It
also yields a S matrix approximately equal to the identity. These facts lead to us to isolate the non trivial part, defined
by the T -matrix

S = I + iT, S† = I − iT †. (4.2.2)

Using those forms in unitarity relation for scattering matrix (4.2.1)

SS† = (I + iT )
(
I − iT †

)
= I − iT ∗ + iT + TT † = I, (4.2.3)

hence

TT † = iT † − iT. (4.2.4)

In a similar way and taking the second part in (4.2.1), another relation for T matrix becomes

T †T = iT † − iT. (4.2.5)

Introducing four-momentum conservation between in i and out f multi-particle states,

〈f | T |i〉 = (2π)4δ4(Pf − Pi)Tfi. (4.2.6)

Here Tfi is the matrix element. The S−matrix elements must be consistent with four-momentum conservation, whose
dependence is in the T−matrix. From equation (4.2.4)

〈f | T † T |i〉 = i 〈f |T † |i〉 − i 〈f |T |i〉 =
∑
n

〈f | T † |n〉 〈n|T |i〉 , (4.2.7)

where we have used a completeness relation for intermediate states labeled by n. Employing four-momentum conser-
vation, Eq. (4.2.7) acquires the following form

〈f |T |i〉 − 〈f |T † |i〉 = (2π)4δ4(Pf − Pi)(Tfi − T ∗fi) = i
∑
n

(2π)4δ4(Pf − Pn)(2π)4δ4(Pn− Pi)T ∗fnTni. (4.2.8)

Since all intermediate states must also be compatible with the four-momentum conservation. Therefore both restric-
tions are equivalent to having a global four-momentum conservation

1It is natural to assume that outgoing particles of some scattering process can be used as incoming particles of another scattering process.
Therefore the in and out spaces must be isomorphic.
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4. S−matrix unitarity and constraints to 2HDM

Tfi − T ∗fi = i
∑
n

(2π)4δ4(Pn− Pi)T ∗nfTni. (4.2.9)

Involving all intermediate states |n〉 coupled to |i〉 and 〈f | . In practical cases, we seldom have two particle scatterings
(or several cases can be reduced to two-particle scattering). As a first glance, identical particles are ignored. Besides,
we take in (4.2.9) the elastic channel, i.e., |i〉 = |f〉 states; corresponding to a forward scattering with the same spin and
internal variables in the initial and final configurations. Assuming only short range interactions [149], it is possible to
get

Tii − T ∗ii = i
∑
n

(2π)4δ4(Pn− Pi)T ∗niTni (4.2.10)

The left side in (4.2.9) is translated into

Tii − T ∗ii = 2iImTii. (4.2.11)

From Fermi’s golden rule, the right side of (4.2.11) is connected with the total cross section, additionally to a flux
factor coming from the initial state. To see this fact, terms (ma, sa) and (mb, sb) denotes mass and spin of the particles
in the initial state. Taking n intermediate states and from integral equation for two particles differential cross section2

dσ2→n =
1

4
[
(p1 · p2)

2 −m2
1m

2
2

]1/2 ∫
∆

dp̃3...dp̃n+2 |〈p3..pn+2| T |p1, p2〉|2 (2π)4δ4(p1 + p2 − p3 − ...− pn+2), (4.2.13)

it is possible to find the structure for the total cross section

σtot(i) =
1

2λ1/2(s,m2
a,m

2
b)

∑
n

(2π)4δ4(Pn− Pi)T ∗niTni, (4.2.14)

where

λ(s,m2
a,m

2
b) =

(
s2 +m4

a +m4
b

)
− 2sm2

a − 2m2
am

2
b − 2sm2

b , (4.2.15)

with a appropriate normalization in (4.2.14) has been used for an invariant phase space d3p/(2π)32E. The common
3-momentum in the center of mass frame |p| of the particles A and B is related to Mandelstam variable s by 4sp2 =
λ(s,m2

a,m
2
b). By meaning of (4.2.11) and (4.2.14), it is possible to find out the traditional form of the optical theorem in

scattering theory [149]

ImTii = λ1/2(s,m2
a,m

2
b)σtot(i). (4.2.16)

It is worth to see how Tii amplitude enter in the elastic cross section. Assuming polarizations to be in such a way that
initial state is invariant under rotations around incoming momentum, the elastic cross section can be integrated over
azimuthal angle and expressed in terms of transfered momentum t, instead of scattering angle θ in the CM reference

system. Hence, in the process A+B → A+B we call (pa, pb) and
(
p
′

a, p
′

b

)
the initial and final momentum respectively

and satisfying four momentum conservation, i.e., pa + pb = p
′

a + p
′

b.. The elastic cross section can thus be written by

dσela(s, t)

dt
=

|T (s, t)|2

16πλ(s,m2
a,m

2
b)
. (4.2.17)

The forward scattering is characterized by t = 0 and T (s, 0)(denoted above as Tii). Consequently

2In this derivation, we will use the explicit forms of the Mandelstam variables

s = (pa + pb)
2 =

(
p
′
a + p

′
b

)2
.

t =
(
pa − p

′
a

)2
=
(
pb − p

′
b

)2
, s+ t+ u = 2

(
m2
a +m2

b

)
. (4.2.12)

u =
(
pa − p

′
b

)2
=
(
pb − p

′
a

)2
.
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4.2. S matrix unitarity

dσela(s, 0)

dt
=

(ReTii)2
+ (ImTii)2

16πλ(s,m2
a,m

2
b)

. (4.2.18)

Utilizing optical theorem (4.2.16)

dσela(s, 0)

dt
=

(ReTii)2
+
(
λ1/2(s,m2

a,m
2
b)σtot(i)

)2
16πλ(s,m2

a,m
2
b)

,

=
(ReTii)2

16πλ(s,m2
a,m

2
b)

+
σ2
tot(i)

16π
>
σ2
tot(i)

16π
. (4.2.19)

In high-energy collisions could happen in such a way that the imaginary parts of the forward scattering dominate to
the real part ones. In that case, Eq. (4.2.19) might useful to normalize the differential cross section by assuming the
total cross section to be known.

4.2.1. Generalized partial waves

It is possible to extract more observable consequences from unitarity condition when the operator T becomes diagonalized,
at least partially. In the two particles scattering, this is achieved in angular momentum basis; being the Jacob-Wick
formalism the most accurate method to do the corresponding projection between plane waves state and momentum
angular ones (see discussion presented in Appendix K). Calling (λa, λb) and (λ

′

a, λ
′

b) the helicities for particles in the

initial and the final states respectively, referred to the center of mass frame (CM) where pa+pb = p
′

a+p
′

b
3. For a two

particles state in the CM system, let be θ and ϕ the polar and the azimuthal angles of the 3-momentum on a fixed z-axis.
Considering Rθϕ, the product of two transformations: a rotation in θ around y axis followed by a rotation in ϕ around
z axis. This rotation transforms the unitary vector ẑ into the vector p/ |p| . A state with angular momentum J and
projection M along z axis is obtained as

|J,M ;λa, λb〉 =

(
2J + 1

4π

)1/2 ∫
dϕ sin θdθDJλa−λb

(
R−1
θϕ

)
|pa, λa; pb, λb〉 . (4.2.23)

Phase conventions are selected in such a way that ηa and ηb are intrinsic parities of particles A and B; being the
transformation of states under parity P and temporal inversion T , the following

P |J,M ;λa, λb〉 = ηaηb (−1)
J−Sa−Sb |J,M ;−λa,−λb〉 . (4.2.24)

T |J,M ;λa, λb〉 = (−1)
J−M |J,−M ;−λa,−λb〉 . (4.2.25)

These relations reflect the fact helicity is odd under parity but even under temporal inversion. By using Wigner-Eckart
theorem 4, the matrix element Tfi satisfy the following expansion

3We do it for two-particle states with definite momentum. For one-particle states, we use the normalization

〈p′λ′|pλ〉 = (2π)3 2Eδλλ′δ
3
(
p− p′

)
(4.2.20)

so that the two-particle states are normalized as follows

〈p′aλ′ap′bλ
′
b|paλapbλb〉 = (2π)6 (2Ea) (2Eb) δλλ′δ

3
(
pa − p′a

)
δ3 (pb − pb) (4.2.21)

The product of δ-function in the last equation can be redefined as

δ3
(
pa − p′a

)
δ3 (pb − pb) = Λδ4

(
p′a + p′b − pa − pb

)
δ2
(
n− n′

)
(4.2.22)

where n,n are unit vectors in directions pa and p′a ( δ2(n− n) can be written in terms of angles (θ, ϕ) as δ (cos θ − cos θ′) δ (ϕ− ϕ′)).
The Λ is a normalization factor given as Λ = |det (J) |, where J is the Jacobian of the considered transformation.

4The Wigner-Eckart theorem comes from representation theory in group theory. For our particular case, it states that matrix elements of
spherical tensor operators on the basis of angular momentum eigenstates can be expressed as the product of two factors, one of which is
independent of angular momentum orientation, and the other a Clebsch-Gordan coefficient; i.e.

〈jm|Tkq |j
′
,m
′
〉 (4.2.26)

where Tkq is the qth component of a rank k spherical tensor, |jm〉 and |j′m′ 〉 are eigenstates of total angular momentum J2 and its
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4. S−matrix unitarity and constraints to 2HDM

Tfi = 〈p
′

a, λ
′

a; p
′

b, λ
′

b |T | pa, λa; pb, λb〉 = 16π
∑
J

(2j + 1) T J
λ′aλ

′
b;λaλb

(s)DJ∗
λa−λb,λ′a−λ

′
b,

(ϕ, θ, 0) . (4.2.28)

In the last relation, rotational invariance has been taking into account. In Eq. (4.2.28) the z axis is chosen along the
incident momentum pa and θ,ϕ are the polar angles of p

′

a. Finally, the sum over J runs over integer or half-integer values
according to whether an even or odd number of half spin is present in the incoming and outcoming states. Besides,
Jacob-Wick expansion in (4.2.28) is generalized to an arbitrary two by two scattering process. In the helicity formalism,
the spin degrees of freedom of the particle involved do not introduce any significant complication that brings a more
intricate systematics with respect to spinless particles. By contrast, in the conventional approach with static spin labels
for the particles, the relationship between “ plane wave”and “angular momentum” states lead to multiple Clebsh-Gordan
couplings coefficients for both the initial and the final states, and consequently the partial wave is much more complicated
than that of spinless particles [111].

If invariance under parity applies, the reduced matrix element behaves as

T J
λ′a,λ

′
b;λa,λb

(s) = T J−λ′a.−λ′b;−λa,−λb(s). (4.2.29)

In the same way, if invariance under temporal inversion applies, we get

T J
λ′a,λ

′
b;λa,λb

(s) = T J
λa,λb;λ

′
a,λ
′
b

(s). (4.2.30)

These relations are expressing the symmetry of the scattering matrix. When the total energy s1/2 is below to the
inelastic threshold only the initial two body channel contributes to the sum over intermediate states in (4.2.9). Projecting
on angular momentum J results in the relation 5

T J(s)− T J†(s) = 2iλ1/2(s,m2
a,m

2
b)s
−1T J(s)T J†(s), (4.2.32)

where T J(s) is considered as a matrix (2Sa + 1) (2Sb + 1)× (2Sa + 1) (2Sb + 1) in the helicity space. Invariance under
time reversal can be applied to reexpress (4.2.32)

2iImT J(s) = 2iλ1/2(s,m2
a,m

2
b)s
−1T J(s)T J†(s). (4.2.33)

For spinless particles the develops are simplified considerably. In particular DJ∗0,0 (ϕ, θ, 0) is the Legendre polynomial
PJ(cos θ), while Eq. (4.2.32) is solved by introducing a phase shift δJ (s) through

2λ1/2

s
T J(s) = −i

(
e2iδJ (s) − 1

)
= 2eiδJ (s) sin δJ(s). (4.2.34)

If the matrix T J (s) is diagonal in some appropriate basis, the same expression is true for each diagonal element.
Establishing the scopes and limitations of the overall approach is worthwhile. It is well known as the strong interactions
as well as many scalar couplings coming from a Higgs mechanism satisfy all considerations established. By contrast, weak
interactions violate parity conservation. Hence inversion temporal requirement is not exactly achieved in many processes.
On the other hand, as electromagnetic interactions are of long range, generating possible correlation mechanism of in
and out states and as first glance avoiding an analog treatment in, at least, an exact way. Having these facts in mind,
we will consider unitarity constraints for particular gauge theories with extended Higgs sectors as 2HDM.

z-component Jz , 〈j||Tk||j′ 〉 has a value which is independent of m and q, and

Cjm
kqj
′
m
′ = 〈j

′
m
′
; kq|jm〉 (4.2.27)

is the Clebsch-Gordan coefficient for adding j
′

and k to get j.
5Here the kinematical factor comes from∫

d3pad3pb

(2π)3 (2Ea) (2π)3 (2Eb)
(2π)4 δ4 (pa + pb − P ) =

λ1/2(s,m2
a,m

2
b)

8s (2π)2
dΩp. (4.2.31)
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4.2. S matrix unitarity

4.2.2. Unitarity Constraints

Our goal is to introduce the standard systematics to evaluate S matrix unitarity in an extensive set of high energy
scatterings. In the last section, we see as the non-trivial part of the S-matrix can be projected into an appropriate
momentum angular basis; where is possible to establish a meaningful set of symmetry and dynamical properties.

First of all, it starts defining the matrix element normalized with kinematical factors

MJ(s) ≡MJ
λ′aλ

′
b;λaλb

(s) =
s1/2

λ1/4(s,m2
a,m

2
b)
T J
λ′aλ

′
b;λaλb

(s). (4.2.35)

with kinematical factor λ(s,m2
a,m

2
b) =

(
s2 +m4

a +m4
b

)
− 2sm2

a − 2m2
am

2
b − 2sm2

b . If the initial and the final helicity
states are zero (i.e. λa = λb and λc = λd), the D functions in Eq. (4.2.28) are reduced to Legendre polynomials, being
possible to compute coefficients associated to partial wave expansion using

MJ(s) =
1

32π

∫ 1

−1

M(s, θ)P J(cos θ)d(cos θ). (4.2.36)

The unitarity limit over matrix elements MJ
λ′aλ

′
b;λaλb

(s) in (4.2.35) could be get in a general way (for any helicity

combination) by means of S−matrix unitarity related to the conditions (4.2.9). Taking the matrix element for two
particles states in an elastic scattering,

〈J,M, λa, λb| T J† − T J |J,M, λa, λb〉 = i 〈J,M, λa, λb| T J†T J |J,M, λa, λb〉 . (4.2.37)

We note that the decomposition of the unitary operator contains not only the two-particle states (which are in the
form |J,M, λa, λb〉), but it must involve a complete basis for Fock-space. By introducing a completeness relation of
intermediate states, we find

〈J,M, λa, λb| T J† − T J |J,M, λa, λb〉 = i
∑
α

〈J,M, λa, λb| T J† |J,M,α〉 〈J,M,α| T J |J,M, λa, λb〉 ,

= i
∑
α

〈J,M,α| T J |J,M, λa, λb〉† 〈J,M,α| T J |J,M, λa, λb〉 ,

= i
∑
α

∣∣〈J,M,α| T J |J,M, λa, λb〉
∣∣2 , (4.2.38)

α refers to other important quantum numbers. Taking into account intermediate states with the same helicity, we
arrive at the following inequality∣∣〈J,M, λa, λb| T J† − T J |J,M, λa, λb〉

∣∣ ≥ ∣∣〈J,M, λa, λb| T J |J,M, λa, λb〉
∣∣2 . (4.2.39)

Thus intermediate inelastic channels have not been considered yet. From relation (4.2.35), the last relation in T is
converted into one to M through by

∣∣MJ∗
λa,λb,λa,λb

−MJ
λa,λb,λa,λb

∣∣ ≥ λ1/4(s,m2
a,m

2
b)

s1/2

∣∣MJ
λa,λb,λa,λb

∣∣2 (4.2.40)

In the high energy limit the kinematical factor becomes λ1/4(s,m2
a,m

2
b) → s1/2. This fact leads to last relation to be

translated into ∣∣MJ∗
λa,λb,λa,λb

−MJ
λa,λb,λa,λb

∣∣ ≥ ∣∣MJ
λa,λb,λa,λb

∣∣2 , (4.2.41)

which is equivalent to
∣∣Im(MJ)

∣∣ ≥ ∣∣MJ
∣∣2. Moreover, Schwartz inequality reads

∣∣Im(MJ)
∣∣ ≥ ∣∣MJ

∣∣; indicating finally
the following relation for ∣∣MJ

∣∣ ≤ 1. (4.2.42)
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4. S−matrix unitarity and constraints to 2HDM

4.3. Interpretation of unitarity relations

Focusing our discussion in bounds and limits obtained from optical theorem with Jacob-Wick formalism for helicity
waves, we consider the interpretations of these constraints in the case of a theory under a perturbative expansion for
scattering processes. Expanding unitarity relations (4.2.42), it is possible to get

∣∣MJ
∣∣2 =

(
ReMJ

)2
+
(
ImMJ

)2 ≤ ∣∣Im(MJ)
∣∣ , (4.3.1)(

ReMJ
)2 ≤

∣∣Im(MJ)
∣∣ (1− ∣∣Im(MJ)

∣∣) ≤ 1

4
. (4.3.2)

This relation can be drawn in an Argand’s diagram, as the shown in Figure 4.1; where is possible to see as
(
ReMJ

)2 ≤
1/2. Geometrically (4.3.2) means that the eigenvalues of MJ lie on a circle of center (0, 1/2) and radius R = 1/2 in
the complex plane. It is important to note that (4.3.2) applies to the exact scattering matrix elements. However, in
perturbation theory, the MJ matrices can be computed only up to a finite loop order. These approximated MJ do not
lie on the Argand circle [150].

Figure 4.1.: Argand diagram for the unitarity analysis of scattering amplitudes.

In a unitary theory, the eigenvalues of all scattering matrices must lie on the Argand’s circle. Since this requirement
applies to the fully resumed scattering amplitudes, it is in general impossible to apply it directly. However in [151]
a useful prescription to the unitarity requirement has been assumed to treat tree level scattering amplitudes with the
further assumption that the theory is pertubative (there is not a strong regime for interactions or possible dynamical
resonances in high energy scales).

Figure 4.2.: Tree-level value of the eigenvalues of MJ ..

In a unitary theory, the eigenvalues of all scattering matrices must lie on the Argand’s circle. Since this requirement
applies to the fully resumed scattering amplitudes, it is in general impossible to apply it directly. However in [151] a
useful prescription to the unitarity condition has been assumed to treat tree-level scattering amplitudes with the further
assumption that the theory is perturbative (there is not a strong regime for interactions or possible dynamical resonances
in high energy scales).

M (s, t) =
g

4m2
w

(s+ t) . (4.3.3)
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4.3. Interpretation of unitarity relations

Representation Expression Energy-Dependence

Dirac Spinors u (p) , v (p)
√
E

Transverse Polarizations εT (p) , ε∗T (p) 1
Longitudinal Polarizations εT (p) , ε∗L (p) E

Fermion Propagators (/q −mf )
−1

E−1

Photon Propagator gµνq−2 E−2

Higgs Propagator
(
q2 −m2

H

)−1
E−2

3-Boson vertex function Vµνρ E

Vector Boson Propagators
−gµν+qµqν/m2

V

q2−m2
V

1

Table 4.1.: Energy dependence of gauge and scalar bosons and fermions representations inside scattering amplitudes.
Gauge boson propagators are written in the unitary gauge, which is not manifestly renormalizable [44].

By using restriction over Argand’s diagram, energy behaves as

s ≤ 128m2
w

g
(4.3.4)

Thus we can conclude that outside this energy region, the use of perturbation theory is doubtful (the interaction
of longitudinal W bosons is not “weak”at high energies). Within full SM, the problem of rapid growth of considered
scattering amplitude is solved by including the Higgs boson exchange. In SM there are many individual diagrams whose
contributions exhibit a polynomial growth in high-energy limit. All these “divergences” are caused by longitudinally
polarized vector bosons or longitudinal parts of the corresponding massive propagators (see Table 4.1). However, in the
sum of the diagrams contributing to a given process, such a power like growth is always compensated, and the result
behaves as O

(
E0
)
. It is notable that the same Higgs boson, which is related to the mass generation, is also essential in

canceling the divergences due to vector boson scattering.
Moreover, there is another important aspect of perturbation expansion that should be mentioned separately. In higher

orders of perturbation expansion, there appear closed-loop diagrams that lead to divergent integrals (ultraviolet diver-
gences). Within some quantum field theory models, these can be tackled successfully with the aid of the renormalization
procedure. It turns out that for a general model the non-renormalizability of ultraviolet divergences in higher orders of
perturbation expansion are closely connected with the character of the high-energy behavior of scattering amplitudes at
tree level: in particular, the power-like growth of a tree-level scattering amplitude implies non-renormalizability in higher
orders [44].

Figure 4.3.: Tree-level value of the eigenvalues of MJ . The arrows show and paths how the loop corrections end up inside
Argand’s circle.

Another way to see unitarity relations comes from the comprehensive study of the Argand circle; which is based on
the fact the unitarity is only reliable for the full amplitude. However, it is possible to apply another prescription to
interpret the unitarity requirement at tree level for models flat asymptotically [150,151] (amplitudes do not increase with
energy indefinitely). The systematics belongs on the fact tree-level scattering are not subject to the unitarity requirement
of optical theorem since they are real. Hence they belong on the real axis in the complex plane and might not reach
the Argand circle. The loop corrections then play a crucial role in unitary theories. When perturbation assumption is
implemented, loop corrections bring out the scattering amplitudes get closer to the Argand’s circle, often following a
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4. S−matrix unitarity and constraints to 2HDM

circuitous route, i.e., in which the loop corrections take the shortest possible path to the circle and are therefore minimal
(see Fig. 4.3) 6.

Figure 4.4.: Optimistic case where the loop corrections take the shortest route to the Argand’s circle. The orange point
is the tree-level value of the T J eigenvalue.

In the optimistic case shown in Fig. 4.4, the size of the loop corrections can be computed using simple geometric
arguments. The relative amount of loop corrections with respect to the tree-level value is given by

a =

∣∣∣∣∣MJ,exact
ii −MJ,tree

ii

MJ,tree
ii

∣∣∣∣∣ =
1

|MJ,tree
ii |

(√
(Mtree

ii )
2

+
1

4
− 1

2

)
. (4.3.5)

The ratio a represents the minimal relative amount of loop corrections needed to unitarize a given theory. Since it
assumes that the loop corrections take the most direct route to the circle, this estimate is conservative. If a is close
to one and the theory begins to be considered non-perturbative. Computing scattering amplitudes at tree-level allows
determining when perturbativity is broken in a unitary theory.

Setting the maximal value for a which perturbativity is broken introduces some amount of arbitrariness in this approach.
Nonetheless, this arbitrariness is widely limited [150, 151]. The following two requirements: a ≤ 41% and a ≤ 20%,
correspond respectively to demanding ∣∣∣MJ,tree

ii (s)
∣∣∣ ≤ 1

2
and

∣∣∣MJ,tree
ii (s)

∣∣∣ ≤ 1

4
. (4.3.6)

These requirements hold for all center of mass energies
√
s. We show unitarity analyses for these additional two cases

in the following sections. Although our study focuses on the 2HDM (as a simple extension of a minimal Higgs sector), the
approach outlined here is universal and only assumes that the theory considered is unitary and perturbative (avoiding
the presence of strong regime for interactions or possible dynamical resonances). Once a maximal ratio amax is selected,
upper limits on the tree-level scattering amplitudes can be derived from (4.3.5) for any type of model respecting the
former relevant assumptions.

4.4. Unitarity behavior for 2HDMs

To define an accurate model what describe realistic scattering processes, we demand that unitarity constraints be satisfied
in all perturbative order of the theory. Unitarity is an essential framework which can be studied even at tree level with
the fundamental assumption: Interactions are not strong enough in such a way the perturbativity is satisfied at this level.
The possible fail or the accomplishment of this condition have been studied by the LHC employing effective couplings as
presented in Fig. 1.17. The systematic is based on the extrapolation of LQT method of the SM. The maximal mass for
Higgs boson is achieved finding a saturation of the unitarity at tree level for partial waves coefficients |ReM0| ≤ 1/2. In
this procedure, we use the regime for

√
s >> mw,mz, converting thus the vectorial scattering processes in the associated

6In effective theories, this procedure needs an additional step give by some unitarization method UM. Indeed, there are several UMs, which
depending of interactions introduces one plausible characterization of effects like dynamical resonances or strongly interacting sectors for
gauge bosons [152–154]. Perhaps ambiguities to define the minimal path can be present by non-renormalizability in such theories. See, for
instance, discussion given in section 4.5

7Large deviation of SM prediction would indicate the presence of strong interacting gauge sectors. These effects have been described
comprehensively in [152]
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4.4. Unitarity behavior for 2HDMs

processes for Goldstone bosons using the equivalence theorem. Dominant couplings in this scattering processes are
typically proportional to the scalar masses. Therefore, under the use of partial wave expansion, it is possible to constrain
their values. This method based on unitarity has been applied in a generic structure to the 2HDM parameter space
in [26,43]. We review this procedure formally, starting with the unitarity condition in the most conservative performance

|M| ≤ 1. (4.4.1)

To take into account all possible processes in 2HDM, we should consider following matrix elements:

Mij =Mi→j . (4.4.2)

i, j labeling all possible two particle states. We consider only those processes involving the Higgs bosons masses directly.
From equivalence theorem, we study processes with both physical and non-physical scalar states w±, z, H±, A0, H0, h0.
The eigenvalues of the matrices involving these relevant scattering processes will be bounded by the unitarity behavior
of the higher one. The eigenvalues can be obtained on a particular basis and might be connected with the physical
basis by a unitary transformation [19, 26, 37], as was discussed in section 2.3. To simplify the computations, we do it in
a non-physical basis with gauge eigenstates φ±i , ηi, ξi, To take into account all possible processes in 2HDM, we should
consider following matrix elements:

Φ1 =

(
φ+

1

η1 + iξ1

)
and Φ2 =

(
φ+

2

η2 + iξ2

)
. (4.4.3)

by [23,43], by means of the following procedure [26]:

• At high energy in scalar scattering processes, total weak isospin σ and the total hypercharge Y are conserved
quantities, with values σ = 0, 1 and Y = 0, 2,−2 :

• By considering states with Y = 0, and isospinors Φa (a = 1, 2 indicating doublet) they could be represented as
columns, and Φ†a can be represented as rows. Therefore the direct product ΦbβΦ†aα is translated into a 2×2 matrix
for each pair a and b. Following an analog discussion presented in section 2.3 and since Pauli matrices plus identity
build up a basis in the space of 2× 2 hermitian matrices, it is possible to write

ΦbβΦ†aα = A0δβα +
−→
A · −→τ βα, (4.4.4)

with A0 = (Φ†aΦb)/2 representing a isoscalar and Ai = (Φ†aτ
iΦb)/2 representing isovector. This lead to construct

quartic dimension terms through

(Φ∗aαΦbα)(Φ∗cβΦdβ) =
1

2

[
(Φ∗aαΦdα)(Φ∗cβΦbβ) +

∑
r

(
Φ∗aατ

r
αβΦdβ

) (
Φ∗cγτ

r
γδΦbd

)]
. (4.4.5)

The complete set of all possible initial states with hypercharge Y = 0, which in our case these can be written as scalar
products, transforming according to Z2 symmetry as:

Y = 0, σ = 0 :

Z2 even︷ ︸︸ ︷
1√
2

(
Φ†1Φ1

)
,

Z2 even︷ ︸︸ ︷
1√
2

(
Φ†2Φ2

)
,

Z2 odd︷ ︸︸ ︷
1√
2

(
Φ†1Φ2

)
,

Z2 odd︷ ︸︸ ︷
1√
2

(
Φ†2Φ1

)
, (4.4.6a)

Y = 0, σ = 1 :
1√
2

(
Φ†1τ

iΦ1

)
︸ ︷︷ ︸

Z2 even

,
1√
2

(
Φ†2τ

iΦ2

)
︸ ︷︷ ︸

Z2 even

,
1√
2

(
Φ†1τ

iΦ2

)
︸ ︷︷ ︸

Z2 odd

,
1√
2

(
Φ†2τ

iΦ1

)
︸ ︷︷ ︸

Z2 odd

, (4.4.6b)

with i = +, z,− labeling Pauli matrices representation. Now we consider states with Y = 2, where the following
notation for the rows Φ̃a = (iτ2Φa)

T
= (na,−φ+

a ) and the columns Φ̃†a = (iτ2Φa)
∗

are introduced. The isoscalar Φ̃aαΦbα
is antisymmetric under permutations a→ b, Φ̃aαΦbα = −Φ̃bαΦaα, while isovector is symmetric under by.

The entire set of initial states with hypercharge Y = 2, in analogy with (4.4.6a) can be written by
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4. S−matrix unitarity and constraints to 2HDM

Y = 2, σ = 0 :

Z2 even︷ ︸︸ ︷
absent ,

Z2 odd︷ ︸︸ ︷
1√
2

(
Φ̃1Φ2

)
= −

Z2 odd︷ ︸︸ ︷
1√
2

(
Φ̃2Φ1

)
(4.4.7a)

Y = 2, σ = 1 :
1

2

(
Φ̃1τ

iΦ1

)
︸ ︷︷ ︸

Z2 even

,
1

2

(
Φ̃2τ

iΦ2

)
︸ ︷︷ ︸

Z2 even

,
1√
2

(
Φ̃1τ

iΦ2

)
︸ ︷︷ ︸

Z2 odd

=
1√
2

(
Φ̃2τ

iΦ1

)
︸ ︷︷ ︸

Z2 odd

. (4.4.7b)

Factor 1/2 for the case Z2 is due to the presence of two identical particles to the initial state. Z2 even states with
Y = 2 and σ = 0 are absent by virtue to the Bose-Einstein symmetry for identical scalars. States Y = −2 and σ = 1
could be obtained from states with Y = 2 by implementing a charge conjugation operator. Similarly, it is possible to
write

(Φ∗aαΦbα)
(
Φ∗cβΦdβ

)
=

1

2

[(
Φ∗aαΦ̃∗cα

)(
Φ̃dβΦ̃bβ

)
+
∑
r

(
Φ∗aατ

r
αβΦ̃∗cβ

)(
Φ̃dγτ

r
γδΦbδ

)]
. (4.4.8)

Scattering matrices for each set of states with given quantum numbers Y and σ represented by (4.4.6a) and (4.4.7a)-
(4.4.7b) at tree level are computed from potential (1.2.1) by means of the relations (4.4.5) and (4.4.8). Results can be
represented by [26,37]:

8πSY=2,σ=1 =

 λ1 λ5

√
2λ6

λ∗5 λ2

√
2λ∗7√

2λ∗6
√

2λ7 λ3 + λ4

 , (4.4.9a)

8πSY=2,σ=0 = λ3 − λ4, (4.4.9b)

8πSY=0,σ=1 =


λ1 λ4 λ6 λ∗6
λ4 λ2 λ7 λ∗7
λ∗6 λ∗7 λ3 λ∗5
λ6 λ7 λ5 λ3

 , (4.4.9c)

8πSY=0,σ=0 =


3λ1 2λ3 + λ4 3λ6 3λ∗6

2λ3 + λ4 3λ2 3λ7 3λ∗7
3λ6 3λ∗7 λ3 + 2λ4 3λ∗5
3λ6 3λ7 3λ5 λ3 + 2λ4

 . (4.4.9d)

In each matrix left sides to contain matrix elements for Z2 − even states, meanwhile in the lower right part belong
Z2 − odd states; they are described employing λ6 and λ7 couplings. Unitarity bounds |M| < 1 are translated into
eigenvalues for Λ matrices, in the most conservative case, the new condition is

|Λ| < 1

8π
. (4.4.10)

By using perturbative prescription given in (4.3.6), where is possible set up loop corrections in a 41% and 21% to
resumed amplitude with respect the tree level one, bound (4.4.10) is respectively translated into

|Λ| < 1

16π
and |Λ| < 1

32π
(4.4.11)

With an additional factor of two for indistinguishable final states in each case. For the general Higgs potential of
(1.2.1), the eigenvalues equations for scattering matrices might become of third and fourth order, which is an intricate
problem. By limiting the parameter space of the Higgs potential with reliable models, this issue can be avoided. For
example, the models here considered are whose with a softly broken Z2 symmetry (with a possible violation of the CP
symmetry), within λ6 = λ7 = 0. For this particular case, the matrices are diagonal by blocks leading to computing
eigenvalues λZ2

Y,σ±:
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4.4. Unitarity behavior for 2HDMs

Λeven21± =
1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

5

)
, Λodd21 = λ3 + λ4. (4.4.12a)

Λodd20± = λ3 − λ4. (4.4.12b)

Λeven01± =
1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

4

)
, Λodd01± = λ3 ± λ5. (4.4.12c)

Λeven00± =
1

2

[
3(λ1 + λ2)±

√
9(λ1 − λ2)2 + 4 (2λ3 + λ4)

2

]
, Λodd00± = λ3 + 2λ4 ± 3λ5. (4.4.12d)

We shall use these eigenvalues in the following chapters to evaluate the perturbative unitarity behavior in λ couplings,
which can be translated into bounds over scalar mass splittings in particular 2HDMs, in a joint study with vacuum
stability analysis. For a Higgs potential with a complex value for λ5 coupling, it is necessary replace λ5 → |λ5| . For the
general model with couplings of fourth dimension, where exist a hard violation of the Z2 symmetry, extrapolation of the
diagonalization lead to the following properties:

For a Hermitian matrix M = ||Mij || with maximal and minimal eigenvalues Λ+ and Λ− respectively, all diagonal
elements Mii must belong between these eigenvalues8

Λ− ≤Mii ≤ Λ+. (4.4.13)

By applying two steps is possible to achieve matrices diagonalization:

1. Corners for scattering matrices correspondent to terms are no violating the Z2 symmetry. In this step, we get
eigenvalues of the similar form (4.4.12a)-(4.4.12d).

2. By virtue of (4.4.13), the constraints (4.4.10) and (4.4.12) are necessary conditions for S-matrix unitarity. These
increase due to the presence of λ6 and λ7 terms, which are related to the explicit break of the Z2 symmetry and
they accomplish with the assumption |λ6,7| � ΛZ2

Y,σ.

Perhaps another effective manner to tackle the diagonalization problem is by using the re-parametrization invariants:
As was discussed 2HDM have two doublets with the same quantum numbers (Φ1,Φ2). Therefore, their more general form
must lead to global transformations mixing these fields and changing their phase relative. Each set of transformations
yields a new Lagrangian with parameters coming from a first Lagrangian and whose generated by the first transformation.
Details for this symmetry due to non-distinguishably for fields can be found widely in [58].

Eigenvalues of scattering matrices (4.4.12a)-(4.4.12d) are re-parametrization invariants by construction. The standard
equations for eigenvalues of these matrices are also invariants under re-parametrization invariants by virtue construction
from eigenvalues. Each matrix n× n SY,σyields n invariant polynomials of λi. An appropriate choice is given by

Tr{SkY,σ} con k = 1, ..., n. (4.4.14)

Det (SY,σ) can also be used as invariant functions. Traces generate around of 12 non-independent invariants. Exam-
ples of four invariants, which are linear in λi and denoted as IY σ ≡ 8πTr{SY σ} according their quantum numbers of
hyperchargeY and isospin σ

I21 = λ1 + λ2 + λ3 + λ4, (4.4.15a)

I20 = λ3 − λ4, (4.4.15b)

I01 = λ1 + λ2 + 2λ3, (4.4.15c)

I00 = 3(λ1 + λ2) + 2λ3 + 4λ4, (4.4.15d)

Only two are linearly independent combinations. This fact is due to two combinations linearly independent of λi
parameters in the general Higgs potential for 2HDMs, corresponding to two scalars for the SU(2) × U(1) group which
describes a re-parametrization transformation.

8This fact is obtained from extremal properties of the n−dimensional ellipsoid, described by Λ−
∑
x2
i ≤

∑
Mijxixj ≤ Λ+

∑
x2
i .

95



4. S−matrix unitarity and constraints to 2HDM

• Explicit relations in bounds for masses and mixing angles. Through searching explicit quantities, we would see
as they are relations among masses and Higgs potential parameters in such a way that perturbative unitarity is
preserved. To do it, in [23] considered a case with a Higgs potential with Z2-symmetry and accomplishing with a
CP symmetry. This fact was generalized in [43,44], through

L1 =
1

2v2

[
m2
H0 cos2 α+m2

h0 sin2 α+
sin 2α

2 tanβ

(
m2
h0 −m2

H0

)]
+

m2
12

v2 sin 2β

(
1− tan2 β

)
, (4.4.16a)

L2 =
1

2v2

[
m2
H0 cos2 α+m2

h0 sin2 α+
sin 2α tanβ

2

(
m2
h0 −m2

H0

)]
+

m2
12

v2 sin 2β

(
1− cot2 β

)
, (4.4.16b)

L3 =
1

v2 sin 2β

[
sinα

2

(
m2
H0 −m2

h0

)
−m2

12

]
, (4.4.16c)

L4 =
2m2

H+

v2
, (4.4.16d)

L5 =
m2

12

v2 sin 2β
, (4.4.16e)

L6 =
2mA0

v2
. (4.4.16f)

The Li are functions of masses, α and β, and the softly broken parameter m2
12. The unitarity limits are expressed

regarding these quantities. From Li expressions, quartic couplings inside Higgs potential can be written by

λ1 = 2 (L1 + L3) , (4.4.17a)

λ2 = 2 (L2 + L3) , (4.4.17b)

λ3 = 2 (L3 + L4) , (4.4.17c)

λ4 =
1

2
(L5 + L6 − 2L4) , (4.4.17d)

λ5 =
1

2
(L5 − L6) . (4.4.17e)

• Mass limitations. By using Li expressions (4.4.16a) between Lis with masses for the remain parameters of 2HDM,
eigenvalues with unitarity restriction (4.4.10) and under the assumption of the Z2−symmetry and for lower values
of tanβ, following bounds can be gotten

mH± < 691 GeV, mA0 < 695 GeV, mh < 435 GeV, and mH0 < 638 GeV. (4.4.18)

To higher values of tanβ the upper limit becomes to be strong, going down to 100 GeV for tanβ ' 6, which is in
conflict with exclusions regions from LEP, TEVATRON, and LHC for new Higgs bosons. Fixing, the lightest Higgs
can change bounds over heaviest neutral Higgs dramatically. This effect can be seen from sum-rules for tree level
unitarity 9. On the other hand, presence of m2

12 can relax the upper bounds for values big enough; for instance
leading over mh0 becomes independent of tanβ and approximate equal to 670 GeV. This bound is compatible with
the identification of this state with the scalar resonance found by CMS and Atlas collaborations [1, 2]. Unitarity

9Couplings from the kinetic sector of 2HDM satisfy some tree level unitarity bounds automatically. Since partial amplitudes cannot grow
with energy, cancellations to avoid violation of perturbative unitarity are necessary. For instance, in the case of VLVL → VLVL scattering,
the cancellation is possible in SM because the vertex is of the form gφ0WW = gmw. When a second or more doublets are added, saturation
can be done by the sum of Higgs consistent with couplings nature and symmetries similar to SM ones:∑

i

g2
h0iV V

= g2
φ0V V

(4.4.19)

where i labels all neutral Higgs bosons of the extended Higgs sector, and φ0 denotes the SM Higgs. On the other hand, ensuring
ff̄ → VLVL unitarity demand for fermion and boson couplings

∑
i

gh0
iV V

gh0
i ff̄

= gφ0V V gφ0ff . (4.4.20)

Sum-rules have been discussed comprehensively in [61,74,155]
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4.5. Fermion mass generation

limits for 2HDMs require dependence on some additional parameters, but at the same time, they can be some
restrictive, even after to run in all parameter space. This fact is due to the conflicts presented with exclusions
regions for phenomenological searches. However, provided limits by perturbative unitarity are the most restrictive
bounds at tree level for gauge models with extended Higgs sectors; by virtue to the closer relation with the internal
consistency of the quantum field theory, which is indeed the fundamental background of a gauge field theory.

