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Title in English

An evolutionary approach for the optimization of production-distribution network design

T́ıtulo en español

Un enfoque evolutivo para la optimización del diseño de redes de producción-distribución

Abstract: In this Thesis an evolutionary technique for finding (near) optimal solutions to
the two-stage fixed charge transportation problem (finding minimum cost transportation
configurations when considering per unit transportation cost, fixed charges associated
to routes, limited capacity of production plants and unlimited capacity of distribution
centers) is proposed. Basically, the Hybrid Adaptive Evolutionary Algorithm with three
different domain specific genetic operators (one crossover: network; two mutations:
distribution and production) is applied. Here a candidate solution is encoded using
two matrices for each stage of the network. The crossover operator exchanges the
transportation plan of the second stage between two networks. The distribution mutation
operator closes a randomly selected distribution center, so products, that were distributed
to customers by such center, return to their plants where those came from. The mutation
operator changes the distribution plan in the first stage of the network from a randomly
selected production plant. After applying an operator, a balance method is used. Finally,
the fitness function is the sum of transportation costs, including the unit transportation
costs and the fixed cost incurred when using a route. Computational experiments carried
on twenty instances of the problem that are available in the literature, show that our ap-
proach is able to find equal or better solutions compared to those reported in the literature.

Resumen: En esta Tesis se presenta una técnica evolutiva para la búsqueda de soluciones
optimas o cercanas al oprimo del problema de transporte de cargo fijo en red de dos
etapas (encontrar configuraciones de distribución de menor costo teniendo en cuenta
costo de transporte por unidad de producto, costo fijo por el uso de rutas, capacidad
limitada de plantas de producción y capacidad ilimitada de centros de distribución).
Para encontrar dichas soluciones, el Algoritmo Evolutivo Hibrido Adaptativo es usado
con tres operadores genéticos espećıficos al problema (un operador de cruce y dos
operadores de mutación). Aqúı, una solución es codificada usando dos matrices (una
por cada etapa de la red). El operador de cruce intercambia el plan de distribución
de la segunda etapa entre dos redes. La mutación de distribución cierra un centro
de distribución elegido de manera aleatoria, haciendo que el producto enviado hacia
clientes regrese hacia las plantas de procesamiento. La mutación de producción cambia
el plan de distribución de la primera etapa desde una planta de producción elegida de
manera aleatoria. Después de aplicar un operador, un método de balance de red es
utilizado. Finalmente, la función objetivo está definida como la sumatoria de la cantidad
de producto transportado multiplicado por los costos fijos y el costo de transporte por
unidad de producto. Los experimentos computacionales llevados a cabo sobre veinte
instancias disponibles en la literatura, muestran que la técnica usada es capaz de encon-
trar buenas soluciones o mejores comparadas con las soluciones reportadas en la literatura.

Keywords: transportation problem, Fixed charge, Evolutionary algorithm, Supply
chain, Optimization
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Glossary

• Crossover operators
Genetic operators that creates one or more individuals called ”offspring” from a
combination of existing individuals identified as ”parents” selected from in the evo-
lutionary algorithm population.

• Evolutionary algorithm
Optimization technique based on the principles of Darwin’s biological evolution the-
ory.

• Fitness function A fitness function is a particular type of objective function that is
used to measure how close a given design solution is to achieving the set aims. The
fitness function is determined by the objective function and allows modern heuristics
to perform pairwise comparisons between solutions. It indicates the quality of the
solution and it is based on, but not necessarily identical to the objective function.
In general,, the objective function is based on the problem and model formulation,
whereas the fitness function measures the quality of solutions from the perspective
of modern heuristics [91, 78].

• Fitness value The fitness value is a measure of how good the solution represented
by an individual is for the problem being considered. It is the main source for guiding
the search process [36]

• Genetic operators
Also called variation operators, these are techniques that changes or create new
individuals from existing ones in the population, in order to find better solutions to
an optimization problem.

• Mutation operators
Genetic operators that makes changes on an existing individual of the population to
form another.

• Metaheuristic Metaheuristics are solution methods that combine an interaction
between local improvement procedures or heuristics, and a higher level strategies to
create a process capable of escaping from local optima and perform robust search of
a solution space [30].
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Introduction

Supply chains encompass the companies and the business activities needed to design,
construct, deliver, and consume a product or service [47]. Among the companies that
are part of a supply chain are production plants, suppliers, storage centers, distribution
centers, among others. In addition to these companies, customers are also part of the
supply chain. Customers can be large supermarkets, neighborhood shops or people. These
customers can also be called demand points. For an efficient operation of a supply chain, it
is necessary to make decisions related to the underlying network configuration, the routes
for product distribution, and the modes of transport through the supply chain. The supply
chain management process is responsible for making these kind of decisions, decisions that
not only contribute to meet customer demand in an efficient manner but also contribute
to reduce costs, to increase profits and to improve the quality of service. Several different
problems arise when taking such decisions, one of those is the transportation problem
(proposed by Hitchcock in 1941[46]).

The classical transportation problem (TP) refers to a special class of linear program-
ming problem where the objective is to find a way to transport homogeneous products
from several sources to several destinations so that the total transportation cost can be
minimized [50]. A basic assumption in the TP is that the cost of transportation is directly
proportional to the number of units transported. However, this is not in accordance with
reality where fixed charge may be incurred when units of product are sent from a given
source to a given destination [16]. The fixed charge problem formulated by Hirsch and
Dantzig [45] is an extension of TP dealing with shipping available quantities of goods
to satisfy the demands at minimal total cost, on condition that any route has a fixed
cost for using it, regardless the shipping amount of shipped goods, and a variable cost
proportional to such quantity [88]. The fixed charge may represent costs like renting a
vehicle; toll charges on a highway; landing fees at an airport; the set-up costs for machines
in a manufacturing environment; and the time to locate a file in a distributed database
system. In the presence of such one-time costs, the transportation problem is called the
fixed charge transportation problem [16].

A variant of the fixed charge transportation problem (FCTP) is the two-stage FCTP
(tsFCTP), where product is transported from plants to distribution centers, and from
distribution centers to customers while minimizing the overall incurred costs [11]. Since
the introduction of the TP by Hitchcock [46], many researchers have proposed solution
procedures for solving this kind of problems. Exact methods, approximation algorithms,
heuristics and meta-heuristics have been developed to solve distribution planning problems

VIII



INTRODUCTION IX

that are very important not only for real life industrial firms with supply chains but, are
also important in the area of computer science.

Despite its similarity to a standard TP, the FCTP is significantly harder to solve due to
the discontinuity in the objective function introduced by such fixed costs, meaning it is a
NP-hard problem [45]. Geoffrion and Graves [31] were the first to tackle the tsFCTP. They
used Benders Decomposition to find the optimal location of distribution centers between
plants and customers considering fixed charges imposed for each active distribution cen-
ter (DC) in a potential site. Heuristic and metaheuristic algorithms are computationally
more efficient for finding near optimal solutions for this kind of problems than exact algo-
rithms or approximation algorithms (such as Lagrangian relaxation, branch-and-bound,
or adjacent extreme point search) [51]. Evolutionary approaches were first employed by
Syarif, Yun and Gen [85]. The authors proposed a spanning tree-based genetic algorithm
with Prüffer number representation to find solutions for the multi-stage transportation
problem. A genetic algorithm (GA) was also used by Gen, Altiparmak and Lin [27] to
solve an extension version of the two-stage TP which considers plant and DC capacity and
a maximum number of DCs to be opened. Jawahar and Balaji [49] proposed a tsFCTP
model considering unlimited capacity of DCs, limited capacity of plants, and fixed cost
for each route used. They also presented twenty different instances of the model and also
solutions which were obtained employing a GA and Simulated Annealing (SA) [6]. Chun
and Yi [12] used a GA with matrix representation to solve a tsFCTP model that considers
multiple transportation modes. Raj and Rajendran [5] proposed a GA coupled with an
improvement scheme to solve the tsFCTP models presented by [27] and [49]. An Ant
Colony Optimization algorithm (ACO) was proposed by Panicker, Venga and Sridharan
[74] to solve the tsFCTP model proposed by Jawahar and Balaji [49]. This model was
also solved by Kannan, Govidan and Soleimani [51] using an Artificial Immune System
(AIS) and Sheep Flock Algorithm (SFA). Among the algorithms that tackled the tsFCTP
presented by Balaji and Jawajar, the SFA presents the best solutions found. The tsFCTP
with fixed charge for opening a DC presented by [27] was tackled by Calvete, Galé and
Iranzo [11] using an hybrid evolutionary algorithm and chromosome representation based
on DCs using a binary vector that indicates if a DC is open or closed. In this Thesis
is presented a natural representation of the network as an individual using a matrix for
each stage of the network. This representation, combined with genetic operators specific
to the problem and the adaptation of these operators during the evolutionary process,
seeks a greater exploration and exploitation of the search space to find the same or better
solutions to those already present in the literature.

For this Thesis, the main goal is to propose an evolutionary approach for finding near
optimal solutions for the two-stage fixed charge transportation problem. To achieve this
goal, three specific objective are proposed.

• To design a two-stage network representation as an individual for the optimization
by mean of evolutionary algorithms.

• To develop genetic operators and repair operators employed in the optimization
process.

• To evaluate the performance of the proposed optimization technique by means of
the comparison of results obtained against results found in the literature

In order to develop the appropriate network representation of a two-stage network is
important to identify the existing representations (encoding and decoding schemes) used
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in evolutionary algorithms that have been proposed for solving this kind of problem. To
achieve the second specific objective is very important not only to design and develop the
genetic operators, but also to test them in order to evaluate their performance and to
decide if the operators are suitable for the network representation and the optimization
process. The first and second specific objectives have a great impact on the optimization
carried out by the evolutionary algorithm because of the computational resources that the
operators need in order to find the expected results. Comparison between the results found
by the evolutionary approach proposed in this Thesis and solutions found in the literature
by several algorithms are carry out in a fair manner by means of statistical calculations
and graphical analysis of different aspects of the optimization and results.

