Assembly of confined nanoparticles in nematic phases

by

Viviana Palacio Betancur

Departamento de Materiales y Minerales Facultad de Minas Universidad Nacional de Colombia Sede Medellín 2016

Assembly of confined nanoparticles in nematic phases

by

Viviana Palacio Betancur

A thesis submitted in partial fulfillment of the requirements for the degree of

Master in Engineering - Materials and Processes

Advisor: Juan Pablo Hernández Ortiz, Ph.D. Doctor in Mechanical Engineering

Departamento de Materiales y Minerales Facultad de Minas Universidad Nacional de Colombia Sede Medellín 2016

Acknowledgements

The execution of this project would have not been possible without the help, support and collaboration of many people. First, I would like to thank my family for their constant support and encouragement throughout my career, as well as their trust in my future.

I would like to thank my advisor, Professor Juan P. Hernández Ortiz for his continuous motivation and envisioning of exciting new projects. His constance, discipline, and attention to detail have become an inspiration for continuing on this path. I am also thankful to the members of our research group, specially to Stiven Villada, Alejandro Vásquez and Jarol Molina, for their helpful comments and observations. Their input is always welcomed.

Thanks to Professor Juan J. de Pablo and his research group in the *Institute for Molecular Engineering* at *University of Chicago*, specially to Dr. Julio Armas and Johnny Alfaro and their families, for receiving me with open arms and creating an environment for academic and personal growth. My short time spent there meant a lot to me.

There is an special group of friends that have become an essential part of my life: Jhonatan Carmona, Marcela Moscoso, Gloria Monsalve, and Andrés Múnera. Our conversations and discussions are always a pleasure, and have helped shape my way of facing new challenges.

I want to acknowledge the financial support provided by Facultad de Minas at Universidad Nacional de Colombia through the scholarship program and the travel program for graduate students. Also, funding from COLCIENCIAS through contract No. 110-165-843-748 with funds from "El patrimonio autónomo Fondo Nacional de financiamiento para la ciencia, la tecnología y la innovación Francisco José de Caldas" is appreciated.

Abstract

The study of nematic phases covers diverse branches of academics. Form a purely academical standpoint, the morphologies exhibited by this material are the most direct and tangible way of demonstrating algebraic topology. From experimental work, this material is the perfect messenger of molecular events since any occurrence on the surface of the system modifies the molecular orientation and the effects of this change is felt over macroscopic distances thus emitting a different optical signal. From the theoretical point of view, the behavior of nematic phases is found in a wide variety of materials, specially in biological materials, thus any model that represents different phases in an accurate matter serves for the prediction of equilibrium states that later can be harnessed in technological applications. In this thesis we focus on the study of confined nematics from the theoretical point of view using a free energy functional in the continuum scale. The free energy minimization is done with two methods: a relaxation that stems from the Euler-Lagrange equations, and a novel theoretically informed Monte Carlo method. The results presented here consist on a numerical analysis of meshfree interpolation schemes in 3D, and a formulation of a new methodology that allows the calculation of gradients with high accuracy and efficiency. The second part of this document is dedicated to the analysis of confined chiral nematics, specially focused on the effect curvature has on the formation of blue phases. The third part consists on the study of nematic colloids, more specifically nanoparticles adsorbed in bipolar droplets in order to determine self-assembled structures.

Keywords: Nematic liquid crystals, Blue phases, Nematic colloids, Confined complex fluids, Free energy functional, Meshfree interpolation methods, Theoretically informed Monte Carlo.

Resumen

El estudio de fases nemáticas se ha realizado desde diversas ramas de la academia. Desde un punto de vista exclusivamente teórico, las morfologías que se encuentran en este tipo de material son la evidencia más directa y tangible de la topología algebraica. Desde el trabajo experimental, este material traduce eventos moleculares a señales ópticas perceptibles a simple vista, gracias a que eventos que ocurren en la superficie del sistema modifica las orientaciones moleculares y estas se amplifican hasta distancias macroscópicas. Desde la teoría, el comportamiento de las fases nemáticas ha sido observado en diferentes materiales, especialmente biológicos, y un modelo que represente estas fases sirve como herramienta para predecir estructuras estables que pueden ser aprovechados en aplicaciones tecnológicas. Esta tesis está enfocada al estudio teórico en la escala continua de nemáticos confinados. La minimización de la energía libre se hace por dos métodos: una relajación que proviene de las ecuaciones de Euler-Lagrange, y un método novedoso que emplea la información del funcional de energía libre para la minimización por medio de un método Monte Carlo. Los resultados contenidos en este documento constan del análisis nuérico de esquemas de interpolación en 3D y una nueva metodología que permite el cálculo de gradientes con gran eficiencia y precisión. La segunda parte contiene el estudio de nemáticos quirales confinados, especialmente el efecto de la curvatura sobre la formación de fases azules. La tercera parte consiste en el estudio de coloides nemáticos, específicamente en nanopartículas adsorbidas en la superficie de gotas bipolares con el fin de determinar estructuras ensambladas espontáneamente.