• Unitarity restrictions and strong interactions in the Higgs sector: For minimal-SM, the Higgs mass for the Higgs
boson m2

h = 2λv2 meanwhile the decay rate ΓH (mainly by associated channels to the longitudinal parts of the
gauge bosons W± and Z0) grows like Γh ≈ m3

h. Unitarity restrictions for this case are used in the limit when
ΓH ≈ mh, hence the Higgs boson disappears of the scalar spectrum. This fact leads to consider strong interactions
in the Higgs sector realized as non-perturbative relations among WL and ZL at the regime

√
s > v

√
λ & v

√
8π ≈ 1.2

TeV. Therefore, if λ exceeds for unitarity at tree level, the discussion regarding observables could fail, and even it is
necessary to construct a new framework to analyze scattering processes and the physics behind. The conventional
methods of unitarization arise to explain all possible effects inside, as possible dynamical resonances. However,
exploratory behavior and identification of scalar particle found in LHC with SM Higgs evade a strong interacting
gauge sector [156].

Correspondence among theoretical limits, dynamical resonances in the Higgs scattering and strong interactions for
processes involving and WLWL and ZLZL, can generally to be violated in the 2HDM if the values of different
of λi at tree level differ considerably to the perturbative unitarity limits. The number of degrees of freedom for
2HDM yields situations wherein some Higgs bosons interacts perturbatively, meanwhile other scalars and WL and
ZL components interact strongly at energies large enough (see table 4.1). Hence, in this procedure could happen
that only longitudinal parts of gauge bosons hold for scattering processes, in a different way to SM Higgs-like,
which can be decoupled of the spectrum. In such cases, unitarity limits work in a variety of ways for different
physical channels. If 2HDM Higgs spectrum saturates unitarity sum rules (4.4.19) and (4.4.20), this situation can
be avoided indeed. These non-perturbative values also drive out RGEs to possible Landau poles, which are related
to dynamical divergences or strong interacting Higgs sectors. To evade this issue, one can argue that exist a non
interacting Higgs sector, converting 2HDM in a trivial theory [157].

• This procedure introduced to other gauge models and multi-doublets extensions: The scheme here proposed can
be extrapolated in the unitarity limits for scalar and gauge extensions for SM. To illustrate this, in the former
case, a theory with a Higgs sector 2HDM-like plus a singlet (σ = 0) with Y = 0 can be described for the Higgs
potential (1.2.1) plus additional terms10. In the case for scattering matrices SY=2,0, SY=0,σ=1 have the structure
of (4.4.12a)-(4.4.12c), while the associated to SY=0,σ=0 can be obtained from the (4.4.12d) plus the addition of one
column and one row. A new scattering matrix for SY=1,σ=1/2 appears in this case.

4.5. Fermion mass generation

As we have discussed in section 4.3, the upper limit on the scale of EW symmetry breaking could be achieved by describing
the elastic scattering of longitudinal weak vector bosons. In the absence of an explicit scenario of electroweak symmetry
breaking, this contribution increases quadratically with energy and violates unitarity at an energy ΛEWSB =

√
8πv ≈ 1

TeV, where v =
(√

2GF
)−1/2 ≈ 246 GeV [4]. Interpretation of this fact comes from the scale of which the effective field

theory of massive weak vector bosons is embedded by a deeper theory having a mechanism for EW-symmetry breaking
and new physics effects, thereby generating the masses of the weak bosons.

These formulations can be extrapolated to understand the fermion mass generation, as was pointed out in [161, 162].
The amplitude for the scattering of a fermion-anti-fermion pair of the same helicity into a pair of longitudinal weak
vector bosons, in the absence of an explicit model of fermion mass generation, is proportional to mf

√
s/v2

(where mf is the fermion mass and
√
s is the center-of-mass energy). This amplitude violates unitarity at the scale

Λf ≈ v2/mf , which varies with each fermion depending on its mass and is greater than EWSB for all known fermions.
This energy range was interpreted as an upper bound on the scale of fermion mass generation.

It is known from [162] that there is no a model fermion mass generation that saturates the upper bound set by Λf .
Hence this issue must be considered widely to search a valid explanation for fermion mass scale. Besides, Λf role in SM
and 2HDMs should be tackled with the aid of proper foundations and with the help of effective theories interpretation.

10Singlet terms could be associated to SSB of another abelian gauge extended U(1)X , being X a possible conserved quantum number. For
instance, singlet scalar is needed to broke spontaneously the gauge group where X = B − L where B is the baryonic number and L is
the leptonic one. This gauge theory has dark matter candidates and, under an accurate See-Saw mechanism; it could be translated into a
useful scenario to explain smallness of neutrino masses [158–160]
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4. S−matrix unitarity and constraints to 2HDM

From discussion presented in section 4.2.2, we review the well established upper bound on the scale of electroweak
symmetry breaking. Consider a SU (2)L × U (1)Y Yang-Mills gauge theory. Without an SSB, the boson vectors are
massless to respect the gauge symmetry. Now add a bare mass for W and Z bosons,

Lmass=m2
wW

+µW−µ +
1

2

m2
w

cos2 θ
ZµZµ (4.5.1)

where the relation m2
w = m2

z cos2 θ is made explicit: since this relation arise to demand custodial symmetry. These
terms violate the gauge symmetry, so one should question why it is legitimate to add them. The answer is that these
terms correspond to the unitary gauge expression of an effective Lagrangian in which the gauge symmetry is non-linearly
realized,

L =
v2

4
Tr (DµΣ)

†
(DµΣ) (4.5.2)

where

DµΣ = ∂µΣ + i
g

2
σ ·WµΣ− ig

′

2
Σσ3Bµ (4.5.3)

and

Σ = exp

(
iσ · π
v

)
(4.5.4)

contains the Goldstone bosons πi of the spontaneously broken gauge symmetry [152]. This effective field theory is
valid below of EW-symmetry breaking scale, but no above of it. One may the calculate the energy scale at which this
effective field theory breaks down, ΛEWSB

11. The scenario containing this effective field theory and so on the physics
of electroweak symmetry breaking must occur at or below of this scale. Thus ΛEWSB represents an upper limit on the
scale of electroweak symmetry breaking.

The scale which the effective field theory breaks down may be calculated using perturbative unitarity. The zeroth-
partial-wave (J = 0) elastic scattering amplitude for longitudinal weak vector bosons in proportional to s/v2, where s is

the square of the center of mass energy and v =
(√

2GF
)−1/2

is the weak scale. Applying the elastic unitarity condition∣∣Re
(
a0

0

)∣∣ ≤ 1/2 to the J = 0 and I = 0 partial waves amplitude yields the energy at which the effective field theory
breaks down

ΛEWSB ≡
√

8πv ≈ 1 TeV. (4.5.5)

This relation is the upper bound on the of electroweak symmetry breaking. In the SM at energies above the Higgs-
boson mass, the elastic scattering amplitude for longitudinal weak vector bosons receives an additional contribution from
the exchange of the Higgs boson. This contribution cancels the term proportional to s/v2, leading behind factors that
approach a constant at high energy values. Thus the effective field theory of massive weak vector bosons is contained by
a more fundamental theory containing a Higgs boson in the scalar spectrum.

At energies operating above the Higgs mass scale, the Lagrangian for the essential theory has a linearly realized
SU (2)L × U (1)Y gauge invariance, unlike the effective field theory of massive weak vector bosons working below the
Higgs mass. The Lagrangian (4.5.2) is replaced by

L = (DµΦ)DµΦ− λ
(

Φ†Φ− v2

2

)2

. (4.5.6)

where Φ is the Higgs doublet field. One may recover the effective field theory of massive weak vector bosons at energies
less than the Higgs mass, Eq. (4.5.5) , by integrating out the Higgs boson field h, contained in the Higgs doublet field

Φ = Σ

(
0
h+v√

2

)
. (4.5.7)

The above considerations lead to the following definition: The scale of electroweak symmetry breaking is the minimum
energy at which the Lagrangian has a linearly realized SU (2)L ×U (1)Y gauge invariance. Instead in the SM, the Higgs
boson is associated with the scale of electroweak symmetry breaking.

The Higgs boson mass is proportional to
√
λv, where λ is the self-coupling in (4.5.6). Because the coupling is bounded

to be at most of order 4π, the upper limit on the Higgs mass is close to
√

4πv [10]. This number derives by requiring that

11In the context of an effective theory, the breaks down scale means that new degrees of freedom are relevant to take into account in the
physical processes description.
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4.5. Fermion mass generation

the Higgs mass should be less than the ultraviolet cutoff of the theory, avoiding possible Landau poles. The upper bound
on the mh0 is parametrically equal to the higher bound on the scale of electroweak symmetry breaking, ΛEWSB = 8πv,
so the Higgs mass saturates this bound within a factor of order unity. A detailed study shows that the upper limit on
the Higgs mass is close to 600 GeV.

As was pointed out in former sections, if there is no Higgs boson, then the effective field theory of massive weak vector
bosons directly stops to give a valid description of nature above ΛEWSB will not contain longitudinal weak vector bosons
as weakly-coupled degrees of freedom. The SM (and extensions as 2HDM wherein that decouple [163] when the mass
of the new physical scalars is taken to infinity) is the unique theory that contains longitudinal weak vector bosons as
weakly-coupled degrees of freedom above ΛEWSB [164]. Since a theory of Goldstone bosons, but no Higgs boson does
not possess linearly-realized gauge symmetry, the scale of electroweak symmetry breaking typically saturates ΛEWSB in
such models. This an excellent motivation to introduce strongly coupled patterns in an effective way.

4.5.1. Scale of fermion mass generation

The limit on the scale of fermion mass generation, derived originally in [162], is generated on a calculation of f±f̄± → VLVL
(where VL is a longitudinal weak vector boson and the subscripts on the fermion and anti-fermion indicate their helicities).
The fermion mass is introduced via a bare mass term in the Lagrangian,

L = −mf f̄LfR + h.c. (4.5.8)

where the subscripts indicate chirality. This term violates the gauge symmetry since, in the standard model, fL and
fR transform differently under SU (2)L × U (1)Y gauge transformations. Eq. (4.5.8) is the unitary gauge expression of
a Lagrangian in which the gauge symmetry is nonlinearly realized,

L = −mf F̄LΣ

(
0
1

)
fR + h.c. (4.5.9)

where FL is a SU (2)L-doublet fermion field whose lower component is fL. Since the fermion mass employs a Yukawa
coupling to the Higgs field, there is no diagram corresponding to the exchange of a Higgs boson in the s-channel, as there
would be in the standard model. The resulting amplitude is proportional to the fermion mass and grows linearly with
energy. Applying the inelastic unitarity condition |a00| ≤ 1/2 to the J = 0, I = 0, spin-zero, color-singlet amplitude for
f±f̄± → VLVL leads to an upper bound on the scale of fermion mass generation

Λf =
8πv2

√
3Ncmf

. (4.5.10)

where NC = 3 for quarks and unity for leptons. However, Eq. (7) is not the strongest upper bound that one can derive,
given the above framework. By considering f±f̄± → VL1VL2....VLn, with n particles in the final state one obtains an

upper bound on the scale of fermion mass generation proportional to (vn/mf )
1/(n−1)

. For arbitrarily large n, one obtains
an upper bound close to the weak scale v for any value of mf . We first derive this result and then discuss its implications
by proposing some mechanism to describe these effects.

The easiest way to reproduce this effect is to consider the theory in the limit that the weak gauge coupling goes to
zero, with v fixed. In this limit the weak vector bosons become massless, and the longitudinal weak vector bosons are
represented by the Goldstone bosons s±, χ contained in the field

Σ = exp

(
iσ · π
v

)
. (4.5.11)

where

s± = −
(
π1 ∓ π2

)
√

2
and χ = −π3. (4.5.12)

The terms that grow with energy in the amplitudes are independent of the weak gauge coupling, so they survive in
this limit. Thus the high-energy behavior of amplitudes with longitudinal weak vector bosons in the final state may be
obtained from the amplitudes with the vector bosons replaced with the corresponding Goldstone bosons (times a factor
of i (−i) for each outgoing (incoming) longitudinal weak vector boson). This fact is the Goldstone-boson Equivalence
Theorem.

The fermion interacts with the Goldstone bosons via the interaction of Eq. (4.5.9). Expanding the field in powers of
the Goldstone-boson fields, we obtain an interaction such as that shown in Fig. 4.6, with n external Goldstone bosons.
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4. S−matrix unitarity and constraints to 2HDM

The Feynman rule for this interaction is proportional to mf/v
n. The amplitude for f±f̄± → ππ is therefore proportional

to mf
√
s/vn. The relevant unitarity condition on this inelastic amplitude is

σinel (2→ n) ≤ 4π

s
, (4.5.13)

where σinel (2→ n) is the total cross section for f±f̄± → ππ...π. Since the phase space for a n particle final state is
proportional to at high energies, one finds that the unitarity condition, Eq. (4.5.13), is violated at an energy proportional

to (vn/mf )
1/(n−1)

, as stated above.
We see that f±f̄± → VLVL...VL, with n > 2 particles in the final state, leads to a stronger upper bound than Eq.

(4.5.10), which is based on the case n = 2. Thus, the Appelquist-Chanowitz bound is subsumed by this stronger bound,
which is of order the weak scale, v, for n large, independently of mf . Since we already know that there must be
new physics at the weak scale, namely the physics of electroweak symmetry breaking, the consideration of fermion-anti-
fermion scattering into longitudinal weak vector bosons does not reveal a new energy scale for interactions. This claiming
is supported by the fact the upper bound is independent of the fermion mass. Thus, there is no maximum limit on the
range of fermion mass generation. therefore proportional to mf

√
s/vn. The relevant unitarity condition on this inelastic

amplitude is

4.5.2. Standard Model and Scale of Fermion Mass Generation

The derivation in the previous section of f±f̄± → VLVL...VL, with n particles in the final state, tacitly assumes that the
longitudinal weak vector bosons are weakly-coupled degrees of freedom. As discussed before, this is not reliable in general
above ΛEWSB ≈

√
8πv. In order to justify the calculation of f±f̄± → VLVL...VL above ΛEWSB

12, one must specify
the mechanism of electroweak symmetry breaking such that the longitudinal weak vector bosons remain weakly-coupled
degrees of freedom above ΛEWSB . The only theory that contains longitudinal weak vector bosons as a weakly-coupled
scenario to arbitrarily high energies is the standard model with a Higgs boson (or with scalar extensions). Having these
foundations in mind, in this section, we consider the scale of fermion mass generation in SM.

Figure 4.5.: Feynman diagrams contributing to the inelastic amplitude for ff̄ → VLVL in unitary gauge, where off-shell
Goldstone bosons are vanished.

In a first glance, we consider the model treated in Ref. [162], in which the weak-vector-boson masses are generated
through an explicit model of SSB, but fermions described with concerning their bare masses. As an example of this, one
could imagine the standard Higgs model, but with the fermion Yukawa interactions replaced by bare fermion masses, Eq.
(4.5.8). However, even in this scenario, the considerations of the previous section continue to apply. The calculation of
f±f̄± → VL...VL, with n particles in the final state, continues to violate unitarity at the scale of electroweak symmetry
breaking for large n. Thus unitarity of this process does not reveal a new energy scale beyond that of EW-symmetry
breaking.

The theory that is valid above the scale of electroweak symmetry breaking has a linearly-realized gauge invariance.
Thus the fermion mass, Eq. (4.5.9), must be described by a Yukawa interaction written in the form

L = −yf F̄LφfR + h.c. (4.5.14)

This Lagrangian contains a Yukawa interaction of the fermion with the Higgs boson and yields the diagram in Fig.
4.7. This diagram, when added to the diagrams in Fig. 4.5, cancels the term that grows linearly with energy, leaving
behind terms that fall like an inverse power of energy at high energy. A similar cancellation occurs for all processes of
the type f±f̄± → VLVL...VL.

12In [165], we have presented the first nontrivial calculation at one loop level of the inverse process, i.e., a realistic computation of tt̄ production
amplitudes from longitudinal WW , ZZ within the HEFT framework. Besides we have extended it to the resonance region by using new
unitarization methods.
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4.5. Fermion mass generation

Figure 4.6.: Feynman diagram for the interaction of a fermion with n Goldstone bosons.

Figure 4.7.: New diagram involving the exchange of a Higgs boson that contributes to the amplitude for ff̄ → VLVL. This
contribution cancels the terms that grow with an energy resulting from the diagrams in Fig. 4.6.

It is tempting to quantify the scale of fermion mass generation with the energy at which the amplitude for f±f̄± → VLVL
ceases to increase with energy, specifically the Higgs mass. However, the Higgs mass corresponds to the scale of EW-
symmetry breaking, it is not the value of fermion mass generation. The reason for the amplitude for f±f̄± → VLVL
increases with energy below the Higgs mass is because the fermion mass is described in one theory with a non-linearly
realized gauge invariance, Eq. (4.5.9). Above the Higgs mass, the amplitude for f±f̄± → VLVL falls off with energy
and unitarity rules at all energies. Thus, in the SM there is no scale treating with fermion mass generation. We will
support this claiming by considering extensions of the SM in which there is a well-defined energy scale of fermion mass
generation.

A possible way to circumvent the above arguments is to introduce a new Higgs doublet field of some scenario for
2HDM, such that longitudinal weak vector bosons are weakly coupled above the EW-scale, but to forbid the Higgs field
from coupling to fermions. This fact can be tackled, for instance, by imposing the discrete symmetry Z2 Φi → −Φi.
However, this also has the consequence of forbidding a gauge-invariant mass for the fermion, so the scale of fermion mass
generation is questionable. One might also take into account a model with two Higgs doublets where only one doublet
couples to fermions, as we will see it in the next section.

In this part of the dissertation, we have argued that there is no scale of fermion mass generation in the standard
model. However, Yukawa couplings are not asymptotically free in general, so the energy at which a Yukawa coupling
becomes strong also indicates an upper bound on the scale of fermion mass generation. In SM and 2HDM (using the
minimality principle), only the top quark Yukawa coupling is not asymptotically free. All other Yukawa couplings are
asymptotically free under the fermion’s gauge interactions. The top quark’s Yukawa coupling is sufficiently large that
it eventually overwhelms the gauge interactions, causing it to become strong at high energies. However, for mt = 173.2
GeV, the energy at which the top quark’s Yukawa coupling becomes strong is many orders of magnitude above the Planck
scale and is, therefore, irrelevant to a real discussion. If a quark of mass over 225 GeV existed, its Yukawa coupling
would become strong below the grand unification scale [161,162].

The upper limit describing the scale of fermion mass generation derives from the dimensionality of the interaction
yielding the fermion mass. The upper bound is correspondingly proportional to

Λf ∝
(
v3

mf

) 1
d−4

(4.5.15)

4.5.3. 2HDM and Fermion Mass Scale Generation

To study more fact about a fermion scale mass generation, we consider a particular case of 2HDM in a decoupling regime.
We impose a Z2−like symmetry, where for instance Φ1 → −Φ1, such that only Φ2 couples to a given fermion (2HDM
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Type I). The Higgs potential invariant under this symmetry plus a violation soft term

V (Φ1,Φ2) = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12

(
Φ†1Φ2 + Φ†2Φ1

)
+

1

2
λ1

(
Φ†1Φ1

)2

+
1

2
λ2

(
Φ†2Φ2

)2

+λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

1

2
λ5

[(
Φ†1Φ2

)2

+
(

Φ†2Φ1

)2
]
. (4.5.16)

Where the λi are real, and where the discrete symmetry is softly broken by the term proportional to m2
12. The coupling

of a fermion f to the Higgs field Φ2 is given by a dimension four Yukawa interaction

L = −yf F̄LΦ2fR + h.c., (4.5.17)

where FL is a SU (2)L− doublet fermion field whose lower component is fL. We study the decoupling limit in a simple
way, by integrating out one of the Higgs-doublet fields. A convenient way to accomplish this is to make a rotation in
Higgs-doublet-field space such that the mass matrix is diagonal. Thus we define fields, Ψ,Ξ given by(

Ψ
Ξ

)
=

(
cosα sinα
− sinα cosα

)(
Φ1

Φ2

)
. (4.5.18)

which is a basis transformation as presented in Eq. (1.2.7). The angle α, defined in the rotations of scalar neutral
eigenstates, is chosen to eliminate the off-diagonal term in the mass matrix (which are proportional to m2

12). The resulting
scalar potential has the following structure

V (Ψ,Ξ) = −µ2Ψ†Ψ +M2Ξ†Ξ + ...+ λ̃6

[(
Ψ†Ψ

) (
Ψ†Ξ

)
+ h.c.

]
(4.5.19)

with

λ̃6 =
1

2
sin 2α

[
λ3 + λ4 + λ5 + cos2 α (λ2 − 2 (λ3 + λ4 + λ5))− λ1 sin2 α

]
. (4.5.20)

We have suppressed all quartic interactions except a term linear in Ψ, which is induced by the rotation in Higgs-field
space. This is the unique term linear in Ψ; its coefficient λ̃6 is a linear combination of the λ

′

i see Eq. (4.5.20).
Considering the decoupling limit in µ2 << M2, and integrating out Ξ field, the Lagrangian (4.5.17) becomes:

L = −yf cosαF̄LΨfR − yf sinαF̄LΞfR + h.c.

= −y′f F̄LΨfR −
c

M2
F̄LΨfRΨ†Ψ + h.c. (4.5.21)

where y′f = yf sinα cosα and c = −yf λ̃6 sinα. This interaction is exactly of the form of the standard model plus the

dimension-six term13, where M is identified with the mass of the heavy Higgs field.
The decoupling limit of a two-Higgs-doublet model was studied in an attempt to find a model in which the scale of

fermion mass generation saturates the Appelquist-Chanowitz bound, Λf ' v2/mf . The mass value of the heavy neutral
Higgs scalar could be identified as the energy scale of fermion mass generation. Nevertheless, it must be considered the
scale of new physics; and hence there is no scale of fermion mass generation since the fermion mass arises in part from
a renormalizable interaction [161,167]. This dimension six operator affects the fermion mass definition when the second
double decouples of field spectrum.

These statements lead to define the fermion mass scale as: The energy value of fermion mass generation is the minimum
energy at which the fermion mass arises from a renormalizable interaction. In SM and 2HDMs, the fermion mass is caused
by a renormalizable interaction at all energies (above the Higgs mass), so there is no scale of fermion mass generation.
Based on this definition, one could argue that the Higgs mass is the energy magnitude of fermion mass generation in
the SM or 2HDMs. However, as was pointed out above, the Higgs mass must be regarded as the scale of EW-symmetry
breaking, but not the energy magnitude of fermion mass generation.

13There are a large number of interactions of dimension six available with the field content of the standard model, nonetheless there is only
one that contributes to fermion masses, given by [166]

L6 = −
c

M2
F̄LΨfRΨ†Ψ + h.c. (4.5.22)
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4.6. Fermion-anti-fermion scattering

One important benchmark what we have learned is that in perturbative unitarity analysis, the optical theorem discrim-
inates as boson scattering or annihilation at one specific order in perturbation theory is connected with the processes
at a lower level; such that allowed channels are those where cuadri-momentum conservation is always ensured. Having
analyzed unitarity constraints interpretation for tree level matrix elements and clarified facts over fermion mass genera-
tion in SM and 2HDMs, we proceed to study other processes that can be treated from S-matrix unitarity formalism. It
is clear that in 2HDMs do not exist a scale of fermion mass generation since that mass terms come from renormalizable
interactions. Nevertheless, 2HDM scenarios give us more information about non-mass-like couplings which are associated
with phenomena involving FCNCs. To describe unitarity behavior over these particular Yukawa couplings, we compute
fermion-antifermion scattering processes at tree level, taking into account models without natural flavor conservation,
in such a way that FCNC couplings are present in the matrix elements (in a controlled way using Sher and Cheng
anzats). Finally, we put those matrix elements in the unitarity constraints from Argand diagram; also interpreting them
as perturbative limits over respective Yukawa couplings.

4.6.1. Neutral channels

In the following, we consider the tree level matrix elements for the process ff̄ → ff̄ at the high energy limit under the
helicity spinors formalism. The neutral Higgs (η0) contributions are shown in Fig. 4.8.

Figure 4.8.: Diagrams at the tree-level with scalar contribution (neutral Higgs bosons) for ff̄ → ff̄ processes.

First, we write the invariant amplitude in the CP-conserving frame:

M(ff̄ → ff̄) =
∑

η0CP−even

(
v̄2iχ

η0

ffu1
1

s−m2
η0
ū3iχ

η0

ffv4 + v̄2iχ
η0

ffv4
1

t−m2
η0
ū3iχ

η0

ffu1

)

+
∑

φ0
CP−odd

(
v̄2iχ

φ0

ffγ5u1
1

s−m2
φ0

ū3iχ
φ0

ffγ5v4 + v̄2iχ
φ0

ffγ5v4
1

t−m2
φ0

ū3iχ
φ0

ffγ5u1

)
, (4.6.1)

here χη
0

ff (χφ
0

ff ) are the couplings between fermions and CP-even (CP-odd) neutral Higgs bosons. For different helicity
combinations that satisfy the relations λa = λb and λc = λd, we get the following non-zero coupled channels (see appendix
in [168])

M(f↑f̄↑ → f↑f̄↑) = −
√

2Gfm
2
f

∑
η0all

(
Ξη

0

ff

)2
(

s

s−m2
η0

)
(4.6.2)

M(f↓f̄↓ → f↑f̄↑) = −
√

2Gfm
2
f

∑
η0all

(
Ξη

0

ff

)2
(

s

s−m2
η0
− t

t−m2
η0

)
, (4.6.3)

where s and t are Mandelstam variables and Ξs are relative Yukawa couplings of neutral Higgs bosons concerning SM.
The input associated with the pseudoscalar sector is the same as to the scalar sector, because in the high energy limit
the eigenspinors are also chiral eigenstates (see appendix in [168]).
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4. S−matrix unitarity and constraints to 2HDM

There are other channels, e.g. M(f↓f̄↓ → f↓f̄↓) andM(f↑f̄↑ → f↓f̄↓), which just differ by a minus sign from amplitudes
(4.6.2) and (4.6.3) respectively. Therefore, they would not provide new information about unitarity bounds.

The J = 0 partial wave coefficient is given by (4.2.36). From the definition of the Mandelstam variables, we have in
the high energy limit

a0 ≡MJ=0(s) =
1

16πs

∫ 0

−s
M(s, t)dt. (4.6.4)

Therefore, in the regime of s >> m2
η0 and for elastic scattering channels (e.g. fif̄i → fif̄i), the non-zero matrix elements

lead us to the following coefficients

a0(f↑f̄↑ → f↑f̄↑) = −
√

2Gfm
2
f

16π

∑
η0all

(
Ξη

0

ff

)2

(4.6.5)

a0(f↓f̄↓ → f↑f̄↑) = 0. (4.6.6)

For the 2HDM type III (in the fundamental parametrization i.e. tanβ = 0) the Yukawa couplings for neutral interac-
tions are displayed in table 4.2.

Coupling/Model 2HDM III (up-sector) 2HDM III (down-sector)

ΞH
0

qiq̄j

(
δij cosα+

ξUij sinα√
2muimuj

v

) (
δij cosα+

ξDij sinα√
2mdimdj

v

)
Ξh

0

qiq̄j

(
−δij sinα+

ξUij cosα√
2muimuj

v

) (
−δij sinα+

ξDij cosα√
2mdimdj

v

)
ΞA

0

qiq̄j −i ξUij√
2muimuj

vγ5 i
ξDij√

2mdimdj
vγ5

Table 4.2.: Yukawa couplings structure for 2HDM III (neutral Higgs with quarks and charged leptons) in the fundamental
parametrization. α is the mixing angle between neutral gauge eigenstates and mass eigenstates (CP-even) [61].

By using the Cheng-Sher parametrization Eq. (1.5.4) for diagonal couplings, we obtain the unitarity constraints by
combining Eqs. (4.2.1), (4.6.4) and (4.6.5). They are given by

|λU,Dii | ≤

(
2
√

2π

Gfm2
f

− 1

2

)1/2

. (4.6.7)

These relations lead to upper bounds for the fermion generations. We obtain them by taking the input parameters
in [4], and they are specified in the caption of Table 4.3.

λU,Dii |λii|unit |λii|unit (a ≤ 41%) |λii|unit (a ≤ 20%) ∼ O
λtt 5 3.5 2.4 O(1)
λbb 208 147 104 O(102)
λcc 687 486 343 O(102)
λss 8.6 ×103 6.1×103 4.3×103 O(103)
λuu (2.6-5.1) ×105 (1.87− 3.6)× 105 (1.3− 2.5)× 105 O(105)
λdd (1.5-2.1) ×105 (1.0-1.5)×105 (0.75− 1.0)× 105 O(105)
λττ 491 347 245 O(102)
λµµ 8.3 ×103 5.8×103 4.1×103 O(103)
λee 1.7 ×106 1.2×106 0.8×106 O(106)

Table 4.3.: Bounds on Yukawa couplings from relation (4.6.7) for elastic processes fif̄i → fif̄i in the 2HDM type III.
Here, perturbativity parameter a is considered in the way to obtain unitarity bounds. The parameters were
taken from [4] (central values): mt = 172 GeV, mb = 4.19 GeV, mc = 1.27 GeV, ms = 0.101 GeV,
md = (0.0041 − 0.0058) GeV, mu = (0.0017 − 0.0033) GeV, mτ = 1.776 GeV, mµ = 0.106 GeV and
me = 0.00051 GeV.
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4.6. Fermion-anti-fermion scattering

In the same way, for non-diagonal couplings, the upper bounds become

|λU,Dij | ≤

(
2
√

2π

Gfmimj

)1/2

, (4.6.8)

and they are evaluated numerically in table 4.4.

λU,Dij |λij |unit ∼ O
λtc 59 O(10)
λtu 1.2− 1.6× 103 O(103)
λbs 1.3× 103 O(103)
λbd 5.6− 6.6× 103 O(103)
λτµ 2.0× 103 O(103)
λτe 2.9× 104 O(104)
λµe 1.2× 105 O(105)

Table 4.4.: Bounds on Yukawa couplings from (4.6.8) for mixed channels fif̄j → fif̄j in the 2HDM type III. The param-
eters were taken from [4], and they are specified in the caption of table 4.3.

All unitarity constraints compete with those coming from perturbativity, in which we require that the running coupling
constants of the Higgs self-couplings and the Yukawa couplings do not blow up below a certain energy scale Λ : λi(µ) < 8π
and (gηf (µ))2 < 4π, for a renormalization scale µ less than Λ [169]14. If these couplings were higher of this value,
the respective β-functions would be positive, and their renormalization scale evolution will drive them to even higher
values [20,114] .

With mixed channels (e.g. fif̄i → fj f̄j ), the partial wave coefficients (4.6.4) are transformed into

a0(f↑f̄↑ → f↑f̄↑) = −
√

2Gfmimj

16π

∑
η0all

(
Ξη

0

fifi
Ξη

0

fjfj

)
, (4.6.9)

a0(f↓f̄↓ → f↑f̄↑) = −
√

2Gfmimj

16π

∑
η0all

[
Ξη

0

fifi
Ξη

0

fjfj
−
(

Ξη
0

fifj

)2
]
. (4.6.10)

From which the unitarity limits become

∑
η0

Ξη
0

fifi
Ξη

0

fjfj
≤ 8

√
2π

Gfmimj
, (4.6.11)

∑
η0

[
Ξη

0

fifi
Ξη

0

fjfj
−
(

Ξη
0

fifj

)2
]
≤ 8

√
2π

Gfmimj
. (4.6.12)

The sum runs over all neutral Higgs states (CP-even and CP-odd). In the particular case of the 2HDM type III (from
couplings in table 4.2), these relations regarding Sher-Cheng couplings satisfy

λU,Dii λU,Djj ≤ 4
√

2π

Gfmimj
− 1

2
, (4.6.13)

λU,Dii λU,Djj −
(
λU,Dij

)2

≤ 4
√

2π

Gfmimj
− 1

2
. (4.6.14)

Where the products are only by pairs either λUiiλ
U
jj or λDiiλ

D
jj . The numerical evaluations of these crossed products

for FCNC couplings are displayed in Table 4.2. It worths saying that if some of these couplings were determined, these
limits could help in restricting the remaining ones.

14In particular, from pseudoscalar-fermion couplings perturbativity requires that: ξ2
ij < 4π. It is is translated into λij <

( √
2π

Gfmimj

)1/2
.

Since the scalar couplings depend on the mixing angle α as well as on the elements λij , the perturbative constraints depend on more
degrees of freedom.
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4. S−matrix unitarity and constraints to 2HDM

λU,Dii λU,Djj λU,Dii λU,Djj −
(
λU,Dij

)2

Bound ∼ O

λttλcc λttλcc − λ2
tc 7.0×103 O(103)

λttλuu λttλuu − λ2
tu (2.7-5.2)×106 O(106)

λbbλss λbbλss − λ2
bs 3.6×106 O(106)

λbbλdd λbbλdd − λ2
bd (6.3-8.8)×107 O(107)

λττλµµ λττλµµ − λ2
τµ 8.2×106 O(106)

λττλee λττλee − λ2
τe 1.7×109 O(109)

λττλee λττλee − λ2
τe 2.8×1010 O(1010)

Table 4.5.: Bounds on Yukawa couplings from (4.6.13) and (4.6.14) for mixed channels fif̄i → fj f̄j in the 2HDM type
III. The parameters was taken from [4], and they are specified in table 4.3.

In the same way, in which the unitarity constraints are interpreted for self-couplings of the Higgs potential, these
Yukawa couplings constraints can be treated (without the inclusion of new physics) as the upper values for which the
perturbation theory will become reliable at all energy scales.

4.6.2. Charged channels

It is also possible to evaluate the contribution from charged channels (final and initial charged states) to the unitary
amplitude. It is worthwhile to observe that the matrix elements ξij modify the charged Higgs couplings:

χH
±

fifj = (Kikξ
D
kjPR − ξUikKkjPL),

for the fundamental parametrization [19,61], where K is the Kobayashi Maskawa matrix and PL(R) are the Left (Right)
projection operators. Hence, there are two facts to point out i) the flavor changing charged currents (FCCC) in the quark
sector are modified by the same matrix that produces FCNC, ii) in the lepton sector FCCC are generated by the matrix
that makes FCNCs multiplied by Pontecorvo-Maki-Nakawaga-Sakata matrix. A typical charged scattering process at
the tree level for the scalar sector has two contributions: the first one associated with H± states in the propagator for
the s-channel and the second one with neutral scalar states in the propagator for the t-channel:

M(fif̄j → fif̄j) =
∑
ηH±

(
v̄2χ

H±

fifju1
1

s−m2
ηH±

ū3χ
H±

fifjv4

)
+
∑
η0

(
v̄2iχ

η0

fjfj
v4

1

t−m2
η0
ū3iχ

η0

fifi
u1

)
.

Assuming diagonal textures for both flavor matrices in 2HDM type III (quark sector) and using the systematic got in
the last section, the amplitudes for the polarized process fi↑f̄j↑ → fi↑f̄j↑ becomes

M(fi↑f̄j↑ → fi↑f̄j↑) = v̄2↑χ
H±

fifju1↑

1

s−m2
H±

ū3↑χ
H±

fifjv4↑ = ξUii ξ
D
jjK

2
ij

s

s−m2
H±

. (4.6.15)

where i = u, c, t and j = d, s, b. We have used the CKM hierarchy and the assumption of universality deviation in
the same generation. Here u1↑, v̄2↑, ū3↑ and v4↑ are the eigenspinors as (right-handed) helicity states. Since ū3↑u1↑ = 0
at the high energy limit (appendices in [168]), the neutral channel does not have a contribution for this helicity choice.
From Cheng-Sher anzats for diagonal couplings, the partial wave coefficient has the unitarity bound

λUiiλ
D
jj ≤

2
√

2π

GfmimjK2
ij

. (4.6.16)

We have summarized these bounds in the table 4.6. If some of these couplings were determined (say couplings from
the up sector), these limits could help in restricting the remaining ones (say couplings from the down sector)15.

15For instance, the process b → sγ could determine the value of λtt, from which our present bounds would help in obtaining the associated
λbb.
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4.7. Remarks on S-matrix and perturbative unitarity

λUijλ
D
jj Bound ∼ O

λttλbb 1055 O(103)
λccλss 5.9× 106 O(106)
λuuλdd (0.4-1.1) ×1011 O(103)

Table 4.6.: Bounds on Yukawa couplings from (4.6.16) for mixed channels fif̄j → fif̄j in the 2HDM type III. The
parameters was taken from [4].

4.7. Remarks on S-matrix and perturbative unitarity

S-matrix connects asymptotic multiparticle states incoming and emerging of a scattering process through a transfor-
mation presented by a sequence of unitary operators. Unitarity and Poincaré’s invariance are two relevant properties
accomplished by the S matrix. The first feature ensures the fundamental principle of probability conservation and reflects
significant consequences for dispersion theory. One of them is the saturating behavior for the cross section in the two
particles states scattering. Another feature is associated with the optical theorem, which relates processes occurring in
a given perturbative order with the scattering annihilation o decays in a lower level.

Unitarity constraints at tree level arise using the optical theorem in the S-matrix description using partial waves. The
traditional way to implement it in gauge theories is demanding that the model has only weakly interacting degrees of
freedom at high energy limit. In these weakly coupled theories, higher order contributions to S-matrix become smaller
compared to the leading order. It is then possible to require for S-matrix to be unitary from the tree level of the theory.
To circumvent strong assumption to apply optical theorem at tree level, we also considered a complementary prescription
where is defined a parameter measuring the ratio between the partial wave of full amplitude and the partial wave of
the tree-level element. This setting ends up to measure the inherent difference that drives out the latter (i.e., tree-level
contribution) to enter in the Argand’s diagram, satisfying the optical theorem. This convert to unitarity constraint to
be stronger than the traditional conservative systematics.

Constraints based on unitarity to 2HDM are obtained using the Ivanov’s formalism, within scattering amplitudes, and
partial waves are computed on a non-physical basis. There, interactions are simplest than a physical basis. This procedure
leads to imposing different bounds for quartic couplings in various channels of scattering processes for Z2 − symmetry
behavior, based on high energy quantum conserved numbers of hypercharge and isospin.

Perturbative unitarity allows study the fermion mass scale generation defined as The minimum energy at which a
renormalizable interaction generates the fermion mass. Under this definition, in SM and 2HDMs there is no such scale
since fermion masses are caused by a renormalizable interaction at all energies above the Higgs mass (considered as the
scale of EW-SSB).

