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Esta tesis está dedicada a todas las personas que han

estado conmigo a lo largo de proceso de formación

académica, especialmente mi señora madre y a mi
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Abstract

In the energy supply-demand chain, the connection between generators and load is generally per-

formed by energy retailing companies. As such, they must fulfill the agreements and obligations

signed with their customers by acquiring energy from generation companies and delivering it to

the purchasers with quality and efficiency. In an ideal scenario, the retailer can maximize its oper-

ation’s returns by monitoring energy demand and prices, buying the energy at the lowest available

price and providing the exact amount of energy a given client will consume. However, it is a fact

that power system dynamics are too complex, especially in recent years, when the implementation

of smart grid technologies (such as: renewable and green energy generation, policies to decrease

CO2 emissions and small distributed generators, among others) has increased. Therefore, power

system dynamics and the tools customarily used for power system planning and operation are be-

coming inefficient. As a result, it has become necessary to deal with several technical, financial

and exogenous variables that may have different models and scales in order to improve energy

retail performance; which, in turn, creates the need to propose new models, tools and management

strategies to face the challenges of the emerging power system.

Traditionally, energy retailers reduce operation uncertainties by making use of hedging strategies

and energy portfolio diversification. These strategies require the trade of medium and long term

energy assets. The use of assets such as energy derivatives or generation investments helps retailers

reduce energy price uncertainties but, at the same time, introduces additional costs that must be

considered in the retailer’s cash flow. In the short term operation and planning process, spot mar-

ket is an additional instrument used to buy the energy required to meet inelastic demand or to sell

energy excess. Short term portfolio is considered to be in charge of the market clearing process.

Thus, a short term operation is the realization of the assumptions made within the management

strategy design, and is reflected as positive or negative profits compared with previous cash flow

expectations. Subsequently, tackling the issues of the inclusion of new retailer hedging strategy

dynamics, it becomes increasingly relevant to update traditional management methodologies to

meet future power system requirements and maximize operational returns.

Making use of tools widely used for dynamic problems with high uncertainty levels, constraints

and mixed time scales, this thesis proposes a new energy retailer management strategy. Consider-

ing system load dynamics, a methodology for an optimal generation plan expansion with technical

constraints is used to design a generation matrix; with this result, a medium and long term gener-

ation investment plan is obtained, including an expected system operation schedule. The designed

generation expansion plan provides technical operation parameters that allow for the safe inclusion
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of certain amounts of non conventional generation in the operation. Thereupon, future incomes

and expenses related to planned generation are used to estimate energy prices while providing the

expected energy retailer cash flow. Lastly, from the expected cash flow, a generation budget is

provided to the short term portfolio. This budget is used as economic constraint in the short term

optimization. In turn, this optimization is in charge of managing the joint operation of: generation

plants, alternative generation and energy assets (spot market and forward agreements), to perform

feasible market clearing. The market clearing process is made minimizing the operation costs with

a dynamic optimization, the obtained short term returns become feedback for the estimated cash

flow by measuring the real cash input into the economic balance, and using the profits to pay eco-

nomic obligations of investments made. Interactively solving the entire problem in proper time

scales, an optimal closed loop planing tool for energy retailers is provided. As planning tool, the

proposed management strategy requires the use of forecasted data or scenarios that should be in-

tegrated with power system elements models, economic models and financial functions to reach a

solution. All the aforementioned elements are included in dynamic optimization techniques used

to solve the previously described energy retailing problem in a joint and coordinated way.

Keywords: Portfolio management, Energy markets, Control theory, Optimization

Resumen

En la cadena de oferta y demanda de energı́a, en general, la conexión entre los generadores y la

carga se establece por medio de las empresas comercializadoras de energı́a. Las empresas comer-

cializadoras deben cumplir con los acuerdos y obligaciones suscritos con sus clientes, comprando

energı́a proveniente de los generadores y suministrando la misma con calidad y eficiencia a los

consumidores. En un escenario ideal, el comercializador busca maximizar las ganancias de esta

operación, haciendo seguimiento de la demanda y los precios de la energı́a, se busca comprar la

energı́a al menor costo posible y preveer la cantidad exacta de energı́a que utilizarán los clientes.

Sin embargo, es un hecho que las dinámicas de las variables del sistema de energı́a son demasi-

ado complejas, especialmente en los últimos años, donde la introducción de tecnologı́as de redes

inteligentes o Smart grids (tales como: tecnologı́as de generación alternativas y verdes, polı́ticas

para disminuir emisiones de CO2 , generación distribuida entre otros) va en aumento. Esto im-

plica que las dinámicas del sistema potencia y las herramientas que tradicionalmente se utilizan en

la planificación y operación del sistema eléctrico se están haciendo obsoletas. En consecuencia,

con el fin de mejorar el rendimiento de los comercializadores de energı́a es necesario incluir las

nuevas variables técnicas, económicas, exógenas y escalas de tiempo que pueden tener las nuevas

dinámicas del sistema; se hace necesario proponer nuevos modelos, herramientas y estrategias de

gestión para hacer frente a los nuevos desafı́os que traen las trasformaciones que están sufriendo

el sistema de potencia.
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Tradicionalmente, los comercializadores de energı́a mitigan las incertidumbres de operación ha-

ciendo uso de estrategias de apalancamiento y diversificación de su portfolio energético. Esta es-

trategia de administración requiere hacer uso de instrumentos financieros y derivados energéticos

de medio y largo plazo. El uso de derivados de energı́a o inversiones en generación ayuda a reducir

la incertidumbre de los precios, pero, al mismo tiempo, el uso de estos introduce costos adicionales

que deben ser considerados en el flujo de caja del comercializador. En la operación y planificación

del portafolio de corto plazo de un comercializador, el mercado spot es un instrumento adicional

que se utiliza para comprar la energı́a necesaria para satisfacer la demanda inelástica o vender ex-

cesos de energı́a. El portafolio de corto plazo se considera que es el encargado de igualar la oferta y

demanda de energı́a (Market clearing). Por lo tanto, la operación a corto plazo es la materialización

de las suposiciones hechas durante el diseño de la estrategia de gestión y que se ven reflejadas en

ganancias positivas o negativas que son comparadas con los flujos de caja proyectados durante el

diseño. Por último, para abordar los problemas que implican la inclusión de las nuevas dinámicas

del sistema de potencia en las estrategias de apalancamiento de los comercializadores, se deben

proponer nuevas estrategias de gestión que sean capaces de operar con las futuras tecnologı́as del

sistema y de maximizar los rendimientos de los comercializadores.

Para abordar el problema mencionado, este trabajo propone una nueva estrategia de gestión para

comercialización de energı́a la cual integra herramientas ampliamente utilizadas en problemas

dinámicos con alto nivel de incertidumbre, restricciones y que operan en problemas con varias

escalas de tiempo. La estrategia propuesta, basada en la curva de carga del sistema, soluciona

el problema de planeamiento de la expansión de generación de manera óptima, la metodologı́a

usada incluye restricciones técnicas que se utilizan para diseñar una matriz de generación; con

este resultado, se obtiene un plan que incluye inversiones en generación mediano y largo plazo y

una planeación de la operación esperada del sistema. El plan de expansión diseñado proporciona

parámetros de operación técnica que permite incluir de forma segura una cierta cantidad de tec-

nologı́as de generación alternativa en la operación. A continuación, los gastos e ingresos esperados

relacionados con la generación planificada se utilizan para estimar precios de venta de energı́a y a

su vez el flujo de caja esperado para el comercializador de energı́a. Por último, a partir del flujo de

caja esperado, se crea un presupuesto de generación que se proporciona al portafolio de corto plazo.

Este presupuesto se utiliza como una restricción económica en la optimización de este portafolio.

Esta optimización está a cargo de la gestión de la operación conjunta de: plantas de generación, la

generación de energı́a no convencional y activos financieros energéticos (mercado spot y contratos

forward) para llevar a cabo el equilibrio de la oferta y demanda. Los costos de operación comer-

cializador se minimizan resolviendo la optimización dinámica y ecoómica del balance de energı́a

a lo largo de un horizonte de predicción, los rendimientos producidos en el portafolio de corto

plazo se convierten en una retroalimentación para el flujo de caja calculado; midiendo los ingresos

reales producido se usan las ganancias para pagar las obligaciones financieras de las inversiones

hechas por el comercializador. Resolviendo todo el problema de forma interactiva en escalas de

tiempo apropiadas, se crea una herramienta de planificación optima retroalimentada para comer-

cializadores de energı́a. Como herramienta de planificación, la estrategia propuesta requiere de
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datos pronosticados o escenarios que deben ser integrados con: modelos de los elementos del sis-

tema de potencia, modelos económicos, funciones financieras y técnicas de optimización dinámica

que, operan de una manera conjunta y coordinada para resolver el problema de comercialización

de energı́a descrito anteriormente.

Palabras clave: Administración de portafolios, Mercados energéticos, Teorı́a de control, Optimización.
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1. Introduction

1.1. Context and motivation

Traditional power system models represent involved participants such as: Generation companies

(GENCO), Transmission companies (TRANSCO), Distribution companies (DISTCO) and cus-

tomers (Regulated and non-regulated). The desegregated model presented in figure 1-1 shows a

model of power system markets composed by several companies that may participate in their re-

spective markets: The Generation market is represented by Gn generators, the transmission market

by the possible presence of Tn companies, and then, the retailing and distribution companies are

presented together for the sake of simplicity in the same market as Rn and Dn. They are the com-

ponents on charge of delivering the energy to the customers. Each market has a particular set of

dynamics and models that makes them significantly different, but at the same time, all of them are

strongly correlated as they work together to bring the consumption asset known as energy to the

customers.

Figure 1-1.: Power system business model composed by n Distribution (D), Retailing (R), Trans-

mission (T ) and Generation (G) companies

As an example of possible dynamics involved in one specific problem, [1] details one possible

representation as a causal loop model (shown in figure 1-2) of variables considered to solve a long

term generation planning with stochastic techniques. As it can be seen, the loop model includes a

series of technical, financial, operative and regulatory variables. Each problem variable can be rep-

resented by different models or data and have totally different natures. For example: wind velocity,
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a natural stochastic variable, changes the wind power generation, a technical operation value, and,

in turn, could modify the energy spot price, an economic variable.

Figure 1-2.: Causal loop model for long term assessment in power systems. Taken from: [1]

Analogously, describing the dynamics that surrounds the energy retailing activity in general, and

analyzing the system dynamics from this perspective, retailing companies get the power required

from generation companies or from the energy spot market, as shown in figure 1-3. Omitting trans-

mission companies in charge of big scale energy transport, retailing and distribution companies are

focused on the sale of energy to their customers (classified as regulated and non-regulated), and

their profits are based on the spread produced by the difference between energy buy and sell prices.

An important independent variable in energy retailing processes is related with generation com-

panies. Generation participants consider expected demand and other technical and economic vari-

ables in order to sell or bid their energy production in generation markets. They can sign agree-

ments directly with the non-regulated customers, confer part of their produced energy to energy

retailers, participate in market clearing operations by means of the spot market, or sell their capac-

ity in frequency regulation or system compensations. Generation company profits are related to

production cost and energy demand.

Consequently, regulated and non-regulated customers’ consumption habits creates the energy de-

mand required by the power system. Non-regulated customers are the largest per client consumers,

as big scale industries are characterized by defined operation hours and predictable amounts of

energy consumption. Non-regulated users usually have energy agreements with retailers or gener-

ators, buying future energy with fixed negotiated prices. Non-regulated users represent long term

and stable energy consumption in power system markets and usually get lower prices, thus becom-

ing fixed incomes with low volatility and profits for retailers and generators.

On the other hand, regulated users represent higher expected returns with significantly high volatil-

ity. For an energy an provider, regulated users usually pay higher energy prices, but, their consump-
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Figure 1-3.: Energy retailer interactions in the power system

tion habits are not desirable within generation and retailing companies’ operation plans. Firstly,

as a representation of a significant amount of the average citizens, regulated users present syn-

chronized consumption patterns, creating high energy demand peaks along the day and forcing the

power system to their limits for short periods of times. These peaks force retailers and generators

to ensure a robust system capable of meeting the energy demand peaks is installed.

Despite demand peaks being predictable, regulated users have a high volatility throughout the day

while non-regulated users consume a stable amount of energy, thus forcing generators and retail-

ers to have fast response energy sources available to cover real time consumption spikes and, at

the same time, have cheap base generation technologies to supply steady consumption. In short,

regulated and non-regulated customers are complementary obligations for generators and retailers.

Low prices with predictable consumption habits and high prices with high consumption volatility

forms a system load that demands a complex generation supply plan that needs to be reliable, effi-

cient and with the minimum possible cost in response to a complex dynamic system.

1.1.1. Energy markets future

The power dynamics described previously have been increasing their complexity due to emerging

smart grid technologies. New energy roadmaps are changing traditional power system perceptions

around the world. Current efforts are focused on pollution and green house gas reduction, and pro-

moting a sustainable energy generation matrix. This new scenario is possible by taking advantage

of smart grid promoted innovations, such as: distributed generation, alternative generation tech-

nologies, and demand side management, among others. Emerging power systems are becoming

more eco-friendly. The “100% Clean and Renewable Wind, Water, and Sunlight (WWS) All

Sector Energy Roadmaps for 139 Countries of the World” roadmap is a document, currently

under development, created by a group of researchers from: Stanford university, U.C Berkeley and

the Technical University of Berlin, that review energy roadmaps in 139 countries. The document

has a projected power system growth, as shown in figure1 1-4. The 2012 to 2050 projected power

demand and expected generation matrix presented was obtained from 139 roadmap reviews, and

1Avaliable in: http://web.stanford.edu/group/efmh/jacobson/Articles/I/CountryGraphs/TimelineWorld.jpg

http://web.stanford.edu/group/efmh/jacobson/Articles/I/ CountryGraphs/TimelineWorld.jpg
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shows how alternative generation technologies will completely replace all the fossil, bio and nu-

clear fuels by the year 2050. In the future Wind and Solar generated power will count for 94.5%

of installed capacity. On the demand side, within the projected timeframe, power demand has an

expected growth of 47.50% as raw value (there are power consumption reductions associated with

conversion and use efficiency improvements).

Figure 1-4.: Projected energy supply and demand according Solutions Project from Stanford

roadmap http://tinyurl.com/mcy8lfx , 2015

Nevertheless, high alternative generation penetration implies changes in the entirety of power sys-

tem planning and operation. A wide research field has been created around this. Industry, govern-

ments and research communities are aware of the need to redefine several energy systems concepts.

In [2] an interesting discussion about the previously mentioned actor interactions and their influ-

ence on the power system operation is presented where mixing information could lead to take

better decisions related to the optimal mix of energies; the reader must understand that information

is all the data (technical and economic) related to each generation technology. This information

represent advantages and disadvantages of the technologies, the information cloud be used to find

the optimal mix of generation technologies. This thesis proposes an optimal operation solution

by mixing generation technologies. This proposed optimal solution is different from traditional

technical solutions, as the integration of additional data and models related to new generation tech-

nologies pushes forth a new optimal point. The new optimal defines the perfect solution with a

generation mix that considers, in addition to classic system variables, green gases reduction and

sustainable politics as part of the objective.

In sum, future power system scenarios will be a mix of alternative and classic generation technolo-

gies, as the transitional period towards a future 100% renewable system has begun. All models and

variables of power systems are changing, including energy markets and new management method-

http://tinyurl.com/mcy8lfx
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ologies are necessary to face the challenges that the promise of an eco-friendly future brings with

it.

Figure 1-5.: Fuel mix optimization based on system analysis. [2]

1.1.2. Scope

Now, revisiting our energy retailer operation analysis and considering the described possible future

changes in the power system, changes in the generation matrix and user consumption habits will

be reflected on retailing planning and operation. As it was previously mentioned, energy retail-

ing operations are based on the capacity to obtain cheap energy and sell it to costumers. Facing

medium and long term consumption uncertainties, retailers often makes use of finance derivatives

to minimize their exposure to energy price volatility and availability.

Buying future energy is an effective strategy used to guarantee future operation and avoid losses,

commonly known as hedging. Various hedging strategies can be found within related literaure as

it is a vast and complex financial research field. This paper will consider Back-to-Back hedging

(B2B), a strategy commonly used in the market of commodities, such as energy. In general terms,

in B2B strategy applied to energy as a commodity, energy retailers decide an exact amount of en-

ergy with a calculable price during the negotiation. Price calculation represents the main problem

of this strategy, as the base price is usually attached to spot energy prices. After the price and the

amount is a agreed upon, retailers pay the agreed cost. The downside of B2B is the exposure to a

large volume agreements and liquidity risk. In [3] a complete analysis of the use of commodities

applied to risk mitigation in energy markets suggests a lack of effectiveness in the strategy. It

is out of energy retailers’ control to guarantee promised energy availability, as there is a chance

that the generator decides not to honor signed agreements. Although these failure possibilities are

covered by regulation entities, they are not desirable in planning exercises and future cash flows
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estimations. Furthermore, a future generation matrix will have a high renewable penetration rate,

increasing generation and demand uncertainties interpreted in the energy market as liquidity risk.

In short, traditional hedging strategies applied to energy retailing tasks are becoming obsolete in

the face of future generation and demand scenarios. Obtaining operation reliability and positive

expected returns based on traditional management strategies are emerging as a complex challenge.

It is increasingly relevant to propose new management and planning methodologies capable of

working efficiently with future scenarios and dynamics of the power system. The integration of

different tools used in similar problems could be used to innovate solutions for risk management

and planning operations within energy retailing companies.

1.1.3. Objective

This thesis’s general objective is to propose a diversified planning methodology to deal with energy

retailing portfolio management. Based on hedging strategy, this proposal focuses in the integra-

tion of different financial, technical and economic variables with management models to optimize

energy retailing operations. This work considers simplified versions of the models given that, the

objective is the integration at technical and economic level. Thus this, several assumptions are

made in order to reduce the models complexity. Then, considering future energy market evolu-

tion, an energy retailer portfolio diversification in short, medium and long term systems is used to

minimize risk exposure. In agreement with the reviewed energy roadmaps and global trends, this

proposed strategy has the ability to include alternative and renewable generation technologies into

the equation.

This thesis is the construction of a solution for several problems based on energy retailer diversi-

fication strategy, beginning with an analysis of hedging strategy which has been used in several

applications to minimize risk exposure. In energy retailing, hedging strategy minimizes risk by

means of energy derivatives. The use of derivatives in the retailing portfolio ensures companies

have energy in the future (medium and long term). With a fixed price negotiated in the Over The

Counter (OTC) market, energy derivatives present some risk for energy retailers. By exploring the

derivatives operation, it was determined that the financial assets could be seen as virtual energy

plants.

Consequently, a new portfolio arrangement is proposed in order to minimize the risk exposure of

energy derivatives. This paper explores the opportunity of using investments in generation plants

to mitigate the risk associated with the use of energy derivatives. Participation in the generation

market allows a company to have energy in the future with a known price and avoids the uncer-

tainty related to bilateral price negotiation. Upon this premise, a wide set of new options will be

available for integration to the energy retailer portfolio. Building generation plants within medium

term installation timeframes, such as gas based technologies, represent low installation cost and

medium-high generation cost to the portfolio, and provide fast response to fast load dynamics, in-

cluding the required backup should renewable generation technologies be present in the generation
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scheme. On the other hand, bigger generation plants, such as hydro or coal, present a much higher

installation cost and building time (long term), but the operation costs are low or null. These kind

of plants are used to supply base load energy and their flexibility to deal with fast changes is com-

promised. Finally, to deal with retailer energy market clearing operation, an instant and reliable

energy source is required: the spot market. This asset is in charge of balancing the energy retailer

obligations, but despite being a permanently available energy source, its price is usually higher that

those of energy agreements and the production cost of generation plants. Furthermore, its price

volatility is excessive and makes the asset only desirable for small adjustments in real time hourly

energy demand. The portfolio described used in this paper in order to propose the management

strategy is presented in figure 1-6.

Figure 1-6.: Description of the iterations in the proposed energy retailer portfolio

The presented hierarchical portfolio involves several variables and models with varying degrees

of complexity and different time scales. Exploring the previously mentioned structure and based

on relevant works related to similar hierarchical systems as [4, 5, 6]. The first approach to the

described portfolio was published in [7]. Afterwards, with the models, data and variables required,

a set of optimization techniques were used to solve each problem. Making use of control theory,

this paper proposes an integrated solution for each optimization formulated in a prediction horizon.

Extending the solution to a planning horizon, a planning tool is created. As consequence, the use

of prospective information requires prediction models and future scenarios. As such, proper as-

sumptions and prediction models are used to solve each optimization problem. It is to be noted that

by splitting the management problem in sub-systems, the inclusion or modification and constraints

for each portfolio is simplified. This provides universality to the proposed methodology.

Concerning each sub system solution in this paper, long and medium term portfolios are integrated

by dealing with generation plants investments in order to solve a proposed modified generation

expansion plan problem, the Load Duration Curve (LDC) of an energy retailer is used to calculate

future generation plant investments. With installed capacities, technical operation parameters such
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as ramp velocities and expected plant production schedule as a result, the economic and technical

assumptions and results are discussed, and make two contributions in this section: technical design

parameters that allow the inclusion of alternative generation plants in the generation schedule and

expected returns, plus the option to avoid the use of energy derivatives as hedging assets. The

obtained information is used in the energy retailer optimization to estimate the future retailer cash

flow.

The retailer functions at the top of the hierarchy consider all the economic problem variables.

Expected returns including fixed and variables costs are used to optimize in a prediction horizon

retailer cash flow. Here the use of financial functions such as compound interest, preset value and

loans models are used to determine the best choices related to cash management in the most ac-

curate way. This function is clearly different to other sub systems as it does not include technical

parameters related to energy retailing operations. This fact simplifies the solution and interpreta-

tion if results are used in economic analysis, and the hierarchical structure avoids compromising

detailed information that is contained in other subsystems. Lastly, considering expected generation

schedules with traditional and alternative generation plants, a generation budget is calculated and

assigned to the short term portfolio subsystem. This approach extends the use of this methodology,

allowing for a more detailed solution closer to a daily operation plan. It is not the objective of this

thesis to solve the ideal dispatch problem, but rather the discussion is focused on the economic

postulations made and their impact on the optimization problem.

With the generation budget obtained from the retailer optimization as an economic constraint, the

short term portfolio subsystem optimizes the use of: all available generation plants (any renewable

generation is included in the operation), possible energy derivatives (if included), and energy spot

market transactions. Making use of two short term forecast models to estimate the expected user

consumption and the energy spot price in a time horizon, the optimization maximizes the expected

returns of market clearing operations along the given prediction interval. The optimization results

are a set of control actions that act as feedback in the energy retailer function. Updating and com-

paring the operation results with expected cash flow updates, the real energy retailer returns are

visible. Solving the process interactively, and updating the models and variables in proper times

creates a resourceful optimal solution for the energy retailing portfolio management problem.

In close, the scope of this thesis is the interaction of different subsystems in order to supply energy

with the maximum expected return, minimizing liquidity and operation risks, including alternative

generations. The case study considers Colombian energy retailer data. The future scenarios and

assets used are selected with the purpose of illustrating solution features and the idea may be

applied to any region with the proper modifications. Discussions on the results are focused on

results and assumptions made, avoiding disregard of weaknesses in the solution and providing

future work options to problems detected..
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1.2. Thesis outline

The presented thesis was subject to an earlier review made by an academic committee. Approved

items in the defense that guided the development of this thesis named, Optimal investment portfolio

management with hierarchical control for energy markets are listed under the following hypothe-

sis: It is possible to make optimal management of an investment portfolio composed by stocks with

varying time characteristics and behaviors as an energy market portfolio with smart grid features,

based on hierarchical control theory. The general objective proposed was: To propose a strategy

for optimal portfolio management in an smart grid energy market. Specific objectives considered

in this work are listed as:

• To define the models to be used to represent the portfolio

• To assign the models to each level of the hierarchical structure and to choose the information

to be shared between the layers

• To determine the optimization problem for each level of the portfolio hierarchy

• To validate the proposed portfolio management strategy in a simulated scenario

The development of this document is guided as follows:

• Chapter one introduces the context and motivation of management problems in power sys-

tems. Here, exploring the future of power systems, the scope and objectives of dissertation

are presented.