The structure of this Thesis is as follows:

• Chapter 1 presents the concept and background about the transportation problem,
the fixed charge transportation problem and the multi-stage fixed charge transporta-
tion problem

• Chapter 2 presents the evolutionary approach employed to find optimal and near
optimal solutions for the two-stage fixed charge transportation problem. This chap-
ter shows a description of the evolutionary algorithm, the network representation as
individual in the evolutionary process and the genetic operators used.

• Chapter 3 Shows the computational experiments and comparisons of the results
obtained by the proposed approach against results reported in the literature.

• Chapter 4 draws some conclusions and future work.



CHAPTER 1

Background

Since the introduction of the transportation problem (TP) by Hitchcock in 1941 [46],
variants of this problem have been proposed with different characteristics and different
levels of difficulty. Similarly, researchers have used and created different types of solution
techniques to solve such problems. This chapter presents the literature review on the
transportation problem, its variants and the different techniques used to find solutions for
such problems. This kind of problems are very important not only for large firms that are
based on SC but also an important problem for computer science given that it is known
to be an NP-hard problem.

I Total number of production plants (i = 1 to I)
J Total number of DCs (j = 1 to J)
K Total number of customers (k = 1 to K)
ai Capacity of plant i
pi Product shipped from plant i
ej Capacity of DC j
qj Product shipped from DC j
dk Demand of customer k
cij Per unit transportation cost from plant i to DC j
cjk Per unit transportation cost from DC j to customer k
bij Fixed cost associated with each shipment from plant i to DC j
bjk Fixed cost associated with each shipment from DC j to customer k
xij Number of units distributed from plant i to DC j
xjk Number of units distributed from DC j to customer k
yij Binary variable that specifies whether the product is distributed from plant i to DC j
yjk Binary variable that specifies whether the product is distributed from DC j to customer k

Table 1.1. Nomenclature used for the definition of the TP, the FCTP and the tsFCTP.

1.1 Transportation problem

As mentioned in the introduction, the classical transportation problem (TP) refers to
a special class of linear programming problem where the objective is to find a way to

1



CHAPTER 1. BACKGROUND 2

transport homogeneous products from several sources to several destinations so that the
total transportation cost can be minimized [50]. In the TP it is assumed that the total
supply of sources is equal to the total demand of destination and the cost associated with
each route is proportional to the number of units transported along the route [7]. The TP
can be formulated as follows:

Minimize

Z =

I∑
j=1

K∑
k=1

cjkxjk (1.1)

Subject to

R1 =

K∑
k=1

xjk = qi (∀j , j = 1 , . . . , J) (1.2)

R2 =

J∑
j=1

xjk = dk (∀k, k = 1 , . . . , K) (1.3)

R3 = xjk ≥ 0 (1.4)

Where equation 1.1 minimizes the total transportation cost, constraint 1.2 states that
the total transportation from a source node must be equal to its supply, constraint 1.3
states that the total transportation to a destination node must be equal to its demand,
lastly, constraint 1.4 states that flow on each edge from source to destination must not be
negative.

To solve the TP, Hitchcock used a constructive procedure that is similar to the simplex
method [24]. Koopmans [58, 59] independently worked on the TP, reason why the TP is
also known as the Hitchcock-Koopmans Transportation Problem [24]. Dantzig in 1951
[14] used a special form of the Simplex method for solving the TP. Ford and Fulkerson in
1956 [24] proposed a method based on a combinatorial procedure (called the Hungarian
method) for solving the optimal assignment problem (a special type of transportation
problem).

It was until 1991 that genetic algorithm (GA) was first proposed to solve this kind of
problem with papers presented by Vignaux and Michalewicz [86] and Michalewicz et al.
[68]. Vignaux and Michalewicz proposed the use of GA for solving the nonlinear TP, where
the cost on a route is directly proportional to the amount transported. They used a matrix
representation and investigated the balance between representation structures and genetic
operators. Michalewicz et al also used matrix of real values to represent solutions in their
GA for solving the nonlinear TP, where the cost on a route is not directly proportional
to the amount transported and where the optimum solution doesn’t need to have integer
flows [68].

Gen, Ida and Li [26] proposed the use of a GA to solve the bicriteria solid transporta-
tion problem which is a special type of transportation problem that arises when there are
heterogeneous modes of transportation available for shipment of product. Yang and Gen
[90] employed an evolutionary algorithm for solving a bicriteria linear TP, which considers
the minimization of the transportation cost and the minimization of the total deterioration
of goods during transportation. Their evolutionary algorithm used an improved selection
strategy and a technique, called extinction and immigration, used for the crossover op-
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Transportation problem

Year Citation Solution methodology

1941 [46] Simplex method
1949 [58] Theory
1951 [59] Theory
1951 [14] Simplex method
1956 [24] Combinatorial algorithm
1994 [90] Evolutionary algorithm
1991 [68] Genetic Algorithm
1991 [86] Genetic algorithm
1995 [26] Genetic algorithm
1997 [63] Genetic algorithm
1998 [28] Genetic algorithm

Table 1.2. Solution methodologies used for the transportation problem

erator when the same chromosome is chosen to mate. Gen and Li [28] introduced the
spanning tree-based GA which represents a candidate solutions as a spanning tree and
Prüfer number as encoding mechanism. Gen ad Li used the proposed spanning tree-based
GA for solving the bicriteria TP. Table 1.2 summarizes the literature review found for this
Thesis about solution methodologies used for the TP.

1.2 Fixed charge transportation problem

Despite its similarity to a standard TP, the fixed charge transportation problem (FCTP)
is significantly harder to solve due to the discontinuity in the objective function introduced
by such fixed costs, meaning it is a NP-hard problem [45]. Guisewite and Pardalos [40]
generalized the NP-hardness result to minimum concave cost network flows [81]. The
FCTP can be formulated as follows:

Minimize

Z =

J∑
j=1

K∑
k=1

(cjkxjk + bjkyjk) (1.5)

Subject to

R1 =

K∑
k=1

xjk = qj (∀j , j = 1 , . . . , J) (1.6)

R2 =
J∑

j=1

xjk = dk (∀k, k = 1 , . . . , K) (1.7)

R4 = 0 ≤ xjk ≤ zjkyjk (1.8)

zjk = min(qj , dk) (1.9)
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Similar to the transportation problem the objective unction 1.5 minimizes the total
transportation cost which includes the per unit transportation cost that is proportional to
the amount od product transported, and the fixed charge which is not proportional to the
amount of product transported. As in the Transportation Problem, constraint 1.6 states
that the total transportation from a source node must be equal to its supply, constraint
1.7 states that the total transportation to a destination node must be equal to its demand.
Finally, constraint 1.7 states that product transported from source j to destination k must
not exceed zjk which is de minimum between total supply from source node j and demand
of destination k. For the FCTP it is also assumed that the total supply od sources is equal
to the total demand of destination.

Since the introduction of the FCTP, different models have been proposed. These
models can differ on characteristics like the fixed cost, the capacities of facilities, the
number and the type of commodities being transported, transportation modes used, time
consideration, among other characteristics. In the same way, many solution methodologies
have been proposed to tackle this kind of problems. These methodologies can be classified
in exact methods, heuristic methods and approximate methods.

Exact methods were the first kind of methods to be applied for solving the fixed
charge transportation problem. Murty in 1968 [70] proposed an exact algorithm for a
small instance of the FCTP based on searching among the adjacent extreme points. Gray
[39] presented an alternate approach to Murty’s algorithm using branch-and-bound algo-
rithm. Steinberg in 1970 [82] presented an exact solution based upon a branch and bound
approach computationally feasible for large problems. Kennington and Unger [53] used
penalties for fathoming and guiding separation task of their proposed branch-and-bound
procedure to solve the FCTP. Fisk and McKeown [23] presented a direct search proce-
dure using LIFO (last in, first out) decision rule for branching to solve the pure FCTP.
Also for solving the FCTP, McKeown [67] presented a branch-and-bound procedure that
calculates bound separately on the sum of fixed costs and on the continuous objective val-
ues. Barr, Glover and Klingman [8] also used branch-and-bound for solving the FCTP, in
which they used an augmented predecessor-thread index data structure to facilitate quick
solutions to the problems that appear at each node of the tree. Schaffer [80] proposed
a branch-and-bound with penalties combined with an adjacent extreme point heuristic
procedure to provide a near optimal solution to the FCTPs. Pelekar [72] developed a
conditional penalty for their branch-and-bound for the solving the FCTP, and claimed
that it was stronger than the Lagrangian penalties employed by Cabot and Erenguc [10].
Hultberg and Cardoso [48] used a branch a bound algorithm for the teacher assignment
problem, which is a special case of the FCTP. Bell, Lamar and Wallace [62] proposed a
revised-modified penalties for solving the FCTP and showed that the conditional penal-
ties proposed in [10, 72, 17], are not valid modified penalties. Bell, Lamar and Wallace
[9] proposed conditional penalties, and three types of capacity improvements techniques
and concave relaxations to reduce in nearly 90% the average number of branch-and-bound
subproblems for solving the FCTP. Ortega and Wolsey [71] presented a branch-and-cut
algorithm to solve the single-commodity uncapacitated FCTP. Cabot and Erenguc [10]
used Lagrangean relaxation to improve the performance of branch-and-bound algorithm
to solve the FCTP. Kim and Hooker [56] proposed a hybrid approach combining constraint
programing and linear programming for the FCTP and other network flow problems. San-
drock [79] solved small instances of the FCTP using a low-tech algorithm.