Under the use of a general expansion of partial waves, we obtain unitarity constraints over fermionic scattering processes
in 2HDM type III. The method relies on a diagonalization (at least partial) in the angular momentum basis of the Ŝ
matrix for the scattering of two particles in the center of mass frame and the appropriate choice of helicity states. In
the helicity formalism, the spin degrees of freedom of the particle involved do not introduce any significant complication
concerning spinless particles, at least when λa = λb (initial helicities) and λc = λd (final helicities). In fact, this particular
case recovers the traditional partial wave expansion as well as its unitary conditions over the coefficients expansion. This
scenario leads to build up a well-grounded formalism to impose the unitary constraints over spin 1/2 states or in general
states of any spin. The primary assumption for unitarity bound is that the 2HDM is a valid description of physics up to
very high energy scales where new or non-perturbative physics of some kind must be taken into account.

Due to the universality deviation by the presence of FCNC vertices for fermionic interactions with scalars in the type
III 2HDM, this formalism is applied in all its generality to get unitary constraints over Yukawa couplings values under
Cheng and Sher parametrization. The constraints obtained are indeed independent of other parameters of the Higgs
sector, i.e. the scalar masses and mixing angles.

In the case of elastic scattering processes, diagonal Yukawa couplings constraints (coming from fif̄i → fif̄i) are more
stringent that non-diagonal couplings (coming from fif̄k → fif̄k). Besides, these unitarity limits compete with those
imposed from perturbative interactions, which could introduce more parameters. Moreover, our limitations compete with
current phenomenological constraints (B̄0 − B0 mixing, (g − 2)µ factor) for heavy fermionic masses, e.g. the top mass.
It is worthwhile emphasizing that the phenomenological constraints demand the use of several parameters like scalar
masses or mixing angles. Further, those computations lie on two-loop radiative corrections to the physical processes
unlike the unitary constraints, which unfold naturally at the tree level. Finally, this systematic might be extrapolated to
other fermionic sectors such as the minimal supersymmetric standard model, minimal B − L extension of the SM, the
SM with fourth generations, etc.
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5. The prototypical model: The Inert-2HDM

From all fundamentals and developments previously introduced, we study the vacuum behavior at one loop level in
extended Higgs sectors with two doublets (2HDM), where U(1) and Z2 symmetries are considered to protect the CP
symmetry in the Higgs potential and to avoid Flavor Changing Neutral Currents at tree level in the Yukawa sector. In the
Inert Higgs Model case, a detailed comparison is made between both models by using the energy evolution of couplings,
which should satisfy energy scale dependent relations deduced for minima and stationary points of the Higgs potential at
tree level. Besides, perturbative unitarity constraints at tree level are considered to generate the allowed parameter space
compatible with perturbativity (absence of Landau poles). Our studies illustrate exclusion regions for Higgs masses and
other combinations of couplings in the scalar sector, in particular for splittings of mass square for neutral scalars A0 and
H0, as well as the difference between the sum of these and the charged Higgs mass square. From the vacuum stability
for inert-2HDM at the tree and one loop levels, analyses lead us to find out new hierarchical structures for scalar masses.
To complete vacuum studies on the Inert model, and based on reparameterization invariance of the Higgs potential, we
compute original discriminants that allow ensuring the presence of a global electroweak minimum at tree level. Moreover,
the behavior in high energy scales drives out analyzing criticality phenomena for the additional parameters of extended
Higgs sectors. Finally, and using the consistency with the electroweak precision analyses of oblique parameters, we
describe several implications from different regimes of the inert model on charged and pseudoscalar Higgs searches1.

To incorporate all these concepts, we organize this chapter as follows: In section 5.1, we discuss particular cases
of Z2 and U (1) global symmetries of the Inert Two Higgs Doublet Model. Additionally, we after discussing positivity
constraints as well as conditions for the presence of a global minimum in the Higgs potential at tree level. Mass eigenstates
and splittings among scalars in the inert 2HDM will be given in the same section. In section 5.2, we describe perturbative
unitarity constraints to the scalar sector for both models. In section 5.3, contours and the corresponding analyses of
couplings are considered in several energy-scales from Electroweak up to GUT and Planck scales- for type I Yukawa
Lagrangian. At the same time in those studies, we find compatibility with perturbative unitarity behavior for scalar
couplings. Tree level regions compatible to get one global electroweak minimum are described in section 5.4. According
to the restrictions obtained, in section 5.5, EW-oblique parameters are computed regarding S−T values to establish the
compatibility between vacuum behavior predictions and phenomenological observables.

5.1. Inert Two Higgs Doublet Model (IHDM)

Preserving the SM content of fermionic and bosons fields, the Inert Two Higgs Doublet Model contains additionally a
doublet Φ2 with a VEV equal to zero. The model has a general Z2-invariance, under which Φ2 transforms odd, and the
remaining fields change even. At tree level, Φ2 is not coupled with fermions. The physical parametrization of the Higgs
doublets is

Φ1 =

(
G+

1√
2

(
v + h0 + iG0

)) and Φ2 =

(
H+

1√
2

(
H0 + iA0

)
,

)
(5.1.1)

featuring five Higgs bosons (h0, H0, A0, H±) and three Goldstone bosons (G0, G±). The vacuum expectation value
for the first doublet is located in 〈Φ1〉0 = v = 246 GeV. Fields h0 and H0 are defined as scalars transforming to CP
symmetry in a even way, meanwhile A0 is a pseudoscalar field changing odd under CP symmetry. Finally, fields H± are
the charged Higgs bosons.

The scalar field h0 emulates SM Higgs boson in mass and couplings with fermionic and gauge bosonic fields, trivially
satisfying an alignment regime in the scalar sector2. The Higgs potential in this context takes the following form:

1This chapter is mainly based on developments presented systematically in [170]
2In the general alignment regimen, the remaining scalars can be located in any energy scale fulfilling the electroweak oblique parameters [171]
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5.1. Inert Two Higgs Doublet Model (IHDM)

VH = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 +
1

2
λ1

(
Φ†1Φ1

)2

+
1

2
λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

1

2
λ5

[(
Φ†1Φ2

)2

+
(

Φ†2Φ1

)2
]
. (5.1.2)

We have considered a CP conserving Higgs potential by taking all couplings in (2.3.1) as real quantities. Under an
Abelian theory, a global U(1)-symmetry excludes λ5 coupling in VH . If we choose an inert second doublet, i.e. 〈Φ2〉0 = 0,
Higgs masses acquire the following structure:

m2
h0 = λ1v

2, (5.1.3)

m2
H0 = m2

22 +
1

2
λ3v

2 +
1

2
(λ4 − λ5) v2 + λ5v

2 = m2
A0 + λ5v

2, (5.1.4)

m2
A0 = m2

22 +
1

2
λ3v

2 +
1

2
(λ4 − λ5) v2 = m2

H± +
1

2
(λ4 − λ5) v2, (5.1.5)

m2
H± = m2

22 +
1

2
λ3v

2. (5.1.6)

From this settlement of equations, we realize that the mass eigenstates are independent of λ2. This fact prevents to
constraint λ2 with phenomenology for scalar boson h0 directly because production or decay rates with λ2 depend on
new physics Higgs bosons H0, A0 and H±. This fact motivates to vacuum stability and perturbativity analyses since
these approaches are meaningful ways to give feasible values for this particular coupling. Besides, λ5 coupling prevents
mass degeneracy between H0 and A0 scalars. This regime of degeneracy will be present in a Higgs potential with U (1)
symmetry 3. In the last scenario, a remarkable fact observed is the non-appearance of an axion with mA0 = 0 (emerging
when a continuous global symmetry becomes spontaneously broken), which is due to the choice of an inert doublet makes
that the U(1)-global symmetry remains unbroken. Because of the relation of λ5 with the scalar masses, it is possible to
define the splitting among masses of pseudoscalar and the heaviest neutral Higgs by:

λ5 =
m2
H0 −m2

A0

v2
≡ ∆S2

0 . (5.1.7)

For λ4, relation with the scalar masses induces a splitting between neutral and charged scalars:

λ4 =
m2
H0 +m2

A0 − 2m2
H±

v2
≡ ∆S2

1 . (5.1.8)

It is also convenient to define the difference between charged Higgs mass and m2
22 parameter

λ3 =
2
(
m2
H± −m

2
22

)
v2

≡ ∆S2
2 . (5.1.9)

5.1.1. Vacuum Stability Behavior

To ensure a bounded from below Higgs potential, it is necessary the exigence that VH in Eq. (2.3.1) must always be
positive for large field values along all possible directions of the (Φ1,Φ2) space. At tree level and from studies presented
in section 2.3.2, this is translated into the following inequalities

λ1 + λ2 > |λ1 − λ2|, (5.1.10)

which is equivalent to λ1 > 0 and λ2 > 0 in the individual directions of Φ1 and Φ2 directions. In the plane Φ1 − Φ2,
the positivity conditions are

3Moreover, extending the Higgs potential to be invariant under a global SU(2) acting on Φ2 makes both λ4 = λ5 = 0 and forces all three
inert scalars degenerate. This fact motivates a compressed-IHDM where all inert scalars have almost degenerated masses and where SU(2)
global symmetry is an approximated symmetry of the Higgs potential [172].
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5. The prototypical model: The Inert-2HDM

λ3 > −
√
λ1λ2, (5.1.11)

λ4 + λ3 + λ5 > −
√
λ1λ2, (5.1.12)

λ4 + λ3 − λ5 > −
√
λ1λ2. (5.1.13)

These inequalities (5.1.10)-(5.1.13) ensure absolute stability for the electroweak vacuum by defining a bounded from
below Higgs potential. However, possible metastable scenarios arise when a second inert-like extremum is specified by
a VEV v2 non-zero and v1 = 0. In this stationary point, the Z2 symmetry of the Higgs potential is conserved by this
state; however, the Z2 symmetry of the Lagrangian become spontaneously violated. In this framework, fermions are
massless since they uniquely couple to Φ1. Therefore, this non-physical behavior must be excluded from a plausible
parameter space when this extremum point become one global minimum of the theory. Two necessary conditions for the
simultaneous existence of both minima is that i) m2

11 < 0 and m2
22 < 0 or ii) λ3 + λ4 + λ5 > 0 [34].

One condition to ensure that the inert vacuum would be the global minimum of the Higgs potential is [26, 118]

m2
11√
λ1

<
m2

22√
λ2

. (5.1.14)

To determine if the EW-minimum (inert) is a global one, we calculate a new set of inequalities relating to quartic
and bilinear couplings with critical points in the Higgs potential. The new discriminants, encouraging a global minimum
in the Higgs potential, are computed for IHDM from the respective Hessian in the gauge orbit field using the general
reparameterization group SO(1, 3)+ evaluated in the inert-stationary point4:

−
√
λ1λ2 <

2m2
22

v2
<
√
λ1λ2, (5.1.15)

−(λ3 + λ4 + λ5) <
2m2

22

v2
<
√
λ1λ2, (5.1.16)

−(λ3 + λ4 − λ5) <
2m2

22

v2
<
√
λ1λ2. (5.1.17)

Computation has been described in appendix L. We focus only on the implications that new discriminants have over
parameters at tree level. Possible studies might be done in the future by exploring the consequences at one loop level
since many phenomena over nature of minima seem to show intriguing effects of the effective Higgs potential at NLO [34].

Despite in 2HDMs at tree level two minima that break different symmetries cannot coexist, a global minimum with
charge violation can appear if quartic couplings satisfy [118]- [173]

λ4 − λ5 > 0 and λ5 + λ4 > 0 and λ3 −
√
λ1λ2 > 0. (5.1.18)

Mass eigenstates and conditions to avoid charge violation vacua lead to study possible sequences for scalar masses.
For instance, from λ4 + λ5 < 0, we can infer the hierarchy mH± > mH0 for scalar masses, which is also inherited by
a U (1) Higgs potential with the additional consequence of degeneracy between H0 and A0. By contrast, λ4 − λ5 > 0
implies mA0 > mH± for the Z2 invariant model. With these constraints in mind, we shall study their compatibility level
with stability and unitarity bounds.

5.2. Unitarity constraints

Unitarity constraints at tree level arise using the optical theorem in the S-matrix description with generalized partial
waves for scalar scattering processes. The traditional way to implement it in gauge theories is demanding that the model
has only weakly interacting degrees of freedom at high energy limit. In these weakly coupled theories, higher order
contributions to S-matrix become smaller compared to the leading order. It is then possible to require for S-matrix to
be unitary from the tree level of the theory.

4Our computations are based on new methods for searching stationary points in 2HDMs, which are defined systematically in [29]
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5.3. One loop level analysis

We concentrate on scalar processes coming from Higgs potentials with U(1) and Z2 symmetries. In a generic basis
of the Higgs potential Eq. (2.3.1), processes labeling total isospin σ and hypercharge Y lead to construct the following
transition matrices for the particular case of a Z2 invariant Higgs potential (see section 4.4):

8πS̃Y=2,σ=1 =

λ1 λ5 0
λ5 λ2 0
0 0 λ3 + λ4

 , (5.2.1a)

8πS̃Y=2,σ=0 = λ3 − λ4, (5.2.1b)

8πS̃Y=0,σ=1 =


λ1 λ4 0 0
λ4 λ2 0 0
0 0 λ3 0
0 0 0 λ3

 , (5.2.1c)

8πS̃Y=0,σ=0 =


3λ1 2λ3 + λ4 0 0

2λ3 + λ4 3λ2 0 0
0 0 λ3 + 2λ4 3λ5

0 0 3λ5 λ3 + 2λ4

 . (5.2.1d)

In each matrix, left sides contain matrix elements for Z2 − even states, meanwhile in the lower right part they belong
to Z2 − odd states. Unitarity bounds over partial waves |M| < 1 are translated into eigenvalues Λ for S̃ matrices, hence
the new condition is

|Λ| < 1

8πξ
, (5.2.2)

with ξ an indistinguishability factor. As was discussed above, this upper bound corresponds to equal the M-matrix
with the tree-level elements by disregarding higher order corrections. For the Higgs potential (2.3.1), the matrices in
(5.2.1) are block-diagonal facilitating the computation of the eigenvalues ΛZ2

Y,σ±:

Λeven
2,1± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

5

)
, Λodd

21 = λ3 + λ4. (5.2.3a)

Λeven
2,0± = λ3 − λ4. (5.2.3b)

Λeven
0,1± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

4

)
, Λodd

01± = λ3 ± λ5. (5.2.3c)

Λeven
0,0± =

1

2

[
3(λ1 + λ2)±

√
9(λ1 − λ2)2 + 4 (2λ3 + λ4)

2

]
, Λodd

00± = λ3 + 2λ4 ± 3λ5. (5.2.3d)

These constraints will be used to see the compatibility between vacuum predictions and perturbative unitarity, as well
as relationships with the possible presence of Landau poles in the parameter space.

5.3. One loop level analysis

As a first proof of the influence of the scalar extended Higgs sector in the vacuum stability scenario, we consider the
running coupling for λ1 which could be compared with λSM (µ) through the appropriate limits of the theory. Indeed the
numerical evaluation of Renormalization Group Equations (RGEs) for the 2HDM type I (they are depicted in J) allows
computing the vacuum behavior and perturbative realization in field and parameter space for an U(1)-invariant model.
This evolution can also be seen in a Z2 invariant model with λ5(mZ) = 0. Figure 5.1- shows energy scale evolution for
λ1(µ) with different values of the remaining scalar couplings. λ2(µ0) coupling is settled in such a way that its vacuum
constraint satisfies, i.e. λ2(µ0) > 0 (with µ0 = mZ the initial scale). For the initial conditions taken there over other
couplings, the vacuum instabilities are suppressed in the Φ1 direction between 103−1019 GeV. Then, criticality presented
in the SM at energies close to GUT and Planck scales for values of λ1(mZ) could be avoided in an extensive regime of
the parameter space for an inert 2HDM type I.

With the general condition λ3 (µ) + λ4 (µ) − |λ5 (µ) | > −
√
λ1 (µ)λ2 (µ) at specific energies, we get the contours for

λ4 (mZ) =
(
m2
A0 +m2

H0 − 2m2
H±

)
/v2 vs λ1 (mZ) = m2

h0/v2 and λ4 (mZ) =
(
m2
A0 +m2

H0 − 2m2
H±

)
/v2 vs λ5 (mZ) =

111



5. The prototypical model: The Inert-2HDM

100 10
5

10
8

10
11

10
14

10
17

- 0.2

0.0

0.2

0.4

0.6

0.8

1.0

Μ HGeVL

Λ
1

HΜ
L

UH1L- IHDM

Μ0 = 2 m t

Μ0 = m t � 2

Μ0 = m t

10
13

10
14

10
15

10
16

10
17

0.6

0.7

0.8

0.9

1.0

Μ HGeVL

Λ
1

HΜ
L

UH1L- IHDM

Figure 5.1.: (Left) Energy scale evolution for λ1 coupling with mh0 = 125.04 GeV and mt = 173.34 GeV. Evolution
of λ1(µ) is made fixing the remaining initial conditions λi(µ0 = mz)’s. Initial gauge couplings have been
taken at mZ-scale. Here −0.4 ≤ λ4(mZ) ≤ 0.0, −0.2 ≤ λ3(mZ) ≤ 0 and 0.0 ≤ λ2(mZ) ≤ 0.2, and the
assumption of λ2(mz) = |λ4(mz)|/2 and λ3(mz) = λ4(mz)/2. Each curve is varying in 0.02 units in those
intervals. (Right) Maximum curve lying in such ranges that specifies the top quark mass uncertainty [174]
(mt = 173.34±0.76 GeV) leading to corrections for λ1(µ) (µ = 1017 GeV) around 4%. Henceforth, numerical
analysis are based on these central values of Higgs boson and top quark masses, likewise for gauge couplings
in mZ scale [50] and we have varied the matching condition µ0 = {mt2 ,mt, 2mt}. To assess the uncertainty
on the coupling, we have followed the prescription presented in [10]

Figure 5.2.: Phase diagrams with the evolution of contours from µ = 103 GeV (Background-Left) up to µ = 1019 GeV
(Background-Right) in the ∆S2

1 versus λ1 (mZ) plane. Here 0 ≤ λ2(mZ) ≤ 0.25 and 0 ≤ λ3(mZ) ≤ 0.25,
starting with |λ3(mZ)| = λ2(mZ) and λ3(mZ) = λ4(mZ)/2. Red lines are the remaining contours between
µ = 103 and 1019 GeV. Dashed line indicates the experimental value for the ratio in λ1(mZ) for a Higgs
with a mass near to 125 GeV [3]. For red contours initial points mark the final zone of instability scenario.
Gray curve encloses the region compatible with the strongest unitarity bound given by the eigenvalue Λeven+

00

in Eq. (5.2.3d) .
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5.3. One loop level analysis

(
m2
H0 −m2

A0

)
/v2. For all phase diagrams for stability-instability (blue and light-blue areas respectively), we have also

taken two particular backgrounds at µ = 103 GeV (Left-panels) and µ = 1019 GeV (Right panels), and analyzing as
critical zones (or criticality in our context) evolves with energy scales between these backgrounds.

For instance in the U(1) case, contours in the λ1 (mZ) − λ4 (mZ) plane are depicted in Fig. 5.2. Here evolution
of contours of stability and instability are considered in the scales between 103 GeV and 1019 GeV for sundry values
of λ3 (mZ) and λ2 (mZ). Similarly, for the U(1)-case, we consider in (Fig. 5.3) the λ3(mZ) − λ4(mZ) plane, which
yields vacuum analysis for splittings m2

H± −m
2
22 and m2

A0,H0 −m2
H± for different energy regimes. Contours have taken

values around of the central ones for fermion and boson particles in the current phenomenological analyses considered
in [50, 174]. We take as our input parameters mt = 173.34 GeV, mb = 4.2 GeV, mh0 = 125.04 GeV, mW = 80.36 GeV,
mZ = 91.18 GeV [50].

There are regions phenomenologically relevant since they could be easily recognizable by exclusion zones for observed
or new resonances. For instance, in the U(1)−model, relevant regimes are: (a) the scenario with A0−axion appearance
(m2

H± = −λ4v
2
1/2) or (b) the limit for the compressed regime with triply degenerate scalars (i.emH0 = mA0 = mH±). The

latter occurs when λ4 (mZ) = 0. The first regime would also have as a consequence mH0 = 0, which is phenomenologically
unwanted and from theoretical point of view this limit is forbidden by the model foundations. Another important region
corresponds to identify mh0 with the experimental resonance in the mass range of 125.04 ± 0.64 GeV. The theoretical
framework for this assumption is the alignment regime [88,171], which is satisfied trivially in the inert 2HDM. The zone
consistent with vacuum stability and the value λ1 (mZ) ' 0.258 (for central value of Higgs mass) in Fig. 5.2 and 5.4 will
be given as a dashed line crossing the respective parameter space.

Figure 5.3.: Phase diagram with evolution of stability and instability contours from µ = 103 GeV (Background-Left)
up to µ = 1019 GeV (Background-Right) in the ∆S2

1 versus ∆S2
2 plane. Red lines show the evolution of

the remaining contours between µ = 103 and 1019 GeV. Here 0 ≤ λ2(mZ) ≤ 0.25, starting with λ2(mZ) =
|λ4(mZ)|/2. Gray curve encloses region compatible with the strongest unitarity bound given by eigenvalue
Λeven+

00 .

Constraint λ3 (µ) + λ4 (µ) − |λ5 (µ)| > −
√
λ1 (µ)λ2 (µ) contains the positivity conditions λ1 (µ) > 0 and λ2 (µ) > 0

in an independent form, because of the well defined behavior of the root square. The RGE of λ2 (µ) is not widely
relevant, because the Yukawa structure leads to an evolution which does not involve strong sources of instabilities. Hence
positivity of this product correspond to ensure positivity of λ1. This correspondence between conditions can be seen in
the contours through regions for small values of λ1 (mZ) , which will not be relevant since these regimes are located apart
from phenomenological identification of mh0 .

Correspondingly, contours in the Z2-model are shown in Figs. 5.4-5.6, from which we can study stability behavior
in λ1(mZ) − λ4(mZ) and λ1(mZ) − λ4(mZ) planes. As in the U(1) case, dashed line indicates mh0 identification with
Higgs-like scalar observed in LHC. In Fig. 5.6 we show the variation of vacuum stability and instability zones for
λ3 (µ) + λ4 (µ)− |λ5 (µ)| > −

√
λ1 (µ)λ2 (µ) contour with respect to the energy scale in λ5 (mZ)− λ4 (mZ) plane, which

leads to determine the mass splittings influence in vacuum stability for the Z2 case.
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5. The prototypical model: The Inert-2HDM

Figure 5.4.: Phase diagrams with the evolution of contours from µ = 103 GeV (Background-Left) up to µ = 1019 GeV
(Background-Right) in the ∆S2

1 versus λ1 (mZ) plane. Here 0 ≤ λ2(mZ) ≤ 0.25 and −0.25 ≤ λ3,4(mZ) ≤
0.25, starting with λ3,4(mZ) = λ5(mZ)/2 and λ34(mZ) = |λ2(mZ)|. Red lines are the remaining contours
between µ = 103 and 1019 GeV. Dashed line indicates the experimental value for the ratio in λ1(mZ) for a
Higgs with a mass near to 125 GeV [3]. Gray curve encloses region compatible with the strongest unitarity
bound given by the eigenvalue Λeven+

00 .

Figure 5.5.: Phase diagrams with the evolution of contours from µ = 103 GeV (Background-Left) up to µ = 1019 GeV
(Background-Right) in the ∆S2

0 versus λ1 (mZ) plane. Here 0 ≤ λ2(mZ) ≤ 0.25 and −0.25 ≤ λ3,4(mZ) ≤
0.25, starting with λ3,4(mZ) = λ5(mZ)/2 and λ34(mZ) = |λ2(mZ)|. Red lines are the remaining contours
between µ = 103 and 1019 GeV. Dashed line indicates the experimental value for the ratio in λ1(mZ) for a
Higgs with a mass near to 125 GeV [3]. Gray curve encloses the region compatible with the strongest unitarity
bound given by the eigenvalue Λeven+

00 .
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5.3. One loop level analysis

Figure 5.6.: Phase diagram with evolution of stability and instability contours from µ = 103 GeV (Background-Left)
up to µ = 1019 GeV (Background-Right) in the ∆S2

0 versus ∆S2
1 plane. Here 0 ≤ λ2(mZ) ≤ 0.25 and

−0.25 ≤ λ3(mZ) ≤ 0.25, starting with λ3(mZ) = λ5(mZ)/2 and λ2(mZ) = |λ3(mZ)|. Red lines show the
evolution of the remaining contours between µ = 103 and 1019 GeV. Gray curves enclose the region compatible
with the strongest unitarity bound of the eigenvalue Λeven

00 .

Our phase diagrams lead us to verify some limits for the perturbative validity of the both models (Z2 -U(1)) in the
field space. It can be seen due to solutions for RGEs present possible Landau poles. These non-perturbative zones are
identified with white areas, as it is shown on the right side of Figs. 5.2-5.6 for the background of µ = 1019 GeV.

5.3.1. Implications of vacuum behavior in Z2−2HDM and U (1)−2HDM

In the SM, the positivity of the scalar boson mass-squared and bounded from below potential implies that λ > 0. To
ensure vacuum stability for all scales up to µI , one must have λ (µ) > 0 for all µ between mZ and µI . Similarly, to ensure
vacuum stability in the 2HDM up to µI , effective Higgs potential must require that all of the five constraints be valid
up to µI . At one loop level, this can be rendered as a threshold effect for SM vacuum. If the condition λ1 (µ) > 0 or
λ2 (µ) > 0 is violated, the potential will be unstable in the Φ1 or Φ2 direction respectively. These threshold corrections
at one loop increase the Higgs potential stability by the introduction of new fields and couplings among them, which in
the SM is lost even from scales around µ = 1011 GeV [6]. Although in this case, new physics improves vacuum stability
in Φ1 in particular limits compatible with the SM behavior, other directions can be affected by the fields and couplings
added to the spectrum.

In other directions of the extended field space, the statement of instability works as follows: if the conditions λ4 (µ) +
λ5 (µ) < 0, λ3 (µ) + λ4 (µ) − |λ5 (µ)| +

√
λ1 (µ)λ2 (µ) > 0 or λ3 (µ) +

√
λ1 (µ)λ2 (µ) > 0 are not accomplished one by

one or simultaneously, the potential will be unstable in the Φ1-Φ2 plane. At the same time, it is viable to require that
all λ’s be finite (or perturbative) up to Λ in order to avoid possible Landau poles.

Numerical analyses start with quartic couplings defined at the electroweak scale µew = mZ . With these initial
conditions, the RGEs are integrated out to search whether one of the bounds for positivity is violated or whether any of
the couplings become non-perturbative before reaching a µcrit ≡ Λ (procedure established in [20]). By sweeping different
zones in the parameter space, it is possible to describe contours as a function of scalar mass splittings. The contours built
up, interpreted as phase diagrams, yield information about how instabilities arise in the Higgs potential at an energy
scale and a field-space direction given.

Minimality principle and vacuum relations could be studied by some limits between the SM and the inert-2HDM.
For instance, the parameter space compatible with h0 emulating to SM-Higgs boson is non-suppressed even at Planck
scales for positive values of λ5, λ4, λ3 as it is shown in vacuum stability analyses. This regime implies that, for λ1 (mZ)
identified with the Higgs mass and with initial conditions, λ5 (mZ) must be positive and whose inferior limit close to
0.0.. The limit superior belongs in λ5(mZ) ' 0.2, which is also compatible with unitarity perturbative bounds. In the
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5. The prototypical model: The Inert-2HDM

Figure 5.7.: Global minimum for ∆S2
1 −∆S2

0 zones in different values of (Left) m2
22

(
GeV2

)
= −100,−1000,−5000 and

(Right) m2
22

(
GeV2

)
= 100, 1000, 5000. Here 0 ≤ λ2 ≤ 0.25, starting with λ2 = |λ4|/2.

Z2 case, this stable zone is consistent with a spectrum where mH0 > mA0 for all energy scales. Nonetheless, this region
will be suppressed by condition λ4 > λ5.

Vacuum stability and perturbative unitarity bounds are compatible with ∆S2
0 > 0 (in a wide zone), while there also

exist a reduced zone where ∆S2
0 < 0 is allowed by both analyses. The last result is compatible with the tree level

analysis where λ4 > λ5. From plane λ4 (mZ) − λ1 (mZ) , a similar restriction over ∆S2
1 implies 2m2

H± < m2
H0 + m2

A0 .
Compatibility among λ4 +λ5 < 0 λ4−λ5 > 0 and vacuum stability scenario gives an advantage for regions where λ4 > 0
and λ5 < 0, with small splittings. The last fact is a radical difference between both models, because in the U(1)-2HDM
and to avoid vacuum configurations with charge violation, the model demands λ4 < 0.

Non-perturbative values are driven out for λ1,2 (mZ) ∼ 0.25 (even incompatible with perturbative unitarity) and
λ3 (mZ) ∼ −0.35 and λ3,4,5 (mZ) ∼ 0.25, being determined by regions where numerical solutions of RGEs were finite. As
it was pointed out, these non-perturbative zones are also strongly disfavored by unitarity constraints of scalar scattering
processes.

5.4. Tree level contours for metastability analyses

To search the compatibility between splittings allowed by vacuum analyses and the presence of a global minimum in
these scenarios, we take into account the restrictions obtained in Eqs (5.1.15)-(5.1.17). For instance, in the U(1)-model,
we evaluate the metastability constraints over ∆S2

1 −∆S2
2 plane in Fig. 5.7. We see as negative and positive values of

m2
22 favor positive zones for ∆S2

2 , relating to m2
H± > m2

22 hierarchy. These compatible zones are larger for |m2
22| < 5000

GeV2. Particularly values |m2
22| > 7500 GeV2 will enter in higher values of ∆S2

2 , which are related to non-perturbative
or unstable zones in the Higgs potential. Compressed models with an approximate degeneracy between mH± = mA0,H0

become incompatible with a global minimum in |m2
22| > 1000 GeV2.

In the Z2 case, in Fig. 5.8 global minima zones are drawn over ∆S2
1 −∆S2

0 plane for different values of m2
22, which

generate a global minimum in positive values of ∆S2
1 . Those regimens are compatible with assumptions from conditions

to avoid a charge violation minimum (before introducing vacuum and mass eigenstates structures for scalar sector).
Another important point is that compressed models become incompatible with a EW-global minimum for |m2

22| > 2500
GeV2. Explicitly, in m2

22 = 5000 GeV2 just values of |∆S2
0 | > 0.2 are compatible with a global minimum structure, but

incompatible with a mass degeneracy between A0 and H0.
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Figure 5.8.: Global minimum for ∆S2
0 −∆S2

1 zones in different values of (Left) m2
22

(
GeV2

)
= −100,−1000,−5000 and

(Right) m2
22

(
GeV2

)
= 100, 1000, 5000. Here 0 ≤ λ2 ≤ 0.25 and −0.25 ≤ λ3 ≤ 0.25, starting with λ3 = λ5/2

and λ2 = |λ3|.

5.5. Oblique parameters and observables influence

From vacuum and metastability analyses, it is possible to make a major comparison with electroweak precision parameters
since they are highly sensitive to mass splittings [117]. It is well known that oblique parameters are designed to constrain
models of new physics from the electroweak precision observables. It is assumed that the effects of new physics only
appear through vacuum polarization and therefore enables us to modify oblique parameters. Most of the effects on
electroweak precision observables can be parameterized by three gauge self-energy parameters (S, T, U) introduced by
Peskin and Takeuchi [175–178] (see discussion presented in the final part of chapter 1). Hence, the correlation among the
parameters above could be given regarding electroweak observables and leads to analyses some precision physics, useful
to constraint phenomenology from new physics mechanisms. For instance, S or S+U describe new physics contributions
to neutral or charged current processes at several energy scales; while T measures the difference between the new physics
contributions of neutral and charged current processes at low energies (i.e., sensitive to isospin violation) close to EW
cut [179]. Indeed, this parameter is related to the commonly used parameter ρ0 = ρ/ρSM through ρ0 = 1/ (1− αT ) ;
encoding the departure from the SM value of ρ0 = 1. By contrast, U is only constrained by the W boson mass and its
total width. Likewise, U is seldom small in new physics models, and therefore, the STU parameter space can often be
projected down to a two-dimensional parameter space in which the experimental constraints are easy to visualize [179] 5.

Constraints on the STU parameters are derived from a fit to the precision electroweak data (more details can be found in
the most current articles [81–85]). Besides, in the STU parameters the floating fit values are mZ = 91.1873±0.0021 GeV,
∆αhad(m

2
Z) = 0.02757± 0.00010, and αs(m

2
Z) = 0.1192± 0.0033. The following fit results are determined from a fit for

a reference Standard Model with mt,ref = 173 GeV and mH,ref = 125 GeV and fixing U = 0: giving SU=0 = 0.06± 0.09
and TU=0 = 0.10 ± 0.07, with a correlation coefficient of +0.91. The general procedure to measure oblique parameters
relies on a global fit to the high-precision electroweak observables coming from particle collider experiments (mostly the
Z pole data from the CERN-LEP collider) and atomic parity violation [81, 175]. Every step presented here would be
a valuable tool to measure the compatibility level of the vacuum behavior predictions with the EW observables and
precision tests.

Despite at this level, these computations do not distinguish among fermionic couplings, the plane of correlations gives
information about scalar states splitting and how it could be restricted from EW measurements. Definitions of S and T
parameters for 2HDM-Inert case read [22,24]:

5In fact, U quantity is related to a dimension-eight operator, while S and T can be given concerning six dimension operators.
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SIn =
1

2π

[
1

6
ln
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H0

m2
H±
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+

1
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)2 +
1

6

m4
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(
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)(
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)3 ln
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m2
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m2
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)
− 5

36

]
, (5.5.1)

TIn =
1

32πα2v2
[F (mH± ,mH0) + F (mH± ,mH0)− F (mA0 ,mH0)] , (5.5.2)

with F a masses symmetric function defined by

F (m1,m2) ≡ m2
1 +m2

2

2
− m2

1m
2
2

m2
1 −m2

2

ln

(
m2

1

m2
2

)
. (5.5.3)

From the equations for S and T written through mH± and ∆S2
1 variables, we can verify the compatibility level

under electroweak observables of regions once studied from vacuum behavior. Figure 5.9 shows the oblique parameter
constraints from the electroweak precision and how it translates data into constraints on the masses or their splittings for
the extended sector for U(1) and Z2 models. In these two cases, there are regimes compatible between the experimental
fits and the inert-2HDM predictions over S, T parameters, so that a variety of model configurations exhibits an intimate
relation with the electroweak precision observables [24].

Splittings between mA0 and mH0 , characterized by their respective ratio kS ≡ mA0/mH0 , have a high level of compat-
ibility when ∆S2

1 → 0 when kS is close to degeneracy. For ks > 1, compatible zones are reduced when kS increases, being
large splittings in ∆S2

0 compensated with large splittings in ∆S2
1 , which are suppressed by perturbativity analyses. The

quasi-degeneracy between neutral states is excluded for large splittings among them and charged Higgs mass. In the U(1)
case, 99% fit contours are approximately symmetric in ∆S2

1 splittings, implying that ST parameters do not distinguish
relative sign between sum of neutral states masses and charged Higgs mass. For ∆S2

2 close to zero only splittings with
∆S2

1 ≈ 0− are allowed. Hence, in the particular limit of m2
22 ' m2

H± , a compressed scenario for IHDM (quasi-degeneracy
in masses of the inert scalar states) is favored by systematics of ST oblique parameters.

In terms of direct masses of scalar spectrum, oblique parameters fits at 99% yield constrained regions showed in Fig.
5.10. With the global U(1)-symmetry, both possible hypothesis for scalar hierarchies, mH± > mA0,H0 or mH± < mA0,H0

are consistent with fits for ST oblique parameters6. Here scalars states are organized near to the maximal compressed
scenario with mH± ' mA0,H0 . Heavier neutral states in a quasi degeneracy are also allowed, if charged Higgs is also
heavy with a mass near to those neutral states. Meanwhile, in the Z2-scenario, we can see as for ks < 1 (i.e mA0 < mH0),
compatible regions prefer mH± > mA0 hierarchy. Most constrained region in this set is present for ks = 0.2, where only
zones with mH± < 250 GeV and mA0 < 250 GeV are consistent with the fits for ST parameters. For ks > 1, the most
favored hierarchy is mA0 > mH± . Heavier states are thus inconsistent only by unitarity and perturbative analyses. It is
also explicit how compressed scenario is consistent with ST plane for ks > 0.4.

Above all, it seems pertinent to point out that vacuum analysis as well as oblique parameters allow to determine
space parameters compatible with phenomenology coming from colliders searches and dark matter studies. In the first
case, in the quasi-degeneracy case of neutral states, LEP II analysis excludes the region of masses where simultaneously:
mH0 < 80 GeV, mA0 < 100 GeV and mA −mH > 8 GeV (mH0( GeV) > 8/(ks − 1), with ks = mA0/mH0) [181]. For
mH0( GeV) < 8/(ks−1), the LEP I limit mH0 +mA0 > mZ0 applies, preventing invisible Z0 → A0H0 channel [182,183].
In terms of h0 mass and for mA0,H0 < mh0 , precision tests predict that h0 → A0A0 and h0 → H0H0 decays shall be
dominant channels. In particular, for the U(1) case both decays are invisible, meanwhile in the Z2 case the h0 → H0H0

decay will be the invisible one. These effects can be ruled out by the Run 2 in the LHC, if the properties of the scalar
Higgs boson with mh = 125 GeV are still compatible with the ones predicted by SM.

For the charged Higgs boson and owing to the kinetic-gauge interactions, the dominant decays are H± →W±H0 and
H± →W±A0. In degeneracy limit, both channels can be distinguished by precision tests over parity and spin of possible
subsequent final decays [1–3]. In the Z2 case, mA0 > mH± hierarchy forbids the last decay channel at least as an on
shell one. Nevertheless, there are also trilinear gauge couplings among charged Higgs boson and neutral gauge bosons
leading to new decays channels which can compete with decays involving Z2 odd scalar states.

Finally, we discuss some consequence of our results in front of dark matter phenomenology for the IHDM. Measured
relic abundance density for dark matter is Ωcdmh

2 = 0.1199± 0.0022 [184]. This selects distinct zones in the parameter
space for new physics [126]7: i) Low mass regime: mH0 < mh0/2. The Dark matter pair-annihilation predominantly

6The former has been used in the vacuum analysis as a input assumption. This can be seen as a limit case avoiding the presence of a vacuum
with charge violation

7In [126] is discussed the possible origin of a strong phase transition in the inert-2HDM required in baryogenesis processes; being it possible
when the resonant scenario is considered.