• Chapter two describes the energy retailing operation then, the management problem is pre-

sented with a description of a standard retailer management strategy. Afterwards with the

problem description serving as a prelude, the state-of-the-art is presented as follows: A

general review of management publication related to energy markets is summarized. Sub-

sequently, considering the gap created with penetration of smart grid technologies retailing

management strategies focused in new markets are reviewed. Last, considering the new

management challenges explored, the use of hierarchical solutions in power systems control

is explored an alternative to solve the energy retailing management problem.

Next, a new proposal for the energy retailer management problem is presented. Assets used

in the portfolio such as: short, medium and long term energy assets including renewable

sources are described. Then, their models and the management strategy based on a hierar-

chical structure are discussed. Later, a management optimization problem is formulated and

extended to a dynamic optimization problem that allows the proposed solution to be solved

in a prediction horizon creating an energy retailer planning tool.

• Chapter three explores medium and long term assets of the energy retailer portfolio. Here,

as part of the management strategy, investments in medium and long tern generation plants

are analyzed and used to solve a modified generation expansion plan problem. This problem
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is used to plan in a prediction horizon the optimal generation mix that will be used in the

energy retailing portfolio.

• Chapter four corresponds to short term assets management problem. Here, a dynamic op-

timization is used to solve a market clearing problem. Proposed optimization, takes into

account medium and long term assets and other short term financial instruments to estimate

expected returns of energy retailing operation. This information is the feedback that provides

to the retailer model returns obtained in the retailing operation.

• Chapter five makes use of models presented in chapter two, three and four to simulate the

management strategy proposed. This chapter is used to discuss final details of model inte-

gration, financial and technical assumptions made and discusses identified drawbacks and

advantages.

• Chapter six presents the conclusions of this dissertation.



2. Energy retailer portfolio problem

2.1. Introduction

Section 1 discussed the impact of the power system evolution and its impact on operation and

consumption habits, and consequently on energy market operations. Considering the detailed en-

ergy retailing problem explained in section 2.2 , this chapter’s objective is to explain in detail the

energy retailer’s function and operation strategies. Then, taking into account future power grid sce-

narios, the state-of-the-art is presented in section 2.3 as follows: First, a review of power market

management strategies is made by providing a context for energy markets management. Second,

considering a power system timescales partition, the relevance of hierarchical structures in power

systems and methodologies used to solve the problem are reviewed.

Afterwards, this thesis contribution is presented in section 2.4.A formal problem statement and

solution formulations are described in this section. In addition, the proposed system data flow

is explained with a work flow diagram, providing a guide to follow the problem solved by each

subsystem and the data it brought, and other systems and their required data as well. As a co-

ordinated strategy, the first problem explained is the system coordinator that corresponds to the

energy retailing model presented in section 2.5. Here, the financial relationship between retailer

portfolio assets (Short term portfolio, presented in section 4 and, Medium and Long term portfolios

solved in section 3) returns are described. The retailer model includes finical functions as present

values in compound interest to estimate present time incomes and outcomes real values. Taking

advantage of generation investments, renewable energy production is included in the model, just

as traditional generation plants, future fixed and variables cost are projected in present time. Short

term portfolio results are used as market clearing instrument, representing the energy operations

(energy sales and production costs) the energy retailer made in the power market.

Finally, section 2.6 describes the optimization equation used to solve the management strategy,

maximizing the expected returns. The optimization problem is used in section 2.7 to formulate the

management problem in a prediction horizon. The dynamic optimization is solved by means of

Model Predictive Control (MPC) theory. The use of MPC allows to include dynamic constraints in

the problem, and combined with financial economic functions that allows to valuate cash flow in

present time and the proper prediction models. MPC provides an optimal planning tool for energy

retailer portfolio management. Lastly, the discussion in this chapter focuses on model assumptions,

how they can be extended or improved, management strategy highlights and downsides, and the

impact of MPC use in the solution and the interactions with the different portfolios shown in
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chapter 5.

2.2. The energy retailing portfolio management problem

Energy retailing operations take place in the middle of the supply-demand relationship between

generators and customers. Generators have several options to participate in the electricity market,

such as: capacities market, ancillary services, transactions in the spot market, and bilateral energy

agreements. The last two operations are significantly relevant for energy retailers. In traditional

energy markets, energy is a not storable commodity which is bought and consumed instantly with

an inelastic demand. Energy retailers must provide, in real time, energy from generators to their

customers. In an ideal scenario, knowing the required amount of energy, the energy retailer could

buy the energy in the spot market and sell it to the customers, earning some profit in the operation.

However, spot market energy prices are highly volatile and lack of energy purchase planning ex-

poses energy retailers to high market risk. Additionally, customer consumption habits are difficult

to predict; regulated user patterns imply a management challenge for the whole system’s operation.

They create short demand peaks that stress the power system capacity, while at the same time, their

consumption habits are variable throughout the year. On the other hand, non-regulated customers

present more predictable assumptions, but usually generators or energy retailers have information

related to the amount and even the operation time of costumers; whereas, non-regulated customers

are used to having lower energy prices. In short, energy retailers face the challenge of providing

an uncertain amount of energy to their clients by buying energy in a highly volatile market. Con-

sidering that energy retailers’ expected returns relies on the price gap between buy and sell prices

they could obtain, their operation needs management strategies that minimize the risks mentioned

before and maximize the expected returns.

In addition to the previously described management problem and considering the future of energy

markets discussed in section 1.1.1, the increase of market uncertainties due to a new eco-friendly

generation matrix should be included in the proposal of energy retailing management strategies.

Now and in the future, the objective is to maximize energy retailer returns while decreasing market

risk exposure in these new scenarios. Traditionally, buying future energy contributes to minimizing

market risk exposure, assuming that the energy retailer only wants to buy the expected energy that

will be used by their customers later. As discussed in section 1.1.2, energy agreements known as

back to back (B2B) are the chosen financial instrument for this task, which provide the forward en-

ergy agreement as result of a bilateral negotiation, where the energy price and the energy amount

are used to calculate the agreement cost to be paid by the retailer. It is a well-known fact that

hedging future energy mitigates market risk exposure. At the same time, some problems related

with strategy effectiveness have been identified: there is a remaining risk exposure to market price,

especially if the acquired energy is purchased in the long term and agreements with considerable
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energy amounts are susceptible to a liquidity risk from generators. A common solution to this

problem was provided by Nobel winner Harry Markowitz in 1952 [8]: diversification. The use

of several energy agreements has been enough to minimize risk exposure in the energy retailing

operation, but this assumption basically requires a measurable or estimated variance of considered

energy assets. This is where the increasing uncertainties of energy markets imposes new chal-

lenges to future retailing management strategies.

Increasing alternative generation sources in the system could reduce firm energy indicators. Many

alternative generation technologies are considered non-dispatchable (or not completely), decreas-

ing the information to predict future availability and, consequently increasing the risk to sign future

energy agreements. Currently, alternative generation plants are included in power system genera-

tion markets by using fast response generations plants or energy reserves as backup. This opens the

opportunity to explore new possibilities in the retailer management strategy, including a renewable

and conventional generation technologies combination in the problem, in order to improve relia-

bility and reduce uncertainties for future energy agreements.

2.3. State-of-the-art

To contextualize the reader and show the precedents of this dissertation, a brief literature analysis

where the research fields involved and their contributions are used to evidence the relevancy of

this work is presented. Making use of Scopus search analysis tools, the keywords: power, energy,

market and management are used to collect some general data about researches made in recent

years. Figure 2-1 shows that around the year 2000, the amount of related research started to gain

more influence and the peak is happening at this moment (2016).
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Figure 2-1.: Historical publications with power energy markets management in Scopus
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By analyzing the described production by publication source in figure 2-2, some interesting infor-

mation allows us to form an idea of how research around the different topics has evolved. Firstly,

between 1990 and 2005, the majority of research published was on:Transactions on Power Systems

and Energy policy. Secondly, with an emerging interest in smart grids, production in all the sources

started to examine growth significantly since 2006; International Journal of Electrical Power and

Energy Systems and Energy suddenly started to increase research in the used keywords. Finally,

starting in the year 2008, Renewable and Sustainable Energy reviews, Energy, Applied energy and

energy policies got sustained and considerable growth rate, especially in Renewable And Sustain-

able Energy reviews which easily overcomes remaining sources. Extrapolating the result of the

combination of the keywords used and the publication sources, it is possible to say that since 2008,

research related to energy management became a relevant and opportune research topic at the same

time as smart gird technologies penetration became a real fact.
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Figure 2-2.: Publications Sources related with power energy markets management in Scopus

Now, considering almost all relevant publications since 2008, this state-of-the-art is presented

as follows: Firstly, retailing related management strategies used in power markets are visited.

Secondly, a review of general applications of hierarchical control in power systems is presented,

exploring this tool as a feasible methodology to counter the needs identified in the management

review. Thirdly, a summary of mathematical tools used in power markets problems is discussed as

context for the solution of problem described.

2.3.1. Energy retailing management strategies

In this section, our objective is to review current power market management strategies focused

on energy retailing. A short brief of the retailing stages is presented in figure 2-3, consider this

figure as a guide to read the next sections related to this energy retailing literature review. First, a
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Before 2000 Financial derivatives
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Long term risks:
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They are not so
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green policies

introduced new
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dynamics in the

retailing process

Models: energy planning, demand forecast

2010-2014

Stochastic models,

neural and genetic

algorithms where

proposed trying to

forecast the future

of the system

Generation planning

2014 – now

Optimal design

Bilateral contracts.

Long term design -

short operation

constraints (GEP)

with renewables

The objective is to

design reliable

generation mix

Figure 2-3.: Brief of state-of-art related to energy retailing strategies

quick review of financial management methods is presented in order to have a general context of

management strategies solutions. The portfolio optimization formulation had its first conveyances

through Harry Markowits [8] in 1952. Markowitz proposed portfolio diversification as the solu-

tion to minimize risk exposure. From that point onward, a whole research topic became an area of

study. Consequent tactics were directed to optimize single-period problems; including the capital

asset pricing model (CAPM) by [9] in 1964. Later on, finance derivatives and hedging strate-

gies gained popularity as computational capabilities began to grow. Black’s zero-beta CAPM and

Black-Scholes model [10] published in 1973 were the beginning of a new financial age. Stochas-

tic methods, probability functions and partial differential equations were used to estimate future

prices and risk in portfolios; from that moment on, financial derivatives have been used as assets in

risk diversification. It wasn’t until early 2000, with the new computational power scenario, that the

use of dynamic tools, such as control theory and dynamic optimization techniques, were used for

portfolio management problems. By allowing for the exploration of these tools in more complex

models, constraints and long term prediction horizons were utilized to find new optimal solutions

to the problem, as can be seen in [11, 12, 13, 14, 15, 16, 17])

In regards to the work scope described in 1.1.2, it is of particular interest to this state-of-the-art

to review market problems that include supply-demand portfolio problems with feasible future en-

ergy scenarios. Considering this, classic energy management related problems will be mentioned

briefly. Extended reviews made between 2000 and 2010 are cited as summary of works made be-

fore the smart grid and green policies influence in energy markets gained significant relevance as

a research topic. This can be seen in figure 2-2. In [18], models such as: energy planning models,
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energy supply demand models, forecasting models, emission reduction models and optimization

models have been reviewed and presented. Linear, non-linear models, econometric and stochastic

models predominate in the review, as well as solutions that mainly focus on linear optimization

methods and a strong component of computational intelligence, such as: genetic algorithms and

neural networks methods. A paper section is dedicated to renewable energy, but focuses on plant

and generation models, but their inclusion in management strategies is omitted. In [19], another

examination related to electricity models is presented, and a series of proprietary models is dis-

cussed. The models discussed are not available in the literature, but in the conclusion section,

the author identifies a lack of integration of ancillary services, energy storage and renewable (all

future incoming technologies in the power system). This conclusion is consequent with [20, 21],

where a full smart grid vision is described in generations, and third and fourth generations men-

tion the relevance of integration of smart grid technologies to energy markets. As presented in the

problem description 2.2, this work focuses on energy retailing portfolio management considered

risk mitigation strategies. Work presented in [3] discusses risk mitigation based in future energy

agreements. It had concluded that the use of energy commodities fails to increase portfolio returns

in an efficient energy market with buy and hold behavior, just like retailer portfolios strategies. It

also concludes that a buy and hold strategy is effective to decrease market exposure risk. The pre-

sented conclusions provide an idea of the hedging strategy deficiency in electricity markets. When

energy retailers buy energy to hold it and use it in the future, they are fixing the future price and

bought energy is probably also compromised to be sold to a fixed price too. Two energy bilateral

negotiations used for market clearing can reduce opportunities to have extra returns, but essentially

the market exposure in this transaction is zero.

At that point, in [22] the optimal design of bilateral agreements for an energy aggregator is ex-

plored. The proposed objective goal is to find a market clearing point by making use of distributed

energy sources and filling grid agreements obligations in a planning horizon; fixing single energy

generation agreements so just one fixed load agreement ensures solution robustness. The method-

ology used in this work considers a prediction horizon in the order of weeks. Each week with

finite time slots, and an aggregator that has a set of generation agreements with a limited amount

of request for each contract. On the demand side, it has a set of signed demand agreements or

grid contracts to meet. The objective is to meet energy demand at the lowest cost. One-to-one

assignations between generation agreements and load contracts is assumed to guarantee solution

robustness. When one or several generation agreements are paired with demand requirements,

assigned generation assets are not allowed to be assigned to other demand obligations until the

specified demand is fully supplied. The end of each generation contract happens when there are

no available movements left. Every week, available generation agreements are provided by an

external factor called mobilization, and is used to simulate distributed generation resource avail-

ability. This scope aims to use a probability function to simulate random generators’ availability,

then make use of an optimization problem which solves a robust market clearing process by using

expected generation sources to serve required energy at the lowest cost possible. A slack variable is
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used to estimate non-served energy, and solving the problem in a prediction horizon with stochastic

programming, a short-medium term operation plan is solved. Finally, the methodology is stressed

upon solving a long term horizon by implying high computational times. The mentioned work

proposes a quite interesting idea: the use of several generation agreements with high uncertainties

to supply load energy agreements. This study shows a new version of hedging strategy. Genera-

tion and demand discretization made with blocks presents an interesting approach reducing system

complexity, allowing for the exploration of different properties and assumptions for each variable.

The drawback in this methodology is the high computational cost implied, and the assumption of

generation agreements with variable availability. This methodology focuses on short term plan-

ning lacking in integration with traditional generation plants and long term variables such as future

expected demand failing in a proper detail level for long term planning.

In [23] short operation constraints are incorporated in long term generations plans, integrating

technical and economic short term variables such as: start-up cost, ramp values, operation cost,

fuel prices and CO2 emissions, among others with long term variables related to generation ex-

pansion plan problem. Various authors make use of case studies using Coal, combined cicle gas

turbine (CCGT), open cicle gas turbine (OCGT), and wind generation technologies to explore, by

means of Monte Carlo simulations, and a set of generation scenarios. Scenarios are solved with

two objective functions: minimum start-up cost and minimum operation cost. Some authors also

solve the problem by including the generation dispatch, but computational costs are too high. Work

just described is a planning tool which integrates short term and long term problems, different time

scales models and the use of the Monte Carlo simulation to deal with a high computational burden

problem. It presents a very nice idea of risk cover as the use of short term technical constrains in

long term problems, creates robust solutions approaching the design to a worst case scenario.

Currently, many authors have been exploring the integration of short term and long term problems

to include alternative sources and manage future uncertainties from the long term side. Long term

markets are focused on infrastructure and long term energy agreements and investments. Having

discussed a few references related to long term agreements, a short review of bottom up solutions

is made next, focusing on long term construction plans, decisions related to investments in power

plants, known as Generation Expansion Planning (GEP) that are often based on the Load Duration

Curve (LDC). Linear optimization models have been already used for a long time to find the ideal

mix of generation technologies meeting this demand. LDC based solutions describe the required

installed generation capacity of each technology and their operating hours, in order to minimize the

total cost, i.e. the investment and operational cost. Since traditional models do not include the vari-

ations of demand over time, they do not take into account the ramping and cycling capabilities of

power plants. However, not including these technical constraints of power systems underestimates

the flexibility needs of the system. This becomes increasingly relevant when facing a rising trend

of renewable generation shares characterized by a variable output profile. Traditional approaches

based on the LDC do not consider the potential value of flexibility provided by different generation
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technologies, and result in a sub-optimal solution. On the other hand, solutions that include these

technical elements require high computational efforts. Secondly, traditional solutions do not take

into account the uncertainty of the demand forecast, resulting in overcapacity or reliability issues

regarding the installed capacity. As a consequence, they lead to sub-optimal investments associated

with the power plant’s long term use. The need to include technical constraints and uncertainty in

the GEP requires the integration of new elements in the generation expansion problem. However,

this increases the complexity of the GEP problem. The same goes for the use of scenarios that con-

sider uncertainty but improve the ability to deal with long-term planning decisions, and provide

robust results in the face of future trends in the power system.

The state-of-the-art in the generation investment problem shows different approaches, taking the

integration of new variables and uncertainties into account. A first set of methods deal with the

LDC model itself. A linear piecewise function is used to represent the LDC, and a residual LDC

is used to integrate renewable sources in the part of the curve where most demand changes take

place [24]. Exploring the LDC from Germany and Britain validates the relevance of the LDC

methodology. The inclusion of technical improvements in the LDC methodology, such as ramp

rates and the maximum on-time of a generating units, is suggested [25]. With a robust optimiza-

tion that includes uncertainty of demand, the price of electricity and generation cost is proposed

in [26]. A second set of tactics deal with the problem of technical integration constraints in the

classical economic generation investment model, i.e. based on the time-series representation of the

demand. The authors of [27] include several additional variables and constraints related with the

power system to solve a single period problem. In [28] a relevant discussion about how dynamic

constraints, such as ramping rates and start-up cost, are changing the optimal point of the classical

generation investment solution is presented. The work stresses the need for methodologies able

to make the solution in a prediction time horizon, also called multi-period solutions. A mixed

solution proposed in [29] considers the integration of renewable generation in the GEP by means

of net demand curves; to deal with prediction errors, an operating reserve constraint is imposed.

The solution includes the ramp rate of the conventional technologies to cover the uncertainty of

the wind generation power.

Finally, a set of detailed solutions make use of stochastic and time series based models to solve the

GEP. A generation plan expansion methodology using a multi-period horizon solved by a bi-level

problem is proposed in [30]. The problem maximizes the investment profits at the top level, and the

second level deals with technical constraints such as: generation and transmission constraints and

load flows. Penetration impact of renewable sources in the GEP is discussed in [31], optimizing a

model that considers all the yearly investments, fixed and variable operational cost, reserve costs

and ramping and start-up costs constraints. The problem deals with a new optimal point to bal-

ance the increasing renewable amount with reserves to meet the system reliability requirements.

Time series and detailed solutions lead to the use of complex methodologies that imply a high

computational cost. New methodologies must deal with a trade-off between the detailed level and
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the required time to solve the problem in a large time horizon. Detail is not always mandatory,

planning exercises and scenarios analysis can use more time-efficient solutions with less technical

and forecast required details.

Concluding this state-of-art section, short and long term variables and models integration is a

promising strategy to face power system uncertainties. Authors are conscious of the big challenge

related to forecast future alternative generation plants. Solving stochastic problems requires big

computational efforts and there is still a chance of error, especially in long term horizons. Thus

this, they are switching to create or integrate traditional generation technologies with alternative

generations by means of technical variables design. Assuming worst case scenarios, and making

designs assuming a maximum uncertain level while making the system reliable in no extreme oper-

ation cases. Nevertheless, integration of deterministic models could be a challenge too, especially

if several time frames are involved. A common practice relies on splitting the problem in several

parts and then integrate solutions obtained under this frame. The use of hierarchical structures

has been used in several problems. An additional section focused in this methodology applied to

power systems is included to explore the integration feasibility to portfolio risk management.

2.3.2. Hierarchical control in power systems

When the use of hierarchies or any distributed system are considered, it is necessary to establish a

system partition, splitting the problem in a set of simple sub-problems that allows for the solution

of each part with specific proper methodologies. In this case, solutions will be handled with con-

trol theory. Now, let’s consider a common partition used to describe the power system taken from

[19]. Here, the time frame is the selection parameter to produce the partition presented in table

2-1. In this table, operation and management processes are grouped by time dynamics, organized

from milliseconds to years. In relation to energy market dynamics: the financial operation and the

dispatch have “very short term” dynamics. Generation plans that depend on demand and weather

predictions are placed in the short term scale. Meanwhile, demand predictions associated with

seasonal generation planning operate in medium term scale. Finally, the generation’s expansion

plans and demand growth are placed in the long term scale. Now, a short review of hierarchical

structures applied in power system, most of which focus on control systems, is presented in order

to explore the tool as an option to propose a new portfolio management methodology.

Control theory has been used widely in power systems problems [6]. It has a particular tool useful

to hierarchical systems: hierarchical control [32]. However, the use of hierarchical control applied

to management decisions structures is new. In [33] a hierarchical structure with Model predictive

control (MPC) is proposed to solve optimal dispatch with a given generation portfolio. In [34], an

energy distribution system with users that have bilateral communication is assumed. Each user can

take energy from the grid or a renewable resource, and the load and generation of the renewable re-

sources is stochastic. The objective is to reach the optimal usage schedule for all energy resources
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Time frame Electricity systems issues Power systems tools

ms/s
Generator dynamics

Motor load dynamics

Transient stability management

Power-frequency regulation

min / 1 hour Demand variations

Very short term

Power interchanges

Economic operation

Frequency control

Economic dispatch

Generation control

Power flow

Security analysis

Fault analysis

Voltage stability analysis

h/days / 1 week

Short term
Weekly generation planning

Demand

Weather prediction

Unit commitment

weeks / months

Medium term
Seasonal generation planning

Demand prediction

Maintenance planning

Hydro planning

Fuel planning

years

Long term

Demand growth

Plant retirement

Investments opportunities

Hydrological cycles

Generation expansion plan

Maintenance

Scenario analysis

Production cost modelling

Table 2-1.: Timescales in power systems management, planning and operation [19]

in the network, minimizing the cost of load supply. This paper also makes a review of the state-of-

the-art related to the integrated management of the energy system. The strategies presented rely

on real-time pricing and distributed generation based on load scheduling, and minimization of op-

eration cost. Similarly, in [35] a hierarchical control structure applied to microgrids is presented,

proposing three control levels or hierarchies for the coordination of a system equipped with dis-

tributed energy sources (DERs). The top level is in charge of handling the microgrid load. The

second level aims to perform corrective actions over the frequency and voltage perturbations. The

third level manages the connection between the microgrid and the interconnected system. In a gen-

eral sense, this control system guarantees a cost-effective and reliable operation of the microgrid,

and can work in coordination with the interconnected system or in island mode. The flexibility of

the system also allows for a faster “black start” of the system, in case of microgrid isolation needs

should the interconnected system become unstable. In relation to the link between power systems

and the energy markets, each part of this system has different characteristics, and some models

have been proposed to integrate the electricity market behavior with the operation of the system.

The use of hierarchical structures to solve mixed time scales problems, most of them technical,

can be used to integrate different financial models and technical constraints, leaving an open field
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of research to improve power systems problems in general.

