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Abstract

With the rising of the study of some ionic liquids, many mathematical problems have
appeared, as, for example, complex roots of nonlinear systems and the best parameters
for fitting experimental data. This work presents a schematic way to solve these prob-
lems, but based on a thermodynamic model wich has all of the mentioned obstacles.
The scheme uses stochastic techniques as a central tools. The results, by using these
techniques, allow to obtain good parameters that can predict some facts in the interac-
tion of the ionic liquid with low concentrations of water. Another important fact of the
present work is that by thense of this scheme, it is possible to save computational time
and obtain results in a matter of hours.
Keywords: Stochastic optimization, stochastic search techniques, simulated annealing,

simplex optimization, ionic liquids.



Resumen

La importancia de estudiar ciertos ĺıquidos iónicos trae consigo diferentes problemas
matemáticos, algunos problemas que pueden surgir son: determinar las ráıces de ciertos
sistemas de ecuaciónes altamente no lineales y determinar los mejores parámetros que
permitan dar un ajuste preciso a las propiedades que experimentalmente se pueden dar.
Este trabajo presenta un esquema que ayuda a resolver estos problemas, basado en el
estudio de un modelo termodinámico que tiene todos los obstáculos mencionados. El
esquema presentado, usa técnicas estocásticas como herramienta central. Los resultados
que se obtuvieron al usar estas técnicas proveen buenos parámetros que predicen algunos
hechos en la interacción del ĺıquido iónico con bajas concentraciónes de agua. Como
resultado adicional de este trabajo, el uso de estas técnicas permiten ahorrar tiempo
computacional y obtener resultados en cuestión de horas.
Palabras Clave: Optimización estocástica, técnicas de búsquedas estocástica, simulated

annealing, simplex optimization, ĺıquidos iónicos.
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Introduction

The Optimization is about choosing the best option among others according to a cri-
terion, what makes it a useful tool in many applications of technology and science; for
example, it is widely used in structure designs, business and economy, image processing,
optimal control, raw material etc. It is also impressive how optimization is present in
the daily life; each one wants to save time, or it is desirable to arrive from one point to
another by using the fastest and safest path; optimization is also present when you want
to buy the best stuff without wasting too much money and so on.

This work is focused on an application related to determining the best values over
thermo-physical properties of certain fluids. The issue to determine these values can
be approached by different mathematical techniques, as Perdomo et al. in [43], they
approximate these parameters by genetic algorithms. The intention here is to do a
revision over stochastic methods, that can carry out extensive examinations, as well as
low computational cost, and wich finally provide results close enough to the exact value
that satisfies the application needs.

An optimization problem can be stated as:

xmin = arg min{f(x) : x ∈ Ω}, (1)

where f is a real value function defined over a set Ω ⊆ Rn, usually, the function f is
named the objective function and the set Ω is the feasible set of solutions. When Ω = Rn,
the problem stated by the equation (1) is usually named Global Optimization Problem
or simply an optimization problem without constraints, in general, when Ω ⊂ Rn, we say
that (1) is named an optimization problem with constraints. The set Ω can be defined
in some cases of the form:

Ω = {x ∈ [α1, β1]× · · · × [αn, βn] and gr(x) ≥ 0 for each r ∈ {1, 2, . . . ,m}}.

In this case, gr are mappings and represent the constraints of the problem and m repre-
sents the quantity of constraints, consequently there may not be a relationship between
the dimension of the problem n and the number of constraints m. Other problems re-
quire to maximize an objective function g instead of minimizing an objective function
f , over a particular admissible solution set. Nevertheless, this issue is equivalent to a
problem (1) by considering f = −g. Due to this, we will only deal with minimization,
as the target in every technique described in this document.

If f in (1) is enough smooth, we say f ∈ C2(Ω). Techniques as Newton-Raphson
can provide a partial solution to (1), as long as this is locally convergent (the initial
step should be really near to a solution) and it does not distinguish between maximum
(local) and minimum (local), the Newton-Raphson method is not a useful technique for
the intentions in this work. There are other useful techniques as the conjugate gradient
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or the descent gradient (that will be explained in the next chapter), but they become
inefficient when the dimension of Ω is increased. For example, W. Press in [44] approaches
these methods.

In general, the deterministic algorithms can fail in at least one of the following cate-
gories:

• The difficulty to converge globally

• The requirement over f to be smooth

• The problem of dimension

The issues above justify the use of stochastic methods because they are suitable tech-
niques to avoid them.

0.1 Brief Note on Optimization Techniques

The types of algorithms we are interested in, are the stochastic type. The 20th century
brought many developments, and the most remarkable fact is that with the advances in
computers, more problems and types of methods are studied. In regarding deterministic
approaches, in linear programming, George Bernard Dantzig established the famous sim-
plex method. It seems that the Russian mathematician Leonid Vitaliyevich Kantorovich
found the same method but kept it in secret until Dantzig made it public the algo-
rithm [15]; whereas that in the area of Non-Linear Programming, the famous conditions
in Karush-Kuhn-Tucker appears. In addition, Richard Bellman proposed the Bellman
equation as a necessary condition in dynamic programming. Another famous problem is
The Traveling Salesman Problem that states the following question: “Given a number
of cities all of them connected, what is the shortest path that visits each city exactly
one time?”, a general statement of this problem is attributed to Karl Menger (the same
mathematician of the Menger Sponge) in [36], with comments on defining a new curve
length. This problem is very important in operation research and theoretical computer
science, in fact it is classified as an NP-hard (non-deterministic polynomial-time hard).

There is a relation between the development of Optimization and the electronic Era;
new branches in algorithms appeared, they are: stochastic and evolutionary. Both differ
from the deterministic algorithms by using random walks to approach the solution, and
that they do not usually require differentiability on the objective function.

From one hand, with stochastic algorithms one can find the family of Stochastic
Approximation methods. Here, these algorithms try to find the extrema of a function,
when the objective function or even the derivatives of this, can not be evaluated directly
and only noisy estimations are possible. The initial method was proposed by Herbert
Robbins and Sutton Monro in 1951, in the so-called Robbins-Monro algorithm [49].
Successive works inspired in the Robbins-Monro algorithm emerged, as the work of Venter
Sacks [52] and [57]. Another noticeable method was proposed by Kiefer and Wolfowitz
[28]; as a procedure for estimating the maximum of an objective function, that in contrast
to the Robbins-Monro algorithm, it does not need that the function being continuous.
Other very important but different algorithm was developed, the Monte-Carlo method
appeared in 1953, see ref. [38] with the main goal of addressing physics problems, but
applications in optimization appeared, and the Monte-Carlo method can provide a good
solution by evaluating the objective function in a sequence of random points and choosing



the extreme value of this sequence. Another important generalization was due to W. K.
Hastings by studying the initial proposal of Monte-Carlo (this technique is also named
Metropolis-Hastings) for several dimensions and changing the Boltzmann distribution by
a general one [22].

In Operation Research, one of the initial adaptations of Metropolis-Hastings method
to solve problems in this field was presented by S. Kirkpatrick et al. in [29] to solve
combinatorial problems as the Traveler Salesman Problem, with several nodes. The idea
is to provide sequences of solutions, saying

s0, s1, s2, . . . , sn, . . .

where this sequence is supposed to converge to the shortest path. The interesting fact
here is that the sequence is a Markov process, which uses the Boltzmann distribution
to allow the transition from a partial solution si to the next si+1. To solve continuous
problems, authors as Bohachevsky et al. in [8] made proposals but no theoretical results
over convergence where given. Nevertheless, this implementation is not far for providing
good results in many practical problems. Other works on theoretical results for applying
the technique to continuous cases are provided by A. Dekkers and E. Aarts in [16] or M.
Locatelli in [32].

On the other hand, there were some people that inspired in nature proposed what
is known as the Artificial Intelligence. For example the theory of natural selection and
the human social behavior inspired some techniques to approach optimization problems.
On one side, inspired by natural selection, the genetic algorithm executes three basic
operations to simulate the natural process: mutation, crossover and selection. Initial
ideas to this technique were provided by Alan Turin [55] when he was realizing on ideas
to simulate the adult or child human mind and he noticed that trying to produce an
artificial intelligence, could be made by carrying out an evolutionary process.

The research in genetic algorithms was widely developed, a key reference to these
techniques can be found in the book [24]. On the other side, the social behavior of
animals, for example a shoal or a herd, have inspired algorithms as the Ant Colony
System [17] or the Particle Swarm Optimization [18]. These algorithms belong to the
swarm intelligence algorithms, in general, the idea is simulating these groups when they
try to find food or being protected from predators, all this oriented to approximate an
optimal solution.

