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Resumen

El presente trabajo constituye el primer esfuerzo en Colombia y América Latina para
desarrollar la tecnologia de electrodialisis inversa para obtencién de energia a partir de
gradiente salino. En esta tesis se utiliza un modelo en estado estacionario previamente
descrito en la literatura y se desarrolla un modelo dinamico para describir el
comportamiento de las tecnologias electrodidlisis inversa (RED) y electrodidlisis inversa
capacitiva (CRED). Los modelos son validados experimentalmente.

Se realiza la construccién y puesta en marcha de un generador de energia funcional para
RED y CRED, se estudia el efecto de espaciadores conductores con geometrias
alternativas sugeridas en la literatura. Ademas se estudia el potencial de generaciéon de
energia en Colombia mediante la prueba de la pila construida, utilizando agua recogida en
campafas de campo proveniente del rio Magdalena y del mar Caribe.

La maxima densidad de potencia obtenida experimentalmente fue de 0.14 W/m? para una
pila de RED con 10 celdas con soluciones artificiales, mientras que la maxima potencia
obtenida para CRED fue de 0.035 W/m? para un stack con 3 celdas y espaciadores
utilizando agua del rio Magdalena y del mar Caribe.

Finalmente se estudia experimentalmente el efecto que tiene en la concentracién en
equilibrio de membranas de intercambio idnico selectivas, el uso de soluciones de NaCl en
presencia de iones bivalentes. Se estudia el efecto de los iones mas abundantes en el
agua de mar, tales como Mg*?, Ca*? y SO42 Se observa un comportamiento de
decrecimiento exponencial en la absorcion de iones monovalentes en presencia de iones
bivalentes, es decir, a bajas concentraciones de iones bivalentes (concentraciones
similares al agua de mar), la capacidad de absorcion de iones monovalentes de la

membrana disminuye considerablemente.

Palabras clave: Energia de Gradiente Salino, Electrodialisis Inversa, Electrodialisis
inversa Capacitiva, Energia renovable, Equilibrio en membranas, Membranas de

intercambio idnico selectivas
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Abstract

The present thesis work constitutes the first effort in Colombia and America Latina for
developing Reverse Electrodialysis (RED) technology for energy recovery from salinity
gradients. This thesis develops a dynamic model for RED and CRED and it also uses a
stationary state model presented in literature to describe energy generation through salinity
gradients. The model is experimentally validated.

A lab scale energy generator for RED and CRED is designed, constructed and
operationalized. The effect of conductive spacers with an alternative geometry suggested
in literature is studied. Besides, the potential of energy generation in Colombia is studied
by testing the stack with waters from the Magdalena River and the Caribbean Sea.
Maximum power density obtained experimentally was 0.14 W/m? for a 10 cell RED stack
using artificial solutions, while maximum power obtained for CRED was 0.03 W/m? for a
stack of 3 cells with spacers and river and sea water.

Finally the effect that bivalent ion solutions have over equilibrium concentration in ion
Exchange membranes (IEM) is experimentally tested. The ions studied are the most
abundant in sea water: Mg*?, Ca*? and SO42. An exponential decrease is observed in the
absorption capacity of the membranes for monovalent ions, i.e. at low concentrations of
bivalent ions (similar to the ones found in seawater), the absorption capacity of monovalent

ions decreases substantially.

Palabras clave: Salinity Gradient Energy (SGE), Reverse Electrodialysis (RED),
Capacitive Reverse Electrodialysis (CRED), Renewable Energy, Membrane equilibria, lon
Exchange Membranes (IEM).
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K Equilibrium constant - Eq. (4.9)
Ki Partition coefficient - Eq. (4.1)
L Length of the compartment m Fig. (2.2)
M Molar mass Kg /o Eq. (2.11)
N Number of cells - Eq. (2.22)
P Pressure Pa Chapter 1