Throughout this state-of-the-art, several proposals and methodologies to solve problems related

with energy markets management were explored, as well as several mathematical tools involved

in the problem’s solution. Briefly, it is possible to state that the most common ones are: stochastic

tools involving high computational cost and large solution times, computational intelligence in-

volving sub optimal results, and single period and dynamic optimization where the use of quadratic

forms and lineal models constrains are used to improved global optimal. When several time frames

are involved by means of hierarchical structures, MPC theory is usually used to del with the prob-

lem, providing a solution method which integrates several dynamics with linear and no lineal

models and, allows the inclusion of several constraints in to the problem. In this methodology,

results had high dependency of the model’s accuracy. Now, the literature review evidences a lack

in management tools focused on the solution of an integrated and coordinated energy retailer port-

folio. Considering an energy retailer that can participate in the generation market and the basic

portfolio management theory bases, portfolio diversification helps to minimize the exposure to the

particular risk of portfolio instruments and system uncertainties. Basically, risks associated with

energy retailing tasks are: energy price exposure, availability risk and operational risks. Therefore,

a diversification strategy advances to use a mix of energy sources that can be grouped in short,

medium and long term assets to meet the energy retailer obligations and maximize the returns

taking into account technical and financial constraints.

2.4. Proposal for retailing portfolio management strategy

The literature review presented in section 2.3 was used to explore management strategies utilized

to solve energy retailing-like problems. In short, the need for new management strategies becomes

evident when the energy supply-demand problem is considered in a future energy scenario; one

with high renewable penetration and increasing uncertainties. Considering both the traditional and

novel approaches reported, a lack in the integration of new market conditions in traditional man-

agement strategies is perceived. Early efforts were focused to tackle the problem with models and

stochastic simulations. Now, research focused in the retailing problem is trying to reduce system

uncertainties and allow the integration of new technologies by proposing robust designs. This new

approach could help reduce future uncertainties in the power system and improve management

problem.

2.4.1. Proposed portfolio diversification

Revisiting the energy retailing management problem described in section 2.2, management strate-

gies make use of diversified portfolios to reduce the market risk implied in medium and long term
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operation by means of energy hedging. Including future and forward assets in the retailing port-

folio ensures one will have energy in the future (medium and long term time) with a fixed price

negotiated in the Over the Counter (OTC) market. But, at the same time, opportunities to get more

returns are minimized [3] and, too big agreements expose retailers to liquidity and market risk as

well. However, despite these problems energy agreements are used, and it is common to consider

them like virtual generation plants with a defined amount of energy available, including operation

constraints like: working hours, maximum amount per hour, among others, and a given start day.

Exploring this idea led to the question: What happens if the energy retailer includes generation

market participation alternatives in his portfolio? This approach could be used to reduce market

exposure risk related to agreement hedging, as participation in the generation market allows one to

have energy in the future with a known price and avoids the uncertainty related to bilateral price

negotiation based on the underlying asset price. Assuming this, a wide set of integration options

will be available to the energy retailer portfolio, thus increasing the relevance of a new manage-

ment strategy to deal with the new portfolio.

The inclusion of generation plants can be considered as a diversification strategy by means of a

particular version of goods transformation. Generation plants can be considered an intermediate

good that is used to produce energy. Investments in generation plant construction, plus fixed cost

and variable generation expenses, would be considered as the good’s input price, and the output

would be the energy produced, which could be seen as a produced necessity good. Besides, bearing

in mind that there is a wide array of generation technologies, investments made in medium-term

installation time plants, such as gas based technologies, represent an asset with a low initial in-

vestment cost and a medium-high generation cost to the portfolio. Medium-term assets provide,

in technical operation terms, fast response to the front of fast load dynamics, such as regulated

user consumption habits, and cover a needed backup in case renewable generation technologies

are present in the generation scheme. On the other hand, bigger generation plants, such as hydro

or coal, present a much higher installation cost and build time (long-term), but the operation costs

are low or null. These kinds of plants are used to supply base load energy, and their flexibility to

meet fast changes is compromised.

Later, taking into consideration the previously described additional medium and long terms assets,

the energy retailer portfolio conformation is completed including short term assets. This thesis

extends traditional portfolio management strategies by including short term assets in the portfolio,

thus extending the functionality of the proposed management strategy with the following features:

first, the introduction of an optimal market clearing strategy. The use of a dynamic optimization

solved over a prediction time horizon, with market clearing strategy allows for the maximization

of expected portfolio returns making use of the lowest cost energy sources to supply estimated

power system demands. Secondly, an energy market clearing requires an instant and reliable en-

ergy source: the spot market. This asset is in charge of balancing the energy retailer’s obligations.

But while, the spot market is always available as an energy source, its prices are usually higher
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than those of energy agreements and energy produced by owned generations plants, making this

asset only desirable for small, real-time hourly energy demand adjustments. However, including

the spot market asset in the market clearing strategy increases the opportunity to get better re-

tailer returns by buying cheaper energy (when available) instead of using owned generation assets.

Finally, a short term portfolio introduces non-predictable alternative generation as an additional

income. When available alternative energy can be sold immediately, replacing traditional genera-

tion sources, this operation increases retailer returns in a market clearing operation.

2.4.2. Proposed management strategy

Finally, after describing the basics of the financial instruments used to diversify the retailer portfo-

lio and how they are clustered in sub portfolios by time, it is necessary to discuss the integration of

their individual solutions. Grouping portfolio assets by time dynamics increases the optimization

problem flexibility, allowing one to use particular models and deal with particular dynamics and

uncertainties. In contrast, the results of each solution are different too. Especially in relation to

the obtained time frames. As an example: the use of generation plants requires one to analyze

data with a yearly resolution, whereas a market clearing operation makes use of data with hourly

or daily resolutions. Despite this, both problems are part of a bigger one, and share information

and variables. It is here where a coordination function is required. Solving technical and financial

problems in each sub system and exchanging only useful and required information between sub-

systems provides a global integrated and coordinated solution. We present now the first approach

to the described integration, published in [7], in order to explain integration and interactions of the

described systems as part of the proposed energy retailer management strategy figure 2-4, the time

variables: Tl,Tr, Npl
, Npr

and NPs
will we detailed in section 5.

Long and medium term optimization problems, from now on simply called long term portfolio

or long term problem, are the first portfolio optimization solved here; considering as input the his-

torical energy load data the generation expansion plan problem (GEP) is solved. The solution for

GEP considers a set of generation technologies where fixed and variable costs of each generation

technology are used as decision variables to minimize the installation and operation cost required

to supply the expected energy demand represented by the system load duration curve. The problem

solution provides the required installed capacity for each technology and the expected operation in

a year as well. A modified GEP version is proposed in this work, including the generation ramp

velocity into the problem; with this, the solution includes a maximum load change rate for the

designed installed capacity into the problem. Finally, the installed capacities, expected generation,

and ramp velocities for a year are provided for the remaining portfolios as required, as given infor-

mation.

Afterwards, long term data is brought to the coordinator problem. Here, the financial function that

represents the full energy retailing portfolio cash flow considers four issues:
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Figure 2-4.: Proposed management strategy and data flow

First, with the data provided from the long term problem and the financial values of generations

plants considered, the expected incomes and payments are estimated. To do this, it is necessary to

define energy prices that will be used to sell energy to regulated and non-regulated customers, and

assuming that the expected generation schedule from the long term problem is the energy that will

be sold, future incomes are estimated. In the same way, the generation schedule is used to estimate

the production cost for each generation technology. Finally, fixed costs related to operation and

maintenance (O&M) and payments to capacity construction cost are calculated with the installed

capacity value.

Second, take advantage of robust design made in the long term portfolio. Flexibility included

with installed capacity and with ramp velocities is used to include alternative generation in the

generation plan. Assume a minimum daily production for a given installed capacity that doesn’t

compromise system stability. Expected incomes and fixed expenses are calculated analogously to

the procedure made with traditional generations plants.

Third, a financial component is included in the model. The first asset is a risk-free asset that allows

one to store cash with an expected return rate. The second asset included is a loan function that

provides the possibility for making loans, in case it is needed. Last, traditional energy forwards

agreements are also included. Their negotiation is not the subject of this thesis, but are included
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manually into the problem providing a certain amount of energy with a fixed price for a given date.

Forwards cost payments are also included in the model.

The fourth component is related to short term returns. This term objective is the validation of the

assumed expected returns calculated in the portfolio, acting as a system sensor. Expected genera-

tion cost obtained from the long term schedule are calculated and sent as an available generation

budget for the short term portfolio. There, in principle, according to the design made in the long

term portfolio, the market clearing process could be achieved with the installed capacity available,

and the assigned generation budget is enough to cover this operation cost. Now, in market clearing

optimization, all available generation technologies, renewable sources and forward agreements,

including the spot market, are used to meet the real energy demand at the lowest cost. Due to load,

spot price and renewable uncertainties, returns obtained from market clearing operations are dif-

ferent from the ones expected when considering the long term problem. Then, by updating initial

expected returns with market clearing values, energy retailer profits are obtained.

With the cash flow obtained from the interactions between the elements previously described, en-

ergy retailer function maximizes retailer returns, balancing payments of generation technologies

and energy agreements. Here, the management strategy could be modified by a portfolio manager,

taking into account that frequent payments are key items in portfolio performance: High payments

reduce loan and financial fees, decreasing available cash, and extending payments over time in-

creases related fees, but allows for high cash availability. A good management strategy would pay

an initial investment as soon as possible, increasing future incomes before the generation plan’s

life span is over. Solving the problem in a prediction horizon allows a portfolio manager to explore

different scenarios and configurations; therefore, it is necessary to extend the proposed strategy as

a dynamic optimization.

Considering the challenges of solving a dynamic portfolio with several time frames and models,

the use of dynamics system theory becomes relevant. Taking advantage of the time clustering

presented in table 2-1, each portfolio can make use of specific prediction models that enables

their optimization problem in a prediction horizon. This approach is widely used, as shown in

[36, 37, 32, 38, 26], where hierarchical dynamic structures are solved by means of Model predictive

control theory (MPC). MPC theory allows one to solve dynamic constrained problems using the

receding horizon principle which, given a prediction horizon, calculates based on the plant model

forecast ŷ(k+Np) a set of vectors for the future control actions u(k+Np) and the future system

states x(k+Np) solving the optimization problem in the future.

In summary, integrating the facts presented previously in this chapter, a general formulation for

solving the hierarchical energy retailer management strategy was proposed. The management

strategy makes use of MPC to solve three portfolio optimizations, which together form a set of

assets used to minimize the risk of the energy retailer task by using generation technologies as

diversification assets. The problem is coordinated by an economic function that integrates all the
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portfolios models, a distributed structure allows for easy use in each portfolio particular model, in

order to represent several assets including new smart grid technologies and to include particular

forecast techniques to calculate future portfolio actions.

2.5. Energy retailer portfolio with alternative generation

technologies model

Now that the management strategy is explained, the model used to represent the described energy

retailer cash flow Rr(k) is presented in equation 2-1 for a given k time, where: The free risk inter-

est rate r1(k+1) is applied to the available cash Rr(k). Expected returns from medium and long

term generation investments are represented as Rl(k+1), and Ra(k+1) are alternative generation

technologies profits, cost of Na forward energy agreements is represented with ∑
Na

a=1C
f w
a (k+ 1),

v(k) are the transfers made between the loan function L(k+1) and the retailer and, Rs(k+1) are

the short term returns

Rr(k+1) = Rr(k)r1(k+1)+Rl(k+1)+Ra(k+1)−
Na

∑
a=1

C f w
a (k+1)+ v(k+1)

L(k+1) = L(k)r2(k+1)+ v(k+1)

(2-1)

Now, in order to explain all the terms in presented model, let’s first define some global variables

common to all portfolios: Generation technologies considered in the problem are represented with

i = 1...Nt; energy forward agreements are indexed as a = 1...Na, discretization of load values is

made with Nb blocks, where j = 1...Nb refers to each block section (Details are presented in section

3.1).

2.5.1. Medium and long term financial model

Medium and long term variable returns Rl(k+ 1) include the following terms: yearly fixed cost

of generation technologies built C
f
i , installed capacity cost C0

i with a compound interest function

at r3 loan rate and nc compounding frequency. The cost of the availability of Nt generation tech-

nologies is represented with two variables, the sum of installed capacity cost Xi(k+1) which has

a fixed operation and maintenance C
f
i , and incomes related with energy production yi j(k) sold to

costumers with regulated Cr and non-regulated Cnr prices.

Rl(k+1) =
Nt

∑
i=1

yi3(k+1)Cnr(k+1)−
Nt

∑
i=1

yi3(k+1)Cg
i (k+1)+

Nt

∑
i=1

Nb−1

∑
j=1

yi j(k+1)Cr
i j(k+1)

−
Nt

∑
i=1

Nb−1

∑
j=1

yi j(k+1)C
g
i (k+1)−

Nt

∑
i=1

Xi(k+1)C
f
i (k+1)−

Nt

∑
i=1

C0
i (k+1)

(

1+
r3(k+1)

nc

)nck+1
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(2-2)

Medium and long term generation investment returns Rl(k + 1) are presented considering three

energy demand levels: Nb = 3 to represent total demand of the energy retailer in one year, each

j block should get its required energy yi j from i = 1...Nt generation technologies, according to

the solution given by the long term portfolio. The first two levels b = 1,2 correspond to peak

and medium energy demand. Energy supplied in these levels is considered sold at regulated user

price Cr(k + 1) In the same way, energy sold in the third block b = 3 is assumed to be sold to

non-regulated customers with a Cnr(k+1) price. Note that all Nt generation technologies have the

same generation cost C
g
i (k+1).

Related to energy prices, these values are relative to the energy retailer economic strategy or coun-

try regulation and it is out of the scope of this work to model these variables. Thus this, the strategy

allows to import as given data, or to make use of economic functions to establish regulated and

no regulated energy sale prices. Then, if none of these options are available, this work proposes

generic expressions that could be used to calculate the retailing prices. Regulated energy price

could be calculated taking into account expected generation, desired returns or, in this case a sim-

ple approach is made with the mean value of available generation technologies cost C
g
i (k) plus a

spread ∆Cr
i j, defined by the energy retailer. Proposed spread assignation model makes possible to

get different returns according to the demand level where the energy is sold and technology used.

This expression can also be extended as base to estimate no regulated prices. On the other hand,

non regulated energy price also could be assumed with a fixed price result of external politics or

negotiations. General expressions are presented in equations 2-4 and 2-3 and as said they are not

mandatory.

Cr(k) =
Nt

∑
i=1

C
g
i (k)

Nt
+∆Cr(k) (2-3)

Cnr(k) =
Nt

∑
i=1

C
g
i (k)

Nt

+∆Cnr(k) (2-4)

The last term from long term results used in the energy retailer portfolio is generation plant con-

struction cost C0
i (k + 1), a compound interest r3 applied to the cost of the Nt generation plants.

This term is extremely relevant because it represents the cost paid for the ability of produce energy

with a fixed price (plus other fixed values). These payments are usually used in sensibility finan-

cial analysis as “Weighted Average Cost of Capital” (WACC) or “Internal Rate of Return” (IRR)

to determine expected returns and project feasibility, which are not a research subject in this work.

In this dissertation, compound interest function will be used as an estimation function to measure

the impact payments in the cash flow. Also it is possible to consider annualized cost to spread the

construction cost over the plan life span.
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2.5.2. Alternative generation economic model

The alternative generation plant returns Ra(k) representation is analogous to traditional generation

plants discussed before; the difference is that alternative plants are not considered in long term

operation planning due to their generation uncertainties, but their financial costs are included in

the retailer cash flow in order to cover their installation and operation costs.

Ra(k+1) = E pv(k+1)Cr
pv(k+1)−C0

pv(k)

(

1+
r4(k)

nc

)nck

+Ew(k+1)Cr
w(k+1)

−C0
w(k)

(

1+
r3(k)

nc

)nck

−Xpv(k+1)C f
pv −Xw(k+1)C f

w

(2-5)

Alternative generation plants have different assumptions to estimate their expected returns Ra(k+

1). It is a fact that the challenge is in forecasting alternative generation sources i.e: wind and

sun, however based on historical data, it is possible to define an average production that could

be assumed as a daily energy production. Regarding retail prices, instead of using non-regulated

prices, the proposed model is provided with extra flexibility, allowing one to fix a different cost to

alternative energy produced.

2.5.3. Short term economic model

Lastly, short term returns are a balance variable resulting from market clearing operations that use

the previously described generation plants from the short term portfolio. This implies two im-

portant facts: First, a slack variable in charge of financial corrections due to system uncertainties

is represented with v(k+ 1) acting as bank loans with an associated r2(k+ 1) interest rate. This

variable compensates feasible differences between expected and real returns, avoiding insolvency

states. Second, the presented retailing model does not include an explicit spot market asset as a

variable used to perform market clearing. The proposed management strategy assumes that the

energy ∑
Nt

i=1 ∑
Nb

j=1 yi j(k) will be fully provided by the generation plants and forward energy agree-

ments. The expected generation budget Bs(k+1) is provided by the energy retailer optimization

and is given information for the short term portfolio.

Bs(k+1) =
Nt

∑
i=1

Nb

∑
j=1

yi j(k+1)C
g
i (2-6)

Later, when the market clearing process has been made, Rs(k+ 1) will be provided by the short

term portfolio optimization discussed in section 4 where equation 4-23 introduces the model used

to calculate these returns.
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2.5.4. Full retailer models integration

Now, with all model terms explained, the final discussion is: how to deal with time differences

between models? Rl(k+1) is updated with yearly information. However, the GEP problem solved

in section 3 considers an hourly time resolution to propose a robust generation matrix. A designed

generation scheme could meet maximum system load along one year. In other words, by making

use of the extreme hourly demand level as design reference, in theory, the installed capacity is able

to supply continuously the system peak load for each hour in the year. This fact is used to ap-

proach a daily generation budget according to an optimal schedule obtained in the LDC problem.

This robust budget allows one to cover, in financial terms, a full traditional generation scheme,

then, alternative technologies’ contributions represent extra generation incomes to the problem.

As mentioned in alternative model explanation, an average daily alternative generation is assumed,

but, those incomes are not considered in the generation budget, assuming a basic zero generation

cost, and expected alternative profits are just considered in market clearing process, avoiding spec-

ulation in management strategy. Then, the time resolution available to estimate a generation budget

is given between one hour and a year. On the other hand, the short term portfolio manages time

scales between hours and weeks. Considering generation budget flexibility explained beforehand,

it is possible to balance the expected generation budget with short term portfolio resolution and

prediction horizon. Now, with the explained facts it is possible to propose the use of a scale factor

called Tr to balance time differences between long and short variables in retailer model described

as follows:

Rr(k+1) = Rr(k)r1(k+1)+Rl(k+1)+Ra(k+1)−
Na

∑
a=1

C f w
a (k+1)+ v(k+1)

L(k+1) = L(k)r2(k+1)+ v(k+1)

(2-7)

Where:

Rl(k+1) =
Nt

∑
i=1

yi3(k+1)

Tr

Cnr(k+1)−
Nt

∑
i=1

yi3(k+1)

Tr

C
g
i (k+1)+

Nt

∑
i=1

Nb−1

∑
j=1

yi j(k+1)

Tr

Cr
i j(k+1)

−
Nt

∑
i=1

Nb−1

∑
j=1

yi j(k+1)

Tr
C

g
i (k+1)−

Nt

∑
i=1

Xi(k+1)
C

f
i (k+1)

Tr
−

Nt

∑
i=1

C0
i (k+1)

(

1+
r3(k+1)

nc

)nck+1

Cnr(k) =
Nt

∑
i=1

C
g
i (k)

Nt
+∆Cnr(k)

Cr(k) =
Nt

∑
i=1

C
g
i (k)

Nt
+∆Cr(k)

Ra(k+1) = E pv(k+1)Cr
pv(k+1)−C0

pv(k)

(

1+
r3(k)

nc

)nck

+Ew(k+1)Cr
w(k+1)−Xpv(k+1)C f

pv

−Xw(k+1)C f
w−C0

w(k)

(

1+
r3(k)

nc

)nck
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Rr(k+1)≥ 0

L(k+1)≥ 0

Nt

∑
i=1

C0
i (k+1)≥ 0

C0
pv(k)≥ 0

C0
w(k)≥ 0

In short, the energy retailer cash flow model has fixed and variable costs related to short and term

variables. Proper use of a scale factor allows one to adjust and match retailer model time resolu-

tion variables. Then, by modeling fixed variable and installation cost of generation technologies,

a robust generation budget is used to assign financial resources to be managed in a market clear-

ing operation. The integration of a robust generation expansion plan which includes ramping

constrains allows one to provide energy, including some alternative generation. Finally, Market

clearing optimization makes use of all assets available: generation technologies, alternative gener-

ation, forward agreements and spot market to provide operation returns and update the cash flow.

The next step is managing the retailer cash flow described. To do this it is important to identify

which variables can be manipulated. Considering that the investment decisions are solved in other

portfolio and the return came from a different function as well, management strategy must fulfill

the following rules: first, to provide the expected budget needed for generation and market clearing

operations. Second: to guarantee a fixed operation cost from traditional and alternative generation

technologies. Third: to manage payments related to installed capacity construction; this parameter

is subject to manipulation in accordance with particular retailer management conditions. The ex-

pected time used to pay generation investments significantly changes the management cash flow.

Lastly, the retailer function manages loan operations used to cover cash shortages and investments

opportunities. So, taking into account these objectives, the next step is to propose a dynamic

optimization model to solve the cash flow problem meeting all the requirements described before.

2.6. Retailer model optimization

As discussed in last section, it is necessary to maximize the energy retailer profit represented by

Rr(k+ 1) in equation 2-7. Considering manipulable variables, this section proposes an objective

function to manage retailer cash flow by using optimization constraints to meet all requirements

involved. The idea is to illustrate a proposed methodology flexibility by integrating short, medium

and long term assets. This means that other objective functions can be proposed.