Additionally, there exist a kind of very interesting heuristics based on geometrical
patterns. One of these heuristics is commonly denominated Pattern search. This tech-
nique is convergent locally, but the remarkable fact is that the objective functions do not
require differentiability. This heuristic was initially proposed by Robert Hooke and T. A.
Jeeves in [25]. There exist some studies of global convergences under certain conditions
in [54]. The other technique that will be explained later in one of the next chapters, is
the Nelder-Mead technique [39]; here the geometric pattern that explores the solutions
is named simplex, it has one more vertex that the dimension of the solutions (a triangle
in the plane, tetrahedron in the space, etc) and it moves with four basic movements: re-
flection, expansion, and two types of contraction. The two principal differences between
these algorithms are: first, the geometric pattern used for exploring,and the second dif-
ference is that one more movement in the simplex method is added (a contraction to
one of the vertices). To clarify, the geometric figure in Pattern Search can be imagined
as the middle point of a hypercube, joined with segments by the middle point of their
faces, for example in the plane it is a cross.



0.2 Background and Motivation

My research team PCM computational applications have lately carried out, different
studies that combine mathematics, physics and chemistry, all of them focused on models
for physical needs. Among these studies, there are applications of signal processing,
coatings, image processing oriented to medical applications and simulation of physical
properties by Monte-Carlo, finite elements and molecular dynamic [48, 2, 56, 46].

As we have mentioned before, solving the problem (1) can present some difficulties in
terms of non-linearities, many global minima and complex feasible sets. This is present in
our main application goal, which is described in later chapters. Our purpose is to find a
set of parameters that better fit a set of data. These data are obtained from experimental
results of measuring some properties to a mixture of chemical potential, pressure, physical
work, density, etc. We proceed by relating the characteristics according to the theory
SAFT-VRE see ref. [20] and finally by constructing the objective function and the
constraints, in order to find the parameters. There exists background on theses kind of
problems, as [42, 43, 41]; nevertheless theses works have not taken into account some
characteristics of the compounds, some of them are the contribution of the ionization, its
work and potential, among others. In addition, the stochastic methods were chosen to
develop the fitting because they do not require the objective function to be differentiable
or continuous; even more, the construction of the objective function has, as a result a
function very difficult to evaluate and a behavior difficult to predict.

The main purpose of this work is to provide an estimation of a set of parameters,
that describe a system of ionic liquids. In order to do this, the present work is organized
as follow: Chapter 1 presents some of the most important stochastic techniques that will
be implemented for carrying out the estimation, Chapter 2 analyzes and develops the
SAFT-VRE approach based on literature and making some assumptions we think best
describe the ionic liquid, Chapter 3 presents the results of adjusting the parameter to
the model and discusses some changes presented in the literature, and finally, Chapter 4
presents the most important facts and conclusions of this work.



Chapter 1

Optimization Methods Based on
Stochastic Searches

In this chapter, there is a description of different algorithms used to find the global
optimum of a problem by using stochastic searches. These optimization methods make
use of random steps, this causes to be less sensitive to errors and additionally to be non-
deterministic methods. The reason to have chosen these techniques is because they are
suitable to solve problems with many local minima and for highly nonlinear functions.
In addition, most of the methods presented are used to find solutions to problems where
the objective is not differentiable, or even the feasible set is disconnected.

The most important advantages of these methods are: the simplicity of implementing
them in computational languages, and the lack in using the derivative of the objective
function. We will start mentioning the Simulated Annealing method, some of its imple-
mentations, and finally other variations motivated by this technique.

1.1 Simulated Annealing

As it is mentioned in the historical notes, Metropolis and some other colleagues proposed
the Monte-Carlo technique as an strategy to model physical behaviors, by using the new
electronic computers and the generator of random numbers, see ref. [38]. As the time
passed new approaches emerged, as the theoretical study provided by Hastings in paper
[22] and more specifically the idea of using the Boltzmann probability, in order to give
positive probabilities to accept a random point, whose function evaluation is greater than
the evaluation of a previous iteration when finding the minimal solution for the Traveling
Salesman Problem is executed [29].

In agreement with certainly principles of physics, a system with the enough freedom
will tend to the state of minimum energy. For example, the temperature of a piece of
heated metal tends to be cool. Therefore, it is possible to extract a mathematical model
of such a system, in order to find the optimum value of certain function.

In the case of the optimization problem (1), the approach of Simulated Annealing
is based on generating samples on the set Ω that can be seen as possible solution due
to they belong to the set of feasibility. The technique reaches the optimum value by
producing simple iterations x0, x1, . . . , xj that belong to the set Ω, being j a label used
to count the points generated by the method.

One initial solution is proposed to solve the problem, consequently other different
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solution is proposed; evidently, one can decide if one of the solutions is better than the
other by comparing the images. Nevertheless, the idea is to give the possibility to bad
solutions to update the iterations. For our purposes, this method can avoid get trapped
in local solutions, accepting an iteration that corresponds to an increase in the function
value, which can cause later to make an iteration to arrive to suitable values.

This is done by using the Boltzmann probability transition:

P (xj , xj+1, T ) = min{1, e−∆f/kT } (1.1)

where ∆f = f(xj+1) − f(xj) and the constants k and T are the Boltzmann constant
and certain positive number named temperature. The expression (1.1) was proposed
by Metropolis in the general scheme of Monte-Carlo. The quantity P (xj , xj+1, T ) (the
probability to change xj by xj+1 at temperature T) is always positive, but the most
important is that, if f(xj+1) < f(xj), this means that ∆f < 0 hence P (xj , xj+1, T ) = 1.
The other hand when f(xj+1) > f(xj), the difference ∆f is negative and this implies that
the probability of transition from the point xj to the point xj+1 at certain temperature
T is positive or that P (xj , xj+1, T ) > 0. The above shows why positive probabilities
are given to bad movements of the stochastic path. However, the remarkable fact is
that a lower but still positive temperatures T the transitions are more difficult to carry
out than higher temperatures. The pseudocode of this technique is presented in the
algorithm 1, based in one of the proposals of Bohachevsky [8]. This is the simplest
proposal of Simulated Annealing, but it has large disadvantages as the most complex.
These issues are the difficulty of tunning the parameters: step size δ (for the range of the
next search) and temperature T , in order to find the best solution in the less quantity of
iterations. In the algorithm 1 step 2, the set ∂Bδ(x) represents the surface of a sphere
with radius δ and center in the x:

∂Bδ(x) = {y ∈ Rn : ||x− y|| = δ},

being || · || the euclidean norm.

Algorithm 1 Standard Simulated Annealing (SSA)

1: Choose randomly an initial point xj ∈ Ω, with j = 0.
2: Choose a random point xnew ∈ ∂Bδ(xj) ∩ Ω.
3: Generate a random number ρ with uniform distribution from the interval (0, 1).
4: Finally,

xj+1 =

{
xnew if ρ < P (xj , xnew, T ),
xj otherwise

5: If any stopping criterion is satisfied stop, else return to the step 2.

One of the best alternatives to the this first approach of Simulated Annealing is
studied for example by Locatelli in [32] but later than C. Bélisle in [5]. There, the new
part is the implementation of cooling schedules. A cooling schedule, since a general view,
is a succession of functions {τj} defined on Rj that assigns temperatures Tj+1. According
to the knowledge of the pass iterations, the schedules do Tj = τj(x0, x1, . . . , xj−1), but
under the condition that limj→∞ τj = 0. To avoid tunning a step size δ, Locatelli
and Bélisle also studied the general form of choosing new candidates for updating the
succession by certain distribution. This new Simulated Annealing is presented in the
algorithm 2.



(a) A iterations carried out by the algorithm 1, using the Ackley as test function.
δ = 0.4, T = 0.9.

(b) A iterations carried out by the algorithm 2. With a uniform distribution on
Ω and a cooling schedule equal to 0.99j .

Figure 1.1: An example of the iterations carried out by different Simulated Annealing
approaches



Algorithm 2 Most common Simulated Annealing

1: Choose randomly an initial point xj ∈ Ω, with j = 0.
2: Choose a random point xnew ∈ Ω, according to certain distribution.
3: Generate a random number ρ with uniform distribution from the interval (0, 1).
4: According to the cooling schedule, do Tj+1 = τj+1(x0, . . . , xj)
5: Finally,

xj+1 =

{
xnew if ρ < P (xj , xnew, Tj+1),
xj otherwise

6: If any stopping criterion is satisfied stop, else return to the step 2.

1.1.1 Cooling Schedules

There exists different cooling schedules in the literature, some of them are presented in
the references [29, 1]. In general, down the conditions presented by [5, 32], it is possible
to use any scheme of cooling, even those that come from the initial Metropolis-Hastings
technique, or those used for solving combinatorial problems by SA.

1.2 Improving Hit-and-Run

Initially, the algorithms type Hit-and-Run were designed as a method for sampling points
over bounded subsets of Rn. These are Markov chains type and have the characteristic
to be uniformly distributed over the sample space and additionally with good asymptotic
properties. The reason to be called in that form is that the algorithm behaves as a driver,
crashing points continuously on certain region. Roughly speaking, these algorithms work
as random generators according to a general distribution.