Balinski [7] formulated the FCTP, explained its special properties, and proposed an
approximate method that gives a lower and upper bounds for the optimal value of the in-
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stance being solved. Kuhn and Baumol [61] proposed an approximation method that uses
the Ship Most at Least Cost method, called the degeneracy forcing algorithm, and com-
pared it with the Vogels approximation method and the Ship Most at Least Cost method.
Dwyer [18] proposed the use of completely reduced matrices for solving the FCTP. Cooper
and Debres [13] proposed two approximation methods for solving the FCTP. Denzler [15]
proposed an approximation method based on the simplex method. Robers and Cooper
[77] proposed a search among the extreme points to improve the approximation method
presented by Balinski. Wright and Lanzenauer [87] proposed a heuristic algorithm for
solving large general fixed charge problem based on Lagrangian relaxation and cost allo-
cation heuristics. Diaby [16] developed a heuristic procedure for the solution a generalized
FCTP in which there are resource losses in addition to the fixed charges. Herer, Rosenblatt
and Hefter [42] proposed a fast algorithm based on an implicit enumeration procedure to
solve the single sink FCTP. Kim and Pardalos [55] proposed an approach for solving the
general capacitated (or uncapacitated) fixed charge network flow problem using dynamic
slope scaling procedure. Adlakha and Kowalski in 2003 [1] proposed a simple heuristic
for solving the FCTP, and stated that the method is more time consuming than the algo-
rithms for solving regular TP. Adlakha and Kowalski in 2004 [2] also proposed a simple
algorithm based on the Vogel approximation method for a variation of the FCTP, called
the source-induced FCTP, in which the fixed cost is incurred for every supply point that
is used in the solution. Glover [34] presented a parametric approach, called Ghost Image
Process, for solving fixed charge problems. Their implementation is specialized to handle
the most prominently occurring types of fixed charge problems, which arise in the area
of network applications. Adlakha et al [3] developed a simple, yet powerful, analytical
heuristic to find a more-for-less solution for both classical TP and FCTP. Kannan et al.
(2008) [52] proposed a local search heuristic, called Nedler-Mead method, for a proposed
transportation model of a single-stage supply chain with fixed charge. Klose (2008) [57]
proposed an algorithm based on dynamic programming and implicit enumeration for solv-
ing the single-sink FCTP. Kowalski and Lev (2008) [60] considered the step FCTP in
which the fixed cost is in the form of a step function dependent on the load in a given
route, and developed a simple heuristic algorithm for small instances of the problem. Raj
and Rajendran [4] proposed heuristic algorithm based on the Vogel approximation method
and an improvement scheme to solve the single stage FCTP.

Sun and McKeown in 1993 proposed a Tabu search algorithm for solving the general
FCTP [84]. Sun et al [83] developed a Tabu search algorithm for the FCTP using the
simplex method on a graph as a local search algorithm. Yang and Liu [89] proposed a
hybrid intelligent algorithm based on the fuzzy simulation technique and tabu search al-
gorithm for solving fixed charge solid transportation problems under a fuzzy environment,
in which the direct costs, the fixed charges, the supplies, the demand, and the conveyance
capacities were considered as fuzzy variables. Gottlieb and Paulmann [38] introduced the
use of GA for solving FCTP. They presented two GAs, one GA based o the permutation
representation, and the second GA based on a direct solution encoding using matrix rep-
resentation with specialized operators to maintain feasibility. They concluded that the
behavior of the permutation the GA using permutation representation is inferior to the
matrix representation with specialized operators. Gen and Li [29] presented a spanning
tree representation in a GA for solving the bicriteria FCTP. Gottlieb and Eckert [37]
compared the permutation representation and the Prüfer number representation based
on results obtained from two GA used for solving the FCTP. Eckert and Gottlieb [19]
presented a direct representation for a GA to solve the FCTP. The direct representation
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allows the GA to use problem-specific operators and restrict search to basic solutions.
Jo, Li and Gen [50] employed a spanning tree-based genetic algorithm with Prüfer num-
ber representation to solve the non-linear FCTP. Hajiaghaei-Keshteli et al [41] tackled
the nonlinear FCTP using a spanning tree-based GA combined with a method to design
chromosomes that does not need a repairing mechanism for feasibility. Xie and Jia [88]
proposed a hybrid GA based on steady-state GA, and minimum cost flow algorithm as
decoder for solving the nonlinear FCTP. Lotfi and Tavakkoli-Moghaddam [65] proposed a
genetic algorithm using a modified priority-based encoding for the linear and non-linear
FCTPs. Tari and Zahra [33] proposed priority based genetic algorithm to solve a vehicle
allocation problem involving heterogeneous fleet of vehicles for delivering products from
a manufacturing firm to a set of depots. El-Sherbiny [22] presented a mutation-based
artificial immune algorithm to solve the step FCTP. They stated that their algorithm
guarantees the feasibility of the candidate solutions and solves both balanced and unbal-
anced FCTP without the use of dummy supplier or customer. They also present a coding
and decoding schema for the artificial immune algorithm. El-Sherbiny and Alhamali [21]
introduced a hybrid particle swarm algorithm with artificial immune learning for solving
the balanced and unbalanced FCTP. Table 1.3 summarizes the literature review on the
solution methodologies used for the FCTP.
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Year Citation Methodology Solution methodology

1968 [70]

Exact approach

Search among adjacent extreme points
1968 [39] Branch-and-bound
1970 [82] Branch-and-bound
1976 [53] Branch-and-bound
1979 [23] Branch-and-bound
1981 [67] Branch-and-bound
1981 [8] Branch-and-bound
1989 [80] Branch and bound
1990 [72] Branch-and-bound
1997 [48] Branch-and-bound
1997 [62] Branch-and-bound
1999 [9] Branch-and-bound
2003 [71] Branch-and-cut
1984 [10] Lagrangian relaxation for Branch and bound
2001 [56] Hybrid approach
1988 [79] Low-tech algorithm

1961 [7]

Heuristics

Approximate procedure
1962 [61] Ship Most at Least Cost
1966 [18] Completely reduced matrices
1967 [13] Two Heuristics
1969 [15] Simplex-based approximate method
1976 [77] Approximate method
1989 [87] Lagrangian relaxation
1991 [16] Successive linear approximation
1996 [42] Implicit enumeration procedures
1999 [55] Dynamic slope scaling procedure
2003 [1] Simple heuristic
2004 [2] Vogels approximation-based simple algorithm
2005 [34] Parametric approach
2006 [3] More-for-less algorithm
2008 [52] Local search heuristic
2008 [57] Dynamic programming
2008 [60] Heuristic
2009 [4] Vogels approximation-based Heuristic algorithm

1993 [84]

Metaheuristics

Tabu search
1998 [83] Tabu search
2007 [89] Hybrid intelligent algorithm
1998 [38] Genetic algorithm
1999 [29] Genetic algorithm
2000 [37] Genetic algorithm
2002 [19] Genetic algorithm
2007 [50] Genetic algorithm
2010 [41] Genetic algorithm
2012 [88] Hybrid genetic algorithm
2013 [65] Genetic algorithm
2016 [33] Genetic algorithm
2012 [22] Artificial Immune Algorithm
2013 [21] PSO and Artificial Immune Algorithm

Table 1.3. Previous solution methodologies for the fixed charge transportation problem
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1.3 The Two-stage fixed charge transportation problem

The tsFCTP considered in this paper is the one proposed by Jawahar and Balaji [49]. As
mentioned earlier, the objective function of this model considers the transportation cost of
a distribution plan where a commodity is transported from plants to DCs, and from DCs
to customers considering a per-unit transportation cost, a fixed cost incurred whenever
a route is used, unlimited capacity of DCs and limited capacities of production plants.
Table 1.1 shows the nomenclature used for the mathematical formulation of the problem.

1.3.1 Assumptions

As Balaji and Jawahar proposed, the assumptions for the tsFCTP are.

• The total supply of all plants is at least equal to the total demand of customers.

i.e.

I∑
i=1

ai ≥
K∑
k=1

dk (1.10)

• The capacity of each DC is at least equal to the total demand of all customers.

i.e. ej ≥
K∑
k=1

dk (∀j , j = 1 to J) (1.11)

• A shipment from plant i to DC j or from DC j to customer k is shipped as one lot
irrespective of the number of units shipped.

It is also important to mention that, in this model, a single commodity is considered;
each customer can receive product from more than one distribution center; each DC can
receive product quantities from any production plant; the number of production plants,
DCs and customers are known; customer demand is met completely; damage or loss of
product is not considered.

1.3.2 Mathematical model

Minimize

Z =
I∑

i=1

J∑
j=1

(cijxij + bijwij) +
J∑

j=1

K∑
k=1

(cjkxjk + bjkwjk) (1.12)

Subject to
J∑

j=1

xij ≤ ai (∀i, i = 1 to I) (1.13)

J∑
j=1

yjk = dk (∀k, k = 1 to K) (1.14)
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I∑
i=1

xij =
K∑
k=1

yjk (∀j , j = 1 to J) (1.15)

xij ≥ 0 and integers

xjk ≥ 0 and integers

The objective function 1.12 considers the total transportation cost which includes the
per-unit transportation cost and the fixed cost of each route used. Equation 1.13 refers
to the plant capacity constraint which needs to be at most equal to the quantity shipped
to DCs. Equation 1.14 is the demand constraint that refers to the quantity of product
shipped from DC j which must be equal to de demand of customer k. It can also be
considered the equation 1.15 which refers to flow conservation of the system and implies
that the amount of product transported in the first stage of the network, must be equal
to the amount of product transported in the second stage of the network.

1.3.3 Previous works

Geoffrion and Graves [31] proposed Benders Decomposition to solve the tsFCTP con-
sidering multiple commodities, capacitated plants, and fixed charges imposed for each
DC opened in a potential site. Marin and Pelegŕın [66] used Lagrangean decomposition
to solve the tsFCTP considering fixed cost for the installation of transshipment points.
Hindi, Basta and Pieńkosz[43] addressed a two-stage distribution-planning problem. The
authors gave mathematical model for the problem and developed a branch and bound al-
gorithm to solve it. They considered a fixed cost for opening a DC as well as an operating
cost and a maximum capacity.