Considering generation installed capacity cost as a variable where the amount to be paid is flexible,

those payments are chosen as a manipulated variable to regulate retailer cash flow. Remaining vari-

ables such as: O& M, generation budget, energy prices are not flexible. The equation 2-8 propose
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a financial objective function where C0
i (k),C

0
pv(k),C

0
w(k),v(k) are used as arguments. All of them,

except the energy agreements that are assumed to be paid immediately, have been modified with

compound interest rate (CIR). According to proper financial functions, the use of CIR penalizes

the time used to pay construction investment obligations.

max
C0

i (k),C
0
pv(k),C

0
w(k),v(k)

Rr(k)r1(k)−
Nt

∑
i=1

C0
i (k+1)

(

1+
r3(k+1)

nc

)nck

−C0
pv(k+1)

(

1+
r4(k+1)

nc

)nck

−C0
w(k+1)

(

1+
r4(k+1)

nc

)nck

−
Na

∑
i=1

C f w
a (k+1)+ v(k+1)+

Nt

∑
i=1

yi3(k+1)

Tr
Cnr(k+1)

−
Nt

∑
i=1

yi3(k+1)

Tr
C

g
i (k+1)+

Nt

∑
i=1

Nb−1

∑
j=1

yi j(k+1)

Tr
Cr

i j(k+1)−
Nt

∑
i=1

Nb−1

∑
j=1

yi j(k+1)

Tr
C

g
i (k+1)

−
Nt

∑
i=1

Xi(k+1)
C

f
i (k+1)

Tr
+E pv(k+1)Cr

pv(k+1)+Ew(k+1)Cr
w(k+1)−Xpv(k+1)C f

pv

−Xw(k+1)C f
w

(2-8)

Subject to:

L(k+1) = L(k)r2(k+1)+ v(k+1)

Cnr(k) =
Nt

∑
i=1

C
g
i (k)

Nt
+∆Cnr(k)

Cr(k) =
Nt

∑
i=1

C
g
i (k)

Nt
+∆Cr(k)

Cr
pv(k+1) =Cr

pv(0)

Cr
w(k+1) =Cr

w(0)

Bs(k+1) =
Nt

∑
i=1

Nb

∑
j=1

yi j

Tr

(k+1)Cg
i

Rl(k+1)≥ 0

L(k+1)≥ 0

1h ≤ Tr ≤ 8760h

The presented model accurately maximizes the cash flow available by minimizing loses related

to generation construction rates for one year measured in hours 8760[h] . A trivial solution im-

mediately pays all the generation investments avoiding time penalties. Considering that a trivial

solution is an ideal case, the optimization problem should be solved in a time horizon. A time

ahead solution allows one to consider reasonable payments, improving the management strategy

to real world conditions. Now, as a final step, the proposed management methodology should be

extended with a dynamic optimization methodology.
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2.7. Balancing energy retailer investments with model

predictive control

In order to create a management and planning strategy, the optimization problem must be solved

in a Npr
time ahead horizon. As a dynamic system, the actions taken over by the system variables

will have an impact on the future evolution of retailer cash flow. The objective now is to propose a

dynamic optimal management strategy. The proposed solution must take into account future values

and bring a set of optimal solutions ur(k) for each time, which guarantees optimal sets along the

prediction horizon. To do this, a space state model representation of equation 2-8 is used. ur(k) has

a set of P variables used to represent the control actions over their corresponding states in xr(k),

interpreted as financial actions. The optimization problem is solved by means of optimal control

theory based on the receding horizon strategy. Now, let’s consider a system described by a linear

discrete time model:

xr(k+1) = Arxr(k)+Brur(k)

yr(k) =Crxr(k)+Drdr(k)
(2-9)

where xr ∈ R
nxr is the system states, yr(k) ∈ R

nyr is the system output and ur(k) ∈ R
nur is the

current control vector. Using equation 2-7, the state space representation of the problem is written

as follows:

xr(k) =
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(2-10)

Ar(k) =












INt 0 0 0Na 0 0

0Nt 1 0 0Na 0 0

0Nt 0 1 0Na 0 0

0Nt 0 0 0Na 0 0

0Nt 0 0 0Na r2 0

−1Nt −1 −1 −1Na 0 r1












Br =












−INt 0 0 0Na 0 0

0Nt −1 0 0Na 0 0

0Nt 0 −1 0Na 0 0

0Nt 0 0 −1Na 0 0

0Nt 0 0 0Na 1 0

0Nt 0 0 0Na 1 0














2.7 Balancing energy retailer investments with model predictive control 33

Cr(k) =






−

(

1+
r3(k)

nc

)nck

︸ ︷︷ ︸

Nt

−
(

1+
r4(k)

nc

)nck

−
(

1+
r4(k)

nc

)nck

−

(

1+
r2(k)

nc

)nck

︸ ︷︷ ︸

Na

−1 r1(k)






dr(k) =

[

Cnr(k)−C
g
i (k)

︸ ︷︷ ︸

Nt

Cr(k)−C
g
i (k)

︸ ︷︷ ︸

i∈Nt ; j∈1...Nb−1

C
f
i (k)/Tr
︸ ︷︷ ︸

Nt

Cr
pv(k) Cr

w(k) −C
f
pv(k) −C

f
w(k)

]T

Dr(k) =

[

yi3(k)
︸ ︷︷ ︸

Nt

yi j(k)
︸ ︷︷ ︸

i∈Nt ; j∈1...Nb−1

Xi(k)
︸ ︷︷ ︸

Nt

E pv(k) Ew(k) Xpv(k) Xw(k)
]

The state space model presented in equation 2-9 splits will be used to solve the dynamic optimiza-

tion problem. At the k − th time step, the system output yr(k) is composed by two terms: free

response given by Dr(k) and dr(k) which represents non-manipulable incomes and the cost of the

system. And the remaining term is the forced system response. Now, defining a new optimiza-

tion problem which considers the dynamic model along a NPr
prediction horizon. The optimal

control actions Ũ r
k = {ur(k|k), ...,ur(k+Npr

−1|k)} used to manage the retailer portfolio are ob-

tained. Taking into account the forced dynamic response cost represented by Cr and xr variables,

all represented dynamics involved in a forced system response will be considered to proposed the

economic objective function. In addition, an optional weight matrix Qr is used to penalize changes

in the control variables (if desired). This could be used to implement technical or financially real

constraints such a: penalization for big changes in the control actions to help to avoid unfeasible or

infinite solutions. Then, the problem to be solved in the projection horizon is described as follows:

Then, by extending the dynamic system in the prediction horizon, a new set of variables is ob-

tained. This representation is useful for solving the full problem in one step. And it is widely

used, specially when a problem could become be unstable or unbounded, as is the case where

Cr(k) could grow infinitely. Thus this, let at time step k, let xkr
= [xT

r (k), . . . ,x
T
r (k +Npr

)]T and

ukr
= [uT

r (k), . . . ,u
T
r (k +Npr

)]T are the state trajectory and the control sequences, with Npr
the

retailer prediction horizon and Jecon(xkr
,ukr

) the economic stage cost. The system is subject to

hard constraints on state xr(k) ∈ Xr, output yr(k) ∈ Yr and input ur(k) ∈ Ur for all k ≥ 0, where

Xr ⊂ R
nxr , Yr ⊂ R

nyr , Ur ⊂ R
nur are closed sets. In order to calculate the optimal control solution

ukr
for the energy retailer the cost function will be based on the state space output yr(k) =Crxr(k)

described in equation 2-9 as C̃r(k) = [Cr, . . . ,Cr(k+Npr
)]T , and the economic MPC formulation is

given:

Ãr =
[

Ar(k) ... Ar(k+Npr
)
]

B̃r =
[

Br(k) ... Br(k+Npr
)
]

(2-11)

X̃ r
k =

[
xr

k(k) ... xr
k(k+Npr

)
]

Ũ r
k =

[
ur

k(k) ... ur
k(k+Npr

)
]

(2-12)
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C̃r =
[

Cr
k(k) ... Cr

k(k+Npr
)
]

D̃r
k =

[
Dr

k(k) ... Dur
k(k+Npr

)
]

(2-13)

Q̃r =






Qr ... 0

0
. . . 0

0 0 Qr




 d̃r

k =
[

dr
k(k) ... dr

k(k+Npr
)
]

(2-14)

Finally, with the augmented system, the dynamic optimization problem can be solved for a predic-

tion horizon with following formulation.

max
Ũ r

k

C̃rX̃ r
k +Ũ r

k

T
Q̃rŨk

Subject to system constrains extended along the predicition horizon

xr(k+1) = Arxr(k)+Brur(k)

L(k+1) = L(k)r2(k+1)+ v(k+1) ∀k = 0, ...Np

Cnr(k+1) =
Nt

∑
i=1

Nb−1

∑
j=1

yi j(k+1)Cg
i (k+1)+∆Cr

i j

Cr
i j(k+1) =

Nt

∑
i=1

Nb−1

∑
j=1

yi j(k+1)C
g
i (k+1)+∆Cr

i j

Cr
pv(k+1) =Cr

pv(0)

Cr
w(k+1) =Cr

w(0)

Bs(k+1) =
Nt

∑
i=1

Nb

∑
j=1

yi j

Tr

(k+1)Cg
i

Rl(k+1)≥ 0

L(k+1)≥ 0

1 ≤ Tr ≤ 8760

xr(k) ∈ Xr, k = 0, . . . ,Npr

ur(k) ∈ Ur, k = 0, . . . ,Npr

(2-15)

In short, this chapter discussed energy retailing management objectives and strategies used. Then,

based on the future new power system scenarios and the presented state-of-art of strategies used

was identified that traditional strategies relies on energy forward agreements to reduce portfolio

risk. In trade, this kind of strategy is not always effective to increase portfolio returns. Further-

more, it can be dangerous in some cases, as it creates other risks. To face this, a new management

strategy based on generation investments. Hedging future energy with generation plants allows to

reduce future energy price risk and increase expected profits for energy retailers. Also considering

the generation ramp rate of the generation matrix, the use of alternative generation plants is con-

sidered. Then, a short portfolio is used to estimate the market clearing process. A budget based on
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the expected generation cost of generation technologies available is used to establish a generation

budget that is used in the market clearing process to balance power generation between traditional

and alternative generation plants, some energy agreements and the spot market. By doing this,

retailer returns are maximized. All this process is coordinated by energy retailer cash flow func-

tions in charge of cash flow management, including fixed and variable cost of the retailer portfolio.

Finally, the optimization function is solved by means of model predictive control in a prediction

time horizon, providing a planning tool to be used in portfolio management. Now, the following

chapter explains the solution of the generation investment problem and market clearing process to

finally integrate all solutions in a case study.



3. Medium and long term portfolio

problems

The main objective of medium and long term portfolios in the energy retailer operation is to mini-

mize the operational and financial risk related to energy markets. The energy retailer has the option

to buy energy from the spot market or to buy it through energy agreements. Additionally, if regu-

lation allows it, it is possible to produce one’s own energy by investing in generation plants with

the proper technical and financial assumptions. As mentioned before, the objective is to reduce the

energy market’s risk to exposure. The spot market asset in the long term is not desirable as the un-

certainties related to energy price and availability are too high to be considered. Energy agreements

commonly signed in the OTC market are attached to previous negotiations between generators and

energy retailers. Once signed, energy agreements can be seen as virtual generation plants which

offer a certain amount of energy for a limited amount of time at an established price. Generation

plants can be seen as a variation of energy agreements, where the energy price is determined by

fixed and variable generation costs, and not by a bilateral negotiation. Then, generation plants

produce a limited amount of energy with a price related to the technology used. Using generation

plants instead of energy agreements provides a flexibility in terms of energy dispatch. The energy

retailer can choose according to the price and the load level which plant to use. Furthermore, at a

certain time, the short term portfolio can choose according the spot price, if it is better to supply

the energy from the spot market or not. The described approach makes the problem analog to

the generation expansion plan problem, where based on the system load duration curve (LDC) of

the system, the generation mix is optimized using installed capacity and operation cost, plus fixed

values, to provide energy at the lowest price. This problem has been studied since 1982, and, as

mentioned in section 2.3, is now subject of new research aiming to integrate alternative generation

into the solution. Now, this chapter presents a proposal for the GEP problem and its integration

into the management strategy discussed in this work.

3.1. Load duration curve discretization to estimate future

generation investments

The generation expansion plan problem provides optimal investments decisions based on system

load time series, expressed as the Load Duration Curve (LDC). LDC is a continuous function

D(αn) with 0 ≤ αn ≤ 8760 hours that represents the amount of time a certain electricity demand
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is requested to the power system. With a set of generation technologies, several combinations

of installed capacities can be used to meet the LDC electricity demand. The solution procedure

begins with the LDC discretization (detailed explanations of LDC discretization are presented in

[39]). The objective, as shown in figure 3-1, is to find the minimal cost combination to supply

energy using the installed capacity and energy produced as decision variables.

Figure 3-1.: Generation expansion problem

Several solutions consider a discrete LDC representation to solve the problem, as shown in the

state-of-art. In this work, the proposed block discretization is based on [39] and [40]. Consider-

ing the area below, the D(αn) curve is approached with the sum of several b j blocks where the

discretization parameter is based on temporal decomposition. In figure 3-2 a,b and c, the graphics

illustrate the use of a time axis with αn values as variables to minimize discretization errors ε j. By

minimizing discretization errors, the resulting sets θ j are the width that corresponds to the optimal

time duration of the b j blocks for one year. Then, the height of the b j are the D(αn) function values

represent then maximum required power (installed capacity) for each block.

Then, θ j and D(αn) are used to define the approximation of D(αn) as a discrete function, consid-

ering n a finite number n ∈ R
1 and n ≥ 1 will have an error associated ε and can be expressed
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Figure 3-2.: LDC discretization problem

as:

ε =
∫ 8760

0
D(αn)dαn −

αn

∑
n=1

θnDαn−1 (3-1)

If
∫ αn

0 D(αn)dαn is piecewise approximated with rectangles considering θ j = αn −αn−1 result

preserves the LDC decreasing characteristic. Hence, it is possible to say that:

θαn
D(αn−1)≥ θαn

D(αn−1)−D(αn)

2
(3-2)

Now, the described approximation the LDC block discretization will always be greater than the

LDC function for a finite number of blocks. Providing a confidence interval to generate a maximum

amount of energy offers a robust solution in term of installed capacity. In order to reduce the

associated error minimization and generation capacity oversize, a trapezoid LDC approximation

for the energy blocks is used (see figure 3-3). Finally, the optimization problem is presented in

equation 3-3
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Figure 3-3.: LDC discretization problem improvement

min
αn

[
N

∑
n=1

(αn −αn−1)D(αn−1)−

N

∑
n=1

(
D(αn−1)−D(αn)

2

)

(αn −αn−1)

]

Subject to

0 ≤ αn ≤ 8760

D′(αn)≤ 0

(3-3)

From now on, optimal values that minimize the LDC discretization error, stated simply the optimal

blocks, will be defined as:

θ j = αn −αn−1

b j = θ jD(θ j)
(3-4)

To improve illustrative simplicity, trapezoid areas will be used in this work as rectangles represent-

ing the energy of discretized LDC. Thenceforth, for optimal discrete LDC each LDC block exhibits

the following characteristics: block b3 has the lowest demand uncertainty and the lesser approx-

imation error. From a financial and operative point of view, this block represents non-regulated

users whose consumption is attached to forward energy agreements. This block is usually supplied

with base load generation technologies. Note from Fig 3-3 that the b3 block has a trapezoid b3a

part, and a fixed energy block b3b is usually known as base load in power systems. Block b2 rep-

resents more variable energy consumption, mostly comprised by small factories and the smaller

non-regulated users and residential sectors. Volatility of this block is significantly higher than

block b3 and it is this variability that mostly correlates to regulated user patterns. In addition, b2

block’s energy consumption is usually generated through technologies with affordable prices for

big amounts of energy. But it should also be flexible with a fast response to the load variations.
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Finally, the b1 demand block represents system demand peaks. These peaks’ duration hardly last

more than one hour and their appearances during the day are very few; these facts create a market

opportunity to deal with them, allowing one to cover them with energy agreements or demand re-

sponse strategies. At the same time, it implies a big operation challenge for generators and system

operators stressing the power system to its production limits. Finally, figure 3-4 represents in the

short discretization proposed including ∆p values discussed in next section.

Figure 3-4.: Discretized LDC graphic explanation

3.2. Ramping velocity constraint in generation investments

planning

The LDC discretization proposed in section 3.1 could be used to analyze each block data sepa-

rately. In order to explore this, considering discretized blocks as clusters to group dynamics of

energy presented in the LDC, this information can be used to improve the LDC problem. Recently,

smart grid technology penetration has increased system dynamics. Faster and bigger changes to

the generation and load time series have been evidenced. This fact is not new on a smaller scale

and had been tackled, compensating these changes with generation technologies and their ramping

velocity. Due to this, it’s common to use terms like “fast and slow generation technologies” to

refer to them. Consequently, by exploring the time series dynamics and generation ramp velocities

relationship, this work focuses on a general methodology to improve the LDC problem, including

technical constraints into the optimization problem. By doing this, it would be possible to design

optimal generation solutions able to meet specific load change requirements. One possible applica-

tion of this methodology leads to the safe use of alternative generation plants. Covering alternative

generation plants with fast generation plants allows the system to back up their uncertainties for

short times while a bigger plant compensates the power balance.
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The hypothesis is: Considering a Nt set of generation technologies, it is possible to mix them

taking into account the ramp velocities in an economic diversification approach in order to meet

load changes. Including this technical constraint in the GEP creates a new optimal design that will

meet operational constraints at the lowest cost. Now, consider that every load change ∆p requires

a change in the operational point of one or several power plants to produce the required energy

compensation ∆y. It is possible to establish that the ideal market clearing operation is ∆p = ∆y

for each t. And, considering a power generation set with Nt generation technologies available,

it is possible to meet the operation changes in the system with a mix of the capacities of each

technology represented as a weighted sum, where λi is the participation of the i− th technology in

the power change and Vi the ramp rate of each technology:

∆p =
Nt

∑
i=1

λiViyi (3-5)

With the weighted generation portfolio approach formulated in equation 3-5, it is possible to extend

the diversification approach for each b j block including ramp velocity constraint in the whole LDC

and GEP. This work will use the load time series analysis described in section 3.3 to find the ∆p j

values for each Np demand level. These values will be used as the minimum ramping value that

the solution must guarantee (see equation 3-6) to meet the technical design parameter imposed.

∆p j ≤
Nt

∑
i=1

Nb

∑
j=1

λi jVi (3-6)

3.3. Methodology to determine ramping values in

generation expansion problem

In order to identify the ∆p value in each demand level proposed, the methodology calculates the

time ahead load time series derivative. Then, used LDC time series is matched with each demand

level obtained in section 3.1, (see figure 3-5).

Derivatives of each block are shown in figure 3-6. Finally the ∆p j values are obtained from the

maximum derivative value for each block and presented in table 3-1. A comparison between the

identified and the maximum ∆p j values for each demand level is shown in table 3-1. The maximum

∆p j values are the biggest change possible defined by the b j block size.

The obtained ∆p j values presented in table 3-1 evidences that ramping results are highly dependent

on LDC discretization. However, considering that LDC is commonly split into base, medium and

peak loads, recent works such as [29] focus on the medium section of the LDC to integrate fast and

renewable and non-renewable technologies as a complement in this region. The presented analysis
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Figure 3-5.: Discretization levels and time series match for energy load from EPM retailing com-

pany - 2013

Max ∆p j [MW/h] Derivative ∆p j [MW/h]

Block 1 62 53

Block 2 716 422

Block 3 136 136

Table 3-1.: ∆p j values for each block

results are aligned with other works identifying b2 as the most variable LDC region.

Now that the derivatives for each block are identified, a comparison between the load derivatives

with some generation technologies’ ramp velocities is presented in figure 3-7. The figure includes

the percent of occurrences of load peaks exceeding ramp velocity, presented in section 3.4.1, in one

year. It is important to note that the methodology used for this comparison considers hourly change

values. Therefore, it was necessary to scale each technology ramp value Vi from minutes to hours;

so the comparison made contrasts hourly changes against the maximum possible compensation

for each technology. Then, approximately 91.7% of hourly changes could be covered with Coal

generation. 8.04% could be fulfilled with CCGT velocity. Finally, 0.2% exceeds COAL and

CCGT capabilities, and OCGT is the remaining technology considered in the set that could meet

these changes. Note that including OCGT provides extra flexibility to the demand of the system
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Figure 3-6.: Matched block derivatives

changes.

In short, a comparison between load changes and generation ramp velocities gives us an idea of a

generation mix that includes system flexibility. Now the challenge is to integrate this results in the

GEP solution.

3.4. Generation expansion problem with ramping

constrained model formulation

With the ∆p j values for each demand block, the next step is to find the optimal combination

of generation technologies to supply at the lowest cost taking into consideration ramping con-

straints. The equation (3-6) allows one to diversify generation technologies considering ramp

velocities by means of λi j values. In order to meet energy and flexibility criteria, each demand

level of discretized LDC will integrate velocity constraints. This is made by balancing the gen-

eration mix of each block combining expected energy required with yi j with λi j values. The

∑Nt
i=1 ∑Nb

j=1 yi jλi jθ j = b j equality guarantees the required energy in each block. The dynamic con-

straint ∑Nt
i=1 ∑Nb

j=1 λi jVi ≤ ∆p j puts the desired operative level for the ramping combination in each

block. Finally, considering 0 ≤ yi j ≤ xiλi j the operation of each plant and the installed capacity

are also restricted by λi j variables. This constraint, joined with ∑Nt
i=1 ∑Nb

j=1 yi j ≤ xi, extends the λi j

impact to the installed capacity variable. Now, in order to compare the proposed and referenced
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Figure 3-7.: Derivative and ramp velocities comparison

approach, reference for used variables is presented in table 3-2, and classic and dynamic formula-

tions are presented in the equation (3-9), as follows:

Variable Name Unit

i = 1...Nt Generation technologies

j = 1...Nb Discretized blocks

ci Annualized installation cost
[

$
kW

]

fi Operation cost
[

$
MW

]

xi Installed capacity [kW ]

yi j Technology use [MW ]

θ j Block duration [h]

b j Maximum required energy [MWh]

∆p j Maximum power change
[

MW
h

]

λi j Velocity weight [%]

Table 3-2.: Variables description of the load duration curve optimization problem
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Lets define common variables for each problem as follows:

xl =
[

x1 ... xi y11 ... y1 j ... yi j λi j ... λ1 j ... λi j

]T
(3-7)

xl represents the system variables: installed capacity, use of each technology and the weights of

the dynamic solution for each technology.

Cl =
[

c1 ... ci f1θ1 ... f1θ j ... fiθ j 0i j

]
(3-8)

Cl represents the solution cost for one year. The ci values represent the annualized installation

capacity and fixed operation cost for each generation technology, fi represents the sum of the

operation and maintenance (O&M) cost and the fuel cost for each technology. The use of the

annualized costs shares the installed capacity price over the life span of each technology. Note that

the cost of λi j values is zero. In order to compare the classic and the ramping constrained models,

the same cost function is used. Then, the models used to solve the GEP are presented:

Economic solution

min
xi,yi j

Clxl

Subject to:

Nt

∑
i=1

Nb

∑
j=1

yi j ≤ xi

Nt

∑
i=1

Nb

∑
j=1

yi jθ j = b j

0 ≤ xi ≤ ∞

0 ≤ yi j ≤ ∞

Ramping constrained solution

min
xi,yi j

Clxl

Subject to:

Nt

∑
i=1

Nb

∑
j=1

yi j ≤ xi

Nt

∑
i=1

Nb

∑
j=1

yi jλi jθ j = b j

Nt

∑
i=1

Nb

∑
j=1

λi jVi ≥ ∆p j

0 ≤ yi j ≤ xiλi j

0 ≤ λi j ≤ 1

(3-9)

Classic economic solution and the proposed ramping constrained solution are compared in equa-

tion 3-9. Note that when λi j = 1 leads to the classic formulation, this particular solution appears

when all generation technologies are fast enough to meet ∆p j requirements.

3.4.1. Case study

In order to compare presented models, an application case with four scenarios is proposed based

on data used in section 3.3. The data represents 2013 load data from one of the biggest energy re-

tailers from Colombia. The data is composed by regulated and non-regulated users, as renewable

generation technologies are not mature in the market, nor is demand response or similar strategies.
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Generation technologies used in the problem, presented in table 3-3 were selected to form a com-

petitive set of technologies in terms of cost and ramping rates: a slow base load technology and

two fast technologies are used. Big installed capacity prices imply low generation cost and a slow

ramp rate, whereas fast generation technologies had smaller installed capacity cost with higher

operation cost and ramp velocities.Next technical values, presented in 3-3, are taken from [31] and

[41].

Gen.

Tech.

Capital

Cost

Fixed

Cost

Variable

Cost

Life

Span

Ramp

Rate
[

$
kW

] [
$

kW

] [
$

MWh

]

[years]
[

MW
min

]

Coal 1700 34 5 40 4

OCGT 486 12 15 20 10

CCGT 855 21 10 30 6

Table 3-3.: Generation technologies cost and operational variables used in the problem

Thenceforth, test scenarios based on the 2013 load data shown in figure 3-8 and three additional

artificial scenarios are created. It is importante to mention that each called scenario represents

an energy demand condition, and they are considered as a sequence along the time horizon. The

first scenario is taken from the demand time series presented in figure 3-5, and the demand levels

obtained from the discretization presented in section 3.1. The ∆p values of the first scenario cor-

respond to the values presented in table 3-1. This scenario will be used as reference for following

proposed scenarios, with the objective being to simulate particular or extreme conditions to stress

the proposed solution.

The second scenario presents a 10% growth in all blocks for b j and ∆p values. Assuming a posi-

tive development in the country, this scenario reflects a stable economy where regulated and non-

regulated users have increased their energy consumption, raising as well the uncertainties and

demand peaks for each in the LDC. Usually this growth is estimated based on the country’s Gross

Domestic Product (GDP) and related economic variables.

The third scenario assumes an additional 10% increase in block 1 and a 30% reduction in block

2, pushing the hypothetical case of high load peaks and uncertainties in the operation. This sce-

nario could be the product of high penetration of distributed PV or wind generation in regulated

costumers, reducing their consumption throughout the day (in block 2), and shifting their uncer-

tainties to peak demands, assuming high concentration of the alternative generation in particular

regions with similar weather conditions.