Hit-and-Run was presented by R. Smith in ref. [53], he proved the convergence in
variation to the uniform distribution. Independently Boneh and Golan in ref. [9] did it,
but they did not show results over asymptotic uniformity, it was uniquely conjectured.
A important generalization of this algorithm was made by Bélisle et al. in [6]; the idea
was to take any arbitrary distribution v and other objective distribution π, under certain
conditions of π the sampling converges to it. Other important studies on this were made
in [27, 58].

The sampling method proposed by hit-and-run inspired different applications, for
example it was proposed for constructing random walks in different regions, as convex
sets in ref. [7] or on geometric objects as polytopes in [37]. Zabinsky et al. in ref.
[59] proposed a method named Improving Hit-and-Run for finding global optimum of
nonlinear functions, it means that the algorithm samples points over the set Ω with a
rejection-acceptance step in order to obtain minimum values.

The algorithm 3 describes each step of the Improving Hit-and-Run method. The
matrix H can be chosen as the Hessian of the objective function when f is an elliptic
function1. Normally, the matrix H is not easy to compute. However, it is possible to
approximate this matrix with the procedures used in DFP, BFGA in quasi-Newtonian
local search as suggested by the authors, or even as SR1 proposed in [31, 11, 40]. Also,
this procedure can be simplified using H = I and normalizing the direction vector ~d,

1In an elliptic problem, the objective function can be written of the form f(x) = h(r) with r =
||x−xmin||A and A is a non singular square matrix, h is non decreasing for r > 0 and the norm is defined
as: ||x||A = ||Ax|| being || · || the euclidean norm.



Figure 1.2: An example of the iterations using Improving Hit and Run on the Ackley
test function and H = I.

which causes that the distribution of the direction vector be uniform over the hyper-
sphere of unitary radius and center in the current iteration [35].

Algorithm 3 Improving Hit and Run for optimization

1: Choose randomly an initial point xj ∈ Ω, with j = 0.

2: Choose a random direction ~dj normally distributed on with mean 0 and covariance
matrix H−1 (H is a matrix definite positive).

3: Find the set Lj = {λ ∈ R : xj +λ~dj ∈ Ω} and choose a random number λj uniformly
distributed over Lj .

4: Finally,

xj+1 =

{
xj + λj ~dj if f(xj + λj ~dj) < f(xj)
xj otherwise

5: If any stopping criterion is satisfied stop, else return to the step 2.

The figure 1.2 shows an example of the procedure 3 applied to the Ackely test func-
tion. Here, one can note the similar results with the example carried out by the Simulated
Annealing. This is due to Improving Hit and Run samples uniformly over Ω. The advan-
tage of this method is the lack of using a cooling schedule. But despite of this fact, the
high quantity of evaluations turn this method useless over functions difficult to evaluate.

1.3 Hide-and-Seek

This algorithm for optimizing is similar, in essence to the Improving Hit-and-Run pro-
cedure. The difference between them lies in the implementation of the Metropolis cri-
terion, as an acceptation-rejection probability of transition to the random walk see ref.



Figure 1.3: An example of Hide and Seek on the Ackely test function. The cooling
schedule used is of the form 0.99j .

[50]. With this transition probability, the algorithm behaves as the game child, in the
sense it tries to find a global minimum in a region where it could or could not be placed.
The pseudo code is presented in 2; there, the random direction was modified to carry
out the results. We use a uniform distribution to choose the direction vector over a
n-dimensional hyper-sphere.

Algorithm 4 Hide-and-Seek scheme for optimization

1: Choose randomly an initial point xj ∈ Ω, with j = 0.

2: Choose a random direction ~dj with each coordinate distributed uniformly over the
feasible region.

3: Find the set Lj = {λ ∈ R : xj +λ~dj ∈ Ω} and choose a random number λj uniformly
distributed over Lj .

4: State Tj = τj+1(x0, . . . , xj) according to some cooling schedule {τj}.
5: Finally,

xj+1 =

{
xj + λj ~dj with prob. min{1, e{f(xj)−f(xj+λj ~dj)}/Tj}
xj otherwise

6: If any stopping criterion is satisfied stop, else return to the step 2.

In the figure 1.3, the method Hide-and-Seek was applied on the Ackley test function.
The cooling scheme is 0.99j , where j is the label of each iteration. This means that the
temperature for the transition probability in each iteration is given by

Tj = τj(x0, x1, . . . , xj−1) = 0.99j

and it is in fact a cooling schedule, because 0.99j → 0 as j →∞. As well as the Improving



Hit-and-Run method, Hide-and-Seek has good precision. Due to the sampling is uniform
on the set Ω, the method requires to evaluate many times the objective function to find
the desired solution, this is a disadvantage when the function is difficult to evaluate, and
it can cause issues for solving hard problems. The efficiency of both methods is compared
using different cooling schemes in reference [50].

1.4 Nelder-Mead Simplex Method

The method presented in this section is different to the “simplex method” proposed by
Dantzig in [15] for linear programming problems. The name of the method presented
here, is motivated by the geometric figure used to explore the region of feasible solutions,
a simplex is a generalization of a triangle or a tetrahedron to higher dimensions. Roughly
speaking, given n+1 points (vertices) x1, x2, . . . , xn+1 ∈ Rn down the condition that the
n vectors of the form:

x2 − x1, x3 − x1, . . . , xn+1 − x1 (1.2)

are linearly independent, then a simplex is the polytope formed by the set:

S =

{
λ1x1 + λ2x2 + · · ·+ λn+1xn+1, s.t. λi ≥ 0 and

n+1∑
i=1

λi = 1

}
(1.3)

The requirement for the vectors in (1.2) to be L.I. is always necessary to carry out a
non-degenerated search, as it will be shown in the appendix A.

The initial idea of this method was presented by J. A. Nelder and R. Mead in [39] as a
proposal to find the minimum value of a function as in (1), this technique is clearly deter-
ministic, and different papers show it to be locally convergent. This last is a disadvantage
when the global minimum of a function with many local minimum is required.

Initially, the way for this technique to approach a minimum, is by carrying out some
movements of the simplex:

1. Reflection

2. Expansion

3. Contraction

4. Reduction

All this movements are illustrated in figure 1.4. After establishing these movements, one
initial simplex is proposed, having in mind that the vertices can not be degenerated,
this is assured by using the condition (1.2), where these are labeled with subinidices
(x1, x2, . . . , xn+1) according to the inequalities:

f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). (1.4)

Finally the technique replaces the last vertex labeled with the mentioned movements,
these cause the simplexes to approximate an interior local minimum. The algorithm 5
shows in detail the process that this technique executes.

Generally in the algorithm 5 the constants are chosen as: α = 1, γ = 2, ρ =
−1/2 and σ = 1/2, but for example in [23], these are chosen if holds the inequalities:
0 < α ≤ 1, 2 ≤ γ, −1 < ρ < 0 and 0 < σ < 1, in order to do a more exhaustive search.



(a) Reflection. (b) Expansion through a centroid.

(c) Contraction of one vertex. (d) Reduction of the volume.

Figure 1.4: Possible movements of a simplex with the Simplex Nelderl-Mead Method 5



Algorithm 5 Nelder and Mead Method

1: Sort the vertices as in equation (1.4).
2: Compute the centroid x0 =

∑n
i=1 xi/n.

3: Compute the reflected point xr = x0 + α(x0 − xn+1).
4: if f(x1) ≤ f(xr) < f(xn), then
5: Reflection: xn+1 ← xr and go to step 1.
6: else if f(xr) < f(x1), then
7: compute xe = x0 + γ(x0 − xn+1).
8: if f(xe) < f(xr) then
9: Expansion: xn+1 ← xe and go to step 1.

10: else
11: xn+1 ← xr and got to step 1.
12: end if
13: else
14: Compute the contracted point xc = x0 + ρ(x0 − xn+1),
15: if f(xc) < f(xn+1) then
16: Contraction: xn+1 ← xc and go to step 1.
17: else
18: Reduction: xi = x1 + σ(xi − x1) ∀i ∈ {2, . . . , n+ 1} and go to step 1.
19: end if
20: end if

These technique is very similar to the Pattern Search method proposed by Robert
Hooke and T. A. Jeeves in [25]. Their proposal include a geometric pattern as well,
but the only difference is that this pattern only follows three movements: reflection,
expansion or reduction.

This method is sensible to the initial simplex, for example, the figure 1.5(a) shows
a development of the iterations converging to a local optimum, using an initial simplex
with the vertices:

v1 = [−1.90999, 1], v2 = [−1.8, 2], v3 = [−1, 2] (1.5)

However, the figure 1.5(b) shows a global convergence, with the set of vertices:

v1 = [−1.8, 1], v2 = [−1.8, 2], v3 = [−1, 1.8] (1.6)

the same algorithm reaches the global optimum.