Palabras clave: Cristales líquidos nemáticos, fases azules, coloides nemÂ_jticos, fluidos complejos confinados, funcional de energía libre, métodos de interpolación libres de malla, Monte Carlo informado por la teoría.

Contents

Re	Resumen			ii
1.	Intr	oductio	on	1
	1.1	Overvi	iew	3
	1.2	Dissem	mination of results	4
2.	Мо	deling o	of Liquid Crystals	6
	2.1	Physic	cs of nematic phases	8
		2.1.1	Order description	8
		2.1.2	Free energy description	10
			2.1.2.1 Landau-de Gennes free energy	10
			2.1.2.2 Elastic energy: Frank–Oseen theory	13
			2.1.2.3 Surface free energy	15
		2.1.3	Topological defects	16
	2.2	Numer	rical methods	18
		2.2.1	Radial Basis Functions	18
		2.2.2	Gaussian quadrature with Finite Element Method	19
	2.3	Free e	energy minimization	19
		2.3.1	Ginzburg–Landau relaxation	19
		2.3.2	Theoretically informed Monte Carlo	20
3.	Edu	cated I	local meshfree interpolation	22
	3.1	Radial	Basis Functions	23

CONTENTS

	3.2	Shape	parameter optimization	26
	3.3	Result	5	27
		3.3.1	Analytical Functions	28
4.	Chi	al nem	atics confined in spheroids	37
	4.1	Result	5	39
		4.1.1	Free energy analysis	40
		4.1.2	Phase diagram: Droplet	43
		4.1.3	Phase diagram: Prolate	45
		4.1.4	Phase diagram: Oblate	48
		4.1.5	Additional details on chiral tactoids	48
5.	Ads	orbed r	nanoparticles on bipolar droplets	53
	5.1	Descri	ption of the MC method	57
	5.2	Result	5	59
		5.2.1	Homeotropic particles	60
		5.2.2	Planar particles	61
		5.2.3	Segregation of particles	63
6.	Con	clusion	s	66
7.	Fut	ure pro	jects	69

List of Figures

2.1	Representation of a rod-like molecule of 5CB and a disk-like molecule of triphenylene.	6
2.2	Different phases for thermotropic uniaxial liquid crystals as temperature decreases.	7
2.3	Molecular orientation for (a) uniaxial and (b) biaxial molecules	9
2.4	Free energy density of the 5CB as a function of the uniaxial order parameter S at three different temperatures.	11
2.5	Elastic deformation moduli	13
2.6	Schematic representation of different anchoring conditions for a confined liquid crystal.	16
2.7	Director field configurations for different phases induced by the anchoring conditions in a droplet of nematic liquid crystals.	17
2.8	Schematic representation of three different cholesteric defects	17
2.9		18
3.1	CPU time for global and local RBF schemes in a 3D sphere with random nodes. $% \mathcal{A}_{\mathrm{S}}$.	29
3.2	Interpolation errors from global RBF schemes	30
3.3	Optimal shape parameter for random meshes in a cubic domain	31
3.4	Interpolation errors from a LRBF using a MQ basis as the node density varies	32
3.5	Interpolation errors from a LRBF using a MQ basis as the stencil size varies	33
3.6	LC free energy as a function of the anchoring strength for homeotropic and planar droplets with $R = 500$ nm	35
3.7	Liquid crystalline phases within homeotropic and planar droplets of size $R=500~\mathrm{nm}.$	36
4.1	Schematic of the types of geometries: oblate spheroid, sphere, and prolate spheroid.	39

