
Chapter 1

Introduction

Traditionally, matter is classified into three categories: gaseous, liquid, and solid. This classification

applies to simple materials with isotropic characteristics. Their properties can be predicted with

conventional models and do not depend on the direction they are measured, as well as any

transport phenomena that occurs within the domain. Anisotropic materials behave differently,

often non-linearly, and their ample range of application created the need for detailed theories to

explain the causes and consequences of materials with internal microstructure. Even more so,

theory has enabled the design of materials by predicting transitions and specific morphologies.

The discovery of an intermediate state of matter was made by Friedrich Reinitzer in 1888 [1]

and Otto Lehmann in 1889 [2], who observed a double melting point for a substance related to

cholesterol. This fourth state of matter resulted in a mesomorphous state and the term liquid

crystal (LC) was coined as it features crystal-like ordering and liquid-like fluidity. The set of

properties exhibited by liquid crystals consists of a unique combination of optical, electromagnetic

and rheological behavior that makes them of particular interest for the design of smart and

functional materials. Since the 1960s the LC field has burgeoned and conquered diverse fields

that range from mathematics to biosciences. After the success of basic and applied research in

display technology, the strategies for modern LC research are guided by the work of Pierre–Gilles

de Gennes [3–6]., who envisioned the utility of LC in bioenginering applications.

All liquid crystal-based technologies rely on the atypical elastic and optical properties which

project molecular events up to the visible range in a fast and accurate manner. To highlight

some applications, the easy orientability of LC molecules is convenient for the development
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of new semiconductor devices [7–9], photonics and lasing [10–12], improvement of energy

conversion [13, 14], low-voltage electro-optic devices [15–18], actuators [19, 20], nematic colloids

and metamaterials [21–26], and biodetection [27–35]. An approach to a biosensor using planar

geometries was first presented [27], where the assembly of proteins in the interface caused the

formation of patterns in the LC phase. In 2009 a sensor functionalized for viruses and bacteria was

possible using a monodisperse emulsion of LC micro–droplets with a high sensitivity, obtaining fast

determining optical changes under low concentration of external agents [32]. Regarding bacterial

contamination, a LC–based biosensor was developed where micrometer droplets interacted with

endotoxins [34]. More recently, the detection of specific types of peptides allows for the screening

of amyloid fibril formation in biomedical situations [35].

Among the bioengineering applications, sensing devices are becoming increasingly popular. It

involves confinement and colloid interaction with a nematic host, and its functioning is based

on the amplifying optic effects and small response times. In general, defects of liquid crystals

serve as regions of high energy that attract colloids as reported in experiments [26, 36–38] and in

simulations [39–44]. Work about defects in anisotropic fluids from topology has been a matter of

interest, mainly when the subject of study are colloids immerse in a nematic host [45–49].

The interest on this type of materials lays on finding ways of controlling structures that form

within the system, particularly the morphologies found in chiral nematics. Chiral nematics, or

cholesterics, were studied from a purely academic perspective since their narrow range of stability

(∼ 1K) posed significant challenges in technological applications. This type of nematics includes

an additional mode of deformation, a continuous inherent rotation of the molecules along an axis.

Such rotation causes the emergence of novel morphologies with a network of defects in the bulk

of the system. Cholesterics are often studied in cubic confinement and result in what is commonly

known as blue phases (BPs), which exhibit lattices of disclination lines with cubic symmetry

resembling a simple cubic (SC) structure or a body centered cubic (BCC) structure. Thanks to

chemical strategies like doping achiral LCs with chiral components [50–56], enantiomeric mixtures

and cross–linking [15, 57], or employing nanoparticles [58], it is possible to observe blue phases

over a wider range of temperatures.
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Since there is an interplay between the surface events and the bulk, using other geometries that

increase the surface to volume ratio is a viable strategy to enhance the response of LC systems,

which was achieved by designing nematic phases encapsulated in droplets. LC droplets are used

as sensors for antibodies in immunoassays, prescinding from labelling of proteins and complex

instrumentation with a sensing range near the nanogram per millimeter scale [59]. Such results,

from achiral nematics, marked a precedent and opened a new path for academic research on LCs:

designing responsive systems based on droplets phase transitions [34].