118



5.5. Oblique parameters and observables influence

Figure 5.9.: Oblique parameters in the inert-Higgs doublet model with the S, T fit results (with U = 0) at 99 % CL for
U(1) (Up) and Z2 (Down) symmetries. The model area is obtained with the use of the mass parameter
splittings and defining k2

H ≡ m2
22/m

2
H± (U(1) case) and ks ≡ mA0/mH0 (Z2 case) ratios. Plots in right

side are zoomed regions compatible with vacuum stability analyses. Computations over ST plane have used
Mathematica module described in [180].
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5. The prototypical model: The Inert-2HDM

Figure 5.10.: Oblique parameters in the inert-Higgs doublet model with the S, T fit results (with U = 0) at 99 % CL for
U(1) (Up) and Z2 (Down) symmetries. The model area constraining direct masses is obtained by defining
ks ≡ mA0/mH0 (Z2 case) ratios. Computations over ST plane have used Mathematica module described
in [180].
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5.6. Addendum: Two photon decay in the IHDM

proceeds via the pair production of the b quarks and τ leptons; being SM-like Higgs boson the dark matter portal. ii)
Resonant regime: mH0 ∼ mh0/2. This scenario produces a viable mass around a pole leaving even an unconstrained
window close to 10-15 GeV around of mh0/2 [185]. iii) Intermediate mass regime: mh0/2 << mH0(GeV) < 500. Here
H0 pair annihilation to gauge bosons becomes significant, such that the thermal relic density is systematically below
the universal dark matter density for any combination of model parameters, excluding the presence of dark matter
constituents [51,54]. Moreover, as the charged Higgs holds mH± > mH0 in both models (with Z2 and U(1) symmetries),
zone approaching to the upper bound is also incompatible with EW-ST parameters. iv) Heavy mass regime: mH0 & 500
GeV. This scenario, in the lower bound, can be rendered as a decoupling among Z2 odd scalars and h0 wherein there is
no relic density enough. If couplings with h0 are driven out away from zero cancellations, it is possible leads to achieve
the correct relic density for mass values from the lower bound slightly different up to heavy scalar settled in TeV scale.
Again incompatibility of this scenario comes from oblique quantities and unitarity constraints, which can be evaded if
this inert model is considered as an effective theory of a strong interacting sector with new physics set up in the TeV
energy [186]. Taking into account the U(1) case, all these constraints in the different scenarios must also be satisfied by
pseudoscalar Higgs boson. This fact can yields discrepancies in the matching of the relic density value since direct dark
matter with spin-independent searches put limits over the degeneracy between H0 and A0 [187,188]. Nevertheless, from
quantum gravity analyses, a recent approach [189] has discarded likely dark matter candidates for a 2HDM with a global
U(1)-symmetry.

5.6. Addendum: Two photon decay in the IHDM

In this section, we describe how precision tests over Higgs decays leading to constrain the extended space of parameters
of IHDM. In the two photon decay, new physics implemented by charged Higgs couplings gives us information on
phenomenological reliability of the model in front of data for run I of LHC. Likelihood proof for this decay channel has
been treated in Appendix M.
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Figure 5.11.: Likelihood analysis in the IHDM for the mH±−m2
22 plane in the diphotonic channel. Here h0 SM-like Higgs

has a mass of 125 GeV. The red, orange and yellow lines correspond to the allowed boundaries of 68%, 95%
and 99.7% CL regions, respectively. The right figure is the zoomed area for the most constrained scenario
in the same plane (lower masses for charged Higgs boson).

Contours and analyses made with Lilith in Fig. 5.11-5.12 work in the following way [35]: From definitions of effective
coupling among two photons and one Higgs h0 at LO of (M.1.4), likewise −2 log(Cγ) correspondingly defined in Appendix
M, we scan the 2-dimensional parameter space in mH± − m2

22 plane. This 2-dimensional grid scan is performed over
the parameters defining λ3(m2

22, mH±) coupling between charged Higgs and h0. For each couple (m2
22, mH±), the

corresponding ∆(−2 logL(Cγ)) is obtained according to Cγ in Eq. (M.1.4). In this scanning out, charged Higgs masses
below 100 GeV are highly suppressed beyond contours at 99% C.L.. Zones between −10000 < m2

22(GeV) < 10000 have
zones compatible with experimental data in mH± > 20 GeV. A region at ∆(−2 logL) < 2.3 is given in m2

22 > 0 in
mH± > 150 GeV. This plot gives us additional information to control quadratic parameter, which from theoretical point
of view is important to feature metastability scenario between inert and inert like vacuum structures.
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5. The prototypical model: The Inert-2HDM
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Figure 5.12.: Likelihood analysis in the IHDM for the mH±−m2
22 plane in the diphotonic channel. Here h0 SM-like Higgs

has a mass of 125 GeV, presenting specific and zoomed zones of Fig. 5.11. Once again, the red, orange
and yellow lines correspond to the allowed boundaries of 68%, 95% and 99.7% CL regions, respectively. The
right figure is the zoomed region for the most constrained scenario in the same plane (even lower masses
for charged Higgs boson and negative values of m2

22).

Two caveats can complement these analyses. In the diphotonic channel, and despite the charged scalar loop can
interfere either constructively or destructively with the SM contribution, it is possible to see how decoupling of charged
Higgs is consistent with precision measurements (beyond of mH± > 300 GeV). This behavior occurs even at 99.7% CL
and independently of values taken for m2

22. Secondly, the total decay width ΓIHDM (h) can be increased concerning the
SM scenario due to the existence of the invisible decays: h0 → H0H0 and h0 → A0A0. Nevertheless, they have not been
considered in those analyses. Therefore our scanning can be modified by introducing possible invisible decays. However,
observing Fig. 5.13, contributions from invisible decays are expected to no exceed B(h0 → Invisible) < 0.28 at 99.7%
C.L. of total branching ratio for decays of scalar boson founded in LHC.
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Figure 5.13.: Likelihood analysis for invisible decays from B
(
h0 → Invisible

)
vs effective coupling to Cg. The red, or-

ange and yellow regions are 68%, 95% and 99.7% CL regions, respectively. Here we have used monojets

constraints (gg → h0 + 1− 2j, V BF where Rinvisible ≡
(

2
3C

2
ggh + 1

3C
2
V BF

)
Binv < 1.1 at 95%) [190, 191].
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6. Models with soft breaking of a U (1) global
symmetry

We now continue to study the vacuum behavior of an extended Higgs sector with two doublets in a scenario with a
softly broken U(1) global symmetry. The soft-term is introduced to avoid massless-axion particles arising when the
global symmetry becomes spontaneously broken. This model has metastable states through the possible presence of
multiple non-degenerate minima, which is unwanted from the phenomenological point of view if the metastable state is
not long-lived enough. The analysis of this fact leads to find possible exclusion limits over parameter space of quartic
couplings. It can be translated into improving the individual behavior of initial conditions for renormalization group
equations; also determining unstable zones for the Higgs potential at one loop level. Besides vacuum stability analyses,
the influence of absence of charge violation minima is considered in all studies. Extremal cases for the model as well
as criticality phenomena are comprehensively discussed using relations among Higgs masses or splittings among them.
From vacuum behavior and LHC results, phenomenological aspects in the searching of charged and heavier Higgs bosons
are considered to evaluate the scalar alignment regimen of the two Higgs doublet model1.

To describe all these concepts systematically, we organize this chapter as follows. In section 6.1 and under symmetries
and basis invariant transformations in 2HDMs, we use formalism presented in [36] to find out positivity constraints in this
simple U(1) scalar sector with a soft-violation term. The systematic begins with a general way to write a more compact
form for the Higgs potential which is invariant under a unique parameterization of type Lorentz group. Under impositions
over doublets and its extrapolation into Minkowskian space is possible to find out vacuum stability constraints associated
with the requirement at tree level for a bounded from below Higgs potential in regimes of the field space associated with
points or orbits here defined. Moreover, that covariant structure of the Higgs potential returns an appropriate frame to
analyze the possibility to reach metastable states in vacua with two normal minima (where VEVs are real). On the other
hand, bilinears form of the Higgs potential carries out information about structures of critical conditions compatible with
a complete SSB and one neutral vacuum. These conditions can be considered from a precise point of view; studying
when possible critical points are minima indeed. For these purposes, we first find eigenstates masses for scalars in 6.2.
The phenomenological starting point to interpret a model realization, the alignment regimen is studied in 6.3. Then, in
section 6.4, we review the problem for critical conditions of a Higgs potential with a softly broken U(1)-symmetry. Some
general phenomenological aspects of these models are reviewed in section 6.5. In 6.7, we compute the vacuum behavior
at tree level and for different combinations of the parameter space. Meanwhile, NLO calculations have been studied in
section 6.8. Likelihood proofs for two photons decay, and oblique parameters analyses are established in 6.9 with the
aim to see the compatibility of vacuum studies with models in the alignment scenario for 2HDMs. Finally, in conclusions
and remarks, we describe the relevance of our treatment in the interpretation of vacuum and metastability analyses and
the compatibility with Electroweak precision tests and likelihood proofs in the two photons decay channel.

6.1. Vacuum behavior and positivity constraints in a 2HDM with a softly
violation for U (1) symmetry

This section is devoted to introducing generalities of the Real U(1)-2HDM, as well as its theoretical constraints. The
2HDM potential concerning doublets with a soft breaking of a U(1) global symmetry is

VH = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12

(
Φ†1Φ2 + Φ†2Φ1

)
+

1

2
λ1

(
Φ†1Φ1

)2

+
1

2
λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
. (6.1.1)

1This chapter is mainly based on the results presented in [192]
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6. Models with soft breaking of a U (1) global symmetry

By using reparametrization invariance [36] given by SO(1, 3) group transformations, Higgs potential can be written in
terms of gauge orbit vectors rµ, i.e.

VH = −Mµr
µ +

1

2
Λµνr

µrν , (6.1.2)

with rµ = (r0, ri) = (Φ†Φ,ΦσiΦ) and where

Φ =

(
Φ1

Φ2

)
. (6.1.3)

Here Φ is a 2-dimensional vector and σi are the Pauli matrices. In this particular case, cuadrivector of bilinears
couplings is

Mµ =

(
m2

11 +m2
22

2
,Re

(
m2

12

)
, 0,

m2
11 −m2

22

2

)
. (6.1.4)

In the scenario of a U(1)− Higgs potential, diagonal Λµν tensor of quartic couplings has the following form

Λ =
1

2


λ3 +

√
λ1λ2 0 0 0

0 −λ4 0 0
0 0 −λ4 0
0 0 0 λ3 −

√
λ1λ2

 . (6.1.5)

A bounded from below Higgs potential demands Λµν must be positive definite in the future light cone LC+, i.e.,
rµr

µ ≥ 0. Employing this formalism for reparametrization of the Higgs potential, it is possible to find out the Higgs
potential positivity constraints in the fourth dimension terms:

λ1 + λ2 > |λ1 − λ2|. (6.1.6)

which is equivalent to λ1 > 0 and λ2 > 0. And

λ3 > −
√
λ1λ2. (6.1.7a)

λ4 + λ3 > −
√
λ1λ2. (6.1.7b)

In addition to the traditional relations for vacuum stability at tree-level, the absence of charge violation vacua yields to
one possible condition λ4 < 0. Despite in 2HDMs at tree level two minima that break different symmetries cannot coexist,
this situation can be rendered as a limiting hypothesis for our assumption of neutral vacua. This fact has significant
phenomenological consequences and which will be treated exhaustively in the following sections, as in to describe possible
hierarchical structures in the masses for scalar states.

On the other hand, unitarity constraints can be obtained from the following eigenvalues ΛZ2

Y,σ±
2 of scattering matrices:

Λeven
2,1± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2

)
, (6.1.8a)

Λeven
2,0± = λ3 − λ4. (6.1.8b)

Λeven
0,1± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

4

)
, (6.1.8c)

Λeven
0,0± =

1

2

[
3(λ1 + λ2)±

√
9(λ1 − λ2)2 + 4 (2λ3 + λ4)

2

]
. (6.1.8d)

which have already been treated in chapter 4. The perturbative unitarity bound can be written by

|Λ| < 1

8ξπ
(6.1.9)

ξ = 2 is a factor for indistinguishable particles present in the initial or final states.

2Matrices are constructed from Isospin σ and Hypercharge Y, which are conserved quantities of scalar scattering at high energies.
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6.2. Softly broken U (1)−Higgs Potential: Mass Eigenstates

6.2. Softly broken U (1)−Higgs Potential: Mass Eigenstates

In the following, mass eigenstates and respective relations among Higgs potential couplings are considered. To that end,
we describe the standard parametrization of Higgs doublets regarding physical mass eigenstates introduced in chapter 1

Φ1 =
1√
2

( √
2 (G± cosβ −H+ sinβ)

v cosβ − h0 sinα+H0 cosα+ i
(
G0 cosβ −A0 sinβ

) ) . (6.2.1)

Φ2 =
1√
2

( √
2 (G± sinβ +H+ cosβ)

v sinβ + h0 cosα+H0 sinα+ i
(
G0 sinβ +A0 cosβ

) ) . (6.2.2)

Where −π/2 ≤ α ≤ π/2 and 0 < β < π/2. The Higgs masses and Higgs eigenstates are defined concerning parameters
m2
ij and λi from the potential (6.1.1), and consequently, depend on the symmetries to write the Higgs potential indeed.

Moreover, the mass matrix depends on the normal vacuum structure selected in the above parameterization,

〈Φ1〉0 =
1√
2

(
0
v1

)
and 〈Φ2〉0 =

1√
2

(
0
v2

)
(6.2.3)

where v1 = v cosβ and v2 = v sinβ. In the case of a Higgs potential with soft breaking of a U (1)−symmetry, relations
among quartic couplings and masses are given by

λ1 =
1

v2 cos2 β

(
cos2 αm2

H0 + sin2 αm2
h0 −m2

12 tanβ
)
≡ ∆S2

1 , (6.2.4a)

λ2 =
1

v2 sin2 β

(
sin2 αm2

H0 + cos2 αm2
h0 −m2

12 cotβ
)
≡ ∆S2

2 , (6.2.4b)

λ3 =
2m2

H± −m
2
A0

v2
+

sin 2α
(
m2
H0 −m2

h0

)
v2

≡ ∆S2
3 , (6.2.4c)

λ4 =
2m2

A0 − 2m2
H±

v2
≡ ∆S2

4 . (6.2.4d)

and

m2
A0 =

m2
12

sinβ cosβ
=

2m2
12

sin (2β)
. (6.2.4e)

These arrays of equations are valid for 0 < β < π/2, excluding inert models for 2HDM since impossibility of diagonal-
izing mass eigenstates at the same time that stationary conditions be preserved.

6.3. Alignment regime and relations for global minimum discriminant

The scalar alignment regime, where the lighter Higgs CP-even behaves as SM Higgs, independently of masses for remaining
scalars is aimed to establish compatibility between theoretical analysis and precision searches for beyond SM physics.
Despite phenomenologically it seems likely that alignment will only be realized approximately, rather than exactly, it
can be translated in ground studies to interpret scalar signal at 125 GeV results from extended models like 2HDMs. The
decoupling limit, where the low-energy spectrum contains only the SM Higgs and no new light scalars, is only a subset
of one more general alignment limit [171]. As a first view, we present a study where the exact alignment is achieved for
our model.

First, for that the alignment emulates couplings of SM Higgs boson with fermions and gauge bosons is required
cos(β − α) ≈ 0. For the Higgs potential described in (6.1.1), we extrapolate the alignment scenario using the conditions
over lighter Higgs boson h0:

m2
h = v2

(
λ1 cos2 β + (λ3 + λ4) sin2 β

)
, (6.3.1a)

m2
h = v2

(
λ2 sin2 β + (λ3 + λ4) cos2 β

)
. (6.3.1b)

If there is a tanβ satisfying the above equations, then the alignment limit would occur for arbitrary values of mA0 and
does not require non-SM-like scalars to be heavy. In our analyses, we scan out the parameter space in such way that
both conditions are satisfied simultaneously:
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6. Models with soft breaking of a U (1) global symmetry

tan2 β =
λ1 − λ3 − λ4

λ2 − λ3 − λ4
. (6.3.2)

In the limit of β → 0, both conditions have a natural solution only if λ1 = λ3 + λ4. On the other hand, tanβ → 1,
implies λ1 = λ2. With the stationary conditions of Eq.(H.1.14)-(H.1.15) and relations for couplings in terms of Higgs
masses (6.2.4), we evaluate the behavior of these alignment cases for tanβ in the global minimum discriminant (6.4.6):

• tanβ → 0 (v2 << v1) gives

D ' −
(
m2

11 − κ2m2
22

)
κ (6.3.3)

Here, alignment takes place when α→ π/2 (i.e. cos(β − α) ' 0). In this regimen and with tan2 β → 0, κ ' 0 and
thus D ' 0. Higgs potentital couplings perturbativity in this case demands also that m2

12 << v1.

• tanβ = 1 and λ1 = λ2 (alignment) implies

D = 0 (6.3.4)

In particular, the complete alignment arises when α = −π/4. Independently of cos(β − α) ' 0 condition for
alignment in fermionic and gauge couplings, Eq. (6.3.2) belongs in the boundary separating global minimum
regimen of multiple minima presence.

• tanβ >> 1 (v2 >> v1)

D ' (m2
11 −m2

22) tanβ (6.3.5)

Perturbativity of λ1, λ2 couplings demands κ ∼ O(1)3 and m2
12 << v2

2 . Complete alignment arises when α → 0
and from equation (6.3.2), alignment also needs to satisfy λ2 = λ3 + λ4. With all conditions, discriminant gives
D ' 0

For these regimes in tanβ, we show as alignment and perturbativity are suffiency conditions to explain D ' 0 scenario.

6.4. Metastability theorems: Particular cases

We briefly discuss the origin of multiple stationary points in the 2HDM by considering tadpoles at tree level equations for
the Higgs potential and through of a revision of systematics developed comprehensively in last chapters. We additionally
have reviewed this systematic in Appendix H. Firstly, we consider the critical points equations (i.e. non-trivial tadpoles
at tree level) for Higgs potential (6.1.1) that give rise to the different stationary points (based on a normal vacuum):

T1 ≡ 2m2
11v1 − 2m2

12v2 + λ1v
3
1 + λ4v1v

2
2 + λ3v1v

2
2 = 0. (6.4.1a)

T2 ≡ 2m2
22v2 − 2m2

12v1 + λ2v
3
2 + λ4v

2
1v2 + λ3v

2
1v2 = 0. (6.4.1b)

Notice that one cannot have solutions of the form {v1 = 0, v2 6= 0} or {v1 6= 0, v2 = 0}, unless that m2
12 = 0. Those

are the natural inert models discussed broadly in the last chapter. A trivial solution of these equations is clearly v = 0,
equivalent to one theory without EW symmetry breaking. Excluding that case, the stationarity conditions (6.4.1a) and
(6.4.1b) become

v2 +
2m2

11 − 2m2
12 tanβ

λ1 cos2 β + λ4 sin2 β + λ3 sin2 β
= 0. (6.4.2a)(

2m2
11 − 2m2

12 tanβ
) (
λ2 tan2 β + λ4 + λ3

)
−
(
2m2

11 − 2m2
12 cotβ

) (
λ1 cot2 β + λ4 + λ3

)
tanβ = 0 (6.4.2b)

We have also been following discussion and formalism presented in [30]. Equation. (6.4.2a) tells us that, other than
its sign, the value of VEV v is given unequivocally by tanβ function. Eq. (6.4.2b) is an equation of fifth order on tanβ,

3Indeed, perturbative limits are established to avoid divergences in the renormalization group equations. The reason is that the value of
quartic coupling cannot exceed the bound of 4π since beyond this limit the possibility to find out some Landau pole in energy couplings
evolution is significantly greater [169].
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6.4. Metastability theorems: Particular cases

having at most five possible real solutions. These two equations describe therefore ten possible solutions {v1, v2}, due to
the ambiguity on the sign of v; since 2HDM potential in Eq. (6.1.1) is also invariant under the transformation Φ1 → −Φ1

and Φ2 → −Φ2. These ten solutions correspond to only four different physical scenarios. Adding the trivial solution
v1 = v2 = 0 (no EW symmetry), we have a total of eleven solutions.

There are at most two different values of tanβ which satisfy both equations. This fact means that exist a maximum
of six stationary points. Indeed, it could lead more than one normal minimum, with different depths. To establish it
formally is necessary to make use of Morse’s systematics [30, 193]: For a given real function of two variables, let η0, η1

and η2 be the number of its minima, saddle points, and maximums inside in the Higgs potential, respectively. For a
polynomial function in v1 and v2, bounded from below, such as the one we are dealing with, Morse’s inequalities state
that:

• η0 ≥ 1.

• η1 ≥ η0 − 1.

• η0 − η1 + η2 = 1.

The foundations of Morse’s inequalities give bounds over critical points, in particular over minima behavior in the
Higgs potential and its influence in stationary conditions and mass matrices. The 2HDM potential in Eq (6.1.1) has
η0 + η1 + η2 = 2n + 1 stationary solutions, n = 0, ..., 5: at most 2n real roots of eqs. (H.1.18), (H.1.19) plus the trivial
solution v1 = v2 = 0 (No EW symmetry breaking). We can use Morse’s inequalities to get η0 + η2 = n+ 1. We analyze
several possibilities for the number of minima η0, depending on the number of real solutions n. By counting extremal
cases, all the different combinations of stationary points leads to find the following general aspects: There are critical
points without symmetry breaking associated to every case of maximums, minima or saddle points combinations. Thus,
typical situations of SSB with a global minimum are given for 1 ≤ n ≤ 2. Meanwhile, for n = 3 and using Morse’s
inequalities: η0 + η2 = 4 yields a SSB scenario plus a trivial minimum located at the origin. The n = 4 case translates
in two pairs of degenerate minima away from the origin. It is not mandatory that these two pairs of minima to have
the same depth. Therefore as first glance, we might have one normal minimum deeper than another. Finally, the higher
order in n solutions yields trivial plus global and non-global minima.

Hence if there are more than two solutions for v2/v1 ratio, which said the 2HDM might have more than one normal
minimum away from the origin with different depths. However, no more than two of such minima can exist by physical
grounds (for a non-long-lived enough minimum state). The analysis of non-global minimum structures must be seen as
potential exclusion regions in the parameter spaces for these particular cases of 2HDM.

From the form of critical points and Morse’s inequalities, we can see as multiple non-degenerate minima can be present
in the Higgs potential. It is worthwhile now to analyze where can be ensured the existence of one and only one global
minimum. For this purpose, we restrict the following phenomenological study to avoid two minima with different depths.
Taking the case of four real solutions, in [25, 27] have shown that the difference in the values of the potential in those
two normal vacuum structures N1 and N2 is given by

VN2
− VN1

=
1

4

[(
m2
H±

v2

)
N1

−
(
m2
H±

w2

)
N2

]
(v1w2 − v2w1)

2
. (6.4.3)

with v2 = v2
1 + v2

2 in N1 and w2 = w2
1 + w2

2 in N2. N2 structure can be seen interchanging vi → wi in the VEVs for
respective doublets of (6.2.3). Nothing establishes how to carry out the computations to determine which is the overall
sign in the difference. Another aspect of this result is that starting with the same Higgs potential, the demonstration
depends on only of vacuum structure in both minima. The following discriminant, written regarding tensor matrix of
the Higgs potential (6.1.2), ensures the existence of one and only one global minimum in the theory [29]4

D ≡ − det(ΛE − ζI). (6.4.4)

ζ is an auxiliary function introduced in the Higgs potential to determine stationary conditions. This Lagrange multi-
pliers is related with

∑2
i=1 Φ†iΦi ≥ 0 constraint. ΛE is Λµν of Higgs potential (6.1.2) expressed by an Euclidean-metric

and I is the four dimensional identity matrix. In the diagonal basis (ΛE → diag(Λ0,Λ1,Λ2,Λ3)), the global minimum
discriminant reads

4D-discriminant, encouraging a global minimum in the Higgs potential, has been computed for 2HDMs from Hessian of the Higgs potential
in the gauge orbit field using the reparameterization group SO(1, 3), as is shown in Appendix I.
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6. Models with soft breaking of a U (1) global symmetry

D ≡ (Λ0 − ζ)(ζ − Λ1)(ζ − Λ2)(ζ − Λ3). (6.4.5)

Concerning the parameters inside of the Higgs potential with a softly breaking of U(1)-symmetry (6.1.1).

D =
(
m2

11 − κ2m2
22

)
(tanβ − κ) > 0. (6.4.6)

with κ = (λ1/λ2)
1/4

. By the implications of stationary conditions (H.1.14) and (H.1.15), we exclude β = 0 and
β = π/2 values in the parameter space. Only we approach to them by means of their limit values, which bring out to
some couplings in non-perturbative regions. In terms of scalar masses this discriminant takes the form is

D =

[
1−

m2
A0

m2
h0m2

H0

(
m2
H0 cos2 (α+ β) +m2

h sin2 (α+ β)
)] m2

A0m2
h0m2

H0

4v8 cos2 β sin2 β
.. (6.4.7)

Regarding splitting parameter kS , this condition can be translated into

kS <
1(

m2
H0

m2
h0

(
1− sin2(β + α)

)
+ sin2(β + α)

) . (6.4.8)

This bound has been evaluated in the plane mH0 − sin(β + α) as is depicted in Fig. (6.1). For our purposes, both
structures for metastability discriminant are useful in determining regions of parameter space compatible with vacuum
stability. The second one give us direct information about scalar mass, while the former give us information about Higgs
mass splittings. D > 0 ensure a global minimum in the theory. If D < 0, additional computations are necessary to
discriminate between both vacuum structures.

6.5. Phenomenological aspects of theories with softly breaking of U(1)

The 2HDM model with Abelian global symmetries has been used as a ground basis to explain CP violation phases in
strong interactions employing Peccei Quinn mechanism [194, 195]. When the global symmetry is spontaneously broken,
the new scalar spectrum should contain an axion with zero mass, which is not wanted by theoretical facts [64, 66]. If a
massless (o with a mass of small size) scalar particle exist its detection and precision measurements are a real challenge;
the phenomenological compatibility to explain strong CP phases is not accurate yet so far [65]. Furthermore, topological
defects as vortices are generated in this regime when the global symmetry has been broken. To avoid those issues and to
improve experimental level of accuracy of the Peccei-Quinn models, a dimension two term of U(1) symmetry violation, is
introduced in the Higgs potential. This term has a small impact on the evolution of Renormalization Group Equations5

computations about stability and metastability: It also yields a non-zero mass term for pseudoscalar particle A0 (see Eq.
6.2.4e).

It is worth to say that the presence of dimension two-term as well as the stationary conditions exclude the possibility
of an inert vacuum in some doublet. Hence inert cases are just accomplished in an approximate way for fractions of
v2/v1 → 0 (quasi-inert regimen); having many phenomenological consequences in dark matter searches [118,173] and for
the description of viable mass terms for neutrinos [68,130].

As was pointed out above, an outstanding aspect of general 2HDM is the presence of metastable states with two normal
vacuum structures; what is a consequence of the solutions of stationary conditions combinations of Eqs. (H.1.18)-(H.1.19).
The simplest case is such where a soft term appears in the Higgs potential invariant under a continuous global symmetry.
Nevertheless, 2HDM nature restricts facts as the coexistence of minima of different depths and different origins (CP
breaking and charge breaking -CB- vacuum structures) [25]. Besides, whenever a normal minimum exists in the 2HDM,
the global minimum of the potential is a normal one, and no tunneling to a deeper CB or CP minimum is allowed [67].
On the other hand, if a CP (CB) violating minimum exist in the 2HDM, it is the global minimum of the theory, and
so stable, and no tunneling to a deeper normal or CB (CP) minimum can occur [19]. Hereafter, we are only focused on
normal behavior of EW vacuum and its phenomenological consequences.

5In the softly broken U(1)-model, m̄2
12 has the following RGE

16π2 d

d logµ2
m̄2

12 = (2λ3 + λ4) m̄2
12.

It is possible to see as radiative corrections to m2
12 are proportional to m2

12 itself and are only logarithmically sensitive to the cutoff µ.
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6.6. Global minimum behavior in mH0 − sin (α+ β) plane

With this phenomenological approach, our primary goal is to compute the regions where the metastability due to two
normal vacua in EW scale arise; determining allowed scenarios in experimental data (e.g. diphotonic decays for SM
like-Higgs) and thus improving vacuum analysis carried out at NLO level.

6.6. Global minimum behavior in mH0 − sin (α + β) plane

Figure 6.1.: Metastability behavior for mH0 − sin(α+ β) plane represented by shadowed zones. Each scenario is charac-
terized by ratio kS = m2

A0/m2
H0 .

Considering Eq. (6.4.7) is possible to establish the zones where absolute stability could be in conflict with the presence
of a second minimum. Ratio between Higgs eigenstates k = m2

A0/m2
H0 has been used to compare different regions in the

plane mH0 − sin (α+ β) , as is despited in Fig. (6.1)
More generally and to avoid multiple minima at tree level, the lower limit on mH0 becomes weaker as sin(α+ β)→ 0.

Moreover, metastable states appear in a wide zone of mH0 − sin(β + α) when ks > 1 increases. In addition when
ks < 1, the parameter space does not show exclusion zones. Finally, metastable states dominate all values of mH0 when
| sin(β + α)| = 1.

6.7. Exclusion regions by stability and metastability analyses: 0 ≤ α ≤ π/2

Discrimination of exclusion zones from metastability in particular regions of parameter space is relevant to estimate
vacuum behavior for the theory at NLO. Typical constraints found out involve many parameters of the Higgs potential.
Thus, to extract phenomenological information, we analyze particular models. To that end, we have listed in Tab. 6.1
some limiting models for specific values of α and β angles by using expressions of Higgs eigenstates given in section (6.2).

Particularly, alignment regime for couplings (cos(β − α) → 0) is present in AIII and CI models. For model AIII ,
condition (6.3.2) implies besides λ1 = λ3 + λ4. Finally, fulfillment of alignment regime in model CI is achieved when
λ2 = λ3 + λ4. Other models taking into account h0 with the mass of 125 GeV, but they do not emulate the same Higgs
couplings as in the SM case.

Figure 6.2 shows a set of contours to see metastability states in the parameter space and for particular cases depicted
in Tab. 6.1. With this in mind, the plane ∆S2

1 −∆S2
2 is the first candidate to observe exclusion zones using discriminant

6.4.6. By a counting of parameters, metastability zones end up into depending on mixing angles α, β, quartic couplings
λ1 and λ2, and from mh0 values. Given this context, we fixed the mass value for a lighter Higgs in 125 GeV, appealing
to a searching of a complete alignment scenario for 2HDM. Here the lighter Higgs is identified with the SM Higgs boson
and the remaining scalars could be set at any energy scale, even in the EW regime. Having this exclusion analysis,
we proceed to evaluate the RGE’s evolution to describe initial conditions influence in the global solution in the face
of vacuum behavior. Here the contours are interpreted from the minimum values obtained from the discriminant in
such a way that the presence of another minimum has been identified as a possible appearance of metastable states.

129



6. Models with soft breaking of a U (1) global symmetry

Figure 6.2.: Metastability and absolute stability region in ∆S2
1 −∆S2

2 plane for Ai, Bi and Ci models with i = I, II, III
described in Table 6.1. Red lines in AIII and CI models give information about as alignment regime behaves
in those parameter spaces where cos(β − α) ≈ 0. Zones with D < 0 (Light-Blue) where the chance of finding
two non-degenerate minima pairs is greater, will be labeled as “metastable” ones.
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6.7. Exclusion regions by stability and metastability analyses: 0 ≤ α ≤ π/2

Model tanβ α ∆S2
1v

2 ∆S2
2v

2 ∆S2
3v

2

AI 10−3 0 m2
H0 ξ0

(
m2
h0 −m2

A0

)
2m2

H± −m
2
A0

AII 10−3 → π/4 1
2

(
m2
H0 +m2

h0

)
ξ0
2

(
m2
H0 +m2

h0 − 2m2
A0

)
2m2

H± +m2
H0 −m2

A0 −m2
h0

AIII 10−3 π/2 m2
h0 ξ0

(
m2
H0 −m2

A0

)
2m2

H± −m
2
A0

BI 1 0
(
2m2

H0 −m2
A0

) (
2m2

h0 −m2
A0

)
2m2

H± −m
2
A0

BII 1 → π/4
(
m2
H0 +m2

h0 −m2
A0

)
1
2

(
m2
H0 +m2

h0 −m2
A0

)
2m2

H± +m2
H0 −m2

A0 −m2
h0

BIII 1 π/2
(
2m2

h0 −m2
A0

) (
2m2

H0 −m2
A0

)
2m2

H± −m
2
A0

CI 102 0 ' ξ1(m2
H0 −m2

A0) ' m2
h0 2m2

H± −m
2
A0

CII 102 → π/4 ' ξ1
2

(
m2
H0 +m2

h0 − 2m2
A0

)
' 1

2

(
m2
H0 +m2

h0

)
2m2

H± +m2
H0 −m2

A0 −m2
h0

CIII 102 π/2 ' ξ1
(
m2
h0 −m2

A0

)
' m2

H0 2m2
H± −m

2
A0

Table 6.1.: Splittings among Higgs mass eigenstates for different models, which are varying mixing angles α and β (tanβ);
being λ4 = 2

(
m2
A0 −m2

H±

)
/v2 ≡ ∆S2

4 independent of those parameters. ξ0 and ξ1 are related to values of
cotβ and tanβ respectively. Moreover, they are introduced to conserve perturbative behavior of λ’s couplings,
i.e., λi ∼ O(1). From stability conditions of λ1 > 0 and λ2 > 0, it is also possible to infer a set of features of
each model.

Metastability and absolute stability region in ∆S2
1 −∆S2

2 plane for Ai, Bi and Ci models with i = I, II, III described
in Table 6.1. Red lines in AIII and CI models give information about as alignment regime behaves in those parameter
spaces where cos(β − α) ≈ 0.

• AI model. Metastable states are suppressed in the plane ∆S2
1 −∆S2

2 . Model has only instabilities for the effective
Higgs potential. To maintain perturbativity in the scenario with mA0 ∼ mh0 (Φ2-direction) and to avoid minima
with charge violation, scalar spectrum behaves as mh0,A0 < mH0 and mA0 < mH± . This scenario embodies a
non-alignment case, where H0 saturates couplings with SM bosons and fermions.

• AII model (limit case). Stable zones dominate over broad regions in the respective plane. Metastable zones start
to appear in values of ∆S2

1 > 0.258 and ∆S2
2 approaching to zero. Non-perturbative zones are excluded when

2mA2 ∼ m2
H0 + m2

h0 , which is not compatible with stable zones at tree level (presence of one global minimum in
the EW theory).

• AIII model. Metastable zones dominate both directions Φ1 − Φ2. In the limit, a small stable zone is located
∆S2

1 > 0.258. The lower bound corresponds to the observed Higgs mass of mh0 ≈ 125 GeV and that has been
identified with parameters associated with h0. This choice is the alignment regimen defining a boundary between
stable and metastable scenarios. Non-perturbativity zones are present unless mH0 ∼ mA0 . This limit model
emulates important features of a U(1)-Inert 2HDM, like the hierarchy in the scalar spectrum: mH± > mA0,H0 . As
well as in the inert model and since fulfillment of an alignment regime, H0 and A0 would behave as likely dark
matter candidates. It is worthwhile to describe that all these Abelian models with softly breaking terms can not
be reduced down at all to an inert 2HDMs since stationary-conditions (H.1.14) do not satisfy the choice of v2 = 0
simultaneously.

• BI model. Metastability is absent in the plane ∆S2
1 −∆S2

2 for zones compatible with SSB. In addition, and in the
same space parameter, vacuum stability at tree level imposes 2m2

H0 > m2
A0 and 2m2

h0 > m2
A0 . Thus A0 → h0h0

and A0 → H0H0 decays are suppressed.

• BII model. Metastability appears in this parameter space significantly, with a scenario where ∆S2
1 > ∆S2

2 . From
vacuum stability conditions, it is inferred that m2

H0 + m2
h0 > m2

A0 . Non alignment scenario is present since
cos(β − α) ' 1, thus H0 impersonates to couplings SM Higgs with fermions and gauge bosons.

• BIII model. Stability through just one global minimum is ensured in almost all parameter space. Tiny zones of
non-stability are encoded for values of λ1 → 0. Here the scalar spectrum inherits an analog behavior for that
obtained in the BI model, i.e., 2m2

H0 > m2
A0 and 2m2

h0 > m2
A0 . The hierarchy structure for scalars spectrum saves

a similar pattern that in the BI model.

• Model CI : One stable global minimum broadly dominates parameter space. Presence of one and only global
minimum is ensured for ∆S2

1 ≥ 0.258. By providing perturbativity in the scalar sector, spectrum should satisfy
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6. Models with soft breaking of a U (1) global symmetry

Model tanβ α ∆S2
1v

2 ∆S2
2v

2 ∆S2
3v

2

DI 10−3 → −π/4 1
2

(
m2
H0 +m2

h0

)
ξ1
2

(
m2
H0 +m2

h0 − 2m2
A0

)
2m2

H± +m2
h0 −m2

A0 −m2
H0

DII 10−3 → −π/2 m2
h0 ξ1

(
m2
H0 −m2

A0

)
2m2

H± −m
2
A0

EI 1 → −π/4 1
2

(
m2
H0 +m2

h0 −m2
A0

)
1
2

(
m2
H0 +m2

h0 −m2
A0

)
2m2

H± +m2
h0 −m2

A0 −m2
H0

EII 1 → −π/2
(
2m2

h0 −m2
A0

) (
2m2

H0 −m2
A0

)
2m2

H± −m
2
A0

FI 102 → −π/4 ' ξ0
2

(
m2
H0 +m2

h0 − 2m2
A0

)
' 1

2v2

(
m2
H0 +m2

h0

)
2m2

H± +m2
h0 −m2

A0 −m2
H0

FII 102 → −π/2 ' ξ0
(
m2
h0 −m2

A0

)
' m2

H0 2m2
H± −m

2
A0

Table 6.2.: Splittings among Higgs mass eigenstates for different models, which are varying mixing angles α and β (tanβ);
being λ4 = 2

(
m2
A0 −m2

H±

)
/v2 ≡ ∆S2

4 independent of those parameters. ξ0 and ξ1 are related to values of
cotβ and tanβ respectively. Moreover, they are introduced to conserve perturbative behavior of λ’s couplings,
i.e., λi ∼ O(1). From stability conditions of λ1 > 0 and λ2 > 0, it is possible to infer a set of features of each
model.

mH0 ∼ mA0 ; being both scalars plausible dark matter candidates. Once again, this model can emulate a pseudo-
inert scenario with v1 = 0. It also contains an alignment scenario delimiting the boundary between stable and
possible metastable states.

• Model CII : Metastable zones are present in values starting in ∆S2
2 ≈ 0.258 for small values of ∆S2

1 , but other
metastable zones are also present in lower values of ∆S2

1 . Together with avoiding non perturbative scenarios,
structure of mass eigenstates implies m2

h0 +m2
H0 ∼ 2m2

A0 .

• Model CIII : Large areas of stability are present in this particular parameter space. Non-perturbative scenarios
appear unless that mh0 ∼ mA0 , with a small splitting preferring m2

A0 −m2
h0 < 0. Here H0 can be identified with

possible values taken by λ2. In comparison to cases AIII , BII and CI , CIII model ensures a non-alignment regime
where couplings to SM bosons and fermions are dominated by H0, meanwhile h0 is approximately decoupled of
them. Perhaps, this model has many strong constraints from the phenomenological point of view [171].

And from construction of mass eigenstates, there is another relevant phenomenological zone where −π/2 < α < 0,
with limit values of α→ −π/2 and α→ −π/4.

There are two alignment regimes given by the DII and EI models. From Fig. 6.3 and mass eigenstates behavior
described in Table 6.2, we can extract the following features:

• DI -model: Despite this choice contains a metastable zone for lower values of ∆S2
1 < 0.258, global-minimum presence

dominates this parameter space. The most stringent bound from metastable behavior is also in lower values of
∆S2

2 . Moreover by perturbativity m2
h0 +m2

H0 ∼ 2m2
A0 ; being slightly greater the sum of CP even states.