Syarif, Yun and Gen [85] used a spanning tree-based GA, which uses Prüfer number
representation for solving the multi-stage transportation problem, where the objective is
to find the minimum transportation cost given a maximum number of facilities (plants
and DCs) to be opened. Gen, Altiparmak and Lin [27] developed priority-based Genetic
Algorithm which uses an encoding method based on the priority-based encoding presented
by Gen and Cheng [25], with new decoding and encoding procedures used to adapt to the
characteristic of tsFCTP. Ekşioǧlu, Romejin and Pardalos [20] proposed a primal-dual
algorithm and a linear programming relaxation for an integrated production and trans-
portation planning problem in a two-stage supply chain modeled as a network flow problem
with fixed charges. Keskin and Üster[54] proposed meta-heuristic procedures, including a
population-based scatter search with path relinking and trajectory-based local and tabu
search, for solving multi-product two-stage production/distribution system design prob-
lem. Yun, Moon and Kim [92] proposed a hybrid genetic algorithm with adaptive local
search for solving the multi-stage supply chain problem. Chun and Yi [12] proposed a
genetic algorithm for a two-stage FCTP with multiple transportation modes selection.

Jawhar and Balaji [49] presented a genetic algorithm with matrix representation for
solving the tsFCTP. They proposed a set of twenty instances of the tsFCTP considering
per unit transportation cost, fixed cost associated with each route, uncapacitated DCs
and limited capacity for plants. Balaji and Jawahar [6] developed a simulated annealing
algorithm to solve the tsFCTP model considered in [49]. Panicker and Sridharan [73]
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Year Citation Solution methodology

1974 [31] Benders decomposition
1997 [66] Lagrangian relaxation
1998 [43] Branch and bound
2006 [20] Primal dual algorithm and linear relaxation
2012 [76] Nearest neighbor algorithm
2014 [75] Nearest neighbor algorithm and local search
2007 [54] Population-based scatter search and tabu search
2010 [6] Simulated annealing
2002 [85] Genetic algorithm
2006 [27] Genetic algorithm
2009 [92] Genetic algorithm
2009 [12] Genetic algorithm
2009 [49] Genetic algorithm
2012 [73] Genetic algorithm and ant colony optimization
2012 [5] Genetic algorithm
2011 [69] Artificial immune system
2012 [74] Ant colony optimization
2014 [51] Artificial immune system and Sheep flock algorithm
2015 [11] Hybrid evolutionary algorithm

Table 1.4. Literature review on solution methods used for the fixed charge transportation prob-
lem on networks of two or more stages.

compared a GA and an Ant Colony Optimization (ACO) algorithm for solving the tsFCTP,
and conclude that ACO-based heuristic results were better than those obtained using GA
in terms of total cost and computation time.

Molla-Alizadeh-Zavardehi et al [69] proposed an Artificial Immune Algorithm and a
spanning tree-based GA using Prüfer number representation for solving the tsFCTP. Pin-
tea et al [76] investigated hybrid variants of the Nearest Neighbor search algorithm based
on different probabilities and tested on large scale instances of the capacitated tsFCTP.
Raj and Rajendran [5] proposed genetic algorithm using matrix representation for solving
the tsFCTP models proposed Jawahar and Balaji [49] and Gen, Altiparmak and Lin [27].
Panicker, Venga and Sridharan [74] proposed an ACO algorithm to solve the tsFCTP
model considered by Jawahar and Balaji [49]. Kannan, Govidan and Soleimani [51] pro-
posed an artificial immune system (AIS) and a sheep flock algorithm (SFA) to find good
solutions for the tsFCTP model proposed by Jawahar and Balaji [49]. Pintea and Pop
[75] proposed a improved hybrid algorithm combining the Nearest Neighbor heuristic with
a powerful local search procedure for solving the capacitated tsFCTP. Calvete, Galé and
Iranzo [11] developed a hybrid evolutionary algorithm that combines a chromosome rep-
resentation based on DCs activity and minimum cost network flow problem to associate a
feasible solution to each chromosome for solving the tsFCTP. Table 1.4 summarizes the lit-
erature review that was carried on this Thesis on the two-stage fixed charge transportation
problem.
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Proposed evolutionary approach

Several metaheuristic techniques have been used to find good solutions to the problem
of transport and its variants (Chapter 1 of this Thesis). Genetic Algorithms [28, 33, 85],
Tabu search [84, 83] and Artificial Immune System [22, 21, 69, 51] among other, are some
examples of metaheuristics used to tackle this kind of problems. The two-stage fixed
charge transportation problem considered for this Thesis have also been considered by
various researchers. It was proposed by Jawahar and Balaji in 2009 [49]. They used A
genetic algorithm and Simulated annealing [6]. Raj and Rajendran also used a genetic
algorithm to find solution to this model [5]. Ant Colony Optimization was employed by
Panicker, Venga and Sridharan [74]. Kannan, Govidan and Soleimani found solutions
using Artificial Immune System and a Sheep Flock Algorithm [51]. Given the different
techniques and the quality of the solutions found, in this Thesis, the Hybrid Adaptive
Evolutionary Algorithm (HaEa) proposed by Gomez [35] is used to find near optimal
solutions for the two-stage fixed charge transportation problem proposed by Jawahar and
Balaji [49].

One of the most important features of HaEa is to allow competition among genetic
operators through operator rates, which are adjusted depending on the performance of the
operators when applied. To represent a candidate solution in the evolutionary process,
a direct representation is used, where the individual serve as a two stage network were
each stage is represented with a matrix containing the flow of each edge of the network.
This representation allows the evolutionary algorithm to apply the proposed problem-
specific operators and carry out the fitness evaluation in a straightforward way. For the
optimization process, three genetic operators are proposed (one crossover operator and
two mutation operators). The crossover operator exchanges the distribution plan of the
second stage of each network. As a result, the offspring inherit the distribution plan for
the first stage of one network and the distribution plan for the second stage of the other
network. One of the mutation operators, called Distribution mutation, randomly selects
an active DC and closes it, returning distributed product from customers to plants. The
mutation operator called Production mutation randomly changes the original distribution
plan from a randomly selected plant to the existing DCs. Finally, the fitness function
is the sum of transportation costs, including the unit transportation costs and the fixed
cost incurred when using a route. This chapter describes the evolutionary algorithm, the
network representation as individual and the proposed genetic operators.

11
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2.1 HAEA

One important feature of HaEa is that it is capable of using as many genetic operators as
required during the evolutionary process. HaEa encodes each individual together with an
operator rate for each genetic operator. The operator rates adapt during the evolutionary
strategy using a randomized learning rule that update each operator rate depending on its
performance. the operator rate is rewarded if a child, produced by the genetic operator,
has better fitness than the parent or it is punished otherwise. Algorithm 1 presents the
pseudo-code of the evolutionary algorithm. In each generation, every individual selects
only one operator according to the operator rates encoded into the individual (line 8).
When a non-unary operator is applied, additional parents (the individual being evolved
is considered a parent) are chosen according to any selection strategy (Line 9). Among
the offspring produced by the genetic operator, only one individual is chosen as child (line
11). The individual (parent or offspring) that has the highest fitness is chosen to be part
of the population in the next generation.

Algorithm 1 Hybrid Adaptive Evolutionary Algorithm (HaEa)

HAEA(λ, terminationCondition)

1: t0 = 0
2: P0 = initPopulation(λ),
3: while (terminationCondition(t, Pt) is false) do
4: Pt+1 =
5: for each ind ∈ Pt do
6: rates = extract rates(ind)
7: δ = random(0,1) // learning rate
8: oper = Op Select( operators,rates )
9: parents = ParentSelection(Pt,ind)

10: offspring = apply( oper,parents )
11: child = Best( offspring,ind )
12: if (fitness( child ) > fitness( ind )) then
13: rates[oper] = (1.0 + δ)*rates[oper] //reward
14: else
15: rates[oper] = (1.0 - δ)*rates[oper] //punish
16: end if
17: normalize rates( rates )
18: set rates( child, rates )
19: Pt+1 = Pt+1∪ {child}
20: end for
21: t = t+ 1
22: end while

2.2 Chromosome representation

Different representations of individuals and encoding/decoding mechanisms have been em-
ployed in evolutionary algorithms to find good solutions to the transportation problem and
the FCTP. Michalewicz, Vignauz and Hobbs [68, 86] were the first to use GA for solving
the linear and non-linear TP. They stated that bit strings are not well suited to represent
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solutions to solve the TP, they instead introduced the matrix representation were each
chromosome is represented using a m × n matrix with m + n − 1 positive elements, and
permutation representation where an individual’s genotype is a permutation of 1,...,m*n
where m represents the source nodes and n represents the destination nodes [86]. Gottlieb
and Eckert [37] compared the Prüfer number representation and the permutation repre-
sentation. They stated that permutation-based GA, exhibits better performance than the
GA that uses Prüfer number. They also stated that matrix representation is the most
natural one for the TP, and allows to calculate fitness in a straightforward way. A direct
transportation tree representation was presented by Eckert and Gottlieb, where a basic
solution has at most (m+n-1) positive entries in (xij), and the positive entries form a tree
in the transportation graph, or a forest if there are less than (m+n-1) non-zero entries
[19]. They stated that the main advantage of the representation is that restricts search to
basic solutions and allows using problem-specific variation operators. Authors compared
the direct representation against Prüfer number, permutation, and matrix representation.
Results showed that their approach clearly outperformed previous techniques.

Gen and Li [28] proposed the spanning tree-based GA using the Prüfer number encod-
ing, which, over the years, was one of the most popular encoding procedure. In TP, with
m origins and n destinations, Prüfer number encoding needs a string length of (m+n-2)
to represent a chromosome [28]. The drawback of the encoding is that, it may produce in-
feasible individuals after genetic operators are applied, reason why, repair mechanism are
needed. Permutation representation ensures that there are at most (m+n-1) basic cells in
the offspring after crossover operation is applied, but it needs a string length of (m+n-2)
to completely represent a solution [5]. Another encoding procedure is the Priority-based
encoding developed by Gen, Altiparmak and Lin [27] to scape from repair mechanisms
required in spanning tree-based representation using Prüfer number. For the TP, a chro-
mosome consists of priorities of sources and depots to obtain the transportation tree, and
the length is equal to the total number of sources and depots, i.e (m+n) [27]. Lofti and
Tavakkoli-Moghaddam [65] proposed a priority-based GA with special encoding/decoding
procedures for transportation trees that do not create unfeasible chromosomes. stated
that direct transportation tree representation needs an adaptive mechanism to drive the
population away from local optima that dominates the search for many subsequent gen-
erations.