Finally, a fourth scenario simulates a 10% growth in block 3’s load. Keeping previous values in

blocks one and two, the simulated increment in block 3 assumes a non-regulated user expansion.
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This could be the most optimistic and demanding scenario, as high renewable penetration increases

system uncertainties and non-regulated user consumption requires a solid firm generation.

The described scenarios are used to represent hypothetical situations on the LDC. They don’t

necessarily take place every year. However, these scenarios are useful to push extreme situations

on a design strategy, allowing one to look several years ahead in the generation expansion planning

problem.
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Figure 3-8.: Proposed changes in the LDC values. Each step is an independent energy requirement

along a time sequence

3.4.2. Economic and ramping constrained comparison

The presented results will compare a traditional economical LDC solution that lacks of ramping

constraints and the ramping constrained LDC methodology described in section 3.1. Making use

of the LDC hourly time resolution and matching the generation ramp velocity units to LDC time

frame, a robust solution which provides the optimal economic combination of generation technolo-

gies to meet a yearly energy demand with a low computational demand is obtained.

Solving for the same LDC scenarios equations presented in 3-9, installed capacities for each solu-

tion are presented in figure 3-9

Yearly use of each technology per block are presented in figures 3-10 and 3-13 for classic and

ramping constrained solutions respectively. Starting with scenario 1 (S1) results, traditional model

without ramping constraints and the proposed ramping constrained model provides the same solu-

tion for installed capacity and use: a base load technology operating in b2 and b3 energy blocks,

which has the higher energy demand. An OCGT generation plant is the choice for b1 block, pro-

viding the energy with a higher cost but the lowest install capacity cost. In this solution, the same

technology mix meets the ramping requirements. Then, in scenario number two (S2), the classic
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Figure 3-9.: Traditional and ramping constrained installed capacities for each scenario

solution increases the installed capacity proportionally to the power increase required in the sce-

nario. The lack of ramping constraints make the solution blind to the dynamic changes of demand.

In contrast, a noticeable change in the generation mix is made by the ramping constrained solu-

tion in scenario two (S2) where the demand increment is supplied by using a mix between OCGT

and CCGT, where CCGT is used to replace base technology instead of Coal (see figure 3-10) S2

column for each technology; this dramatic change it is not desired in real operation and will be

addressed in next sections. This change increases the solution’s operative cost but represents the

lowest possible cost to meet the ramping requirements. With this result, a trade-off between ca-

pacity and system response flexibility has been demonstrated. Subsequently, in scenario three,

a small increment in both solutions in the OCGT technology covers peak increment induced in

block 1 when energy required in block 2 was reduced; this suggests that the simulated load shift

of scenario 3 could be managed by means of fast generation technologies. Finally, in the fourth

scenario, the classic solution compensates base block b3 increment by increasing Coal installed

capacity as base generation technology, while the ramping constraint methodology decides that it

is better to increase Coal installed capacity covering power required in all b j blocks. This scenario

suggests an interesting result covering all system demand with Coal, showing again a tradeoff

between installed capacity and system flexibility.

From previous results, the proposed solution is very sensitive to increments in ∆p values. GEP

solutions could be dramatically different between classic and proposed models. Therefore, con-

sidering that in real applications strong changes in installed capacity are not desirable, the next

step is to stabilize the ramping constrained model solutions. This can be made, analogously to real

operation, considering previously installed capacities in each solution. Establishing this consid-
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Figure 3-10.: Traditional solution use for each scenario
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Figure 3-11.: Ramping constrained solution use for each scenario

eration, the obtained solutions could restrict negative installed capacity changes and avoids false

economic results, such as: ignoring long term planning fixed maintenance and operation cost of

generations plants that could not be avoided. Nevertheless, if the problem solution decides that a

specific generation technology will not be used in the operation, the generation variable could be

used to discard the technology keeping the installed capacity considered in the problem. In order
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to deal with aforementioned problem, it is necessary to solve the GEP in a prediction horizon that

allows one to use previous system states as the initial condition.

3.5. Planning generation investements with Model

predictive control

The solution for a generation investment plan in a prediction time window is increasingly relevant

as mentioned in [28]. The inclusion of variables such as: renewable sources, demand growth and

new power system driving variables make it necessary to deal with power system future scenarios.

In section 3.4.2 the need for a solution to a proposed modification of the GEP plan in a plan horizon

considering previous state values was mentioned. Now to tackle these problems, the MPC is con-

sidered a well-known tool to solve constrained linear and non-linear problems that is flexible and

can handle this emerging problems. To create an optimal generation planning tool, this work im-

plements an MPC controller using the receding horizon strategy to solve the ramping constrained

model. An MPC-based solution calculates the optimum values for the GEP along an estimated or

forecasted demand values. Using the model proposed in equation (3-9) as an economical objective

function, and including the proper constraints, the optimum solution considers the time ahead data

of the system. The MPC solution allows one to significantly improve the optimization results in

planning terms. Optimal solutions now consider the previous state as the initial condition and at

the same time optimizes the future values according to the scenarios provided. To do this, let’s

consider a system described by a linear invariant discrete time model:

xl(k+1) = Alxl(k)+Blul(k)

yl(k) =Clxl(k)+Dlul(k)
(3-10)

where xl(k) ∈ R
nxl is the system states, yl(k) ∈ R

nyl is the system output and ul(k) ∈ R
nul is the

current control vector. Using equation 3-6 the state space representation of the problem for i =

1...Nt generation technologies and a LDC discretized in j = 1...Nb blocks can be written as follows:

xl(k) =
[

x1 ... xi y11 ... yi j λ11 ... λi j

]T
(3-11)

As mentioned, infrastructure investments had a natural condition for the xi variables: they cannot

decrease. Negative changes in the installed capacity would mean a “destruction” or aging of the

plant. This, in real operation, implies a plant shut down or decrements in plant efficiency. In this

work, negative values are not considered; plant aging is minimized, considering the maintenance

cost in the fixed operation cost. However, the aging parameter can be easily included in the space

state model.

ul(k) =
[

ux1 ... uxi uy11 ... uyi j uλ11 ... uλ i j

]T
(3-12)
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The ul(k) vector represents control actions taken to modify xi variables. uxi are the decisions taken

to increase installed capacity. uyi j the expected use of generation technologies and uλ i j the weights

of generation technologies according to ramp velocities. The interactions between xl(k) and ul(k)

variables are described for the Al and Bl matrixes as follows:

Al =








1 0 0 ... 0

0
. . . 0 ... 0

0 0 1i ... 0

0 0 0 ... 0








(3-13)

Al represents the states evolution. Thus, the installed capacities are the only variables considered

persistent in the system (integration variables). The installed capacity at step (k+1) depends only

on the previous state (k) and the u(k+1) control actions explicit in the Bl matrix.

Bl =






1 0 0

0
. . . 0

0 0 1




 (3-14)

The Bl matrix indicates the relationship between the control actions and the variables. In this case,

there is only the direct influence of each control variable over its corresponding state.

Cl =
[

c1 ... ci f1θ1 ... f1θ j ... fiθ j 0i j

]
(3-15)

Vector Cl is the same as described in equation 3-8. The use of the same cost vector in all optimiza-

tion cost functions allows one to directly compare the results of the methodologies exposed. The

relationships related to the constraints are explicit in the MPC as hard constraints. Changes in the

model output as a consequence of the control actions are not considered, therefore D = 0. Now,

with the dynamic state space system written, the traditional economic MPC problem is defined as

follows:

min
ukl

Jecol(xkl
,ukl

)

subject to:

xl(k+1) = Alxl(k)+Blul(k)

yl(k) =Clxl(k)+Dlul(k)

xl(k) ∈ Xl, k = 0, . . . ,Npl

ul(k) ∈ Ul, k = 0, . . . ,Npl

(3-16)

At time step k, let xkl
= [xT

l (k), . . . ,x
T
l (k+Npl

)]T and ukl
= [uT

l (k), . . . ,u
T
l (k+Npl

)]T are the state

trajectory and the control sequences, with Npl
the long term prediction horizon and Jecol(xkl

,ukl
)
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the economic stage cost. The system is subject to hard constraints on state xl(k) ∈ Xl , output

yl(k) ∈ Yl and input ul(k) ∈ Ul for all k ≥ 0, where Xl ⊂ R
nxl , Yl ⊂ R

nyl , Ul ⊂ R
nul are closed

sets. The objective functions of equation 3-9 where clearly a linear states combinations; using the

MPC methodology, great flexibility in the objective function is available. In order to calculate the

optimal control solution ukl
the cost function will be based on the state space output yl(k) =Clxl(k)

described in equation 3-10 as C̃l(k)= [Cl(k), . . . ,Cl(k+Np)]
T , and the economic MPC formulation

is given:

min
ukl

Npl

∑
n=0

C̃l(k+n)xkl
(k+n)

subject to:

xl(k+1) = Alxl(k)+Blul(k)

yl(k) =Clxl(k)+Dlul(k)

Nt

∑
i=1

Nb

∑
j=1

yi j(k+n)≤ xi(k+n)

Nt

∑
i=1

Nb

∑
j=1

yi j(k+n)λi j(k+n)θ j = b j(k+n)

Nt

∑
i=1

Nb

∑
j=1

λi j(k+n)Vi ≥ ∆p j(k+n)

0 ≤ yi j(k+n)≤ xi(k+n)λi j(k+n)

0 ≤ λi j(k+n)≤ 1

(3-17)

3.5.1. Model predictive controller results

Making use of the described dynamic solution, generation investment planning tool results are

presented. As designed in the A(k) matrix, the MPC should keep the installed capacity between

scenarios and increase the values if needed. In order to compare solutions obtained with the ramp-

ing constrained model and MPC solutions, installed capacity results of both solutions are presented

in figure 3-9. First scenario (S1) has the same installed capacity for all the solutions (including the

classic approach). Then, considering previous installed capacities and, according to dynamics im-

posed (energy demand and dynamics are increased) with proposed scenarios, the MPC solution

manages the installed capacities as follows: In scenario two (S2), imposed load increment is sup-

plied with a generation mix that effectively combines Coal, OCGT and CCGT. A small increment

in COAL and OCGT installed capacities is applied, and CCGT install capacity appears in the opti-

mum mix. Compared with Coal installed capacity, OCGT and CCGT installed values suggest that

they will be used to compensate imposed load changes ∆p j rather than be used as base generation

technologies. Hence, the MPC solution effectively balances previous installed capacities and their
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ramp velocities with new requirements meeting imposed conditions keeping installed capacities

investments bounded. Scenario three and four require less energy than scenario 2, so an installed

capacity increment is not expected, as these scenarios are designed to stress system flexibility and

their effects in the GEP problem can be seen in the expected use of each technology.
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Figure 3-12.: MPC solution install capacity for each scenario

Then, with the MPC results from figure 3-12 previous installed capacity values xi are considered in

following interactions. When a previous installed capacity is already built, the optimization has the

choice to turn off a particular technology, making its generation yi j = 0, and pay the fixed O&M

cost and which they are not eligible. Thus, these results will be more focused in figure 3-13, which

presents the use of the above mentioned installed capacities.

The MPC expected use in first scenario (S1) makes use of available technologies: Coal and OCGT

to supply energy demanded. Then, the second scenario (S2), due to an imposed increment, de-

creases Coal generation in block three and at the same time introduces CCGT; this change balances

block three’s required energy using Coal as base generation and CCGT to cover the load changes

increment. This result determines the effectiveness of diversification strategy in the generation

mix. Then, blocks one and two present just an increment in energy generation with available tech-

nologies used in previous scenarios pointing out that used technologies are still able to manage

load changes present in this scenario.
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Figure 3-13.: MPC solution use for each scenario

The third scenario (S3) presents an interesting solution for required energy, highlighting utility of

the diversification strategy between blocks. An imposed load shift from block two to block one

enabled MPC to take advantage of released energy to balance the new operation point with recently

released resources. Note how Coal energy production for block 1 in S3 is bigger that OCGT energy

produced in S2, while energy in block two decreases from S2 to S3. This solution meets the block

one ramping constraint and energy demanded with coal. The use of Coal in all blocks improves

the generation cost while the ramping constraint condition guarantees safe system operation.

The fourth scenario (S4), where the solution is stressed increasing load and dynamics in block

three, is managed by the MPC by switching all the Coal installed capacity to supply energy in

block two and three while CCGT is used to replace Coal energy in block one. Again, ramping con-

straint allows for safe supply of energy in two blocks with Coal as the cheapest solution available;

then, block 1 is fully supplied with CCGT as the following cheaper technology able to manage the

expected load changes.

In short, this chapter explored the GEP methodology. Using the load time series derivative com-

bined with LDC discretization, a technical constraint which combines available energy technolo-

gies to meet a minimal system flexibility was added to traditional GEP formulation. Then, using

MPC theory to solve proposed GEP with ramping constraints, a generation expansion plan and use

tool was obtained. This tool considers previous installed capacities and solves the GEP problem
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adding additional installed capacity if required, and minimizes the operation cost while meets a

technical robust design. Introduction of flexibility metrics in generation design opens the opportu-

nity of safe integration of alternative generation. Considering that their lack of reliability as firm

energy generators could be seen as load changes in the load time series and the design operation

constraints imposed could bring safe operation values for a certain amount of alternative genera-

tion installed. This methodology relies on expected scenarios provided. These scenarios could be

made with expected assumptions or expert knowledge, but could also be made with models or load

prediction procedures. In any case, scenario design could be made off-line and provided to this

methodology represented as Nb energy blocks with ∆p j maximum change.

3.5.2. Chapter brief and conclusions

This chapter discussed the traditional solution based on the load duration curve used to optimize

the generation plants mix that supplies the costumers required energy. The traditional static model,

used to find the minimal operation cost based on the plant’s economic costs optimization, is im-

proved including a technical constraint related to the ramp velocity of the generation plants. This

constraint, avoids to under estimation of the generation mix flexibility in front of the load changes

presented in the daily operation. Afterwards, the new proposed model is dynamically solved by

means of a model predictive controller. The proposed dynamic solution finds a new optimal so-

lution of the generation expansion. problem. The new solution minimizes the installation and

operation cost along a prediction horizon and, at the same time, meets the imposed ramping tech-

nical constraint. The new proposed solution makes evidenced that the installed capacities values

of the generation plants are more stable along the time and, the economic operation is achieved

by changing the operation times of the available plants. The dynamic solution in addition to the

technical constraint included made a contribution in the state of art of generation planning problem

published in the paper [42].



4. Short term portfolio problem

The short term portfolio is on charge of a critical part of the energy retailer operation: the market

clearing process. Short term portfolio must manage all the retailer’s energy sources in order to

meet energy agreements signed with no regulated costumers and the volatile regulated users de-

mand.

In a typical situation, energy retailer would have several energy sources available to choose includ-

ing the spot market. Thus this, short term portfolio is composed by: Spot market, considered as

immediate energy source with a variable cost; energy agreements, which offer a rigid amount of

energy spread over certain time to a fixed price and the are used to reduce retailer risk exposure

produced by spot market price volatility. Finally, this work also considers as asset in the short

term portfolio, the option to have own generation plants. These plants are modeled as energy

agreements signed by the energy trader with itself. This assumption presents an advantage such as

energy agreements has a deterministic or known future price. Generation agreements cost is based

in the construction, maintenance and plants operation. Mentioned assets are included in a short

term management strategy in order to improve the risk exposure and to increases expected returns.

4.1. Short term portfolio scheme

Short term energy retailer objective is to meet the energy obligations signed with the costumers

at the lowest cost. Load and price forecast have been used to meet this task trying to anticipate

required energy and generation prices to increase returns of the market clearing process thus this, a

good management strategy highly depends of the accuracy of available information. Management

strategy should choose according to the expected load the optimal generation set to be used in

order meet the forecasted load with a minimal cost. A decision making scheme presented in figure

4-1 and, detailed in [43] will be used to solve the portfolio problem.

Load and spot price series will be forecasted with a Holt-Winters model. The exponential smooth-

ing family where the Holt-Winters model belongs has been widely used to forecast seasonal time

series, such as, load and partially the spot price information and it has been selected to forecast the

interest variables in this work. It is remarkable that is not such as good tool for long term forecast-

ing and this thesis will use only in the short term portfolio considering that this work is not focused

in the forecast problem. Furthermore, considering assumptions made in the retailer portfolio de-

sign, obtained forecast predictions allows to use a MPC to optimize the short term portfolio doing

the market clearing process. Now, each part of the decision making scheme will be explained.
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Figure 4-1.: Decision-making scheme for short-term energy portfolio based on Holt Winters esti-

mator and MPC

4.2. Short term variables forecast

A wide selection of models can be used to forecast the load and spot price series. It is out of this

thesis scope to focus in the short term forecast problem. In order to solve the short term forecast

problem, in [44] a review of exponential smoothing methods is presented. The author also writes

the model in state space form. Load and spot price estimation with a Holt Winters model as men-

tioned in [45] after 50 year still being used in energy forecast problems. This model as estimator is

particularly simple and efficient to predict seasonal time series. Some recent applications validates

the use of this estimator, see: [46, 47, 48].

Finally, there are about fifteen Holt winter models available, the procedure to choose the most

adequate model and his respective description is presented in following sections, where the load

forecast model is presented in section 4.2.1 and spot price forecast problem is discussed in section

4.2.2

4.2.1. Short term load model

Considering that costumers behavior load time series has seasonal patterns in order to model the

time series with the Holt Winters model it is necessary to identify the seasonal period. George Box

and Gwilym Jenkins proposed in 1976 the auto correlation function used to identify no-randomness

in time series or data. Making use of the load derivative to obtain the auto correlation function of

the time series presented in figure 5-10 , presented in figure 4-2, seasonal patterns can be identified

by means of the significant lags.

By inspection, the load time series seasonality is obtained. As expected, each seven samples strong

correlations are found and the seasonal value corresponds to the week values period. The partial

correlation function is usually used to estimate an ARIMA or other auto regressive models order

and it is presented in figure 4-3. Due to the use of the Holt Winters model to represent the analyzed

time series the auto correlation function information is not used.

A Holt winters model with additive trend and additive seasonal components presented in equation
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Figure 4-2.: Retailer load time series auto correlation function from figure 5-10
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Figure 4-3.: Retailer load time series partial correlation function from figure 5-10

4-1 will be used to model the short term load. The seasonal component identified will be repre-

sented with the T l
h variable. Additionally, in this model µ l

h(k) represents the series level. β l
h(k) the

slope and Sl
h(k) the seasonal component. α l

h,β l
h and γ l

h are model parameters that can be assigned

by heuristics, least squares estimation or other optimization methodologies.

ŷl
h(k) = µ l

h(k)+bl
h(k)+Sl

h(k) (4-1)
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where:

µ l
h(k) = α l

h(yl(k)−Sl
h(k−T l

h))+(1−α l
h)(µ

l
h(k−1)+bl

h(k−1))

bl
h(k) = β l

h(µ
l
h(k)−µ l

h(k−1))+(1−β l
h)b

l
h(k−1)

Sl
h(k) = γ l

hyl
h(k)−µ l

h(k))+(1− γ l
h)S

l
h(k−T l

h )

4.2.2. Short term load forecast

Now, in order to propose a short term load prediction model, equation 4-1 will be transformed

in to the state space model representation. In [44] add [49] a full description of the state space

framework with Holt Winters models applied to forecast problems is discussed. Regarding to the

model parameters α l
h = 0 will make a fixed level model, β l

h = 0 a fixed trend model and Sl
h = 0

will make the seasonal variation fix.

xl
h(k+1) = Al

hxl
h(k)+Bl

hul
h(k)

yl
h(k) =Cl

hxl
h(k)+Dl

hul
h(k)

(4-2)

This representation x(k) contains the Holt Winter states which are the level, slope and seasonal

components. Additionally, in order to make the appropriate forecast formulation, the seasonal lags

also are included as system states. This is required due to the model dependence of previous data.

xl
h(k) =

[
µ l

h(k) bl
h(k) Sl

h(k−Tl +1) Sl
h(k−Tl +2) · · · Sl

h(k)
]T

(4-3)

Al
h =













1−α l
h 1−α l

h −α l
h 0 · · · 0

−α l
hβ l

h 1+α l
hβ l

h −α l
hβ l

h 0 · · · 0

0 0 0 1 · · · 0

0 0 0 0
. . .

...
...

...
...

... · · · 1

−γ l
h(1−α l

h) −γ l
h(1−α l

h) (γ l
hα l

h +(1− γ l
h)) 0 · · · 0













(4-4)

Bl
h =

[
α l

h α l
hβ l

h 0 · · · 0 γ l
h − γ l

hα l
h

]T
(4-5)

ŷl
h(k) = µ l

h(k)+bl
h(k)+Sl

h(k−Tl +1) (4-6)

Cl
h =

[
1 1 1 0 · · · 0

]
(4-7)

D =
[

0
]

(4-8)
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4.2.3. Short term spot price model

Energy price volatility is one of the most biggest challenges in the energy portfolio forecast task,

several works and techniques had been used to tackle this problem. This work makes use of

Holt Winters model as forecast technique, relaying in GEP design presented in section 3 and the

hedging strategy based in generation plants described in 2.4 , in theory, spot market is not necessary

to perform the market clearing process and this forecast will be used only to take advantage of spot

market opportunities. Applying the same process described in section 4.2.1 to the spot price time

series derivative, the auto correlation function is presented in figure 4-4. It is difficult to identify a

specific model for this item series, only one lag in the 13th position give us a seasonality notion,

and considering that it is a daily resolution time series, there is not a direct relationship to be

establish with the lag number. Furthermore, partial correlation test presented in figure 4-5 is not

useful to extract extra information about model composition. Thus this, model used is the additive

trend with no seasonality Holt Winters.

ŷs
h(k) = µs

h(k)+hs
hbs

h(k) (4-9)

where:

µs
h(k) = αs

hys
h(k)+(1−αs

h)(µ
s
h(k−1)+bs

h(k−1))

bs
h(k) = β s

h(µ
s
h(k)−µs

h(k−1))+(1−βs)b
s
h(k−1)
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Figure 4-4.: Spot price auto correlation function from figure 5-10
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Figure 4-5.: Spot price partial correlation function from figure 5-10

4.2.4. Short term spot price forecast

xs
h(k) =

[
µs

h(k) bs
h(k)

]T
(4-10)

As
h =

[
1−β s

h β s
h −β s

h

1−αs
h 0 1−αs

h

]

(4-11)

Bs
h =

[
αs

h αs
hβ s

h 0 · · · 0 γs
h − γs

hαs
h

]T
(4-12)

ŷs
h(k) = µs

h(k)+bs
h(k)+Ss

h(k−Tl +1) (4-13)

Cs
h =

[
1 1 1 0 · · · 0

]
(4-14)

Ds
h =

[
0
]

(4-15)

Shortly, load and spot price forecast models where presented. Forecasting mentioned variables

by means of Holt-Winters provides a low computational cost methodology that is reliable in short

prediction horizons. The use of Holt-Winters models requires a model parameters tuning which in

most applications is made by heuristics or empiric approaches. Then, model adjustment and pre-

diction horizons are discussed in section 5 where, all the models are integrated and time resolutions

and other variables are defined to explore the study case proposed in this work.
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4.3. Short term portfolio assets models

In order to conform a short term energy portfolio with hedging strategy to be managed a diversifi-

cation with energy assets was considered in section 2.4. To do this, it is necessary to model all the

assets that will be used in the portfolio. These assets are composed by: the spot market, future en-

ergy agreements, generation plants modeled as energy agreements and last, alternative generation

plants. The idea is to represent mentioned assets with models that makes them able to be managed

by a dynamic optimization strategy. Now a brief description of the assets used is presented.

4.3.1. Spot market model

It is the main instrument used to balance the real time demand supply. The pool market puts

the energy clear price, usually bye means of a bid made between generators. Then, energy is

offered to clients that can participate in this market such as energy retailers. Additionally, energy

spot markets can offer services that provides flexibility to their clients, they are presented in three

basics groups:

• Day ahead: The energy generation of the next day is traded. Commonly, a bid system is used

to establish the energy price. Each hour is traded separately.

• Day of: Transactions made in this market covers the remaining days hours. Each hour is

traded separately.

