
Chapter 3

Educated local

meshfree interpolation

The results presented in this chapter are included in the paper “Gradient-based strategies for

implementing local radial basis functions in three dimensional geometries” submitted to the

International Journal for Numerical Methods in Engineering.

Scattered data interpolation is central during the numerical solution of partial differential

equations (PDEs). Solution’s consistency, stability and convergence are influenced by the data

distribution, geometry and the order of the approximation [94–96]. Current numerical methods,

elaborated towards successful approximations in moderate computation times, can be classified

into mesh-dependent or meshless methods. Spectral elements, finite differences, finite element

and boundary elements are well established numerical methods that require a mesh, supporting

the interpolation scheme [97]. Important efforts have been made to generate platforms that

incorporate optimal meshing algorithms within numerical libraries (like Libmesh [89]) or to

generalize conventional methods for moving boundaries (like extended finite elements [98] or

Green’s function based accelerated methods [99–104]).

Meshless methods offer flexibility in regards to mesh construction, thereby resulting in platforms

for studying complex geometries, moving and deformable boundaries. The center of these methods

is to approximate the solution a using discrete set of nodes that are not necessarily related through

a structured mesh. Therefore, specific distribution of points, representing domain and boundaries,

are used to solve PDEs [105] through global or local interpolants [106, 107].Radial Basis Functions
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(RBF) is a commonly used meshless method [108], that may be used in n-dimensional problems

and uses Euclidean distances to establish an interpolant with a radial basis set.

Given the nature of the radial basis, with global or compact support, the interpolant does not

converge exponentially like in eigenfunction expansions. Therefore, a large number of points

are needed for acceptable approximations, resulting in computationally inefficient full matrix

schemes [109]. However, RBF approaches are among the preferred methods for image correction

and extrapolation, large scale weather analysis and transport phenomena. An interesting possibility

to increase computational efficiency is to use a local set of points, or stencil, for the RBF

interpolant. This results in sparse matrices that decrease the solution time by orders of magnitude.

However, local schemes contain additional complications that need to be addressed; the most

notable are node distribution and stencil size [110–113], matrix conditioning [114, 115] and

optimum shape parameter [116–125]. The latter arises from the free parameter dependent basis

required for successful localized schemes.

In this chapter, we propose a new method to optimize local RBF (LRBF) interpolants in three

dimensional geometries. This scheme uses information from the highest order derivative operator

to optimize the free (shape) parameter. The comparative value to extract the optimum shape

parameter may be calculated from a known analytical function or from a shape parameter-free

global RBF interpolant. The proposed method is applicable to problems that require a large

number of spatial approximations, like time dependent problems or stochastic integrations. This

chapter is organized as follows: a short review of the RBF method is presented, followed by a local

approximation of an analytical expression in a spherical and a cubic domain. The method is then

fully applied in a Ginzburg-Landau minimization of a liquid crystal free energy functional. The

manuscript ends with a summary of the most relevant conclusions.

3.1 Radial Basis Functions

Radial Basis Functions were originally used to generate meshless global interpolants [126, 127],

evolving in a method to solve partial differential equations [128, 129]. Studies concerning its

mathematical implications [130, 131, 128, 132–134] and its applicability [135–143] have emerged
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in the last couple of decades, where different aspects of the method are discussed, e.g. interpolation

matrix’s conditionality, optimal shape parameter, node distribution and boundary conditions.

The method starts by assuming that any given function f(x0) can be expressed as a linear

combination of known radial basis functions [107] as follows:

f(x0) =
N∑
j=1

αjφ(m, ||x0 − xj ||) + Pm−1(x0), (3.1)

where the radial basis functions, φ(m, ||x0 − xj ||), depend on the Euclidean distance to N trial

centers xj ∈ X (X ⊂ <n and j = 1, ..., N), m is the order of the basis and Pm−1 are (m− 1)th

order polynomials used to augment the interpolation [144, 145]. These polynomials additional

constraints to the interpolation, i.e.

N∑
j=1

αjPk(xj) = 0, for 1 ≤ k ≤ m− 1. (3.2)

The above interpolation problem can be written in matrix form as A · y = b with

A =

 Φ P

PT 0

 , (3.3)

yT = (α,β) and bT = (f , 0), where β are the polynomial coefficients.

