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Resumen 

El presente trabajo constituye el primer esfuerzo en Colombia y América Latina para 

desarrollar la tecnología de electrodiálisis inversa para obtención de energía a partir de 

gradiente salino. En esta tesis se utiliza un modelo en estado estacionario previamente 

descrito en la literatura y se desarrolla un modelo dinámico para describir el 

comportamiento de las tecnologías electrodiálisis inversa (RED) y electrodiálisis inversa 

capacitiva (CRED). Los modelos son validados experimentalmente.  

Se realiza la construcción y puesta en marcha de un generador de energía funcional para 

RED y CRED, se estudia el efecto de espaciadores conductores con geometrías 

alternativas sugeridas en la literatura. Además se estudia el potencial de generación de 

energía en Colombia mediante la prueba de la pila construida, utilizando agua recogida en 

campañas de campo proveniente del río Magdalena y del mar Caribe.  

La máxima densidad de potencia obtenida experimentalmente fue de 0.14 W/m2 para una 

pila de RED con 10 celdas con soluciones artificiales, mientras que la máxima potencia 

obtenida para CRED fue de 0.035 W/m2 para un stack con 3 celdas y espaciadores 

utilizando agua del río Magdalena y del mar Caribe. 

Finalmente se estudia experimentalmente el efecto que tiene en la concentración en 

equilibrio de membranas de intercambio iónico selectivas, el uso de soluciones de NaCl en 

presencia de iones bivalentes. Se estudia el efecto de los iones más abundantes en el 

agua de mar, tales como Mg+2, Ca+2 y SO4
-2. Se observa un comportamiento de 

decrecimiento exponencial en la absorción de iones monovalentes en presencia de iones 

bivalentes, es decir, a bajas concentraciones de iones bivalentes (concentraciones 

similares al agua de mar), la capacidad de absorción de iones monovalentes de la 

membrana disminuye considerablemente. 

 

Palabras clave: Energía de Gradiente Salino, Electrodiálisis Inversa,  Electrodiálisis 

inversa Capacitiva, Energía renovable, Equilibrio en membranas, Membranas de 

intercambio iónico selectivas 
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Abstract 

The present thesis work constitutes the first effort in Colombia and America Latina for 

developing Reverse Electrodialysis (RED) technology for energy recovery from salinity 

gradients. This thesis develops a dynamic model for RED and CRED and it also uses a 

stationary state model presented in literature to describe energy generation through salinity 

gradients. The model is experimentally validated. 

A lab scale energy generator for RED and CRED is designed, constructed and 

operationalized. The effect of conductive spacers with an alternative geometry suggested 

in literature is studied. Besides, the potential of energy generation in Colombia is studied 

by testing the stack with waters from the Magdalena River and the Caribbean Sea. 

Maximum power density obtained experimentally was 0.14 W/m2 for a 10 cell RED stack 

using artificial solutions, while maximum power obtained for CRED was 0.03 W/m2 for a 

stack of 3 cells with spacers and river and sea water. 

Finally the effect that bivalent ion solutions have over equilibrium concentration in ion 

Exchange membranes (IEM) is experimentally tested. The ions studied are the most 

abundant in sea water: Mg+2, Ca+2 and SO4
-2. An exponential decrease is observed in the 

absorption capacity of the membranes for monovalent ions, i.e. at low concentrations of 

bivalent ions (similar to the ones found in seawater), the absorption capacity of monovalent 

ions decreases substantially. 

 

Palabras clave: Salinity Gradient Energy (SGE), Reverse Electrodialysis (RED), 

Capacitive Reverse Electrodialysis (CRED), Renewable Energy, Membrane equilibria, Ion 

Exchange Membranes (IEM). 
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EDL Electric Double Layer 
EDLC Electric Double Layer Capacitor 
IEM Ion Exchange Membrane 
IC Ion Chromatography 
MD Membrane Distillation 
OCV Open Circuit Voltage 
PRO Pressure Retarded Osmosis 
RED Reverse Electrodialysis 
SGE Salinity Gradient Energy 
SGP Salinity Gradient Power 
  

 

 

 

 

 

 

 

 

 

 

 





 

1. Introduction 

The humankind has always required enormous amounts of energy for its progress, in 2013 

the energy consumption per capita was 3.1 KWh, and this number has been on the rise for 

the last 30 years [1]. Furthermore, these energy requirements have been principally 

supplied by fossil fuels, in 2013 81.2% of total energy consumption  came from fossil fuels 

[1], in addition in 2015, 3000 million people in the poorest countries still used pollutant fuels 

like kerosene, wood, carbon and manure for basic necessities like cooking [2]. 

Since 1992 the United Nations has accepted that: “human activities have been substantially 

increasing the atmospheric concentrations of greenhouse gases, that these increases 

enhance the natural greenhouse effect, and that this will result on average in an additional 

warming of the Earth's surface and atmosphere and may adversely affect natural 

ecosystems and humankind”. The united nations have set the goal to stabilize greenhouse 

gases concentrations in the atmosphere at a level that  can prevent dangerous 

anthropogenic interference with the climate system [3], [4]. 

In the light of these statements, one of the most effective ways to reduce CO2 emissions, 

favoring at the same time economic growth is to develop revolutionary production, 

distribution, storing and energy conversion technologies. It is necessary to boost new 

energy generation systems that are in harmony with natural earth cycles. 

The main classes of renewable energies are: Solar energy, wind energy, hydroelectric 

energy, biofuels, geothermic and marine energy [5]. The newest of marine energies is 

salinity gradient energy (SGE) that harness the natural water cycle to produce energy. 

Energy generation through salinity gradients converts into electrical energy, the free energy 

available in the mixing of two streams with different salt concentrations. It was first 

mentioned in 1954 by R. Pattle, who stated that: “When a volume V of pure solvent mixes 

irreversibly with a much larger volume of a solution the osmotic pressure of which is P, the 

free energy lost is equal to PV. The osmotic pressure of seawater is about 20 atm, so that 



2 Introduction 

 
when a river mixes with the sea, free energy equal to that obtainable from a waterfall 680 

ft. (200 m) high is lost. There thus exists an untapped source of power which has been 

unmentioned in the literature.” [6]. 

The theoretical SGE potential at river mouths has been previously estimated between 1.4 

and 2.6 TW, equivalent to 74% of the worldwide electricity consumption [7] [8]. However, 

considering site suitability and environmental constrains from river mouths worldwide, 

global SGE potential was recently estimated to be 65 GW, which corresponds to 625 

TWh/year of renewable energy, contributing to 3.5% of global energy consumption [9], [10].  

SGE has a large potential in Colombia due to the great abundance of river and seawater in 

the country. Table 1-1 shows mean annual discharge of the six rivers accounting for the 

99% of the fresh water discharged into the Colombian Caribbean basin [11], [12]. Recent 

studies show that in Colombia a potential of 15.6 GW could be achieved from salinity 

gradients with a capacity factor of 84% [10], [12]. 

Table 1-1. Mean annual discharge of the six rivers accounting for the 99% of the fresh water discharged into 

the Colombian Caribbean basin. Taken from [12]. 

River Mean water discharge (Km3/year) 

Magdalena 228.1 

Atrato 81.08 

Sinú 11.76 

Canal del dique 9.43 

León 2.47 

Don Diego 1.14 

Total Colombian discharge to the Caribbean sea 337.68 

Among the advantages of salinity gradient energy have been the continuous supply of “fuel” 

if river and sea water are used, the absence of atmospheric pollutants that intensify climate 

change, no thermal contamination, radioactive waste or sudden changes in energy 

production. Actually salinity gradient power has one of the highest capacity factor among 

the renewable energy technologies like wind, solar, tidal and wave energies [13]. 

Notwithstanding the previous advantages, one disadvantage of the technology is that 

energy density is relatively poor compared to traditional energy generation systems. 

Another careful matter is that the use of this energy may generate changes in the salinity 

structure of the rivers if water extraction of the river surpasses 20% of the mean discharge, 
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affecting directly very important ecosystems like mangrove forests and estuaries [10], [13]. 

Thus a specific site potential analysis should be assessed before the construction of any 

SGE plant. 

 Current technologies 

 

From the moment the idea of generating energy through salinity gradients was conceived 

60 years ago until now, many technologies have arisen and major improvements have been 

developed for harnessing this type of energy. The four most outstanding technologies are 

described in this section. 

 

1.1.1 Reverse Electrodialysis (RED) 

In Reverse Electrodialysis (RED) the free mixing energy between to water streams with 

different salt concentration is converted into electrical energy by doing a less 

thermodynamically irreversible process. 

In order to do this, two water streams with different salt concentration enter the stack and 

distribute in different compartments. Using anionic and cationic selective membranes (AEM 

and CEM) the movement of anions or cations from the concentrated to the diluted 

compartments is allowed. The ion selective membranes as well as the concentrated and 

diluted compartments are intercalated between them. The salinity gradient generated with 

the intercalation constitutes an electrochemical potential difference across each 

membrane, approximately 80 mV between river and sea water [14]. The total potential 

difference generated in a stack is calculated as the sum of each of the membrane 

potentials.  

Electric field through the stack is generated because the electrochemical potential 

difference between compartments causes an ionic current of positive ions in one direction, 

and negative ions in the opposite direction. The ionic current and the voltage are converted 

into electrical energy through the use of a couple of electrodes at the stack ends, in contact 

with an electrolyte solution that generate oxidation and reduction reactions. 
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As a result of electrode reactions, an electron current is produced from the anode to the 

cathode through an external circuit, providing electrical work to the surroundings. Figure 

1.1 shows a simple scheme of a Reverse Electrodialysis (RED) cell. 

 

 

Figure 1.1. Scheme of a RED cell 

 

1.1.2 Pressure Retarded Osmosis (PRO) 

In this system, two water streams with different salt concentration are separated by a water 

semipermeable membrane. Driven by the chemical potential difference, water passes from 

the diluted to the concentrated stream. If the concentrated stream is pressurized before 

entering PRO system, the water transport inside the PRO stack will increase the flow and 

the pressure of this concentrated stream. The intensified flow of the pressurized stream 

passes through a hydroelectric turbine, which delivers electrical power [15]. Figure 1.2 

explains the operation of a PRO system. 

PRO and RED technologies are the most widely studied and developed Salinity Gradient 

Energy (SGE) systems. Different researches have been developed in order to understand 

which of them is the most efficient and has more energy density. In some studies it has 

been found that RED is more suitable for systems where concentrations of the water 

streams are the ones found in river and sea water [14], [16]. 
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On the other hand a more recent study stated that membranes for PRO have had significant 

progress in the past few years, and that power density achievable could be up to 4.5 W/m2 

[17]–[19]. In contrast, the highest reported power density for RED is 2.2 W/m2 [20], and the 

near future projections are 2.7 W/m2 [21], which are less than half of energy obtainable with 

the best PRO membrane. Nonetheless the study for PRO does not take into account losses 

in the system associated with pressurizing the system and turbine efficiency. 

 

Figure 1.2. Scheme of a PRO energy generation system. Taken from [17]. 

 

1.1.3 Capacitive mixing 

Capacitive mixing (CapMix) principle was first described by Brogioli in 2009. It consists in 

extracting energy from the expansion and contraction effect of the electrical double layer 

(EDL) when the concentration of the solution is changed at constant stored charge [22]. 

When a capacitor is charged in the presence of a solution with concentration C, it will store 

a certain amount of charge Q, if the external circuit is disconnected, and concentration of 

the solution is decreased, diffusion will cause an ion movement from the capacitor surface 

to the bulk solution, which is actually against electrostatic forces. This new equilibrium 

distribution of the Electric Double Layer (EDL) causes a net gain in the electrostatic energy 

of the system which can be used for energy generation [22], [23].  

A CapMix cell is shown in Figure 1.3 composed by two activated carbon supercapacitors 

that are put in contact with a concentrated solution of NaCl. For extracting energy it is 

necessary to do a four step cycle [23]–[26]: 
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 Exchange the concentrated solution for a diluted solution at open circuit 

configuration. 

 Discharge the capacitors through an external load. 

 Change again the electrolyte solution for one with higher salt content at open circuit 

configuration. 

 Charge the capacitors with an external resistance until cell voltage is equal to 

external voltage in order to restart the cycle. 

 

 

Figure 1.3. Scheme of a CapMix Cell. Taken and modified from [23] 

1.1.4 Capacitive Reverse Electrodialysis (CRED) 

Capacitive Reverse electrodialysis is a recently developed energy generation system that 

combines RED and Capacitive mixing (CapMix) principles [27], [28]. CRED technology has 

a membrane pile core identical to RED, but instead of electrodes, at both ends of the stack, 

two supercapacitors are put in contact with a NaCl solution. 

Electroneutrality principle causes that while ions accumulate on the solution side of the 

capacitors, electronic configuration of the activated carbon reorganizes to complement the 

charge excess in the capacitors surface, which causes an electron movement through an 

external circuit. When the capacitors are saturated and energy is extracted, an interchange 
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of the feed waters must be done in order to reverse the ionic flux, and thus to reinitiate the 

process in the opposite direction. The scheme of a CRED cell is shown in Figure 1.4. The 

concept will be extended in chapter 3. 

 

Figure 1.4. Scheme of a CRED cell 

 RED Applications 

RED has been a widely studied technology in the recent years, and apart from energy 

extraction at river mouths, other sources of salinity gradient have been identified. For 

example, the replacement of river water for non-reused municipal waste water effluents as 

diluted water stream has been proposed [17]. Moreover, the use of saline natural sources 

like hypersaline lakes and salt domes as concentrated affluent, mixed with seawater as 

diluted stream has also been proposed [16]. 

Recently the first RED pilot plant for power production using brine as concentrated water 

stream and sea water as diluted water stream was constructed in Trapani, Italy. The RED 

pilot plant obtained the brine from a salt work that produces sea-salt by evaporating water 

from seawater [29], [30]. Other studies have been performed using the effluents of 

desalinization process as concentrated stream and seawater as diluted stream in order to 

recover some of the energy spent in the process and at the same time to mitigate the 

adverse impacts of desalination plants [31]. Finally, hybrid systems consisting in membrane 

distillation modules (MD) coupled with reverse electrodialysis have been investigated to 

harvest low temperature thermal energy [31], [32]. 
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In addition, a number of new applications have been  recently investigated like Hydrogen 

production coupling RED with alkaline polymer electrolyte (APE) in a water electrolysis cell 

[33] and microbial reverse electrodialysis for treatment of wastewater contaminated with 

Chromium ions [34]. On top of that, new waste heat conversion systems using ammonium 

bicarbonate concentrated and diluted solutions for generating the salinity gradient in RED 

stacks in thermal driven electrochemical generators [35] have been experimentally 

validated. Finally a new energy storage system has been proposed using the chemical 

potential of the solutions by combining RED with ED in salinity gradient flow batteries, [36]. 

 RED Challenges 

Although new applications have been found for RED, the technology still faces major 

challenges to be commercially viable for its application at river mouths. The first one is 

power density, which has been limited by the internal resistance of the stack, especially the 

river water compartment and the membrane resistance [17], [37]. In order to reduce the 

thickness of the river water compartment, improvements in the stack design like reducing 

thickness of the diluted compartment [20], [38], using new stack geometries and even 

microfluidic devices have been proposed [39], [40]. Another way is to change 

nonconductive spacers for profiled membranes [21], [41]–[43], conductive spacers [44], or 

resin beads [45], [46]. Specially  the decreasing of cell length  and using profiled 

membranes have been the most studied and have had better results as strategies for 

enhancing net power density. Another not too mentioned in literature alternative, is to 

reduce membrane thickness in order to reduce overall resistivity of the membrane, in case 

membrane resistance cannot be further improved. 