The frontier of liquid crystal research is focused on how to stabilize and harness bulk defects for

faster, low-energy switching structures. Understanding mechanisms that allow for the manipulation

of defect networks require a deep theoretical background and sophisticated simulation methods

that allow for the representation of highly non–linear systems. In this work, we aim at studying

different simulation tools, as well as compendious studies of confined nematics and strategies to

control the final equilibrium states of chiral materials as wells as colloids immersed in nematic

hosts.

1.1 Overview

Chapter 2 presents a brief description of the nature of liquid crystals, followed by the definitions

of order parameters, and the free energy functional that accounts for the deformation of nematic

phases. Afterwards, we present a breif description of different numerical methods employed for

interpolating tensorial fields in any domain. First, a meshless interpolation method commonly

known as Radial Basis Functions (RBFs) is introduced and some variations that were considered.

The other numerical method is Gaussian Quadrature with a Finite Element mesh. The next section

presents free energy minimization methods that were employed: a relaxation of the tensor order

parameter with the Ginzburg–Landau equation, and a theoretically informed Monte Carlo method

presented by Armas-Pérez et al. [60, 61].

In chapter 3 we present the results associated with the numerical study of the RBF method in

3D domains with a new methodology to obtain highly accurate estimation of gradients. This
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methodology is tested for analytical functions, and then implemented in the relaxation of the free

energy functional of a droplet of non-chiral nematic LC.

Chapter 4 contains the results of a comprehensive study of chiral LCs confined in spheroids.

From the phase diagrams we are able to explain how morphologies are affected by regions of

high curvature, changes in anchoring strength and temperature, as well as some introspective on

the nature of chiral systems. Chapter 5 consist on a study of homeotropic and planar particles

adsorbed on the surface of a bipolar droplet. In this study we focus on the different assemblies

such particles form as well as a broad spectrum of structures of technological interest.

To conclude, chapter 6 contains the final remarks of each aspect presented in previous chapters;

in chapter 7 prospective projects are posed in light of the reaches of the theoretically informed

Monte Carlo method used in chapter ??.

1.2 Dissemination of results

The results obtained during this process are being prepared for publication, and are listed as follows:

• “Tactoids of chiral liquid crystals”. V. Palacio–Betancur , S. Villada–Gil, Y. Zhou,

J.C. Armas–Pérez, J.J. de Pablo, J.P. Hernández–Ortiz. APS March Meeting

2016. Presented here.

• “Educating local radial basis functions using the highest gradient of interest

in three dimensional geometries”. V. Palacio–Betancur , S. Villada–Gil, J.J.

de Pablo, and J.P. Hernández–Ortiz. Submitted to International Journal of

Numerical Methods in Engineering.

• “Hybridization and stability of blue phases via geometrical frustration”.

V. Palacio–Betancur , J.C. Armas–Pérez, S. Villada–Gil, J.P. Hernández–Ortiz,

and J.J. de Pablo. To be submitted to Soft Matter.

• “Topological dereliction in liquid crystal mediated nano-particle assembly

on spherical droplets”. J.C. Armas–Pérez, V. Palacio–Betancur , J.P.

Hernández–Ortiz, and J.J. de Pablo. To be submitted to Soft Matter.
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• “Liquid crystal phase diagrams from a phenomenological free energy functional

description: Landau–de Gennes theory”. S. Villada–Gil, V. Palacio–Betancur ,

J.C. Armas–Pérez, J.J. de Pablo, and J.P. Hernández–Ortiz. To be submitted to

Physical Review E.
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Chapter 2

Modeling of Liquid Crystals

The ordering quality of LCs is given by the shape of its molecules, which are classified in three

categories: rod-like, disk-like and bent-core. The two first categories are the most common and

are often found in biological systems, e.g. the lipids in cell membranes are rod-like molecules and

the cholesterol is disk-like. A representation of both types is shown in Figure 2.1 with molecules

of 5CB (rod-like) and triphenylene (disk-like). The alignment of these molecules is responsible for

their optical activity.
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Figure 2.1. Representation of (a) a rod-like molecule of 5CB and (b) disk-like molecule of triphenylene.

Liquid crystals can also be classified as (i) thermotropic, (ii) lyotropic or (iii) metallotropic.