1.4.1 Simplex Simulated Annealing

As a solution to deal with the convergence to local minimum, there exists an approach
motivated by Simulated Annealing, that in addition produces a method which explores
solutions by a stochastic path. W. Press and S. Teukolsky in [45] proposed a novel
method that combined the Simplex method and Simulated Annealing. The idea is to
establish certain temperature T and adding the proportional logarithm of a random
number normally distributed on [0, 1] to the temperature on each value of vertices as in
equation (1.7), and also subtract it from the value of the replacement vertices as in (1.8):

f̃i = f(xi)− T ln(r), (1.7)



(a) An example of local convergence for the Nelder and Mead algorithm

(b) An example of global convergence for the Nelder and Mead algorithm

Figure 1.5: Showing the sensibility on the initial simplex. This is an important issue
when using the Nelder and Mead method. Here the function used is the Ackely test.



f̃rep = f(xrep) + T ln(r), (1.8)

From one hand, the equation (1.7) has two main consequences in the algorithm, first
it perturbs the images to higher values, and second with these perturbed values, the
vertices are sorted as in equation (1.4) but randomly. On the other hand the equation
(1.8) perturbs new values to others lower, when movements of the simplex are happening.
In conclusion, all these happen in order to accept bad movements while the temperature
is reducing, which later can cause achieving a global optimum.

There are not schematic proofs that analyze the behavior of this approach, the only
theoretical explanation to justify the convergence to minimum values, is that it is reduced
to the Nelder-Mead simplex method as T → 0. For example M. Cardoso et al. in
[12] provided some results over test functions; additionally they provided schemes for
reducing the temperature, and the most important contribution was a way to deal with
constrained problems, where for example the set Ω is formed by nonlinear constrains.

The algorithm 6 shows the most simple proposal for this technique. In this algorithm,
the tilde symbol (∼) on the objective function represents, either the perturbation (1.7)
(for ordering the vertices in the actual simplex) or either the perturbation (1.8) over the
images of proposal vertices in the movement of the simplex.

Algorithm 6 Simplex Simulated Annealing

1: Label the vertices such that f̃1 < f̃2 < . . . < f̃n+1.
2: Compute the centroid x0 =

∑n
i=1 xi/n.

3: Compute the reflected point xr = x0 +α(x0−xn+1) and its perturbed value f̃r given
by equation (1.8).

4: if f̃1 ≤ f̃r < f̃n then
5: xn+1 ← xr and got to step 1
6: else if f̃r < f̃1 then
7: compute xe = x0 + γ(x0 − xn+1) and f̃e
8: if f̃e < f̃r then
9: xn+1 ← xe and go to step 1.

10: else
11: xn+1 ← xr and go to step 1.
12: end if
13: else
14: Compute xc = x0 + ρ(x0 − xn+1) and f̃c
15: if f̃c < f̃n+1 then
16: xn+1 ← xc and go to step 1.
17: else
18: xi = x1 + σ(xi − x1) ∀i ∈ {2, . . . , n+ 1} and go to step 1.
19: end if
20: end if

An example of this technique is presented in the figure 1.6. It shows different answers
with the same set of vertices in (1.5). The figure 1.6(a) shows a global convergence, while
the figure 1.6(b) shows a convergence to a local minimum.



(a) An example of global convergence for Simplex Simulated Annealing

(b) An example of local convergence for Simplex Simulated Annealing

Figure 1.6: Using the Simplex Simulated Annealing on the Ackley test function. The
cooling schedule is of the form 0.99j .



Chapter 2

Developing a Molecular Model for
Ionic Liquids Using SAFT-VRE
Approach

This chapter will start by describing the main purpose. We will approximate some
important parameters in a model of ionic liquids, this is composed by water (H2O)
which we call “specie one” with a number of molecules expressed in moles N1; the
second component are molecules with positive charge (cation) that are called “specie
two” with a quantity N2, and the final component of our main mixture is a compound
of molecules charged negatively (anion) with a number of molecules N3. An important
term in the work is the relative density of each compound. Due to the high number
of moles in certain experiments, we will associate to each specie a number called molar
fraction. If we assume that N is the total number of molecules in the mixture, this
fraction is expressed as:

xi =
Ni

N
=

Ni∑3
i=1Ni

. (2.1)

Moreover, the additional densities ρ = N
V and ρi = Ni

V are remarkable.

2.1 Helmholtz Free Energy

The experiments are carried out in environments where the volume, the temperature and
the quantity of the compounds are constant; then, in theory we can model the mixture
using a thermodynamical potential that measures the work of the compounds in this
environment. The potential is called ‘Helmholtz free energy’, which was developed by
the German physicist Hermann von Helmholtz and usually is represented by the letter
A, which is the initial letter of the word Arbeit which in German language means ‘work’.

According to the SAFT (Statistical Association Fluid Theory), we assume that the
dimensionless Helmholtz free energy of a fluid A/(NkT ) can be decomposed in terms of
the ideal, monomer segment, associative and ionic contributions as

A

NkT
=
AIDEAL

NkT
+
AMONO

NkT
+
AASSOC

NkT
+
AIONS

NkT
. (2.2)

There, k is the Boltzmann constant and T is the temperature. Each term on the right
side in the equation (2.2) represents a different contribution in the compound.
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For our purpose, it is necessary to compute the chemical potential (µx), which is
defined as the change of the energy with respect to the number of moles of each compo-
nent in our mixture. Using x as a label for any contribution, according to the relation
Ax

kT = Nax then

µx

kT
=

[
µxj
kT

]
j=1,2,3

=

[
∂(Nax)

∂Nj

]
j=1,2,3

(2.3)

Also notice that
µxj
kT

=
∂(Nax)

∂Nj
= ax +N

∂ax

∂Nj
, (2.4)

due to ∂N/∂Nj = 1. For further computations, also notice that

∂xi
∂Nj

=
Nδij −Ni

N2
=

1

N
(δij − xi) (2.5)

and
∂xi
∂ρ

=
∂(Ni/(ρV ))

∂ρ
= −xi

ρ
(2.6)

where δij represents the Kronecker delta function.
Finally using the equations (2.2) and (2.3) the formulation for the chemical potential

is
µ

kT
=
µIDEAL

kT
+
µMONO

kT
+
µASSOC

kT
+
µIONS

kT
(2.7)

2.1.1 Initial Considerations

We will model each atom of specie i as a sphere of certain diameter, the measure of
these diameters are labeled as σii. For the case of water (species 1), we define: the
radius rd as the distance from the center of the molecule to the association sites, and
rc as diameter of each site; see figure 2.1. Additionally, the attraction between particles
of water is carried out in sites of different charges an is considered of short distance; it
means that the interaction only occurs when there are already bonded, and additionally,
is considered as an intermolecular hydrogen bonding.

On the other hand, the SAFT model in ref. [33] considers that the interaction between
a molecule of type i with another of type k is described in the square-well form

uik(r) =


+∞ if r < σ̄avg,
−εik if σ̄avg ≤ r ≤ λikσ̄avg,
0 if r ≥ λikσ̄avg,

(2.8)

where r denotes the distance between the centers of the two molecules, σ̄avg = (σii +
σkk)/2 and λik = (σiiλii + σkkλkk)/(σii + σkk)



Figure 2.1: General scheme for the diameters σ11, σ22, σ33 in each specie; rd as the
distance between the center of the water molecule and the association sites, rc is the
diameter of the sites H+ and e−.

2.1.2 Ideal Contribution

The free energy of a ideal mixture is given by the expression [20, 51]

AIDEAl

NkT
=

n∑
i=1

xi ln (ρiΛ
3
i )− 1 (2.9)

Where n is the number of species, ρi = Ni/V is the molar density of specie i and Λi is
the Broglie wavelength of the specie i. The relation for ideal chemical potential becomes
in to

µIDEAL

kT
=

[
aIDEAL +N

∂aIDEAL

∂Nj

]
j=1,2,3

(2.10)

additionally,

∂aIDEAL

∂Nj
=

n∑
i=1

∂
{
xi ln (ρiΛ

3
i )
}

∂Nj

=
n∑
i=1

{
∂xi
∂Nj

ln (ρiΛ
3
i ) + xi

∂
{

ln (ρiΛ
3
i )
}

∂Nj

}

=
n∑
i=1

{
1

N
(δij − xi) ln (ρiΛ

3
i ) + xi

1

ρiΛ3
i

Λ3
i

V

∂Ni

∂Nj

}

=
1

N

n∑
i=1

δij ln (ρiΛ
3
i )−

1

N

n∑
i=1

xi ln (ρiΛ
3
i ) +

1

V

n∑
i=1

xi
1

ρi
δij

=
1

N
ln (ρjΛ

3
j )−

1

N

n∑
i=1

xi ln (ρiΛ
3
i ) +

1

N

(2.11)

replacing (2.11) in (2.10), the ideal chemical potential of our mixture is

µIDEAL

kT
=
[
ln (ρjΛ

3
j )
]
j=1,2,3

(2.12)



2.1.3 Monomer Contribution

The monomer free energy is expressed as [20, 21, 19]

AMONO

NkT
=

(
n∑
i=1

ximi

)
AM

NskT
, (2.13)

mi is the number of spherical segments in each specie i and Ns is the total number of
spherical segments. We assume mi as 1, then Ns = N , usually the fraction AM

NskT
= aM

which is monomer free energy per segment is expanded as in ref. [3, 4]:

aM = aHS + βa1 + β2a2 + . . . , (2.14)

being aHS the free energy for a mixture of hard spheres, β = 1/kT is the thermodynamic
perk and a1 and a2 are both perturbations related to the attractive energy −εij , the first
describes a mean of attractive energy, while the second describes fluctuations in the
energy. In order to compute the monomer free energy, we will only have into account
the first three terms in (2.14).