• Hour ahead: This market only trades the energy generation for the next hour.

• Real time or Ex-post: It is a reconciliation market on charge of clear the predictions devia-

tions of the previous markets.

In this work, the spot market will be used as a real time market, on charge of the correction of the

predictions made in the energy retailer management strategy. The Holt Winters model presented

in section 4.2 is used as model for the energy spot price Ps. The financial instrument is represent

as the product of the traded energy and the spot price:

Cs(k) = Ps(k)Es(k) (4-16)

Where Cs(k) is the energy traded cost in the k time, Ps(k) is the energy spot price and Es(k) is the

energy used to balance the energy retailer portfolio. It is clear that the spot market model exposes

to the energy retailer to the high price volatility. However, it is secure energy source with the

necessary market liquidity to buy and sell energy if needed.
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4.3.2. Futures and energy forward agreements

Forward and future agreements are basically financial assets that represents the delivery of goods

or services in the future. Buying future energy is a common technique used to relieve the exposure

to the price volatility of the energy spot market and, at the same time, brings to the buyer the guar-

antee of the energy supply in the future.

In power markets, forwards and futures represents the future delivery of the signed energy, as finan-

cial instruments they are complex instruments and the agreement requires some specific conditions

described in this section.

Now, a brief description of the basic aspect of forwards and futures is presented. The main dif-

ference between futures and forwards is the standardization degree of each one. Futures are well

defined standard agreements traded in a regulated market, and forwards are not standard future

agreement traded in the Over The Counter (OTC) markets. Agreements standardization implies

market liquidity making the futures easy to trade in a regulated market. Meanwhile, forwards

are signed by two parts with specific values discussed by the parts in the OTC market. The for-

ward flexibility makes them the most preferred agreements in power markets, offering to the buyer

to supply specifics energy requirements. However, futures and forwards has similar descriptions

sharing the same basic features:

• Delivery information: Total amount, delivery frequency (day/hour), among others

• Delivery price or the price formula to the cost calculation

• Delivery duration: Time period in which the energy will be delivered

• Delivery location and Expiration day

Finally, a remarkable difference between futures and forwards is the settle time. Futures needs to

be settled every day forcing to the have a cash flow available to receive or pay the returns or losses

associated to the price volatility.

This thesis focuses in a planning tool methodology, in this order, forwards agreements are the most

suitable tool to hedging an energy portfolio. The non standardized agreements allows to design

flexible portfolios, and the flexible settle time provides a time window to balance the portfolio

returns specially in long time scenarios simulations. Taking this into account, forward agreements

will be used to provide energy to the portfolio, assuming that the negotiation in the OTC market

was performed by an external negotiation process. To use the forwards agreements in the proposed

solution, the following fields are used to describe each assets.
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Name

The name is based in the Future Contracts international code: Futures contracts codes have five

characters. The first two characters identify the contract type, the third character identifies the

month and the last two characters identify the year. The months are represented as presented in

table 4-1.

January = F July = N

February = G August = Q

March = H September =

April = J October = V

May = K November = X

June = M December = Z

Table 4-1.: Months names for future contracts

Example: FWF13 is a Forward agreement with exercise date: January 2013.

Amount

Amount represents the energy available of the asset given in kW h or MWh. This value, decreases

each time that the retailer sells energy from the asset.

Example: the FWF13 has 10 MW available to be sold starting on January 2013

Exercise price

Exercise price exprice is the economic cost that the energy retailer must pay to the generator for

each kWh of the asset. This price is previously negotiated between the generator and the energy

retailer.

Example: FWF13 pays 140 $/kWh

Expiration date

In the call type of the forward agreements the buyer (energy retailer) has the option to execute or

not the agreement, the final date to take the decision is the expiration date dataexp. If the buyer

decide to not execute the agreement must pay a fee to the generator. This thesis only consider the

execution option.

Example: FWF13 has the expiration date 01/01/2013
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Duration

This value indicate how many days the agreement remains active. The agreement can also end if

the Amount of available energy becomes zero.

Example: The duration of FWF13 is 30 days, in this case in January 31 the agreements ends.

Active

This binary value indicates depending on the current date if the forward agreement is active. This

fact involves that the agreement was executed. The current day must be greater that the expiration

date and lower than the date corresponding to the end of contract (Duration).

Finally, forward agreement model used to integrate the asset in the management problem is rep-

resented as the result of a previous negotiation. As example the structure used to model forwards

data in the portfolio is presented in table 4-2:

Asset Name Amount [MWh] Price USD Expiration Duration Active

1 FWF131 5 390 01/01/2013 30 •

2 FWF132 3 140 01/01/2013 30 •

3 FWV13 7 190 01/10/2013 15 •

4 FWF13 8 165 01/01/2013 365 •

5 FWK13 3 140 31/05/2013 280 •

6 FWU13 2 190 30/09/2013 60 •

Table 4-2.: Energy forward agreements examples

Then, it is necessary to propose a function to represent Na forward agreements evolution. Fixed

values as dates, price C
f
a , name are just given information and the amount E

f
a changes depends of

the use of the used energy represented by U
f

a in the k, the relationship is described as follows:

E f
a (k+1) = E f

a (k)−U f
a (k) (4-17)

subject to:

U f
a (k)≥ 0

E f
a (k+1)≥ 0

4.3.3. Installed capacity investments as forward agreements

In the long term, load and energy spot price forecast presents a lot of uncertainties that makes ac-

curate forecast a hard task to do. Considering this, short term operations as economic dispatch are

hard to include in long planning scenarios. To face this, methodologies as the generation expansion
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problem (GEP) presented in section 3.1 propose robust generation schemes that should be able to

meet the required energy in the future. Additionally, anticipates the required power increments,

allowing to start the generation plants construction before the power is required. This section ex-

plains how to include the GEP solutions as energy agreements in order to manage short and long

term variables in the short term energy portfolio.

Main objective of forward agreements is to provide energy in the future with a known cost. Agree-

ments have two relevant values considered in this section: total energy amount and energy price.

These values also are available when a generation plant is described: first, installed capacity is the

amount of energy that could be generated similar to the forward amount. Second, fixed and vari-

ables cost plus, desired returns could represent the energy production price similar to the agreement

exercise price. Then, assuming an energy retailer position, the use of generation plants investments

as energy agreements, requires some assumptions related with the regulation framework and some

economic decisions:

• Region regulation allows energy retailers to participate in the generation market.

• Generation market regulation allows to commit all the generation plant power as needed.

• Transmission constrains and cost are not considered in the problem.

• Only active power generation service is considered.

• The agreement expiration day corresponds to the date when it is assumed that the generation

plant begins to produce energy.

Assuming that the presented assumptions are met, the energy retailer company can invest in the

construction of his own generation plants and sign his own forward agreements avoiding the ne-

gotiation process. Consequently, it is necessary to discuss the financial strategy to support the

generation plant construction. It is known, that it is possible to finance investments by means of

shares or stocks. In this thesis the plant full cost will be assumed by the energy retailer. Construc-

tion cost of generations plants highly depends on the installed capacity which is optimized by the

GEP algorithm. Modeling the construction price with the Net Present Value (NPV) and payments

with compound interest formula makes possible to estimate at any time the generation cost in the

future, this becomes increasing relevant in planning problems, allowing to take decisions related to

investments and payments. Now, some examples of generation plants seen as energy agreements

are presented in table 4-3. Here, the name refers to the generation technology used. amount is the

installed capacity; price is the generation prices including generation profit; expiration is the date

when the plant is operative, and duration is the plant life span. Active is the same binary variable

used to indicate if plant is active or not.

Now, in order to integrate the energy forward agreements to the dynamic problem equation 4-18

represented the dynamic model of i generation plants. Energy delivered by the generation plant
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Asset Name Amount Gen. Price Expiration Duration Active

1 Coal 5 390 01/01/2013 30 •

2 OCGT 3 140 01/01/2013 30 •

3 OCGT 7 190 01/10/2013 15 •

4 Coal 8 165 01/01/2013 365 •

5 OCGT 3 140 31/05/2013 280 •

6 CCGT 2 190 30/09/2013 60 •

Table 4-3.: Generation based Energy forward agreements examples

are represented by the energy E
g
i supplied by the i− th generation technology and depends of the

expected consumption U
g
i and the installed capacity Xi and ramp velocities Vi of each generation

technology.

E
g
i (k+1) = E

g
i (k)+U

g
i (k) (4-18)

subject to:

U
g
i (k)≤Vi

E
g
i (k)≤ Xi

4.3.4. Wind power generation

Now, to include wind generated electricity Ewt in the short term model, several assumptions are

made: First, all the energy produced is given to the system; storage is not included. The data series

of an average wind profile are given. This wind profile is assumed for all wind turbines. Also it is

assumed that the wind turbines are distributed across the region, this allows to consider a minimum

mean energy production. Finally, assuming that all turbines have the same technical parameters

and they are equipped with a maximum power tracking controller, the ideal model that describes

total power production of wind turbines is presented in equation 4-19.

Ewt(k,Vw) =







0 V (k)≤Vc ∨ Vw(k)≥Vc

Pwr
V 3

w(k)−Vc

V 2
r −V 2

c
Vc ≤Vw(k)≤Vr

Pr Vr ≤Vw(k)≤Vc

(4-19)

Where, Vc is cut-in wind speed, Vc is the cut-off wind speed, Vr is the rated wind speed and Vw(k)

is the wind speed at time k
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4.3.5. Photovoltaic power

Photovoltaic energy (PV) generation also has similar assumption that the wind turbine power pro-

duction model. Radiation G(k) data is given and a minimum radiation level per day could be

assumed. Conversion efficiency is taken into account with fpv value. G0 is the radiation at stan-

dard operational conditions. Then PV energy E pv is estimated with the ideal model presented in

equation 4-20 as follows:

E pv(k,G) = Ppv

(
G(k)

G0

)

fpv (4-20)

4.4. Short term portfolio model

The short term portfolio used (based on [50]) is on charge of balance the energy required by

the costumers with the energy available in the portfolio assets. Energy balance must supply the

regulated Er and no regulated energy Enr at k time using the following sources: spot market Es, the

energy available in a forward agreements E
f
a , the own i generation plants Ei and finally, renewable

generation are included with wind power Ewt and photo-voltaic sources E pv. Relationship used to

described this is presented in equation 4-21 as follows

Er +Enr = Es +∑
a

E f
a +∑

i

E
g
i +Ewt +E pv (4-21)

Above energy balance mix two different kinds of users and five different energy sources. In order

to propose a management strategy able to optimize the energy retailer returns and meet the load

in a planning horizon, a dynamic portfolio model based on the energy balance shown in equation

4-21 is proposed, integrating the assets models proposed in section 4.3 the energy balance can be

expressed as:

Er(k)+Enr(k) = Es(k)+∑
a

E f
a (k)+∑

i

E
g
i (k)+Ewt(k,V )+E pv(k,G) (4-22)

subject to:

E f
a (k)≥ 0

E
g
i ≥ 0

This model will be used to solve the market clearing problem. Composed by deterministic vari-

ables such as: forward agreements E
f
a , generation plants ∑i E

g
i and, stochastic variables like: the

spot market Es, alternative sources Ewt , E pv and user consumption Er +Enr . Solving the energy

balance in real time is an important challenge in retailer operation. In this order, diversification
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strategy proposed in section 2.4 to solve management problem, relies in the use of the generation

plants and forward agreements, they are used to reduce financial and operation risk or this opera-

tion. In order to integrate economic and financial conditions in this strategy and share information

with the retailer economic function an economic constraint is included as follows:

Ps(k)Es(k)+∑
a

E f
a (k)C

f
a +∑

i

E
g
i (k)C

g
i (k)≤ Bs(k) (4-23)

Generation budget Bs(k) given in [$/Tr] is assigned in the retailer economic function and, is used as

boundary restricting the amount of cash available to use in market clearing operations. According

to strategy description, generation budget is assigned with an amount enough to guarantee all the

economic resources such that Bs(k) = ∑i E
g
i (k)C

g
i (k). This is a robust assumption that allows to

pay the production of all the expected demand estimated in the GEP problem with own generation

plants. The use of signed forward agreements as energy source requires a different treatment: their

acquisition was made in an off line negotiation so, in this work, according to agreement duration

a depreciation expression is used in the estimate agreement’s price, such that when the agreement

is about to expire the energy price is getting closer to zero. Then, extra returns are obtained in the

market clearing process switching to cheaper sources if conditions are favorable and making use

of energy produced by alternative generation plants.

Last, as said before Bs(k) values came from an economic retailer function providing a generation

budget for each time. This means that every time step, generation budget is modified due to

incomes and expenses related to the market clearing process. Then, these differences will produce

the market clearing returns and must be calculated and updated to the retailer economic function.

Given this, after the market clearing process, this expected generation budget must be compared

with real expenses made in energy generation. In order to provide Rs(k) returns to the energy

retailer function described in section 2.5.3, short term return function first is described by means

of dummy variables. The objective to understand interactions and times required to communicate

the retailer and short term portfolios:

Rr(k+1) = Rr(k)− [GB(k+1)−GE(k+1)]+ [GC(k)−GR(k)]+

[(GB(k)−GC(k))− (GE(k)−GR(k))]
(4-24)

Where Rr(k+ 1) are the retailer returns obtained form the market clearing. GB(k+ 1) is the ex-

pected generation budget assigned in the retailer coordination function. GE(k+1) corresponds to

the expected energy sales, also assigned in the retailer function. Both variables, GB(k + 1) and

GE(k+ 1) are calculated along all retailer prediction horizon, assuming the worst operation case

designed in the long term portfolio. Then, GC(k) and GE(k) are the generation cost and the energy

sales associated to market clearing process.

Values obtained after market clearing process should be compared with the robust value providing

following information:
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• Returns obtained from the optimization problem, taking into account all generation assets

available, including alternative generation to meet at the minimum cost required energy.

• Balance of the economic differences between expected robust generation budget and ex-

pected robust energy produced against real generation cost and real energy sold

Now, replacing in equation 4-24 the real variables used in the models of the retailer (equation 2-7

and short term portfolio (equation 4-22). Equation 4-25 is the representation to the update dynam-

ics that settles the balancing process between the short term portfolio and the retailer economic

level.

Rr(k+1) = Rr(k)−

[

Bs(k+1)−

(
Nt

∑
i=1

yi3(k+1)

Tr

Cnr(k+1)+
Nt

∑
i=1

Nb−1

∑
j=1

yi j(k+1)

Tr

Cr
i j(k+1)

)]

+

[(

Es(k)+∑
a

E f
a (k)+∑

i

E
g
i (k)+Ewt(k,V)+E pv(k,G)

)

−

(

Ps(k)Es(k)+∑
a

E f
a (k)C

f
a +∑

i

E
g
i (k)C

g
i (k)

)]

(4-25)

4.5. Short term model optimization

Model used to market clearing presented in equation 4-22 and equation 4-23 that puts an economic

constraint are used to propose an optimization that maximizes the return and meet the retailer

energy agreements balancing the portfolio assets. Taking into account the cost of the respective

energy assets described in section 4.3 the optimization problem can be written as:

max
U s(k),U

f
a (k),U

g
i (k)

−Cs(k)Es(k)−E f
a (k)P

f
a −E

g
i (k)P

g
i (k) (4-26)
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subject to:

Er(k)+Enr(k) = Es(k)+∑
a

E f
a (k)+∑

i

E
g
i (k)+Ewt(k,V)+E pv(k,G)

Ps(k)Es(k)+∑
i

E
g
i (k)C

g
i (k)≤ Bs(k)

E f
a (k+1) = E f

a (k)−U f
a (k)

E
g
i (k+1) = E

g
i (k)+U

g
i (k)

Es(k) =U s(k)

0 ≤ E
g
i (k)≤ Xi

U
g
i (k)≤ViTs

Ewt(k,V ) =







0 V (k)≤Vc ∨ V (k)≥Vc

Pwr
V 2(k)−Vc

V 2
r −V 2

c
Vc ≤V (k)≤Vr

Pr Vr ≤V (k)≤Vc

E pv(k,G) = Ppv

(
G(k)

G0

)

fpv

E f
a (k)≥ 0

U s(k)≥ 0

U f
a (k)≥ 0

U
g
i (k)≥ 0

Using the energy balance presented in equation 4-22 as constraint in the objective function, it is

proposed to balance the portfolio in a k time, minimizing the supply cost paid for the energy re-

tailer to meet his energy supply obligations. Introducing U
g
i (k),U

f
a (k),U s(k) as control variables

used to change the energy required to their respective assets E
g
i (k), E

f
a (k), Es(k) ,it is possible to

include particular constraints to the required energy changes. Including the relationship Ui(k)≤Vi

the optimization solutions meets the ramp constraint for each i generation technology. This re-

quirement mixes a technical design parameter in an economic problem. Also, it is possible to

include similar conditions to the spot market purchases U s(k) and the use of energy agreements

U
f

a (k). The linear problem involved is easy to solve in terms of the mathematical procedure. The

given cost function will supply the required energy at the lowest cost, but it is already known that

the load and price volatility are too high and time ahead decisions are vital in the short term portfo-

lio. Wind generated power Ewt(k) and photo-voltaic power E pv(k) depends of natural cycles, and

it is assumed that the energy produced is included in the balance every time they are available. The

challenge in this problem is how to solve it in future k times ahead, considering high uncertainties

and including the risk management strategies proposed in this thesis.
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4.6. Short term economic model predictive control

With the optimization problem described in section 4.5 and, the need to solve the problem in

a prediction horizon in order to update with the market clearing returns the retailer cash flow

presented in equation 4-25. A time ahead view of the system is used to propose a management

strategy, that balance the short long term variables to meet technical and economic objectives.

Solutions presented in sections 2 and 3 are integrated in the short term portfolio optimization

presented in section 4.5. Now with the required future information, the short term portfolio from

equation 4-22 is presented as a dynamic system in the state space form.

xs(k+1) = Asxs(k)+Bsus(k)

ys(k) =Csxs(k)+DsSs(k)
(4-27)

where xs(k) ∈ R
nxs is the system states, ys(k) ∈ R

nys is the system output and us(k) ∈ R
nus is the

current control actions vector such as:

xs(k) =
[

Es(k) E
g
i (k) E

f
a (k)

]T

(4-28)

us(k) =
[

U s(k) U
g
i (k) U

f
a (k)

]T

(4-29)

As =















0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 1i 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 1a















(4-30)

As matrix provides the xs(k) ∈ states dynamics. Generation based agreements takes into account

previous energy values E
g
i (k) to estimate the i− th generation plant operation point in future de-

cisions. These changes applied with the U
g
i (k) control signal must be checked to not exceed the

generation installed capacity Xi of each plant. Equally, energy obtained from the forwards agree-

ment E
f
a (k) must be consider to calculate the future use given by U

f
a (k) and avoid to use more

energy than it is available. Last, spot market energy state Es(k) is considered as an ideal market

independent from previous states providing any amount of energy at any time.

Bs =





1 0 0

0 1i 0

0 0 −1a



 (4-31)
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Bs matrix represents how the control actions us(k) modifies the xs(k) states. Moreover, considering

the fact that all the forward agreements and the generation plants could not be active at the same

time, binary time dependent variables are required in the problem.

Resulting vector is

φa(k)

{
1 date a = 1, ...,Na

0 Otherwise
(4-32)

Analogously for

φi(k)

{
1 date i = 1, ...,Nt

0 Otherwise
(4-33)

Now a selection matrix is created

B∗
s (k) =





1 0 0

0 φi 0

0 0 −φa



 (4-34)

Cs(k) =
[

Cs(k) C
f
a (k) C

g
i (k)

]

(4-35)

Cost associated to energy production are included in Cs(k) matrix. Here, the spot price Cs(k) is

generated by the Holt-Winters model and the C
g
i (k) comes from the energy retailer optimization

in the top level. Energy agreements C
f
a has a previous negotiated price and are assumed fixed.

Considering renewable energy as not dispatchable and the expected costumers energy consumption

as external variables, expected returns produced for these variables are included as perturbations

in the model output as follows:

Ds(k) =
[

Cwt(k) Cpv(k) Cr(k) Cnr(k)
]

(4-36)

Ds(k) vector are the energy sale price. An important assumption has to be made in order to split

regulated and no regulated energy sales. The association is made classifying energy produced by

the generation forward agreements that were assigned to work in the b3 block.

Ss(k) =
[

Ewt(k) E pv(k) Er(k) Enr(k)
]

(4-37)

Last, Ss(k) represents all the energy used in the market clearing process. Now, lets consider the

standard MPC formulation which solves the optimization problem in the short prediction hori-

zon Nps
. At time step k, let xks

= [xT
s (k), . . . ,x

T
s (k +Nps

)]T and uks
= [uT

s (k), . . . ,u
T
s (k +Nps

)]T

are the state trajectory and the control sequences, with Nps
the short term prediction horizon
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and Jecos(xks
,uks

) the economic stage cost. The system is subject to hard constraints on state

xs(k) ∈ Xs, output ys(k) ∈ Ys and input us(k) ∈ Us for all k ≥ 0, where Xs ⊂ R
nxs , Ys ⊂ R

nys ,

Us ⊂ R
nus are closed sets. In order to calculate the optimal control solution uks

the cost function

will be based on the state space output ys(k) = Csxs(k) described in equation 4-27 as C̃s(k) =

[Cs(k), . . . ,Cs(k+Nps
)]T extending the market clearing cost along the prediction horizon, and the

economic short term MPC formulation is given:

min
uks

Jecos(xks
,uks

)

subject to:

xs(k+1) = Asxl(k)+Bsus(k)

ys(k) =Csxs(k)+Dsus(k)

xs(k) ∈ Xs, k = 0, . . . ,Nps

us(k) ∈ Us, k = 0, . . . ,Nps

(4-38)

Where, replacing all respective models is obtained:

min
uks

Nps

∑
n=0

C̃s(k+n)xks
(k+n)

subject to:

xs(k+1) = Asx(k)+Bsus(k)

ys(k) =Cs(k)xs(k)+Ds(k)Ss(k)

Er(k+n)+Enr(k+n) = Es(k+n)+∑
a

E
f
a+n(k)+∑

i

E
g
i (k+n)+

Ewt(k+n,V )+E pv(k+n,G)

Ps(k+n)Es(k+n)+∑
i

E
g
i (k+n)Cg

i (k+n)≤ Bs(k+n)

E f
a (k+n+1) = E f

a (k+n)−U f
a (k+n)

E
g
i (k+n+1) = E

g
i (k+n)+U

g
i (k+n)

Es(k+n) =U s(k+n)

0 ≤ E
g
i (k+n)≤ Xi(k+n)

U
g
i (k+n)≤Vi

(4-39)

Ewt(k+n,V ) =







0 V (k+n)≤Vc ∨ V (k+n)≥Vc

Pwr
V 2(k+n)−Vc

V 2
r −V 2

c
Vc ≤V (k+n)≤Vr

Pr Vr ≤V (k+n)≤Vc

E pv(k+n,G) = Ppv

(
G(k+n)

G0

)

fpv
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With the proper logical economic constraints

E f
a (k+n)≥ 0

U s(k+n)≥ 0

U f
a (k+n)≥ 0

U
g
i (k+n)≥ 0

(4-40)

4.6.1. Chapter brief and conclusions

This chapter presented the model and optimization of the energy retailer short term portfolio.

Mentioned portfolio is represented by an economic cost function that takes into account all the

energy sources available and minimizes the operation cost while meets the energy balance of the

demanded energy (market clearing). This application is based in [43] and [51] where the use of

MPC and Holt Winters models where discussed. Now, in this dissertation, this chapter modeled

several energy sources such as: the spot market, forward energy agreements, photo-voltaic and

wind generation and last, a contribution made integrates the solution of the generation expansion

plan, solved in section 3 as energy agreements.

The integration of the generation plants in the market clearing process is achieved by means of

an hierarchical structure that re-samples some values in order to fit the time differences between

the economic and technical variables. At the end, the expected returns from the GEP solution are

compared and updated with the returns obtained from the market clearing process. This novelty

allows to create a planning tool for energy investment dealing with medium, long and short term

variables updating the expected cash flow of the investor in a prediction horizon.