Thermotropic liquid crystals are those whose ordering can be altered by heating or cooling of

the material. For lyotropic LCs to be observed, it is necessary to reach a critical concentration

and it depends on the length and diameter of the molecules. Metallotropic LCs are a mixture of

inorganic and organic materials with dependence of temperature. Our main interest is focused on

thermotropic liquid crystals, which exist in a specific range of temperature. Any LC system is a

collection of distinct mesomorphous phases, or mesophases, each with a specific type of ordering.
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The order is defined by the uniformity of the orientation within the domain. In thermotropic LCs

the phases range from nematic to smectics as function of the temperature as shown in Figure 2.2.

Increasing order

Decrescing temperature

Isotropic Smectic A Smectic C Crystalp0/2

Nematic

Cholesteric

Figure 2.2. Different phases for thermotropic uniaxial liquid crystals as temperature decreases.

After transitioning from the isotropic state we found the nematic phase, which is characterized

by long range orientational order along the average molecular orientation, but no positional order.

Cholesterics are a special case of nematics in which there is also a supermolecular structure related

to a helical rotation of the director, it can be interpreted as nematic layers stacked and the

local orientation of each layer rotates respect to the previous one. By decreasing temperature

furthermore, we transition to smectic phases, which exhibit positional and orientational molecular

order, it is the phase that resembles the most to a crystal before reaching crystallization.

Besides their relationship with temperature, LCs behavior is also influenced by the presence of

foreign substances, confinement, or applied external fields. The interaction between the LC

molecules and any surface is called anchoring and it dictates the preferred orientation at the

surface, the most common ones are homeotropic and planar anchoring.

When molecules realign to match boundary conditions, conflicting directions may arise and the

director field becomes singular at some points, thus forming defects. Defects vary in shape, size

and location depending on the imposed boundary conditions, geometry and physical properties of
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the material. Defects are often characterized by their topological charge, which counts how many

times the director rotates around the discontinuity in multiples of π and obeys a conservation

law; it is zero in a flat surface and when enclosed in a sphere it must be 2 as required by the

Poincaré-Hopf theorem [62].

The frustration, this is the competition between different influences on a physical system, is

resolved when there is balance between the elastic energy that penalizes deformations, the interface

interaction that promotes a preferred orientation, and the geometry restrictions [63, 64]. For

simplicity, the equilibrium configurations of the director field will be called phases.

A comprehensive description of liquid crystalline behavior must be able to capture the variations on

the orientation of the molecules in a free domain as well as when confinement or interaction with

foreign particles forces a specific orientation. Besides the description of the molecular ordering, free

energies penalties exist to determine the most stable configuration of a LC system. This chapter

introduces the mathematical tools needed for the modeling of uniaxial nematic liquid crystals.

First, we dedicate a section to the definition of different order parameters. Then, the free energy

description is presented as the result of three different contributions: bulk, elastic, and surface free

energies. A brief description of the formation of topological defects is shown, as well as a general

depiction of nematic and cholesteric phases.

2.1 Physics of nematic phases

2.1.1 Order description

The first attempt to quantify the ordering of a LC system consisted of a scalar parameter indicating

the degree of isotropy. The definition comes from averaging the molecular orientations and

measuring the angle between molecules, θ.

S ≡ 1

2
〈3 cos2 θ − 1〉. (2.1)
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This description is macroscopic and does not capture the minutia in the range of the molecular

scale. The next step would be to obtain information of the direction of the molecular alignment

u, thus obtaining the director fields n and n′ where the latter only arises for biaxial molecules.

This is depicted in figure 2.3. Recall that for uniaxial molecules, n is equivalent to n′.

H3
C

C
N

Figure 2.3. Molecular orientation for (a) uniaxial and (b) biaxial molecules. The vector u indicates the
orientation of a single molecule, and n,n′ are the director vectors.