Therefore, the chemical potential in the monomer contribution is

µMONO

kT
=

[
aM +N

∂aM

∂Nj

]
j=1,2,3

=

[(
aHS +N

∂aHS

∂Nj

)
+ β

(
a1 +N

∂a1

∂Nj

)
+β2

(
a2 +N

∂a2

∂Nj

)]
j=1,2,3

=
µHS

kT
+ β

µ1

kT
+ β2 µ2

kT

(2.15)

The free energy for a mixture of hard spheres is obtained with the expression [10, 34]

aHS =
6

πρ

{(
ζ3

2

ζ2
3

− ζ0

)
ln(1− ζ3) +

3ζ1ζ2

1− ζ3
+

ζ3
2

ζ3(1− ζ3)2

}
=

6

πρ
Γ(ζ0, ζ1, ζ2, ζ3)

(2.16)

where the reduced densities ζm are defined as

ζm =
πρ

6

n∑
i=1

xiσ
m
ii (2.17)

Now, we will compute ∂aHS/∂Nj . First, note that:

∂aHS

∂Nj
= − 6

πρN
Γ +

6

πρ

∂Γ

∂Nj

= − 1

N
aHS +

6

πρ

3∑
m=0

∂Γ

∂ζm

∂ζm
∂Nj

(2.18)



and additionally,

∂ζm
∂Nj

=
π

6

∂ρ

∂Nj

n∑
i=1

xiσ
m
ii +

π

6
ρ

n∑
i=1

∂xi
∂Nj

σmii

=
π

6

1

V

n∑
i=1

xiσ
m
ii +

π

6
ρ

n∑
i=1

δij − xi
N

σmii

=
π

6

1

V

{
�
�
�
��

n∑
i=1

xiσ
m
ii +

n∑
i=1

δijσ
m
ii −

�
�
�
��

n∑
i=1

xiσ
m
ii

}

=
π

6

1

V
σmjj .

(2.19)

Second,

6

πρ

∂Γ

∂Nj
=

1

N

3∑
m=0

∂Γ

∂ζm
σmjj

=
1

N

{
− ln(1− ζ3) +

3ζ2

1− ζ3
σjj

+

(
3ζ1

1− ζ3
+

3ζ2
2 ln(1− ζ3)

ζ2
3

+
3ζ2

2

(1− ζ3)2ζ3

)
σ2
jj

+

(
3ζ1ζ2

(1− ζ3)2
− ζ3

2 − ζ0ζ
2
3

ζ2
3 (1− ζ3)

−2ζ3
2 ln(1− ζ3)

ζ3
3

− ζ3
2

(1− ζ3)2ζ2
3

+
2ζ3

2

(1− ζ3)3ζ3

)
σ3
jj

}
.

(2.20)

Finally, using the equations (2.15), (2.18), (2.19), (2.20) the chemical potential due
to hard spheres is

µHS

kT
=

[
− ln(1− ζ3) +

3ζ2

1− ζ3
σjj

+

(
3ζ1

1− ζ3
+

3ζ2
2 ln(1− ζ3)

ζ2
3

+
3ζ2

2

(1− ζ3)2ζ3

)
σ2
jj

+

(
3ζ1ζ2

(1− ζ3)2
− ζ3

2 − ζ0ζ
2
3

ζ2
3 (1− ζ3)

− 2ζ3
2 ln(1− ζ3)

ζ3
3

− ζ3
2

(1− ζ3)2ζ2
3

+
2ζ3

2

(1− ζ3)3ζ3

)
σ3
jj

]
j=1,2,3

(2.21)

Now, we turn back to compute the perturbation terms. On one hand, the mean of
attractive energy with range λik and potential well constant −εik is given by

a1 =

n∑
i=1

n∑
k=1

xixka
ik
1 (2.22)

where
aik1 = −ραV DWik gHSik [σik; ζ

eff
3 ], (2.23)

αV DWik is the Van Der Waals attractive constant for the ij interactions; these inter-
actions are generalized as



αV DWik =
2π

3
εikσ

3
ik(λ

3
ik − 1), (2.24)

the mixing rule gHSik [σik; ζ
eff
3 ] used is the MX3b [19], which states a radial distribution

function as

gHSik [σik; ζ
eff
3 ] =

1

1− ζeff
3

+ 3
Dikζ

eff
3

(1− ζeff
3 )2

+ 2
(Dikζ

eff
3 )2

(1− ζeff
3 )3

(2.25)

where ζeff
3 is an effective packing given by

ζeff
3 (ζ3, λik) = c1ζ3 + c2ζ

2
3 + c3ζ

3
3 , (2.26)

the coefficients of the polynomial expression above, are given by the matrix product: c1

c2

c3

 =

 2.25855 −1.50349 0.249434
−0.669270 1.40049 −0.827739

10.1576 −15.0427 5.30827

 1
λik
λ2
ik

 (2.27)

and Dik is

Dik =
σiiσkk
σii + σkk

∑n
i=1 xiσ

2
ii∑n

i=1 xiσ
3
ii

(2.28)

In the monomer contribution, we are only considering the interactions between species
of the same type; however, we are not neglecting the interaction between water-ion. It
is taken into account, by the dielectric constant of a continuum medium and supposing,
that both ion types interact inside the solvent (water). Therefore, the equation (2.22)
becomes in to

a1 = x2
1a

11
1 + x2

2a
22
1 + x2

3a
33
1 . (2.29)

This is because of ε12 = ε21 = ε13 = ε31 = ε23 = ε32 = 0. In the equation (2.24),
σik = (σii + σkk)/2 and λik = (λiiσii + λkkσkk)/(σii + σkk).

Now, we should compute the chemical potential provided by this mean perturbation.
First of all, observe that:

β
µ1

kT
= β

[
∂(Na1)

∂Nj

]
j=1,2,3

= β

[
a1 +N

∂a1

∂Nj

]
j=1,2,3

. (2.30)

Second, the partial derivative in the equation (2.30) above is equal to

∂a1

∂Nj
=

n∑
i=1

n∑
k=1

∂(xixka
ik
1 )

∂Nj

=

n∑
i=1

n∑
k=1

{
1

N
(δij − xi)xkaik1 +

1

N
(δkj − xk)xiaik1 + xixk

∂aik1
∂Nj

}

=

n∑
i=1

n∑
k=1

1

N
(δij − xi)xkaik1 +

n∑
i=1

n∑
k=1

1

N
(δkj − xk)xiaik1

+

n∑
i=1

n∑
k=1

xixk
∂aik1
∂Nj

=
2

N
(1− xj)

n∑
i=1

xia
ji
1 +

n∑
i=1

n∑
k=1

xixk
∂aik1
∂Nj

.