• DII -model: A metastable zone is set in ∆S2
1 ≥ 0.258. By virtue of identification of h0 with SM Higgs, alignment

regime is developed over this value separating global minima and metastability behavior. In addition mH0 ∼ mA0

condition coming from perturbativity request. In this model A0 → H0H0 decays are forbidden.

• EI model: A broad zone of metastability is present for ∆S2
2 ≥ ∆S2

1 , developing an alignment regime in the limit
where both parameters are equal. Hence alignment scenario defines a boundary between a theory with a global
minimum and one model with more of two minima. By the form of the couplings, alignment seems to be the best
limit in the parameter space. Stability in the Φ1 and Φ2 directions leads to m0

H +mh0 > mA0 .

• EII -model: Parameter space compatible with SSB does not contain metastable states for any combination of
couplings. In this scenario 2m2

h0 > m2
A0 and 2m2

H0 > m2
A0 ; avoiding A0 → h0h0 and A0 → H0H0 decays.

Thus mA0 < 176 GeV. This model shares some features of metastability and phenomenology with the BI and
BIII -models.

• FI -model: Metastability zones are developed in lower values of ∆S2
2 < 0.258 extending roughly in all values of

∆S2
1 . In this parameter space, perturbativity demands m2

H0 +m2
h0 ∼ 2m2

A0 .

• FII -model: Stable zones are in almost all parameter space. This a scenario of non-alignment since H0 emulates the
couplings among SM-Higgs with fermions and bosons. To avoid non-perturbative scenarios for quartic couplings,
h0 and A0 should be almost degenerate in mass.
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6.7. Exclusion regions by stability and metastability analyses: 0 ≤ α ≤ π/2

Figure 6.3.: Metastability and absolute stability region in ∆S2
1 − ∆S2

2 plane for Di, Ei and Fi models with i = I, II
described in Table 6.2. Red lines in DII and EI models give information about as alignment regime behaves
in those parameter spaces where cos(β − α) ≈ 0.
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6. Models with soft breaking of a U (1) global symmetry

Finally, we note the strong dependence and sensitivity of a unique global solution with the tanβ when β → 0 and π/2.
Therefore, in these zones and models, a more carefully analysis must be done to describe the real behavior of metastable
states and global minimum.

6.8. One loop analysis for quartic couplings for B − E and C − F like models

Figure 6.4.: Top and bottom Yukawa couplings evolution are varying mixing angle β in the initial condition 3.5.4a. Width
in each evolution is due to top mass (pole) uncertainty mt = (173.34 ± 0.76) GeV [174]. As was explained
in Chapter 3, at one loop level RGEs for Yukawa couplings, are independent of scalar couplings. These plots
are extrapolations of the already obtained ones in section 3.5.

From the possible presence of two non-degenerate minima in the Higgs potential at tree level, it is feasible to extract the
following consequences. Firstly, metastable states are strongly dependent on α and β angles, and secondly, the alignment
regime, where it is reliable, is the boundary between absolute-stable zones and metastable zones. By the form of Yukawa
couplings evolution A-D models could be ruled highly constrained from vacuum stability analyses. Non-perturbative
zones exclude models with tanβ < 1 since compatible areas with stability are highly reduced6. This argument comes
from top-Yukawa couplings given in Fig. 6.4 evolution and structure of stability contours in B-E models shown in Fig.
6.5, which are inconsistent with perturbative unitarity in the λ1 − λ2 plane.

One relevant scenario is presented when tanβ → 1 and α → π/4,−π/4, where the improvement under metastability
forbids every zone allowed by stability at one loop level; being restricted by perturbativity and unitarity analyses as
well. In addition, when α = π/4 (non-alignment) this zone is also forbidden by divergent solutions for metastability
discriminant (6.4.6). Alignment scenario is present when α → π/4, where metastability does not allow zones where
∆S2

1 < ∆S2
2 . Despite perturbative unitarity is consistent with stable zones at 1011 GeV in ∆S2

4 − ∆S2
3 , at 103 GeV

unitarity exclude all possible stable zones in the Φ1 − Φ2 plane.
At one loop level, instabilities in the 2HDM type I in C-E models are present among in intermediate energies and

GUT and Planck scales. Hence we focused on 103 ≤ µ( GeV ) ≤ 1019 scenario. By crossing stability and metastability
analyses, it is possible to find out stronger exclusion regions. This procedure can be seen as an improvement of stability
analysis to eliminate the possibility of having two minima in the EW scale.

On the other hand, C-F models are broadly compatible with perturbative unitarity and vacuum stability analysis.
For instance in the plane ∆S2

1 −∆S2
2 , stable zones shown in Fig. 6.6 are also consistent with unitarity analysis for lower

values of ∆S2
1 . In the Φ1 direction, values beyond 0.4 are non-perturbative. This zone is compatible with alignment

regime given by the CI model. In the ∆S2
4 −∆S2

3 exist zones compatible with stability and perturbative unitarity for
considered energy scales. However they are broadly suppressed and have set in ∆S2

3 > 0 and −0.35 < ∆S2
4 < −0.1;

which can enter in conflict with ST oblique parameters [170]. By ∆S2
3 results, a new hierarchical structure appears in

mass eigenstates for FI and CII models: 2m2
H± > m2

A0 +m2
H0 −m2

h0 . Stability analyses in the λ3 coupling for FII and
CII models are also consistent with hypothesis avoiding charge breaking minima i.e. mA0 < mH± .

One reference point to study is the limit of a quasi-inert case, where one vacuum expectation value emulates the
unique VEV of SM vacuum, and the remaining one is equal to zero. This case is recovered when tanβ >> 1 and

6Explicit RGEs can be obtained from those presented in Appendix J by taking the limit of λ5 → 0
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6.8. One loop analysis for quartic couplings for B − E and C − F like models

Figure 6.5.: (Up) Phase diagrams with the evolution of contours from µ = 103 GeV (Background-Left) up to µ = 1011

GeV (Background-Right) in the ∆S2
1 -∆S2

2 plane for B-models. Here −0.25 ≤ λ3,4(mZ) ≤ 0 and starting
with λ3,4(mZ) = −λ2(mZ)/2. Red lines are the remaining contours between µ = 103 and 1011 GeV. (Down)
Phase diagrams with the evolution of contours from µ = 103 GeV (Background-Left) up to µ = 1011 GeV
(Background-Right) in the ∆S2

4 -∆S2
3 plane for B-models. Here 0 ≤ λ1,2(mZ) ≤ 0.25 and starting with

λ1,2(mZ) = λ3(mZ). Red lines are the remaining contours between µ = 103 and 1011 GeV. Higher values of
µ are incompatible with perturbativity and RGEs convergence. We have taking into account quark top mass
in the pole for Yukawa evolution.
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6. Models with soft breaking of a U (1) global symmetry

Figure 6.6.: (Up) Phase diagrams with the evolution of contours from µ = 103 GeV (Background-Left) up to µ = 1019

GeV (Background-Right) in the ∆S2
1 -∆S2

2 plane for C-models. Here −0.25 ≤ λ3,4(mZ) ≤ 0 and starting
with λ3,4(mZ) = −λ2(mZ)/2. Red lines are the remaining contours between µ = 103 and 1019 GeV. (Down)
Phase diagrams with the evolution of contours from µ = 103 GeV (Background-Left) up to µ = 1019 GeV
(Background-Right) in the ∆S2

4 -∆S2
3 plane for C-models. Here 0 ≤ λ1,2(mZ) ≤ 0.25 and starting with

λ1,2(mZ) = λ3(mZ). Red lines are the remaining contours between µ = 103 and 1019 GeV.
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6.9. Phenomenological aspects in the alignment regime

α → 0; identifying highly compatibility from metastability at tree level. It is worthwhile to say that this scenario is
perturbatively reliable, and RGEs can be solved if and only if there is a degeneracy between H0 and A0. This quasi-inert
limit can easily be identified with the scalar sector for neutrino-specific 2HDMs considered broadly in [68,130]; which are
motivated to introduce naturally neutrino masses if one VEV acquires a small enough value in the scale of eV compatible
with cosmological and experimental constraints.

6.9. Phenomenological aspects in the alignment regime

We analyze phenomenological compatibility in the alignment regimen with the likelihood proof for two photons decay
and the oblique parameters realization in the ST plane. In the former case, contours built from Lilith in Fig. 6.7
operates with the method: From definitions of effective coupling Cγ among two photons and one Higgs h0 at LO given in
appendix M, likewise of −2 log(Cγ) relation, we scan the 2-dimensional parameter space in the mH± −mA0 plane fixing
β → 0, π/4, π/2 in contours. We study particularly an alignment scenario where cos(β − α) ≈ 0 (AIII , CI , DII and EI
models). In addition for EI model, in each contour of Fig. 6.9 we are varying kS = m2

A0/m2
H0 ratio. The 2-dimensional

68%, 95%, 99.7% CL regions in the plane (mH± −mA0) are obtained with ∆(−2logL) < 2.3, 5.99, 11.83, respectively.
On the other hand, the systematic with oblique parameters in the S, T plane works in the following way: Taking the

experimental constraints S = (0.05± 0.11) and T = (0.09± 0.13), we examine 99% CL contours for model predictions in
splittings and direct masses. The ST formulas for 2HDMs have been extracted from Appendix B.

In the alignment regime for ACD models, perturbativity analysis presented in the section 6.7, demands that A0 and H0

to have small splittings (kS ≈ 1). Likelihood proof (figure 6.7) shows as states where mH± > mH0 are compatible with
a Gaussian distribution of the measurements in the diphotonic channel. At this level, hypothesis to avoid charge vacua
where mH± > mA0 becomes consistent with phenomenological approach of this two photon decay for a SM like Higgs (in
the range of ∆(−2logL) < 2.3). However, regions with mH± < mA0 splittings are still compatible with measurements
for h→ γγ decay. Finally, zones with mA0,H0 > 500 GeV and mH± < 150 GeV are excluded at 99.7 % of C.L.

Figure 6.7.: Likelihood analysis in the alignment regime described by the AIII , CI and DII models in the mH± − mA0

plane in the diphotonic channel. Here h0-SM-like Higgs has a mass of 125 GeV. The red, orange and yellow
lines correspond to the allowed boundaries of 68%, 95% and 99.7% CL regions, respectively. Only kS = 1 is
taken by the perturbativity argument given in Tab. 6.1.

The oblique parameters in the CI -model are depicted in Fig 6.8 in terms of compatible contours at 99% for splittings
and masses (taking mH± > mA0,H0). These analyses shows how masses for charged Higgs are highly constrained for
mH± > 700 GeV. In the same way, at this level, pseudoscalar masses are excluded for mA0 > 400 GeV.

From vacuum stability and perturbativity analyses, one of the most stable models is the CI scenario, requiring addi-
tionally a degeneracy between mA0 and mH0 yielding kS ≈ 1; thus alignment regime requires more information to probe
λ4 < 0 constraint. On the other hand, ST-oblique parameters plane at 99% CL and shown in Fig. 6.8 yields two zones
of compatibility for the CI model. Here we have taken the hypothesis mH± > mA0 . These zones are consistent with the
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6. Models with soft breaking of a U (1) global symmetry

Figure 6.8.: Oblique parameters in the 2HDM-U(1) with the S, T fit results for softly breaking of U(1) symmetry in the
alignment regime given by the CI model; in terms of splittings (Left) and in terms of masses for scalar states
(Right). Computations over ST plane have used Mathematica module described in [180].

stable regions in the plane ∆S2
4 −∆S2

3 from scales of µ = 105 up to scales 1019 GeV in values of ∆S2
4 < −0.4 (Fig 6.6).

However, these zones are outside of unitarity behavior and perturbativity regime for λ4 and λ3 couplings at high energy
scales. Oblique parameters ST at 99% CL, locate pseudoscalar and H0 Higgs with masses in 200 < mA0,H0(GeV) < 400,
meanwhile the charged Higgs mass satisfies 200 < mH±(GeV) < 700.

On the other hand, a most constrained parameter space comes from likelihood analysis for the alignment regime given
in the EI model as is shown in Fig. 6.9. For kS > 1 choice and at least at 68% C.L. hypothesis where mH± < mH0

is excluded from the compatibility of the diphotonic decay for a SM-like Higgs boson. Nevertheless, this model has a
stringent zone for stability and no-metastability at tree level. Therefore, even though the model is highly compatible
with measurements and likelihood hypothesis, stability can be ruled out broadly zones of the respective parameter space.

In the aligned AIII , DII and EI models, oblique parameters at 99% C.L. exclude masses for pseudoscalar Higgs of
mA0 > 400 GeV when ks = 0.4, 0.6 (Fig. 6.10). In that regimen, charged Higgs mass could get up values up to of 800
GeV. When ks = 1.2, 2.0, pseudoscalar Higgs boson has a maximum mass close to 480 GeV, with a mass for charged
Higgs close to 800 GeV.
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6.9. Phenomenological aspects in the alignment regime

Figure 6.9.: Likelihood analysis in the alignment scenario described by EI model in the mH±−mA0 plane in the diphotonic
channel and varying kS = m2

A0/m2
H0 ratio. Here h0-SM-like Higgs has a mass of 125 GeV. The red, orange

and yellow lines correspond to the allowed boundaries of 68%, 95% and 99.7% CL regions, respectively.

139



6. Models with soft breaking of a U (1) global symmetry

Figure 6.10.: Oblique parameters in the 2HDM-U(1) with the S, T fit results for softly breaking of U(1) symmetry in the
alignment regime given by the AIII , DII and EI models (varying ks); in terms of splittings (Left) and in
terms of masses for scalar states (Right). Computations over ST plane have used Mathematica module
described in [180].
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Concluding Remarks

We have presented a unified study of theoretical constraints for non-minimal Higgs sector formed by two scalar doublets.
Several motivations to introduce this non-trivial extension for Higgs sector in SM electroweak gauge group arise from
the following facts: Firstly, observations in cosmology and astrophysics deduce a necessary amount of non-baryonic dark
matter abundance, which has not any candidate from SM spectrum. Also, matter-antimatter asymmetry can not be
compatible with current experimental limits for precision tests in SM. Perhaps, the most outstanding discrepancy from
SM grounds is the neutrino oscillations, yielded by their small masses. Neutrino masses and their smallness is a problem
did not consider by old SM formalisms. Besides, not only the unnatural hierarchy in masses is present in neutrino sector,
for instance, but also the third family also depicts a big difference between top quark and bottom quark masses; being
this an evidence strong enough of isospin violation phenomenon. This effect can not be explained by only an EW- Higgs
doublet generating a SSB simultaneously in all sector for fermions. Secondly, new kind of phenomenology is drawn by
2HDM fundamentals, as the generation of either CP spontaneous or/and explicit violation in all sectors of Lagrangian.
These effects can be relevant mechanisms to interpret baryogenesis or leptogenesis scenarios explaining matter-antimatter
surplus. Moreover, 2HDMs predict possible Flavor Changing Neutral Currents, which are actively suppressed in a sort
of experiments (e.g. in K0 − K̄0 mixing), but there are not successful reasons to avoid them from a fundamental point
of view. Finally, 2HDMs can be compatible effective theories in the scalar sector for a low energy limit of models with
extended gauge implementations (e.g. GUT or Left-Right Models) or extended symmetries of space-time (e.g. Super
Symmetry).

Benchmarks scenarios for physics beyond the SM have changed from the Higgs boson discovery by CMS and ATLAS
collaborations in LHC. The region mass compatible with the scalar signal measured is around 125 GeV. This scale shows
outstanding features related to vacuum behavior according to the model background. In minimal SM, computations at
NNLO exclude absolute stability at 95% C.L. for the current mass region in mt −mh; plane; showing a preference for a
metastable Higgs potential for high energy scales. Hence the Higgs self-coupling approaches to zero in Planck energies,
involving a critical phase that could be explained by either dynamical or symmetry reasons. The above argument is
related to new fields interaction at vanishing scale even as threshold corrections, meanwhile the last fact arises from
radiative corrections for classical Lagrangian parameters.

In our studies, these possibilities are encoded in extended Higgs sectors, where threshold vacuum behavior comes from
corrections at one loop level for 2HDM type I with one inert doublet (i.e. 〈Φ2〉0 = 0). We are additionally taking into
account U (1) and Z2 global symmetries for the Higgs potential, since these preclude the occurrence of FCNC processes
at tree level (highly constrained by experiments). The global U(1) symmetry yields a degeneracy between A0 and H0.
Even though, degeneracy among neutral eigenstates is also avoided by the presence of λ5 coupling, which comes from
considering a general Z2 symmetric Higgs potential.

The constraints at tree level for a bounded from below potential are computed with the formalism of Ivanov [26],
where the SL (2, C) reparametrization symmetry of 2HDM is considered in all its extension. In addition to the standard
constraints over quartic couplings of the Higgs potential, the formalism, as a limiting case, for Z2-symmetry avoiding
charge breaking minima provides λ4 + λ5 < 0 and λ4 − λ5 > 0 bounds. These conditions are translated into mass
eigenstates through mA0 > mH± > mH0 restriction. On the other hand, for the Higgs potential with a U (1) symmetry,
this condition for scalar spectrum implies λ4 < 0, leading to charged Higgs to be the heaviest scalar state in the spectrum
of the inert-2HDM since mH0 = mA0 .

Since EHS as 2HDMs contains a bigger parameter space, a strong first order phase transition could take place, which
is relevant to achieve a successful BAU via baryogenesis. Thus, they are basic models to address the matter-antimatter
asymmetry of the universe. This fact is an additional motivation to study vacuum structures of 2HDMs at tree level and
with radiative corrections since our analyses are inspired in quantifying the threshold effects for stability and exploring
their impact on the Higgs sector for these two limiting models.

For the U (1) and Z2 cases for IHDM, contours in the planes λ1 (mZ)− λ3,4,5 (mZ) were considered when the vacuum
positivity relations are elevated to be accomplished with the effective quartic couplings in the Higgs potential at one loop
level. Those structures allow studying the new sources of instabilities in the Φ1,Φ2 directions or in the Φ1 − Φ2 plane
of the 2HDM-field space. And they are translated into constraints over scalar masses or more particular in splitting
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6. Models with soft breaking of a U (1) global symmetry

between them; where the discovered scalar state in LHC has been identified with the lightest scalar CP even of 2HDM.
The last regime is interpreted as the alignment limit, where the mass scale of the remaining scalars could even be at EW
scale. Fixing the minimality principle and vacuum behavior of the model, we look for the scalar mass values compatible
with perturbative unitarity constraints and EW precision tests by oblique parameters realization.

The 2HDM-type I threshold corrections at one loop increase energy scale for Higgs potential stability by the intro-
duction of new fields and couplings among them, all compared with the vacuum behavior in the SM minimal (with
Higgs masses of order of the central value of the current experimental signal mh = 125.04 GeV). However new sources
of instabilities in those scales appear in the Φ1 − Φ2 plane by the evolution of the remaining quartic couplings, which
has many implications for the behavior of mass eigenstates. For instance, in the splitting between states m2

H± and m̄2
22

evolution (encoded in λ3), is shown as positive zones are favored for the reference value in EW scale (mZ). Moreover,
this zone is also compatible with perturbative unitarity behavior of scalar scattering. All results favor the scenario in
which the charged Higgs is the heaviest mass state present in the U(1) invariant Higgs potential for an inert vacuum.
Meanwhile, A0 is the heaviest one in Z2 theory, with mA0 > mH± > mH0 . Both statements come mainly from also
avoiding a charge violation minimum.

Behavior of SM parameters could be extrapolated to the inert 2HDM. Particularly, in the 2HDM type I, strong
instability sources come from λ1 (µ) evolution. These instability zones could be present even in µ = 103 GeV for some
zones of the parameter space. For instance, in ∆S2

1 (when λ1 (mZ) = m2
h0/v2 ' 0.258), stability zone is located at

−0.06 . λ4(mZ) . 0. However, these zones near to ∆S2
1 = 0 could be evaluated with custodial symmetry behavior at

one loop level; being this fact determined from ST -electroweak parameters (for U = 0). Meanwhile, non-critical values
for λ1 (µ) at Planck scales are compatible with S−T fit contours at 99% C.L. in values m2

H± > m2
22. In the Z2 scenario,

analyses favored small splittings between the mass of A0 and H0, making more compatible the m2
A0/m2

H0 > 1 condition.
The compressed scenario, with an approximated degeneracy between mA0 and mH0 is not ruled out in the S−T plane at
99% C.L. for ∆S2

1 < 0.5 and ∆S2
0 < 0.25. Nonetheless, presence of a global minimum analyses exclude this compressed

regime for |m2
22| > 2500 GeV2. Finally, global minimum belongs in m2

H± > m2
22, which is in consistency with vacuum

analyses.

Vacuum stability systematics discriminate between the most general form for Higgs potentials in both cases, with Z2

and U(1) symmetries because of hierarchy for mass eigenstates obtained is distinct from those models. From a recent
discussion, in the first case the pseudoscalar A0 arises as the heaviest scalar particle, meanwhile in the U(1)-model,
charged Higgs boson plays this role. Hence in the Z2 case, the most natural dark matter candidate is H0 and, by
contrast, in the U(1) case both A0 and H0 might be good prospects. However, models with a U(1)-symmetry have
been ruled out from quantum gravity analyses [189]; excluding the presence of plausible dark matter candidates for these
models with abelian global symmetries.

In the inert-2HDM happens that the parameter space compatible with the simultaneous existence of both vacua is larger
than the predicted by tree-level analyses. In this direction, new featured constraints to describe one global minimum has
been computed using re-parametrization group theorems. It can be a useful aid to investigate the metastable behavior at
NLO, due to the effective potential predictions the nature of vacuum can change at one loop level concerning established
at the tree level. The last can be interpreted as quantum corrections trigger phase transitions between Inert and Inert-like
vacuum structures. Hence possible zones investigated by vacuum stability and precision observables can be excluded by
the presence of an inert-like vacuum at one loop level. This effect is an important issue that should be addressed using
properties here computed about features of a global minimum at tree level.

We know well that the Standard Model with a light Higgs boson in a mass around of 125 GeV provides an accurate de-
scription of a significant quantity of experimental data associated with the Spontaneous Symmetry Breaking mechanism.
The consistency of the precision EW observables with predictions of SM suggest that, if new physics is present at the
EW scale, it is most probably weakly interacting and consistent with the presence of a light Higgs boson in the spectrum.
Extensions with these features are the Two Higgs Doublet Models with a softly broken global symmetry implementing
an additional hypothesis of alignment for scalar states.

Based on the vacuum behavior of SM, we comprehensively study metastable and stable states in the model with softly
breaking of a U(1) global symmetry in the 2HDM. Initially, softly terms are implemented to forbid massless axion-like
particles. Besides, these components are related to metastable states at tree level in the field space. If these minima are
not long-lived enough, dramatical consequences forbid a well-grounded theory. Thus, we consider this fact as possible
exclusions for different configurations of parameter space. Metastability behavior searches are based on Minkowskian
formalism of reparameterization group of the Higgs potential to search one global minimum in the theory, which are
strongly dependent on tanβ and α mixing. There is a high sensitivity of discriminant in zones approaching to β → 0 and
π/2, and when β → π/4 and α→ π/4. The alignment scenarios present in the parameters sweeping define the boundary
between stable and metastable zones, being important to characterize possible phase transitions due to formation the
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6.9. Phenomenological aspects in the alignment regime

multiple local minima in the Higgs potential.
Once studied possible exclusion regions for metastability behavior, we describe vacuum analyses at one loop level for

the models with tanβ = 1 and tanβ >> 1, for different crucial values of mixing angle α. Regimes for tanβ < 1 are
highly non-perturbative and drive out rapidly to instabilities in the Higgs potential. This effect is a consequence of initial
conditions for Yukawa dynamics for type I 2HDM. Besides of this model with v1 = v2 present most stringent regions for
parameter space. On the other hand, analyses for tanβ >> 1 leads to study, in a perturbative reliable theory, regions
where instabilities in the Higgs potential appears in different directions of the field space.

Likewise, the hypothesis to avoid electromagnetically charged vacua are proved in a phenomenological point of view,
employing the likelihood proof of charged Higgs boson influence in the triangle loop corrections of the diphotonic decay of
SM Higgs. In this direction, run 1 data of LHC strongly favored scenarios where mH± > mA0 , which is also a necessary
exigency from couplings in the Higgs potential to get one neutral minimum consistent with the EW symmetry breaking.
The chance of finding a stationary point with charge breaking, before constructing mass eigenstates, is greater when all
space like couplings in the Λ diagonalized tensor are negative. Studying Λ positivity from Silvester criterion drive out to
the same conditions to avoid charge stationary oints, however the full demostration is on road. Notwithstanding stringent
behavior from vacuum analyses, the alignment scenario with v2 = v1 is phenomenological compatible by likelihood proofs
with the normal vacuum hypothesis for charged Higgs boson with the highest mass value in the scalar spectrum.

Within all frameworks here presented, these limits provide a test into the scale characterizing possible sources of
instabilities or new physics energies in several zones of the parameter space in both cases. Although the additional heavy
scalars may improve the behaviour of running Higgs self-coupling at large field values, we prove that they can destabilise
the vacuum in other field directions even in scales related to EW-scenario. Our systematic also lead to determine the
evolution of unstable levels for different regions of field space, complementing previous studies in vacuum behavior in
IHDM. However, these analyses deal open questions about the possible additional threshold contributions from the 2HDM
to explain the criticality in SM from the input of more general Higgs potentials. Nevertheless, when more precision tests
are performed at LHC, and with most accurate values of parameters, the extension to analyses must be introduced to
explain issues related to a stable, effective Higgs potential, baryonic asymmetry of the universe, and the dark matter
origin. Perhaps in those scenarios, higher radiative corrections beyond NLO for 2HDM couplings should be considered
and hence studies about vacuum nature and its behavior might be completed.

All these studies leave open some issues about new physics effects to vacuum stability and the relation with metastable
states. For instance, implications over explanation of baryonic asymmetry of the universe. The influence of this analysis
tackling baryogenesis processes must be addressed soon since accurate descriptions of these effects require of a correct
definition of vacuum states in the Higgs potential. On the other hand, leptogenesis in 2HDMs needs additional fermionic
fields considered as TeV completions via RH-neutrinos for the effective Higgs sector. Notwithstanding, in leptogenesis
mechanism we are focused in massive neutrino decays, these processes depend on a workable definition of a Higgs potential
to describe the phase space allowed for new leptons, and especially, thermal effects are incorporated to provide enough
out of equilibrium processes.

Other aspects are related with how strong gravity sources (e.g. black holes) could change time rates between EW
minimum (as a local stationary point) and one deepest minimum. In this direction and using a thin-wall bubble approx-
imation for the nucleation process (which is possible when generic quantum gravity corrections are added to the Higgs
potential), in [196–198] has been demonstrated that primordial black holes can stimulate vacuum decay. The lifetime
predicted is in millions of Planck times rather than billions of years. One future research might be associated with the
effects over 2HDMs effective Higgs potentials in the presence of a black hole. These results can be seen as the solution
not only aspect related to particle physics, but as a way to analyze tunneling rates near to event horizon of one black
hole. These studies allow describing not only a possible cosmological scenario for 2HDMs but also to determine possible
restrictions in the parameter spaces in extended Higgs sectors from black holes searches in the LHC.
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A. Alignment Regimen

A.1. Scalar Alignment in 2HDMs

In the light of results of LHC, it is convenient to translate general analysis into a particular scenario strongly compatible
with experimental observables. One possible hypothesis is the impersonating the scalar signal found by CMS and ATLAS
collaborations at LHC with the lightest Higgs boson of 2HDM. Meanwhile, the remain scalar spectrum might be coupled
with the same scale energy. Therefore oblique corrections could come in the threshold achieved by precision observables
and thus the couplings among fermions and boson with h0 do not have significant deviations from whose arising in the
SM.

In this section we discussed systematically as Alignment Regime can be achieved from stationary and mass matrices;
from the general Higgs potential presented in (1.2.1), and by imposing a CP-conserving scenario we consider that vacuum
has the following structure

Φ1 =
1√
2

(
0
v1

)
and Φ2 =

1√
2

(
0
v2

)
being vi are real. The non trivial tadpoles at tree level are

m2
11v1 −m2

12v2 +
1

2

(
λ1v

3
1 + 3λ6v

2
1v2 + λ345v1v

2
2 + λ7v

3
2

)
= 0 (A.1.1)

m2
22v2 −m2

12v1 +
1

2

(
λ2v

3
2 + 3λ7v2v

2
1 + λ345v

2
1v2 + λ6v

3
1

)
= 0 (A.1.2)

If some of the VEVs is zero (say vi = 0), associated stationary equation in m2
ii becomes trivial. This scenario is the

case of Inert models, whose construction regarding an additional trivial tadpole at tree-level. It is convenient to introduce
the tanβ parameter, using VEVs ratio

tanβ =
v2

v1
and v2 = v2

1 + v2
2 ' (246)

2
GeV2

In terms of tanβ, stationary conditions (A.1.1) and (A.1.2) behave as

m2
11 −m2

12 tanβ +
1

2
v2 cos2 β

(
λ1 + 3λ6 tanβ + λ345 tan2 β + λ7 tan3 β

)
= 0

m2
22 −m2

12 tan−1 β +
1

2
v2 sin2 β

(
λ2 + 3λ7 tan−1 β + λ345 tan−2 β + λ6 tan−3 β

)
= 0

In both equation we have assumed that vi 6= 0 in the respective relation for m2
ii. The matrix mass in the CP even

sector is

M2 =

(
M2

11 M2
12

M2
21 M2

22

)
= m2

A

(
sin2 β − sinβ cosβ

− sinβ cosβ cos2 β

)
+ v2

(
L11 L12

L21 L22

)
.

with the mass of the pseudoscalar [132]

m2
A =

2m2
12

sin 2β
− 1

2
v2
(
2λ5 + λ6 tan−1 β + λ7 tanβ

)
(A.1.3)

where
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A.2. Generalities and Definitions for Alignment Regimen

L11 = λ1 cos2 β + 2λ6 sinβ cosβ + λ5 sin2 β (A.1.4)

L22 = (λ3 + λ4) sinβ cosβ + λ6 cos2 β + λ7 sin2 β (A.1.5)

L12 = λ2 sin2 β + 2λ7 sinβ cosβ + λ5 cos2 β (A.1.6)

The mixing angle for the CP-even sector is defined as(
H
h

)
=

(
cosα sinα
− sinα cosα

)(
φ0

1

φ0
2

)
≡ R(α)

(
φ0

1

φ0
2

)
This leads to

RT (α)

(
m2
H 0

0 m2
h

)
R(α) =

(
M2

11 M2
12

M2
12 M2

22

)
(A.1.7)

From the component (1, 2) in the above equation, mass states are related by

(m2
H0 −m2

h0) sinα cosα =M2
12 (A.1.8)

By virtue of mH0 > mh0 , implying sinα cosα has the same sign as M2
12.

There are two possible sign choices:

• −π2 ≤ α ≤
π
2 : cosα ≥ 0 and Sign(sinα) = Sign

(
M2

12

)
• 0 ≤ α ≤ π: sinα ≥ 0 and Sign(cosα) = Sign

(
M2

12

)
We will work with these choices for mixing angle α in our phenomenological and theoretical analyses.
The eigenvector corresponding to eigenvalue m2

h is associated to the second row in R(α) from Eq. (A.1.7), satisfies
indeed (

M2
11 M2

12

M2
12 M2

22

)(
− sinα
cosα

)
= m2

h0

(
− sinα
cosα

)
(A.1.9)

A.2. Generalities and Definitions for Alignment Regimen

Our aim is to find the general conditions obtaining alignment without a decoupling of the scalar spectrum. We are
interested in the alignment limit, where the lightest CP-even Higgs mimics the SM one and remain scalars might be set
even in the same EW scale. We will begin by solving for the conditions for which the Higgs couplings to fermions have the
same magnitude as in the SM: |ghuu/gf | = |ghdd/gf | = 1. The decoupling limit, where the low-energy spectrum contains
only the SM and no new light scalars, is only a subset of the more general alignment limit for fermions couplings [171]:

• i) ghdd = ghuu = ±gf

• ii)ghdd = −ghuu = ±gf
Demanding case i) leads to

sinα = ∓ cosβ and cosα = ± sinβ (A.2.1)

which then implies

cos (β − α) = 0 and sin (β − α) = ±1 (A.2.2)

Couplings of the CP-even Higgs bosons now become

ghV V → ±gV , ghff → ±gf , gHV V → 0, gHdd → ± tanβgf , gHuu → ∓ tan−1 β gf (A.2.3)
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A. Alignment Regimen

where the upper and lower signs correspond to sin (β − α) = 1 and −1, respectively. This choice is the alignment limit.
The heavy CP-even Higgs couplings to SM gauge bosons vanish in this limit since it does not acquire a VEV. In other
words, the alignment limit is the regimen where the mass eigenbasis in the CP-even sector coincides with the basis which
the gauge bosons receive all of their masses from one of the doublets. As such, the non-SM-like CP-even Higgs does not
couple to the gauge bosons at the tree-level. However, on this basis H still has non-vanishing couplings to SM fermions

On the other hand, fulfillment of case ii) requires

sinα = ∓ cosβ and cosα = ∓ sinβ (A.2.4)

which gives
cos (β − α) = ∓ sin 2β and sin (β − α) = ± cos 2β

We see that the hV V coupling does not tend to the SM value in this case and alignment is not reached.
The decoupling limit, where the low-energy spectrum contains only the SM and no new light scalars, is only a subset

of the more general alignment limit in Eq. (A.2.2). In particular, quite generically, there exist regions of parameter space
where one attains the alignment limit with new light scalars not far above mh0 = 125 GeV.

It is illustrative to derive the alignment limit in the usual decoupling regime but in a slightly different reasoning.
Consider the eigenvalue equation of the CP-even Higgs mass matrix, rewriting Eq. (A.1),(

M2
11 M2

12

M2
12 M2

22

)
≡ m2

A0

(
sin2 β − sinβ cosβ

− sinβ cosβ cos2 β

)
+ v2

(
L11 L12

L12 L22

)
(A.2.5)

which using Eq. (A.1.9), above relation becomes(
sin2 β − sinβ cosβ

− sinβ cosβ cos2 β

)(
− sinα
cosα

)
=

1

m2
A0

(
M2

11 M2
12

M2
12 M2

22

)(
− sinα
cosα

)
− v2

m2
A0

(
L11 L12

L12 L22

)(
− sinα
cosα

)
(

sin2 β − sinβ cosβ
− sinβ cosβ cos2 β

)(
− sinα
cosα

)
=

m2
h

m2
A0

(
− sinα
cosα

)
− v2

m2
A0

(
L11 L12

L12 L22

)(
− sinα
cosα

)
(A.2.6)

Decoupling is defined by taking all non-SM-like scalar masses to be much heavier than the SM-like Higgs mass,
m2
A0 >> v2,m2

h. Then we see that at leading order in v2/m2
A0 and m2

h/m
2
A0 the right side of Eq. (A.2.6) can be ignored,

and the eigenvalue equation becomes (
− sinα sin2 β − sinβ cosβ cosα
sinβ cosβ sinα+ cos2 β cosα

)
≈ 0 (A.2.7)

thus
cos (β − α) ≈ 0. (A.2.8)

Here we make the critical observation that while decoupling achieves alignment by neglecting the right-hand side of
Eq (A.2.6), alignment can also be obtained if the right-hand side of Eq. (A.2.6) vanishes identically, independent of mA

scale:

m2
h

(
− sinα
cosα

)
= v2

(
L11 L12

L12 L22

)(
− sinα
cosα

)
= v2

(
cosαL12 − sinαL11

cosαL22 − sinαL12

)
. (A.2.9)

More explicitly, since sinα = − cosβ in the alignment limit, we can re-write the above matrix equation as two algebraic
equations

m2
h = v2L11 + tanβv2L12 = v2

(
λ1 cos2 β + 3λ6 sinβ cosβ + λ345 sin2 β + λ7 tanβ sin2 β

)
, (A.2.10)

m2
h = v2L22 + tan−1 βv2L12 = v2

(
λ2 sin2 β + 3λ7 sinβ cosβ + λ345 cos2 β + λ6 tan−1 β cos2 β

)
. (A.2.11)

Above equations have been broadly used in vacuum analysis to establish the compatibility level between a parameter
space allowed by positivity constraints and an alignment scenario. All statements done in this appendix have been settled
in Fig. A.1, wherein Higgs states are located with respect to different planes in the spectrum of several effective theories
of scalar sector for 2HDM. In addition, we put the decoupling limit as the final plane of the “cascade” of effective theories
that can be considered in the 2HDM.
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Figure A.1.: Alignment cascade of scalar states with respect of energy regimen Λ. {H} = A0, H0, H± are the remaining
Higgses of 2HDM (H1, H2 are subsets of them). The higher plane (red) refers to the decoupling limit where
all remaining scalars belong in Λ > ΛEW .
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B. Oblique parameters definitions

B.1. Oblique parameters fundamentals and definitions

Oblique parameters are designed to constrain models of new physics from the electroweak precision observables. It is
assumed that the effects of new physics only appear through vacuum polarization and therefore lead to modifying oblique
parameters. Most of the effects on electroweak precision observables can be parameterized by three gauge self-energy
parameters (S, T, U) introduced by Peskin and Takeuchi [175]. Hence, the correlation among these parameters could
be given regarding electroweak observables and leads to analyze precision physics, useful to constraint new phenomena.
STU parameters are mainly focused on different contributions for observables of physics beyond, as follows

• S(S+U) value describes new physics contributions to neutral (charged) current processes at different energy scales.

• T parameter measures the difference between the new physics contributions of neutral and charged current processes
at low energies. This effect is related to isospin violation at the EW scale. The T parameter is also linked to the
commonly used custodial-parameter ρ ≡ m2

W /m
2
Z cos2 θw (which is close to 1)

ρ0 =
ρ

ρSM
. (B.1.1)

Using,

ρ0 =
1

1− αT
, (B.1.2)

we can evaluate deviations from the SM value of ρ0 = 1.