Another important problem is fouling under natural conditions. It can be caused by biological 

agents, chemical agents (e.g. presence of multivalent ions, clay) or particles that may clog 

the system [47]. Biological agents have been treated using air sparging inside the stack 

and periodical water switching with good results [48]. The last strategy is based in the fact 

organisms that live in river water cannot live in salinity conditions of sea water and vice 

versa. Other anti-fouling strategy  is to do membrane surface modifications [49]. There have 

been efforts to reduce the adverse effects in power density in the presence of multivalent 

ions using monovalent membranes, however currently available monovalent selective 

membranes were not found to be very effective to address the problem [50]. Lastly, system 

clogging has been a great concern for RED applied in river and sea water because it is 
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necessary to use 20µm filters in order to avoid blocking of the RED stack thin 

compartments. This kind of pretreatment can have economical and energetic costs that 

could be in the same order of energy production using river and seawater [51]. 

 Aims 

1.4.1 General Aim 

To propose and validate a model from the construction and operationalization of a RED 

and CRED energy generator  

1.4.2 Specific Aims 

 To propose a model that describes energy generation for RED and CRED 

 To design and to construct an energy generation system for RED and CRED. 

 To validate the theoretical model proposed with experimental results of the 

operationalization of the energy generation system and with literature data. 
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2. Reverse Electrodialysis 

 Introduction 

 

Salinity gradients are found in nature when rivers meet the sea. Artificially, they are found 

in desalination plants which have concentrated salt brines effluents that are usually 

discharged directly to the sea, and bring adverse impacts on vulnerable ecosystems like 

mangrove forests, salt marshes, coral reefs, or generally, low energy intertidal areas [52]–

[54].  

Estimations of practical global energy potential for salinity gradients between river and sea 

water, suggests that 3% of the world energy demand could be satisfied [10]. Only for 

Magdalena river in Colombia, taking into account its environmental constrains, a technical 

potential for an installed capacity greater than 15 GW has been calculated [13], which 

makes it the sixth river with more extractable energy in the world [10]. 

Colombia is rich in both, river and sea water, and its oceanographic and climate conditions 

favor the harnessing of Salinity Gradient Power (SGP) more than other types of marine 

energy [55]. This power could be a clean source of energy for Colombia, replacing coal 

plants, small diesel generators from rural and off grid areas, and even used for cogeneration 

systems, mitigating environmental impacts in desalination plants [29], [56]. 

Electrical power cannot be extracted under spontaneous mixing conditions, because the 

process is thermodynamically irreversible [6]. The technologies for extracting SGP allow to 

transform the diminution of Gibbs free energy available when mixing two solutions with 

different salt content, in electrical energy, performing the mixing under controlled conditions 

Several technologies are being developed for harnessing artificial or natural SGP [14], [27], 

[57], [58]: Pressure Retarded Osmosis (PRO) uses the Osmotic pressure difference with 

membranes selective for water [59], [60], Capacitive Mixing  uses the expansion and 

contraction effect of the electrical double layers using activated carbon capacitors [58], and 
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Reverse Electrodialysis (RED) uses the electrochemical potential difference with ion 

selective membranes (IEM) [61]. 

RED is one of the most extensively studied technology in the recent years, it has been 

demonstrated that it can be suitable for different applications like waste heat recovery using 

ammonium bicarbonate solutions [35], wastewater treatment when coupled with biological 

processes [34], water electrolysis for hydrogen production [33] and energy extraction with 

redox or capacitive electrodes [27]. Due to its possibilities and advantages, RED is the 

focus of this chapter. 

 

Figure 2.1. Schematic view of a RED cell.  

 

Figure 2.1 shows the scheme of the RED cell used in this work. It consists in a set of ion 

exchange membranes, alternating cation (CEM), and anion exchange membranes (AEM), 

which are charged negatively and positively respectively. Using this membrane 

arrangement, river and sea water flow intercalating between membranes, and in this way 

compartments are formed. Due to the difference in salt concentration between the waters, 

there is an electrochemical potential difference, which is the motive force for ions to flow 

through the membranes from the sea water compartments, to the river water 

compartments. This part of the system is the ionic circuit, it performs the mixing process in 

a thermodynamically reversible way, making possible the generation of electrical power. 
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Using this membrane circuit allows cations to move in one direction and anions to move in 

the opposite direction. As a result of the controlled ion movement, an electrical potential 

difference arises in the membranes. The total voltage obtained from the stack, is the sum 

of electrochemical potential of each of the membranes. 

In order to convert the ionic flux in the membrane circuit into electrical current, the generated 

voltage is used to perform reversible reduction/oxidation reactions in the electrodes that 

allow to transport electrons through an external circuit, and thus power is produced. 

 

 Theoretical model 

The model formulation is based in the model presented by Veerman [38] using the 

methodology proposed by Alvarez et al [62]. It is given in SI units.  

2.2.1 Maximum obtainable energy 

The theoretical available energy in mixing (mix) a concentrated (c) and a diluted  (d) solution, 

corresponds to the Gibbs free energy of mixing ∆𝐺𝑚 [63]. 

∆𝐺𝑚𝑖𝑥 = ∑ 𝐺𝑖,𝑚 − (𝐺𝑖,𝑐 + 𝐺𝑖,𝑑)

𝑖

 (2.1) 

∆𝐺𝑚𝑖𝑥 = 2𝑅𝑇 [𝐹𝑐𝐶𝑐 ln  
𝐶𝑐

𝐶𝑚
+ 𝐹𝑑𝐶𝑑 ln  

𝐶𝑑

𝐶𝑚
] (2.2) 

With 

𝐶𝑚𝑖𝑥 =
𝐹𝑐𝐶𝑐+𝐹𝑑𝐶𝑑

𝐹𝑐+𝐹𝑑
                  (2.3) 

Where R is the universal gas constant (8.314 J/mol K), T is absolute temperature (K), F is 

volumetric flow (m3/s) and 𝐶𝑐 and 𝐶𝑑 are salt concentration of concentrated and diluted 

solutions respectively. Factor 2 corresponds to dissociation of NaCl. 
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2.2.2 Mass balance 

Mass balances for NaCl in both compartments have been developed. Figure 2.2 shows a 

scheme that explains salt and water transport through the compartments with length 𝐿, 

width 𝑏, and thickness 𝛿.  

 

Figure 2.2. Mass balance for concentrated and diluted compartments. Source: The authors 

 

Convective flow is defined in the x direction. In the length differentials, transport of ions 

occurs from the concentrated to the diluted compartments through the membranes due to 

a salt concentration gradient. Water passes in the same direction as salt due to electro 

osmotic drag. In the opposite direction an osmotic effect is presented and the non-ideal 

behavior of membranes causes water transport in the opposite direction as well.  

 

A mole balance within the length differential, in concentrated and diluted compartments 

leads to Eq. (2.4) and Eq. (2.5) respectively 

(𝑏 𝛿 ∆𝑥) 𝑑𝐶𝑐(𝑥)

𝑑𝑡
= 𝐹𝑐𝐶𝑐(𝑥) − ( 𝐹𝑐 + 𝑏 ∆𝑥 𝐽𝑤)𝐶𝑐(𝑥 + ∆𝑥) − 𝑏 ∆𝑥 𝐽𝑁𝑎𝐶𝑙(𝑥) (2.4) 
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(𝑏 𝛿 ∆𝑥) 𝑑𝐶𝑑(𝑥)

𝑑𝑡
= 𝐹𝑑𝐶𝑑(𝑥) − ( 𝐹𝑑 − 𝑏 ∆𝑥 𝐽𝑤)𝐶𝑑(𝑥 + ∆𝑥) + 𝑏 ∆𝑥 𝐽𝑁𝑎𝐶𝑙(𝑥) 

 

(2.5) 

Where 𝐶𝑐 and 𝐶𝑑 represent NaCl concentration in the concentration and diluted 

compartment respectively (mol/m3).  𝐹𝑐 And 𝐹𝑑 are volumetric flows in the concentrated and 

diluted comparments (m3/s). 𝐽𝑤 Is volumetric water flux (m3/m2s) driven by osmosis.  𝐽𝑁𝑎𝐶𝑙 

is salt flux through the membranes (mol/m2s) induced by migration and diffusion [8, 22]. 

𝐽𝑁𝑎𝐶𝑙 = 𝐽𝑚𝑖 + 𝐽𝑑𝑖 (2.6) 

Dividing Eq. (2.4) by 𝐹𝑐 and Eq. (2.5) by 𝐹𝑑 and applying limits when  ∆𝑥 tends to cero, 

allows to obtain partial differential equations that describe the change of concentration in 

time and space. The development of the partial differential equations is explained in 

Appendix 1. 

𝑑𝐶𝑐(𝑥)

𝑑𝑡
=

𝐹𝑐

𝑏 𝛿

𝜕𝐶𝑐(𝑥)

𝜕𝑥
−

1

 𝛿
 𝐽𝑤𝐶𝑐(𝑥) −

1

 𝛿
 𝐽𝑁𝑎𝐶𝑙(𝑥)    (2.7) 

𝑑𝐶𝑑(𝑥)

𝑑𝑡
=

𝐹𝑑

𝑏 𝛿

𝜕𝐶𝑑(𝑥)

𝜕𝑥
+

1

 𝛿
𝐽𝑤𝐶𝑑(𝑥) +

1

 𝛿
𝐽𝑁𝑎𝐶𝑙(𝑥) (2.8) 

In stationary state, the concentration differential in time is cero, and the mole balance 

leads to Eq. (2.9) and Eq. (2.10) 

𝑑𝐶𝑐

𝑑𝑥
= −

𝑏

𝐹𝑐
𝑇𝑁𝑎𝐶𝑙(𝑥) −

𝑏

𝐹𝑐
𝐶𝑐(𝑥)𝑇𝑤(𝑥) (2.9) 

𝑑𝐶𝑑

𝑑𝑥
=

𝑏

𝐹𝑑
𝑇𝑁𝑎𝐶𝑙(𝑥) +

𝑏

𝐹𝑑
𝐶𝑑(𝑥)𝑇𝑤(𝑥) (2.10) 

2.2.3 Transport equations 

To solve mole balance equations, requires defining transport models for salt and water 

through membranes.  

 Water transport 

Water transport is given by Fick’s diffusion model 
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𝐽𝑤 =
2𝐷𝑤

𝛿𝑚

(𝐶𝑐 − 𝐶𝑑)
𝑀𝑤

𝜌𝑤
 (2.11) 

Where 𝐷𝑤 is effective water difussion constant (m2/s), 𝛿𝑚 is membrane thickness (m), 𝑀𝑤 

is molar mass (Kg/mol) and 𝜌𝑤 (Kg/m3) is density of water. The factor 𝑀𝑤 𝜌𝑤⁄  is added to 

convert mole flux into volumetric flux [38], [56]. 

 Salt transport 

Transport of NaCl through the membranes is considered to be driven by two major effects: 

Migration of counter-ions due to potential difference, and diffusion of co-ions due to non-

idealities in membrane selectivity. Diffusion transport is described by Fick’s model. 

𝐽𝑑𝑖 =
2𝐷𝑁𝑎𝐶𝑙

𝛿𝑚
(𝐶𝑐(𝑥) − 𝐶𝑑(𝑥)) (2.12) 

Where 𝐷𝑁𝑎𝐶𝑙 is the diffusion constant of salt through membranes (m2/s), and 𝛿𝑚 is the 

thickness of the membranes (m). The factor 2 accounts for the presence of 2 membranes 

in a cell. Diffusion transport is unwanted because only migration contributes to electrical 

current and its effect is analogous to self-discharge of batteries [64].  

For describing migration, Ohm’s principle is used.  

𝐽𝑚𝑖 =
1

𝐹

𝑁∆𝜑

𝑅𝑐𝑒𝑙𝑙
 (2.13) 

Where ∆𝜑 is the potential (V), 𝑁 is the number of cells, 𝑅𝑐𝑒𝑙𝑙 is the cell resistance (Ω m2) 

and F is the Faraday constant (96485 C/mol), which is needed to convert coulombic flux 

into mol flux. ∆𝜑 Can be calculated with Nernst equation, depending on the ion 

concentration in each side of the membrane. 
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∆𝜑 = 𝛼𝐶𝐸𝑀

𝑅𝑇

𝐹
ln (

𝛾𝑐
𝑁𝑎+

(𝑥)𝐶𝑐
𝑁𝑎+

(𝑥)

𝛾𝑑
𝑁𝑎+

(𝑥)𝐶𝑑
𝑁𝑎+

(𝑥)
) +  𝛼𝐴𝐸𝑀

𝑅𝑇

𝐹
ln (

𝛾𝑐
𝐶𝑙−

(𝑥)𝐶𝑐
𝐶𝑙−

(𝑥)

𝛾𝑑
𝐶𝑙−

(𝑥)𝐶𝑑
𝐶𝑙−

(𝑥)
) (2.14) 

Where 𝛼 is the permselectivity of the membrane and 𝛾 are activity coefficients of the ions 

in the solutions. For diluted and concentrated solutions, activity coefficients may be 

estimated from the Pitzer model [65], which can be simplified for symmetric electrolytes to 

Eq. (2.15) - (2.18). 

ln 𝛾 = |𝑧𝑀𝑧𝑋|𝑓𝛾 + 𝑚𝐵𝑀𝑋
𝛾

+ 𝑚2𝐶𝑀𝑋
𝛾

 (2.15) 

𝑓𝛾 = −𝐴𝜙 [
𝜇1/2

1 + 𝑏𝜇1/2
+

2

𝑏
ln(1 + 𝑏𝜇

1
2)] (2.16) 

𝐵𝑀𝑋
𝛾

= 2𝛽𝑀𝑋
(0)

+
2𝛽𝑀𝑋

(1)

𝛼2𝜇
[1 − 𝑒−𝛼 𝜇

1
2 (1 + 𝛼 𝜇

1
2 −

1

2
𝛼2𝜇)] (2.17) 

𝐶𝑀𝑋
𝛾

=
3

2
𝐶𝑀𝑋

𝜙
                                                                           (2.18) 

Where 𝜇 is the ionic strength of the solution, 𝐴𝜙 is the Debye Huckel coefficient for osmotic 

function (0.392 for water at 25 °C), values of  𝛼 and b are 2 y 1.2 respectively and values 

of 𝛽𝑀𝑋
(0)

  𝛽𝑀𝑋
(1)

 y 𝐶𝑀𝑋
𝜙

 vary depending on the electrolyte used (0.0765, 0.2664, 0.00127 

respectively for NaCl) [65]. 

On the other hand, the resistance of the cell 𝑅𝑐𝑒𝑙𝑙 is the sum of resistances of anion and 

cation exchange membranes, the river water compartment and the sea water compartment.  

𝑅𝑐𝑒𝑙𝑙 = 𝑅𝐶𝐸𝑀 + 𝑅𝐴𝐸𝑀 + 𝑅𝑐 + 𝑅𝑑 (2.19) 

𝑅𝐶𝐸𝑀 And 𝑅𝐴𝐸𝑀 are membrane resistances, which is a property given by the membrane 

manufacturer (Ω m2). The resistance of the compartments can be calculated with Eq. (2.20)-

(2.21).  

𝑅𝑑 =
𝛿𝑑

 Λ𝑚 ∗ 𝐶𝑑
 (2.20) 

𝑅𝑐 =
𝛿𝑐

 Λ𝑚 ∗ 𝐶𝑐
 (2.21) 
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Where 𝛿𝑐 and 𝛿𝑑 are the thickness of the compartments (m), Λ𝑚 is the molar conductivity 

of the solution (S m2/mol) and C the solution concentration (mol/m3). Λ𝑚 Is dependent on 

concentration, but if a suitable value is used for low concentration compartment, calculated 

resistance of the river compartment is reliable [38]. As the sea water compartment 

resistance is much lower, its value has low influence on the total stack resistance.   

Other models have a correction factor in the calculation of compartments resistance that 

accounts for the volume occupied by the spacer material 𝑓𝑣, wich is a measure of the 

increase in electrical resistance due to negative effect of nonconductive spacers, such as 

tortuosity in the ion flux trajectory and decrease in available volume for solution to flow [38], 

[56]. In this research 𝑓𝑣 was not used because stack was designed in two configurations: 

without spacers and with conductive spacers. It has been proven that stacks without 

spacers present half the electrical resistance of stacks with spacers [8]. For calculating 

stack resistance with conductive spacers, the resistivity of such spacers was taken into 

account. 