(2.31)



The third fact is that the partial derivative ∂aik1 /∂Nj in the equation (2.31) can be
calculated as
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In addition, it is necessary to compute some derivatives in the right hand of the
expression (2.32). These are:
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Mixing the equations (2.30), (2.31) and (2.32) we finally get the chemical potential
provided by the mean perturbation as
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On the other hand, the fluctuation of the energy for a mixture is given by
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xixka
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where by [3]:
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and KHS the isothermal compressibility of a mixture of hard spheres, we use by [47]

KHS =
ζ0(1− ζ3)4

ζ0(1− ζ3)2 + 6ζ1ζ2(1− ζ3) + 9ζ3
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. (2.37)

By the equations (2.40a) and (2.40b), we can reduce the general summation term in
the equation (2.36) by saying that

∂aik1
∂ρ

= −αV DWik gHSik − ραV DWik
�
�
���

0
∂gHSik
∂ρ

, (2.38)



this is followed by the fact that the partial derivative in equation (2.38) can be calculated
as:
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This last equation (2.39) is the reason we should compute the expressions:
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Hence, it is clear that the fluctuation energy in the monomer contribution has the
form
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As the mean energy, the chemical potential contributed by the fluctuation energy is
given by
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but, having into account that
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2.1.4 Association Contribution

We will consider the free energy due to association in the sites of water as the only
contribution of this type into the Helmholtz free energy expression. Since the theory of
Wertheim [26, 14], the association contribution is given by the equation [20]

AASSOC
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(
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2
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}
. (2.44)

In the expression (2.44), the first sum is made over each specie i and the second over
types of sites si of each specie i. Xa,i represents the fraction of molecules of type i that
are not bonded at a site a and are obtained from the mass action equation [13, 14]

Xa,i =
1

1 +
∑n

k=1

∑
b∈si,b 6=a ρxkXb,k∆a,b,i,k

. (2.45)

The function ∆a,b,i,k characterize the association between a molecule of specie i with
other k in the sites of type a and b respectively,

∆a,b,i,k = (Ka,b,i,k)(fa,b,i,k)(g
M (σik; ζ3)) (2.46)

Ka,b,i,k is the available volume for bonding in terms of the distance, to the center of
the molecule rd and the diameter of the sites rc, fa,b,i,k is the Mayer function fa,b,i,k =
e−Φa,b,i,k/kT − 1 of the a− b interaction Φa,b,i,k, and gM (σik; ζ3) is a contact value of the
radial distribution function of the reference unbounded square-well fluid. It is obtained
as the expansion [21, 19]

gM (σik; ζ3) = gHS0 (σik; ζ3) + βεikg1(σik; ζ3) (2.47)

where by [10]
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and
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and that the coefficients of the polynomial expression (2.50) above, are obtained by using
the matrix equation (2.51): d1

d2

d3
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(2.51)

As we have mentioned at the beginning of the subsection, we will consider only
the association among the molecules of water, but in addition we will assume that the
fraction Xe−,1 and XH+,1 are identical, it means that Xe−,1 = XH+,1 = X1. Therefore,
since s1 = {e−, e−, H+, H+}, the association free energy contribution in the equation
(2.44) becomes into
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Also, under the same assumptions, the fraction of molecules of water that are not bonded
(no matter in what site) is equal to

X1 =
1

1 + 2ρx1X1∆11
. (2.53)

As consequence of the equation (2.53), an explicit expression with physical meaning
(by obviating the negative root) for the fraction X1 is
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Now we compute the chemical potential due to the free association energy. Using the
expressions (2.3) and (2.52) we obtain:
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where, from (2.53) we compute
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Additional derivatives are presented in the equation (2.58)
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2.1.5 Ionic Contribution

In this contribution we have assume that the anion and cation species are both inside a
continuum medium with a dielectric constant (D); as we have mentioned both species
are represented by charged spheres with interaction given by the equation (2.8). The
common diameter have been defined as the average

σ̃ =
n∑
i=2

x̃iσii (2.59)

there x̃i expresses a corrected molar fraction of a specie i, in other words as

x̃i =
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=
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i 6= 1. (2.60)

Therefore, the excess free energy is given by [20, 30]
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where x = κσ̃, and
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To compute the chemical potential caused by the ionic contribution, it is important
to state two facts.

First, the partial derivatives of the equations (2.60), (2.59) and (2.62) are followed
respectively by expressions as:
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Second, using the expressions (2.63b) and (2.63c), the product between the number
of moles in the mixture and the partial derivative ∂x/∂Nj is given in the equation:

N
∂x

∂Nj
= N

∂κ

∂Nj
σ̃ + κN

∂σ̃

∂Nj

=
2π

DkT

{
ρ

n∑
i=2

δijq
2
i

}
σ̃

κ
+ κ

{∑n
i=2 δij(σii − σ̃)∑n

i=2 xi

} (2.64)



Therefore, using these details we obtain an expression for the chemical potential in
the ionic contribution:
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2.2 Objective Function

The main goal is to determine the parameter set Θ = {σ22, σ33, λ22, λ33, ε22, ε33} that
provides the best fitting to experimental data. The labels 22 and 33 refer to the cation
and anion respectively, while σii, λii and εii refer to the molecular diameter, the variable
range and the depth of the potential of interaction in equation (2.8). There is no need to
compute the parameters related to the water, because they have been already determined
in early works, for example see ref. [20].

The complete description for the thermodynamical model ends when a relation among
the potential A in equation (2.2), the density ρ and the chemical potential µ in equation
(2.7) is stated. This relation is given by the total pressure [42]:

P

ρkT
=

n∑
i=1

xi
µi
kT
− A

NkT
. (2.66)

To construct an objective function which allows us to estimate the parameter set,
this work had into account the equilibrium equations:

µLwater(T, ρ
L, xw; Θ) = µVwater(T, ρ

V , xw = 1; Θ)

µLIL(T, ρL, xIL; Θ) = µVIL(T, ρV , xIL = 0; Θ) = 0

PL(T, ρL, xw; Θ) = P V (T, ρV , xw = 1; Θ)

(2.67)

The first two lines in the equation system (2.67) represent a chemical equilibrium in
the liquid and vapor phases, while the last line represents the equilibrium of pressures
in the mentioned physical phases, this last equilibrium is obtained from the equation
(2.66). Remembering that SAFT-VRE defines

∑3
i=1 xi = 1, we represent xw = x1 as

the water concentration and x2 = x3 = xIL/2, in simple words the ions are in the same
concentrations and they can be isolated by only knowing the water concentration.

The Ionic Liquid (IL) studied in this work is 1-Allyl-3-methylimidazolium Chloride;
the measurements comes from the liquid-vapor equilibrium and the corresponding com-
putation of the osmotic pressure for the IL in solution of water.



Table 2.1: Experimental equilibrium temperatures and water concentrations.

T expi [K] 373.23 373.25 373.28 373.76 374.25 374.66 375.05 375.46 375.82 376.77 377.25
xw 0.995 0.99 0.984 0.976 0.967 0.96 0.953 0.946 0.938 0.929 0.92

T expi [K] 378.09 378.9 379.69 380.21 381.57 382.36 385.67 388.81 390.74 394.73 399.88
xw 0.908 0.894 0.886 0.877 0.865 0.851 0.817 0.794 0.78 0.737 0.729

Table 2.2: Experimental data of the density for the Ionic liquid and corresponding tem-
perature

ρexpk [g/cm3] 1.3000 1.2967 1.2933 1.2900 1.2866 1.2833 1.2799 1.2766 1.2732
T [K] 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15

ρexpk [g/cm3] 1.2699 1.2665 1.2632 1.2598 1.2565 1.2531 1.2498 1.2464
T [K] 338.15 343.15 348.15 353.15 358.15 363.15 368.15 373.15

Therefore, according to the equation system (2.67), using the optimized parameters
Θ, one can compute using the expressions (2.67) the same temperature of equilibrium
(T = T calc) by finding the roots T calc, ρL, ρV . It is assumed that, at the equilibrium
temperature, the unique compound in vapor phase is water, then its concentration in
vapor phase is equal to one (xw = 1) and the chemical potential of the ionic liquid in
vapor phase is zero.

The first part of our main objective function is expressed as:

f1 =

n1∑
i=1

(
T expi − T calci

T expi

)2

(2.68)

In (2.68), T expi is equilibrium temperature measured experimentally but at a certain
water concentration xw, the table 2.1 contains the experimental data. The terms T calci

represents the equilibrium temperature obtained from the roots T calci , ρL, ρV of the sys-
tem (2.67) at certain xw and parameters Θ.

The second part of the main objective function is made by comparing again theoretical
with experimental results. To the ionic liquid (xIL), its density (ρexp) is measured at
certain temperature, see table 2.2. The fitting of these data is carried out by applying
the second part of the main objective function:

f2 =

n2∑
k=1

(
ρexpk − ρcalck

ρexpk

)2

(2.69)

being ρcalck a root in the equation:

1− P

ρkT

(
n∑
i=1

xi
µi
kT
− A

NkT

)−1

= 0, (2.70)

leaving constant the preasure P at 1 atmosphere, x1 = 0 and xi = xIL/2 for i = 2, 3.



Table 2.3: Adimensionalization for the variables
σ∗ij =

σij
σ11

λ∗ij =
λij
λ11

ε∗ij =
εij
ε11

T ∗ = T
ε11/k

ρ∗ = ρσ3
11 P ∗ =

Pσ3
11

ε11

The way one can join the equations (2.68) and (2.69) is by certain positive weights
w1 and w2:

f = w1

n1∑
i=1

(
T expi − T calci

T expi

)2

+ w2

n2∑
k=1

(
ρexpk − ρcalck

ρexpk

)2

. (2.71)

There exists different approaches to choose the weights, the most common way is to
choose them, such that both satisfy the conditions:

• w1, w2 > 0,

• w1 + w2 = 1

For example, assuming that w1 = 0.7 and w2 = 0.3 satisfies the conditions, this implies
that the optimization process, will give more importance to fit the set of experimental
values in the table 2.1 than those in the table 2.2.