Steady state permeability coefficient - Eq. (4.1)
Pd Power density W/m2 Eqg. (2.22)
Pa-total Total power density W/m2 Eq. (2.23)
Pd-net Net power density W/m2 Eq. (2.24)
Pa-nydr hydraulic losses W/m2 Eq. (2.25)
AP Pressure drop Pa Eq. (2.27)
Q Charge C Chapter 1
R Universal gas constant I / Eq. (2.2)

mol K
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Symbol Term Unit SI Definition
T Absolute temperature K Eq. (2.2)

t time S Eq. (2.4)

tres residence time S Eq. (2.29)
\Y; Volume m3 Chapter 1
% linear velocity my/e Eq. (2.26)
vis viscosity Pas Eq. (2.26)
X Exergy flow I/ Eq. (2.34)
X axial flow direction - Chapter 2

Greek letters

Symbol Term Unit SI Definition
a selectivity - Eq. (2.14)
AP Potential difference \% Eqg. (2.13)
y Activity Coefficient - Eq. (2.14)
M lonic strength - Eq. (2.15)
nr Thermodynamic efficiency - Eq. (2.30)
0 Thickness m Eq. (2.4)

o Density Kg / s Eq. (2.11)
| Molar Conductivity /m2mol Eq. (2.20)
Adp Donnan Potential Difference \% Eq. (4.2)

Sub-indexes

Sub index Term

AEM Anion Exchange Membrane
c Concentrated, consumed
Cell cell

CEM Cation Exchange Membrane
d Diluted, density

di diffusion

[ lon, species

in Inlet

int Internal

M Membrane

m Membrane, mix

mi migration

NaCl Salt

out Outlet

Tot total

w Water

0 Bulk, solution
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Abbreviations

Abbreviation Term

AAS Atomic Absorption Spectroscopy
AEM Anionic Exchange Membrane
APE Alkaline Polymer Electrolyte
CapMix Capacitive Mixing

CEM Cationic Exchange Membrane
CRED Capacitive Reverse Electrodialysis
ED Electrodialysis

EDL Electric Double Layer

EDLC Electric Double Layer Capacitor
IEM lon Exchange Membrane

IC lon Chromatography

MD Membrane Distillation

ocv Open Circuit Voltage

PRO Pressure Retarded Osmosis
RED Reverse Electrodialysis

SGE Salinity Gradient Energy

SGP Salinity Gradient Power






1.Introduction

The humankind has always required enormous amounts of energy for its progress, in 2013
the energy consumption per capita was 3.1 KWh, and this number has been on the rise for
the last 30 years [1]. Furthermore, these energy requirements have been principally
supplied by fossil fuels, in 2013 81.2% of total energy consumption came from fossil fuels
[1], in addition in 2015, 3000 million people in the poorest countries still used pollutant fuels

like kerosene, wood, carbon and manure for basic necessities like cooking [2].

Since 1992 the United Nations has accepted that: “human activities have been substantially
increasing the atmospheric concentrations of greenhouse gases, that these increases
enhance the natural greenhouse effect, and that this will result on average in an additional
warming of the Earth's surface and atmosphere and may adversely affect natural
ecosystems and humankind”. The united nations have set the goal to stabilize greenhouse
gases concentrations in the atmosphere at a level that can prevent dangerous

anthropogenic interference with the climate system [3], [4].

In the light of these statements, one of the most effective ways to reduce CO; emissions,
favoring at the same time economic growth is to develop revolutionary production,
distribution, storing and energy conversion technologies. It is necessary to boost new

energy generation systems that are in harmony with natural earth cycles.

The main classes of renewable energies are: Solar energy, wind energy, hydroelectric
energy, biofuels, geothermic and marine energy [5]. The newest of marine energies is

salinity gradient energy (SGE) that harness the natural water cycle to produce energy.