2.2.4 Response parameters 

 Power density 

Once the system of equations is solved through the flow trajectory x, local power density 

𝑃𝑑   (W/m2) delivered to an external circuit can be found. In the particular case of maximum 

power, external resistance 𝑅𝑢 should be equal to the internal resistance 𝑅𝑖. 

𝑃𝑑(𝑥) =
1

2𝑁
𝐽2(𝑥)𝑅𝑢 

(2.22) 

The factor ½ is due to the fact that area is duplicated, because of the use of two membranes 

(CEM y AEM) per cell. Total power density produced is obtained with the integration of 𝑃𝑑 

over the length of the compartment L in the x direction, divided by the total membrane area.  

𝑃𝑑−𝑡𝑜𝑡𝑎𝑙 =
2𝑁𝑏 ∫ 𝑃𝑑(𝑥) 𝑑𝑥

𝐿

0

2𝑁𝐿𝑏
 

(2.23) 

Net power density produced can be calculated as the difference between total power 

produced and hydrodynamic losses of the stack corrected for total membrane area. 



Chapter 2 19 

 

𝑃𝑑−𝑛𝑒𝑡 = 𝑃𝑑,𝑡𝑜𝑡𝑎𝑙 − 𝑃𝑑,ℎ𝑦𝑑𝑟 (2.24) 

Where hydrodynamic losses 𝑃𝑑_ℎ𝑦𝑑𝑟 are calculated as the pressure drop over the stack, 

times the volumetric flow of each stream, divided by total membrane area. 

𝑃𝑑_ℎ𝑖𝑑𝑟 =
∆𝑃𝑐  𝐹𝑐 + ∆𝑃𝑑  𝐹𝑑

2𝐿𝑏
 (2.25) 

For calculating the pressure drop over the stack, Reynolds number is used to know flow 

regime of streams inside the compartments 

𝑅𝑒 =
𝑣𝐷𝜌

𝑣𝑖𝑠𝑐
 (2.26) 

In this case 𝑣 respresents mean velocity, D is the hydraulic diameter, 𝜌 is liquid density and  

𝑣𝑖𝑠𝑐 is the dynamic viscosity (0.9 x 10-3 Pa s for water). For the flow between to plane 

parallel plates, hydraulic diameter is equal to 2 times the distance between them. Applying 

this equation to small cells (0.1 m x 0.1 m and a thickness compartment of 200 𝜇m), for low 

residence times, a Reynolds number of the order of 0.01 is obtained, which can be 

interpreted as laminar flow over the compartments [38]. For laminar flow, pressure drop 

over the compartments is defined as: 

∆𝑃𝑐 =
2𝑣𝑖𝑠𝑐𝐿𝐹𝑐

𝑏 𝛿𝑐
3  (2.27) 

∆𝑃𝑑 =
2𝑣𝑖𝑠𝑐𝐿𝐹𝑑

𝑏 𝛿𝑑
3  (2.28) 

Eq. 2.24 is used for calculating total residence time  

𝑡𝑟𝑒𝑠 =
𝐿𝑏𝛿𝑁𝑐

𝐹𝑡𝑜𝑡
  

(2.29) 

Where 𝐿 is the length, 𝑏 is the width and  𝛿 is the thickness of the compartment, 𝑁𝑐 is the 

number of cells and 𝐹𝑡𝑜𝑡 is the total water flow measured at the outlet of the compartment. 

 Thermodynamic efficiency 

The thermodynamic efficiency of the process is a crucial parameter to quantify the behavior 

of the stack [64] 
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𝜂𝑇 =
𝑃𝑢

𝑋𝑐𝑜𝑛𝑠
   

(2.30) 

Where 𝑃𝑢 is the actual power obtained from the RED stack (W) and 𝑋𝑐𝑜𝑛𝑠 is the exergy 

decrease in the feed waters (W). Exergy decrease may be calculated from 

𝑋𝑐𝑜𝑛𝑠 = 𝑋𝑖𝑛 − 𝑋𝑜𝑢𝑡 
(2.31) 

Where 𝑋𝑖𝑛 is the exergy flow ingoing to the stack and 𝑋𝑜𝑢𝑡 is the outlet exergy flow. They 

𝑋𝑖𝑛 = 2𝑅𝑇 [𝐹𝑐𝐶𝑐𝐿𝑛 (
𝐶𝐶,𝑖𝑛

𝐶𝑚, 𝑖𝑛

) + 𝐹𝑑𝐶𝑑𝐿𝑛 (
𝐶𝑑,𝑖𝑛

𝐶𝑚,𝑖𝑛
)] (2.32) 

𝑋𝑜𝑢𝑡 = 2𝑅𝑇 [𝐹𝑐𝐶𝑐𝐿𝑛 (
𝐶𝐶,𝑜𝑢𝑡

𝐶𝑚, 𝑜𝑢𝑡

) + 𝐹𝑑𝐶𝑑𝐿𝑛 (
𝐶𝑑,𝑜𝑢𝑡

𝐶𝑚,𝑜𝑢𝑡
)] (2.33) 

Where R is the universal gas constant, T is temperature (K), 𝐹𝑐 and 𝐹𝑑 are the flow rates of 

concentrated and diluted streams respectively. 𝐶𝑐 And 𝐶𝑑 are the inlet concentration of the 

concentrated and diluted streams, while 𝐶𝑐, 𝑜𝑢𝑡 and 𝐶𝑑, 𝑜𝑢𝑡 are the outlet concentration of 

the concentrated and diluted streams. 𝐶𝑚, 𝑖𝑛 And 𝐶𝑚, 𝑜𝑢𝑡 can be calculated with Eq. (2.3). 

 Experimental methodology 

2.3.1 Reverse Electrodialysis stack 

The stack used for the experiments was designed and built in Colombia, based on previous 

works in literature  [66]. The dimensions of the cell were 5 cm x 10 cm, but the shape of the 

gaskets was designed in order to prevent leakages, which caused the real active membrane 

area to be 17.02 cm2 (Figure 2.3). Stack was equipped with 300 µm silicon gaskets and 

Fujifilm ion exchange membranes AEM and CEM Type 1 (Fujifilm Manufacturing Europe 

BV, The Netherlands), membrane properties given by the membrane manufacturer are 

presented in Table 2-1.  

Electrode system chosen for this research was made of Ag/AgCl electrodes in contact with 

NaCl solution 0.5 M. This redox couple was initially proposed by Audinos [67], it is highly 

reversible, cost effective and it can be easily fabricated. Furthermore, the rinse electrolyte 

solution is nontoxic, it does not causes membrane poisoning and the electrode rinse 

solution could be readily replaced by seawater, making it scalable without major trouble. 
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Electrodes fabrication was done using two plates of silver cut in a circular shape. Silver 

chloride was formed in one plate by applying a constant potential of -0,1 V vs Ag/AgCl in a 

NaCl solution 3 M during 30 minutes; the other one was left as raw silver. 

Table 2-1. Membrane properties given by the manufacturer 

Membrane AEM Type I CEM Type I 

Resistance (Ω.cm2)1 1.3 2.7 

Perm selectivity 0.92 0.92 

Thickness (µm) 125 135 

Water permeation (ml/bar.m2.h) 6 10 

1Measured in 0.5 M NaCl 

NaCl concentrated solution was 0.5 M, which is the typical seawater concentration. Diluted 

NaCl solution was 0.01 M. Although typical NaCl concentration in river water can be lower 

than the value chosen, 0.01 M was the value used in previous works [38].  

  

Figure 2.3. Picture of the RED stack used in the experiments. 

2.3.2 Electrochemical measurements 

The experimental set up is shown in Figure 2.4. The experiments did not count with flow 

control, no pumps were used in the experiments, and water flowed by gravity with a 30 cm 

height difference between water containers and stack. Electrode rinse solution was not 

recirculated. Salt solutions were made using reagent grade NaCl (Merck) and tap water. 
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Inside the stack, water flow was from the bottom to the top of the RED stack, this was done 

to improve water distribution inside the compartments. Water flow was measured gauging 

a 25 mL volumetric balloon in the stack outlet. 

Experiments were carried out using 3 multimeters UNI-T (UT71D) for recording data in time, 

in combination with a manually variable resistance. Stack voltage was measured in Ag/AgCl 

reference electrodes and in the electrodes terminals. The first method allows to leave 

losses associated with electrode reactions out of consideration, and to read real membrane 

circuit voltage changes with resistance. This can be done because the electrode losses are 

dominant in a stack with few cells, but in practice, these losses can be neglected due to the 

great amount of cell pairs needed for pilot or commercial scale [64], [68].  

 

Figure 2.4. Experimental set up for RED experiments. 

 

2.3.3 Experimental conditions 

Initially, the effect of the number of cell pairs N was investigated for stacks without spacers, 

however it has been reported that spacerless stacks present higher non-ohmic resistances 

associated with smooth hydrodynamic conditions and concentration polarization effects in 

the diffusion boundary layer (DBL) [8].  
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In order to decrease the non ohmic resistance of the stack, conductive spacers were tested. 

Ion conductive spacers have been proven to enhance power generation in RED and to 

decrease the internal resistance of the stack related to spacer shadow effect in the 

presence of nonconductive spacers [44]. Conductive spacers were made of Fujifilm anion 

and cation exchange membranes. The arrangement of the spacers inside the channels 

consisted in an AEM membrane, AEM spacer, CEM spacer and CEM membrane, this is 

called a normal configuration [44]. 

Spacers were cut manually and they were designed inspired in chevron geometry (Figure 

2.5). Chevron geometry has been found to be the most promising geometry for corrugated 

membranes: it enhances mass transfer, it reduces channel dead flow zones and it does not 

drastically increase the pressure drop of the stack [41] 

A

 

B

 

Figure 2.5. A) Chevron Geometry recommended for RED [41]. B) Spacers cut by hand used in the stacks. 

 

 Experiments were performed in parallel current configuration. Additional experiments were 

operated in counter current mode. Ultimately one test was performed using real Caribbean 

Sea water and Magdalena river water. Table 2-2 summarizes the effects investigated in the 

experiments. 
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Table 2-2. Experiments carried out in the research 

Number of cells 1 3 5 10 

Without spacers and parallel X X X X 

With spacers and parallel current  X X  

With spacer and counter current  X   

With spacers, parallel current and real river and sea water  X   

2.3.4 Calculation of experimental values 

Power obtained from the stack experimentally was calculated with Eq. 2.34 

𝑃𝑢 = 𝐸 ∗ 𝐼    (2.34) 

Where E is the voltage measured at the electrodes (V) and I is the current that passed 

through the ammeter (A). Power Density obtained was calculated with Eq. (2.35) 

𝑃𝑑 =
𝑃𝑢

𝐴𝑚
     (2.35) 

Where 𝐴𝑚 is the total membrane area (AEM and CEM) that contribute to voltage build up 

[38] [20]. 

Current density was calculated as the current measured with the ammeter divided by the 

transversal membrane area (AEM and CEM) available for ion exchange. 

𝐼𝑑 =
𝐼

𝐴𝑇,𝑚
     (2.36) 

Internal resistance of the stack was calculated experimentally in the condition of maximum 

power with Ohm’s law 

𝑅𝑖𝑛𝑡 =
𝐸

𝐼
    

(2.37) 

Where 𝐸 is the voltage in the electrodes and 𝐼 is the current passing through an external 

circuit. 
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 Results and discussion 

Electrochemical characterization measurements were made to determine stack 

performance. 

2.4.1 Dynamic model results 

Dynamic model was solved using Matlab ® with parameters presented in literature [38], 

[61]. Results are presented in Figure 2.6 for co current and counter current operation for 

RED. Concentration profiles in stationary state are properly predicted with this model. Each 

line represents changes of salt concentration with time through the compartment, arrows 

show the direction of time in the profiles obtained. 

The last time lines in Figure 2.6 show the developed concentration profiles in stationary 

state for diluted and concentrated solutions, which are in agreement with models developed 

for stationary state [61]. This validates that the model is able to represent dynamic behavior 

of concentration profiles inside the compartments. 

  

 

 

 

 

 

 

 

Figure 2.7 shows the concentration changes in the compartment with time, each line 

represents one of the volume differentials used for solving the model. In Figure 2.7 the 

model predicts that the time required for reaching stationary state is equal to the residence 

time, which proves the capacity of the model to represent dynamic behavior. It can be seen 

that when 50 seconds have passed there are not any more changes in concentration. 

Figure 2.6 Results of the dynamic model for concentration profiles. A) in co current mode. B) in counter current mode. 

Arrows show the direction of time 
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Figure 2.7. Concentration of salt water (blue) and fresh water (cyan) in time. 

 

2.4.2 Results for 1 cell 

Figure 2.8 presents the results obtained in stack electrodes for 1 cell. Figure 2.8 A shows 

experimental results (circles) compared with expected theoretical polarization curve (line). 

It is possible to notice that the values of OCV at cero current are very similar. Unfortunately 

with the development of the polarization curve, voltage drops drastically until half of the 

value expected in theory. This effect may be ascribed to the electrode losses, which are 

dominant in a stacks with few cells [68]. 

 Due to the great difference between stack electrodes resistance and expected theoretical 

resistance, the actual resistance measured in the electrodes was an input in model to 

calculate power density. Figure 2.8 B presents the power vs current curve for the stack. It 

is possible to notice that experimental and theoretical are very similar when internal 

resistance obtained experimentally is used for the calculation.  



Chapter 2 27 

 

  
Figure 2.8. A) Polarization curve (V vs I) for 1 cell measured at the stack electrodes B) Power curve (W vs I) 

for 1 cell measured at the stack electrodes. ○ Experimental, -- Theoretical. 

2.4.3 Results for 3 cells 

Results in Figure 2.9 show, A polarization curves and B power density curves for the 

stack measured at the terminals of the electrodes (circles) and at the reference electrodes 

(triangles). 

  
Figure 2.9. A) Polarization curve (V vs I) for 3 cells measured at the stack electrodes , at the reference 

electrodes , and theoretically calculated -- B) Power curve (W vs I) for 3 cells measured at the stack electrodes 

, at the reference electrodes , and theoretically calculated -- 

In Figure 2.9A, it is worth noting that voltage measured with reference electrodes (triangles), 

as well as Power density calculated (Figure 2.9B), is much higher than the results obtained 

for the stack electrodes (circles). Stack electrodes presented a very high resistance, this 

was a common problem in all the experiments. It was caused because there was a leakage 
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problem in the stack terminals. The junction between Ag electrodes and copper terminals 

produced a galvanic couple when water slightly leaked into the external circuit 

compartment. Thus, oxidation occurred, causing bad contacts between metals. The final 

result was a drastic increase in the internal resistance of the stacks. Unfortunately, because 

of this problem it was not possible to achieve higher current densities, and experiments 

were performed in only a small range of current densities. 

Measurements in the reference electrodes on the other hand, exhibited a very small slope 

in the polarization curve, consistent with theory (Figure 2.9A). This confirms that the high 

internal resistance measured experimentally had its origin in the stack electrodes. Figure 

2.9B shows the power curve. Theoretical calculations for Figure 2.9B were made using 

internal resistance measured in the stack electrodes.  

Although stack electrodes do not achieve high power densities, when power is calculated 

using the value of internal resistance measured with reference electrodes, expected power 

density is much higher than actual obtained power (Figure 2.10). 

In Figure 2.10, a zoom is shown for the initial part of the power curve. It is possible to notice 

that experimental data was only obtained for a small part of the power curve, nevertheless, 

results of the model are able to predict in this initial ranges the behavior of the stack.  

 

Figure 2.10. Expected Power density from the stack. Reference electrodes , and theoretically calculated .  
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 Effect of ion conductive spacers 

Figure 2.11 present polarization curves for A stack electrodes and B reference electrodes. 

The same problem mentioned in previous sections was observed for conductive spacers. 

In fact, when voltage is measured with stack electrodes, stacks with spacers appear to have 

a negative effect in the behavior of the stack. This unwanted effect is because oxidation of 

the electrodes caused very high variability in the voltage measurements in the electrodes. 