Among the portfolio of radial basis functions, we find the thin-plate spline (TPS-m),

φ(r) = r2m−2 log r, (3.4)

and the generalized multiquadratics (GMQ),

φ(r) =
(
ε2 + r2

)m/2
, (3.5)

where r = ||x0 − xj || and ε is the shape or free parameter that influences the flatness of the

radial function [116, 119]. The inverse multiquadrics are obtained for m < 0 in the GMQ and

they are positive definite functions. On the other hand, the TPS and the multiquadric (m > 0 in
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the GMQ) are conditionally positive definite functions of order m. They require the addition of

the (m− 1)th polynomial to obtain an invertible interpolant. In this chapter, we use 2nd, 3rd and

4th order TPS (TPS-2, TPS-3, TPS-4, respectively) and a first order multiquadratic (MQ).

In a localized radial basis function (LRBF) interpolation, only a set of the p nearest neighbors to

the center x0 are considered:

I0f(x0) =
∑
j∈I0

αjφ(m, ||x0 − xj ||), (3.6)

where I0 is a vector containing the information of the p nearest points of x0, conforming a stencil

of size q = p + 1. Using the LRBF to each of the N discrete points results in N linear systems

q × q, contrary to the N ×N system in the global RBF. (A couple of reviews that compare local

and global approaches can be found in [109, 146]).

The approximation of gradients can be done through direct [147] (Kansa’s) or quadrature [148, 149]

schemes. In the direct method, the differential operator is applied directly to the basis while keeping

the α coefficients constant. For instance, the gradient is approximated by

I0∇f(x0) =
∑
j∈I0

αj∇φ(m, ||x0 − xj ||). (3.7)

On the other hand, in a quadrature approximation, the differential field is considered to be a

linear combination of neighboring nodes interpolations. New coefficients are found by solving a

system conformed by φ and φ(n), where the superscript n indicates the order of the differentiation.

Therefore, the n gradient of the function is calculated by

f (n) (x0) =

p∑
j=1

λ
(n)
j f (xj) , (3.8)

where j ∈ I0, xj 6= x0 and the coefficients λ
(n)
j are obtained from

φ(n) (m, ||x0 − xi||) =

p∑
j=1

λ
(n)
j φ (m, ||xi − xj||) , (3.9)

for i, j ∈ I0 and xi,xj 6= x0.
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3.2 Shape parameter optimization

As mentioned before, LRBF does not result in full matrices, thereby increasing computational

efficiency. However, it has been proved that only shape-dependent radial basis are able to provide

good approximations, which introduces the need to find optimum shape values that depend on

geometry, operator and point distribution [150, 118, 119, 151]. For instance, there is a known

relationship between the interpolation matrix condition number, κ, and the shape parameter ε. It

is mediated by an uncertainty principle [152], that suggests a good approximation when ε results

in a matrix with a large κ. An optimum value for the shape parameter avoids the ill-conditioning

of the matrix and the onset of the Runge phenomenon [119, 120, 151].

Apart from the matrix conditionality, when chosen properly, the shape parameter accelerates

convergence [153] and transient solutions are stable [118, 119, 154]. Unfortunately, selecting a

proper shape parameter is an open problem despite the abundant algorithms in the literature [120,

123, 124, 133, 155, 125, 156]. The first attempts to calculate ε involved the mean distance

between the discrete points [126, 127] and their distribution [118, 157, 113, 123]. Most of these

methods are limited to two-dimensional problems. Most importantly, they are problem-specific,

restricting their general applicability. There are some efforts that used LRBF for the solution

of PDEs in three-dimensions [158, 159], where the free parameter is obtained according to the

maximum nodal distance [156].

Our primary interest is to use LRBF for the solution of time dependent transport problems or during

stochastic integrations. Complex geometry and moving boundaries are among the issues we wish

to resolve by a meshless approach. Given the lack of generality for some methods previously

reported, we proceed to propose a scheme based on gradient operators. Such a method does not

consider the condition number nor the node distribution. In problems where analytical expressions

for the gradient are unknown, global shape parameter-free RBF are used for the“reference”gradient

value. This, of course, forces a full matrix scheme to be used during a pre-processing stage of the

solution.

The proposed method seeks for the ε value that minimizes the error in an approximation of a

gradient operator. The order of this operator is selected from the highest differential order present
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in the problem of interest. The shape parameter is then selected for each stencil at xi by

min
εi∈<

1

q

√∑
j∈Ii

[
f (n) (xj)− f̂ (n) (xj , εi)

]2 , (3.10)

where Ii is a vector with the q elements of the stencil at xi, n is the order of the highest gradient

and f̂ is the known value.