Other representations have been used in evolutionary algorithms for the solution of
transportation problems. For instance, Liu et al [64] proposed a representation where
each chromosome was corresponded a basic feasible solution, which includes m+n-1 basic
variables, where each variable represents the transported amount of product from one
source to one depot [65]. Calvete, Galé and Iranzo [11] proposed a binary vector represen-
tation used in a hybrid EA for the tsFCTP. In this representation, each chromosome is a
J -dimensional vector where J is the number of depots in the network. The same tsFCTP
was also considered previously in [27, 5]. Gen, ALtiparmak and Lin priority-based encod-
ing, whereas Raj and Rajendran employed permutation-based encoding. As Calvete, Galé
and Irazno pointed out, [27, 5] both developed a GA based on sequentially obtaining the
transportation trees of each stage of the network. They first obtain the transportation tree
for the second stage, then they obtain the transportation tree for the distribution plan of
the first stage of the network. Calvete, Galé and Irazno also stated that they only explore
feasible solutions of the problem, which are formed by the union of two transportation
trees, which may result in both algorithms being unable to obtain a optimal solution, even
for a very simple instance [11].
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Figure 2.1. Example of a two stage network representation by HaEa.

In this work, an candidate solution is represented as a two stage network using two
matrices, one for each stage of the network. The first stage is a matrix of I × J which
stores the transportation of product from production plants to DCs. The second stage of
the network is represented using a matrix of J ×K which stores the product transported
from each DC to each customer. In addition to the matrices that stores the transported
product, four arrays are used. One array stores the quantity produced by each plant and
three arrays (one for each node type) are used to control the balance of each plant, DC or
customer of the network. The use of this representation (shown in Figure 2.1) allows HaEa
to apply three (domain specific) genetic operators and carry out the fitness evaluation in
a straightforward way. As noted above, with this representation, HaEa does not need
encoding or decoding mechanisms, and the operators do not generate infeasible solutions.
This is possible thanks to the mechanism of each operator and the balance procedure that
is performed when an operator is applied.

2.3 Random distribution algorithm

A random distribution algorithm is presented (Algorithm 2), which makes a random se-
lection of edges to send certain amount of product in quantities that are also randomly
generated. The procedure generates product quantities ranging from 1 to Q, where Q
is the total amount of product available. In addition to sending small random amounts
of product, the algorithm makes a random selection of edges that are used to send such
amounts. To achieve this, the algorithm creates an array of length equal to the number
of edges available for shipping product and where each location contains the random se-
lection of one of the edges. While the total amount of product is not sent, iteratively, an
edge is selected and a random amount of product is sent to the destination node. The
random distribution algorithm is used in the random assignment of flow in the population
initialization and to balance a network after a genetic operator is applied.
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Algorithm 2 Random distribution algorithm

RandomDistribution(vertex, quantity, balance)

1: Q = quantity
2: randomQuantity = 0
3: edges = getAvailableEdges()
4: while quantity != 0 do
5: if edges.length == 1 then
6: sendProduct(vertex, edges.get(0), quantity)
7: quantity = 0
8: else
9: randomEdges = getRandomEdges()

10: for each edge ∈ randomEdges do
11: randomQuantity = random(1,Q)
12: if quantity < randomQuantity then
13: randomQuantity = quantity
14: end if
15: sendProduct(vertex, edge, randomQuantity)
16: quantity -= randomQuantity
17: if balance and edge.to.balance == 0 then
18: edges = getAvailableEdges()
19: break
20: end if
21: end for
22: end if
23: end while
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2.4 Initial population

As described In this work, a candidate solution is represented using a matrix for each stage
of the network. The creation of a candidate solution for the initial population is carried
out in a similar manner to the work presented in [49, 5] in that the Least Cost Method
(LCM), Vogel’s Approximation Method (VAM) and a random allocation are used. First of
all, HaEa uses the random distribution algorithm to allocate product to each plant which
serves as the quantity produced (equal to the total demand of customers) taking into
account the capacity of each production plant. Next, HaEa randomly selects (from LCM,
VAM and a random allocation) the method used to complete the creation of the individual.
If HaEa selects VAM or LCM, it also selects the costs (between per-unit transportation
cost and fixed cost) to be used. Lastly, if HaEa selects the random allocation, then the
candidate solution is generated using the random transportation algorithm.

2.5 Genetic operators

A crossover operator and two mutation operators were created to be applied and compete
in the evolutionary process of HaEa. It is noteworthy that, after applying a genetic oper-
ator, the network must go through a process of balance, in which the random distribution
algorithm is used. In the crossover operator, networks that result from applying the op-
erator inherit the transportation plan of the first stage of a parent, and the distribution
plan of the second stage of the other parent. Proposed mutation operators are applied
depending on the mutation rate that randomly chooses a node of the network, which is
modified according to the type of mutation applied.

2.5.1 Crossover operator

The crossover operator swaps the flow of the second stage of each network as it can be
noticed in Figure 2.2b. The offspring’s inherit the flow of product from DCs to customers
from one of the parents and the flow of product from plants to DCs of the other parent.
Changes of the flow in the second stage causes an imbalance in DCs, where one or more may
end up with negative balance (outbound greater than inbound flow), or positive balance
(inbound greater than outbound flow). To balance the network, product is transported
from positive balanced DCs to negative balanced DCs using one or more production plants.
This is accomplished by using the random transportation algorithm, and starts by iterating
over the existing DCs. If the actual DC has a positive balance, the random distribution
algorithm is employed to send product to plants using edges with positive flow (Figure
2.2c). The balance of the network is completed after the product is transported from
plants with positive balance, to negative balanced DCs (Figure 2.2c-d).

2.5.2 Production mutation

For both mutation (production, and distribution) operators, a mutation probability of 1/n
is employed, where n depends on the number of vertices (plant or DCs) of the network.
Similar to the well-known bitrate mutation, one plant is randomly selected and modified
accordingly. In the case of production mutation, using the random transportation algo-
rithm, the operator changes the outbound of product from the selected plant to all the
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(a) Parents. (b) Second stage swap.

(c) Product is returned from positive DC to plants. (d) Balance of childs.

Figure 2.2. Example of crossover operator.
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DCs allocating quantities to each route without exceeding plant capacity. As the crossover
operator, the mutation of the selected plant causes an imbalance in all the DCs. To bal-
ance the DCs and the whole network, it is necessary to compute a new distribution plan
for the second stage of the network. To achieve this, as shown in Figure 2.3, first the
distribution plan of the second stage is erased (Figure 2.3c), next, the random transporta-
tion algorithm is applied from every DC to transport the new inbound to every customer
completing their demand and balancing the network.

(a) Original network before production mutation is
applied.

(b) A new distribution from plant 0 is calculated.

(c) The total amount of product from customers is
returned to the DCs.

(d) New distribution plan for the second stage using
the random distribution algorithm.

Figure 2.3. Example of Production Mutation.

2.5.3 Distribution mutation

In the case of the distribution mutation, one DC is randomly selected with a mutation
probability of 1/J . If there exist two or more active DCs, the selected DC is closed,
and product is returned from customers to plants. Consequently, customers are left with
incomplete demand, and plants with positive balance (Figure 2.4b). To balance the net-
work, the operator iterates over the network plants. In this iteration, if the current plant
has product in stock, product is redistributed to active DCs using the random distribu-
tion algorithm. After the product is distributed to active DCs, the random distribution
procedure is used again to complete customers demand from DCs (Figure 2.4d).
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(a) Original network before a randmoly selected
DC is closed.

(b) DC number 2 is closed and product is returned
from clients to original plants.

(c) Product from plants is distributed to DC that
are active.

(d) Product prom DC 3 is distributed to customer
5 to complete demand and balance the network.

Figure 2.4. Example of a Distribution mutation.
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Results and analysis

To evaluate the performance of our technique, HaEa is tested in twenty instances proposed
by Jawahar and Balaji [49]. Each instance is of different size, has high or low costs and
may differ in production capacity and customer demand. Since several techniques have
been used to search for good solutions to these instances, a fair comparison between the
results obtained by our technique and those shown in [49, 6, 5, 74, 51] is carried out.
Given the number of comparisons, a computational experiment involves finding a near
optimal solution of one of the considered tsFCTP instance. In this way, HAEA was run
thirty different times for each instance. For each one of this thirty runs, we take the best
solution and its fitness value, and use them to calculate the mean, the median and the
median standard deviation 1 (the standard deviation using the median of the mean of the
sample) over the thirty runs. This thirty runs gives us the statistical information in terms
of the convergence of the algorithm for each instance of the problem.

Computational experiments are carried out on a laptop equipped with 8 GB of RAM
and a 2.4 GHz Intel(R) Core(TM) i7-5500U. The parameters of HaEa are set to: For the
distribution (production) mutation operator, a node of the distribution plan is randomly
chosen using probability of 1/n, where n is the number of nodes (for the production mu-
tation is the number of production plants I, for the distribution mutation is the number
of distribution centers J); for the selection operator, tournament selection by four individ-
uals is applied. For a fair comparison of solutions found by HaEa against the solutions
found in the literature, computational experiments are carried out using six combinations
of population size and number of iterations (Table 3.4).

1We decided to use the median because it is a more robust statistical estimator of the mean

20
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Table 3.1. Instance of tsFCTP model presented by [49]

Instance
Size

I J K

1 2 2 3
2 2 2 4
3 2 2 5
4 2 2 6
5 2 2 7
6 2 3 3
7 2 3 4
8 2 3 6
9 2 3 8
10 2 4 8
11 2 5 6
12 3 2 4
13 3 2 5
14 3 3 4
15 3 3 5
16 3 3 6
17 3 3 7a
18 3 3 7b
19 3 4 6
20 4 3 5

5000 20000 100000 500000 2000000
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Figure 3.1. Plot (fitness evaluations against average percentage of deviation)
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Table 3.2 shows the median values calculated for the thirty computational experiments,
the median standard deviation, the execution time and the fitness evaluations using each
combination of population size and total number of iterations. As it can be noticed, for
all combinations of population size and number of iterations and for the twenty instances
of the problem, the median standard deviation is very small. Using a combination of ten
individuals and eighty iterations, the highest median standard deviation is 7427,02. Using
twenty individuals and five hundred iterations, the highest median standard deviation is
4676,22. Using one hundred individuals and ten thousand iterations the highest median
standard deviation is 1767,89. These values indicate that the majority of the individuals
converge to the median value for a given instance of the problem.