On the contrary Figure 2.11A shows polarization curves measured with reference 

electrodes. It is clearly seen that the use of conductive spacers in parallel current operation 

(blue) cause an increase in OCV. Furthermore, the operation of the stack in counter current 

configuration with spacers (green) presents the best results, compared to parallel current 

operation. This effect may be ascribed to the fact that in counter current operation the 

salinity gradient is preserved during the flow path, keeping constant the motive force that 

causes ion flux. In parallel current operation, the salinity gradient decreases with length, 

causing some areas to have less potential difference than others, and the overall effect is 

a decrease in voltage. Another thing to notice is that in the 3 cases investigated in Figure 

2.11B, the slope is similar to the theoretical predicted slope during operation range 

investigated. 

  
 

Figure 2.11. Polarization curves for A) stack electrodes (circles), B) reference electrodes (triangles). For stacks 

with 3 cells without spacers (orange) with conductive spacers in parallel current (blue), and conductive spacers 
in counter current operation (green) 
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Figure 2.12. A) Expected power density for internal resistance values calculated with reference electrodes. B) 

Real obtained power density for stack electrodes and reference electrodes for stacks without spacers, with 
spacers in parallel current and spacers in counter current. 

Figure 2.12 are Power density vs Current density curves. Figure 2.12A shows the expected 

behavior of the cell in the absence of problems related to leakages in the external circuit 

compartments. The circle in the initial part of the curve indicates the real experimental 

values obtained in the reference electrodes. Figure 2.12B is the zoom of Figure 2.12A, but 

theoretical power is calculated using real internal resistance of the stack. Figure 2.12B also 

contains experimental power density obtained in stack electrodes (circles). 

 Use of real river and sea water 

In order to assess the potential of salinity gradient energy in Colombia, water from the 

Caribbean Sea and from the Magdalena River was collected in the Bocas de Ceniza River 

mouth, in Barranquilla, Colombia, by researchers of Universidad del Norte. The water was 

kept in a refrigerator for 6 months until it was used in these experiments. Table 2-3 shows 

the concentration of different ions in the waters used for the experiments 

Table 2-3. Ion composition of real seawater used in the experiments 

Ion composition (mg/L) Na+   Mg++ Ca++ Cl- SO4
-- 

Magdalena River 6.6 3.3 15.8 5 12.9 

Caribbean Sea 11494.5 1312.8 485.7 24700 2640 

Results in Figure 2.13 show a comparison of results obtained with artificial waters prepared 

in the laboratory (blue) and results obtained with real sea water (purple). From Figure 2.13A 

it is possible to notice that OCV is higher in tests with real water than with artificial water. 

Additionally, even for the small current range studied, it is possible to notice a slightly 
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steeper slope for real waters. This behavior may be attributed to the presence of Mg++, Ca++ 

and SO4
- -  ions, which have been proven to increase electrical resistance of the membranes 

[69]–[71]. 

In Figure 2.13B no relevant information can be drawn. The reason is that results obtained 

account only for the initial part of the power density curve and real operation conditions of 

the cell should be in a much higher current density range of operation (20 – 40 A/m2) 

according to the theoretical model and literature in the subject [64] .  

  
Figure 2.13. A) Polarization curves found for reference electrodes B) Power density curves found for reference 

electrodes. Δ Tests with water from Magdalena River and Caribbean Sea in stacks with spacers, Δ Tests with 

artificial sea water in stacks with spacers. 

  

2.4.4 Results for 5 cells 

Effect of spacers was also investigated for 5 cells. Figure 2.14 is a comparison of 

polarization curves for a stack with 5 cells with (dark blue) and without (gray) spacers. 

Results in Figure 2.14A confirm the great variability that resistance measured in stack 

electrodes can have. Even for the same conditions and stack configuration, different slopes 

of the polarization curves may be obtained.  

Figure 2.14B also shows variability in the results probably associated to the absence of flow 

control, and to the non-uniform flow distribution. However, the slopes, and thus the 

resistances found, are consistent with theoretical model and are repeatable through the 

experiments.  
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Apart from the preceding, Figure 2.14B presents a difference of 0.1 V between theoretical 

calculation and the best experimental results. Some authors have described these 

differences using perm selectivity parameter. In this case, as the model calculation is done 

with the reported properties of the membrane manufacturer, the difference between 

theoretical calculation and experimental results could be due to a lower membrane perm 

selectivity value than the reported by the manufacturers. 

  
Figure 2.14. Polarization curves with 5 cells stack. A) Measured with stack electrodes in stacks without 
spacers  and with spacers  B) Measured with Reference electrodes in stacks without spacers  and with 

spacers  

 

  
Figure 2.15. A) Expected power density for internal resistance values calculated with reference electrodes. B) 

Real obtained power density. Theoretically calculated --. Experimentally obtained in stack electrodes with and 
without spacers. Experimentally obtained in reference electrodes for stacks with and without spacers. 
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Figure 2.15 are Power density curves. Figure 2.15A shows the expected behavior of the 

cell in the absence of problems related to leakages in the external circuit compartments 

and the circle in the initial part of the curve indicates the real experimental values obtained. 

Figure 2.15B is the real behavior of the cell measured in the stack electrodes (circles) and 

in the reference electrodes (triangles) for stacks with spacers (dark blue) and without 

spacers (gray). In Figure 2.15B, the calculated theoretical power is also shown. The 

calculation was performed, substituting the theoretical value of internal resistance, with the 

real internal resistance values measured with stack electrodes. 

2.4.5 Results for 10 cells 

Figure 2.17 shows results obtained for 10 cells. Figure 2.17A is the polarization curve 

measured in stack electrodes (circles) and in reference electrodes (triangles). It is clearly 

visible that OCV measured at the stack electrodes is much higher than OCV measured at 

the reference electrodes. Nevertheless the slope of the polarization curves is much steeper 

in stack electrodes than in reference electrodes. When working electrodes would acquire a 

different potential difference than the reference electrodes, evidence for the occurrence of 

reactions would appear in the copper terminal of the stack (Figure 2.16). 

 

 

Figure 2.16. Oxidation reactions in copper stack terminals. 

 

According to results obtained in this and in previous research [63], [64], it could be said that 

the difference in OCV between reference and working electrodes, could be a way to 

recognize the occurrence of unwanted irreversible reactions in the electrode system.  
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Figure 2.17B is the power density curve obtained for 10 cells. Theoretical calculations were 

obtained substituting the theoretical calculated resistance, with real resistance values 

obtained from the working electrodes of the stack. Experimental results obtained from the 

reference electrodes (triangles) and from the working electrodes (circles) are shown. The 

theoretical power curve can partially predict experimental results and differences between 

theory and experiments may be ascribed to an increase in ohmic resistance with time and 

the generation of oxidation reaction at the stack terminals. 

  
Figure 2.17. A) Polarization curve (V vs I) for 10 cells measured at the stack electrodes , at the reference 

electrodes , and theoretically calculated  B) Power curve (W vs I) for 3 cells measured at the stack electrodes 

, at the reference electrodes , and theoretically calculated  

 

2.4.6 General Analysis and discussion 

Figure 2.18 summarizes results obtained for working electrodes in all the stacks tested 

without spacers. Polarization curves in Figure 2.18A reveal that OCV increases with the 

number of cell pairs. On the other hand, slope of the polarization curves does not change 

with a defined trend and it can have a great variability, which was a problem exhibited during 

the experimental section. 

Figure 2.18B are power density curves obtained in the working electrodes for stacks without 

spacers. In spite of the great variability in the results with the stack electrodes, maximum 

power achieved for 10 cells was 0.14 W/m2, which is consistent with other experimental 

results presented in literature [63]. 
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Figure 2.18. A) Polarization curves obtained with working electrodes for stacks with 1 , 3 , 5  and 10  cells. 

B) Power curves obtained with working electrodes for stacks with 1 , 3 , 5  and 10  cells. 

 

Figure 2.19 summarizes polarization curves obtained for all the stacks tested with reference 

electrodes. It is possible to notice that the use of conductive spacers increased the voltage 

compared to stacks without spacers. The number of cell pairs, also has a positive effect on 

stack voltage, and in this case the slope of the polarization curves is less variable and more 

consistent with theory than the one presented in Figure 2.18A. 

In general Power density curves obtained in this research for reference electrodes do not 

exhibit important information. The reason is that data obtained during the experiments 

accounts only for the initial part of the total power density curve. The typical power curve 

should exhibit a maximum value, and it is expected to reach current density values of more 

than 30 A/m2. Although the information shown in Figures 2.8, 2.10 and 2.13 shows that 

results obtained for reference electrodes fit the initial part of the power curve described by 

the model, the experimental results cannot be extrapolated, and thus, the summary of 

power density results measured in reference electrodes are not shown in this section. 
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Figure 2.19. Polarization curves obtained theoretically and experimentally with reference electrodes for 3 cells 

without spacers , 3 cells with spacers , 3 cells with spacers in counter current mode , 5 cells without spacers 

, 5 cells with spacers  and 10 cells . 

 

Experimental resistance of the cells are illustrated in Figure 2.20. Results in gray represent 

real stack resistance measured in the working electrodes, light green describes cell 

resistance measured with reference electrodes, while solid dark green line represents the 

theoretically calculated values.  

In previous sections, the unexpected response of the stack was explained with the high 

resistance of the stacks. In Figure 2.20 it is possible to notice that internal resistance 

measured with working electrodes can be from 10 to 70 times higher than the 

experimentally obtained results with reference electrodes or the calculated values with 

theory. This difference can be ascribed to the occurrence of irreversible oxidation reactions 

in the stack terminals due to water leakage into the external circuit. This reactions would 

cause a low conductance oxidation layer that would restrict electrons flow through the 

external circuit, causing some times behaviors of polarizable electrodes. 
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Figure 2.20. Internal resistance of the stacks calculated theoretically and obtained experimentally 

Despite the large electrical resistance presented in the stack electrodes, experimental 

results obtained with reference electrodes are in good agreement with theoretical 

calculations. Figure 2.21 shows the expected theoretical internal resistance (dark Green) 

compared to the internal resistance measured with reference electrodes (light green) for 

each of the stacks. In some cases experimental values are higher than theoretical values 

and in some others they are lower.  

This small differences encountered might be associated with the use of average flow to 

calculate internal electrical resistance. Even though water flow was measured at the stack 

outlet, it was not a controlled variable, and each test had different flows for concentrated 

and diluted solutions, thus theoretical calculations were performed with average flows. 

Another source of error is that membrane resistance is measured by the manufacturer in 

0.5 M NaCl, while in RED, the membrane is exposed to a much lower ion concentration 

(0.01 M), which has been proven to cause an increase membrane resistance [72]. In this 

research resistance of the membranes was not measured experimentally and thus, 

theoretical calculations were performed with resistance values given by the manufacturers. 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

R
es

is
ta

n
ce

 o
f 

th
e 

st
ac

k 
(Ω

.m
2 )

Number of cells 

electrode resistance

Reference resistance

theoretical resistance



38 Reverse Electrodialysis 

 

 

Figure 2.21. Comparison between theoretical results calculated with model and experimental results obtained 

with reference electrodes 

Figure 2.22 shows results for OCV obtained in the reference electrodes (red), in the working 

electrodes (light red) and theoretically expected results (orange). In most cases OCV 

obtained with electrodes was higher than obtained in references. Theoretical results were 

always higher than experimental values. The reason for this is that theoretical calculation 

does not account for concentration polarization effects which are present in the case of low 

linear velocities, especially in the absence of spacers. Besides, perm selectivity values are 

not guaranteed by the membrane manufacturer. 

 

 

Figure 2.22. OCV measurements for electrodes, references and model 
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 Conclusions 

 

A stack has been designed and constructed in Colombia without the use of pumps as a first 

step to develop salinity gradient technology. A validated model has been tested 

successfully with the stack constructed. 

The effect of conductive spacers with chevron geometry have proven to improve the 

behavior of the RED stacks. The stack presented the best results for counter current 

operation and thus it is recommended for generation of maximum power. 

Water from the Caribbean Sea and from the Magdalena River was tested, and results 

obtained for power density were very similar to those for artificial NaCl solutions. This shows 

that it is theoretically possible to recover energy from the Bocas de Ceniza River Mouth in 

quantities similar to laboratory conditions. Results are a first step for the assessment of field 

implementation of a RED pilot plant in Colombia. 

The Ag/AgCl electrodes are highly reversible and do not require pumping the rinse solution. 

In the experiments performed there was no evidence of side reactions in the electrode 

under the studied voltage ranges, and they were found to be mechanically stable after many 

cycles. On the other hand, although Ag+ ions have low solubility in NaCl solutions, this ions 

could leak to the environment and cause a certain toxicity degree in the effluent waters. It 

is necessary to do further analysis regarding environmental and financial feasibility to 

determine the viability of Ag/AgCl redox couple. 

A dynamical model has been proposed and solved for RED. This model gives insight of the 

transitory stages of RED, and it can be useful in the cases where this stages need to be 

studied, like feed water reversal for biofouling control. In larger time scales it can be helpful 

in the case where feed waters properties change with time and it can be used to model 

changes that might of occur in RED operation in time, like increasing internal resistance, 

for scheduling periodic cleaning treatments. 
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2.5.1 Recommendations 

The leakage of electrolyte solution into the junction of an Ag/AgCl working electrode and a 

cooper terminal in the stack, resulted in bad operation of the equipment. In order to test the 

RED stack in conditions of stationary state, side reactions in the electrodes can be avoided 

improving the seal or using only one big silver block as working electrode and stack 

terminal. These alternatives are cost effective compared to other options suggested in 

literature. 

RED operation involves a lot of variables. In order to validate the models and to calculate 

thermodynamic efficiency of the stack it is necessary to measure concentrations at stack 

outlet, to measure water flow at the stack inlet and outlet and to use peristaltic pumps to 

control water flow. It would also be interesting to use an electrical load that can be controlled 

computationally in order to control the load change in time, which has also different effects 

in the results. All of the data should be collected in an integrated unit that records in time 

each of the measured variables, otherwise it is a bigger effort to consolidate the results. 

2.5.2 Outlook 

From the theoretical point of view, it would be more accurate to include the dependence of 

the molar conductivity with concentration in the model. It would also be interesting to do 

CFD modelling with spacers designed for this research, and to include different 

configurations of the spacers designed in order to predict which would be the best one. 

 

Experimentally it is necessary to study stability in big time scales of the stack in operation 

with river and sea water. The next step for assessment of a RED pilot plant implementation 

is to understand fouling effects that waters from the Caribbean Sea and the Magdalena 

River might produce. 
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3. Capacitive Reverse Electrodialysis 

 Introduction 

3.1.1 Advantages of CRED compared to previous technologies 

Capacitive Reverse electrodialysis is a recently developed energy generation system that 

combines RED and Capacitive mixing (CapMix) principles [27]. This process uses carbon 

based super capacitors instead of electrodes and electrochemical reactions. It has the 

advantage of not requiring redox reactions to convert salinity gradient energy into electrical 

energy. 

Most papers published in the literature for studying RED technology use Ferro cyanide 

Redox couple ([Fe(CN)6]-4 / [Fe(CN)6]-3) [73][74][75]. Although this is a very reversible 

couple and thus it allows to study the properties and characteristics of the hydroelectric pile,  

it is not a feasible redox couple for commercial applications because there exists a big risk 

that some of the ions used for the redox reaction leak into the waters that enter the cell, 

and decompose in free cyanides in the presence of sunlight and oxygen [73]. This problem 

was addressed in the second chapter, using a highly reversible, nontoxic redox couple 

Ag/AgCl with a nontoxic electrolyte (NaCl 0.5 M).  

On the other hand, the advantage of CRED with respect to CapMix is that the constant 

water flow through the ionic circuit generates a continuous ionic current towards the surface 

of the activated carbon, which allows to extend the charging and discharging processes of 

the capacitor [27]. 