As mentioned before, the use of liquid crystals is appealing because of the optical particularities

that arise from defects. These defects are, by definition, regions where the molecular orientations

diverge so any calculations for said region based on vectorial descriptions is not appropriate. To

circumvent this issue, the description is taken to the next level with the formulation of a traceless

and symmetric tensor, Q. It is defined by the director field and the probability distribution function

ψ(n,x,t) of molecular orientations:

Q =

∫
nnψ(n,x, t)dn− δ

3
, (2.2)

where δ is the 3 × 3 identity matrix. Tensor Q may be written in terms of its eigenvalues in a

diagonal form as follows,

Q =


2
3S

η − 1
3S

−η − 1
3S

 (2.3)

According to this representation, tensor Q can also be written in terms of its eigenvalues [65, 66],

Q = S

(
nn− δ

3

)
+ η

[
n′n′ −

(
n× n′

) (
n× n′

)]
, (2.4)

where S(x) is the scalar order parameter, related to the maximum eigenvalue. The biaxiality

η(x) is related to the other two eigenvalues. The order parameters are bounded by S ∈ [−1/2, 1],
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and η ∈ [−1/3(1− S), 1/3(1− S)]. The eigenvectors, n and n′, define an orthonormal basis

{n,n′, (n× n′)} for the LC orientation.

This definition of an order parameter allows for a continuous representation of the molecular

ordering, and a precise description of regions with defects. The Q tensor contains all the

information for an accurate thermodynamic description of the system, whether the system is

in a LC state or during the transitions between these states.

2.1.2 Free energy description

The expressions at static equilibrium that describe this type of material, tipically lead to the

Helmholtz free energy taking the form of a polynomial expression in Q or in S as originally presented

by Landau in 1936 [67], and later adapted to liquid crystals by de Gennes in 1969 [3]. Alternatives

for the static description include de Maier-Saupe theory [68], and the Onsager theory [69]. For

the non-homogeneity of nematic phases, the Oseen theory [70] and later refounded by Frank [71]

is very popular since it includes different modes of deformation that carries energetic penalties.

More realistic situations include confinement conditions, for which we present different functionals

that impose a preferred orientation of the molecules as a boundary condition.

Joining these contributions, the free energy functional is calculated as,

F (Q) =

∫
d3x [fL(Q) + fE(Q,∇Q)] +

∮
d2xfS(Q) (2.5)

where fL is the Landau–de Gennes free energy, fE is the elastic free energy, and fS is the surface

free energy. In the following sections each contribution will be explained in more detail.

2.1.2.1 Landau–de Gennes free energy

For the description of the bulk free energy we use a phenomenological approach that serves to

characterize the internal structure of the medium. The free energy density is described by a

truncated polynomial expansion of the tensor order parameter’s invariants [3, 67, 72–74].
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fL(Q) =
1

2
A(T )tr(Q2) +

1

3
Btr(Q3) +

1

4
Ctr(Q2)2,

where A(T ), B, and C are phenomenological coefficients, tr (M) is the trace of the matrix M and

Q2 = QijQjk. The free energy density in eq. (2.6) predicts a phase transition at a temperature

that forces A to vanish. Therefore, it is assumed that A has the form,

A(T ) = a (T − T ∗) , (2.6)

where a is positive and constant, T is the temperature and T ∗ is a temperature close to the NI

transition temperature, TNI .
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Figure 2.4. Free energy density of the 5CB as a function of the uniaxial order parameter at three
different temperatures: T+, TNI , and T ∗. The phenomenological coefficients are: a =
0.13× 106J/m3K,B = −1.6× 106J/m3, C = 3.9× 106J/m3, and T ∗ = 307.15K from [75].
The squares indicate the equilibrium values of the order parameter. This diagram is valid only
for B < 0.

Through this functional it is possible to study the transition from the isotropic state to the nematic,

by differentiating four different temperature regimes. At high temperatures, T > T+, there is a

single minimum in the free energy that corresponds to a stable isotropic phase; F has only one

minimum at S = 0. For TNI < T < T+, the isotropic phase is still the stable state, but there is
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an additional local minimum in the free energy at

S = − B

4C

{
1 +

[
1− 24

aC

B2
(T − T ∗)

]1/2}
, (2.7)

that corresponds to a metastable nematic phase. On the contrary, for T ∗ < T < TNI the stable

state is the nematic phase, while the isotropic phase is the local free energy minimum. Finally,

at T < T ∗ there is a unique nematic stable phase. At T = TNI the two minima are equivalent,

thereby defining the NI transition. Note that this transition shows a discontinuity in the order

parameter, ergo it is a first-order transition. This is explained by the odd-order powers of tr(Q)

in the free energy functional.