• U is only constrained by the W boson mass and its total width. Besides, the U parameter is often a small quantity
in new physics models because of it is associated with an eight-dimension effective operator. Therefore, the STU
parameter space can seldom be projected into a two-dimensional parameter space, in which the experimental
constraints are easy to describe in the S − T plane. T parameter measures the difference between the new physics
contributions of neutral and charged current processes at low energies. This effect is related to isospin violation
at the EW scale. The T parameter is also linked to the commonly used custodial-parameter ρ ≡ m2

W /m
2
Z cos2 θw

(which is close to 1)

The 2HDM contributions are defined from relations [199]

S =
16π cos θ2

w

g2

{
ĀZ0Z0(m2

Z)− ĀZ0Z0(0)

m2
Z

− ∂Āγγ(q2)

∂q2

∣∣∣∣
q2=0

+
cos2 θw − sin2 θ

sin θw cos θw

∂ĀγZ0(q2)

∂q2

∣∣∣∣
q2=0

}
(B.1.3)

T =
4π

g2 sin2 θw

[
ĀW+W−(0)

m2
W

− ĀZ0Z0

m2
Z

]
(B.1.4)

U =
16π

g2

{
ĀW+W−(m2

W )− ĀW+W−(0)

m2
W

− cos θ2
w

ĀZ0Z0(m2
Z)− ĀZ0Z0

m2
Z

− sin2 θw
∂Āγγ(q2)

∂q2

∣∣∣∣
q2=0

+ 2 cos θw sin θw
∂ĀγZ0(q2)

∂q2

∣∣∣∣
q2=0

}
. (B.1.5)

Here the AV V ′ are the coefficients for gµν in the vacuum polarization tensors
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B.1. Oblique parameters fundamentals and definitions

Πµν
V V ′(q) = gµνAV V ′(q

2) + qµqνBV V ′(q
2). (B.1.6)

With the subtraction from the SM contribution, we have

ĀV V ′′(q
2) = AV V ′(q

2)|
2HDM

−AV V ′(q2)|
SM
. (B.1.7)

For the T parameter, we have the formula [199]:

T =
g2

64π2m2
W

{
3∑
k=1

|Ck|2F (m2
H+ ,m2

Hk)−
2∑
k=1

|Ck|2F (m2
Hk ,m

2
A0)

+ 3

2∑
k=1

|C3−k|2
[
F (m2

Z ,m
2
Hk

)− F (m2
W ,m

2
Hk

)
]
− 3

[
F (m2

Z ,m
2
href

)− F (m2
W ,m

2
href

)
]}

, (B.1.8)

where mHk (k = 1, 2, 3) denotes scalar masses, and mHref is the SM Higgs. The latter terms isolate the new physics
effect through the subtraction of the SM equivalent. The F function is given by

F (x, y) =

{
x+y

2 −
xy
x−y ln x

y ; for x 6= y

0; for x = y
, (B.1.9)

Couplings between EW bosons to a pair of scalars are summarized by the following arrangement:

Ck = {cos(β − α), sin(β − α), 1}. (B.1.10)

Here α is the diagonalization angle in the real part of the neutral components in the doublets, while β is the diagonal-
ization angle for ”charged” fields in the doublets. β is also related to vacuum structure since tanβ = v2/v1. For the inert
model, α = π/2 and β is equal to zero due to its vacuum realization; being this choice compatible with an alignment
regime (for fermionic and bosonic couplings) since cos(β − α) ≈ 0 [171]. To find other two parameters, S and U , we

define G and Ĝ structures. The former functions are [37]

G(x, y,Q) = −16

3
+

5(x+ y)

Q
− 2(x+ y)2

Q2
+

3

Q

[
x2 + y2

x− y
− x2 − y2

Q
+

(x− y)3

3Q2

]
ln
x

y
+

r

Q3
f(t, r), (B.1.11)

with t ≡ x+ y −Q, r ≡ Q2 − 2Q(x+ y) + (x− y)2, and

f(t, r) =


√
r ln

∣∣∣ t−√rt+
√
r

∣∣∣ r > 0

0 r = 0

2
√
−r arctan

√
−r
t r < 0.

. (B.1.12)

The latter Ĝ function is given by

Ĝ(x,Q) = G(x,Q,Q) + G̃(x,Q,Q), (B.1.13)

and

G̃(x, y,Q) = 12

[
x− y
Q
− x+ y

x− y

]
ln
x

y
+

12

Q
f(t, r)− 24. (B.1.14)

Hence the S−parameter can be described from
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B. Oblique parameters definitions

S =
g2

384π2 cos θ2
w

{(
sin2 θw − cos2 θw

)2
G(m2

H± ,m
2
H± ,m

2
Z) +

2∑
k=1

|Ck|2G(m2
Hk
,m2

A,m
2
Z)

− 2 lnm2
H+ +

3∑
k=1

lnm2
Hk
− lnm2

Href

+

2∑
k=1

|C3−k|2Ĝ(m2
Hk
,m2

Z)− Ĝ
(
m2
Href

,m2
Z

)}
. (B.1.15)

And the U−parameter is

U =
g2

384π2

{
3∑
k=1

|Ck|2G(m2
H+ ,m2

Hk
,m2

W )−
(
sin2 θw − cos2 θw

)2
G(m2

H± ,m
2
H± ,m

2
Z)

−
2∑
k=1

|Ck|2G(m2
Hk
,m2

A0 ,m2
W )

+

2∑
k=1

|C3−k|2
[
Ĝ(m2

Hk
,m2

W )− Ĝ(m2
Hk
,m2

Z)
]
− Ĝ(m2

Href
,m2

W ) + Ĝ(m2
Href

,m2
Z)

}
. (B.1.16)

Constraints on the STU oblique observables are derived from a fit to the electroweak precision data, more details can be
found in the most current articles [81–83]. Besides, in the STU parameters the floating fit values aremZ = 91.1873±0.0021
GeV, ∆αhad(m

2
Z) = 0.02757± 0.00010, and αs(m

2
Z) = 0.1192± 0.0033. The following fit results are determined from a

fit for a reference Standard Model with mt,ref = 173 GeV and mH,ref = 125 GeV:

S = 0.05± 0.11

T = 0.09± 0.13 (B.1.17)

U = 0.01± 0.11

with correlation coefficients of +0.90 between S and T, −0.59(−0.83) between S and U (T and U ). Fixing U =0 one
obtains SU=0 = 0.06 ± 0.09 and TU=0 = 0.10 ± 0.07, with a correlation coefficient of +0.91. The general procedure to
measure oblique parameters is extracted from a global fit to the high-precision electroweak data from particle collider
experiments (mostly the Z pole data from the CERN-LEP collider) and atomic parity violation [200]. Every step
presented here would be an important tool to measure the compatibility level of the vacuum behavior predictions with
the EW observables and precision tests.
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C. Type III Lagrangian for 2HDMs: FCNCs

C.1. Type III-2HDMs: Mass Eigenstates and FCNC couplings

In this appendix, we explore realizations for the type III-2HDM. This model has general couplings between fermions and
both doublets. We start with the Higgs doublets and their VEVs, which can be defined by

Φ′i =

(
φ+
i

φ0
i

)
=

1√
2

(
φi1 + iφi2
φi3 + iφi4

)
, 〈Φ′i〉 =

1√
2

(
0

vie
iϕi

)
(C.1.1)

The phases ϕi are sources of spontaneous CP violation from the purely scalar sector 1. This fact is a radical difference
between 2HDM and the minimal SM. The Yukawa Lagrangian has the general form:

−LY = η̃U,0i,j Q̄
0
iLΦ̃′1U

0
jR+η̃D,0i,j Q̄

0
iLΦ′1D

0
jR+ξ̃U,0i,j Q̄

0
iLΦ̃′2U

0
jR+ξ̃D,0i,j Q̄

0
iLΦ′2D

0
jR+η̃E,0i,j L̄

0
iLΦ′1E

0
jR+ξ̃E,0i,j L̄

0
iLΦ′2E

0
jR+h.c. (C.1.2)

In the leptonic sector, we have taken what there are no right handed singlets neutrinos at electroweak scale. Hence
they remain massless. We can redefine the scalar doublets by the following way:

(
H1

H2

)
=

(
cos θ e−iϕ sin θ
− sin θ e−iϕ cos θ

)(
Φ′1
Φ′2

)
ϕ = ϕ2 − ϕ1

This rotation (or combinations) do not have physical consequences since it is basically a change of basis. Therefore,
it is possible to choice the reasoning in which Φ′1 to be responsible for the fermion masses, and Φ′2 with its couplings to
the fermions yields FCNC terms. The original Yukawa Lagrangian density can be defined regarding these primed scalar
fields as

−LY = ηUi,jQ̄iLH̃1UjR + ηDi,jQ̄iLH1D
0
jR + ξUi,jQ̄iLH̃2UjR + ξDi,jQ̄iLH2DjR + ηEi,jL̄iLH1EjR + ξEi,jL̄iLH2EjR +h.c. (C.1.3)

In this basis, only the Yukawa couplings of the doublet H1, viz the η, generate fermion masses; those may be bi-
diagonalized, and they do not lead to tree-level FCNC. Therefore

ηU =

√
2

v
MU = η̃U cosβ + ξ̃Ue−iϕ sinβ

ηD =

√
2

v
MD = η̃D cosβ + ξ̃Deiϕ sinβ

and

ξU = −η̃U sinβ + ξ̃Ue−iϕ cosβ

ξD = −η̃D sinβ + ξ̃Deiϕ cosβ

By a bi-unitary transformation involving the matrices

V UL , V
U
R , V

D
L and V DR ,

1This discussion can find out in a complete form in [61]. Here is considered again under multiple analyses carried out where FCNC’s processes
were involved.
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C. Type III Lagrangian for 2HDMs: FCNCs

the Yukawa parameters can be expressed in the mass basis of the fermions, where the (rescaled) mass matrices η̄U and
η̄D are diagonal and real:

η̄U =

√
2

v
MU = V UL η

UV U†R , MU
ij = δijm

u
i

η̄D =

√
2

v
MD = V DL ηDV D†R , MD

ij = δijm
d
i

and

ξ̄U = V UL ξ
UV U†R

ξ̄U = V DL ξDV D†R

Finally, to convert the Lagrangian (C.1.2) into mass eigenstates we make the unitary transformations over singlets

DL,R = V DL,RD
0
L,R

UL,R = V UL,RU
0
L,R

When that bi-diagonalization is performed, the neutral flavor changing neutral couplings become

LFCNC = ξ̄Ui,jQ̄iLH̃2UjR + ξ̄Di,jQ̄iLH2DjR + ξ̄Ei,jL̄iLH2EjR + h.c

Since VR is completely unknown and the ξ̂ are arbitrary, these ξU ;D,L coefficients are arbitrary. To look at specific
processes, we make some assumptions about their magnitudes. The most outstanding feature of the fermion mass form
is its hierarchical structure indeed. Hence the argument to impose a texture for FCNC scalar-mediated couplings is the
following [91]: The flavor changing couplings should be of the order of the geometric mean of the Yukawa couplings of
the two fermions. This fact is equivalent to

ξij = λij

√
2mimj

v
where λij ∼ O (1) . That fact is called the Sher-Cheng anzats. Since the most strict bounds on FCNC arise from the
first two generations and this anzats especially suppresses the Yukawa couplings of those generations. Therefore, it is
possible to write the Lagrangian (C.1.3) concerning its neutral current part in the fermion mass basis

−LY (neutral) =
1√
2

3∑
i=1

[
ηDii D̄iLDiR

(
φ0

1

)
+ ηUii ŪiLUiR

(
φ0

1

)∗
+ h.c.

]
+

1√
2

3∑
i.j=1

[
ξDij D̄iLDjR

(
φ0

2

)
+ ξUijŪiLUjR

(
φ0

2

)∗
+ h.c.

]
We have used the parametrization (C.1.1). On the other hand, the charged current part of the Lagrangian density in

the fermion mass basis is

−LY (charged) =
1√
2

3∑
i=1

[(
KηDij

)
ŪiLDjR

(
φ+

1

)
+
(
KηUij

)
D̄iLUjR

(
φ+

1

)∗
+ h.c.

]
+

1√
2

3∑
i.j=1

[(
KξDij

)
ŪiLDjR

(
φ+

2

)
+
(
KξUij

)
D̄iLUjR

(
φ+

2

)∗
+ h.c.

]
V is the CKM matrix. These terms arise from

V D†L V DL η̃D,0i,j V
+D
R V DR V U†L V UL Q̄

0
iLΦ′1V

D†
R V DR D0

jR = V D†L ηDi,jV
D
R V U†L Q̄iLΦ′1V

D†
R DjR

After expanding the Lagrangian in the fundamental parametrization (CP-conserving frame) we get

−LY =
g

2Mw
D̄MDD

(
H0 cosα− h0 sinα

)
+

1√
2
D̄ξDD

(
H0 sinα+ h0 cosα

)
+

g

2Mw
ŪMUU

(
H0 cosα− h0 sinα

)
+

1√
2
ŪξUU

(
H0 sinα+ h0 cosα

)
+

i√
2
D̄ξDγ5D − i√

2
ŪξUγ5U +

ig

2Mw
D̄MDγ

5DG0
z −

ig

2Mw
ŪMDγ

5UG0
z

+Ū
(
KξDPR − ξUKPL

)
DH+ + Ū (KMDPR −MUKPL)DG+

w

+Leptonic sector + h.c.
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D. Normal minimum and bilinears notation

D.1. Bilinears notation: Normal minimum

This appendix is devoted to defining the bilinear notation for Higgs potential and their important features as well as its
importance finding vacuum structures. We now consider the case wherein λ6 6= 0, λ7 6= 0 and λ5 6= 0 with λ6, λ7,λ5 ∈ R.
We describe the bilinear

x1 =
(

Φ†1Φ1

)
, x2 =

(
Φ†2Φ2

)
, x3 =

1

2

(
Φ†1Φ2 + Φ†2Φ1

)
and x4 =

1

2i

(
Φ†1Φ2 − Φ†2Φ1

)
. (D.1.1)

Therefore, the most general Higgs potential renormalizable and gauge invariant is the following

V = a1x1 + a2x2 + a3x3 + a4x4 + b11x
2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4

+b12x1x2 + b13x1x3 + b23x2x3 + b14x1x4 + b24x2x4 + b34x3x4. (D.1.2)

This potential has ten independent parameters. By renormalizability, the parameters ai have mass dimension and the
bi ones are dimensionless. Moreover, the terms linear in x4 are those that break CP explicitly. In a general way, we can
parametrize the doublets present in the bilinear by

Φ1 =

(
φ1 + iφ2

φ3 + iφ4

)
and Φ2 =

(
φ5 + iφ6

φ7 + iφ8

)
. (D.1.3)

The fields φi inside doublets are real functions. From φi fields, bilinear can be decomposed as

x1 =
(

Φ†1Φ1

)
= φ2

1 + φ2
2 + φ2

3 + φ2
4, (D.1.4)

x2 =
(

Φ†2Φ2

)
= φ2

5 + φ2
6 + φ2

7 + φ2
8, (D.1.5)

x3 = Re
(

Φ†1Φ2

)
= φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8, (D.1.6)

x4 = Im
(

Φ†1Φ2

)
= φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7. (D.1.7)

Expanding the Higgs potential in terms of fields φi , we find out

V (φi) = a1

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
+ a2

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
+a3 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8) + a4 (φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

+b11

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)2
+ b22

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)2
+b33 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8)

2
+ b44 (φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

2

+b12

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

) (
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
+b13

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
(φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8)

+b23

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
(φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8)

+b14

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
(φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

+b24

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
(φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

+b34 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8) (φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7) . (D.1.8)

We consider an notation that will be extremely useful. By defining a vector A and a square symmetric matrix B as
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D. Normal minimum and bilinears notation

A =


a1

a2

a3

a4

 , B =


2b11 b12 b13 b14

b12 2b22 b23 b24

b13 b23 2b33 b34

b14 b24 b34 2b44

 . (D.1.9)

Defining a new four-vector

X =


x1

x2

x3

x4

 . (D.1.10)

We can write the Higgs potential (D.1.2) in a more compact form given by

V = ATX +
1

2
X TBX .

=
(
a1 a2 a3 a4

)
x1

x2

x3

x4

 .

+
1

2

(
x1 x2 x3 x4

)
2b11 b12 b13 b14

b12 2b22 b23 b24

b13 b23 2b33 b34

b14 b24 b34 2b44




x1

x2

x3

x4

 . (D.1.11)
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E. Mass matrices

E.1. Generalities for Mass Matrices in 2HDM

The normal vacuum will be treated from the minimization conditions for the general Higgs potential, through

V = a1x1 + a2x2 + a3x3 + a4x4 + b11x
2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4

+ b12x1x2 + b13x1x3 + b23x2x3 + b14x1x4 + b24x2x4 + b34x3x4, (E.1.1)

which in the minimum is

V |min = a1v
2
1 + a2v

2
2 + a3v1v2 + b11v

4
1 + b22v

4
2 + b33v

2
1v

2
2 + b12v

2
1v

2
2 + b13v

3
1v2 + b23v

3
2v1 (E.1.2)

Hence

∂V

∂v1
= 2a1v1 + a3v2 + 4b11v

3
1 + 2b33v1v

2
2 + 2b12v1v

2
2 + 3b13v

2
1v2 + b23v

3
2 = 0 (E.1.3)

∂V

∂v2
= 2a2v2 + a3v1 + 4b22v

3
2 + 2b33v

2
1v2 + 2b12v

2
1v2 + b13v

3
1 + 3b23v

2
2v1 = 0 (E.1.4)

The normal vacua, with VEVs which do not have any complex relative phase and can thus be trivially rendered real:

〈Φ1〉 =
1√
2

(
0
v1

)
and 〈Φ2〉 =

1√
2

(
0
v2

)
(E.1.5)

with v =
√
v2

1 + v2
2 = 246 GeV. This solution is the 2HDM equivalent to SM vacuum indeed. We can distinguish a

special case here, in which the minimization conditions allow for one of the VEVs to be zero. These are called inert
models, which has been studied broadly in 5. Unlike the passage to the Higgs basis, where in one doublet acquire VEV
zero, the inert vacua are found on the basis where a Z2 (or perhaps a most restrictive U (1)-invariance) symmetry is
manifest.

To determine the nature of the stationary points one must analyze the second derivatives of the potential, which is to
say, the scalar squared mass matrices. They are given by

[
M2
ij

]
=

∂2V

∂φi∂φj

As is traditional, the Higgs potential is expanded in terms of fields φi

V = a1

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
+ a2

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
+ a3 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8) + a4 (φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

+b11

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)2
+ b22

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)2
+ b33 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8)

2

+b44 (φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)
2

+ b12

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

) (
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
+b13

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
(φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8) (E.1.6)

+b23

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
(φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8)

+b14

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
(φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

+b24

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
(φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

+b34 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8) (φ1φ4 − φ2φ5 + φ3φ8 − φ4φ7)

155



E. Mass matrices

Therefore the mass matrix can be shown in the following way,

M2 =



M2
11 0 0 0 M2

15 M2
16 0 0

0 M2
22 0 0 M2

25 M2
26 0 0

0 0 M2
33 M2

34 0 0 M2
37 M2

38

0 0 M2
34 M2

44 0 0 M2
47 M2

48

M2
15 M2

25 0 0 M2
55 0 0 0

M2
16 M2

26 0 0 0 M2
66 0 0

0 0 M2
37 M2

47 0 0 M2
77 M2

78

0 0 M2
38 M2

48 0 0 M2
78 M2

88


where all entries are given by

M2
78 = b24v1v2 + 2b34v

2
1

M2
88 = a2 + 2b22v

2
2 + b44v

2
1 + b12v

2
1 + b23v1v2

M2
77 = a2 + 2b22v

2
2 + b33v

2
1 + b12v

2
1 + b23v1v2

M2
66 = a2 + 2b22v

2
2 + b12v

2
1 + b23v1v2

M2
55 = a2 + 2b22v

2
2 + b12v

2
1 + b23v1v2

M2
48 = a3 + 2b33v1v2 + b13v

2
1 + b23v

2
2 − 2b44v1v2

M2
47 = −a4 − b14v

2
1 − b24v

2
2 − b34v1v2

M2
45 = 0

M2
46 = 0

and

M2
54 = 0

M2
11 = a1 + 2b11v

2
1 + b12v

2
2 + b13v1v2, M

2
12 = 0, M2

13 = 0, M2
14 = 0

M2
15 = a3 + b13v

2
1 + b23v

2
2 + 2b33v1v2, M

2
16 = a4 + b14v

2
1 + b24v

2
2 , M

2
17 = 0, M2

18 = 0

M2
21 = 0, M2

22 = a1 + 2b11v
2
1 + b12v

2
2 + b13v1v2, M

2
23 = 0, M2

24 = 0

M2
25 = −a4 − b14v

2
1 − b24v

2
2 − b34v1v2, M

2
26 = a3 + 2b33v1v2 + b13v

2
1 + b23v

2
2 , M

2
27 = 0, M2

28 = 0 (E.1.7)

M2
31 = 0, M2

32 = 0, M2
33 = a1 + 2b11v

2
1 + b12v

2
2 + b13v1v2, M

2
34 = −b14v1v2 − b34v

2
2

M2
35 = 0, M2

36 = 0, M2
37 = a3 + 2b33v1v2 + 2b12v1v2 + b13v

2
1 + b23v

2
2 , M

2
38 = b14v

2
1 + b24v

2
2 + b34v1v2

M2
41 = 0, M2

42 = 0, M2
43 = M2

34 = −b14v1v2 − b34v
2
2 , M

2
44 = a1 + 2b11v

2
1 + b12v

2
2 + b13v1v2

E.1.1. Extension a VEV in Complex Components: Spontaneous CP Violation

We use another method to obtain the mass matrix. The second derivatives of the potential can be written by using Fa
di Bruno’s formula [201]

∂2V

∂φi∂φj
=
∑
k

∂V

∂xk

∂2xk
∂φi∂φj

+
∑
k,l

∂2V

∂xk∂xl

∂xk
∂φi

∂xl
∂φj

(E.1.8)

We again define

V ′i =
∂V

∂xi
(E.1.9)

The first term in (E.1.8) is written as an 8× 8 matrix of the form

M2 =

(
M2

11 0
0 M2

12

)
(E.1.10)

With M2
11 a 4× 4 matrix, which comes from∑

k

∂V

∂xk

∂2xk
∂φi∂φj

= V ′1
∂2x1

∂φi∂φj
+ V ′2

∂2x2

∂φi∂φj
+ V ′3

∂2x3

∂φi∂φj
+ V ′4

∂2x4

∂φi∂φj
(E.1.11)
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E.1. Generalities for Mass Matrices in 2HDM

Remembering bilinear form in terms of φi-fields

x1 =
(

Φ†1Φ1

)
= φ2

1 + φ2
2 + φ2

3 + φ2
4

x2 =
(

Φ†2Φ2

)
= φ2

5 + φ2
6 + φ2

7 + φ2
8

x3 = Re
(

Φ†1Φ2

)
= φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8 (E.1.12)

x4 = Im
(

Φ†1Φ2

)
= φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7

From these relations, it is possible to get

M2
11 = V ′1

∂2x1

∂φ1∂φ1
= 2V ′1

M2
12 = V ′1

∂2x1

∂φ1∂φ2
= 0

M2
15 = V ′3

∂2x3

∂φ1∂φ5
= V ′3

M2
15 = V ′4

∂2x4

∂φ1∂φ6
= V ′4

M2
22 = V ′1

∂2x1

∂φ2∂φ2
= 2V ′1 (E.1.13)

M2
25 = V ′4

∂2x4

∂φ2∂φ5
= −V ′4

M2
26 = V ′3

∂2x3

∂φ2∂φ6
= V ′3

M2
55 = V ′2

∂2x2

∂φ5∂φ5
= 2V ′2

M2
66 = V ′2

∂2x2

∂φ6∂φ6
= 2V ′2

These elements are the associated to the charged part of the doublets. We can arrange these components in the next
submatrix

M2
H± =

1

2


2V ′1 0 V ′3 V ′4
0 2V ′1 −V ′4 V ′3
V ′3 −V ′4 2V ′2 0
V ′4 V ′3 0 2V ′2

 (E.1.14)

The eigenvalues are:

0λ1 =
1

2
(V ′1 + V ′2) +

1

2

√
(V ′1)2 − 2V ′1V

′
2 + (V ′2)2 + (V ′3)2 + (V ′4)2, (E.1.15)

0λ2 =
1

2
(V ′1 + V ′2)− 1

2

√
(V ′1)2 − 2V ′1V

′
2 + (V ′2)2 + (V ′3)2 + (V ′4)2 (E.1.16)

From (F.1.11) for a normal minimum, V ′4 = 0, and from

4V ′2V
′
1 = 4V ′3

v2

2v1
V ′3

v1

2v2
= (V ′3)

2

The eigenvalues acquire the form

λ′ = (V ′1 + V ′2) , λ′′ = 0

The second degenerate eigenvalue corresponds to the Goldstone Bosons G±. We can see that the non-zero eigenvalue of
this matrix is M2

H±

M2
H± = V ′1 + V ′2 = V ′3

v2

2v1
+ V ′3

v1

2v2
=

1

2

V ′3
v1v2

(
v2

1 + v2
2

)
=

1

2

V ′3
v1v2

v2
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E. Mass matrices

If N1 is a minimum, then all of the squared scalar masses are positive, and so this quantity is also positive.
We know to focus on the minima N2. A priori there is no reason why the 2HDM potential cannot have, simultaneously,

both “normal”minima, so the question arises, can the potential be in an N2 minimum that is not deeper than a CB
stationary point? The answer is no, and the demonstration follows very closely the one we just concluded. Returning to
(E.1.14), and by using (F.1.11)

V ′ = − V ′3
2v′1v

′
2


v
′2
2

v
′2
1 + δ2

−2v′1v
′
2

2δv′2

 (E.1.17)

M2
H± =

1

2


2V ′1 0 V ′3 V ′4
0 2V ′1 −V ′4 V ′3
V ′3 −V ′4 2V ′2 0
V ′4 V ′3 0 2V ′2

 (E.1.18)

The first eigenvalue (the non trivial one) in Eq. (E.1.15) is given by

1

2
V ′1 +

1

2
V ′2 +

1

2

√
(V ′1)2 − 2V ′1V

′
2 + (V ′2)2 + (V ′3)2 + (V ′4)2 =

= − V ′3
4v′1v

′
2

(
v
′2
2 + v

′2
1 + δ2 +

√
(v
′2
2 )2 − 2v

′2
2

(
v
′2
1 + δ2

)
+ (v

′2
1 + δ2)2 + (2v′1v

′
2)2 + (2δv′2)2

)
= − V ′3

4v′1v
′
2

(
v
′2
2 + v

′2
1 + δ2 +

√
(v
′2
2 )2 + 2v

′2
2

(
v
′2
1 + δ2

)
+ (v

′2
1 + δ2)2

)
= − V ′3

4v′1v
′
2

(
v
′2
2 + v

′2
1 + δ2 + (v

′2
1 + v

′2
2 + δ2)

)
= − V ′3

2v′1v
′
2

v
′2

with v′2 = v
′2
2 + v

′2
1 + δ2. Hence

M2
H± = − V ′3

2v′1v
′
2

v
′2 (E.1.19)(

M2
H±

v′2

)
N1

= − V ′3
2v′1v

′
2

(E.1.20)
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F. Metastability Theorems

F.1. Metastability theorems and vacuum structures

From bilinear notation presented in Appendix D is straightforward to show as metastable states arise in the minima of
the Higgs potential. This appendix is dedicated to studying the parameter space related with this behavior in the Higgs
potential employing different theorems related to the possible existence of several minima from stationary conditions.
Indeed, we based this appendix in an extension of the article [202].

Theorem 1 If one of the normal minima exists, it is certainly deeper than the charge or CP breaking ones.

Proof: Let be V ′ a vector defined by its components

V ′i =
∂V

∂xi

∣∣∣∣
N1

. (F.1.1)

evaluated in the N1 minimum. At N1 the non-zero vevs are

φ3 = v1, φ7 = v2 (F.1.2)

Equivalently, the normal minimum is located inside doublets in

〈0 |φ3| 0〉 = v1, 〈0 |φ7| 0〉 = v2, and 〈0 |φi| 0〉 = 0 for i 6= 3, 7 (F.1.3)

From above definitions of bilinear xi in Eq. (D.1.1)

x1|min = v2
1 , x2|min = v2

2 , x3|min = v1v2 and x4|min = 0. (F.1.4)

From VEVs, we can write the relevant minimization conditions as

∂V

∂v1
=

∂V

∂x1

∂x1

∂v1
+
∂V

∂x3

∂x3

∂v1
= 0 (F.1.5)

∂V

∂v2
=

∂V

∂x2

∂x2

∂v2
+
∂V

∂x3

∂x3

∂v2
= 0 (F.1.6)

Explicitly the vector V ′ of Eq. (F.1.1), with tadpoles at tree level as components, is given by,

V ′ =


V ′1
V ′2
V ′3
V ′4

 =


∂V
∂x1
∂V
∂x2
∂V
∂x3
∂V
∂x4


〈0 |φ3| 0〉=v1, 〈0 |φ7| 0〉=v2

(F.1.7)

Hence, from (F.1.5)-(F.1.6) we have in the respective tadpoles

V ′1 = −V ′3
v2

2v1
(F.1.8)

V ′2 = −V ′3
v1

2v2
(F.1.9)

V ′4 = 0 (F.1.10)

159



F. Metastability Theorems

In fact we can arrange the vector V ′ of Eq. (F.1.7)

V ′ = − V ′3
2v1v2


v2

2

v2
1

−2v1v2

0

 (F.1.11)

Therefore V ′1 and V ′2 have the same sign. Hereafter we will use XN1
to designate the vector X evaluated at the minimum

N1, that is,

XN1
=


v2

1

v2
2

v1v2

0

 . (F.1.12)

We can verify easily the relation

X TN1
V ′ = − V ′3

2v1v2

(
v2

1 v2
2 v1v2 0

)
v2

2

v2
1

−2v1v2

0

 = 0. (F.1.13)

Direct analysis of the potential (D.1.2) also shows that we can write V ′ in matrix form as

V ′ = A+ BXN1
, (F.1.14)

=
(
a1 a2 a3 0

)
+


2b11 b12 b13 0
b12 2b22 b23 0
b13 b23 2b33 0
0 0 0 2b44




v2
1

v2
2

v1v2

0

 . (F.1.15)

The potential (D.1.2) is a sum of quadratic and quartic polynomials,

V = V2 + V4 (F.1.16)

By performing the sum with the minimization conditions

V |min = a1v
2
1 + a2v

2
2 + a3v1v2 + b11v

4
1 + b22v

4
2 + b33v

2
1v

2
2 + b12v

2
1v

2
2 + b13v

3
1v2 + b23v

3
2v1 (F.1.17)

Driven out to stationary conditions behave as

v1
∂V

∂v1
= 2a1v

2
1 + a3v2v1 + 4b11v

4
1 + 2b33v

2
1v

2
2 + 2b12v

2
1v

2
2 + 3b13v

3
1v2 + b23v

3
2v1, (F.1.18)

v2
∂V

∂v2
= 2a2v

2
2 + a3v1v2 + 4b22v

4
2 + 2b33v

2
1v

2
2 + 2b12v

2
1v

2
2 + b13v

3
1v2 + 3b23v

3
2v1,

v1
∂V

∂v1
+ v2

∂V

∂v2
= 2

(
a1v

2
1 + a2v

2
2 + a3v1v2

)
(F.1.19)

+4
(
b11v

4
1 + b22v

4
2 + b33v

2
1v

2
2 + b12v

2
1v

2
2 + b13v

3
1v2 + b23v

3
2v1

)
= 0. (F.1.20)

From the last relation, minimum condition implies that

2 V2|min + 4V4|min
= 0. (F.1.21)

The Higgs potential is

VN1 ≡ V |min = ATXN1 +
1

2
X TN1

BXN1 = ATXN1 −
1

2
ATXN1 =

1

2
ATXN1 (F.1.22)

VN1 ≡ V |min = −X TN1
BXN1 +

1

2
X TN1

BXN1 = −1

2
X TN1

BXN1 . (F.1.23)
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F.2. Charge breaking minima

It is primary to point out that although we have been considering the normal minimum, it is clear that the conditions
(F.1.5) and (F.1.6) only assure that the potential has a stationary point. To encourage a minimum in the theory, we
must analyze the second derivatives of V , i.e., the matrix of the squared scalar masses. After, we reject all combinations
of parameters with structure {ai, bjk} for which any of the non-zero eigenvalues are negative (this matrix has three zero
eigenvalues corresponding to the Goldstone bosons, see Appendix E). Mainly, the charged Higgs mass obtained in Eq.
(E.1.20), satisfy

m2
H± = V ′1 + V ′2 > 0 (F.1.24)

Being the last condition a necessary one for the existence of a normal minimum. Additionally, we have shown that V ′1
and V ′2 have the same sign. Thus both are positive in fact. Therefore for tadpole at tree level labeled by 1

V ′1 =

(
− V ′3

2v1v2

)
v2

2 > 0 (F.1.25)

Being the quantity in parenthesis a positive quantity. This procedure will be substantial in our demonstrations.

F.2. Charge breaking minima

For a charge breaking minimum, the fields with non-zero VEVs are given by

φ3 = w1, φ7 = w2 and φ5 = α (F.2.1)

Defining the Y to be equal to the vector X evaluated in this configuration for minimum

Y =


w2

1

w2
2 + α2

w1w2

0

 (F.2.2)

Stationary conditions are now translated into the following tadpoles at tree level

∂V

∂w1
= 0↔ ∂V

∂x1

∂x1

∂w1
+
∂V

∂x3

∂x3

∂w1
↔ V ′1 = −V ′3

∂x3

∂w1

∂x1

∂w1

= −V ′3
w2

2w1
(F.2.3)

∂V

∂w2
= 0↔ ∂V

∂x2

∂x2

∂w2
+
∂V

∂x3

∂x3

∂w2
↔ V ′2 = −V ′3

∂x3

∂w2

∂x2

∂w2

= −V ′3
w1

2w2
(F.2.4)

For charge and CP breaking VEVs

∂V

∂α
= 0↔ V ′2

∂x2

∂α
= 0↔ V ′2 = 0 (F.2.5)

∂V

∂φ4
= 0↔ ∂V

∂x4

∂x4

∂φ4
= 0↔ V ′4 = 0 (F.2.6)

Thus, in CB stationary point V ′i = 0. The equation determining Y is simply

A+ BY = 0. (F.2.7)

This linear relation implies that if CB stationary point exists, this is unique. This behavior for a CB stationary point
is a clear difference with the normal vacuum, because, from the second case the extremal conditions (F.1.18)-(F.1.19)
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F. Metastability Theorems

yield two cubic equations, which in principle lead multiple solutions. Returning to CB case and using the fact B is
invertible, linear relation (F.2.7) implies

Y = −B−1A. (F.2.8)

Also, to CB stationary exist two first component in Y must be positive. Nevertheless, not all choices of A and B will
yield a result as given in (F.2.8). The last fact can be demonstrated from Minkowskian treatment of the Higgs potential
considered extensively in section 2.4.

As was shown in the previous part, in the minimum Higgs potential in its respective quadratic and quartic parts
satisfies

2 V2|min + 4 V4|min = 0. (F.2.9)

Designating VCB as the Higgs potential evaluated in the CB minimum

VCB = V |min = ATYCB +
1

2
YTCBBYCB = ATYCB −

1

2
ATYCB =

1

2
ATYCB (F.2.10)

We have used Eq. (F.2.9). Equivalently in terms of the quartic part

VCB = V |min = ATYCB +
1

2
YTCBBYCB = −YTCBBYCB +

1

2
YTCBBYCB = −1

2
YTCBBYCB (F.2.11)

Tadpoles matrix behaves according to neutral vacuum considered in Eq. (F.1.12)

V ′ = A+ BXN = −BY +BXN (F.2.12)

Orthogonality properties over neutral minima, quoted in Eq. (F.1.13), given by X TNV ′ = 0, apply in (F.2.12) as

X TNV ′ = −X TNBY + X TNBXN = 0 (F.2.13)

Which is equivalent to

X TNBY = X TNBXN = −2VN . (F.2.14)

In the last step, we have used (F.1.23). In the same way, we can compute from (F.2.12)

YTV ′ = −YTBY + YTBXN (F.2.15)

With this, it is possible to build up

YTBY = −2VCB . (F.2.16)

In the same way for the neutral case, we have used (F.2.11). Computing the difference between both potentials given
by (F.2.14) and (F.2.16) in the minima, we find out

YTV ′ = −YTBY + YTBXN = 2VCB − 2VN (F.2.17)

In the last relation, B matrix-invertibility property has been applied. Finally, all is translated into
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F.3. CP breaking minimum

VCB − VN =
1

2
YTV ′ =

1

2

(
w2

1 w2
2 + α2 w1w2 0

)
V ′1
V ′2
V ′3
V4

 (F.2.18)

V ′i components behave as

V ′ = − V ′3
2ω1ω2


v2

2

v2
1

v1v2

0

 (F.2.19)

The product is thus

−1

2

V ′3
2v1v2

(
w2

1 w2
2 + α2 w1w2 0

)
v2

2

v2
1

−2v1v2

0

 = −1

2

V ′3
2v1v2

[
w2

1v
2
2 + w2

2v
2
1 + v2

1α
2 − 2v1v2w2w1

]
(F.2.20)

Charged Higgs mass is defined in the normal vacua, quoting (E.1.20),

VCB − VN =
1

2

(
m2
H±

v2

)[
(w1v2 − w2v1)

2
+ v2

1α
2
]

(F.2.21)

This relation has worth consequences:

• If N1 is a minimum of the theory, CB stationary points are located above of N1. N1 is thus the global minimum
of the theory.

• Potential positivity ensures to CB stationary point to be a saddle point.

F.3. CP breaking minimum

By following a similar procedure, we can consider stationary points associated to one CP breaking minimum. In this
case, let ZCP be the X vector defined in the vacua

φ3 = z1, φ4 = δ, φ7 = z2. (F.3.1)

using

ZCP =


z2

1 + δ2

z2
2

z1z2

0

 . (F.3.2)

Thus, calculating the Higgs potential in the stationary point and using uniqueness solution for this configuration, is
possible arrives to

VCP − VN =
1

2
ZTCPV

′ = −
(

V ′3
2v1v2

)[
(z1v2 − z′2v1)

2
+ δ2v2

2

]
. (F.3.3)

Since Eq. (F.1.25) is possible to conclude

VCP − VN > 0 (F.3.4)

In other words, the normal vacuum is always deeper that the CP- breaking stationary point is. The matrix of quartic
couplings BCP is not positive definite, implying that CP extremal point is necessarily a saddle point [67,202].
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F. Metastability Theorems

F.4. Two normal vacua

Perhaps ambiguity to define the global minimum in the theory is the most interesting feature present in the vacuum
of the general extended Higgs sectors models. This fact describes the possibility of having two possible vacua N1-N2

states compatible with gauge foundations of the theory. Unfortunately, we cannot apply the procedure gotten so far to
realize whether one of the both minima is deeper than the other. Nevertheless, it is possible to point out structure of
the difference of Higgs potential in both minima [202]

VN2
− VN1

=
1

2

[(
m2
H±

v2

)2

N1

−
(
m2
H±

v2

)2

N2

] [
(v′1v2 − v′2v1)

2
]
. (F.4.1)

where v′1 and v′2 are VEVs in the second minima N2, meanwhile v1, v2 are VEVs defined in the first minimum N1.
We can extract the following features from (F.4.1)

• Nothing define the overall sign in the difference, VN2
− VN1

. Thus, it is impossible to say, in this stage, which is
the deeper minimum.