Apart from that, it is important to go deeper into the study of CRED system in order to 

understand which is the maximum power obtainable and if it is possible to generate more 

power density with this system than with RED. 
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3.1.2 Electrical Double Layer Capacitors 

In general, it has been found that Electrical Double Layer Capacitors (EDLC) are preferable 

than electrode reactions in any application in which high power density, fast response, rapid 

charging, and high cycle life are more important than energy density [76]. 

 

The current response transient for charging a supercapacitor interface under the influence 

of a step in potential is shown in Figure 3.1 Where an exponential decay of the current is 

expected. In the presence of a faradaic current, the total current will not tend to cero, but to 

the value of the faradaic current. 

 

 

Figure 3.1. Current response transient for charging a supercapacitor interface under the influence of a step in 

voltage [77]. 

3.1.3 CRED Operation 

CRED technology has a membrane pile core identical to RED, shown in Figure 3.2. The 

fundamental difference between the technologies is that CRED operates alternating feed 

waters in the compartments every certain time, while RED can be operated as a continuous 

process. 

In CRED, the voltage produced in the membrane circuit is used to charge two 

supercapacitors located at both ends of the cell that are in contact with a saline solution. 

Because of electroneutrality principle, while ions accumulate on the solution side of the 

capacitors, electronic configuration of the activated carbon reorganizes to complement the 
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charge excess in the capacitors surface, which causes an electron movement through an 

external circuit. 

 

Figure 3.2. CRED Principle of operation 

Once the capacitors are saturated with ions, it is necessary to invert the flow of the waters 

and to open the external electrical circuit. Where there used to pass river water, seawater 

starts to pass and vice versa.  

The water interchange gives rise to a movement of ions in the opposite directions, which 

makes positive ions start to accumulate in the capacitor that was collecting negative ions 

before, and the carbon that was storing negative ions, starts accumulating positive ones 

instead.  

The most interesting effect in CRED system is that voltage measured in the capacitors after 

the exchange reaches a higher value than the one obtained with regular RED or CapMix 

operation [27], [58].This effect is the sum of membranes voltage, as calculated in RED 

process, plus a contribution due to polarity change in the electrochemical compartments at 

constant charge, similar to CapMix effect.  The difference in OCV voltage between RED 

and CRED has been attributed to the stored charge in the capacitors [27]. 

After system attains this stable voltage, the external circuit is again connected through an 

external resistance. In this way electronic configuration of the external circuit shifts again, 

and causes an electrical current to pass through a resistor. Thus the process changes 

repeatedly and power is generated. Figure 3.3 explains the operation of CRED cycles 
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 Theoretical model 

The full development of the model is presented in chapter 2. This section presents only the 

basic equations and the modifications of the RED model, as it is essentially the same. In 

this case, a stationary state solution is not included, because the behavior of CRED is 

intrinsically dynamic.  

 

 

Figure 3.3. CRED cycle operation 

The equations that simulate concentration change in time inside the compartments are  

𝑑𝐶𝑐(𝑥)

𝑑𝑡
=

𝐹𝑐

𝑏 𝛿

𝜕𝐶𝑐(𝑥)

𝜕𝑥
−

1

 𝛿
 𝐽𝑤𝐶𝑐(𝑥) −

1

 𝛿
 𝐽𝑁𝑎𝐶𝑙(𝑥) (3.1) 

𝑑𝐶𝑑(𝑥)

𝑑𝑡
=

𝐹𝑑

𝑏 𝛿

𝜕𝐶𝑑(𝑥)

𝜕𝑥
+

1

 𝛿
𝐽𝑤𝐶𝑑(𝑥) +

1

 𝛿
𝐽𝑁𝑎𝐶𝑙(𝑥) (3.2) 

Except for 𝐽𝑁𝑎𝐶𝑙, all the terms in Eq. 3.1 and Eq. 3.2 are calculated as explained in the 

previous chapter. The difference of the model is that NaCl transport by migration is now 

calculated as a transient process defined by the equation of current response in a capacitor 

 



Chapter 3 47 

 

𝐽𝑚𝑖𝑔 =
𝐸

𝑅𝑡
exp−𝑡/𝑅𝑡𝐶        

(3.3) 

Where 𝐸 is the voltage attained by the system (V), 𝑡 is time in seconds, 𝐶 is the capacitance 

(F), and  𝑅𝑡 is the total resistance of the system, including internal and external resistance. 

𝑅𝑡 = 𝑅𝑖 + 𝑅𝑢 
(3.4) 

Finally Power density was calculated using Eq. (3.5) [27], [38] 

𝑃𝑑 =
1

2𝑁(𝑡2 − 𝑡1)
∑ 𝐼2𝑅∆𝑡 

(3.5) 

The rest of the model has been explained in the previous chapter, and thus, it is not 

necessary to repeat equations for the calculations of power, power density or energy 

efficiency, between others. 

 Experimental conditions 

3.3.1 Reverse Electrodialysis stack 

The stack used for the experiments was the same as described in the previous chapter. 

The methodology for the construction of the capacitors was based in literature review [27], 

[78]. Activated carbon particles with a size of 38 µm or less were used. The activated carbon 

was dispersed in a solution of IPA-H2O using ultrasound for 5 minutes. The mixture was 

dried during the night at 80ºC. After this procedure, the activated carbon was mixed with 

dispersed PTFE (85:15 ratio) and then the final mixture was put into an ultrasonic bath for 

15 minutes. Subsequently the suspension was heated to 80ºC and it was vigorously 

agitated during 28 minutes until the mixture looked homogenous. The resulting paste was 

extended over an opaque Steel sheet, guaranteeing a 200 µm thickness of the film.  

Electrochemical characterization of the supercapacitor was done using cyclic voltammetry 

and it was found to have a specific capacitance of 98.73 mF per cm2 projected area. The 

geometrical area of the capacitors was 1.3 cm2. 
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In order to be able to compare results obtained with previous literature, concentration 

values of the waters where 0.5 M NaCl for the concentrated solution, (typical seawater 

concentration) and 0.01 M NaCl for diluted solution [38].  

3.3.2 Electrochemical measurements 

 

Figure 3.4. Experimental set up for CRED experiments. 

The experimental set up is shown in Figure 3.4. The experiments did not count with flow 

control, no pumps were used in the experiments, and water flowed by gravity with a 30 cm 

water column. Three way valves where added to the experimental set up in order to easily 

exchange waters. Electrode rinse solution was not recirculated. Salt solutions were made 

using reagent grade NaCl (Merck) and tap water. Inside the stack, water flowed bottom up 

in order to improve water distribution inside the compartments. Water flow was measured 

gauging a 25 mL volumetric balloon in the stack outlet. 

Experiments were carried out using 3 multimeters UNI-T (UT71D) for recording data in time, 

in combination with a manually variable resistance. Register of voltage and current was 

done every two seconds. Stack voltage was measured in Ag/AgCl reference electrodes and 

in the stack terminals.  
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3.3.3 Experimental conditions 

Stacks with 1, 3, 5 and 10 cells were investigated with artificial solutions. The experiments 

consisted in measuring voltage response to the salinity gradient. Once the voltage reached 

a stable value, an external resistance was applied and current response to the perturbation 

was measured at the stack terminals, as shown in Figure 3.4. After current values were 

very small, the external resistance was disconnected and the waters were shifted. This 

process was done repeatedly for all the experiments. 

Unfortunately results showed a lot of variability and low reliability. Thus, only for illustrating 

purpose, results for 3 cells are shown. Furthermore, in order to decrease the non ohmic 

resistance of the stack, conductive spacers were tested. Ion conductive spacers used in 

the experiments were described in the previous chapter. Finally, one test was performed 

using real Caribbean Sea water and Magdalena river water. All the experiments in this 

section were performed in parallel current configuration. Table 3-1 summarizes the effects 

investigated in the experiments. 

Table 3-1. Experiments performed for CRED system 

Number of 
cells 

No spacers spacers 

Artificial solution Artificial solution 
Water from Magdalena river 

and Caribbean sea 

3 x x x 

 

3.3.4 Calculation of experimental values 

Calculation of experimental values was explained in the previous chapter, and thus, it is not 

necessary to repeat equations for the calculations of power, power density and current 

density. It is important to clarify that for CRED, values of power were calculated point by 

point in time in order to obtain dynamical behavior of the system. 

Due to the great variability of the results in the experiments, and taking into account that 

the system was tested only with a few values of external resistance, internal resistance of 

the stack was not calculated. Instead, a total resistance, including internal and external 

resistance was obtained by the least squares method.  
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 . Results and discussion 

3.4.1 Model results 

Model predictions for CRED for 3 cells and 4 cycles, using the capacitance found 

experimentally with cyclic voltammetry and the geometrical area of the capacitors are 

shown in Figure 3.5 A. Figure 3.5 B is the enlargement of Figure 3.5 A, it describes CRED 

system when an external resistance is  connected to close the circuit for only one cycle.  

The capacitance used in the model corresponds to a small area (geometrical area of the 

capacitors), thus from Figure 3.5 it is possible to notice that response time of the capacitors 

is in the order of milliseconds. The capacitors fabricated for this research were mainly made 

of Vulcan ® Activated Carbon, which has 256 m2/g area. Besides the supercapacitors 

constructed weighted 2 mg. Thus, a superficial area in the order of 5*10-1 m2 was taken as 

initial guess for the model calibration. It was found that an area that would fit experimental 

results is in the order of 0.15 m2. 

  

Figure 3.5. Model predictions for CRED A) 4 cycles B) Response to an external resistor. 

3.4.2 . Experimental results 

This section presents experimental results obtained for CRED experiments with a stack of 

3 cells, and the calibrated model output. 

 Results for 3 cells without spacers 

Figure 3.6 shows the voltage vs time series obtained for a CRED stack with 3 cells without 

spacers measured at the reference electrodes and at the stack terminals. In general it is 

A 

B 
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possible to notice that the variability of the reference electrodes was smaller than the 

variability in the stack terminals.  

The response of the voltage to the water exchange in the compartments was between 200 

and 250 seconds. When the electrical resistance was connected, the voltage in the 

capacitors would drop sharply from one register to the next, while voltage at the reference 

electrodes remained constant. 

This sudden abatement in capacitors voltage was accompanied of a peak current with an 

exponential decay, as shown in Figure 3.7. For reasons of clarity Figure 3.7 shows the 

behavior of current (values in the secondary axis) and voltage in the capacitors (orange 

circles), only for a couple of cycles. Although the voltage is expected to decrease rapidly 

from the beginning, it is also expected to increase when external circuit is disconnected. 

This behavior was observed in the experiments, especially in Figure 3.8 A. 

 

Figure 3.6. Obtained voltage from the stack in reference electrodes ( ) and stack terminals ( ) in CRED with 

3 cells without spacers. 

Figure 3.8 A shows only two cycles of the CRED experiments, for which external power 

was calculated. Figure 3.8 B is the characteristic power curve of the CRED cell, which was 

obtained by multiplying the electrode voltage times the current density results obtained in 

the same time interval.  
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Figure 3.7. Current (--) and stack voltage ( ) response to a perturbation in external resistance. 

In order to validate the model, theoretical and experimental results were compared, and 

using minimum squared error it was possible to find total (internal plus external) resistance 

of the system. Although Figure 3.8 B shows good agreement between experimental and 

theoretical results, it is possible to notice that in the experiments the power does not drop 

down to cero, as the model predictions show. This phenomena appears to be a 

displacement of the potential that might be associated with internal leakages from the 

capacitors compartment to the external circuit, which caused electrochemical reaction to 

occur in the copper electrode terminals in contact with leaked NaCl solution. 

  
Figure 3.8. Results for 3 cells without spacer A) Voltage in the stack terminals and in the reference electrodes 

for the studied cycle. B) Power response of the stack after an external resistance perturbation for experimental 
( ) and model (--) results. 
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 Results for 3 cells with spacers 

Figure 3.9 shows results for voltage at the capacitors and at the reference electrodes for 

the experiments performed with 3 cells and with spacers. After several cycles, voltage 

measured at the references remains unchanged, while for capacitors, voltage cycles did 

not stabilize. Looking at the negative part of the voltage, after each cycle the voltage 

reached by the stack terminals was smaller, while at the positive part, the stack voltage 

always achieved a stable value in the different cycles.  It is believed that there was a 

leakage in one of the capacitors, which is the same problem mentioned along this research 

that has caused many inconvenient in the results.  

On the other hand the expected results for stack with spacers was an increase in OCV and 

thus in power. For the voltage obtained in the capacitors and in the reference electrodes, 

an increase in OCV can be noticed, compared to the stack without spacers. 

 

Figure 3.9. Obtained voltage from the stack in reference electrodes ( ) and stack terminals ( ) in CRED with 

3 cells with spacers. 

Figure 3.10 has the voltage and power response of the stack in the studied cycles. It is 

possible to notice a major difference between powers obtained from the 1st and 2nd cycle. 

The model was calibrated with the results obtained in the 2nd cycle, but applied to results in 

both studied cycles. It is possible to notice that for the first cycle, the model does not 

represent the results, probably because the internal resistance of the system was much 

higher. 
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Figure 3.10. Results for 3 cells with spacer A) Voltage in the stack terminals and in the reference electrodes 

for the studied cycles. B) Power response of the stack after an external resistance perturbation for experimental 
( ) and model ( ) results. 

 

 Results for stack with spacers and river and sea water. 

Figure 3.11 shows results for voltage in the stack terminals and in the reference electrodes. 

In these experiments voltage response was more stable. An improvement in voltage in the 

capacitors as well as in reference electrodes is noticed compared to the case without 

spacers.  

An interesting thing should be noticed in this results, as well as in other results presented 

in literature [27]. Open circuit voltage in the capacitors is usually higher than voltage in the 

reference electrodes. The explanation for this open circuit voltage effect in the capacitors 

might be similar to CapMix effect, but it would be interesting to study deeper this 

phenomena. 

From Figure 3.12 B it can be seen that in this case the peak power was almost double than 

the obtained in the previous case. However power declined drastically in less than 2 

seconds.  
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Figure 3.11. Obtained voltage from the stack in reference electrodes ( ) and stack terminals ( ) in CRED with 

3 cells with spacers with river and seawater. 

From chapter two, it was found that power obtainable with river and sea water could be as 

good as using artificial NaCl solutions prepared in laboratory. In the previous chapter a 

proper current density sweep was not done with the equipment, and it was not possible to 

make a conclusion in the obtainable power density from river and sea water. In this chapter, 

due to the big variability of the results it is not possible to determine if peak power is a 

consequence of river and sea water, or if it was obtained because the stack had an overall 

better performance in this experiments than in the others. 

 
 

Figure 3.12. Results for 3 cells with spacer and with river and sea water A) Voltage in the stack terminals and 

in the reference electrodes for the studied cycles. B) Power response of the stack after an external resistance 
perturbation for experimental ( ) and model ( ) results. 
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3.4.3 Optimization 

With the aim to evaluate if it is possible to obtain more power density from a CRED system 

than a RED system, external resistance and capacitance were optimized for a period of 

1200 seconds, where the last 200 seconds accounted for water interchange for CRED 

operation, and thus no power generation. The model was solved taking into account that 

voltage in the CRED system cannot exceed by more than 0.9 V the voltage obtained with 

the membranes in order to avoid reactions [27].  

Maximum power is obtained when external resistance is equal to internal resistance, just 

as in RED process. It was found that in order to make CRED average power density 

marginally higher than RED (0.9580 W/m2 for CRED 0.9518 W/m2 for RED), it is necessary 

to have a capacitor with at least 55 F capacitance (Figure 3.13), which is easily achievable 

with current state of the art in capacitors fabrication [79]–[81]. Furthermore, the model 

revealed that a higher capacitance allows to decrease voltage drop in the capacitors in 

time, avoiding reactions in operation (Figure 3.14). 

 

Figure 3.13. Results of optimization of CRED (green) and comparison with RED (orange) using the same 

parameters. 