Table 3.3 shows (for each combination of population size and number of iterations)
the median values obtained from the computational experiments and the percentage of
deviation from the best solution found among the ones presented by the techniques found
in the literature. The percentage of deviation is calculated using the median value found
by HaEa from the thirty computational experiments. If the percentage of deviation is
negative, it means that HaEa improved the best solution found for the given instance.
Similarly to the standard deviation values presented in Table 3.2, the percentages of de-
viation from the best results found in the literature are also very small. As it can be
noticed, the highest percentage of improvement is 7.17% (instance 11) and the highest
percentage of deviation is 19,830% for the instance 14 using ten individuals and eighty
iterations. The average percentage of deviation using 10 individuals and eighty iterations
is 5,162%. Using twenty individuals and five hundred iterations is 2,242%. Using one
hundred individuals end one hundred iterations, the average percentage of deviation is
2,027%. The average percentage of deviation using twenty individuals and five thousand
iterations is 0,314%. Using twenty individuals and ten thousand iterations the average is
-0,069%. As for a combination of one hundred individuals and ten thousand iterations,
the average percentage of deviation is -0,161%. The decreasing percentage of deviation
shows the improvement on the solutions found by HaEa as its given more resources to
carry out the optimization. This behavior is also shown in Figure 3.1 where the curve
that approximate the points shows that the proposed technique will always find better
solutions if it continues with optimization. Appendix A.1 shows the tables for the results
of the computational experiments for all combinations of population size and number of
iterations.

Table 3.4. Average performance obtained by HaEa

Comparison of average performance

Previous works HaEa Pob x Iter Avg fit eval

GA - [49] 132240
134794,55 10 x 80 2972

SA - [6] 132057

TSGA - [5] 131050 129883,2 20 x 5000 367176

ACO - [74] 129607,75
132102,25 20 x 500 36927AIS - [51] 129349,5

SFA - [51] 129040,5

Avg fit eval: Average fitness evaluations 131788,55 100 x 100 37766
129161,15 20 x 10000 734038

129038,25 100 x 10000 3669868
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3.1 Comparison against genetic algorithm and simulated
annealing proposed by Jawahar and Balaji

Results from Table 3.2 are compared against six solution methodologies found in the
literature. The median values from column 1 are compared against the results obtained
by the GA proposed by Jawahar and Balaji [49] and against results obtained by the
SA algorithm proposed by Balaji and Jawahar [6]. Jawahar and Balaji employed ten
chromosomes and between fifty and eighty iterations. As for the SA, Balajiand Jawahar
used a parameter FR CNT that checks whether the algorithm could be frozen or not. The
temperature was set to 475 and the cooling rate was set to 0,9. When FT CNT reaches a
predefined value or when the temperature reaches a value of twenty, the algorithm stops.
Given the parameters used by the GA and the SA, the population size and the number of
iterations for HaEa are set to ten individuals and eighty iterations. As it can be noticed
in Table 3.5, using this combination of population size and number of iterations, HaEa,
compared to the GA, could find better solutions for two instances and could find equal
solutions for four instances. The highest percentage of deviation was 10, 35%, and the
lowest percentage of deviation was −13, 985. Column 7 shows the percentage of deviation
from SA. In this case, HaEa found better solution for one instance (instance 11) and found
equal solution for 5 instances. The highest percentage of deviation was 19, 288 and the
lowest was −14, 572. difference in the results obtained by HaEa compared to SA are not
very large, since the average percentage of deviation from this algorithm does not exceed
6.5% (Table 3.5). As expected, HaEa shows a similar behavior to the GA proposed by
Jawahar and Balaji and the SA proposed by Balaji and Jawahar given the same amount
of resources. Local search techniques such as simulated annealing, tend to converge to
local optimum. Population-based algorithms as HaEa are able to find better solutions
when given the necessary time and resources.

3.2 Comparison against genetic algorithm (TSGA) pro-
posed by Raj and Rajendran

Median values from column 6 (Table 3.2) are compared against the results obtained by the
GA proposed by [5] (Table 3.6). In this case, the GA, called two-stage genetic algorithm
(TSGA), uses a two phase improvement scheme to find better solutions after a crossover.
Raj and Rajendran completed computational experiments using two versions of the TSGA
(TSGA-RN and TSGA-ARN). They employed twenty chromosomes as initial population
and ten thousand iterations or 3600 CPU-time seconds as a termination criterion, using the
one that ends earlier the optimization. Although they employed the termination condition
mentioned above, we set the termination criterion to five thousand iterations for HaEa.
Results compared to the ones obtained by the TSGA show that HaEa could perform
better, obtaining equal or lower costs for eighteen of twenty instances. In consequence,
the average performance of HaEa (129883,2) using five thousand iterations and twenty
candidate solutions is lower than the TSGA (131050). It is also important to note that,
these results are also better than the ones obtained by the GA and SA presented in Table
3.5, showing not only that EAs can perform better than other methods like SA and similar
algorithms, but also shows the unfairness of the comparisons among the publications found
in the literature.
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Instances Results obtained by Percentage of deviation from

No Size GAa SAb HaEa
(
HaEa−GA

GA

)
∗ 100

(
HaEa−SA

SA

)
∗ 100

1 2-2-3 112600 112600 112600 0 0
2 2-2-4 237750 237750 237750 0 0
3 2-2-5 180450 180450 187700 4,018 4,018
4 2-2-6 165650 165650 169450 2,294 2,294
5 2-2-7 162490 162490 170640 5,016 5,016
6 2-3-3 59500 59500 61600 3,529 3,529
7 2-3-4 32150 32150 33600 4,510 4,510
8 2-3-6 69970 70480 72266 3,218 2,534
9 2-3-8 264680 263000 281050 6,185 6,863
10 2-4-8 85200 80400 87600 2,817 8,955
11 2-5-6 94565 95215 81340 -13,985 -14,572
12 3-2-4 47140 47140 47140 0 0
13 3-2-5 178950 178950 182846 2,177 2,177
14 3-3-4 57100 51150 65400 14,536 14,536
15 3-3-5 152800 152800 160664 5,147 5,147
16 3-3-6 132890 132890 132890 0 0
17 3-3-7a 106615 104115 107395 0,732 3,150
18 3-3-7b 302350 287360 287360 -4,958 0
19 3-4-6 83500 77250 92150 10,359 19,288
20 4-3-5 118450 118450 124450 5,065 5,065
a Genetic Algorithm - [49]
b Simulated Annealing -[6]

Table 3.5. Performance comparisons against Genetic Algorithm and Simulated Annealing
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Instances Results obtained by Percentage of deviation from

No Size TSGA HaEa
(
HaEa−TSGA

TSGA

)
∗ 100

1 2-2-3 112600 112600 0
2 2-2-4 237750 237750 0
3 2-2-5 180450 180450 0
4 2-2-6 165650 165650 0
5 2-2-7 162490 164762 1,398
6 2-3-3 59500 59500 0
7 2-3-4 32150 32150 0
8 2-3-6 67380 67170 -0,312
9 2-3-8 258730 266236 2,901
10 2-4-8 84600 79452 -6,085
11 2-5-6 80865 75065 -7,172
12 3-2-4 47140 47140 0
13 3-2-5 178950 178350 -0,335
14 3-3-4 61000 57100 -6,393
15 3-3-5 156900 152800 -2,613
16 3-3-6 132890 132890 0
17 3-3-7a 106745 102425 -4,047
18 3-3-7b 295060 287360 -2,610
19 3-4-6 81700 80364 -1,635
20 4-3-5 118450 118450 0

TSGA - [5]

Table 3.6. Performance comparison against GA proposed by [5]
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3.3 Comparison against ACO, AIS and SFA

Median values from column 4 are compared against the Ant Colony Optimization (ACO)
proposed by Panicker, Venga and Sridharan [74], the Artificial Immune System (AIS)
and the Sheep Flock Algorithm (SFA) proposed by Kannan, Govidan and Soleimani[51].
Kannan, Govidan and Soleimani compared the results obtained by the AIS, the SFA, and
the results obtained by the ACO algorithm which employed one hundred ants and ten
iterations. Kannan, Govidan and Soleimani employed ten individuals for the AIS and
twenty individuals for the SFA. They also used a termination criterion of five hundred
iterations for both algorithms. This is the reason why the termination condition and
the populations size for HaEa are set to five hundred iterations and twenty individuals
to compare the results against the ACO algorithm, the AIS and the SFA. Despite using
similar population sizes and number of iterations, HAEA may be at a slight disadvantage
compared to algorithms such as ACO and AIS, which tend to consume a large amount of
computational resources. AIS for example, generates (via cloning) many individuals during
optimization, therefore, the size of the final population may be very large compared to
algorithms using a fixed population size. In the case of SFA, because it is a fairly new
heuristic, it is also difficult to make a fair comparison of the performance and the results
obtained by HaEa.