LIST OF FIGURES

4.2	Total free energy in function of the aspect ratio φ for strong anchoring $W = 1 \times 10^{-3} J/m^2$ and $U = 2.9$	40
4.3	Landau–de Gennes free energy and (Bottom) surface free energy in function of the aspect ratio, φ , for strong anchoring $W = 1 \times 10^{-3} J/m^2$ and $U = 2.9.$	41
4.4	Elastic free energy in function of the aspect ratio, φ , for strong anchoring $W = 1 \times 10^{-3} J/m^2$ and $U = 2.9$	42
4.5	Phase diagram τ vs. N of a prolate ($\varphi > 1$) with strong ($W = 1 \times 10^{-3} J/m^2$) and moderate ($W = 1 \times 10^{-4} J/m^2$) planar degenerate anchoring, and representative configurations.	44
4.6	Phase diagram τ vs. N of a prolate ($\varphi > 1$) with strong ($W = 1 \times 10^{-3} J/m^2$) and moderate ($W = 1 \times 10^{-4} J/m^2$) planar degenerate anchoring, and representative configurations.	47
4.7	Phase diagram τ vs. N of an oblate ($\varphi < 1$) with strong ($W = 1 \times 10^{-3} J/m^2$) and moderate ($W = 1 \times 10^{-4} J/m^2$) planar degenerate anchoring, and representative configurations.	49
4.8	Twist cylinder structure in a droplate and a prolate	50
4.9	Rotated TC on a prolate-shaped geometry.	51
4.10	Unfolding of blue phases as φ increases for high temperature and moderate anchoring conditions.	52
5.1	Schematic of planar (blue) and homeotropic (purple) particles with radius r_P half-submerged in a planar droplet with radius R . Strong anchoring conditions induce a bipolar configuration in the droplet, when no particles are present, characterized by two boojums (green) in opposite poles.	54
5.2	Schematic of displacement attempt for nanoparticles on the droplet surface	58
5.3	Free energy difference for homeotropic particles with infinite anchoring in a planar droplet as a function of the number of particles N , taking as reference the minimum free energy for each N pictured in the insert. Small round markers indicate metastable configurations (not shown), while big markers represent configurations with the maximum and minimum free energy density. Labels (a)-(k) correspond to the inserts and show the specific assembly of nanoparticles.	61

LIST OF FIGURES

5.4	Free energy difference for planar particles with anchoring strength $W = 1 \times 10^{-3} \text{ J/m}^2$, with the minimum free energy for each N as the reference shown in the insert. Small round markers indicate metastable configurations (not shown), while big markers represent configurations with the maximum and minimum free energy density. The inserts show the defect structure exhibited by nanoparticles positioned on (a) the boojum of the bipolar droplet, and (b) the equator. (c) Bridge defect between two nanoparticles near the boojum location.	62
5.5	Free energy difference for planar particles with anchoring strength $W = 1 \times 10^{-4} \text{ J/m}^2$, taking the minimum free energy for each N as reference and shown in the insert. Small round markers indicate metastable configurations (not shown), while big markers represent configurations with the maximum and minimum free energy density. Labels (a)-(e) are assigned to the most characteristic assembly of nanoparticles pictured in the inserts.	63
5.6	Free energy difference as a function of the angle between two nanoparticles on the surface of a bipolar droplet. Void and filled markers correspond to the case of homeotropic and planar particles respectively.	64

List of Symbols and Abbreviations

Greek Letters

Symbol	Description
α	Coefficients for the linear combination of radial basis functions
δ_{ij}	Kronecker delta
δ	Identity matrix, 3×3
ϵ_{ijk}	Levi–Civita tensor
ε	Shape parameter
γ	Rotational viscosity, in $Pa \cdot s$
η	Biaxiality
κ	Condition number
λ^m	Cholesteric disclinations with a topological charge \boldsymbol{m}
ϕ	Radial Basis Function
arphi	Aspect ratio
ψ	Probability distribution function of molecular orientation
$\Pi_{\mathbf{Q}}$	Projector tensor
au	Inverse temperature

Latin Letters

Symbol	Description
A_i	Phenomenological coefficients of the Landau free energy in the Doi notation
F	Free energy functional
k_{ii}	Elastic constants in the director representation
k_B	Boltzmann constant
L_i	Elastic constants in the tensor representation
\mathbf{n},\mathbf{n}'	Director field
N	Number of turns of the cholesteric pitch in a distance
p_0	Pitch of the chiral liquid crystal, in nm
Q	Tensor order parameter
q_0	Chirality or inverse pitch, in μm^{-1}
R	Radius of the droplet
S	Scalar order parameter
T	Temperature
$\operatorname{tr}(\mathbf{M})$	Trace of the matrix ${f M}$
u	Molecular orientation
IT	Adimensional parameter related to temperature in the Landau free energy
0	with the Doi notation
W	Anchoring strength, in J/m^2

Abbreviations

Abbreviation	Description
5CB	4–cyano–4'–pentylbiphenyl
В	Bipolar
BCC	Body Centered Cubic

LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation	Description
BPI,II	Blue Phase I and II
CPU	Central Processing Unit
dBP	Derived Blue Phase
GL	Ginzburg–Landau
GMQ	Generalized Multiquadratics
hBP	Hybrid Blue Phase
LC	Liquid Crystal
LRBF	Localized Radial Basis Functions
LU	Lower Upper decomposition
MC	Monte Carlo
MQ	Multiquadratics
NI	Nematic–Isotropic
PDE	Partial Differential Equation
RBF	Radial Basis Function
RSS	Radial Spherical Structure
SC	Simple Cubic
au–Ch	au-Cholesteric
тс	Twist cylinder
TPS	Thin-plate Spline
TwBs	Twisted Bipolar structure
U	Uniaxial