The form of the free energy density in eq. (2.6) provides additional characteristics and properties

for the transitions and phases. For instance, the free energy density is non-linear thus allowing the

isotropic phase. The first term drives the NI transition. The inclusion of a third order term causes

the NI transition to be first order. It also ensures asymmetry with respect to Q↔ −Q.

From the Doi theory [76], the free energy functional from eq. (2.4) is expressed in terms of another

set of phenomenological coefficients. The set consists on Ai coefficients that control the energy

scale of the model, and an adimensional parameter U that controls the scalar order parameter S.

The free energy functional is rewritten as,

fL(Q) =
1

2
A1

(
1− U

3

)
tr(Q2)− 1

3
A2Utr(Q3) +

1

4
A3Utr(Q2)2, (2.8)

For a system without boundary restrictions, the order parameter is related to U through the

following expression,

Sbulk =
1

4
+

3

4

√
1− 8

3U
(2.9)
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To transform the free energy functional from eq. (2.6) to the Doi notation in eq. (2.8) it is necessary

to apply the following equivalences,

A = A1

(
1− U

3

)
(2.10)

B = −A2U (2.11)

C = A3U (2.12)

Following the same analysis for the phase transition lines, values for U analogous to those of TNI

and T+ can be found by assuming a unique value for Ai.

2.1.2.2 Elastic energy: Frank–Oseen theory

The origin of the Frank–Oseen theory lies on an analogy to solid elasticity. When the director

field is inhomogeneous, spatial distortions of the molecular orientations caused by the presence of

non-zero curvature that later result in a higher free energy. considers that all deformations are

a result of three independent modes of variation of n: splay, twist, and bend, using three elastic

non-vanishing moduli, k11, k22, and k33 as illustrated in figure 2.5.

Splay (k11) Twist (k22) Bend (k33)

Figure 2.5. Elastic deformation moduli. Figure adapted from [77].

The formulation of this theory in terms of the director field is,

fE =
1

2
k11 (∇ · n)2 +

1

2
k22 (n · ∇ × n)2 +

1

2
k33|n× (∇× n) |2 (2.13)

13



CHAPTER 2. MODELING OF LIQUID CRYSTALS

The elastic constants must be positive so the homogeneous state corresponds to a minimum of

the elastic free energy. As mentioned before, the use of a phenomenological formulation in terms

of vector order parameters is limited to continuous variations of the molecular orientations. The

mapping from n to Q is only valid for uniaxial molecules and results in the following expression,

fE =
L1

2

∂Qij
∂xk

∂Qij
∂xk

+
L2

2

∂Qjk
∂xk

∂Qjl
∂xl

+
L3

2
Qij

∂Qkl
∂xi

∂Qkl
∂xj

(2.14)

with the elastic constants Li related to the elastic moduli by,

L1 =
1

6S2
bulk

(k33 − k11 + 3k22) (2.15)

L2 =
1

S2
bulk

(k11 − k22) (2.16)

L3 =
1

2S2
bulk

(k33 − k11) (2.17)

Additional terms might be added to eq. (2.14) in order to describe additional spatial distortions.

This is the case for saddle–splay deformations and chirality. Traditionally, the k24 constant,

corresponding to a saddle-splay deformation, has been neglected because its value is difficult

to determine. In curved surfaces or inhomogeneous boundary conditions, the presence of spatial

distortion is evident and so, the saddle-splay elastic constant must be included in the free energy

[78]. The additional term is:
L4

2

∂Qjk
∂xl

∂Qjl
∂xk

, (2.18)

with L4 = k24/S
2
bulk being the elastic constant. The saddle-splay moduli, k24, is bounded by the

following two inequalities,

− k22 ≤ k24 ≤ min (2k11 − k22, k22) (2.19)

The first measurements of the saddle–splay elasticity were done by Ondris–Crawford et al. [79] for

a confined nematic phase. One of the substantial remarks is that curvature effects add difficulty to

determine the value of k24, especially when confinement is in the submicron scale; for supramicron

droplets, a stability diagram was obtained for two different configurations of the droplet [80] but
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it only provided qualitative appreciations since combined elastic effects (e.g. saddle–splay, mixed

splay-bend) were neglected due to lack of information.