It is evident that higher capacitances will result in increased power generation. Optimization 

for CRED system was performed setting an upper limit of 200 F for the capacitance of the 

material. In this conditions a maximum average power of 1.153 W/m2 can be generated 

with CRED, in contrast with 0.952 W/m2 generated with RED in the same conditions, which 

is 21% more power density. Optimization of power density showed that in order to maximize 

power density with these parameters, switching interval should be every 1800 s (30 

minutes) which is 11% of characteristic time constant of the system. 
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Figure 3.14. Voltage vs time curves for RED and CRED 

Furthermore, 200 F is a very conservative value considering the latest studies, that have 

fabricated graphene based materials with capacitances up to 231 F/g and specific surface 

area of 3523 m2/g [79]. With this values in improvement of 39% in power density is 

envisaged. 

 

 

Figure 3.15. Results for CRED optimization and comparison with RED in the same conditions. 
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  Conclusions 

The experimental results show in general a greater internal resistance for CRED than for 

RED, attributed to the fact that the support of the capacitor did not have good mechanical 

stability. Thus it was not possible to make good contact between stack copper terminals 

and capacitors, because if a lot of pressure was done, the capacitors would break. 

It was found good agreement between the model and experimental results, which confirms 

this model can be used to predict the behavior of CRED stacks. The dynamical model was 

used as a tool for optimizing CRED operation. It was found that it is possible to increase 

power density of CRED over RED up to 39% using the most advanced supercapacitors, 

and changing the feed waters at 11% of the characteristic time constant (RC) of the 

capacitor. Thus, the best RED systems that have shown a maximum power density of 2.7 

W/m2 could increase up to 3.7 W/m2 the produced power density. This is a step forward 

towards the implementation of salinity gradient power in real field conditions. 

 

3.5.1 Recommendations 

For studying CRED it is necessary to register as continuously as possible the current and 

voltage responses to the external resistance, because due to its very fast dynamic behavior, 

a lot of information is probably lost during 2 seconds. 

It is very important to find a different material for supporting the capacitors with good 

mechanical stability. For example, graphite has better mechanical stability and electrical 

conductivity than the material used for this research. It is possible to think in using a graphite 

terminal and to support the capacitor directly into this material in order to avoid bad contacts 

between capacitors and terminals. 

Finally it is important to find better methodologies and materials (e.g. graphene) for the 

fabrication of the capacitor in order to increase the capacitance of the material. Another 

way to improve performance of CRED is to enlarge the area of the capacitor, which allows 

to extend the characteristic time for capacitor discharge. 

It is important to refine the theoretical model and to take into account the time necessary to 

charge the capacitor again, after the water streams exchange. 
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3.5.2 Outlook 

Although it was found that power generation could be greatly increased using 

supercapacitors, this number could be much higher if non aqueous electrolytes are used. 

The advantage of this kind of electrolytes is that they are stable in a wider voltage window, 

nonetheless they can be very toxic to the environment, and thus this alternative should be 

considered with great care. Moreover, It is possible to think in hybrid combinations of 

capacitors and electrodes in order to increase migration current, and possibly increasing 

overall power density obtainable with salinity gradient energy  [59]. 

 

The dynamical model could be used as a tool for optimizing and for designing control of 

CRED systems. It is important to include mesoscale models in order to have a deeper 

understanding of the phenomena occurring in the supercapacitor, because until now the 

mesoscale models apply for CapMix, where the change in the thickness of the double layer 

is due to a decrease in ionic concentration in the solution, while in CRED, the phenomena 

is similar, but is definitely not the same, as there are no changes in the concentration of the 

solutions that are in contact with the capacitors. 
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4. Equilibrium in Ion Exchange Membranes 

 Introduction 

One of the biggest challenges for the development of new membrane processes, is to work 

in real field conditions, where the water supplied contains multiple monovalent and bivalent 

ions. Actually, the presence of multivalent ions in feed waters for different electro-

membrane processes (like ED, RED), has been a subject of study for several years [82].  

In the context of energy generation through salinity gradients, it has been proven that in the 

presence of Mg2+, there is both a decrease in power density for RED [32, 34, 42] as well as 

increase in membrane resistance [33, 34]. Deposition of solid salts in the  membrane 

surface or membrane channels, also known as scaling, has been reported to occur in the 

presence of magnesium, calcium, barium, sulphate and bicarbonate ions  for basic and 

neutral pH [43, 44]. Moreover, in the presence of multivalent ions an irreversible loss of the 

available energy is encountered due to decrease in open circuit voltage (compared to 

solutions containing only NaCl), and a transport of divalent ions against the concentration 

gradient is found,  called uphill transport [34, 45].  

Ion exchange equilibrium between a salt solution and an ion exchange membrane is 

reached whenever a membrane is placed in contact with an electrolyte solution, which likely 

contain counter-ions different from that in the membrane. In case of salt mixtures, all ions 

that are present in solution will be involved in the sorption equilibrium, according to their 

specific interaction with the membrane matrix. It has been reported that under equilibrium 

conditions (no electrical current), the affinity of divalent cations  with CEMs is larger than 

for monovalent cations, due to higher electrostatic attraction of divalent ions with the fixed 

ion exchange sites in the membrane [86].  

In general it is possible to asseverate that there exists a link between equilibrium 

parameters and transport processes. Specifically for ion exchange through membranes, it 

has been found that the equilibrium ratio between mobile ion concentration in a charged 
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membrane and its concentration in the adjoining electrolyte solution, also known as partition 

coefficient, strongly influences transport properties of membranes for applications like ED 

or RED. For instance, the steady state permeability coefficient is related to equilibrium 

sorption coefficient and the effective concentration averaged diffusion coefficient of solute 

in the polymer (Eq. 4.1) [87], [88]. 

𝑃𝑖 = 𝐾𝑖𝐷𝑖 (4.1) 

Where 𝑃𝑖  is the steady-state permeability coefficient of solute i in the membrane, 𝐾𝑖 is the 

equilibrium sorption or partition coefficient of solute i between external phase and 

membrane phase and 𝐷𝑖 is the effective concentration averaged diffusion coefficient of 

solute in the polymer.   

Thus, considering the foregoing, understanding experimentally and theoretically ion 

equilibrium in IEMs in the presence of multivalent ions, is crucial for a detailed description 

of the performance of any membrane process.  

In the framework of theoretical advances, a number of modeling works have been focused 

on the description of ion equilibrium in IEMs [82], [87], [89], [90] . For instance, a common 

modeling approach is based on the definition of partition coefficients, in order to calculate 

concentration of ions in the membrane phase, where the ion partition coefficient is related 

to bulk concentration, to the concentration ratio of fixed charge groups in the membrane to 

bulk solution, as well as to the fixed charge sign and the valence [82].  

Recently, Kamcev et al studied the equilibrium partitioning of ions and modeled ion sorption 

in the presence of NaCl, MgCl2 and CaCl2 using Donnan theory coupled with Manning’s 

counter ion condensation theory to describe non ideal behavior of ions in the membranes 

[87]. According to Kamcev et al the assumption that activity coefficients inside the 

membrane are equal to those outside the membrane does not accurately describe real 

conditions inside the membrane, due to the fact that high fixed charge concentration density 

may result in non-ideal behavior of the ions. Thus he proposes a thermodynamic model 

where activity inside the membrane is calculated using Maning’s counter ion condensation 

theory. He proves the model shows good agreement with experimental results with no 

adjustable parameters.   
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Another modeling approach has been proposed by Galama et al., who described the 

Donnan equilibrium by means of Boltzmann equation for NaCl solutions in the range of 0.01 

– 3 M NaCl. 

The aim of this work is to describe equilibrium in IEMs in the presence of multivalent ions 

by using the Boltzman equation, as previously demonstrated by Galama et al [89] for NaCl. 

Four different types of membranes have been tested with ion sorption experiments using 

different salt solutions, such as mixtures of NaCl with MgCl2, CaCl2 or Na2SO4 in different 

proportions maintaining total normality of the solution constant in 0.5 N. Mixture of more 

than two salts where also performed simulating the conditions of real sea water keeping 

constant the total normality of the solutions. Results show that higher counter ion 

concentration in solution leads to a major decrease in monovalent ion sorption inside the 

membrane.   

 Theoretical model 

In ion exchange membranes (IEMs), counter ions have a higher concentration relative to 

the external solution outside the membrane, while the co-ion concentration is lower. 

Assuming electroneutrality is fulfilled inside the membrane, concentration of counter ions 

should be larger than X by the concentration of the co-ions,  where X is the membrane 

charge density, defined as the number of fixed charges per unit aqueous volume phase  

[89]. Because of the ion transport through membranes, co-ion and counter ion 

concentration gradually change across the membrane thickness,  and the concentration 

profiles for both counter ion and co ion can be obtained in line with the electroneutrality 

condition, as schematically depicted in Figure 4.1. 

The Boltzmann relationship between ion concentrations in the membrane with external 

concentration is 

𝑐𝑖,𝑀 = 𝑐𝑖,∞exp (−𝑧𝑖 ∆𝜑𝐷) (4.2) 

Where 𝑐𝑖,𝑀 is the ion concentration inside the membrane (subscript M), 𝑐𝑖,∞ represents ion 

concentration in the bulk solution (subscript ∞), 𝑧𝑖 is the valence of the ion and ∆𝜑𝐷 = 𝜑𝑀 −

𝜑∞ is the Donnan potential, defined as the difference between potential inside 𝜑𝑀 and 

outside 𝜑∞ the membrane. 
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Figure 4.1. Schematic view of profiles of ion concentration and electrical potential in ion exchange membranes. 

The difference between counter ion and co-ion concentration is the membrane charge density X. Taken from 
[89] 

The electroneutrality condition in the membrane is described by 

𝑋 + 𝑐𝑐𝑜𝑖𝑜𝑛 = 𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑖𝑜𝑛 (4.3) 

Where X is the membrane charge, 𝑐𝑐𝑜𝑖𝑜𝑛 is the concentration of coions in the membrane 

and 𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑖𝑜𝑛 is the concentration of counterions in the membrane. 

From Eq.4.1 and Eq. 4.2, together with electroneutrality, Eq. 4.4 is obtained 

𝑋 = 𝑣𝑐𝑜𝑖𝑜𝑛𝑐∞[ exp(−𝑧𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑖𝑜𝑛𝑓∆𝜑𝐷) − exp(−𝑧𝑐𝑜𝑖𝑜𝑛𝑓∆𝜑𝐷) ] (4.4) 

Where 𝑣𝑐𝑜𝑖𝑜𝑛 is the number of dissociated co ions, 𝑧 is the charge of the ion and 𝑓 is the 

faraday constant. 

For symmetrical electrolytes Eq. 4.4 may be reduced to 

𝑧𝑐𝑜𝑖𝑜𝑛𝑓∆𝜑𝐷 = 𝑠𝑖𝑛ℎ−1 (
𝑋

2𝐶∞
) = ln { 

𝑋

2𝐶∞
+ √(

𝑋

2𝐶∞
)

2

+ 1 } (4.5) 

Together with Eq. 4.1 and Eq. 4.2 

𝑐𝑠𝑎𝑙𝑡
𝑀 = −

𝑋

2
+ √(

𝑋

2
)

2

+ (𝑐∞)2 (4.6) 
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Where 𝑐𝑠𝑎𝑙𝑡
𝑀 is the free salt concentration in the membrane. As co ion concentration in the 

membrane is equal to 𝑐𝑠𝑎𝑙𝑡
𝑀, then the expression for salt concentration in the membrane is 

the same as the co-ion concentration in the membrane. Finally, applying electroneutrality 

principle we get an expression for the counter ion concentration in the membrane 

𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑖𝑜𝑛 =
𝑋

2
+ √(

𝑋

2
)

2

+ (𝑐∞)2 (4.7) 

Combining Eq. 4.5 and Eq. 4.6 we obtain 

𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑖𝑜𝑛 + 𝑐𝑐𝑜−𝑖𝑜𝑛 = √𝑋2 + (2 ∗ 𝑐∞
2) 

(4.8) 

In the case of salt mixtures and nonsymmetrical electrolytes, Eq. 4.3 to Eq. 4.8 are no 

longer valid, thus it is necessary to reformulate the problem. 

Let’s consider an ion exchange membrane with fixed-charge groups –Rz. Initially the 

membrane has counter ions Az1. After the membrane is put in contact with two different 

salts: salt 1 𝐴𝑣1
𝑧1𝐶𝑣3

𝑧3 and salt 2 𝐷𝑣2
𝑧2𝐶𝑣3

𝑧3. The ion exchange process can be described by the 

following formalism [91] 

𝑣1𝐴𝑧1(𝑀) + 𝑣2𝐷𝑧2(∞) ↔ 𝑣2𝐷𝑧2(𝑀) + 𝑣1𝐴𝑧1(∞) 

Where M and ∞ refer to the membrane and the bulk solution phase, respectively, 𝑣 is the 

number of dissociated ions, and 𝑧 is the charge of the corresponding ion. The stoichiometric 

relation 𝑣1𝑧1 = 𝑣2𝑧2 must be satisfied. The thermodynamic equilibrium condition is 

represented by the mass action law [91], [92] 

𝐾12 =
(𝑐1

∞)𝑣1(𝑐2
𝑀)𝑣2

(𝑐1
𝑀)𝑣1(𝑐2

∞)𝑣2
 (4.9) 

Where 𝐾12 is the ion exchange equilibrium constant, which can be expressed in terms of 

the ionic chemical partition coefficient as [14] 

𝐾12 = 𝐾𝑐,1
−𝑣1 ∗ 𝐾𝑐,2

𝑣2 
(4.10) 

Where 𝐾𝑐,𝑖 is the ionic partition corfficient defined as 𝐾𝑐,𝑖 = 𝑒−(𝜇𝑖
𝑜,𝑀−𝜇𝑖

𝑜,∞) 𝑅𝑇⁄  [14]. Likewise, 

similar expressions can be derived for K13 and K23 
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𝐾13 =
(𝑐1

𝑀)𝑣1(𝑐3
𝑀)𝑣3

(𝑐1
∞)𝑣1(𝑐3

∞)𝑣3
    (4.11) 

𝐾23 =
(𝑐2

𝑀)𝑣2(𝑐3
𝑀)𝑣3

(𝑐2
∞)𝑣2(𝑐3

∞)𝑣3
 (4.12) 

Again 𝐾13 and 𝐾23 are ion exchange equilibrium constants for ions i=1, 2, and ions i=1, 3. 

Subscripts 2 and 3 in 𝑣 correspond to the number of dissociated ions (ion I=1, 3) exchanged 

in the process. Combining equations 4.10 to 4.12 with electroneutrality condition for 2 

counter ions and 1 co ion (Eq. 4.13). 

𝑋 = 𝑐1
𝑀 + 𝑐2

𝑀 − 𝑐3
𝑀 

(4.13) 

We obtain expressions for concentrations of co ions and counter ions inside the membrane 

that depend on ion exchange equilibrium constants, concentrations in the external solution 

and stoichiometric coefficients.  

𝑋 = √
𝐾13(𝑐1

∞)𝑣1(𝑐3
∞)𝑣3

(𝑐3
𝑀)𝑣3

𝑣1

+ √
𝐾23(𝑐2

∞)𝑣2(𝑐3
∞)𝑣3

(𝑐3
𝑀)𝑣3

𝑣2

− 𝑐3
𝑀 (4.14) 

𝑋 = √
(𝑐1

∞)𝑣1(𝑐2
𝑀)𝑣2

𝐾12(𝑐2
∞)𝑣2

𝑣1

+ 𝑐2
𝑀 − √

𝐾23(𝑐2
∞)𝑣2(𝑐3

∞)𝑣3

(𝑐2
𝑀)𝑣2

𝑣3

 (4.15) 

𝑋 = 𝑐1
𝑀 + √

𝐾12(𝑐1
𝑀)𝑣1(𝑐2

∞)𝑣2

(𝑐1
∞)𝑣1

𝑣2

− √
𝐾13(𝑐1

∞)𝑣1(𝑐3
∞)𝑣3

(𝑐1
𝑀)𝑣1

𝑣3

 (4.16) 

This theory may be extended for more than 3 ions present in solution, defining one 

dissociation constant for each salt and solving the electroneutrality condition in the 

presence of more ions.  