3.3 Results

To validate and test numerical consistency and stability, the LRBF shape parameter optimization

is used to interpolate an analytical function and its gradients and to perform a Ginzburg-Landau

(GL) free energy relaxation of a confined liquid crystal (LC). Cubic and spherical three-dimensional

domains are used for the analytical expressions, while the LC is confined in a spherical droplet.

The RBF interpolant is form with uniform and randomly distributed points.

For the global RBF, first order MQ and TPS (with m = 2, 3 and 4) were used. The global RBF

was used with and without the (m − 1) polynomial augmentation. The gradients in the global

scheme are approximate following a direct method. In the local scheme, a MQ function was used

and gradients are evaluated with the direct and the quadrature approaches. The condition number

of the interpolation matrix was monitored to account for its singular character and to compare with

previous shape parameter optimizations. The condition number of the matrix A is approximated

by its singular value decomposition as follows:

κ = ||A||
∣∣∣∣A−1∣∣∣∣ ≈ σmax

σmin
. (3.11)

In general, the condition number for the global and local schemes increases as the number of

discrete points (nodes) increases. Its value always remained finite, ensuring the correct solution

in the linear system. In addition, increasing the interpolation order also increases the matrix

conditionality. The condition number was between 103 to 1012 for node numbers between 100

and 5,000, despite the type of geometry and node distribution.
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The approximation error is evaluated with a L2 norm by

L2 =
1

N

√√√√ N∑
i=1

(
fi − f̂i

)2
, (3.12)

where f̂i is the analytical or global function and fi is the LRBF approximation value. L2 norms

are also used for gradients, laplacian and the LC free energy functional. In general, interpolation

errors were order 10−11 in all functions, geometries and node distributions.

Before we proceed with the numerical results, a discussion on computational efficiency is in order.

CPU time was measured during preparation and production stages. Preparation includes matrix

assembly, shape parameter optimization and matrix factorization for an LU decomposition solver.

Production is defined as the corresponding LU back-substitution to obtain the y vector. Figure 3.1

shows CPU time as a function the number of nodes for a representative spherical three-dimensional

domain with randomly distributed nodes. The stencil size was 50 for the LRBF. Two LU solvers

were used in the local scheme: N systems of size q × q with conventional Lapack routines [160]

and a single N ×N sparse system using SuperLU [161, 162]. As expected, CPU times for global

RBF shows a stronger dependency on number of nodes for preparation and production. Local

schemes, with the non-sparse solver, have a weaker dependency on number of nodes as the LRBF

should approach an O(N) as N → ∞. Sparse solutions are faster than N non-sparse ones as

N → 0; however, their computational cost also have a strong dependency as the number of nodes

increases. For problems where no analytical gradients are known, a global solution is required for

the local shape parameter optimization. Therefore, the preparation time with a particular number

of nodes is the sum of both, global and local (also affecting the required memory allocation). An

approach, to avoid extensive preparation times, is to use a coarser approximation of the global

scheme, while keeping a finer resolution on the local.

3.3.1 Analytical Functions

We start the validation process by interpolating an analytical functions and its gradients, simulating

the interpolation of scattered data. The numerical performance and convergence are tested using
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Figure 3.1. CPU time for global and local RBF schemes in a 3D sphere with random nodes: (a) Preparation
and (b) Production.

different node distributions, geometries and local stencil size. The three-dimensional domains were

chosen with a characteristic size L̂ = 1.

Two analytical functions are defined by:

f1(x) = x1 exp (−x1) + x2 exp (−x2) + x3 exp (−x3) ,

f2(x) = x1 sin (x1) + x2 cos (x2) + x3 sin (x3) , (3.13)

where x = (x1, x2, x3). The f1 interpolation matrix condition number, its gradients and laplacian

will be used to optimize the shape parameter for the MQ basis. These criteria are a function of

the geometry, cube or sphere, node density and node distribution, uniform or random. Once shape

parameters are obtained from the f1 interpolants, f2, ∇f2 and ∇2f2 are approximated.

We first evaluate the optimization method in a global RBF interpolation. Figure 3.2 summarizes

the L2 errors for ∇f2 and ∇2f2, when optimized shape parameters from f1 are used. The function

interpolation errors, for every scheme, were order 10−11. In general, errors decrease as the number

of nodes is increased.