Energy generation through salinity gradients converts into electrical energy, the free energy
available in the mixing of two streams with different salt concentrations. It was first
mentioned in 1954 by R. Pattle, who stated that: “When a volume V of pure solvent mixes
irreversibly with a much larger volume of a solution the osmotic pressure of which is P, the

free energy lost is equal to PV. The osmotic pressure of seawater is about 20 atm, so that
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when a river mixes with the sea, free energy equal to that obtainable from a waterfall 680
ft. (200 m) high is lost. There thus exists an untapped source of power which has been

unmentioned in the literature.” [6].

The theoretical SGE potential at river mouths has been previously estimated between 1.4
and 2.6 TW, equivalent to 74% of the worldwide electricity consumption [7] [8]. However,
considering site suitability and environmental constrains from river mouths worldwide,
global SGE potential was recently estimated to be 65 GW, which corresponds to 625
TWh/year of renewable energy, contributing to 3.5% of global energy consumption [9], [10].

SGE has a large potential in Colombia due to the great abundance of river and seawater in
the country. Table 1-1 shows mean annual discharge of the six rivers accounting for the
99% of the fresh water discharged into the Colombian Caribbean basin [11], [12]. Recent
studies show that in Colombia a potential of 15.6 GW could be achieved from salinity
gradients with a capacity factor of 84% [10], [12].

Table 1-1. Mean annual discharge of the six rivers accounting for the 99% of the fresh water discharged into
the Colombian Caribbean basin. Taken from [12].

River Mean water discharge (Km?3year)
Magdalena 228.1

Atrato 81.08

Sind 11.76

Canal del dique 9.43

Ledn 2.47

Don Diego 1.14

Total Colombian discharge to the Caribbean sea 337.68

Among the advantages of salinity gradient energy have been the continuous supply of “fuel”
if river and sea water are used, the absence of atmospheric pollutants that intensify climate
change, no thermal contamination, radioactive waste or sudden changes in energy
production. Actually salinity gradient power has one of the highest capacity factor among

the renewable energy technologies like wind, solar, tidal and wave energies [13].

Notwithstanding the previous advantages, one disadvantage of the technology is that
energy density is relatively poor compared to traditional energy generation systems.
Another careful matter is that the use of this energy may generate changes in the salinity

structure of the rivers if water extraction of the river surpasses 20% of the mean discharge,
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affecting directly very important ecosystems like mangrove forests and estuaries [10], [13].
Thus a specific site potential analysis should be assessed before the construction of any
SGE plant.

1.1 Current technologies

From the moment the idea of generating energy through salinity gradients was conceived
60 years ago until now, many technologies have arisen and major improvements have been
developed for harnessing this type of energy. The four most outstanding technologies are
described in this section.

1.1.1 Reverse Electrodialysis (RED)

In Reverse Electrodialysis (RED) the free mixing energy between to water streams with
different salt concentration is converted into electrical energy by doing a less
thermodynamically irreversible process.

In order to do this, two water streams with different salt concentration enter the stack and
distribute in different compartments. Using anionic and cationic selective membranes (AEM
and CEM) the movement of anions or cations from the concentrated to the diluted
compartments is allowed. The ion selective membranes as well as the concentrated and
diluted compartments are intercalated between them. The salinity gradient generated with
the intercalation constitutes an electrochemical potential difference across each
membrane, approximately 80 mV between river and sea water [14]. The total potential
difference generated in a stack is calculated as the sum of each of the membrane

potentials.

Electric field through the stack is generated because the electrochemical potential
difference between compartments causes an ionic current of positive ions in one direction,
and negative ions in the opposite direction. The ionic current and the voltage are converted
into electrical energy through the use of a couple of electrodes at the stack ends, in contact

with an electrolyte solution that generate oxidation and reduction reactions.



4 Introduction

As a result of electrode reactions, an electron current is produced from the anode to the
cathode through an external circuit, providing electrical work to the surroundings. Figure

1.1 shows a simple scheme of a Reverse Electrodialysis (RED) cell.