5. Hierarchical integration and results

This chapter presents the integration and solution of the management strategy proposed as hierar-

chical structure. In order to explore the performance of this tool solution this chapter is presented

as follows: First, the used scenario is described. Here, used data, technical and economic variables

of each portfolio and time scales assumed in the hierarchies are presented. Second, considering

one year data, the solution given by the proposed GEP problem described in section 3 is explored.

This section shortly discusses technical and economic implications of the GEP solution. Third,

generation mix costs and expected returns obtained in the GEP are included in the energy retailer

economic function, presented in equation 2-15, and the first iteration of the retailer economic op-

timization is presented. This section explores the performance and economic assumptions made

in the energy retailing economic function. Then, using these first results, economic and technical

variables required to integrate to the hierarchy and solution of the short term function are discussed.

Fourth, an approximation to energy market clearing operation is solved in the sort term portfolio,

represented in equation 4-39. Using variables assigned in the retailer optimization, market clear-

ing operation illustrates how the dynamic management strategy reduces operation cost improving

system performance. Last, the assumed real operation returns are compared with expected returns

obtained form the GEP problem. Then the problem is solved interactively for one year data and,

the performance of the proposed hierarchical structure is discussed.

5.1. Simulation information and assumptions made

The case study case presented in section 3.5 , where the year 2013 load data was used to solve the

GEP problem with ramping constrains, brought the following generation mix presented in table

5-1 , corresponds to the first scenario (S1):

Technology Installed cap. Ramp vel. Install. cost F&O cost Variable cost

MW MW/h USD Millions USD/year Millions USD/MW h

Coal 1469 240 2496 49 5

CCGT 55 360 47.4 1.17 10

Total 1524 2543 50.17

Table 5-1.: Optimal generation mix for the first load scenario

The presented generation mix is modeled as energy agreements in table 5-3, where all the short
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term portfolio assets are presented. With obtained generation mix, specifically considering the in-

stalled capacities, was possible to estimate the cost associated to the operation of each generation

technology. Assuming worst case solution, that is the one obtained from the GEP, obtained values

will be used in the retailer function to calculate respective incomes and expenses. Then, these

values are used to define a robust expected cash flow used as reference to operate in the retailer

function and short term levels.

5.1.1. Time frames used in the hierarchy integration

In order to achieve the integration of all the retailer portfolio components it is necessary to com-

pensate portfolios time differences. Table 5-2 presents the time resolution and prediction horizons

for each portfolio. This table has the required information to scale, with proper assumptions, each

variable to the required time resolution discussed in section 2 and revisited in this section. The base

calculation time resolution for all the problem is the monthly one, used in the retailer function. The

idea is to scale yearly time resolution variables to months. And short term results are solved in a

prediction horizon, that allows to update monthly obtained results to the retailer function.

Portfolio Time resolution Variable Prediction horizon Variable

Long 1 year Tl 4 years Npl

Retailer 1 month Tr 12 months Npr

Short 1 day Ts 1 month Nps

Table 5-2.: Time resolutions used in the hierarchy

5.1.2. Forward and generation agreements used

Afterwards, energy agreements and generation plants modeled as agreements too, are presented in

table 5-3 they will be used in the study case as energy assets used to diversify the retailer portfolio.

Energy agreements are assumed as result of a simulated negotiation and their respective amounts

and times are settled to explore how the proposed methodology behaves with this kind of asset. It

is remarkable that this work is not focused in this kind of financial instrument, but it is capable to

include them and also other financial instruments available.

Now, a highlight must be made to discuss the energy price of conventional generation technolo-

gies. Usually, as presented in table 3-3, economic values for the generation and fixed costs are

described individually. Moreover, in this work, energy retailer model considers a separated term

for generation and fixed cost, but at the same time they are included in the same economic balance.

It is expected that returns obtained from energy retailing are sufficient to pay: installed capacity,

fixed and variables cost. So, in order to avoid possible feasibility problems, it is assumed that fixed
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and variable cost can be included in the generation technology price and paid by the retailer re-

turns, or can be included in the energy sale prices and charged directly to clients. In this case, fixed

and variable cost had been charged in generation and energy sales prices, shifting the payment to

clients but at the same time, taking them into account in the retailer cash flow.

Asset Name Amount Price Expiration Duration -

MW USD $/kW Life span

1 FWF131 8 0.139 01/01/2013 30 days

2 FWF132 8 0.107 01/01/2013 30 days

3 FWV13 8 0.092 01/10/2013 180 days

1 Coal S1 1468 0.036 01/01/2013 40 years

2 OCGT S1 8 0.076 01/01/2013 20 years

3 CCGT S1 55 0.053 01/10/2013 30 years

Table 5-3.: Energy forward and generation agreements used in year 2013 example

Agreements costs are assumed as the product of the amount and the exercise price. The starting

date value of each agreements are established arbitrary to stress the solution performance and il-

lustrate their effect in the retailer cash flow. Figure 5-1 shows in red color when each forward

agreements will be available in the problem. It is remarkable that if available energy of each agree-

ments becomes zero before the active period ends, the energy agreement becomes as inactive. This

implies that forward active combination will change for each time sample. Finally, in order to con-

Energy Agreements avaliable
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FWF132

FWV13
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FWJ13

FWU13

Figure 5-1.: Availability of energy agreements in 2013 year

sider the life span limit of each forward, an exponential decay factor was applied to the forward

price such as CNa
(k) = C0

Na
e−k/da , where da ∈ Na is the duration of each forward agreement; this

assumption puts an economic dynamic that forces the strategy to try to use the energy available

before expires according to the life span of the agreement. This effect is presented in figure 5-2
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where only agreements duration are considered to illustrate how price changes until their agree-

ments expires.
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Figure 5-2.: Forward energy prices decay applied

Regarding to the availability of generation plants, result presented in figure 5-3 assume that the

time lapse between the GEP solution and the construction time has been met. If the GEP solution

increases the installed capacity amount incoming scenarios, additional agreements with the new

extra installed capacity are included.

Generation Agreements avaliable
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Figure 5-3.: Availability of generation plants year 2013
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5.1.3. Alternative generation included in the solution

As mentioned in previous sections, this work makes use of the technical ramping constrain in-

cluded in the GEP to consider the use of alternative generation plants in the generation mix. The

idea is to include an alternative installed capacity that meets the imposed ∆P values in the GEP

design. Assuming alternative generation as a perturbation from the generation system perspective,

and it is possible to say that the generation mix could compensate the alternative plants energy

variations. Now with the ideal generation models described in section 4.3 and using parameters

present in table 5-4, economic and technical variables used in this work are presented as follows:

First, the cost per unit of alternative generation plants is presented. Second, the installed capacity

costs is presented. Last, time series used as input are explored to use them to present the expected

alternative energy generation data.

Technology Variable Value

Vc 2.5 m/s

Vc 25 m/s

Wind Vr 10 m/s

Pwr 30 kW

fpv 0.8

PV G0 1000 W/m2

Ppv 1 kW

Table 5-4.: Alternative generation plants parameters

The parameters corresponds to a single generation unit of each type. Now, the economic cost of

each alternative generation technology are presented in table 5-5. Then, this cost and installed

capacity are linearly scaled to increase the alternative installed capacity.

Technology Installed capacity cost O& M

Wind turbine (30kW ) 2800 USD 560 USD/year

Solar panel (1kW ) 5832 USD 1166 USD/year

Table 5-5.: Alternative generation costs per unit

Finally, scaling the installed capacity with three wind turbines and two hundred solar panels as a

total amount of 290 kW of alternative installed capacity is considered with an expected life span

of 20 years. Costs related to considered installed capacity are presented in table 5-6. Later, some

additional cases of generation capacity are explored when the financial cost and the solution risk

measurements are presented.

Now, time series used to simulate the alternative generation are described. Wind profile was pro-
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Technology Installed capacity O& M

Wind turbine (90kW ) USD 1680 USD/year

PV (200kW ) USD 233200 USD/year

Table 5-6.: Alternative generation installed capacity costs

vide by the Instituto de Hidrologı́a Meteorologı́a y Estudios Ambientales1 and irradiance data by

the Cenicafe institution 2. In order to match the short term time resolution, a resolution of 24 hours

had been used to calcualte the mean daily mean value. Obtaining the results presented in figure

5-4.
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Figure 5-4.: Solar irradiance a wind velocity profile used. Data from: Instituto de Hidrologı́a

Meteorologı́a y Estudios Ambientales and Cenicafe

Then, with the boxplot presented in figure 5-5 it is observed that both series have symmetric

observations Q1 ≈ Q3, and the quartiles size suggest an acceptable dispersion. So, the median

values of the presented time series could be used to approach a mean daily alternative generation.

Alternative generation plants cost were presented in table 5-6, where installed capacity and fixed

cost were taken into account. Even considering that, it is possible to assume a minimum energy

generation with the mean values per day of the data series. Energy produced with alternative

1Datos estadı́sticos meteorológicos de temperatura del aire y velocidad de viento en la superficie en el municipio de

Unguı́a-Chocó.” Bogotá D.C., 2016.
2“Datos históricos agroclimáticos del municipio de Cañasgordas - Antioquia.” Medellı́n, 2015.
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Figure 5-5.: Box plot of daily average values of wind and solar irradiance

generation is only taken into account in the short term portfolio, and returns obtained are updated

in the data reconciliation described in equation 4-25, where alternative energy substitutes some

generation technology and this energy is assumed to be sold to regulated users. Last, expected

generation with alternative generation plants is presented in figures 5-6 and 5-7
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Figure 5-6.: Energy produced with wind a set of turbines
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Figure 5-7.: Energy produced with a set of PV panels

Alternative generation figures evidences that production is lower that installed capacity. This can

be attributed to several causes. First, using daily mean values as input, data dispersion is reduced

erasing peak production times (positive and negative). Second: intrinsic uncertainties associated

to natural sources, as example wind profile and generation figures (Figures 5-4 and 5-6, evidences

higher production in the first quarter of the year. In any case, robust design made with the GEP

guarantee energy required by the system, and meets the generation variance presented, without

compromising system reliability. Economic cost of alternative generation plants are covered in the

retailer optimization function, where alternative and classic generation returns are combined in the

cash flow the probability of default payments.

5.1.4. Economic analysis of generation assets costs

In last section, installed capacity and other costs of the generation technologies were described.

It’s a fact that investments in generations plants implies very high initial costs, and a motivation to

make these investments is to get cheaper generation cost and reduction of liquidity and market risk

exposure. Then, the trade-off between the risk exposure and negotiation reductions against higher

investments should be reviewed. Exploring mentioned relationship, this work proposed a method-

ology that relies in these investments to optimize the cash flow of a retailer company. Balancing

long term investments with short term returns is the strategy proposed to maximize retailer incomes

in long term prediction horizon. Before presenting the solution to this strategy an exploration of

the initial cost values is made. This exploration aims to establish proportions between costs and

incomes of the generation technologies providing a context to frame the expected performance of
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solution proposed.

Now, tables 5-1, 5-3 and 5-6 present the cost of the available energy assets. These cost must be paid

once and is important to remember that they came from following facts developed in this thesis:

Traditional installed capacity was optimized in the long term portfolio. This allowed to introduce

a given amount of alternative generation. Forward energy agreements were considered to stress

short term solution performance and alternative generation cost were included taking advantage of

GEP design made. These costs are used in retailer portfolio as part of the optimization objective

function. The optimization problem aims to minimize interests rate looses related to payments of

these investments. This fact makes retailer cash flow and problem feasibility highly sensible to

how the strategy decides the value of these payments. The most common methodology used to

deal with these payments is the annualization of the installed capacity cost along the generation

plant’s life span. Spreading the cost along the life span, with a given interest rate, a set of regular

payments is obtained. These payments are much reasonable in financial terms, but in exchange

reduces the retailer profits due to the financial taxes incurred. Then, considering installation cost

and life span of each technology, annualized costs are calculated and briefed in table 5-7 where the

cost of interests paid along life span are also shown.

Technology Capacity Life span Total cost Interest rate Annualized cost Interest

Coal 1469 MW 40 years 2.49e9 3% 6.37e7 5.15e7

CCGT 55 MW 30 years 0.04e9 3% 0.16e7 7e5

Wind turbines 90 kW 20 years 5.6e5 2% 3.42e4 1.17e5

PV 200 kW 20 years 5.2e5 2% 3.20e4 1.24e5

Table 5-7.: Brief of full and annualized installed capacity costs for first scenario

Now, after that installation cost were discussed, each generation plant has fixed operation and

maintenance (O&M) cost implied. This cost are not eligible and should be paid regularly along

the life span. These cost depends on the installed capacity amount and they are presented in table

5-8.

Technology F&O cost

Coal 49e6 USD/year

CCGT 1.17e6 USD/year

Wind turbines 1680 USD/year

PV 233200 USD/year

Total 50.4e6 USD/year

Table 5-8.: Operation and maintenance (O&M) cost

In short, this section discussed financial assumptions and implications related to the costs of in-
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cluding generation plants in the retailer portfolio. As seen, with the use of these assets, there are

not great uncertainties in the long term calculations of their cost, with the exception of the energy

agreements included, whose negotiations are not include in this work’s scope. On the other hand,

high initial investments are required and it is necessary to cover them. The used of annualized

payments relaxes the problem but also increases the installed capacity costs. Next, the exploration

of the incomes related to energy sales and their production cost as the way to produce returns in

proposed management strategy.

5.1.5. Prices and load estimation

Regarding to the estimation of demand and prices related to energy retailing operation (sale and

purchase), they are discussed in this order: first regulated and non regulated energy prices estima-

tion is presented. Second, spot energy price and load estimation used is shown.

Complexity behind calculations of energy sell prices are too high and this value is critical in the

energy retailer operation and in any trade considered. Operation returns depends of the energy sale

prices and even can lead to unfeasible or undesired operation conditions in the system. Specially,

when the retailing returns depend of high energy volumes and earns in each kW sold are too

small. Aiming for generality in the solution, energy prices will be based in the operation and

fixed costs plus an imposed spread. This creates a direct relationship between solution’s design

and operation and the economic spreads and, at the same time, avoids possible speculation or

overestimation. Regulation laws and government considerations can be included as additional

cost or fees without problem. Therefore, this example will consider an approach to the marginal

energy cost establishing the price based on: an average energy cost plus, an approximated fixed

cost per kilowatt plus an spread. Expressions used for regulated and non regulated energy prices

are presented in equations : 5-1 and 5-2.
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Nt

∑
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C
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+

Nt
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with Nt = 3, all traditional generation technologies are included in the cost, bringing generality

to the imposed price. Fixed cost are calculated with the expected energy used in the GEP design

assuming the robust design case. Then, spread values are assigned with a low margin cost such that

∆Cr(k) = 0.2 USD and ∆Cnr(k) = 0.1 USD which compared with mean energy price and prices

obtained are presented in table 5-9.

Briefly, comparing obtained energy prices with average prices around the world (which can vary

significantly) in several online sources was obtained that prices go from 3 to 41 USD cents. Hence,
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Cr Cnr

USD/kWh USD/kWh

0.2140 0.1140

Table 5-9.: Regulated and no regulated energy sale prices

estimated prices are very close to marginal costs and could be increased without any speculation.

More over, this methodology only considers some technical and operational cost, also several

taxes and hidden cost are missing that could lead to price increments. As additional analysis,

calculated prices will be compared with real retailer regulated and no regulated prices. Comparison

is made making use of sell price series that corresponds to the retailer where the load series were

obtained, presented in figures 5-9 and 5-8. Retailer prices compared corresponds to a generation

mix basically composed by Hydro power plants. The prices evidence very low generation costs.

As conclusion, it is evident that, it is possible to produce energy with sell prices even lower that

prices used in this case. It is remarkable that hydro generation was not included in the GEP

problem, by two facts: to provide more competition between generation technologies prices in

the GEP solution. Second, to provide a more global context since high hydro installed capacities

are not available in all countries. Finally, variables assumed to estimate energy prices produce a

reasonable and conservative sell price compared with world energy sell prices.
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Figure 5-8.: No regulated agreements sell price model and mean retailing price in Colombia

Now, load and spot price estimation were discussed in section 4.2.1 and 4.2.2. Considering a time

resolution of one day established in this section, short term portfolio needs a forecast of one day

head and formulation made for the Holt-Winters model performs efficiently, assuming that every
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Figure 5-9.: Regulated agreements sell price model and mean retailing price in Colombia

time step historical information is updated. Then obtained results are evidenced in figure 5-10 and

the RMSE are presented in Table 5-10.
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Figure 5-10.: Spot price and load estimation of the EPM retailer time series by mean of Holt

Winters models

In this point, where spot market price and load forecast are presented,it is important to discuss

some pros and cons of the proposed methodology. First, one day time frame used in the short

term portfolio implies the use of daily mean values, erasing extreme conditions in the time series.

Of course this is a rough approximation, but the next detail level is the solution of the economic

dispatch problem, which is not included in this methodology’s scope.
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Variable RMSE estimation

Energy price 0.003 USD/kWh

Load (No regulated) 13 kW

Load Regulated 10 kW

Total load 23 kW

Table 5-10.: Holt-Winters models RMSE one time step ahead estimation errors

Second, having defined the scope and, according to the proposed methodology, daily time frame

used provides a detailed solution used to update the expected returns assumed in the retailer opti-

mization problem. Assigned generation budget was calculated assuming a feasible robust scenario,

then,it is expected that daily operation on charge of short term optimization provides better returns

and, at the end of the month (that corresponds to the prediction horizon assigned) an improvement

in the cash flow should be evident.

Then, the use of better forecast techniques in the load and spot price data should be focused in the

medium and long term time in order to design the generation mix and consequently to have more

accurate cash flow predictions. Finally, errors in the short term estimation are covered in economic

and technical terms, installed capacity is able to meet the worst case scenario while generation

budget also can pay this generation. Besides, the spot market is available as last resource in case

of an extraordinary success. At the end, long term design and cash flow relies in the robust de-

sign, focusing the attention in how to deal with incomes and expenses at the retailer level. These

iterations are presented in next sections.

5.2. Integration of the management strategy for one year.

Now, with the expected generations cost, energy sale prices and models required to solve the

market clearing process. Based on figure 5-11 where system iterations are explained. Performance

and results of the proposed strategy are presented.

Starting with the installed capacity cost provided by the GEP solution for the first scenario, pre-

sented in table 5-7 and , using them as initial condition Xr(k) in k = 1 assuming that there is not

previous loan and providing an starting cash condition of US$20 million. Cash initial condition

is a critical condition in the problem initialization. It is necessary to guarantee problem feasibility

and, considering fixed cost and generation budget as initial values US$10 million is the starting

point that avoids loans in first iteration, then next dynamics are too complex to be predicted in the

system. Assigned values were chosen on purpose because they provide a feasible starting point

and at the same time stresses the system performance in front of loans management.

Solution for the energy retailer model presented in equation 2-15 which in short minimizes the

looses related to the installed capacity payments due to interest rates is presented in figure 5-12,
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Figure 5-11.: Hierarchical structure data flow

Variable Value [USD Millions] Description

C0
1(k) 63.71 Anual Coal installed capacity cost

C0
2(k) 0 Anual OCGT installed capacity cost

C0
3(k) 0.016 Anual CCGT installed capacity cost

C0
pv(k) 0.03440 Anual Wind installed capacity cost

C0
w(k) 0.03220 Anual PV installed capacity cost

C
f w
1 (k) 1.111 FWF13 installed capacity cost

C
f w
2 (k) 0.857 FWF13 installed capacity cost

C
f w
3 (k) 0.743 FWF13 installed capacity cost

L(k) 0 Loans

Rr(k) 20 Avaliable cash

where the annualized debt amount of used assets is shown.

As seen took about 8 months to pay the biggest debt, in figure 5-13 decisions are presented. Pay-

ments amount are controlled by the MPC which allow to put particular constraints over the control

actions, in this case debt payments. This property of the MPC methodology is extremely useful in

financial problems allowing to model financial concentration as financial limitations or to impose

arbitrary constrains by the retailing company. Also, it is common to use this kind of restrictions to
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Figure 5-12.: Retailer debt for scenario 1

avoid unrealistic solutions. In this case payments related with generation technologies are limited

to US$10 million per month. Loans and debt are discussed later.
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Figure 5-13.: Retailer payments for scenario 1

Having optimized the installed capacity debts and their associated payments in the retailer eco-

nomic function by means of the proposed MPC, debts dynamics evidenced a priority to pay first
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the smaller ones according to optimization constraints and budget available in the cash flow. Con-

sequently, it is necessary then to explore two economic related variables left: cash flow and loans.

These variables are the last values to be explored in the retailer function due to their interactions

with the short term portfolio.

Now to board the retailer cash flow it is necessary to understand his values depends of incomes and

expenses of the energy retailing operation. Starting with the retailing operation costs where fixed

and variable cost are explored. In section 3 generation mix design was obtained solving the GEP

problem. GEP solution provided installed capacities and their yearly optimal expected operation

plan, presented in figure 3-13. This optimal design was made based in an hourly time resolution

considering maximum energy values and their variations. Therefore, the design can be considered

as a robust solution. Now, making use of the GEP design as operation reference, yearly operation

values are used to estimate variable incomes and expenses related to energy production and they

are presented in table 5-11 as follows:

Technology Block Energy Gen. Price Sell price Gen. Cost Sales Returns

MWh $/MWh $/MWh $/kWh $ $

b1 0 5 214 0 0 0

Coal b2 6.20e6 5 214 3.10e7 1.32e9 1.29e9

b3 6.58e6 5 114 3.29e7 0.75e9 0.71e9

b1 0.56e4 10 214 0.56e5 0.12e7 0.11e7

CCGT b2 0 10 214 0 0 0

b3 0 10 114 0 0 0

Table 5-11.: Yearly expected generation cost and energy sales per block

These yearly values has been calculated with the following assumptions: Energy sale prices that

have a higher impact in the expected returns were estimated fixed and variable costs. Regarding to

expect demand, it is important to highlight that b j values discussed in section 3.1 are the result of

the LDC discretization and, each b j block has been defined as the product of the energy demand

level and his time duration. This product avoids to over estimate the expected generation values,

bounding the expected generation according to the demand level where the generation agreement

was calculated instead of the expected generation with the installed capacity and the 8760 year’s

hours.

Last, before continuing to the short term solution details, it is necessary to consider that yearly

fixed and variable cost exceeds the short term time resolution. Therefore, the assumption made to

meet this task is the linear escalation of the yearly time frame used to monthly values and with the

use of the b j energy blocks the energy proportion is preserved and the result is presented in table

5-12.

Now, after having obtained yearly operation returns and scale them, a monthly expected generation
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Technology Block Energy Gen. Price Sell price Gen. Cost Sales Returns

MWh $/MWh $/MWh $/kWh $ $

b1 0 5 214 0 0 0

Coal b2 5.10e5 5 214 2.58e6 1.1e8 1.04e8

b3 5.41e5 5 114 2.74e6 6.25e8 0.59e8

b1 4.60e3 10 214 0.50e5 0.10e6 0.10e6

CCGT b2 0 10 214 0 0 0

b3 0 10 114 0 0 0

Table 5-12.: Monthly expected generation cost and energy sales per block

budget Bs(k) that corresponds to the sum of generation cost of table 5-12 is obtained and assigned

to the short term portfolio as economic constraint. This is the last step in the hierarchy integration.

Now, solving the optimization formulated in 4-39 considering Holt winters models used to load

and spot price time ahead estimation and, alternative generation time series are used to solve the

market clearing problem allocated in the short term portfolio.

5.2.1. Short term portfolio solution

With obtained GEP design, the variables escalation and robust costs estimation made in the retailer

function, the management strategy can proceed to solve the short term portfolio. This section will

make use of all energy assets designed along this work focused in the market clearing task. The

objective here is to meet the energy required by costumers at the lowest price. This operation is

constrained by the generation budget. Now, solving the optimization described in 4-39 produces

the control actions presented in figure 5-14 and the system states presented in 5-15. Decisions

represents changes in the use of the generations assets. These actions are constrained by ramp

velocities in the generations assets and specified maximum changes in the generation agreements.