Shape parameter optimization with the f1 matrix condition number results in poor gradient

and laplacian approximations; this scheme was proposed before and it is only successful for
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Figure 3.2. Interpolation errors from global RBF schemes: (a) ∇f2 and (b) ∇2f2. The function is
approximated in a cubic domain using uniform distributed nodes. The MQ shape parameter is
obtained from the f1 matrix condition number, gradients and laplacian. Dotted lines are for
the polynomial augmentation when TPS are used.

two-dimensional domains [136, 133]. When f1 gradients or laplacian are used to find an optimal

shape parameter, the error in the f2 gradient interpolation is 10−7, while in the laplacian is 10−5.

For comparison, shape-free TPS global approximations are also included in Fig. 3.2. As the TPS

order increases, the approximation improves. Augmented schemes give similar results for gradient

approximations, whereas they improve the laplacian interpolation considerably. Notice that MQ,

optimized with f1 gradients, provide the best solution for f2 gradients and laplacians. These results

were obtained in a cubic domain using a uniform node distribution. Global RBF for spheres and

random node distributions similar equivalent results.

According to results in Fig. 3.2, the use of known differential operators provide a way to

obtain general shape-dependent interpolation schemes. It is desirable that the shape parameter

optimization can be achieved only from the node distribution and density and the type of geometry.

Figure 3.3 shows the shape parameter optimized from the f1 matrix condition number, gradient

and laplacian in a cubic domain with random nodes. The differential operators are approximated

using the direct and the quadrature schemes. The optimal shape parameter is different for the

three optimization criterion and it shows little dependence on the mesh density. This is contrary to

30



CHAPTER 3. EDUCATED LOCAL MESHFREE INTERPOLATION

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

Nodes

S
h

a
p

e
 p

a
ra

m
e

te
r Direct

Quadrature

κ

∇ 2 ∇

∇ 2

∇

Figure 3.3. Optimal shape parameter for random meshes in a cubic domain. The shape parameter is
obtained from the f1 matrix condition number, gradients and laplacian. The differential
operators are obtained from direct and quadrature schemes.

previous works, in two-dimensional domains, where the shape parameter was strongly dependent

on mesh density [117, 123]. Optimizing with the κ criterion, regardless of the solution method,

yields lower values of ε. Even though our optimization schemes are able to find a different shape

parameter per node, we found that the values were similar and that a single value may be used. This

is an important result given the implications on scheme preparation time as a single ε minimization

is required.

The next step is to check whether the proposed scheme works for a LRBF scheme. Similar to the

previous analysis, f1 is used to obtain optimal shape parameters from its matrix condition number,

gradients and laplacian. We start with an LRBF that uses a stencil size of 50 nodes. Figure 3.4

shows the approximation errors for ∇f2 and ∇2f2. Differential operators are approximated

following direct and quadrature methods.

Results in Fig. 3.4 indicate that the LRBF scheme for f2 is able to provide good approximations

from the f1 shape parameter optimization. Similar to the global interpolation, the condition

number is unable to provide acceptable approximations. We then conclude that previous methods,

in two-dimensional domains, are not suitable for 3D. The second important conclusion is that the

differential quadrature scheme results in poor approximation errors, despite the shape parameter

optimization. Note that the best approximation to ∇f2 is achieved when ∇f1 is used to find the
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Figure 3.4. Interpolation errors from a LRBF using a MQ basis: (a) ∇f2 and (b) ∇2f2. The function is
approximated in a sphere using randomly distributed nodes and the local stencil has 50 nodes.
The MQ shape parameter is obtained from the f1 matrix condition number, gradients and
laplacian.

optimum shape parameter. Accordingly, the best approximation to ∇2f2 is achieved when ∇2f1

is used. However, the best overall interpolation, i.e.when both operators are needed, is given by

the ∇2f1 optimization. Recall that function interpolation errors were always order 10−11.

Similar results were observed in cubic domains and for uniform node distributions. We do not

include these results due to space restrictions. In addition, a consistency check was performed

where f2 was used to optimize the shape parameter and f1, ∇f1 and ∇2f1 were interpolated. The

results were also equivalent.