When treating chiral materials, there is an inherent twist of the director vector of each nematic

layer caused by the enantiomeric character of the molecules, as illustrated in figure ??. The director

field follows a helical fashion and completes one revolution in a distance p0, called the pitch of

the material. A material with chirality will not present this type of rotation only if the mixture is

racemic. The term that describes this behavior is:

1

2
L5εiklQij

∂Qlj
∂xk

, (2.20)

with εikl being the Levi–Civita tensor, and L5 is the elastic constant related to the twist deformation

mode k22 and the chirality of the system q0 = 2π/p0, by L5 =
2

S2
bulk

q0k22. Note that since there

is only one gradient that contributes to this type of deformation, the free energy is minimized as

the twisting is more frequent.

The one-elastic constant approximation is a common consideration for systems sufficiently large.

Due to its simplicity (k11 = k22 = k33), it has been proven appropriate if the geometry has no

dramatic changes in curvature [79, 81].

2.1.2.3 Surface free energy

The imposition of a molecular alignement at the surface influences the behavior of the medium

so the director takes a compatible orientation that minimizes the free energy, as illustrated in

fiugre 2.6. For the homeotropic (perpendicular) anchoring, the second order Rapini–Papoular

potential is used [82]:

fS(Q) =
1

2
W (Q−Qo)2 , (2.21)

where W represents the anchoring strength and Qo is the preferred tensor order parameter at the

surface. For degenerate-planar anchoring, the 4th order Fournier–Galatola potential is used [83],

fS(Q) =
W

2

(
Q̄− Q̄⊥

)2
+
W

4

(
Q̄ : Q̄− S2

)2
, (2.22)
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where Q̄ij = Qij + Sδij/3, Q̄⊥ = pQ̄p, pij = δij − νiνj and ν is the unit vector normal to the

surface.

n

Bulk

Surface

R

Homeotropic

Planar

Figure 2.6. Schematic representation of different anchoring conditions for a confined liquid crystal.

2.1.3 Topological defects

When conflicting orientations are present in a LC system, a region where the order is destroyed

and the rotational symmetry is broken. That region is called a topological defect, or disclinations,

and can also be seen as a singularity of the director field. These defects polarize light [84] and

represent regions with higher free energy that is attractive to colloids [52, 85, 86]. It is precisely the

ability of LCs to form defects by design, that makes them attractive for technological applications.

Every system that is confined exhibits a competition between the surface orientation and the bulk

uniformity, and depending on the anchoring strength it is possible to induce phase transitions [63].

With sufficiently strong anchoring, well defined defects can be differentiated. For achiral LCs,

when the anchoring is homeotropic the radial phase is recognized by one defect centered in the

bulk where the director field diverges, whether with the tangential anchoring the bipolar phase is

observed with two diametrically opposed boojum defects located on the surface. As the anchoring

strength decreases, the phases are degenerated and more weakly defined phases are observed, as

the twisted radial and the escaped radial (pre-radial) phases. The axial and uniaxial configurations

are observed when the anchoring is weak and thus the imposed orientation is easily modified by

the elastic forces. These phases are illustrated in figure 2.7.
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BipolarTwisted
bipolarRadial Uniaxial Axial

Escaped
radial

Figure 2.7. Director field configurations for different phases induced by the anchoring conditions in a droplet
of nematic liquid crystals.

As chirality is introduced, two regimes define the type of defects. For low chirality, the material is

cholesteric and the director field rotates continuously. There are regions with topological charge

but not with an abrupt change of the scalar order parameter S. Some of these anormalities are

shown in figure 2.8.

Figure 2.8. Schematic representation of three different cholesteric defects. Adapted from [87].

For materials with high chirality, the director rotates more frequently and regions with double

twists join to form defect lines in the bulk, or disclinations. These arrays of defects follow a cubic

symmetry of the O8 type, seen in the body centered cubic structure and called Blue Phase I (BPI),

and the O2 type is called Blue Phase II (BPII) seen in the simple cubic structure. These two phases

are illustrated in figure 2.9.