Spot market as an ideal generation source is assumed to be able to supply demanded energy at any

time. System states are the energy required to each asset, in case of the generation technologies

limited by installed capacity and in energy agreements, limits are given by the remaining energy

available. It is important to remember that every day alternative generation is included in the

energy balance, considering that the installed capacity is low compared with the total load. Alter-

native generation is not shown in the plots for simplicity.

Now, in order to illustrate the controller performance, only 75 days are shown making use of figures

5-14 and 5-15. First, all artificial generation agreements are active with their respective expiration

dates and every day their prices decay. Controller makes use of the time ahead predictions and

extracts energy of the lower price agreements or the agreement closer to expire. In Figure 5-15

shows how controller stops are used of the forward FWV13, considering expiration days minimiz-

ing loses related to unused energy. On purpose, agreements experiment times where established

in closer dates in order to proceed with analysis of iteration between spot market and generation
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plants, as the main assets considered in this solution.
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Figure 5-14.: Short term portfolio control
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Figure 5-15.: Short term portfolio states

Then, with the end of the energy agreements, demand should be supplied making use of the spot

market, generation plants and the alternative generation. Due to the availability of the energy

agreements, coal plant was producing energy at levels below his installed capacity. Now that the

required energy increases, the system controller decides to increase the generated energy in the coal

plant keeping the increments constrained by the ramp velocity. The ramp constraint avoids that coal

plants reaches the demanded power instantly and, considering this delay the system makes use of

the spot market and the CCGT plant to complete the dispatch. Last, when coal plant is working as

base technology (supplying most of the required energy), the generation control system is able to

meet the demand and his changes with the occasional use of CCGT and, in other times not shown

in the plot, using spot market when prices are low. This operation result in a minimal operation

cost and meets the demand requirements increasing the retailer returns that will explored next.

The returns, as explained in section 2, are updated every Tr time, they are obtained in market clear-

ing operation and calculated with equation 4-24. Now, revisiting the returns problem with a more

detailed description of the implied vales. The first task is to understand the dynamics presented in

the update function referenced, let´s explore comparisons between expected and market clearing

variables.

First, generation budget GB(k) and real operation cost GC(k) are presented in figure 5-16. Consid-

ering the high difference between the robust budget and generation cost values, an additional plot

is required to see the details of the generation cost values and it is presented in figure 5-17. Here,

the monthly robust budget assigned, as expected, is higher that market clearing generation cost.

The influence in the first month of the energy agreements is evidenced decreasing the generation

cost value, then the fluctuation in the cost around the mean value is shown. These changes are

consequence of iterations with the spot market and the occasional dispatch of the CCGT plant.
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Persistent use of the base generation technology to supply system’s real energy demand puts a low

mean operation cost in the solution.
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Figure 5-16.: Energy retailer generations

cost comparison
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Figure 5-17.: Energy retailer generation

cost for one year

Then, analogously energy sales are presented in figures 5-18 and 5-19 representing robust oper-

ation GE(k) that assumes full load all the month and real retailer sales GR(k). Equally, the real

sales are lower that the robust estimated. As seen, absolute variations on energy sale are not too

high and the small changes presented are attributed to load increments, considering that sell prices

are fixed along the year.
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Figure 5-18.: Energy retailer sales compari-

son
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Figure 5-19.: Energy retailer operation

sales for one year

Now, with calculating the short term returns with the presented financial variables related to the

short term portfolio, the returns obtained are presented in figure 5-20.
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Figure 5-20.: Energy retailer obtained short term returns for one year

Finally, making use of the short term return variable, it is possible to calculate the energy retailer

cash flow update values described in 4-24. Figure 5-21 shows the update equation evolution.

Dynamics of the cash flow are determined by the payments of the generation technologies, short

term returns (all of them already discussed), fixed and maintenance cost (F&M) and loans with his

respective payments presented in figure
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Figure 5-21.: Yearly energy retailer cash

flow
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Figure 5-22.: Yearly energy retailer loans

and payments

The energy retailer cash flow with the help of the loan option, that can be seen as a slack variable,

evidences the effect of annualized payments of installed capacities. Until 8 month, short term re-

turns produced in the market clearing operation are used to pay installed capacities cost plus not

eligible costs. Later, savings in the cash flow begin to increase. As mentioned, initial cash con-
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dition was assigned to stress the loan option; in the month 7 the retailer cash flow is zero and the

MPC decides to ask for a load that is paid the next month with returns obtained of the retailing

operation. Then, retailer cash flow begins to achieve savings overcoming and even surpassing,

or recovering initial capital condition. The positive cash flow obtained is sensible company man-

agement or strategy rules such as the energy sell prices, the imposed values in this example are

conservative but, it is possible to obtain higher returns while keeping the prices close to to real

operation values.

Now, the full integration of the hierarchical portfolio management strategy has been made. Next

step is to explore the retailer cash flow values, which are at last the most significance value in the

strategy, and as planning tool, is the consequence of all assumptions made.

5.3. Management strategy performance test

Now that the operation and performance of the management strategy has been shown, it is manda-

tory to provide a metric related to system reliability. Considering that this solution could be used as

a planning tool in energy retailing management where the objective is to maximize the the retailer

returns, the cash flow is the main variable that involves all the variables of the systems involved

in the problem, the uncertainties of this variable,well know as risk, could be used to tackle the

objective of this section.

According to [52] VaR, it is not the most proper risk measurement to evaluate risk in long hold-

ing periods in a given portfolio, such as power plants investments. Thus this, Cash flow at Risk

(CFaR) also known as Earnings-at-Risk (EaR) is the methodology used. According to the author

of the book used EaR definition is: “The considered random variable is the earnings of a com-

pany until a specified date. For energy companies this includes spot price revenues generated by

the assets less all production costs plus all related trading and hedging transactions”. EaR is the

difference between the expected earnings and the earnings corresponding to the given confidence

level”. Thus this, EaR will be used with two purposes: First, identify the solvency risk of proposed

strategy. Second, to analyze the impact of renewable energy, as variable with high uncertainties,

in the generation mix and consequently in the retailer cash flow.

Now, assumptions and considerations made to perform the EaR analysis are listed, then, scenar-

ios used are described and EaR results are presented. First consideration to be discussed is the

reference used to compare the results. Even though all the generation mix design is based in the

modified GEP strategy proposed, the mentioned design is not useful for a EaR analysis. The use

of LDC in the GEP design overrides influence of load changes assuming a single combination of

energy blocks along the year. This implies that GEP or also named robust design only could be

used to calculate the expected cash flow returns with: expected energy sales, annualized installed
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capacity, fixed and variable operation costs of the system in the robust scenario, naturally this value

is highly over estimated: US$61,481 millions which in fact is a value not realistic and either useful

for a risk analysis. Next, the presented case analyzed in this section will be used as reference in the

EaR analysis. Briefly, this design was made with very conservative assumptions: low energy sales

prices, low initial conditions for the cash variable, and low renewable energy installed capacity

with low wind profiles and sun radiation. Also, energy agreements are removed all this in order to

test a very conservative scenario avoiding speculation in the energy retailer cash flow.

Last, two scenarios are tested, keeping the GEP installed capacities fixed, two increments in the

wind turbines and PV technologies are made. Fixing the capacities in the limits of the GEP design

system reliability is ensured in fornt of the uncertaintites of the PV and wind generation. Also,

capacity increments were selected to be range of the financial feasibility, meaning installed capac-

ities provides feasible economic solutions with the same amount of cash available and the same

energy sales prices used in the study case. Now, based on [53] and [52] EaR expressions presented

in 5-3 and 5-4 could be used to calculate the risk of the cash flow. Making use of 5-3 with a 95%

confidence with table 5-13 resumes values used to analyze risk in the proposed scenarios.

EaRα = E(Rr)− [E(Rr)−qαRr] (5-3)

EaRα =
E(Rr)

[E(Rr)−qαRr]
(5-4)

Traditional 90 kW Wind 1500 kW Wind 30 MW Wind

generation 1524 MW 3000 kW PV 1500 kW PV 10 MW PV

Mean $9.925.510 $9.927.889 $9.947.486

Variance $22.828.318.230 $22.823.896.368 $22.794.287.783

EaR $33.785 $33.782 $33.760

Table 5-13.: EaR analysis for energy retailer cash flow in test scenarios

Alternative installed capacity increments are low compared to the traditional generation amount

due to financial constraints imposed to the system where, big values of alternative generation

will implicate to have greater cash initial conditions or would force the controller to borrow more

money, as explained before. However, it is observed small improvements in mean and variance val-

ues as well for the yearly cash flow values. The explanation is: zero generation cost of alternative

plants impacts directly generation cost increasing expect returns. At the same time, considering

that alternative generation is used as perturbation in the generation system, all energy supplied with

alternative generation represents a load decrease that is reflected in less variations in the power re-

quired to the traditional generation plants. In consequence, EaR decreases with the alternative

generation increment. This fact also could be explained from the economic theory point of view:
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diversification.

Having all the energy production attached to a few generation plants, directly transmits load vari-

ance to the generation cost and energy sales. Situation could be worse if generation plants depends

of high volatile fuels. Final remark is to question if alternative generation should increase the EaR

considering their stochastic nature. In this case, the answer is No. Proposed GEP design provides

reliability in front of alternative generation uncertainties and short term portfolio results evidenced

that CCGT plant is used frequently for several possible reasons. One of them is cover fast changes

along the day due to the alternative generation operation. Additionally, as mentioned before, al-

ternative generation is considered with low production time series making the energy production

relatively low avoiding possible over estimation in the savings due to free cost energy. Last, con-

sidering all results presented and comparison of EaR values with mean returns and variances, it

is possible to say that proposed management strategy provides in cases with zero and increasing

alternative generation plants, an expected low risk cash flow providing as planning tool a solid

scenario test tool to analyze or to mange energy retailing operation including generation plants as

assets.

In short, this chapter explained with an application case the integration of all the hierarchical struc-

ture proposed to mange the energy retailer portfolio. The technical and economic integration of

the GEP with alternative generation by means of the retailer economic function was successfully

made. The integration of several time frames increased the time resolution in the economic anal-

ysis, allowing to calculate daily operation returns and to integrate and compare them with the

traditional yearly values obtained in the classic GEP solutions. This detailed approach extended

the planning capacities to the daily time resolutions providing a methodology to estimate with the

expected returns of the market clearing operation with alternative generation.

Then, the impact of the integration of alternative or non conventional generation in the classic

GEP generation matrix was evidenced in the risk analysis made to the strategy. This impact has

two main causes. First, the cost increments due to the high installation cost of alternative genera-

tions compensated with the almost zero generation cost of then. Second, the energy supplied with

alternative generation reduces the use of traditional generation plants decreasing the variance of

the conventional operation cost and, directly decreasing the cash flow variance. All this changes

where measured with the EaR risk measure. The test scenario constrained the amount of alterna-

tive generation but the methodology is flexible as planning tool and scenario analysis allowing to

energy retailers to consider several designs in long term scenarios analysis.



6. Conclusions

A management tool for energy markets focused in retailing companies was developed in this PhD

dissertation. The proposed management strategy integrates short, medium and long term energy

assets by means of an hierarchical structure to conform an energy retailer portfolio. The manage-

ment strategy maximizes the retailer returns in a prediction horizon while minimizes risk exposure

avoiding the use of future energy agreements as hedging instruments.

The main contribution of this work is the integration of short medium and long term models related

with power markets. Making use of traditional generation plants, alternative generation technolo-

gies and an approach to market clearing operations, the energy retailer cash flow is maximized and

at the same time, the use of generation assets minimizes the risks exposure implied by the use of

forward energy agreements. In chapter 2, the solution of the energy retailing problem in emerg-

ing power markets was discussed. The identified lacks in the retailers management strategies were

used to propose a management strategy based on an hedging strategy. The hedging strategy is based

in the optimal economic and technical integration of several power plants in the retailer portfolio.

The proposed optimization problem includes as variables in the retailer economic function: market

clearing returns, fixed and variable costs, and installed capacity investments of all generation tech-

nologies, plus financial loans. Solving the dynamic optimization, by means of model predictive

control theory, the future expected cash flow is obtained allowing to plan and to explore different

operation conditions and scenarios with this management tool.

Regarding to the solution of this thesis several side contributions were found. The most relevant

ones related to optimal investment portfolio management with hierarchical control for energy mar-

kets are:

• A modified version of the generation expansion problem (GEP) extended as a dynamic op-

timization problem and solved with MPC. With this contribution an optimal dynamic gen-

eration plan is obtained, the plan includes ramp velocities of generation technologies and

load dynamics in the design. In chapter 3 this contribution is developed as follows: First,

a comparison with traditional GEP is made evaluating traditional and proposed solutions in

four scenarios separately. As result, the influence of load dynamics in the GEP is used to

show an economic compromise between the system dynamic response and the solution cost

for each scenario. Second, a MPC controller is used to solve the proposed GEP problem

considering at the same time all the scenarios, this approach creates a GEP planning tool
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which provides an integrated expansion plan, which considers previous installed capacities

and future system states minimizing losses in operation and installed capacities costs with a

computational time in order of seconds.

• Modified GEP design provides robust operation conditions in term of installed capacity and

load changes. This fact is used to include alternative generation plants in the mix without

compromising system reliability. Also, GEP design is used to establish, in addition to the

installed capacity cost, fixed and variable cost related to generation plants. These costs, plus

alternative generation plants costs, are used to estimate the annualized payments that are

assumed when generation plants are owned and operated.

• Generation plants designed with the GEP are considered in the management strategy as

energy agreements where the execution price is no subject of negotiation. This reduces

financial risk attached to a unknown price negotiation. Even more, any function or desired

profit could be included in the estimation of the execution prices. This leads to obtain pseudo

energy agreements with known future price, available energy and financial constrains, these

constraints are obtained with the ramp velocities of the GEP and the are used to limit the

maximum changes per time unit in the use of the agreement.

• The use of the hierarchical structure coordinated by the energy retailer economic function,

successfully integrates at technical and economic levels, medium and long term investments

related to installed capacity investments, with the short term portfolio which is on charge of

market clearing. With this, energy sale returns are calculated based on load estimation. The

obtained returns in the market clearing operation, that includes renewable technologies, are

used to pay generation plants cost and create savings, if possible, with the obtained retailer

cash flow.

• Proposed management strategy has a high generality level allowing to use a wide selection

of models in each component of the retailer portfolio. The independence between portfolios

allows to take into account different dynamics and models that could be different in terms

of time and complexity. Furthermore, is possible to establish arbitrary load profiles and

energy sales prices, this could be used to analyze profit changes in different market scenarios

measured with a expected returns risk metric.

6.1. Solution utility

The Presented management strategy is designed to analyze cash flows of retailing companies,

taking into account technical and economic variables. The strategy is able to hedge future energy

with generations plants and avoids the use of energy agreements. Its principal feature is the ability

to easily integrate different models, related with the power markets, which have different dynamics

and complexity.
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In general, the methodology allows to include a wide selection of models or variables that should

be part of one portfolio selected according to its time frame. The models or variables included

must meet the required data amount or allow a forecast in a time window and should be possible

to share technical and economic results with the other layers. Thus, according to power systems

expected evolution in the short - medium future models like generation technologies, ancillary

services, demand respond, energy storage could be added in the energy retailer portfolio plus

several forecast techniques. Then, once the models of interest are included in the hierarchical

structure, the management strategy could be used to make analysis of the technical and economic

system performance under different scenarios.

6.2. Future work

As general methodology, future work of this dissertation could be focused in several research lines:

modeling, forecast, risk management, technical design and economic analysis. Nevertheless, along

the development of this work some immediate contributions related with some strong assumptions

made are proposed:

First, in order to increase the short term portfolio detail level, it is proposed to include start up

and shut down times of the generation plants in the market clearing operation. To do this, it is

necessary to work in the short term model with an hourly time resolution. It is a fact that long term

simulations with hourly time frames demand a huge computational effort and resources. Now,

considering hierarchical structure proprieties, the proposal is to explore the feasibility of splitting

the 8760 hours required to solve at least one year in smaller time frames, this time escalation could

be done similarly to the time escalation made in this work assuming worst case as scenario in the

prediction horizon and then comparing them with real values obtained.

Second, it is recommended to explore the integration of renewable sources and other smart grid

technologies in the traditional generation system. Actually alternative technologies have been po-

sitioned in the generation matrices in the world even and they are included in the countries energy

road-maps. It is pertinent to continue researching in this integration considering new technologies

and government policies.

Last, regarding to the financial field: In order to increase model detail in long term simulation

cases, the inclusion of transaction costs and variable interest rates in the economic function is

suggested. Also, considering the retailer cash flow behavior identified along the development of

the study case. It is suggested to study the proposal of an optimization problem that allows the

retailer to find a combination to get specific returns for a given time mixing: energy sales prices,

annualized costs, fixed and maintenance cost and short term returns.



A. Standart model predictive control

theory

This chapter explains the basics of the Model predictive control (MPC) methodology. This method-

ology was used to solve the dynamic optimization problems discussed in this dissertation. As a

planning methodology, this thesis proposed the solution of several management problems that re-

quires data prediction and to take future actions based on this data. Furthermore, the input data

used is highly dynamic and, decisions made based in this data are susceptible to prediction errors

and uncertainties. Thus this, it is necessary to solve the process interactively and efficiently allow-

ing to compensate the mentioned failures along the prediction horizon.

In order to deal with mentioned problems, MPC methodology provides a suitable solution allowing

to efficiently solve a dynamic optimization problem in a prediction horizon including constraints.

The publication “A Brief Overview Of Model Predictive Control” [54] presents a general method-

ology review, where three remarkable characteristics of MPC are listed as follows:

• Explicit use of a model to predict the process output along a future time horizon.

• Calculation of a control sequence to optimize a performance index.

• A receding horizon strategy, so that at each instant the horizon is moved towards the future,

which involves the application of the first control signal of the sequence calculated at each

step.

Based on these characteristics it is possible to establish a direct relationship between the MPC and

the portfolio managment problem (see [43]). The idea is to use a prediction model for the relevant

variables, in this case, energy market variables, such as: energy demand and energy spot price,

among others. Then, with prediction model an dynamic optimization problem is solved. Solving

the dynamic optimization with MPC methodology allows to choose between several objective

functions or even a combination of them. This fact provides some important highlights about the

MPC methodology:

• Allows to include constraints into the problem.

• With the use of state space models it is possible to split the controlled and control variables

in the optimization problem . Consequently, it is possible to impose specific constraints to

the mentioned variables.
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• The ability to use several types of objective functions allows to make use of mathematical

formulations with interesting properties such as convexity. This fact provides the opportunity

of solve the optimization problem with advanced optimization methods improving stability

and efficiency in to the problem.

• Can deal with multivariable, (MIMO) multi-input multi-output processes.

• A disadvantage is that MPC requires: an appropriate process model.

Last, the optimization problem is solved interactively making use of the receding horizon strategy

(presented in the flowing part of this chapter). These interactions allows to update the forecast

models and fix errors caused by uncertainties, exogenous variables among others.

Past Future

Figure A-1.: Receding horizon strategy

First, in order to illustrate the MPC operation lets consider figure A-1 where predicted outputs

ŷ(k+ j|k), j = 1,2, ...,Np along a prediction horizon Np are calculated for each instant of time k

using the process model. The predicted outputs depend on both the past values and initial condi-

tions of the model y(k) and the applied control actions u(k+ j|k) in previous times k = 0..N −1.

The sequence of future control signals is computed to optimize a performance criterion, often to

minimize the error between a reference trajectory or index r(k) and the predicted process output

ŷ. Then, current control signal u(k) is transmitted to the process. At the next sampling instant

y(k+1) is measured and the process is repeated.
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A.1. Description of the elements of the model predictive

control

A.1.1. Prediction model

The prediction model, can be linear or nonlinear, normally the MPC works with linear models.

As a main base of the prediction for the MPC, the model can be written in a discrete state space

equations, a general form of a state space is defined as:

x(k+1) = Ax(k)+Bu(k)

y(k) =Cx(k)+Du(k)
(A-1)

where x(k) are the states of the system, the A matrix describes the states evolution, B establishs the

relationship between the inputs and the state, u(k) the inputs of the system, y(k) the output of the

system, C is the relations between the states and the output and D(k) a direct relation between the

inputs and the outputs sometimes called the feedtrhough term.

A.1.2. Performance index

Also called cost criterion, penalizes the reference tracking errors and the amplitude of control

actions used to minimize the function.

J(u(k),e(k)) =
Np

∑
t=1

e(k+ j)T e(k+ j)+
Nc

∑
t=1

u(k+ j)T u(k+ j) (A-2)

A more general cost criterion will be used. This formulation, includes Q and R matrices that allows

to weight the states and control values respectively. This matrices are assumed to be symmetric

positive definite.

J(u(k),e(k)) =
Np

∑
t=1

e(k+ j)T Qe(k+ j)+
Nc

∑
t=1

uT (k+ j)Ru(k+ j) (A-3)

where e(k+ j) = ŷ(k)− r(k), Np is the prediction horizon and Nc is the control horizon, u(k+ j)

denotes the control input u at time step k+ j, e(k+ j) denotes the error value e at time step k+ j.

A.1.3. MPC formulation

Given the prediction model by the equation A-1:

x(k+1) = Ax(k)+Bu(k)
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y(k) =Cx(k)

a typical formulation for the MPC problem is proposed as follows:

J(û(k), ê(k)) =
N p

∑
t=1

eT (k+ t|k)Qe(k+ t)+
Nu

∑
t=1

uT (k+ t)Ru(k+ t|k) (A-4)

If the prediction model is linear the substitution of the equation A-1 in A-4 gives to the cost function

the form:

J(û(k)) = ûT (k)Hû(k)+2 f û(k) (A-5)

H = B̂T Q̂B̂+ R̂ (A-6)

f = (x(k)T ÂT − ŷT )Q̂B̂ (A-7)

where û(k) =
[

uT (k) uT (k+1) ... uT (Np−1)
]T

, u(k+ t) = u(k+Nc), ∀Nc ≤ t ≤ Np, Q̂ and

R̂ are block diagonal matrices with the adequate dimensions, being Q and R the blocks of Q̂ and R̂

respectively, and

B̂ =








CB 0 ... 0

CAB CB ... 0
...

. . . 0

CANp−1B ... CB








(A-8)

Â =








C

CA
...

CANp








(A-9)

Q̂ =









Q 0 ... 0

0
. . . ...

...
. . . 0

0 ... Q









(A-10)

R̂ =









R 0 ... 0

0
. . . ...

...
. . . 0

0 ... R









(A-11)

where the objective is to: min
u(k)

J(u(k))
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A.1.4. Constraints

In real applications, the processes have constraints related to the application of each problem,

industrial processes have limits given by: temperature, operation limits and physical restrictions,

in financial systems, the constraints can be related to the transactions cost, amount of stocks that

can be negotiated. The MPC is a strong technique thanks to the constraints handling capabilities.

If the problem does not have constraints, it has a explicit least squares solution.

Normally, the constraints are applied to the states, input or output signals, along all the time k

umin ≤ u(k)≤ umax

ymin ≤ y(k)≤ ymax

xmin ≤ x(k)≤ xmax

∆umin ≤ ∆u(k)≤ ∆umax

(A-12)

The constraints must be met. This is made by forcing to the control inputs to be modified to

guarantee the constraints conditions. There also exist the equality constraints, normally used to

keep the control signal constant beyond certain time. For instance:

∆u(k+ t|t) = 0

t ≥ Nc
(A-13)

Regarding about the time duration of the problem, in order to obtain a problem with an amount of

data or size tractable, it is used a control horizon. In other words, the full problem is not solved

in a single step, as shown in the receding horizon strategy. When the input signal is calculated, it

is assumed to be constant beyond a certain moment in the future. This horizon is called “control

horizon” denoted by Nc and the formulation is:

u(k+ t|t) = u(k+Nc −1|k) for t ≥ Nc (A-14)
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