• We have excluded the possibility of one vacuum has spontaneous CP violation. However, this relation can describe
for this additional structure of the vacuum. In this case, it is also impossible to determine whether one minimum
is the truth vacuum state of the theory.
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G. Minkowskian properties of the Higgs Potential:
Diagonalization of Λµν

G.1. Generalities

Reparameterization invariance of the Higgs potential drive out to new interesting features for field and parameter spaces
for Higgs potential in 2HDMs. In this appendix, we treat with the properties and definitions of four-dimensional formalism
focusing in positivity conditions over the SO (1, 3) invariant Higgs potential

V = −Mµr
µ +

1

2
Λµνr

µrν ,

where gauge orbit space is defined by the cuadrivector

rµ = (r0, r1, r2, r3) =
(

Φ†1Φ1 + Φ†2Φ2, 2Re
(

Φ†1Φ2

)
, 2Im

(
Φ†1Φ2

)
,Φ†1Φ1 − Φ†2Φ2

)
. (G.1.1)

From the general Higgs potential 2.3.1, rank one and two components are defined by

Mµ =

(
−m

2
11 +m2

22

2
,Re

(
m2

12

)
,−Im

(
m2

12

)
,−m

2
11 −m2

22

2

)
, (G.1.2)

Λµν =
1

2


λ1+λ2

2 + λ3 −Re (λ6 + λ7) Im (λ6 + λ7) −λ1+λ2

2
−Re (λ6 + λ7) λ4 + Reλ5 −Imλ5 Re (λ6 − λ7)
Im (λ6 + λ7) −Imλ5 λ4 − Reλ5 −Im (λ6 − λ7)

−λ1+λ2

2 −Re (λ6 − λ7) −Im (λ6 − λ7) λ1+λ2

2 − λ3

 (G.1.3)

The mixed tensor, which is important in our discussion, is given by

ΛE = Λµν =
1

2


1
2 (λ1 + λ2) + λ3 Re (λ6 + λ7) −Im (λ6 + λ7) 1

2 (λ1 − λ2)
−Re (λ6 + λ7) −λ4 − Re (λ5) Im (λ5) −Re (λ6 − λ7)
Im (λ6 + λ7) Im (λ5) −λ4 + Re (λ5) Im (λ6 − λ7)
− 1

2 (λ1 − λ2) −Re (λ6 − λ7) Im (λ6 − λ7) − 1
2 (λ1 + λ2) + λ3

 (G.1.4)

From these definitions, this appendix is devoted to showing the properties to get a bounded from below Higgs potential.
Moreover, the same formalism leads us to demonstrate properties of charge breaking minima in 2HDMs. Finally, these
developments will be used to study the metastability in the Higgs potential in Appendix F.

G.2. Higgs potential behavior

We first show some basic facts on diagonalization of the real symmetric tensor Λµν in the Minkowski space following [36].
Λµν can be viewed as an operator acting on vectors in the Minkowski space. The (right) eigenvector pµ with eigenvalue
Λ satisfy

Λµρgρνv
ν = Λpµ,

Λµνv
ν = Λpµ. (G.2.1)

165



G. Minkowskian properties of the Higgs Potential: Diagonalization of Λµν

Thus the characteristic equation for the eigenvalues is

det(Λµρgρν − Λgµρgρν) = 0,

det(Λµν − Λδµν ) = 0. (G.2.2)

Tensor Λµν that enters into the characteristic equation is still real, but not symmetric anymore. Therefore from a
general point of view, its eigenvalues are, in general, complex. If this is the case, the transformation that diagonalizes
Λµν would involve a complex transformation matrix (every real symmetric matrix is Hermitian, and therefore all its
eigenvalues are real.), which does not belong to the SO(1, 3) group. This fact means that exploiting only the proper
Lorentz group of transformations, one might not be able to diagonalize to Λνµ1.

The demonstration can be easily shown due to the requirement that Λµν is positive definite on the future light cone
(gauge orbit field space).

Proposition 1: Tensor Λµν is positive definite2 on the future light cone LC+ if and only if the following three
conditions hold:

1. Λµν is diagonalizable by a SO(1, 3) transformation,

2. The timelike eigenvalue Λ0 is positive,

3. All spacelike eigenvalues Λi are smaller than Λ0.

Proof: If Λµν satisfies conditions (1)− (3), then the positive definiteness follows immediately:

• After Λµν diagonalization by a transformation T of SO (1, 3), V̄ ≡ Λµνr
µrν can be expressed by

V̄ = Λ0r
2
0 −

∑
i

Λir
2
i .

Thus, Λµν can be seen as a new metric in the space of vector rµ.

• In the frame where ri = (0, 0, 0) and from the fact r2
0 > 0, it is necessary that the temporal like component behaves

as
Λ0 > 0.

• Meanwhile, employing relation in the gauge orbit field space

r2
0 − r2

i ≥ 0

and from a corresponding normalization, we arrive at

V̄

Λ0
= r2

0 −
∑
i

(
Λi
Λ0

)
r2
i

If Λi < Λ0, the relation for V̄ can be easily identified with the properties

V̄ > 0

where, we have used the condition over temporal part of the diagonalized couplings tensor i.e. Λ0 > 0.

1The finite-dimensional spectral theorem states that any symmetric matrix with real entries can be diagonalized by an orthogonal matrix. In
other words, for every symmetric real matrix A there exists a real orthogonal matrix Q such that D = QTAQ is a diagonal matrix. Every
symmetric matrix is thus, up to the choice of an orthonormal basis, a diagonal matrix. Also, every real symmetric matrix is Hermitian,
and therefore all its eigenvalues are real. (In fact, the eigenvalues are the entries in the diagonal matrix D (above), and therefore D is
uniquely determined by A up to the order of its entries.) Essentially, the feature of being symmetric for real matrices it is equivalent to
the property of being Hermitian for complex matrices [203].

2In linear algebra, one symmetric n × n real matrix M is positive definite if zTMz is positive for every non-zero column vector z of n real
numbers. More generally, a n× n Hermitian matrix M is said to be positive definite if z∗Mz is real and positive for all non-zero complex
vectors z. Here z∗ denotes the conjugate transpose of z.
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G.2. Higgs potential behavior

Now, it is necessary to prove that conditions (1)− (3) are a consequence from the positive definiteness of Λµν . Despite
tensor Λµν being real and symmetric, its eigenvalues can be complex because of the non-Euclidean metric; hence it
is convenient to clarify the mean of this metric. Indeed, the Minkowski metric is a pseudo-Riemannian metric, more
precisely, a more specifically aLorentzian metric, or more deep the Lorentz metric, reserved for 4-dimensional flat space-
time with the remaining ambiguity only being the signature convention (+2 or − 2). A pseudo-Riemannian manifold
(M, g) is a differentiable manifold M implemented with a non-degenerate, smooth, and symmetric metric tensor g. Such
a metric is denominated a pseudo-Riemannian metric, and its entries could be positive, negative or zero. The signature
of a pseudo-Riemannian metric is (p, q), where both p and q are non-negative. A Lorentzian manifold is an particular
case of a pseudo-Riemannian manifold in which the signature of the metric is (1, n− 1) (or sometimes (n− 1, 1)) [204].

Having clarified the realization of a Lorentzian metric, now the first step is now to prove that the positive definiteness
in the future lightcone LC+ implies that all the eigenvalues of Λµν are real. For this purpose, we suppose that there is
a pair of complex eigenvalues, λ and λ∗, with respective complex eigenvectors pµ and qµ:

Λµνp
ν = λpµ and Λµνq

ν = λ∗qµ. (G.2.3)

It is possible show that there can be only one pair of complex eigenvalues, thus, λ is non-degenerate. Since Λµν is real,
qµ ∝ pµ∗ (and can be taken equal to pµ∗). These eigenvectors are orthogonal,

pµqµ = 0, (G.2.4)

(it follows from the standard argument due to λ 6= λ∗) and can be normalized so

pµpµ = qµqµ = 1. (G.2.5)

Consider now a real vector rµ, which can be written by

rµ = cpµ + c∗pµ∗. (G.2.6)

Supposing that
rµrµ = (cpµ + c∗pµ∗)

(
cpµ + c∗p∗µ

)
= c2 + c∗2 = 2 |c|2 cos (2φc) > 0, (G.2.7)

The coefficients behave as

c = |c| eiφc → c2 = |c|2 e2iφc ,

c∗ = |c| e−iφc → c∗2 = |c|2 e−2iφc .

so that either rµ or −rµ lie inside the forward lightcone LC+. Then, the corresponding quadratic form is now

Λµνr
µrν = λc2 + λ∗c∗2 = 2 |λ| |c|2 cos (2φc + φλ) . (G.2.8)

We have used the parameterization λ = |λ|eiφλ and λ∗ = |λ|e−iφλ . Due to the phase shift φλ 6= 0 one can always find
φc such that

cos (2φc) > 0. (G.2.9)

but

cos(2φc + φλ) < 0. (G.2.10)

i.e. one can always find a rµ ∈ LC+ such that Λµνr
µrν < 0, which contradicts the primary first assumption. Since all

the eigenvalues of Λµν are real; the eigenvectors also can be chosen all real and orthogonal. One can show that they can
be normalized so that one of the eigenvectors, for the temporal part, has a positive norm, p0p

0 = 1, while the spatial
components have negative norm, i.e., pip

i = −1 for each i = 1, 2, 3. Thus the transformation matrix T that diagonalizes
Λµν is real, and after diagonalization Λµν takes the following form

diag(Λ0,−Λ1,−Λ2,−Λ3). (G.2.11)

Note that transformation T also conserves norm, rµrµ =cte. It means that T can be realized as a transformation from
the proper Lorentz group SO (1, 3).

Now, the requirement that Λµν is positive definite in LC+ means

Λ0 − ρ (Λ1 sin θ cosφ+ Λ2 sin θ sinφ+ Λ3 cos θ) > 0. (G.2.12)

for 0 < ρ < 1, 0 < θ < π and 0 < φ < 2π. This holds when Λ0 is positive and is larger than all Λi. Note that since
Λµν is a linear operator, it maps points inside some surface S into points that also lie inside the image of this surface S′.
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G.2.1. Positivity of Λµν and Formalism Applications

The positivity conditions in the form of inequalities among λs can be readily obtained from the last statements. Here we
reproduce the standard set of positivity conditions for a model with explicit Z2-symmetry, i.e. when λ6 = λ7 = 0. The
Λµν of this particular model has the following form

Λµν =
1

2


λ1+λ2

2 + λ3 0 0 −λ1−λ2

2
0 λ4 + Re (λ5) −Im (λ5) 0
0 −Im (λ5) λ4 − Re (λ5) 0

−λ1−λ2

2 0 0 λ1+λ2

2 − λ3

 . (G.2.13)

By taking λ5 = λ∗5,

Λµν =
1

2


λ1+λ2

2 + λ3 0 0 −λ1−λ2

2
0 λ4 + λ5 0 0
0 0 λ4 − λ5 0

−λ1−λ2

2 0 0 λ1+λ2

2 − λ3

 . (G.2.14)

The covariant-contravariant form of this tensor is given by

Λν µ = gνσΛµσ

=
1

2


λ1+λ2

2 + λ3 0 0 λ1−λ2

2
0 − (λ4 + λ5) 0 0
0 0 − (λ4 − λ5) 0

−λ1−λ2

2 0 0 −
(
λ1+λ2

2 − λ3

)
 . (G.2.15)

Diagonalizing this matrix we find

Λ =
1

2


λ3 +

√
λ1λ2 0 0 0

0 λ3 −
√
λ1λ2 0 0

0 0 λ5 − λ4 0
0 0 0 −λ4 − λ5

 . (G.2.16)

Also from positive definite of Λ, its leading principal minors are all positive. The kth leading principal minor of a matrix
Λ is the determinant of its upper-left k by k sub-matrix. It turns out that a matrix is positive definite if and only if all
these determinants are positive (well known as Silvester’s criterion)3. From this property

detK1 > 0 : λ3 +
√
λ1λ2 > 0, (G.2.17)

detK2 > 0 : λ2
3 − λ1λ2 > 0, (G.2.18)

detK3 > 0 :
(
λ2

3 − λ1λ2

)
(λ5 − λ4) > 0→ (λ5 − λ4) > 0, (G.2.19)

detK4 > 0 :
(
λ2

3 − λ1λ2

)
(λ4 + λ5) (λ4 − λ5) > 0→ − (λ4 + λ5) > 0. (G.2.20)

And we know particular features of Λ

1. Λµν is diagonalizable by a SO(1, 3) transformation,

2. The timelike eigenvalue Λ0 is positive,

3. All spacelike eigenvalues Λi are smaller than Λ0. From this property, we find out

λ5 − λ4 − λ3 <
√
λ1λ2 → λ4 + λ3 − λ5 > −

√
λ1λ2. (G.2.21)

−λ4 − λ5 − λ3 <
√
λ1λ2 → λ4 + λ3 + λ5 > −

√
λ1λ2. (G.2.22)

Which are associated with the traditional conditions for a potential bounded from below shown in Table 2.1.

3Exist some caveats in the preceding discussion. The Sylvester’s criterion is applicable only to Hermitian matrices in the RN or CN with a
usual metric. Moreover, this condition checks the positive definiteness of a matrix in the entire space. In our case, we have a symmetric
matrix with non-euclidean space, or, a non-symmetric matrix in a euclidean space, so that the criterion cannot be applied directly. We
need to check for positive definiteness, not in the entire rµ space, but only within the lightcone. But Sylvester’s criterion, or its possible
generalization, does not encode information about the region of the space over which we check the matrix. When these issues become
circumvent, It would especially be useful for NHDM (N-Higgs Doublet Model) beyond two doublets, where no necessary and sufficient
criterion is known at all. Although it looks like a purely mathematical exercise, the answer would be useful for model builders, especially
because community slowly starts to study phenomenology of 3HDM (Three Higgs Doublet Model)
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G.3. Charge Breaking Minima

G.3. Charge Breaking Minima

Having proved stability conditions as a result of Λµν properties in the future cone light, this formalism also allows
demonstrating what scenario for parameter space is consistent with a charge breaking minima. In this direction, we need
to prove the following statements [36]:

1. Any SL (2, C) transformation of the Higgs field preserves the positive (semi)-definiteness of the second derivative
matrix

Mab =
1

2

∂2V

∂φa∂φb
, a = 1, ..., 8. (G.3.1)

where φa are the neutral scalar fields parameterizing in a general way the doublets in the Higgs potential V .

2. Charge breaking stationary points exist if and only if Mµ lies inside the image lightcone LC ′, which is defined by

LC ′ =
{
rµ́|rµ́ = Λµνrν for all rµ ∈ LC+

}
.

3. The charge-breaking stationary point is a minimum if and only if Λµν is positive definite in the entire Minkowski
space.

To show the first proposition is necessary to introduce the form in which mass matrix and kinetic term of the model
transform under SL(2, C). For the kinetic sector, a cuadrivector ρµ is introduced in the form

ρµ = (∂αΦ)
†
σµ (∂αΦ) , with Φ =

(
Φ1

Φ2

)
where α gives the space-time coordinates. It is possible rewrite the kinetic term as

K = Kµρ
µ.

Kµ = (1, 0, 0, 0) sets a preferred reference frame in the space of ρµ and therefore in the gauge orbit space. In general,
a transformation of SL (2, C) for the Higgs fields could convert spatial components of Kµ in non-zero values. Thus, the
canonical form of K could be broken. The structure of kinetic sector has the following properties

• The number of stationary points is not affected by the structure of K since this uniquely depend on Higgs potential
form.

• Nonetheless, it can affect the localization of these stationary points and the matrix of second derivatives of Eq.
(G.3.1) computed from these values.

The important point is that (G.3.1) represents the truth mass matrix of the Higgs bosons only when is computed in the
above-preferred reference frame of Kµ. Despite this break of Lorentz invariance, the true mass matrix and the Hessian
of the Higgs potential (Second derivative matrix) in any Lorentz frame are characterized by a significant property: both
are always positive definite matrices independent of the reference frame. This fact is the spirit of the statement number
one.

Demonstration 1) With these definitions in mind, the proof of proposition 1 is in order. In advance, we consider
each of the complex Higgs fields as a pair of real ones φa. In this scenario, SL (2, C) transformations are equivalent to
rotations with a SL(4, R) structure over φa,

φa → φ′a = Raa′φa′

The mass matrix of Eq. (G.3.1) is then transformed as

Mab →M ′ab = R−1
a′aMabRbb′

If M ′ab is positive (semi)definite ,

qaM
′
abqb > 0, (or ≥ 0) for any vector qa

By defining the rotation of q−vectors as
Qa = qa′R

−1
a′a
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Since map Ra′a is surjective4, then

QaMabQb > 0, (or ≥ 0) for any vector Qa.

Therefore, Mab is also positive (semi) definite. Hence, the physical interpretation of the proposition number one is the
fact that a local minimum remains local under any rotation and stretching of the coordinates in the space of Higgs fields.

Demonstration 2) For the demonstration of the second proposition, we express the charge breaking stationary point
by means of

Λµνr
ν = Mµ, (G.3.2)

which defines an inhomogeneous system of linear equations. A point lies inside of a closed Minkowski structure I if
and only if the image of this point lies inside of the image of this closed Minkowski structure I ′. Since rµ lies inside LC+,
Λµνr

ν lies inside LC ′. Therefore, existence of physical solutions of (G.3.2) bring out that Mµ lies inside of LC ′.
Demonstration 3) By using proposition 1 and a convenient SO (1, 3) transformation of a charge breaking minima,

it is possible to get a demonstration of the third statement. Since charged vacuum, defined in rµch, lies inside of the LC+,
it is always possible to perform a SO(1, 3) rotation defining the stationary point as

rµch =
(
u2, 0, 0, 0

)
.

where u ∈R. The proposition 1 ensures the freedom to choose a particular representing point over the rµ space by
performing a convenient EW rotation. For instance,

Φ1 =
1√
2

(
0
u

)
, and Φ2 =

1√
2

(
u
0

)
.

The Higgs modes in this charge vacuum have the next Hessian matrix

(
M2
ij

)
ch
≡
(

1

2

∂2V

∂φi∂φj

)
ch

= 2u2


〈e0|e0〉 〈e0|e1〉 〈e0|e2〉 〈e0|e3〉
〈e1|e0〉 〈e1|e1〉 〈e1|e2〉 〈e1|e3〉
〈e2|e0〉 〈e2|e1〉 〈e2|e2〉 〈e2|e3〉
〈e3|e0〉 〈e3|e1〉 〈e3|e2〉 〈e3|e3〉

 , (G.3.3)

where the unit vectors are defined by

eµ0 = (1, 0, 0, 0) ,

eµ1 = (0, 1, 0, 0) ,

eµ2 = (0, 0, 1, 0) ,

eµ3 = (0, 0, 0, 1) .

with the notation
〈e|e〉 ≡ eµeνΛµν .

→Supposing that pi = (p0, p1, p2, p3) is a normalized eigenvector of (G.3.3), with eigenvalue
(
M2
)
ch
. Then(

M2
)
ch

=
(
M2
ij

)
ch
pipj = u2ΛµνPµPν

where
Pµ ≡ p0e

µ
0 + p1e

µ
1 + p2e

µ
2 + p3e

µ
3

Hence, if Λµν is positive definite in the entire Minkowski space,

ΛµνPµPν > 0

and all eigenvalues of the Hessian matrix are positive. The stationary point is, therefore, a minimum, and according to
the statement 1, it remains a minimum when is transformed to the preferred frame, with the canonical kinetic term.
←In the other direction, if Λµν is not defined positive, then exist a Qµ such that

ΛµνQµQν < 0

4If f : X → Y , then f is said to be surjective if ∀ y ∈ Y , ,∃ x ∈ X, such that f(x) = y
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The vector Qµ can be represented as

Qµ = q0e
µ
0 + q1e

µ
1 + q2e

µ
2 + q3e

µ
3 .

since {eµ0 , e
µ
1 , e

µ
2 , e

µ
3} form a basis in the Minkowski space. Therefore the property for the Hessian implies

u2ΛµνQµQν =
(
M2
ij

)
ch
qiqj

qi can be represented in the basis of eigenvectors
{
p

(a)
i

}
of the mass matrix

qi =
∑
a

cap
a
i

it is possible to simplify

u2ΛµνQµQν =
(
M2
ij

)
ch
qiqj =

∑
a

(
M2
a

)
ch
c2a < 0

which implies that at least one of mass matrix eigenvalues is negative. Contradicting the fact the stationary point
associated with a charge breaking one is a minimum.

Corollary 1) In order to get a charge breaking stationary point as a minimum of the theory, all spatial like components
Λi must be non-positive.

171



H. Morse’s Inequalities

Employing bilinears form of the Higgs potential, we shall study the realization of different normal minima by counting
the number of solutions of respective stationary conditions. Applying the so-called Morse’s inequalities, we can say the
structure of minima and their degeneracy inside Higgs potential.

H.1. Morse’s Inequalities in the stationary conditions

Let us now consider the stationarity equations that give rise to the different critical points that we have been discussing.
We have mentioned that the CB and CP stationary points are unique since they are obtained from linear equations on
the vevs. However, this is not true for the normal stationary point. Let us begin with the most general 2HDM potential

VH = a1x1 + a2x2 + a3x3 + a4x4 + b11x
2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4

+b12x1x2 + b13x1x3 + b23x2x3 + b14x1x4 + b24x2x4 + b34x3x4, (H.1.1)

which written in a basis where a3 = a4 = 0, it is simply translated to

VH = a1x1 + a2x2 + b11x
2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4

+b12x1x2 + b13x1x3 + b23x2x3 + b14x1x4 + b24x2x4 + b34x3x4, (H.1.2)

We can parametrize the doublets by

Φ1 =

(
φ1 + iφ2

φ3 + iφ4

)
and Φ2 =

(
φ5 + iφ6

φ7 + iφ8

)
(H.1.3)

The fields φi are real functions. The bilinears are

x1 =
(

Φ†1Φ1

)
= φ2

1 + φ2
2 + φ2

3 + φ2
4 (H.1.4)

x2 =
(

Φ†2Φ2

)
= φ2

5 + φ2
6 + φ2

7 + φ2
8 (H.1.5)

x3 = Re
(

Φ†1Φ2

)
= φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8 (H.1.6)

x4 = Im
(

Φ†1Φ2

)
= φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7 (H.1.7)

In the stationary point

x1|0 = v2
1 (H.1.8)

x2|0 = v2
2 (H.1.9)

x3|0 = v1v2 (H.1.10)

x4|0 = 0 (H.1.11)
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The Higgs potential in terms of v′s is

V = a1

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
+ a2

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
+a3 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8) + a4 (φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

+b11

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)2
+ b22

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)2
+b33 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8)

2
+ b44 (φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

2

+b12

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

) (
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
+b13

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
(φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8)

+b23

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
(φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8)

+b14

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
(φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

+b24

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
(φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

+b34 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8) (φ1φ4 − φ2φ5 + φ3φ8 − φ4φ7) (H.1.12)

The no- trivial tadpoles at tree level are

∂V

∂φ3
= 2a1φ3 + a3φ7 + a4φ8

+4b11

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
φ3 + 2b33 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8)φ7

+2b44 (φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)φ8 + 2b12φ3

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
+2b13φ3 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8) + b13

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
φ7

+b23

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
φ7 + 2b14φ3 (φ1φ6 − φ2φ5 + φ3φ8 − φ4φ7)

+b14

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
φ8 + b24

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
φ8

+b34φ7 (φ1φ4 − φ2φ5 + φ3φ8 − φ4φ7) + b34 (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8)φ8 (H.1.13)

We make φ3 = v1 and φ7 = v2, therefore

∂V

∂φ3
= 2a1v1 + a3v2 + 2b11v

3
1 + b33v1v

2
2 + b12v1v

2
2 +

3

2
b13v

2
1v2 +

1

2
b23v

3
2 = 0 (H.1.14)

∂V

∂φ7
= 2a2v2 + a3v1 + 2b22v

3
2 + b33v

2
1v2 + b12v

2
1v2 +

1

2
b13v

3
1 +

3

2
b23v1v

2
2 = 0 (H.1.15)

and

∂V

∂φ4
= v1

(
b14v

2
1 + b24v

2
2 + b34v1v2

)
= 0 (H.1.16)

∂V

∂φ4
= −v2

(
b14v

2
1 + b24v

2
2 + b34v1v2

)
= 0 (H.1.17)

Notice that one cannot have solutions of the form {v1 = 0, v2 6= 0} or {v1 6= 0, v2 = 0}, unless some parameters of the
potential are set to zero (a3, b23, b24 and b13, b14 respectively). Since there is no symmetry forcing those parameters to be
zero, they have to be present in the potential. We now define the usual polar coordinates v1 = v cosβ and v2 = v sinβ. A
trivial solution of these equations is clearly v = 0. Excluding that case, the stationarity conditions (H.1.14) and (H.1.15)
become

v2 = − 1

cos2 β

2a1(
4b11 + b23 tan3 β + 3b13 tanβ + 2b12 tan2 β + 2b33 tan2 β

) (H.1.18)

2a1

(
b13 cotβ + 4b22 tan2 β + 2b12 + 3b23 tanβ + 2b33

)
−2a2

(
4b11 + b23 tan3 β + 3b13 tanβ + 2b12 tan2 β + 2b33 tan2 β

)
= 0

(H.1.19)

And both equations (H.1.16) and (H.1.17) reduce to(
b14v

2
1 + b24v

2
2 + b34v1v2

)
= 0
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H. Morse’s Inequalities

since v1, v2 can not be equal to zero simultaneously.(
b14 + b24 tan2 β + b34 tanβ

)
= 0 (H.1.20)

Eq. (H.1.18) tells us that, other than its sign, the value of v is determined unequivocally by tanβ. Eq. (H.1.19) is
a quartic equation on tanβ, having at most four possible real solutions. These two equations describe therefore eight
possible solutions {v1, v2}, due to the ambiguity on the sign of v. The 2HDM potential

V = a1x1 + a2x2 + a3x3 + a4x4 + b11x
2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4

+b12x1x2 + b13x1x3 + b23x2x3 + b14x1x4 + b24x2x4 + b34x3x4,

is however invariant under the transformation Φ1 → −Φ1 and Φ2 → −Φ2, so that these eight solutions correspond to
only four different physical scenarios. Adding the trivial solution v1 = v2 = 0, we have a total of nine solutions. However,
we must contend with eq. (H.1.20) as well, which is a quadratic equation on tanβ.

Then, there are at most two different values of tanβ which satisfy all equations. This fact means that we have a
maximum of five stationary points. For potentials with explicit CP conservation, equations (H.1.16) and (H.1.17) are
trivially satisfied, since b14 = b24 = b34 = 0. Therefore, equation (H.1.20) does not exist and the potential could have a
total of nine stationary points.

At this stage, it is possible to see Higgs potential have more than one normal minimum, with different depths?. To
establish this formally, we can use of Morse’s inequalities [205, 206]: for a given real function of two variables, let η0, η1

and η2 be the number of its minima, saddle points, and maximums, respectively 1. For a polynomial function in v1 and
v2, bounded from below, such as the one we are dealing with, Morse’s inequalities state that:

• η0 ≥ 1

• η1 ≥ η0 − 1

• η0 − η1 + η2 = 1.

We know that the 2HDM potential has η0 + η1 + η2 = 2n + 1 stationary solutions, n = 0, ..., 4: at most 2n
real roots of eqs. (H.1.18), (H.1.19) and (H.1.20) plus the trivial solution v1 = v2 = 0. Hence we find that
η0 + η2 = n + 1. (η0 + η0 + η2 − 1 + η2 = 2n+ 1, 2η0 + 2η2 = 2n+ 2) .Let us analyze the several possibilities for
the number of minima η0, depending on the number of solutions n. Simply counting all the different combinations
of extrema leads us to:

• n = 0,

η0 + η2 = 1 and η0 ≥ 1→ η0 = 1

The minimum is unique but has its localization at the origin, v1 = v2 = 0, which means that there is no SU(2)L ×
U(1)Y symmetry breaking. This case is excluded or not considered on physical grounds (i.e. it is not relevant for
our treatment).

1For a differentiable continuous function, at least of C2-type, of a set of real variables, a point P is critical or an extremum if all of the
partial derivatives of the function are zero at P , in other words, if its gradient is zero. The critical values are evaluated at the extremal
points, i.e., vacuum definition in our treatment.

If the function is smooth, or, at least twice continuously differentiable C2−type, a critical point may be either a local maximum, a
local minimum or a saddle point. The several cases may be discriminated by considering the eigenvalues of the Hessian matrix of second
derivatives of the Higgs potential, in our case.

A critical point at which the Hessian matrix is nonsingular is said to be non-degenerate, and the signs of the eigenvalues of the Hessian
determine the local behavior of the function. In the case of a function of a single variable, the Hessian is simply the second derivative,
viewed as a 1× 1-matrix, which is nonsingular if and only if it does not vanish. In this particular case, a non-degenerate extremum point
is a local maximum or a local minimum, depending on the sign of the second derivative. The sign is positive for a local minimum and
negative for a local maximum. If the second derivative is null, the critical point is an inflection point, but may also be an undulation point,
which may be a local minimum or a local maximum depending on the direction in the n-dimensional space.

On the other hand, for a function of n variables, the number of negative eigenvalues of the Hessian matrix at a critical point is called
the index of the extremum point. A non-degenerate critical point is a local maximum if and only the index is n, or, i.e., if the Hessian
matrix is negative definite; it is a local minimum if the index n is equal zero, or, equivalently, if the Hessian matrix is positive definite.
For the other n-index values, a non-degenerate critical point is a saddle point; that is a point which is a maximum in some directions and
a minimum in others [207].
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H.1. Morse’s Inequalities in the stationary conditions

• n = 1
η0 + η2 = 2 and η0 ≥ 1

we have two possibilities
η0 = 1 and η0 = 2

The first one is the previous case. And the second one which means two degenerate minima away from the
origin, related to one another by a change of sign of the vevs. This situation corresponds to an acceptable
symmetry breaking, and it means that there are no normal minima with different depths. This would be the
“standard” situation.

• n = 2
η0 + η2 = 3 and η0 ≥ 1

there are three possibilities:

−η0 = 1 or 2 are like the previous cases.

−η0 = 3 One uninteresting minimum at the origin and two degenerate ones away from it. This situation
would also be the “standard” one, as there would be no normal minima with different depths.

• n = 3
η0 + η2 = 4 and η0 ≥ 1

−η0 = 1, 2, or 3 are like the previous cases.

−η0 = 4 This case corresponds to two pairs of degenerate minima away from the origin. Nothing forces these
two pairs of minima to have the same depth. We might, therefore, have one normal minimum deeper than
another.

• n = 4
η0 + η2 = 5 and η0 ≥ 1

−η0 = 1, 2, 3, or 4 like above

−η0 = 5 This case is similar to the η0 = 4 case examined above, with an extra minimum present at the origin.

This little analysis shows us that, if there are more than two solutions for tanβ, then the 2HDM may have
more than one normal minimum away from the origin at different depths. However, no more than two such
minima can exist.
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I. Discriminant for global minimum

In this appendix, we show how is possible constructing a formalism and one discriminant ensuring that a particular
stationary point is a global minimum in the Higgs potential. For this purpose, Hessian formalism and convex forms for
C2 functions will be used 1.

I.1. Global minimum criteria

We start with the SO(1, 3) Higgs potential defined in a normal minimum

V̄ = −Mµr
µ +

1

2
Λµνr

µrν − 1

2
ζgµνr

µrν (I.1.1)

ζ is a Lagrange multiplier enforcing to 〈r̂µ〉 to reside in the surface of the LC+. This point will be shown below The
contravariant vector rµ is

rµ = (r0, r1, , r2, r3) =
(

Φ†1Φ1 + Φ†2Φ2, 2Re
(

Φ†1Φ2

)
, 2Im

(
Φ†1Φ2

)
,Φ†1Φ1 − Φ†2Φ2

)
.

and

Mµ =

(
−m

2
11 +m2

22

2
,Re

(
m2

12

)
,−Im

(
m2

12

)
,−m

2
11 −m2

22

2

)
.

Λµν is a symmetric matrix. The mixed tensor Λµν = gµαΛαν can be treated as a matrix in Euclidean space:

ΛE = Λµν =
1

2


1
2 (λ1 + λ2) + λ3 Re (λ6 + λ7) −Im (λ6 + λ7) 1

2 (λ1 − λ2)
−Re (λ6 + λ7) −λ4 − Re (λ5) Im (λ5) −Re (λ6 − λ7)
Im (λ6 + λ7) Im (λ5) −λ4 + Re (λ5) Im (λ6 − λ7)
− 1

2 (λ1 − λ2) −Re (λ6 − λ7) Im (λ6 − λ7) − 1
2 (λ1 + λ2) + λ3

 .

As this matrix in its generic version is not symmetric, its eigenvalues can be complex leading to unbounded from below
potentials (see appendix G). A change of basis yields

Φ′i = UijΦj .

Choosing the matrix U in U (2) guarantees that the kinetic terms retain their canonical form. However as was pointed
in later sections, these transformations are only a subset of more general changes given by SO (1, 3) rotations; indeed this
is a symmetry of re-parameterizing of the Higgs potential in the 2HDM. An important feature on these transformations
is that ΛE can be diagonalized into

ΛE → diag (Λ0,Λ1,Λ2,Λ3) .

Hence, stability conditions require

Λ0 > 0, and Λ0 > Λk; k = 1, 2, 3.

After SSB, the fields acquire vacuum expectation values

〈Φ1〉 =
1√
2

(
0
v1

)
and 〈Φ2〉 =

1√
2

(
0

v2e
iδ

)
.

1We follow the systematic presented by Ivanov et al in [29,31]

176



I.1. Global minimum criteria

rµ in the vacuum is thus

rµ ≡ 〈rµ〉 =
1

2

(
v2

1 + v2
2 , 2v1v2 cos δ, 2v1v2 sin δ, v2

1 − v2
2

)
.

rµrµ =
1

4

[(
v2

1 + v2
2

)2 − 4v2
1v

2
2 −

(
v2

1 − v2
2

)2]
= 0.

Besides in a general way
r0 ≥ 0 and rµr

µ ≥ 0.

Corresponding to the forward light cone LC+. The SU (2) × U (1) symmetric vacuum lies at the apex, the surface
corresponds to neutral vacua, while any point in the interior of LC+ represents a charge breaking vacua. Henceforth,
with this formalism will describe the way to determine if a stationary point is a global minimum or a saddle point.

Discriminating a minimum from a saddle point requires of the Hessian definition

Hab ≡
1

2

∂2V

∂ϕa∂ϕb

where ϕi, i = 1, ..., 8 are the real fields parameterizing the doublets. Due to Goldstone bosons, the Hessian is a
positive semi-definite matrix. Apart from this sector, the Hessian is positive definite in the Higgs field space. For a
neutral stationary point, the charged and neutral fields decouple, and one is regarding on Hab in the four-dimensional
subspace of neutral Higgs modes. (a, b = 1, 2, 3, 4).

The SO (1, 3) formalism gives us information how ζ, with respect to Λk and Λ0, is related with minimum versus saddle
point assignments. Therefore we use instead the basis invariant approach to Higgs masses, which allow us to switch to
the Λµν−diagonal basis. In this particular basis, the Hessian in the 4D space of neutral modes takes the following form

Hab =
(
RT
)
aα
SαβRβb

with

Raα =
1

2
〈 ∂rα
∂ϕa
〉

There are two different spaces to taking into account in the formalism. One of them, labeled with Greek letters α, β,
is related to the space of bilinears from we erased the Minkowski space metric. The second of them refers to the space of
neutral modes at the extremum (labeled by a, b). Both subspaces and the connection through R are shown in the Fig.
I.1

Figure I.1.: R transformation acting over neutral Higgs modes maps the complement of physical space onto a 3D plane
tangent to the forward lightcone in the rα space at the extremum point. Figure taken from [29]

To compute the Hessian in a Minkowskian subspace, we use

Sµν ≡
∂V

∂rµ∂rν
= Λµν − ζgµν

From this matrix structure, we obtain in a diagonal basis

S = Λµν − ζgµν = ΛE − ζ1

=


Λ0 − ζ 0 0 0

0 ζ − Λ1 0 0
0 0 ζ − Λ2 0
0 0 0 ζ − Λ3

 .
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I. Discriminant for global minimum

The matrix S signature SigS and the matrix SE = ΛE − ζ1 is originating from the same Λµν − ζgµν : SigS is obtained
by erasing the Minkowski metric and SE matrix is achieved by lowering one index. This fact leads to defining

D ≡ detS

It is worthwhile to make some annotations over physical significance of the Hessian over gauge orbit space. Indeed,
the extended reparameterization group SL (2, C) modifies the Higgs kinetic term since space-like components become
altered under proper operations. Despite the structure of the kinetic term does not affect the number of stationary
points in the Higgs potential, but it does change the position of these extremal points, and then the form of the Hessian
elements are calculated around them. Nonetheless, any SL(2, C) transformation of the Higgs fields preserves the positive
(semi) of the Hessian (see Proposition 1 in appendix G). Then any rotation or stretching operation over Higgs space
leaves invariant the signature of the Hessian,i.e., the signs of its eigenvalues. Therefore, SigS represents of the masses
squared of the four neutral scalar degrees of freedom.

We must also search for the link between the sign of eigenvalues in Hab and S. The transformation matrix associated
to R is singular (detR = 0). This scenario is an indication that one of the four directions in the scalar field space in
ϕa is a would be Goldstone boson G0. The orthogonal plane to it represents the 3D physical neutral Higgs space. This
physical Higgs space is mapped by R onto the 3D subspace in the rα space tangent to LC+ at the extremum point. If
this mapping is not realized, the presence of a Goldstone boson does not lead to analyze the Hessian criteria, since the
presence of an eigenvalue equals to zero. Therefore to discriminate between a saddle point or a minimum, in addition to
the full signature of S, we need to know the signature of this restriction onto this 3D subspace.

The relation between signatures of Hab and S describes the cases

• If S has the signature (+,+,+,+) then Hab is positive definite in the physical Higgs space; settled at a minimum.
In this case also D > 0.

• If S has the signature (−,+,+,+) up to permutations, then Hab is not positive definite in the rα space. But it
might still be positive definite when to become restricted to the physical Higgs space. In this case D < 0, but
deciding whether we are at a minimum or a saddle point requires further analysis.

• If S has the signature (−,−,+,+) up to permutations. Then Hab cannot be positive definite even when projected
onto the physical Higgs space. Using dimension counting, in the rα space, there exists a 2D subspace of negative,

Sαβrαrβ ,

intersecting a 3D subspace tangent to the light cone. So even with a D > 0, but this stationary point cannot be a
minimum. The same conclusion holds for the signature (−,−,−,−).

Therefore, a minimum with positive D > 0 can take place if and only if S has signature (+,+,+,+) . This occurs
when

Λ0 > ζ > Λ1,Λ2,Λ3

This fact also satisfies the typical conditions for bounded from below Higgs potential. We proceed to show as in this
region exist only one stationary point and that this point is a global minimum.

I.1.1. General treatment for stationary points nature

Criteria for extremal points, in perhaps a stronger formulation, are established in the following statements: Let A ⊆ Rn
be an open convex set and let f : A → R be twice differentiable [207, 208]. Write H(x) for the Hessian matrix of A at
x ∈ A.

• If the Hessian is positive definite (equivalently, all H−eigenvalues are positive) at x, then f attains a local minimum
at x.

• If the Hessian is negative definite (equivalently, all H−eigenvalues are negative) at x, then f attains a local
maximum at x.

• If the Hessian has both positive and negative eigenvalues then x is a saddle point for f (this is true even if x is
degenerate).
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I.1. Global minimum criteria

• If H(x) is positive semidefinite for all x ∈ A, then f is convex and has a strict global extremal-minimum at any x
for which f ′(x) = 0 and H(x) is positive definite.

• If H(x) is negative semidefinite for all x ∈ A, then f is concave and has a strict global maximum at any x for which
f ′ (x) = 0 and H(x) is negative definite.

Naively in our case
Λ0 > ζ, ζ > Λ1, ζ > Λ2 and ζ > Λ3.

There is a milder condition related to being H a positive definite quantity if the subspace tangent to the stationary
point, i.e., in the space of rµ. Therefore, H to carry out minima, it must be positive definite in LC+,

i)Λ0 − ζ > 0

ii)Λ0 − ζ > ζ − Λi

• On the other hand, to avoid a saddle point, the determinant of the Hessian matrix must satisfy

D = (Λ0 − ζ) (ζ − Λ1) (ζ − Λ2) (ζ − Λ3) > 0

• By using the bounded from below constraints, D > 0 condition ensures that we are in a global minimum of the
theory.