Another approach to choose the weights, takes into account the number of experi-
mental data in each sum, saying that

n1w1 = n2w2.

This means that as much experimental data contains a set, should be lower the corre-
sponding weight in the equation (2.71). However, if both sets contain the same number
of data, the weights should be equal. In our case, by replacing n1 = 22 and n2 = 17, the
relation of the weights is given by:

w1 =
17

22
w2 ≈ 0.772w2.

2.3 Dimensionless Equations

Every equation that appears until now depends on variables with physical definition, but
the problem here is that their units represent a big computational problem. To illustrate
this imagine the ratios of the water, the anion and the cation as well as the variable
ranges; all of them are given in Ångström units, this measure expressed in the SI system
is equivalent to 10−10 meters. To solve these kind of problems, we work with the change
of variables in the table 2.3.

The reason to provide all the equations in the table 2.3 in terms of water properties
is simple: there already exist reports as [43, 20] where the parameters as molecular ratio,
association potential and variable ranges are given. For example, the water molecular
ratio σ11 is reported in 3.036Å, the variable range λ11 is 1.8Å and the association energy
ε11/k is estimated at 253.3 K.

In the case of the ionic contribution, a reduction of the model is made. The normal-
ization, on the equation (2.62) can be done on the next form:



κ2 =
4πρe2

DkT

n∑
i=2

xi

=
4πρσ3

11e
2

Dσ3
11ε11

kT
ε11

n∑
i=2

xi =
4πρ∗e2

Dσ3
11ε11T ∗

n∑
i=2

xi

(2.72)

After multiplying the term (2.72) with the normalization of the equation (2.59) to
the square, we obtain a new x in the equation (2.61). In this new term, the dielectric
constant can be simplified as D∗ = (e2/(Dσ11ε11))−1. As usual, the small trick used to
obtain that value is presented in the next procedure:

D∗ =

(
e2

Dσ11ε11

)−1

=

(
e2

Dσ11
ε11
k k

)−1

(2.73)

The constants: e (electron charge), D (dielectric constant of water) and k (Boltz-
mann’s constant) in the equation (2.73) implemented in this work, were 1.60217662 ×
10−19 in Joules, 9×109

74.373∗298.15 and 1.3806× 10−23 J/K.
Other important normalization should be done over the equation (2.70), in order to

compute reasonable values according to the dimensionless of the parameters. The next
equation illustrates the procedure for computing this:

1− Pσ3
11

ρσ3
11ε11

kT
ε11

(
n∑
i=1

xi
µ∗i
T ∗
− a∗

)−1

=1− Pσ3
11

ρσ3
11ε11T ∗

(
n∑
i=1

xi
µ∗i
T ∗
− a∗

)−1

=1− Pσ3
11

ρ∗ ε11k kT
∗

(
n∑
i=1

xi
µ∗i
T ∗
− a∗

)−1

.

(2.74)

In addition, due to the experimental results of the density of the ionic liquid were obtained
at 1 atmosphere of pressure in the equation (2.74), we use P = 101325Pa; on the other
side, the computations were made with ε11

k = 253.3K as usual, the Boltzmann constant
k = 1.38064× 10−23J/K and the molecular diameter of water σ11 = 3.036Å.



Chapter 3

Results

The purpose of this chapter is to provide in a detailed description of the methodology
to complete a successful estimation of the objective parameters. The first part explains
how to construct some auxiliar functions that accelerate the evaluation process of the
objective function, while the final part presents the fitting results.

3.1 Computational Details

The mathematical challenge of the problem is dealing with the roots of the equations
(2.67) and (2.70). Hence, we present a strategy to obtain the roots, which uses the
algorithms in chapter 1, taking advantage of the derivative-free procedures and the lack
of continuity of the functions. We do not work directly with a Newtonian algorithm,
because it is necessary to start the process from an initial point near of the root, or at
least under certain conditions.

In the case of finding the roots of the equilibrium equations (2.67), this problem can
be written in a simpler way for a specific set of parameters Θ as

F (X,Θ) = 0, (3.1)

where X = (T ∗, ρ∗L, ρ
∗
V ) and F : R3 → R3. But, an auxiliary function can be obtained

from F ; we call this as faux,1 and is defined as

faux,1 = ||F (X,Θ)||2 (3.2)

being || · || the euclidean norm. According to the stochastic method for solving a global
optimization problem where faux,1 is the objective function, the solution X0 establishes
that ||F (X0,Θ)||2 is equal or very near to 0, then F (X0,Θ) ≈ 0. Once the initial point
X0 is stated, the exact roots of the system (2.67) can be computed by the Newton-
Raphson method. At first glance, carrying out all this procedure seems unnecessary, but
it is justified when for one single set of parameters Θ, we should determine n1 equilibrium
roots of the system (2.67) that allow us to compute the least square fitting function f1

in equation (2.68). To remember, n1 represents the number of experimental equilibrium
temperatures; in our case, n1 = 22, see table 2.1.

Analogously, the roots of the equation (2.70) are obtained using Newton-Raphson.
The initial point is obtained from the auxiliary function:

faux,2 =

∣∣∣∣∣∣1− P

ρkT

(
n∑
i=1

xi
µi
kT
− A

NkT

)−1
∣∣∣∣∣∣ , (3.3)
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Figure 3.1: Region where root of equation (3.3). This figure was obtained with parame-
ters in table 3.1 and T = 379.0K

after applying Simulated Annealing or Improving Hit-and-Run. Due to in this case the
density belonging to R, Hide-and-Seek and Simulated Annealing are the same.

In this case, for each set of parameters, the number of densities ρcalck is n2 = 17. A
graphical justification for using this combination of methods is explicitly presented in the
figure 3.1. Just finding an initial point in the augmented region is very difficult, and this
region also changes when the parameters Θ are modified. However, the stochastic meth-
ods can provide initial points that satisfy convergence conditions for Newton-Raphson.

Some other problems can appear solving the equation (2.70), for example there are
certain values for the parameters for which this equation does not have a solution in
the interval [a, b] = [0.120, 0.126]. This interval is relevant because it contains the ex-
perimental values of the dimensionless density ρexp,∗k . To compute the extremes of this
interval, we convert the lower and the higher values from the table 2.2 and a and b are
chosen such that:

a < 1.2464× (3.036× 10−8)3 × 6.023× 1023

174
= 0.12073,

b > 1.3000× (3.036× 10−8)3 × 6.023× 1023

174
= 0.12592.

An example of a set of parameters is described in the figure 3.2. In this figure, one
clearly observe at least three roots, from which the greater is the most interesting because
represents the density of the IL, but in liquid state. However, the figure illustrates the
problem that this value is not near enough to the experiments.

Another common problem is that, for certain combination of parameters the equation
(2.70) does not have solutions for near values of the experimental results, for example
in the figure 3.3. This figure shows the behavior of the equation (2.70), where the most
relevant fact is that there are no real images for supposed values of the density but



Figure 3.2: Behavior of the right side of the equation (2.70) at 298.15 K and the set
of parameters σ∗22 = 2.497, σ∗33 = 3.212, λ∗22 = 0.385, λ∗33 = 2.623, ε∗22 = 2.037 and
ε∗33 = 2.071.

greater than 0.1.
The expected graphic of the equation (2.70) can be obtained using the parameters in

the table 3.2, this is represented in the figure 3.4. In this figure, the expected root falls
in the gap between the experimental values.

3.2 Parameter Estimation

This part of the work deals with the problem of the estimation of the parameters such
that, one can predict an equilibrium temperature, as well as a density of the ionic liquid.
Initially, several computations were carried out using the objective function (2.71), and
the schemes of the weights presented below of this function. These initial results show
no fitting in both data sets at the same time, this could be caused mainly by the model;
different reasons could explain this lack of fitting, among those: an assumption of a
spherical model for the ions and an association only between water molecules. In spite
of this problem, the fitting for each data set was computed.

On one hand the best values that can predict the equilibrium temperature are pre-
sented in table 3.1; these values were found using a minimization scheme for the equation
(2.68). These parameters show some interesting facts. First of all, the molecular diam-
eters are larger than the molecular diameter of water, in the case of the cation, it is
243% bigger than the water. It means that in the SI system of units, the molecule
studied, has a molecular ratio of about 7.377Å, the other side the molecular ratio for
the anion molecule is about 6.628Å. The second fact to notice is the variable range of
association, which is also longer than the range of water; in other words, this implies
that the association between molecules can happen even when the molecules are very far



Figure 3.3: Behavior of the right side of the equation (2.70) at 298.15 K and the set of
parameters σ∗22 = 2.15, σ∗33 = 3.068, λ∗22 = 1.86, λ∗33 = 1.359, ε∗22 = 2.982 and ε∗33 = 1.922.