As it can be noticed in Tables (3.5,3.6,3.7), it is clear that the SFA proposed by
Kannan, Govidan and Soleimani [51] found the best results among the techniques found
in the literature that considers this tsFCTP. The AIS and the SFA were able to improve
or match the solutions found by previously used algorithms. In Table 3.7, results obtained
by HaEa using twenty individuals and five hundred iterations, are compared against ACO
algorithm , AIS, and SFA. The Results obtained by HaEa, compared against the ACO
show that it could find equal solutions for six instances of the problem and better solutions
for two instances. The average percentage of deviation against ACO did not exceed 3%
for solutions that are not improved by HaEa. Results compared against those obtained
by the AIS, HaEa also found equal or better solutions for eight instances of the problem
and the average percentage of deviation was 3.43% for solutions that are not improved
by HaEa. As for the solutions that are compared against SFA, HaEa could improve the
solution for one instance, and found equal solutions for six instances. Lastly, the average
percentage of deviation was 3.47% for solutions that are not improved by HaEa.
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Instance Results obtained by Percentage of deviation from

No. Size ACOa AISb SFAc HaEa
(
HaEa−ACO

ACO

)
∗ 100

(
HaEa−AIS

AIS

)
∗ 100

(
HaEa−SFA

SFA

)
∗ 100

1 2-2-3 112600 112600 112600 112600 0 0 0
2 2-2-4 237750 237750 237750 237750 0 0 0
3 2-2-5 180450 180450 180450 182250 0,998 0,998 0,998
4 2-2-6 165650 165650 165650 168378 1,647 1,647 1,647
5 2-2-7 162490 162490 162490 167674 3,190 3,190 3,190
6 2-3-3 59500 59500 59500 61200 2,857 2,857 2,857
7 2-3-4 32150 32150 32150 32830 2,115 2,115 2,115
8 2-3-6 69045 67380 67380 67170 -2,716 -0,312 -0,312
9 2-3-8 258730 258730 258730 280420 8,383 8,383 8,383
10 2-4-8 80900 77400 77400 85200 5,315 10,078 10,078
11 2-5-6 80865 80865 80865 81340 0,587 0,587 0,587
12 3-2-4 47140 47140 47140 47140 0 0 0
13 3-2-5 178950 178950 175350 178350 -0,335 -0,335 1,711
14 3-3-4 57100 57100 57100 57100 0 0 0
15 3-3-5 152800 152800 152800 153865 0,697 0,697 0,697
16 3-3-6 132890 132890 132890 132890 0 0 0
17 3-3-7a 105715 105715 104115 107285 1,485 1,485 3,045
18 3-3-7b 281730 281730 281100 287360 1,998 1,998 2,227
19 3-4-6 77250 77250 76900 82763 7,137 7,137 7,1624
20 4-3-5 118450 118450 118450 118450 0 0 0
a Ant Colony Optimization - [74]
b Artificial Immune System - [51]
c Sheep Flock Algorithm - [51]

Table 3.7. Performance comparison against Ant Colony Optimization, Artificial Immune System,
and Sheep Flock Algorithm

3.4 Comparison against all techniques using large popula-
tion size and number of iterations

The results obtained by HaEa using one hundred individuals and ten thousand iterations
were compared against the results obtained by the methods mentioned previously. For
this comparison, in addition to calculating the percentage of deviation, the Wilcoxon
signed-rank test was carried out. Table 3.8 shows the percentage of deviation from the
six methods found in the literature. As it can be noticed, HaEa could match or improve
solutions for the majority of the instances. For example, percentage of deviation from
TSGA shows that it could match solutions for ten instances and improve 9 with an a
average of deviation (improvement) of 4.19%.

For the Wilcoxon signed-rank test, the null and alternative hypothesis were established
as:

• H0 : There is no significant improvement in the results obtained by HaEa compared
to previous results obtained by (GA, SA, TSGA, ACO, AIS, SFA) methodology
(H0 : Difference > 0).

• H1 : HaEa provides better results compared to results obtained by (GA, SA, TSGA,
ACO, AIS, SFA) solution methodology (H1 : Difference ≤ 0).

As shown in Table 3.9, with a level of significance α = 0.05, the Wilcoxon test shows
that there is a significant difference between the results obtained by HaEa and the results
obtained by three solution methodologies, these are, genetic algorithm proposed by [49],
simulated annealing proposed by [6], and the two stage genetic algorithm proposed by
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Table 3.9. Wilcoxon test for solutions found by HaEa against other techniques.

Algorithm N Rank+ Rank- Critical value p-value Reject H0

GA 8 36 0 3 0.01427 YES

SA 8 33 3 3 0.04232 YES

TSGA 10 49 6 8 0.0322 YES

ACO 7 20 8 2 0.3525 NO

AIS 7 10 10 2 0.5541 NO

SFA 7 13 13 2 0.9326 NO

Level of significance α = 0,05

[5]. As for the ant colony optimization algorithm proposed by [74], the artificial immune
system and the sheep flock algorithm proposed by [51], the Wilcoxon test there is no
significant difference between these results and the results obtained by our HaEa.

Table 3.8. Percentage of deviation from previous solution methodologies found in the literatures
with respect to HaEa using 100 individuals and 10.000 iterations.

Instance
Percentage of deviation from

GA SA TSGA ACO AIS SFA

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 -4,002 -4,696 -0,312 -2,716 -0,312 -0,312
9 -0,646 -0,011 1,639 1,639 1,639 1,639
10 -7,512 -1,990 -6,856 -2,596 1,809 1,809
11 -20,621 -21,163 -7,172 -7,172 -7,172 -7,172
12 0 0 0 0 0 0
13 -2,012 -2,012 -2,012 -2,012 -2,012 0
14 0 0 -6,393 0 0 0
15 0 0 -2,613 0 0 0
16 0 0 0 0 0 0
17 -5,070 -2,790 -5,185 -4,261 -4,261 -2,790
18 -6,820 -1,959 -4,518 0 0 0,224
19 -4,790 2,913 -2,693 2,913 2,913 3,381
20 0 0 0 0 0 0

For a further analysis of the performance of HaEa, the evolution of the population
and the evolution of the operator rates are shown in Figure 3.2 and Figure 3.3 using one
hundred individuals and ten thousand iterations for six instances of the problem. Figure
3.2 clearly shows how the population converges to a good solution needing approximately
100 iterations. After one hundred iterations, the population is able to scape local optima
to find better solutions. Figure 3.3 shows how the crossover operator is applied much more
times than the mutation operators until the population converges. The high probability
of the crossover operator in early stages of the optimization is an expected behavior given
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that this operator makes more changes to the individuals than the mutation operators,
carrying out a great exploration of the search space. Appendix A.2 shows the figures of
the evolution of the population and the evolution of the operator rates for the remaining
instances of the problem.
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(c) Instance 3-3-4

1 10 100 1000 10000

1
6
0
0
0
0

1
7
0
0
0
0

1
8
0
0
0
0

1
9
0
0
0
0

2
0
0
0
0
0

2
1
0
0
0
0

Iteration

F
it
n
e
s
s

Median

Worst

Best

(d) Instance 3-3-5
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(e) Instance 3-3-7a
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Figure 3.2. Average evolution of fitness value of instances 2-3-6 (a), 2-5-6 (b), 3-3-4 (c), 3-3-5
(d), 3-3-7a (e) and 3-4-6 (f) for 30 computational experiments using 100 individuals
and 10.000 iterations.
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(e) Instance 3-3-7a
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Figure 3.3. Average evolution of operator probabilities of instances 2-3-6 (a), 2-5-6 (b), 3-3-4
(c), 3-3-5 (d), 3-3-7a (e) and 3-4-6 (f) for 30 computational experiments using 100
individuals and 10.000 iterations.
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Tables and Figures

A.1 Tables

Table A.1. Computational results used for Table 2. using 10 individuals and 80 iterations

Instance Best Worst Mean Median Standard deviation

223 112600.0 112600.0 112600.00 112600.00 0.00
224 237750.0 237750.0 237750.00 237750.00 0.00
225 181320.0 189100.0 186593.93 187700.00 2887.20
226 168222.0 186320.0 169433.87 169450.00 262.14
227 162850.0 188885.0 172385.50 170640.00 4582.93
233 59500.0 67600.0 62008.00 61600.00 1241.72
234 32790.0 33600.0 33473.00 33600.00 235.84
236 67170.0 83902.0 72905.10 72266.00 3447.69
238 269503.0 358741.0 281345.47 281050.00 4062.86
248 81400.0 91100.0 87571.23 87600.00 1760.49
256 75065.0 96140.0 83964.00 81340.00 5508.86
324 47140.0 47140.0 47140.00 47140.00 0.00
325 175350.0 204310.0 184668.17 182846.00 7427.02
334 57100.0 73531.0 63924.70 65400.00 3652.98
335 153670.0 181408.0 161682.93 160664.00 5155.31
336 132890.0 132890.0 132890.00 132890.00 0.00
337a 104283.0 135875.0 107217.33 107395.00 742.05
337b 287360.0 301188.0 289621.30 287360.00 4324.55
346 84450.0 105842.0 91820.67 92150.00 3539.00
435 122355.0 124450.0 124294.27 124450.00 511.18

34
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Table A.2. Computational results used for Table 3. using 20 individuals and 5000 iterations

Instance Best Worst Mean Median Standard deviation

223 112600.0 112600.0 112600.00 112600.00 0.00
224 237750.0 237750.0 237750.00 237750.00 0.00
225 180450.0 182250.0 180557.00 180450.00 375.70
226 165650.0 167754.0 165720.13 165650.00 384.14
227 162490.0 166298.0 164500.20 164762.00 1169.02
233 59500.0 61000.0 59800.00 59500.00 670.82
234 32150.0 32150.0 32150.00 32150.00 0.00
236 66092.0 80007.0 67185.17 67170.00 342.16
238 260730.0 291744.0 267109.57 266236.00 3425.89
248 78800.0 85073.0 80458.10 79452.00 1942.54
256 75065.0 81340.0 76320.00 75065.00 2806.27
324 47140.0 47140.0 47140.00 47140.00 0.00
325 175350.0 180770.0 177398.33 178350.00 1992.43
334 57100.0 68864.0 58136.20 57100.00 2029.54
335 152800.0 156414.0 153400.07 152800.00 1239.01
336 132890.0 132890.0 132890.00 132890.00 0.00
337a 99095.0 107130.0 102457.20 102425.00 1510.09
337b 281730.0 300270.0 287706.00 287360.00 3964.11
346 76900.0 82716.0 80268.37 80364.00 1578.03
435 118450.0 118450.0 118450.00 118450.00 0.00

Table A.3. Computational results used for Table 4. using 20 individuals and 500 iterations