179



J. β−Functions structure in the 2HDM

J.1. The one loop β−functions in 2HDM

The energy behavior of the parameters in all interaction sectors and relations among them are computed through the
Renormalization Group Equations (RGEs). At higher levels in perturbation theory, quartic coupling depends on the
energy scale µ employing procedure renormalization, which is introduced in the regularization of ultraviolet divergences
in loop integrals. With aim to evaluate the presence of instabilities in all field space, those energy-scale dependent
couplings must satisfy the same constraints obtained at tree level in section 2.3.2, ensuring a bounded effective Higgs
potential from below and preventing a possible decay of EW minima.

Besides the importance of the vacuum behavior, the RGE are worth tools to determine by the triviality principle energy
bounds of the parameters and perturbative validity of the model. In a practical sense, to numerically evaluate the energy
dependence of the quartic couplings one loop level, it is necessary to consider RGEs of all remain couplings, i.e., the
gauge group couplings g′, g, gs of the symmetry groups U(1), SU(2), SU(3), the vacuum expectation values v1, v2, and
the Yukawa couplings of the top and the down quark sectors ηtt, ηbb and ηττ (couplings to Φ1 doublet) and ξtt, ξbb and
ξττ (couplings to Φ2 doublet) respectively are computed in Refs [120,121]. The one loop RGEs for a general gauge theory
are presented in [113, 122, 123] and for NHDM theory with gauge group SU(2)L × U(1)Y were computed in [124, 125].
For the particular inert-2HDM, RGEs can be found in [126]. They have also been proved with SARAH-package [127].

In this section, we describe an algebraic form to get β structures with the aid of scale invariant effective Higgs potential
formalism. This systematic is an additional method to obtain RGEs besides to the diagrammatic form presented in
chapter 3. This part is based mainly on the structure followed by [209].

At one loop, the effective potential Veff (Φ) for a scalar theory

Veff (Φ) = V0 (Φ) + V1 (Φ) + ...

V0 (Φ) is the tree level Higgs potential given in Eq. (1.2.1). The Higgs potential up to one loop (MS̄ scheme) defined by

V1 (Φ) =
1

4

1

16π2
STr

(
M4
)

ln

(
M2 (Φ)

µ2
− C

)
M includes all possible contributions to the scalar, fermion and vector masses, being Str the spin-weighted trace

(with arbitrary background values of scalar fields). The supertrace operator counts positively (negatively) the number
of degrees of freedom for the different bosonic and fermionic fields. C is a (constant) diagonal matrix which depends on
the renormalization scheme, and finally µ is the mass scale. In the Landau gauge, Veff obeys the following RGE[

µ
∂

∂µ
+
∑
i

βi
∂

∂λi
−
(

Φγ
∂

∂Φ
+ c.c.

)]
Veff = 0

where the λiinclude all mass parameters and coupling constants, and γ is the matrix of anomalous dimensions of the
scalar fields. Defining n−derivative operator D as

D(n) =
∑
i

β
(n)
i

∂

∂λi
−
(

Φγ(n) ∂

∂Φ
+ c.c.

)
For n = 1, we have

D(1)V1 = −µ ∂

∂µ
V1 =

1

2

1

16π2
Str
(
M4
)

(J.1.1)

By comparing coefficients of the various Φ terms on the two sides of Eq. (J.1.1) and knowing γ, it is possible to
determine all the one-loop β functions.
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J.1. The one loop β−functions in 2HDM

Setting Yukawa and gauge couplings equal to zero

M2 =

(
A B
C D

)
where

A =

(
∂2V

∂φi∂φ†j
∂2V

∂φi∂ξ†j

∂2V
∂ξi∂φ†j

∂2V
∂ξi∂ξ†j

)

B =

(
∂2V

∂φi∂φj
∂2V
∂φi∂ξj

∂2V
∂ξi∂φj

∂2V
∂ξi∂ξj

)

C =

(
∂2V

∂φ†i∂φ†j
∂2V

∂φ†i∂ξ†j

∂2V
∂ξ†i∂φ†j

∂2V
∂ξ†i∂ξ†j

)

D =

(
∂2V

∂φ†i∂φj
∂2V

∂φ†i∂ξj
∂2V

∂ξ†i∂φj
∂2V

∂ξ†i∂ξj

)
.

Here i, j = 1, 2 are SU (2) indices and we have defined φ ≡ Φ1 and ξ ≡ Φ2. For instance the 1, 1 matrix element of A

∂2V

∂φi∂φ†j
= δij

(
λ1φ

†φ+ λ3ξ
†ξ + λ6

(
φ†ξ + ξ†φ

))
+ λ1φ

†iφj + λ4ξ
†iξj + λ6

(
φ†iξj + ξ†iφj

)
Since we are neglecting gauge and Yukawa terms, there are no contributions to γ. Hence, from Eq. (J.1.1), we have

that

1

2
STr

(
M4
)

=
1

2

[
Tr
(
A2
)

+ 2Tr (BC) + Tr
(
D2
)]

=
βλ1

2

(
φ†φ

)2
+
βλ2

2

(
ξ†ξ
)2

+ βλ3

(
φ†φ

) (
ξ†ξ
)

+ βλ4

(
φ†ξ
) (
ξ†φ
)

+

{
βλ5

2

(
φ†ξ
)2

+
[
βλ6

(
φ†φ

)
+ βλ7

(
ξ†ξ
)] (

φ†ξ + ξ†φ
)}

We have assumed that all λi and mij ∈R. By direct straightforward calculations, we can get the following β functions

βλ1
= 12λ2

1 + 4λ2
3 + 4λ3λ4 + 2λ2

4 + 2λ2
5 + 24λ2

6

βλ2
= 12λ2

2 + 4λ2
3 + 4λ3λ4 + 2λ2

4 + 2λ2
5 + 24λ2

6

βλ3
= (λ1 + λ2) (6λ3 + 2λ4) + 4λ2

3 + 2λ2
4 + 2λ2

5 + 4λ2
6 + 16λ6λ7 + 4λ2

7

βλ4
= 2 (λ1 + λ2)λ4 + 8λ3λ4 + 4λ2

4 + 8λ2
5 + 10λ2

6 + 4λ6λ7 + 10λ2
7

βλ5
= 2 (λ1 + λ2)λ5 + 8λ3λ5 + 12λ4λ5 + 10λ2

6 + 4λ6λ7 + 10λ2
7

βλ6
= 12λ1λ6 + 6λ3 (λ6 + λ7) + 8λ4λ6 + 4λ4λ7 + 10λ5λ6 + 2λ5λ7

βλ7
= 12λ2λ7 + 6λ3 (λ6 + λ7) + 4λ4λ6 + 8λ4λ7 + 2λ5λ6 + 10λ5λ7

Including gauge contributions at order O
(
g4, g2g

′2, g
′4
)

are described by the following matrix

M2
V =

(
1
2g

2φ†
{
τa, τ b

}
φ+ 1

2g
2ξ†
{
τa, τ b

}
ξ 1

2gg
′
φ†τaφ+ 1

2gg
′
ξ†τaξ

1
2gg

′
φ†τaφ+ 1

2gg
′
ξ†τaξ 1

2g
′2φ†φ+ 1

2g
′2ξ†ξ

)
Using the following features {

τa, τ b
}

= 2δab

(τa)
i
j

(
τ b
)k
l

= 2δilδ
j
k − δ

i
jδ
k
l
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The spin-weighted super trace is given by

STr
(
M4
V

)
= 3

(
3

4
g4 +

1

4
g
′4

)[(
φ†φ

)2
+
(
ξ†ξ
)2

+ 2φ†φξ†ξ
]

+
3

2
g2g

′2
[(
φ†φ

)2
+
(
ξ†ξ
)2

+ 4φ†ξξ†φ− 2φ†φξ†ξ
]

The factor 3 coming from polarization degrees of freedom of the gauge vector bosons. The O
(
η4
t

)
contributions from

the top mass
M2
t = η2

t φ
†φ

In this particular case, the top quark has just been coupled to the first doublet φ. So that

STr
(
M4
)

= −12jη4
t

(
φ†φ

)2
The minus sign comes from Fermi-Dirac statistic. A factor of 3 is by the color degeneracy of top quark and 4 is the

spin counting factor. The remaining mixed contributions of O
(
λiη

2
t , λig

2, λig
′2
)

come from the anomalous dimension

terms in Eq. (J.1.1), which in the Landau gauge are

γφ = 3η2
t −

9

4
g2 − 3

4
g
′2

γξ = −9

4
g2 − 3

4
g
′2

With all contributions, β − functions changing into

βλ1 → βλ1 +
3

4

(
3g4 + g

′4 + 2g2g
′2
)
− 3λ1

(
3g2 + g

′2 − 4η2
t

)
− 12jη4

t

βλ2
→ βλ2

+
3

4

(
3g4 + g

′4 + 2g2g
′2
)
− 3λ2

(
3g2 + g

′2
)

βλ3
→ βλ3

+
3

4

(
3g4 + g

′4 − 2g2g
′2
)
− 3λ3

(
3g2 + g

′2 − 2η2
t

)
βλ4

→ βλ4
+ 3g2g

′2 − 3λ4

(
3g2 + g

′2 − 2η2
t

)
βλ5

→ βλ5
− 3λ5

(
3g2 + g

′2 − 2η2
t

)
βλ6

→ βλ6
− 3λ6

(
3g2 + g

′2 − 3η2
t

)
βλ7

→ βλ7
− 3λ7

(
3g2 + g

′2 − η2
t

)
The Renormalization Group Equations for gauge sector at one loop level are given by

dg

dt
=

1

16π2

(
4

3
nf +

1

6
nH −

22

3

)
g3 = −3g3, (J.1.2)

dg′

dt
=

1

16π2

(
20

9
nF +

1

6
nH

)
g
′3 = 7g

′3, (J.1.3)

dgs
dt

=
1

16π2

(
4

3
nf − 11

)
g3
s = −7g3

s . (J.1.4)

Since for 2HDM, nH = 2 and nf = 3 (the same fermionic content of SM). In all equations t = logµ.
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K.1. Fundamentals of two particle scattering

We consider the scattering of two particles in the center of mass reference. This general treatment has been used in
the description of unitarity behavior of different scatterin processes (See Chapter 4). To create states of definite total
angular momentum (which is conserved in all physical processes) one must combine the”orbital” and the ”static spin”
degrees of freedom by the traditional rules of the addition of angular momentum. One starts with a standard physical
state in the center-of-mass frame of the two particles involving particle 1 moving (in the z-direction) with momentum
pẑ, helicity λa, and particle 2 moving in the opposite direction with momentum −pẑ and helicity λb,

|pẑ, λaλb〉 = |pẑ, λa〉 × U(=, π, 0)|pẑ, λb〉, (K.1.1)

where U(0, π, 0) is a matrix rotation. Total helicity of the two-particles system is defined as

Λ = Λ1 + Λ2 = J1 · p̂1 + J2 · p̂2 = (J1 − J2) · p̂. (K.1.2)

It is also useful to define the relative helicity of the two-particles system as

J · p̂ = (J1 + J2) · p̂ = Λ1 − Λ2 (K.1.3)

Now, we can construct two-particle helicity states [111] in the same way we obtained the one-particle helicity states
above. First, we define two-particle plane wave states in the CM-frame. However, there is a subtle question of phases
that must first be addressed. As in the derivation of the one-particle helicity states, one begins from the state moving
along the z-direction and rotates to the desired orientation. But, in the two-particle state in the CM-frame, if p1 = pẑ
then p2 = −pẑ. Thus we must define the state | − pẑ, λ〉. This fact can be done in two different ways. (i) Start in the
rest frame with a state of helicity, boosted along the positive z-direction and then rotate to the negative z-axis, or (ii)
start in the rest frame with a state of helicity and boost along the negative z-axis. These two results yield states that
differ by a phase, so a convention is required. We shall choose the Jacob-Wick second particle protocol which defines a
helicity state of a particle of spin s moving in the negative z-direction to be

| − pẑ, λ〉 = (−1)s−λeiπJy |pẑ, λ〉 (K.1.4)

Jy is the rotation generator in the y-axis (Euler’s angle θ). This definition implies

lim
p→0
〈pẑ,−λ| − pẑ, λ〉 (K.1.5)

The phase factor in Eq. (K.1.4) comes from

e−iπJy |J,M〉 = (−1)J−M |J,−M〉. (K.1.6)

The two-particle plane-wave state is then defined by

|p;λaλb〉 ≡ U [R(φ, θφ)] |pẑ, λa〉 × | − pẑ, λ2〉. (K.1.7)

It follows from Eq. (K.1.3) that

J · p̂|p, λa, λb〉 = λ|p, λaλb〉, λ = λa − λb, (K.1.8)

Likewise for one particle state, we can obtain the angular momentum projection
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K. Scattering states for massive fermions and bosons

|p, J,M, λaλb〉 =

√
2J + 1

4π

∫
dΩD

(J)
Mλ(R)∗|p, λaλb〉. (K.1.9)

The angular momentum states {|p, J,M, λ〉} also form a basis in the space of single particle states. Hence we can
invert (K.1.9) to obtain

|p, θ, φ, λ〉 =
∑
J,M

|p, J,M, λ〉D(J) (θ, φ, 0)
M
λ . (K.1.10)

In particular, the ”standard state” is given by

|pẑ, λ〉 =
∑
J

|p, J, λ, λ〉. (K.1.11)

From the expression for the two-particle helicity state given in Eqs. (K.1.10)-(K.1.11), it is straightforward to derive
formula for scattering amplitudes in terms of helicity amplitudes [111,149].

K.2. Jacob-Wick Formalism

Figure K.1.: Two particle scattering in the center of mass reference.

In the follows, we reconstruct Jacob Wick formalism, which is based on diagonalization of S- matrix in the angular
momentum basis. Starting with the invariant matrix element defined as

〈f |T̂ |i〉 = (2π)2δ4(Pf − Pi)Mfi. (K.2.1)

being T̂ = i(Ŝ − 1), and |i〉, |f〉 represent initial and final states respectively. For instance

|i〉 = |pa, λa; pb, λb〉, (K.2.2)

|f〉 = |pc, λc; pd, λd〉. (K.2.3)

In the definition of the matrix element appears the δ-functions corresponding to the energy-momentum conservation.
To get the desired constraints, we reduce our Hilbert space to a subspace Hs with given total energy and momentum.
By reducing |i〉 and |f〉 into Hs the δ function is automatically taken into account. We do it from two-particle states
with definite momentum. For one-particle states, we use the normalization

〈p′, λ′|p, λ〉 = 2Eδλλ′δ
3(p− p). (K.2.4)

so that the two-particle states are normalized as follows

〈pcλc; pdλd|paλa; pbλb〉 = (2Ea)(2Eb)(2π)6δ3 (pc − pa) δ3 (pd − pb) . (K.2.5)
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The product of δ function can be recast as

δ3 (pc − pa) δ3 (pd − pb) = Λδ4 (pc + pd − pa − pd) δ2 (n′ − n) . (K.2.6)

where n,n′ are unit vectors in directions pa and pc (δ2(n − n′) can be written in terms of angles (θ, ϕ) as δ(cos θ′ −
cos θ)δ (ϕ′ − ϕ). The Λ is a normalization factor given as Λ ≡ |det(J)|, where J is Jacobian of the considered transfor-
mation. In our case we have (denoting pa = (pa1, pa2, pa3) and pb = (pb1, pb2, pb3)) [44]

pa1 pa1 + pb1
pa2 pa + pb = pa2 + pb2
pa3 pc3 + pc3
pb1 Ea + Eb =

√
p2
a1 + p2

a2 + p2
a3 +m2

a +
√
p2
b1 + p2

b2 + p2
b3 +m2

b

pb2 cosθ = pa3√
p2a1+p2a2+p2a3

pb3 Tanφ = pa1
pa2

(K.2.7)

The Jacobian has the form

Jij =
∂p′ij
∂pij

. (K.2.8)

The determinant Jij become

|det J | =

(
p2
a1 + p2

a2 + p2
a3√

p2
a1 + p2

a2 + p2
a3 +m2

a

− pa1pb1 + pa2pb2 + pa3pb3√
p2
b1 + p2

b2 + p2
b3 +m2

b

)(
p2
a1 + p2

a2 + p2
a3

)3/2
. (K.2.9)

and this can be expressed in the c. m. system (where pa = −pb and s = (Ea + Eb)
2
)

|det J | = 1

|p|3

(
|p|2

Ea
+
|p|2

Eb

)
=

√
s

EaEb|p|
. (K.2.10)

Using this relation, we can transform the normalization (K.2.5) as

〈pcλc; pdλd|paλa; pbλb〉 = (2Ea)(2Eb)(2π)6δ3 (pc − pa) δ3 (pd − pb) δλc,λaδλd,λb

=
4 (2π)

2√
s

|p|
(2π)

4
δ4 (pc + pd − pa − pb) δ (n′ − n) . (K.2.11)

In our treatment ∫
δ2 (n− n′) f (n) dΩ = f (n′) . (K.2.12)

We see that in (K.2.11) the total four-momentum conservation is factored out. Thus we can reduce the state vectors
to the Hs (our kets and bras contain a subindex s indicating operations in the respective Hilbert subspace). With aim
to fix the normalization, the scalar product is defined as

s〈pcλc; pdλd|paλa; pbλb〉s = δ (n− n′) . (K.2.13)

However, in doing this, one must be careful when reducing operators, since there can appear some extra factor.
Restricting the unit operator to our subspace with (K.2.11) and dropping (2π)

4
δ4 (Pf − Pi) , one is left with the factor

4 (2π)
2√

s

|p|
. (K.2.14)

and a delta function, which represents Î in our new basis. Such a factor appears in the expression for invariant
amplitude on Hs.

Mfi (s,Ω) = 4 (2π)
2

√
s

|p| s
〈pc, λc; pd, λd|T |pa, λa; pb, λb〉s (K.2.15)

185



K. Scattering states for massive fermions and bosons

where T is the reduction of the original transition operator T. In a similar way, it is possible to reduce the angular
momentum and for the states characterized by the angular momentum J and its projection M along the axis z, as Eq
(K.1.9):

|p, J,M, λa, λb〉 =

√
2J + 1

4π

∫
dΩD(J)

Mλ(R)∗|p, λa, λb〉 (K.2.16)

which has been written in the CM of reference. Let us now transform the matrix element to the eigenstates (K.2.16),
by using orthogonality relations fro D−Wigner representations

δλa,λb
∑
J,M

(
2J + 1

4π

)1/2

DJλa−λb,M
(
R−1
θ,ϕ

)
DJ
λa−λb,M

(
R−1
θ,ϕ

)
= δ (n− n′) (K.2.17)

Therefore, the momentum eigenstates can be expressed as

|p, λa, λb〉 =
∑
J,M

(
2J + 1

4π

)1/2

DJ∗λa−λb,M |p, J,M, λa, λb〉 (K.2.18)

Thus the elements of T̂ become

〈pi, λa, λb|T |pf , λc, λd〉 =
∑
J,M

(
2J + 1

4π

)
DJλa−λb,M

(
R−1
θ′,ϕ′

)
DJλc−λd,M

(
R−1
θ,ϕ

)
s〈pi, J,M, λc, λd|T |pf , J,M, λc, λd〉s

(K.2.19)
The commutation relation [Si, Ji] = 0 (which is satisfied also in the subspace Hs), implies that the T is a scalar under

rotations. Then, using Wigner theorem, one has

s〈Jf ,Mf , λc, λd|T |Ji,Mi, λa, λb〉s = 〈λcλd||TIJ (s) ||λaλb〉δJFJ δ
Mf

Mi
δJJi = δ

Jf
JI
δM
′

M T Jλcλd,λaλb . (K.2.20)

There is another very useful identity for D−functions, namely

J∑
M=−J

DJm′,M (R′)DJM,m (R) = DJm′,m (R′R) (K.2.21)

〈pi, λa, λb|T |pf , λc, λd〉 =
∑
J,M

2J + 1

4π
DJ∗
λc−λd,λa−λb (ϕ, θ, 0)T Jλcλd,λaλb (s) (K.2.22)

where ϕ, θ now denote the transformation angles between n and n. In terms of invariant amplitude

M (s, θ) = 32π
∑
J,M

(2J + 1)DJ∗λc−λd,λa−λb (ϕ, θ, 0)MJ
λcλd,λaλb

(s) (K.2.23)

K.2.1. Helicity states

One processes in which we are focused is the annihilation of a pair fermion-anti fermion into two spinless particles. In
addition to the isospin quantum numbers and momentum, initial states are labeled with the letters (a, b) for helicities.
In the center-of-mass frame, the initial and final momenta in the scattering plane are depicted in Fig. K.1. The initial
two-particle system can be characterized as

|pi, I, λa, λb〉 =
∑
J

|pi, I, J,M = λa − λb, λa, λb〉D(J)(φ,Θ, 0)λa−λbλa−λb . (K.2.24)

For Θ = 0 under alignment of the initial process with z axis, D-Wigner representation at equalM is unity (D(J)(φ,Θ, 0)λa−λbλa−λb =

Î). The final two particles1

|pf , I, λc, λd〉 =
∑
J,M

|pf , I, J,M, λc, λd〉DJ (φ, θ, 0)
M
λc−λd . (K.2.26)

1These D−functions satisfy the following orthogonality relation∫
D
∗(j1)

m1m
′
1
D
∗(j2)

m2m
′
2

dΩ

4π
=

1

2j1 + 1
δm1m2δm′1m

′
2
δj1j2 (K.2.25)
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K.2. Jacob-Wick Formalism

where we have assumed that the initial states have been “prepared” with well-defined values of helicity (hence there is no
sum over M) while the final states do not have a clearly defined helicity. Since all known interactions are invariant under
spatial rotations, the scattering matrix conserves total angular momentum. According to the Wigner-Eckart theorem
(for the scalar particular case),

〈pf , If , Jf ,Mf , λc, λd|T |pi, Ii, Ji,Mi, λa, λb〉 = 〈λcλd||TIJ (s) ||λaλb〉δJFJ δ
Mf

Mi
δJJi . (K.2.27)

where s is the root square of the total energy of the system and the first factor on the right-hand side is the ”reduced
matrix element” depending only on the variables explicitly displayed. Combining Eqs (K.2.24)-(K.2.27) in terms of the
invariant amplitude, we find

M (s,Ω) =
∑
J

〈λcλd||MIJ (s) ||λaλb〉dJ (θ)
λa−λb
λc−λd e

i(λa−λb)φ, (K.2.28a)

M (s, θ, φ) = 32π
∑
J

(2J + 1)MIJ
λa,λb,λc,λd

(s) dJ (θ)
λa−λb
λc−λd e

i(λa−λb)φ. (K.2.28b)

where we have used

MIJ
λa,λb,λc,λd

(s) =

√
s

4|p|
T IJλa,λb,λc,λd (s) (K.2.29)

where s is the root square of the total energy of the system and the first factor on the right-hand side is the ”reduced
matrix element” depending only on the variables explicitly displayed. Combining Eqs (K.2.24)-(K.2.27) regarding the
invariant amplitude, we find

dJ (θ)
M
0 =

[
(J −M)!

(J +M)!

]1/2

(−1)
M
PJM (θ) . (K.2.30)

With PJM is the associated Legendre function. By defining

MI,J
λa,λb

(s, φ) = ei(λa−λb)φMI,J
λa,λb,0,0

(s) , (K.2.31)

it is possible to find an explicit form for the coefficients of partial waves

MI,J
λaλb

(s) =
1

32π

∫
M (s, θ) dJ (θ)

λa−λb
0 d (cos θ)

=
1

32π

∫
M (s, θ)

[
(J + λb − λa)!

(J + λa − λb)!

]1/2

(−1)
λa−λb PJ,λa−λb (cos θ) d (cos θ) (K.2.32)
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L. Inert Higgs Doublet Model: Eigenstates and
Metastability relations

L.1. Mass eigenstates in the IHDM

In this appendix, we discuss the origin of the critical conditions and so on the mass of physical states in the Inert Higgs
Doublet Model (IHDM). For this purpose, we start our development by building a Z2−invariant Higgs potential:

VH = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 +
1

2
λ1

(
Φ†1Φ1

)2

+
1

2
λ2

(
Φ†2Φ2

)2

+λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

1

2
λ5

[(
Φ†1Φ2

)2

+ h.c.

]
. (L.1.1)

where λ5 ∈Re. From a general point of view, the doublets can be parameterized by

Φ1 =

(
φ1 + iφ2

φ3 + iφ4

)
and Φ2 =

(
φ5 + iφ6

φ7 + iφ8

)
,

where φi’s are real fields. Concerning φi fields, the Higgs potential in (L.1.1) can be translated into

VH = m2
11

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
+m2

22

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
+

1

2
λ1

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)2
+

1

2
λ2

(
φ2

5 + φ2
6 + φ2

7 + φ2
8

)2
+λ3

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

) (
φ2

5 + φ2
6 + φ2

7 + φ2
8

)
+ (λ4 + λ5) (φ1φ5 + φ2φ6 + φ3φ7 + φ4φ8)

2
.

The inert vacuum structure is chosen using

〈Φ1〉0 =
v√
2
→ φ3 =

v√
2
, {φ1, φ2, φ4} = 0 and 〈Φ2〉0 = 0→ {φ5, φ6, φ7, φ8} = 0.

Under this selection, the single non-trivial tadpole (stationary conditions) at tree-level is given by

∂VH
∂φ3

∣∣∣∣
φ3= v√

2

= 2m2
11

v√
2

+ λ1
v3

√
2

= 0.

Therefore our stationary condition is indeed

m2
11 = −1

2
λ1v

2 < 0. (L.1.2)

L.1.1. Mass matrices

To compute scalar masses, we make the following physical parameterization for doublets

Φ1 =

(
G+

h+v+iG0
√

2

)
and Φ2 =

(
H+

H0+iA0
√

2

)
. (L.1.3)

188



L.2. Metastability in the Inert 2HDM

The Higgs potential in Eq. (L.1.1) is now expanded regarding physical eigenstates

VH = m2
11

(
G+G− +

h2 + v2

2
+ hv +

G0G0

2

)
+m2

22

(
H+H− +

H0H0

2
+
A0A0

2

)
+

1

2
λ1

(
G+G− +

h2 + v2

2
+ hv +

G0G0

2

)2

+
1

2
λ2

(
H+H− +

H0H0

2
+
A0A0

2

)2

+λ3

(
G+G− +

h2 + v2

2
+ hv +

G0G0

2

)(
H+H− +

H0H0

2
+
A0A0

2

)
+λ4

(
G−H+ +

(h+ v)H0

2
+
G0A0

2
+ i

(h+ v)A0

2
− iG

0H0

2

)
×
(
G+H− +

(h+ v)H0

2
+
G0A0

2
− i (h+ v)A0

2
+ i

G0H0

2

)
+

1

2
λ5

(
G−H+ +

(h+ v)H0

2
+
G0A0

2
+ i

(h+ v)A0

2
− iG

0H0

2

)2

+
1

2
λ5

(
G−H+ +

(h+ v)H0

2
+
G0A0

2
− i (h+ v)A0

2
+ i

G0H0

2

)2

. (L.1.4)

Physical mass terms are easily obtained by making the following partial derivatives

m2
h0 =

∂VH
∂h2

= m2
11 +

3

2
λ1v

2 = λ1v
2 (L.1.5)

m2
H0 =

∂VH
∂H2

= m2
22 +

1

2
(λ3 + λ4 + λ5) v2 (L.1.6)

m2
A0 =

∂VH
∂A2

= m2
22 +

1

2
(λ3 + λ4 − λ5) v2 (L.1.7)

m2
H± =

∂VH
∂H+∂H−

= m2
22 +

1

2
λ3v

2. (L.1.8)

In the term associated with m2
h0 , we have used the stationary condition in Eq. (L.1.2).

L.2. Metastability in the Inert 2HDM

The vacuum structure in the IHDM is concentrated in the first doublet, i.e., 〈Φ1〉0 = v/
√

2, yielding the stationary
condition (L.1.2) and masses given by Eqs. (L.1.5)-(L.1.8). Under this choice, Z2 symmetry is preserved in the Higgs
potential and Yukawa sector after SSB, providing a conserved quantum number as we will just point out: real part neutral
field inside the first doublet is identified with h0, right part of (L.1.3). The remaining components are the Goldstone
boson G0 in this case, and the G± for the charged part of Φ1. On the other hand Φ2 yields the remaining physical
degrees, H±, H0 and A0. None of these extra fields is coupled to fermions, which is originated by the effect of an intact
Z2−symmetry and so on exists a conserved quantum number in scattering processes. The consequence of this intact
symmetry is that extra scalars within Φ2 are always produced by pairs. Hence, the lightest scalar in Φ2 is a feasible dark
matter candidate.

All these described features define an Inert vacuum. This state is however only a possible case for most general
stationary conditions with general VEVs in both doublets. By assuming a normal vacuum, doublets in general stationary
points behave as

〈Φ1〉 =
1√
2

(
0
v

)
, 〈Φ2〉 =

1√
2

(
0
vI

)
.

The stationary conditions are given by two cubic coupled equations

2m2
11v

2 + λ1v
3 + (λ3 + λ4 + λ5) v2

I = 0

2m2
22v

2
I + λ2v

3
I + (λ3 + λ4 + λ5) v2 = 0.

where the first vacuum structure is whose obtained by the formulation of an inert-global model in the last section.
Nevertheless, a new scenario can be achieved by considering v = 0 and vI 6= 0; an inert like structure for stationary
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points. The stationary relation between mass and quartic couplings satisfies

m2
22 = −1

2
λ2v

2
I .

In this case, since only doublet Φ1 is coupled of matter spectrum, all fermions are massless, obtaining thus an unphysical
scenario for nature. Our choice of parameter is such that this regime must be avoided. Because of Inert and Inert like
scenarios preserve Z2 symmetry in the Higgs potential, both structures could exist simultaneously as vacua in the
model1. Two just necessary conditions, ensuring the existence of simultaneous inert vacua, are given by the following
statements [34]:

• Inert and Inert like minima can coexist in the Higgs potential if m2
11 < 0 and m2

22 < 0

• Inert and Inert like minima can coexist in the Higgs potential λ3 + λ4 + λ5 > 0

The relation between depths can be obtained from the discussion presented in Appendix F. There, we give a link
between two normal vacua eq (F.4.1),

VN − VN2
=

1

2

[(mH±

v

)2

N2

−
(mH±

v

)2

N1

]
[v′1v2 − v′2v1]

2
,

which in terms of charged Higgs masses at each minimum inert and inert like,

VI − VIL =
1

4

[(
m2
H±

v2
I

)
IL

−
(
m2
H±

v2

)
I

]
v2
Iv

2

|VI − VIL| =
1

4

∣∣∣∣(m2
11 + 1

2λ3v
2
I

v2
I

)
−
(
m2

22 + 1
2λ3v

2

v2
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Replacing VEVs relation with couplings through stationary conditions for both vacua

|VI − VIL| =
1

4

∣∣∣∣−2

(
m4

11

λ1

)
+ 2

(
m4

22

λ2

)∣∣∣∣
=

1

2

∣∣∣∣(m4
22

λ2

)
−
(
m4

11

λ1

)∣∣∣∣ .
In the particular case for inert and inert like vacua

|VI − VIL| =
1

2

∣∣∣∣m4
22

λ2
− m4

11

λ1

∣∣∣∣ .
Therefore, the inert vacuum is the global minimum if

VI − VIL = −
(
m4

22

λ2
− m4

11

λ1

)
< 0,

which is equivalent to
m2

11√
λ1

<
m2

22√
λ2

.

In a first view, there is no a way to determine which is the deepest minimum. Parameters set up will determine the
minimum in the theory. On the other hand, it is useful to describe the possibility of having one inert vacuum enough
lived, in such a way perhaps the inert like minima will be the deepest structure, but it will be suppressed by quantum
tunneling effects. This is the aim of the following sections.

1In 2HDM at tree level, the minima that break different symmetries of the Higgs potential cannot coexist. If a minimum exists with an
exclusive breaking pattern, other stationary points are at most saddle points.
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L.2. Metastability in the Inert 2HDM

L.2.1. Computing ζ in the Inert 2HDM

From the reparameterization group formalism and systematics presented in appendixes G-I, we proceed to compute ζ in
the IHDM. The stationary conditions, from constrained Higgs potential in Eq. (I.1.1), are given by

Λµνr
ν −Mµ = ζrµ

In the diagonal basis

Λ0r
0 −M0 = ζr0

Λkr
k −Mk = ζrk

with k = 1, 2, 3. In the inert Higgs model, rµ and Mµ acquire the form

rµ = (r0, r1, , r2, r3) =
(

Φ†1Φ1 + Φ†2Φ2, 2Re
(

Φ†1Φ2

)
, 2Im

(
Φ†1Φ2

)
,Φ†1Φ1 − Φ†2Φ2

)
Mµ = (M0,M1,M2,M3) =

(
−m

2
11 +m2

22

2
, 0, 0,−m

2
11 −m2

22

2

)
The stationary condition are translated into
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(
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− m2

11 +m2
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2
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2Λ1Re

(
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= 2ζRe
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2Λ2Im
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Summing 0 and 3
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In the inert vacuum, the first condition is propitious to determine ζ
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v2

2
+m2

22 = 2ζ
v2

2
,

knowing 2Λ0 = λ3 +
√
λ1λ2 and 2Λ3 = λ3 −

√
λ1λ2 , this equation can be translated into

m2
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2
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2 +m2
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We have used eigenstates equations for masses. Hence, our minimum is global if
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(L.2.1)

and

1

2
λ3 +
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v2
> −1

2
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1

2
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> −1

2
(λ4 − λ5)
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(L.2.2)

From (L.2.1) and (L.2.2), we found finally

−
√
λ1λ2 <

2m2
22

v2
<
√
λ1λ2
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M. Higgs decay in two photons and likelihood proof

M.1. Two photon decay in 2HDMs

It is known from 2HDM fundamentals that charged Higgs might have substantial contribution to the h→ γγ decay rate.
Since this channel has been an important scenario for Higgs like scalar detection in LHC-experiments, constraints on
the parameters controlling this new contribution can therefore be obtained from the Higgs precision measurements. We
consider an IHDM and one 2HDM with a softly broken U(1) symmetry in the Higgs potential and Yukawa Lagrangian
and assume that the only deviation from a SM-like Higgs behavior comes from the contribution of charged Higgs to
the loop-induced process h→ γγ. More precisely, in these particular models other scalar states are decoupled and only
the charged scalar contribution is present1. In this case, the contribution from status to the h → γγ decay width is
parameterized by charged Higgs mass. The corresponding amplitude at LO reads

MH±

hγγ =
v2g (mH±)

2m2
H±

Ah0 (τH±) , τH± =
m2
h

4m2
H±

. (M.1.1)

where g (mH±) is the h,H+H− coupling and Ah0
(
m2
h/4m

2
H±

)
form factor. In the Inert 2HDM, gI (mH±) ≡ g (mH±)

gI (mH±) = λ3 (M.1.2)

See appendix L at Eq. (L.1.4). For lower values in cos (β − α) ≈ 0 (alignment scenario), gR (H±) = g (H±) coupling [88]

gR
(
H±

)
= −1

4
sin2 2β (λ1 + λ2 − 2λ34)− λ3 (M.1.3)

The effective Higgs-γγ coupling can therefore be expressed by

Cγ =
|MSM

hγγ +MH±

hγγ |
|MSM

hγγ |
. (M.1.4)

Note that the SM amplitude h0γγ appears both in the numerator and denominator of Eq. (M.1.4) since SM tree-level
couplings are assumed. This part for SM contribution has the following terms

MSM
hγγ =

∑
f

NcQ
2
fghffA

h
1/2 (τf ) + ghV VA

h
1 (τw) . (M.1.5)

ghff and ghV V are the reduced couplings couplings among Higgs and fermion or vector boson respectively. The form
factors in Eq. (M.1.1) are described by

Ah0 (τH±) = − [τH± − f (τH±)] τ−1
H± . (M.1.6)

Ah1/2 (τf ) = 2 [τf + (τf − 1) f (τf )] τ−2
f . (M.1.7)

Ah1 (τw) = −
[
2τ2
w + 3τw + 3 (2τw − 1) f (τw)

]
τ−2
w . (M.1.8)

where equivalently to charged Higgs

τf =
m2
h

4m2
f

and τw =
m2
h0

4m2
W

(M.1.9)

1For both models, this assumptions is accomplished by virtue of alignment regimen. In the Inert case, the alignment is achieved trivially,
meanwhile in the real 2HDM, we analyze scenarios where this regimen is satisfied at all
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M.2. Likelihood proof

Finally the complex functions f (τ) is itself given by the integral

f (τ) = −1

2

∫ 1

0

dy

y
ln [1− 4τy (1− y)] =

{
arcsin2 (

√
τ) ; τ ≤ 1

− 1
4

[
ln
(√

τ+
√
τ−1√

τ−
√
τ−1

)
− iπ

]2
τ > 1

(M.1.10)

M.2. Likelihood proof

We study the likelihood proof used by the code Lilith to search a compatibility level between new physics effects with
the current data in LHC [35]. Indeed, the searches for the Higgs boson performed by the Run I2 for ATLAS and CMS
collaborations are divided into individual analysis, usually focusing on a single decay mode. For example golden channels
in Higgs detection: i)h → γγ (Diphotonic) and ii)h → ZZ∗ → 4l (Four lepton channels). Within each analysis several
event categories are then computed and stored. Among other reasons, these are designed to optimize the sensitivity to
the different production mechanisms of the SM Higgs boson (hence, they have different reduced efficiencies effXY ). In
order to put constraints on new physics couplings from the results in a given event category, it is necessary to extract
the measurement of the signal strength and the relevant effXY information from the experimental results. For example,
measurements of the CMS h → γγ analyses, in terms of signal strengths for all categories With the addition of the
reduced efficiencies effX,γγ , also given in Ref. [210], combinations of σ (X)B (h→ γγ) can be constrained.

However, several problems arise when constructing a likelihood measurement. First of all, only two pieces of information
are given: the best fit to the data, that will be denoted as µ̂ in the following, and the 68% confidence level (CL) interval
or 1σ interval. Since the full likelihood function category per category is never given, it is necessary to assume that
the measurements are approximately Gaussian, it is however possible to reconstruct a simple likelihood, L (µ), from this
information. In that case, −2log L (µ) follows a χ2 law. From the boundaries of the 68% CL interval, left and right
uncertainties at 68% CL, ∆µ− and ∆µ+, with respect to the best fit point can be derived. The likelihood can then be
defined as [35]

−2 logL (µ) =


(
µ−µ̂
∆µ−

)2

if µ < µ̂(
µ−µ̂
∆µ+

)2

if µ > µ̂
(M.2.1)

with ∆µ− = ∆µ+ in the Gaussian regime. While this is often a valid approximation to the likelihood, it should
be pointed out that signal strength measurements are not necessarily Gaussian, depending in particular on the size of
the event sample. Constraining new physics from a single LHC Higgs category can already be a non-trivial task and
come with some uncertainty because the full information is not provided category per category. However, more severe
complications typically arise when using several categories/searches at the same time, as is needed for a global fit to the
Higgs data. The simplest solution is to define the full likelihood as the product of individual likelihoods

2The likelihood obtained from the LHC Run I measurements has been well validated against ATLAS and CMS results, however this could
change with LHC Run II results where systematic uncertainties are expected to dominate over the statistical ones, i.e., with more data to
be collected during LHC Run II, the construction of a combined likelihood would require more detailed experimental inputs.
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