The description of defects will be employed and explained in greater detail in chapter ??.
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Blue Phase IIBlue Phase I

Figure 2.9. Unconstrained symmetric structures of blue phase I (BPI) and blue phase II (BPII).

2.2 Numerical methods

2.2.1 Radial Basis Functions

This method is centred on the linear combination principle. Any set of scattered data can be

represented in terms of a set of known functions, called basis functions, as follows:

y(x) =

N∑
j=1

αjφ(xj ,x), (2.23)

where the basis functions φ depend on the distance between the sample points xj and the point

of interest x. By solving the linear system y = φ · α, we capture all the information needed to

find data in unknown points. This method was first proposed to interpolate topography data;

its simplicity of implementation and versatility makes it the perfect tool for fast calculations. In

theory, this method can be applied to problems of n dimensions and can be used to calculate

gradients of the known data. However, the limitations of this method are encountered when using

large data sets in three dimensions. Alternatives and analysis of this method are presented in more

detail in chapter 3.
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2.2.2 Gaussian quadrature with Finite Element Method

The integration is done using Gauss-Legendre quadrature over linear and quadratic tetrahedral

elements, of the form:

I =

∫ ∫ ∫
T
f(x, y, z)dxdydz ≈

N∑
i=1

cmf(xm, ym, zm), (2.24)

where T is the tetrahedral element, x, y, z are the coordinates, N is the number of Gauss points

or pivotal points, f is the function to be integrated, and cm are the weights on each point. For

the integration we isoparametrize the elements for easier and faster calculation.

The Finite Element-based meshing allows us to capture the nuance of the geometries to perfection

and is done using third–party software provided by Argonne National Laboratory [88, 89].

2.3 Free energy minimization

2.3.1 Ginzburg–Landau relaxation

A stable thermodynamic state is obtained for configurations that minimizes the free energy

functional F (Q). These minima can be obtained from Ginzburg-Landau isothermal (iso-entropic)

relaxation as follows:
∂Q

∂t
= −1

γ
ΠQ

(
δF

δQ

)
, (2.25)

where γ is a rotational viscosity (or diffusion) coefficient and ΠQ is a projector operator that

ensures the symmetric and traceless character of Q. The Volterra derivatives are defined by [90]

δF

δQ
=
∂F

∂Q
− ∂

∂x
· ∂F

∂∇Q
, (2.26)

with proper boundary conditions
δF

δ∇Q
· v = 0. (2.27)
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2.3.2 Theoretically informed Monte Carlo

The free energy functional informs a Monte Carlo relaxation method, as presented in [91, 92]. A

Metropolis criteria is followed to sample the Q tensor. In order to perform a uniform sampling

over its 5 independent components, Q is expressed in terms of an orthonormal tensor basis as

presented by Hess et al. [93],

Q =
5∑

ν=1

aν (x, t) Tν (2.28)

where the five scalar components aν are projections.

The basis are defined by,

T1 =
√

3/2 [zz]ST =
√

3/2 (δ3iδ3j − δij/3) ,

T2 =
√

2 [xy]ST =
√

2 (δ1iδ2j + δ2iδ1j) /2,

T3 =
√

2 [xz]ST =
√

2 (δ1iδ3j + δ3iδ1j) /2, (2.29)

T4 =
√

1/2 (xx− yy) =
√

1/2 (δ1iδ1j − δ2iδ2j) ,

T5 =
√

2 [yz]ST =
√

2 (δ2iδ3j + δ3iδ2j) /2.

Here, [A]ST is the symmetric-traceless projection operator, x, y, and z are the canonical <3 basis,

and δij is the Kronecker delta.

The mapping from Qij to aν is,

Q11 = − a1√
6

+
a4√

2

Q12 =
a2√

2

Q13 =
a3√

2
(2.30)

Q22 = − a1√
6
− a4√

2

Q23 =
a5√

2
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The sequence of trial moves that are accepted form a Markov chain of configurations, each

transition is accepted with probability,

Pacc (o→ n) = min [1, exp (−β∆F )] , (2.31)

where β−1 = kBT̂ with kB is the Boltzmann constant and T̂ is an artificial temperature that is

not related to the real temperature of the system; ∆F = F (Qn) − F (Qo) is the change in the

free energy due to an alteration in the old configuration.
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