Ag River : y’

t ¢

Electrode rinse solution

Figure 1.1. Scheme of a RED cell

1.1.2 Pressure Retarded Osmosis (PRO)

In this system, two water streams with different salt concentration are separated by a water
semipermeable membrane. Driven by the chemical potential difference, water passes from
the diluted to the concentrated stream. If the concentrated stream is pressurized before
entering PRO system, the water transport inside the PRO stack will increase the flow and
the pressure of this concentrated stream. The intensified flow of the pressurized stream
passes through a hydroelectric turbine, which delivers electrical power [15]. Figure 1.2

explains the operation of a PRO system.

PRO and RED technologies are the most widely studied and developed Salinity Gradient
Energy (SGE) systems. Different researches have been developed in order to understand
which of them is the most efficient and has more energy density. In some studies it has
been found that RED is more suitable for systems where concentrations of the water

streams are the ones found in river and sea water [14], [16].
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On the other hand a more recent study stated that membranes for PRO have had significant
progress in the past few years, and that power density achievable could be up to 4.5 W/m?
[17]-[19]. In contrast, the highest reported power density for RED is 2.2 W/m? [20], and the
near future projections are 2.7 W/m? [21], which are less than half of energy obtainable with
the best PRO membrane. Nonetheless the study for PRO does not take into account losses
in the system associated with pressurizing the system and turbine efficiency.

Generator

Augmented stream,

High pressure, high
Q+Q,

salinity draw stream, Q

Turbine :>

Brackish stream

[ )

e

Brackish stream

Low pressure, low
salinity feed stream, 2Q Membrane module

Figure 1.2. Scheme of a PRO energy generation system. Taken from [17].

1.1.3 Capacitive mixing

Capacitive mixing (CapMix) principle was first described by Brogioli in 2009. It consists in
extracting energy from the expansion and contraction effect of the electrical double layer
(EDL) when the concentration of the solution is changed at constant stored charge [22].
When a capacitor is charged in the presence of a solution with concentration C, it will store
a certain amount of charge Q, if the external circuit is disconnected, and concentration of
the solution is decreased, diffusion will cause an ion movement from the capacitor surface
to the bulk solution, which is actually against electrostatic forces. This new equilibrium
distribution of the Electric Double Layer (EDL) causes a net gain in the electrostatic energy

of the system which can be used for energy generation [22], [23].

A CapMix cell is shown in Figure 1.3 composed by two activated carbon supercapacitors
that are put in contact with a concentrated solution of NaCl. For extracting energy it is

necessary to do a four step cycle [23]-[26]:
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e Exchange the concentrated solution for a diluted solution at open circuit
configuration.

e Discharge the capacitors through an external load.

o Change again the electrolyte solution for one with higher salt content at open circuit
configuration.

e Charge the capacitors with an external resistance until cell voltage is equal to

external voltage in order to restart the cycle.

||
1"V
ext
freshwater saltwater

\\4/12,‘,. salt Rm. fresh

Figure 1.3. Scheme of a CapMix Cell. Taken and modified from [23]

1.1.4 Capacitive Reverse Electrodialysis (CRED)

Capacitive Reverse electrodialysis is a recently developed energy generation system that
combines RED and Capacitive mixing (CapMix) principles [27], [28]. CRED technology has
a membrane pile core identical to RED, but instead of electrodes, at both ends of the stack,

two supercapacitors are put in contact with a NaCl solution.

Electroneutrality principle causes that while ions accumulate on the solution side of the
capacitors, electronic configuration of the activated carbon reorganizes to complement the
charge excess in the capacitors surface, which causes an electron movement through an

external circuit. When the capacitors are saturated and energy is extracted, an interchange



Introduction 7

of the feed waters must be done in order to reverse the ionic flux, and thus to reinitiate the
process in the opposite direction. The scheme of a CRED cell is shown in Figure 1.4. The

concept will be extended in chapter 3.

Figure 1.4. Sch