 Experimental conditions 

In the experiments, co-ion and counter ion concentrations in IEMs are measured as function 

of external salt concentration in a soak solution with external concentration 𝐶∞. Two types 

of anion and cation exchange membranes were tested (AMX and CMX from Neosepta 

Tokuyama Soda Inc., Japan. And Fujifilms Manufacturing Europe BV, The Netherlands), 

and Table 1 shows the properties of the membranes used in the experiments. The 
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experimental procedure reported by Galama et al [89] has been adopted in this work, and 

it will be described in the following sections. 

Table 4-1. Properties of Neosepta membranes provided by the manufacturer 

 Neosepta Fujifilms 

 CMX AMX CEM AEM 

Type 
Strong 
Acid 

(Na Type) 

Strong 
Base 

(Cl Type) 

Homogeneous 
Type -1 

Homogeneous 
Type -1 

Electric Resistance  
(Ω cm2) 

3 2.4 2.7 1.3 

Thickness (mm) 0.17 0.15 0.13 0.14 

pH range 0 – 10 0 – 8 4 - 12 2 - 10 

Theoretical fixed charge 
concentration (M)a 5.7 4.8 3.5 3.8 

aValues taken from [89], [93] 

4.3.1 Pretreatment 

Before cutting, membrane pieces of approximately 100 cm2 are stored in 0.5 M NaCl 

solution for at least 48 hours to make sure Na+ and Cl- replace any other ions that may be 

present in the material as obtained from the manufacturer. 

The membrane samples were afterwards washed and stored in deionized water for 2 days, 

replacing water twice per day in order to ensure equilibrium with the medium. Membranes 

were cut in pieces of approximately 18 cm2. A scheme of the pretreatment procedure is 

shown in Figure 4.2 

 

 

Figure 4.2. Pretreatment of membranes prior to cutting. 
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4.3.2 Soak 

Membrane samples were equilibrated for at least 24 h in 200 mL of salt solutions with a salt 

concentration 𝐶∞ in the range of 0.01 – 0.5 M, according to the salt solutions used during 

specific tests. During this period, the beaker was sealed with Para film to prevent water 

evaporation and contamination.  

In order to understand equilibrium sorption, mixtures of salts listed in Table 4-2. 

Experimental conditions for salts mixtures. with total concentration of 0.5 N have been 

tested with each membrane. Solutions where designed in such a way as to gradually 

decrease NaCl concentration from solution 1 (which contains only NaCl 0.5 M), to the last 

solution, that does not contain NaCl at all.  

Table 4-2. Experimental conditions for salts mixtures.  

Salt 
Mixture 

NaCl - MgCl2 NaCl - CaCl2 NaCl - Na2SO4 

 NaCl 
(M) 

MgCl2 

(M) 

MgCl2

𝑁𝑎𝐶𝑙
 

NaCl 
(M) 

CaCl2 

(M) 

CaCl2

𝑁𝑎𝐶𝑙
 

NaCl 
(M) 

Na2SO4 

(M) 

𝑁𝑎2𝑆𝑂4

𝑁𝑎𝐶𝑙
 

Solution 1 0.5  0 0.5  0 0.5  0 

Solution 2 0,438 0,031 0,071 0,469 0,0155 0,033 0,467 0,0165 0,035 

Solution 3 0,385 0,057 0,149 0,479 0,0105 0,022 0,439 0,0305 0,069 

Solution 4 0,250 0,125 0,500 0,35 0,075 0,214 0,25 0,125 0,500 

Solution 5 0,150 0,175 1,167 0,25 0,125 0,500 0,15 0,175 1,167 

Solution 6 0,050 0,225 4,500 0,15 0,175 1,167 0,05 0,225 4,500 

Solution 7  0.250 ∞ 0,05 0,225 4,500  0,25 ∞ 

Solution 8     0.25 ∞    
All solutions were prepared with a total concentration of 500 mN. 

Finally, in order to understand the membrane behavior under real conditions, 3 mixtures of 

artificial seawater were tested. Artificial seawater recipe was chosen taking into account 

the typical ion compositions of real seawater, considering only ions with concentration 

higher than 1 mg / L. Three different recipes were taken into account, mimicking ion 

composition of real seawater in different geographical areas: Wadden Sea, Mediterranean 

Sea and Caribbean Sea. Table 4-3 shows composition of artificial seawater used in the 

experiments. 

Table 4-3. Ion composition artificial seawater. 

Artificial sea water Mixture 
NaCl - MgCl2 - Na2SO4 -CaCl2 

Concentration (M) Total Conc 
 (M) 

NaCl MgCl2 Na2SO4 CaCl2  

Wadden 0.374 0.031 0.017 0.016 0.437 

Mediterranean 0,303 0,058 0,031 0,011 0.676 

Caribbean 0,313 0,054 0,028 0,012 0.407 



Chapter 4 69 

 

All solutions were prepared with a total concentration of 500 mN. 

4.3.3 Exchange 

In order to quantify counter-ion concentration, membrane samples were transferred from 

the soak solution to a beaker containing MgSO4 exchange solution (for all the tests 

performed with NaCl, CaCl2) or K2CO3 (for tests with MgCl2, Na2SO4), ensuring that the 

“exchange” solution did not contain the ions present in the membrane.  Before membranes 

were placed in exchange solution, the membrane sample was rapidly rinsed (for only 2 

seconds) in a beaker with 200 mL deionized water, allowing salt solution present on the 

external surface of the membrane to be washed off. This procedure is done because 

external salt does not account as membrane adsorption. 

After placing the membrane sample into the exchange solution (200 mL, 50 mM MgSO4, or 

50 mM K2CO3, according to the test performed), the beaker was again sealed and stored 

for at least 24 h to reach equilibrium. Afterwards, samples were taken from the exchange 

solution and ion concentration was measured. Figure 4.3 depicts the procedure followed in 

the experiments.  

 

Figure 4.3. Schematic view of experimental procedure to determine membrane ion concentration. 

 

4.3.4 Measurements 

For all the investigated cations (Na+, Mg++ and Ca++), ion composition was measured 

through atomic absorption spectroscopy (AAS) with an AA300 Perkin Elmer. For Cl- , the 

measuring technique used was potentiometric, using an Orion Dual Star thermoscientific 

potentiometer with Ion Selective Electrode (ISE) for Cl- Methron. Finally, sulphate content 

was measured by turbidimetry with a Perkin Elmer UV-VIS lambda 45. 
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Membrane concentrations were calculated as the number of ions per litter water phase 

inside the membrane. In order to calculate this parameter membranes were soaked in a 

0.5 M solution of NaCl for 24 hours, and wet membrane weight was measured right after 

taking the membranes out of the solution and removing excess water with filter paper. 

Afterwards membranes were dried in an oven for 24 hours at 105 ºC, after which they were 

put in an exciscator for 1 hour and weighted again. Volume water phase inside the 

membrane was calculated as the difference between membranes wet weight and dry 

weitght. 

 Results and discussion 

This section shows the experimental results found during ion sorption tests on 4 different 

membranes: CMX, AMX (from Neosepta Tokuyama Soda Inc., Japan), CEM and AEM 

(from Fujifilms Manufacturing Europe BV, The Netherlands). Initially experiments were 

carried out using only NaCl. Subsequently, experiments with mixtures of two salts (NaCl - 

MgCl2, NaCl - CaCl2  and NaCl - Na2SO4) were performed. Finally, mixtures of 5 ions 

mimicking real seawater from 3 different geographical areas were investigated. 

4.4.1 Ion sorption with Sodium Chloride 

In this section, results of ion sorption tests for NaCl are presented. Experiments with 

Sodium chloride were performed in order to ensure the results by Galama et al [89] could 

be replicated using Absorption Spectroscopy as measuring technique. 

Figure 4.4. Concentration of co ions and counter ions in: CMX (a), AMX (b), Fuji CEM 

(c), Fuji AEM (d) as function of NaCl concentration in external solution. ◊ represents 

Cl and ○ is Na.Shows concentration of co-ions and counter-ions inside CMX, AMX, Fuji 

CEM and Fuji AEM membranes as function of external NaCl concentration. Parameters for 

the theoretical calculation where fixed charged concentration and volume of aqueous 

solution  in the membrane as 0.09 mL [89]. 

Small differences in the results, may be related to small differences in the size of the 

membrane pieces, due to the fact that membranes were cut by hand. Moreover, from Figure 

4.4a it can be noticed that the technique used for measuring Cl- ions (potentiometric with 

ISE) presents more variability than the analysis method for Na+ (AAS).  
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From figures 4.4a and 4.4b it is also possible to see that the membrane charge of CMX and 

AMX membranes experimentally obtained (X=5.5 M for CMX and X=4.7 M for AMX) is 

slightly lower than the theoretical value given in table 1, which was the one assumed for 

the model calculations. This is not surprising, as membrane features may change from one 

membrane to another. Notwithstanding the differences previously mentioned, results were 

comparable with those obtained by Galama et al [89] and AAS was taken as a valid 

technique to continue the investigation. 

 

 

 
 

  
Figure 4.4. Concentration of co ions and counter ions in: CMX (a), AMX (b), Fuji CEM (c), Fuji AEM (d) as 

function of NaCl concentration in external solution. ◊ represents Cl and ○ is Na. 

 

Following the procedure by Galama et al [89], a correction of the results was made, bearing 

in mind that water uptake in the membrane may change, depending on the external solution 

ion concentration. Figure 4.5. Concentration of co ions and counter ions in: a) CMX, b), 
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AMX, c) Fuji CEM, d) Fuji AEM as function of NaCl concentration in external solution 

and corrected for water content in the membrane. ◊ represents Cl and ○ is Na.Is the 

correction of Figure 4.4. Concentration of co ions and counter ions in: CMX (a), AMX 

(b), Fuji CEM (c), Fuji AEM (d) as function of NaCl concentration in external solution. 

◊ represents Cl and ○ is Na.Taking into account the aforementioned. 

According to Figure 4.5. Concentration of co ions and counter ions in: a) CMX, b), AMX, 

c) Fuji CEM, d) Fuji AEM as function of NaCl concentration in external solution and 

corrected for water content in the membrane. ◊ represents Cl and ○ is Na.water uptake 

dependence on external concentration does not seem to improve the experimental results, 

on the contrary experiments draw further away from theoretical calculations. 

 
 

  
Figure 4.5. Concentration of co ions and counter ions in: a) CMX, b), AMX, c) Fuji CEM, d) Fuji AEM as function 

of NaCl concentration in external solution and corrected for water content in the membrane. ◊ represents Cl 
and ○ is Na. 
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4.4.2 Effect of Sulphate ions 

In order to investigate the effect of sulphate ions, ion sorption tests on CMX, AMX, Fujifilm 

CEM and AEM, were carried out using mixtures of NaCl and Na2SO4.  Figure 4.6 to Figure 

4.9 summarize the results obtained for each of the membranes.  

Figure 4.6.  Ion concentration (M) in AMX membrane as function of external ion 

concentration  (M) for NaCl and Na2SO4. a) Concentration of Co ions and counter ions, 

b) Concentration of co ions in membrane as function of external concentration, c) 

concentration of Counter ion Cl-  in membrane as function of external solution, d) 

concentration of bivalent counter ion SO4
-2  in membrane as function of external 

concentration.Shows results for AMX membranes with mixture of NaCl and Na2SO4. 

Subfigure 4.6a compresses the results of ions concentration inside the membrane for AMX 

membrane. Subfigure 4.6b presents results for the coion (Na+), subfigure 4.6c shows the 

findings obtained for counter ion Cl-, and finally subfigure 4.6d displays results for the 

second counter ion, SO4
2. Darker colors represent solution 2 and lighter colors represent 

solution 3. 

From figures 4.6 to 4.10 it is possible to notice that in most cases   unrealistic values were 

obtained for SO4
2- composition by turbidimetry. Many repetitions of the tests were done, in 

order to find a consistent result, however in each replication of the measurement, a different 

outcome would appear. For this reason, Ion Chromatography (IC) measurements will be 

performed at Wetsus to investigate the sulphate content.  
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Figure 4.6.  Ion concentration (M) in AMX membrane as function of external ion concentration  (M) for NaCl 

and Na2SO4. a) Concentration of Co ions and counter ions, b) Concentration of co ions in membrane as function 
of external concentration, c) concentration of Counter ion Cl-  in membrane as function of external solution, d) 
concentration of bivalent counter ion SO4

-2  in membrane as function of external concentration.  

Figure 4.7 shows results for Fujifilm AEM with mixture of NaCl and Na2SO4.  For AMX as 

well as for Fuji AEM membranes, results for SO4 seem to be extremely different from the 

foreseeable values. Due to the fact that SO4-2 is a counter ion in AEMs, the experimental 

results for ion concentration inside the membrane of this counter ion are expected to be at 

least higher than the coion concentration inside the membrane. 
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Figure 4.7. Ion concentration in AEM membrane as function of external concentration for NaCl and Na2SO4. .. 

a) Concentration of Co ions and counter ions, b) Concentration of co ion Na+ in membrane as function of external 
concentration, c) concentration of Counter ion Cl  in membrane as function of external solution, d) concentration 
of bivalent counter ion SO4

-2  in membrane as function of external concentration. 

Figure 4.8 shows results for CMX membranes with mixture of NaCl and Na2SO4 
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Figure 4.8. Ion concentration in CMX membrane as function of external concentration for NaCl and Na2SO4... 

a) Concentration of Co ions and counter ions, b) Concentration of counter ions in membrane as function of 
external concentration, c) concentration of co ion Cl- in membrane as function of external solution, d) 
concentration of bivalent co ion SO4

-2  in membrane as function of external concentration.  

Figure 4.9 shows results for CEM membranes with mixtures of NaCl and Na2SO4. 
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Figure 4.9. Ion concentration in CEM membrane as function of external concentration for NaCl and Na2SO4. a) 

Concentration of Co ions and counter ions, b) Concentration of counter ion Na+ in membrane as function of 
external concentration, c) concentration of Co ion Cl- in membrane as function of external solution, d) 
concentration of bivalent co ion SO4

-2  in membrane as function of external concentration.  

In the case of CMX and Fuji CEM, even larger unrealistic values are obtained. SO4
-2 are co 

ions for cation exchange membranes and their ion concentration inside the membrane is 

expected to be negligible compared to counter ion sorption. Nonetheless results display 

that sulphate concentration inside the membranes is four times higher than the 

concentration of any counter ion.  

Thus, taking into account all results obtained for sulphate ions, the only relevant conclusion 

that can be derived is that turbidimetry technique is not suitable for performing this kind of 

experiments. 

4.4.3 Effect of Magnesium ions 

The effect of Mg+2 ions has been investigated by performing tests with NaCl and MgCl2 with 

4 different membranes. Figures 4.10 to 4.13 review the effect observed on ions sorption, in 

the presence of Mg+2 ions in the external bulk solution. In this section, blue circles (○) 

represent Na+ ions, gray rhombs (◊) symbolize Cl- ions and orange squares (□) denote Mg+2 

ions.  

Solutions with the highest NaCl concentration (e.g. Solution 1 with only 0.5 M NaCl) are 

depicted in stronger colors, and in order to distinguish the mixtures investigated, the 

transparence of the color increases along the reduction of NaCl concentration from solution 
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1 to 7. Table 4-4. Correspondence of symbols in the figures with the solutions given 

in Table 4.2 Helps to interpret the figures presented in this section 

Table 4-4. Correspondence of symbols in the figures with the solutions given in Table 4.2 

Solution 1 2 3 4 5 6 7 

Na+ ○      

Mg+2  □     

Cl- ◊     

 

Figure 4.10 shows results for CMX membranes with mixture of NaCl and MgCl2. 

  

  
Figure 4.10. Ion concentration in CMX membrane as function of external ion concentration for NaCl and MgCl2. 

a) Concentration of Co ions and counter ions, b) Concentration of co ions in membrane as function of external 
concentration., c) concentration of Na+ in membrane as function of external solution, d) concentration of bivalent 
counter ion (Mg+2) in membrane as function of external concentration  

Figure 4.11 shows results for Fujifilm CEM membranes with mixture of NaCl and MgCl2. From 

figures 4.10 and 4.11 it can be noticed that the presence of Mg+2 ions even in very small 

concentrations can reduce almost by half the capacity of the membranes to sorb Na+ ions 

in cation exchange membranes. Furthermore, as the presence of Mg+2 increases linearly 
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in solution, the decrease in Na+ concentration inside the membrane follows an exponential 

trend.  