Instance Best Worst Mean Median Standard deviation

223 112600.0 112600.0 112600.00 112600.00 0.00
224 237750.0 237750.0 237750.00 237750.00 0.00
225 180450.0 184210.0 182104.50 182250.00 1287.63
226 165650.0 201634.0 168393.33 168378.00 1150.63
227 162850.0 169890.0 167147.63 167674.00 1765.49
233 59500.0 66610.0 60790.00 61200.00 1107.70
234 32150.0 33525.0 32826.67 32830.00 444.58
236 67170.0 87081.0 68178.40 67170.00 2435.49
238 267836.0 303530.0 278099.07 280420.00 4676.22
248 81150.0 87600.0 84712.20 85200.00 2346.80
256 75065.0 86065.0 80421.67 81340.00 2538.45
324 47140.0 47140.0 47140.00 47140.00 0.00
325 175350.0 192900.0 178033.67 178350.00 2194.70
334 57100.0 67200.0 58950.33 57100.00 3239.27
335 152800.0 158600.0 154785.93 153865.00 1965.42
336 132890.0 132890.0 132890.00 132890.00 0.00
337a 101965.0 107395.0 105975.67 107285.00 2267.30
337b 283200.0 300270.0 287811.50 287360.00 2151.60
346 77854.0 90004.0 82687.63 82763.00 2003.40
435 118450.0 124450.0 119868.23 118450.00 2541.81
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Table A.4. Computational results using 100 individuals and 100 iterations

Instance Best Worst Mean Median Standard deviation

223 112600.0 112600.0 112600,00 112600,00 0,00
224 237750.0 237750.0 237750,00 237750,00 0,00
225 180450.0 189100.0 182623,67 183030,00 1333,72
226 165650.0 208130.0 168418,67 169158,00 1443,07
227 162490.0 174808.0 167040,33 167354,00 2140,69
233 59500.0 70581.0 60736,67 61200,00 1060,03
234 32150.0 33600.0 32803,67 32970,00 496,20
236 67170.0 89241.0 67685,20 67170,00 1133,20
238 266822.0 332176.0 276820,80 278046,00 4737,70
248 78800.0 91100.0 82945,00 81324,00 3221,93
256 75065.0 86772.0 81237,17 81340,00 1380,39
324 47140.0 47140.0 47140,00 47140,00 0,00
325 175350.0 202243.0 176661,33 175350,00 2095,71
334 57100.0 72625.0 57954,33 57100,00 2105,91
335 152800.0 170156.0 154584,93 153694,00 1826,41
336 132890.0 132890.0 132890,00 132890,00 0,00
337a 102660.0 131145.0 106313,93 107395,00 1932,93
337b 283692.0 317487.0 287198,80 287360,00 702,81
346 81233.0 107488.0 84572,47 84450,00 1911,31
435 118450.0 151570.0 120758,97 118450,00 3351,95

Table A.5. Computational results using 20 individuals and 10000 iterations

Instance Best Worst Mean Median Standard deviation

223 112600.0 112600.0 112600,00 112600,00 0,00
224 237750.0 237750.0 237750,00 237750,00 0,00
225 180450.0 180450.0 180450,00 180450,00 0,00
226 165650.0 167910.0 165725,33 165650,00 412,62
227 162490.0 165562.0 163676,67 162850,00 1385,22
233 59500.0 61000.0 59800,00 59500,00 670,82
234 32150.0 32150.0 32150,00 32150,00 0,00
236 67170.0 79605.0 67186,57 67170,00 90,74
238 260230.0 285750.0 263474,77 262940,00 2260,34
248 78550.0 83700.0 80010,73 79238,00 1771,69
256 75065.0 81340.0 75506,43 75065,00 1594,92
324 47140.0 47140.0 47140,00 47140,00 0,00
325 175350.0 194850.0 177055,33 175350,00 2438,50
334 57100.0 64694.0 57953,13 57100,00 2020,47
335 152800.0 159815.0 153684,57 152800,00 1854,97
336 132890.0 132890.0 132890,00 132890,00 0,00
337a 99095.0 103310.0 101742,37 101965,00 1424,83
337b 281730.0 300270.0 284815,60 282665,00 4475,88
346 76900.0 83726.0 79347,33 79500,00 1888,82
435 118450.0 121175.0 118540,83 118450,00 497,51
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Instance Best Worst Mean Median Standard deviation

223 112600.0 112600.0 112600,00 112600,00 0,00
224 237750.0 237750.0 237750,00 237750,00 0,00
225 180450.0 180450.0 180450,00 180450,00 0,00
226 165650.0 165650.0 165650,00 165650,00 0,00
227 162490.0 164538.0 162582,27 162490,00 385,29
233 59500.0 59500.0 59500,00 59500,00 0,00
234 32150.0 32150.0 32150,00 32150,00 0,00
236 67170.0 81457.0 67170,00 67170,00 0,00
238 260230.0 287496.0 262755,33 262970,00 1767,89
248 77836.0 83500.0 79421,57 78800,00 1558,47
256 75065.0 75065.0 75065,00 75065,00 0,00
324 47140.0 47140.0 47140,00 47140,00 0,00
325 175350.0 190950.0 176150,00 175350,00 1549,19
334 57100.0 66250.0 57220,00 57100,00 657,27
335 152800.0 156100.0 153093,07 152800,00 807,69
336 132890.0 132890.0 132890,00 132890,00 0,00
337a 99095.0 103310.0 100988,43 101210,00 1430,51
337b 281616.0 299388.0 281722,60 281730,00 28,67
346 76900.0 88422.0 78800,43 79500,00 1561,83
435 118450.0 118450.0 118450,00 118450,00 0,00

Table A.6. Computational results using 100 individuals and 10000 iterations
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Figure A.1. Average evolution of fitness value of instances 2-2-3 (a), 2-2-4 (b), 2-2-5 (c), 2-2-6
for 30 computational experiments using 100 individuals and 10.000 iterations.
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(c) Instance 2-3-4
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(d) Instance 2-3-8

Figure A.2. Average evolution of fitness value of instances 2-2-7 (a), 2-3-3 (b), 2-3-4 (c), 2-3-8
for 30 computational experiments using 100 individuals and 10.000 iterations.
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(a) Instance 2-4-8
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(b) Instance 3-2-4
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(c) Instance 3-2-5
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(d) Instance 3-3-6

Figure A.3. Average evolution of fitness value of instances 2-4-8 (c), 3-2-4 (d), 3-2-5 (e) and 3-3-6
(f) for 30 computational experiments using 100 individuals and 10.000 iterations.
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(a) Instance 3-3-7b
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Figure A.4. Average evolution of fitness value of instances 3-3-7b (a) and 4-3-5 (b) for 30 com-
putational experiments using 100 individuals and 10.000 iterations.
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(d) Instance 2-2-6
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(e) Instance 2-2-7
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Figure A.5. Average evolution of fitness value of instances 2-2-3 (a), 2-2-4 (b), 2-2-5 (c), 2-2-6
(d), 2-2-7 (e) and 2-3-3 (f) for 30 computational experiments using 100 individuals
and 10.000 iterations.
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(c) Instance 2-4-8
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(d) Instance 3-2-4
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(e) Instance 3-2-5
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Figure A.6. Average evolution of fitness value of instances 2-3-4 (a), 2-3-8 (b), 2-4-8 (c), 3-2-4
(d), 3-2-5 (e) and 3-3-6 (f) for 30 computational experiments using 100 individuals
and 10.000 iterations.
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Figure A.7. Average evolution of fitness value of instances 3-3-7b (a) and 4-3-5 (b) for 30 com-
putational experiments using 100 individuals and 10.000 iterations.



Conclusions

• The results obtained by the Hybrid Adaptive Evolutionary Algorithm (HaEa), com-
bined with the proposed operators, as well as the representation of the network as
individual using matrices, have shown that the the proposed technique is capable
of finding optimal and near optimal solutions for the two-stage fixed charge trans-
portation problem.

• Comparison analysis of the results obtained by HaEa showed that the evolutionary
algorithm is very competitive with respect to metaheuristics as Simulated annealing,
Genetic algorithms, Ant colony optimization, Artificial immune system and Sheep
flock algorithm.

• The proposed network representation as individual using a matrix for each stage of
the problem and arrays to manage de balance of the network have proven to be a
good choice given the results obtained by HaEa and the execution time required to
find such results using different population sizes and different number of iterations.

• Execution times of HaEa using other representation were higher compared to the
proposed network representation, reducing execution time of a computational exper-
iment from an hour and a half to half a hour using one hundred individuals and ten
thousand iterations.

• Analysis of the evolution of the operator rates and the evolution of the population
during the optimization process showed the capabilities of HaEa and the proposed
genetic operators. During the optimization process, using ten thousand iterations,
it took HaEa approximately 100 iterations to converge to good solutions. Operator
rates show that HaEa used the crossover operator in a greater extent to converge to
good solutions and combined this operator together with the production mutation
and the distribution mutation to find better solutions in subsequent iterations.

• The statistical analysis of the results not only demonstrated that the algorithm could
improve the solutions found by other methods of solution, but also demonstrated
that, given more resources (fitness evaluations), the algorithm is able to continue
improving the solutions found.

• The Literature review shows the unfair way in which different researchers have been
comparing their results. For this reason, in this Thesis was decided to obtain results
using different population sizes and different numbers of iterations.
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Future work

Literature found on the solution of the fixed charge transportation problem suggest future
research that aims for the solution of larger and more complex models that are closer
to reality. Nowdays,fixed charge transportation problems of more than two stages, that
considers several types of capacities, that transport multiple products are not enough. For
this reason this Thesis suggest some areas for future work:

• Future research can be aimed at solving multiobjective models that describe the
transportation of product in a more realistic way.

• Consider the Hybrid Adaptive Evolutionary Algorithm (Haea) to tackle other prob-
lems related to supply chains and the transportation of goods.

• improvement of the proposed genetic operators as well as the creation of new oper-
ators capable of improving existing solutions for the two stage fixed charge trans-
portation problem and other problems alike.
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