Figure 3.4: Behavior of the right side of the equation (2.70) at 298.15 K and using the
parameters in the table 3.2.



Table 3.1: Estimated parameters for predicting the equilibrium temperature
Ion σ∗ii λ∗ii ε∗ii

Cation 2.43 1.264 1.643
Anion 2.183 2.523 2.391

from each other. According to the reports already mentioned, the variable association
range for water is about 1.8Å, then by comparing the obtained results, this range for
the cation was estimated in 2.275Å and for the anion in about 2.7414Å. The final fact
that is important to mention is that the depths in interaction between the cation and
anion molecules are also greater than the water, which means that the molecules can
be bounded stronger and they could even have a dipole moment, much higher than the
water one.

Figure 3.5 shows the computations for the equilibrium of the system (2.67). The
first chart shows the approximation for the experimental temperature of equilibrium to
certain water concentration, while the second chart shows how the density of the liquid
and vapor phases behave. Considering the average absolute deviation (% AAD) as

% AAD =
1

n1

n1∑
i=1

∣∣∣∣∣T exp,∗i − T cal,∗i

T exp,∗i

∣∣∣∣∣× 100,

the % AAD between the experimental and theoretical temperatures of equilibrium is
2.486. An important fact to notice is that the model presents a good approximation for
relative concentrations lower than 0.95. This means that for mixtures of water and the
ionic liquid, where the concentration of water is lower than the 95%, the temperature
in the chemical equilibrium is close to those experimental results. The lack of approxi-
mating good equilibrium temperatures to higher concentrations of water could happen
for different reasons, one could be that in the computations have not taken into account
well tuning constants as the diameter of water in equation (2.73) or the bonding con-
stant of water K11 in equation (2.57). This effect is important because the model that
is presented is highly nonlineal and this cause an important mismatch in the results. A
clear example of this effect can be noticed by comparing the figures 3.5 and 3.8, both
figures were made with the values in tables 3.1 and 3.2 respectively.

In addition, we compute the density of the IL to certain temperatures, the figure
3.6 shows the results using the parameters in table 3.1. In this case the % AAD is
1.8461. The problem is that the parameters do not allow to estimate the density of the
IL properly, despite that the obtained values are near to the experimental values and
show the same behavior to decrease as the temperature increases. Note that the average
absolute deviation in this case is computed by the expression:

% AAD =
1

n2

n2∑
k=1

∣∣∣∣∣ρexp,∗k − ρcal,∗k

ρexp,∗k

∣∣∣∣∣× 100,

The other hand the parameters presented in the table 3.2 were computed by using
a scheme of minimization on the objective function (2.69). These results are not very
different at first glance to those presented in the table 3.1. These values also show that
the diameters of the ions are much bigger than the diameter of a water molecule. The
variable ranges of association are also greater than the water one, this fact implies that



Figure 3.5: Prediction of equilibrium values for the nonlinear system (2.67) using the
parameter on the table 3.1.

Figure 3.6: Density vs. Temperature for the ionic liquid using the parameters on table
3.1.



Table 3.2: Estimated parameters for predicting the density.
Ion σ∗ii λ∗ii ε∗ii

Cation 2.327 1.246 1.647
Anion 2.258 2.631 2.38

Figure 3.7: Density vs. Temperature for the ionic liquid using the parameters on table
3.2.

the attraction in the interaction cation-cation and anion-anion can happen even where
those molecules are really separated. Finally, the depth of the potential interactions are
greater than the water, this also confirms what was stated by the first set of parameters
that were presented in the table 3.1. Figure 3.7 shows the prediction for the density of
the ionic liquid to a certain temperature. Despite the % AAD between the experimental
results and the theoretical ones is 0.9913, and the theoretical results are given in the
same gap, this set of parameters do not estimate a good density at a certain tempera-
ture, as it happened with the parameters that are proposed to estimate the equilibrium
temperatures. Additionally, those parameters fail in approximating the experimental
equilibrium temperatures as the figure 3.8 shows, the % AAD in this fitting was 29.348.

Finally, motivated by these results, we conclude that the SAFT-VRE model is only
admissible until certain concentration of the solvent, and we only estimated the parame-
ters for fitting equilibrium temperatures, that correspond to water concentrations lower
than 0.95. The table 3.3 contains the mentioned parameters, while the figure 3.9 contains
the respective data fitting to the equilibrium temperatures, and the figure 3.10 presents
the fitting to the density data.



Figure 3.8: Prediction of equilibrium values for the nonlinear system (2.67) using the
parameter on the table 3.2.

Table 3.3: The most suitable parameters for estimating the equilibrium temperatures.
Ion σ∗ii λ∗ii ε∗ii

Cation 2.443 1.232 1.667
Anion 2.186 2.598 2.279

Figure 3.9: Prediction of equilibrium values for the nonlinear system (2.67) using the
parameter on the table 3.3.



Figure 3.10: Density vs. Temperature for the ionic liquid using the parameters on table
3.3.



Chapter 4

Conclusions

To finish, this work focused on the application of the stochastic techniques of optimiza-
tion, in order to determine the best parameters that can predict the observed experi-
mental properties. The techniques presented in the first chapter were the most suitable
to carry out the computations needed to reach the main objective. Additionally, based
on the literature, the second chapter develops the computations to understand what is
happening with the ionic liquids. The most important facts are:

• The use of stochastic techniques was totally necessary due to the complexity of
the model equations. Any other method based on the derivatives can fail in giving
the desired results, for example roots of equations or nonlinear equation systems.
The study of the most common stochastic techniques, provides the advantages
of reducing the zones where methods of Newtonian type can converge. This last
combination of methods saves an important quantity of computational time.

• The fact that the fitting can not be done using at the same time the equilibrium
temperature and the density data of the IL, means that the model is incomplete.
From one hand, the hypothesis of a spherical model for the ions is possibly insuf-
ficient. The other, there exist more hydrogen bonds than those assumed in the
water-water association.

• The obtained parameters present great physical meaning, this can be determined
by the expected properties already mentioned in the last chapter. Among the
effects of the found parameters, it was found that the molecules of study are in
fact bigger than a water molecule, they have large range potential and energy of
interaction, which allow the molecules associate easily between ions of the same
type.
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Appendix A

Here, we sketch an idea to proof the convergence of the Nelder and Mead method for
finding a minimum.

The first important fact is that we are always considering, an initial simplex to be
non degenerated. See the comments in the equation (1.2).

Definition 1. The volume of the simplex (geometric figure) expressed in the equation
(1.3) is given by the expression

V ol =
1

n!
|det(V )| (A.1)

where the matrix V is composed by the vertices of the simplex in the form:

V = (x2 − x1, x3 − x1, . . . , xn+1 − x1) . (A.2)

Each column of V is formed by the difference between two vertices as is indicated in
(A.2)

Proposition 1. Suppose that the simplex Sj+1 in the iteration j+1 (with volume V olj+1)
is obtained from the simplex Sj in the iteration j (with volume V olj) by changing the
vertex xn+1 by a vertex of the form x0 + θ(x0 − xn+1) then,

V olj+1 = |θ|V olj (A.3)

Proof. Noting the matrices:

Vj = (x2 − x1, x3 − x1, . . . , xn+1 − x1)

and
Vj+1 = (x2 − x1, x3 − x1, . . . , x0 + θ(x0 − xn+1)− x1)

then:

det(Vj+1) = (1 + θ)det (x2 − x1, x3 − x1, . . . , x0 − x1)− θdet(Vj)

=
1 + θ

n
det

(
x2 − x1, x3 − x1, . . . ,

n∑
i=1

xi − nx1

)
− θdet(Vj)

=
1 + θ

n
det

x2 − x1, x3 − x1, . . . ,

��
���

���
���

��
���

�:0
n∑
i=1

xi − nx1 −
n∑
i=2

xi + (n− 1)x1


− θdet(Vj)

(A.4)

Then by the equation (A.4), we obtained the desired result.
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Proposition 2. Suppose that the simplex Sj+1 in the iteration j + 1 is obtained from
the simplex Sj by carrying out a reduction. Then,

V olj+1 = σnV olj (A.5)

Proof. The solution is evident by observing that

Vj+1 = (σ(x2 − x1), σ(x3 − x1), . . . , σ(x2 − x1))

= σVj
(A.6)

Therefore, we obtain the desired result applying the properties of the determinant on
(A.6) to have the volume required.

The propositions 1 and 2 show that from an initial simplex non-degenerated, the
followed simplexes in the algorithm are always non-degenerated. This fact partially shows
that the search for the minimum is extensive and it is not carried out on a subspace of
Rn.
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