 

  

  
Figure 4.11. Ion concentration in CEM membrane as function of external concentration for NaCl and MgCl2... a)  

Concentration of Co ions and counter ions, b) Concentration of co ions in membrane as function of external 
concentration., c) concentration of Na+ in membrane as function of external solution , d) concentration of bivalent 
counter ion (Mg+2)  in membrane as function of external concentration  

Figure 4.12 shows results for AMX membranes with mixture of NaCl and MgCl2... 
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Figure 4.12.Ion concentration in AMX membrane as function of external concentration for NaCl and MgCl2. a) 

Concentration of Co ions and counter ions, b) Concentration of counter ion Cl- in membrane as function of 
external concentration., c) concentration of co ion Na+ in membrane as function of external solution, d) 
concentration of bivalent co ion Mg+2  in membrane as function of external concentration  

Figure 4.13 shows results for Fujifilm AEM membranes with mixture of NaCl and MgCl2. 
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Figure 4.13 .  Ion concentration in AEM membrane as function of external concentration for NaCl and MgCl2. 

a) Concentration of Co ions and counter ions, b) Concentration of counter ion Cl- in membrane as function of 
external concentration., c) concentration of co ion Na+ in membrane as function of external solution, d) 
concentration of bivalent co ion Mg+2  in membrane as function of external concentration  

The opposite effect is observed in anion exchange membranes, where Na+ and Mg+2 act as 

co ions in the membrane. From Figures 4.12 and 4.13 it appears that although the increase 

in Mg+2 ions in the solution reduces the sorption of Na+, in all the experiments with different 

solutions Na+ concentration was always higher by a factor of more than 2.  

4.4.4 Effect of Calcium ions  

This section presents the effect of Ca+2 ions by performing tests with NaCl and CaCl2 with 

4 different membranes. Figures 4.14 to 4.17 review the effect observed of ions sorption in 

the membrane, in the presence of Ca+2 ions in the external bulk solution. In this section, 
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blue circles (○) represent Na+ ions, gray rhombs (◊) symbolize Cl- ions and green triangles 

(Δ) denote Mg+2 ions.  

Solutions with the highest NaCl concentration (e.g. Solution 1 with only 0.5 M NaCl) are 

depicted in stronger colors, and in order to distinguish the mixtures investigated, the 

transparence of the color increases along the reduction of NaCl concentration from solution 

1 to 7. Table 4-4. Correspondence of symbols in the figures with the solutions given 

in Table 4.2Can be used to interpret the figures presented in this section. 

Table 4-5. Correspondence of symbols in the figures with the solutions given in Table 4 - 2 

Solution 1 2 3 4 5 6 7 8 

Na+ ○      

Ca+2  Δ      
Cl- ◊     

 

Figure 4.14 shows results for CMX membranes in solutions of NaCl and CaCl2. From figures 

4.14a and 4.15a it is possible to notice that Ca+2 ions have higher concentration inside the 

cation exchange membranes in comparison with Mg+2 ions in the same concentration 

ranges and ratios. Nonetheless, in low concentration ranges, Na+ ion sorption capacity of 

cation exchange membranes seem to be less affected by Ca+2 ions than for Mg+2 ions. 
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Figure 4.14. Ion concentration in CMX membranes as function of external concentration for NaCl and CaCl2. 

a)  Concentration of Co-ions and counter-ions, b) Concentration of co-ions in membrane as function of external 
concentration., c) concentration of Na+ in membrane as function of external solution , d) concentration of bivalent 
counter-ion Ca+2 in membrane as function of external concentration  

Figure 4.15 shows results for Fujifilm CEM membranes in solutions of NaCl and CaCl2. In 

general it can be observed that Fujifilm membranes have less sorption capacity than 

Neosepta membranes. 
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Figure 4.15. Ion concentration in CEM membranes as function of external concentration for NaCl and CaCl2. 

a)  Concentration of Co-ions and counter-ions, b) Concentration of co-ion Cl- in membrane as function of 
external concentration., c) concentration of counter ion Na+ in membrane as function of external solution , d) 
concentration of bivalent counter-ion Ca+2  in membrane as function of external concentration.  

Figure 4.16 shows results for AMX membranes in solutions of NaCl and CaCl2. 
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Figure 4.16. Ion concentration in AMX membranes as function of external concentration for NaCl and CaCl2. 

a)  Concentration of Co-ions and counter-ions, b) Concentration of counter ion in membrane as function of 
external concentration., c) concentration of co ion Na+  in membrane as function of external solution , d) 
concentration of bivalent co ion Ca+2 in membrane as function of external concentration  

Figure 4.17 shows results for AEM membranes in solutions of NaCl and CaCl2.For anion 

exchange membranes it can be observed that repulsion of Ca+2 ions is not as stronger as 

the one found for Mg+2 ions, and co ion concentration is very similar for Na+ and Ca+2. 
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Figure 4.17. Ion concentration in AEM membranes as function of external concentration for NaCl and CaCl2. 

a)  Concentration of Co-ions and counter-ions, b) Concentration of counter ion in membrane as function of 
external concentration., c) concentration of co ion Na+  in membrane as function of external solution , d) 
concentration of bivalent co ion Ca+2 in membrane as function of external concentration  

Apparently more Cl- ions are absorbed in anion exchange membranes when solution is les 

concentrated in NaCl. Unfortunately it is not possible to confirm this with confidence 

because the range of variability of Cl- ions is too high. It is possible to asseverate that a 

more accurate technique is necessary for performing this kind of analysis. 

4.4.5 Ion sorption with artificial seawater 

Finally figures 4.18 to 4.20 show results of ion sorption tests using artificial seawater for all 

the investigated membranes. Artificial seawater was prepared using NaCl, Na2SO4, CaCl2 

and MgCl2 according to the ion composition reported in Table 4.3. For all the cations, a trend 

may be seen in general, while for Cl and SO4 ions it is not that obvious. This might be 

because absorption spectroscopy is a very accurate technique and it is very different from 

the techniques used for measuring Cl- and SO4
2- ions. It may also be seen that in these 

mixtures, Na+ ion concentration inside the membrane is higher than Mg2+ or Ca2+ ions, and 

less comparable than the cases seen before of mixtures of two salts.  

Figure 4.18 shows results of ion sorption in membranes for salinity conditions similar to 

Wadden Sea. From Figure 4.18a a marked increase in sorption capacity of CMX 

membranes compared to CEM membranes is observed. This effect is repeatedly observed 

in Figures 4.19 and 4.20, where CMX membranes double the ion exchange sorption 

capacity of Fujifilm membranes. 
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Figure 4.18.  Histogram for ion concentration in solution (orange), cation exchange membranes (yellow) and 

anion Exchange membranes (green) in conditions similar to the Wadden Sea. 18a) Results for Neosepta 
membranes (CMX and AMX). 18b) Results for Fujifilm membranes (CEM and AEM) 

Figure 4.19 shows results of ion sorption in membranes for salinity conditions similar to 

Mediterranean Sea. A remarkable advantage of Wadden sea is that the presence of Mg+2 

ions is lower compared to Mediterranean and Caribbean sea, which have both 6%  Mg+2  

ions in solution. This fact is reflected in the values for ion sorption of Mg+2 in cation exchange 

membranes, which is higher for Mediterranean and Caribbean Sea than for the Wadden 

Sea. 
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Figure 4.19.  Histogram for ion concentration in solution (orange), cation exchange membranes (yellow) and 

anion Exchange membranes (green) in conditions similar to the Mediterranean Sea. 19 a) Results for Neosepta 
membranes (CMX and AMX). 19b) Results for Fujifilm membranes (CEM and AEM). 

Figure 4.20 shows results of ion sorption in membranes for salinity conditions similar to 

Caribbean Sea. 

In general, only small differences between the tests may be noticed, this leads to conclude 

that ion sorption inside cation and anion exchange membranes is not highly affected by the 

different ion concentrations that might be found in different seas. However, it is important 

to remind that artificial solutions were prepared keeping total normality of the solution 

constant, which means concentration in solutions is not real salinity found in seawater. 
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Figure 4.20.  Histogram for ion concentration in solution (orange), cation exchange membranes (yellow) and 

anion Exchange membranes (green) in conditions similar to the Caribbean Sea. 19a) Results for Neosepta 
membranes (CMX and AMX). 19b) Results for Fujifilm membranes (CEM and AEM). 

 Conclusions 

The aim of this work has been to investigate the effects of bivalent ions concentration in 

solution, on the ion sorption capacity of different membranes. The experimental campaign 

has shown that bivalent ions present in solution have a major effect in monovalent ion 

sorption capacity of the membranes. In very small concentration ranges of bivalent ions 

(like the ones found in real seawater) Na+ sorption capacity of membranes can be reduced 

by almost half. Furthermore, it was found that differences in ion concentration between the 

different seas studied using artificial seawater are very small to have an observable effect 

in ion concentration inside the membranes. 
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4.5.1 Recommendations 

Membranes should be cut with a die in order to ensure exactly the same area in all the 

experiments performed. In addition, it is necessary to repeat the experiments with more 

accurate measuring techniques like ion chromatography for anions. 

4.5.2 Outlook 

Future work should be focused on theoretical modelling of ion equilibrium. It is necessary 

to determine which factors affect ion sorption of bivalent ions and specifically why is 

membrane sorption capacity affected by some ions (like Mg+2) more than others (like Ca+2), 

in small concentrations like the ones found in real seawater.  
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A. Appendix 1: Derivation of 
dynamical model from mol balance 

This section presents the derivation of the dynamical model starting from the mole balances 

presented in Chapter 2.Figure 2.2 shows a scheme that explains salt and water transport 

through the compartments with length 𝐿, width 𝑏, and thickness 𝛿.  

 

Figure 4.21. Mass balance for concentrated and diluted compartments. Source: The authors 

 

Convective flow is defined in the x direction. In the length differentials, transport of ions 

occurs from the concentrated to the diluted compartments through the membranes due to 

a salt concentration gradient. Water passes in the same direction as salt due to electro 
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osmotic drag. In the opposite direction an osmotic effect is presented and the non-ideal 

behavior of membranes causes water transport in the undesired direction.  

 

A mole balance within the length differential, in concentrated and diluted compartments 

leads to Eq. (A.1) and Eq. (A.2) respectively 

 

(𝑏 𝛿 ∆𝑥) 𝑑𝐶𝑐(𝑥)

𝑑𝑡
= 𝐹𝑐𝐶𝑐(𝑥) − ( 𝐹𝑐 + 𝑏 ∆𝑥 𝑇𝑤)𝐶𝑐(𝑥 + ∆𝑥) − 𝑏 ∆𝑥 𝑇𝑁𝑎𝐶𝑙(𝑥) 

 

(A.1) 

(𝑏 𝛿 ∆𝑥) 𝑑𝐶𝑑(𝑥)

𝑑𝑡
= 𝐹𝑑𝐶𝑑(𝑥) − ( 𝐹𝑑 + 𝑏 ∆𝑥 𝑇𝑤)𝐶𝑑(𝑥 + ∆𝑥) − 𝑏 ∆𝑥 𝑇𝑁𝑎𝐶𝑙(𝑥) 

 

(A.2) 

Dividing Eq. (A.1) and (A.2) by 𝐹𝑐 and 𝐹𝑑 respectively leads to  

 

(𝑏 𝛿 ∆𝑥) 

𝐹𝑐

𝑑𝐶𝑐(𝑥)

𝑑𝑡
= 𝐶𝑐(𝑥) − ( 1 +

𝑏 ∆𝑥 𝑇𝑤

𝐹𝑐
) 𝐶𝑐(𝑥 + ∆𝑥) −

𝑏 ∆𝑥

𝐹𝑐
 𝑇𝑁𝑎𝐶𝑙(𝑥) 

 

(A.3) 

(𝑏 𝛿 ∆𝑥)

𝐹𝑑

 𝑑𝐶𝑑(𝑥)

𝑑𝑡
= 𝐶𝑑(𝑥) − ( 1 +

𝑏 ∆𝑥 𝑇𝑤

𝐹𝑑
) 𝐶𝑑(𝑥 + ∆𝑥) −

𝑏 ∆𝑥

𝐹𝑑
 𝑇𝑁𝑎𝐶𝑙(𝑥) 

 

(A.4) 

Rearrengin Eq. (A.3) and (A.4) 

 

(𝑏 𝛿 ∆𝑥) 

𝐹𝑐

𝑑𝐶𝑐(𝑥)

𝑑𝑡
= 𝐶𝑐(𝑥) − 𝐶𝑐(𝑥 + ∆𝑥) +

𝑏 ∆𝑥 𝑇𝑤

𝐹𝑐
𝐶𝑐(𝑥 + ∆𝑥) −

𝑏 ∆𝑥

𝐹𝑐
 𝑇𝑁𝑎𝐶𝑙(𝑥) 

 

(A.5) 

(𝑏 𝛿 ∆𝑥)

𝐹𝑑

 𝑑𝐶𝑑(𝑥)

𝑑𝑡
= 𝐶𝑑(𝑥) − 𝐶𝑑(𝑥 + ∆𝑥) +

𝑏 ∆𝑥 𝑇𝑤

𝐹𝑑
𝐶𝑑(𝑥 + ∆𝑥) −

𝑏 ∆𝑥

𝐹𝑑
 𝑇𝑁𝑎𝐶𝑙(𝑥) 

 

(A.6) 

Taking the limit when  ∆𝑥 tends to cero and dividng by  ∆𝑥 each of the factors in Eqs. (A.5) 

and (A.6) leads to the dynamical model.  Procedure is going to be demonstrated for Eq. 

(A.5)   and derivation for (A.6) is straightforward 

 

lim
∆𝑥→0

(𝑏 𝛿 ∆𝑥) 

𝐹𝑐∆𝑥

𝑑𝐶𝑐(𝑥)

𝑑𝑡
=

(𝑏 𝛿 ) 

𝐹𝑐

𝑑𝐶𝑐(𝑥)

𝑑𝑡
 (A.7) 
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lim
∆𝑥→0

𝐶𝑐(𝑥) − 𝐶𝑐(𝑥 + ∆𝑥)

∆𝑥
=

𝑑𝐶𝑐(𝑥)

𝑑𝑥
 (A.8) 

lim
∆𝑥→0

𝑏 ∆𝑥 𝑇𝑤

𝐹𝑐∆𝑥
𝐶𝑐(𝑥 + ∆𝑥) =

𝑏 𝑇𝑤

𝐹𝑐
𝐶𝑐(𝑥) (A.9) 

lim
∆𝑥→0

 
𝑏 ∆𝑥

𝐹𝑐∆𝑥
 𝑇𝑁𝑎𝐶𝑙(𝑥) =

𝑏 

𝐹𝑐
 𝑇𝑁𝑎𝐶𝑙(𝑥) (A.10) 

After applying limits, partial differential equations showed in Chapter 2 are obtained 

𝑑𝐶𝑁𝑎𝐶𝑙(𝑥)

𝑑𝑡
=

𝐹𝑐

𝑏 𝛿

𝜕𝐶𝑐(𝑥)

𝜕𝑥
−

1

 𝛿
 𝑇𝑤𝐶𝑐(𝑥) −

1

 𝛿
 𝑇𝑁𝑎𝐶𝑙(𝑥)    (A.11) 

𝑑𝐶𝑁𝑎𝐶𝑙(𝑥)

𝑑𝑡
=

𝐹𝑑

𝑏 𝛿

𝜕𝐶𝑑(𝑥)

𝜕𝑥
−

1

 𝛿
𝑇𝑤𝐶𝑑(𝑥) −

1

 𝛿
𝑇𝑁𝑎𝐶𝑙(𝑥) (A.12) 
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