The followup analysis is how the LRBF scheme is affected by the number of neighbors or stencil

size. Figure 3.5 shows the interpolation errors in ∇f2 and ∇2f2 as a function of the stencil size.

Optimum shape parameters are obtained from the f1 condition matrix, gradient and laplacian.

Differential operators are approximated following direct and quadrature methods. In general,

errors decrease as the stencil increases in size. The quadrature method is still unable to provide

acceptable solutions. The proposed scheme, where the shape parameters are obtained from the

differential operators, provide the best solution. Recall that as the stencil increases, the size of the
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Figure 3.5. Interpolation errors from a local RBF using a MQ basis: (a) ∇f2 and (b) ∇2f2. The function
is approximated in a sphere using randomly distributed nodes and the total number of nodes is
3,000. The MQ shape parameter is obtained from the f1 matrix condition number, gradients
and laplacian.

linear systems q × q also increases, thereby affecting the computational efficiency of the localized

method.

Results in Figs. 3.2 and 3.4 may suggest that optimum shape parameter values are a function of

the geometry, node distribution and node density. We believe that this conclusion should be taken

carefully. We studied multiple analytical functions (polynomials, exponential, trigonometrical) and

the results were similar to those presented here. For interpolation schemes, it is promising to

know that an analytical function may be used to“learn”the localized parameters according to the

geometry and node distribution. This is extremely important when using RBF to interpolate and

approximate functions from scattered data [163–165].

A 4-cyano-4’-pentylbiphenyl (5CB) LC is confined in a spherical droplet of radius R = 500 nm.

For 5CB, A = 6×105 J/m3, L1 = 6×10−12 N and γ = 1×10−2 Pa·s. The time derivative in the

GL relaxation was integrated following a semi-implicit Euler scheme, where non-linear terms were

treated explicitly. Global and localized RBF schemes are used using TPS-4 and MQ, respectively.

A typical GL relaxation requires time integrations over 106 time steps.
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The exercise is to perform GL relaxations, as introduced in section 2.3.1, with a global RBF

scheme for homeotropic and planar droplets, where the anchoring strength W is changed. Then,

a global RBF interpolation is used to obtain optimum shape parameters, which are used in an

LRBF scheme. The final free energy densities and LC phases should be identical at the end of

the simulations. During the LRBF minimization, the shape parameters were re-calculated, from a

global interpolation, to verify and check the consistency of the relaxation dynamics. As a general

trend, a single shape parameter optimization was required at the beginning of the local simulations.

Typical computational times for the global GL relaxations were 90 hours for a 5,000 nodes, while

for the LRBF relaxations were 10 hours.

Figure 3.6 shows the free energy densities and the total free energy for homeotropic and planar

droplets as a function of the anchoring strength W . These free energies are calculated with

the LRBF. The free energy minimization provides a good test model local optimization scheme.

Landau and surface densities contain tensor powers, while the elastic densities are defined from

tensor gradients. In addition, after applying the Volterra derivatives, during the GL relaxation,

the elastic density results in a Laplacian operator. Therefore, the method of choice for the shape

parameter optimization was the tensor laplacian from the global RBF. The results in Fig. 3.6 are

in qualitative agreement with experimental and theoretical observations of phases present in liquid

crystal droplets under different conditions [166, 167, 34, 142, 168, 60]. The relative error, using

the global as the standard value, was order 10−3 (0.1%) and it was independent of W .

Figure 3.7 shows representative final liquid crystalline phases for homeotropic and planar droplets.

All simulations started from a random-isotropic phase. After the GL relaxation, the LC undergoes

radial and bipolar phases for homeotropic and planar anchoring, respectively. In the figure, the

director field, n, and iso-surfaces for low scalar order parameter, S, are illustrated. These contours

represent the regions where defects, n discontinuities, are located. The radial configuration, in

Figure 3.7 (a) and (b), is distinguished by a radial orientation of the director vector and a defect

at the center of the droplet. The size and location of the ring defect depends on the anchoring

strength W . The bipolar configuration, shown in Figure 3.7 (c) and (d), is characterized by the

alignment of the director field along two opposite poles, where two defects are located.
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Figure 3.6. LC free energy as a function of the anchoring strength for homeotropic and planar droplets with
R = 500 nm: (a) Landau energy, (b) elastic energy, (c) total energy and (d) surface energy.

The computational time and memory are decreased considerably in the LRBF scheme. We

performed additional tests where the global mesh was kept constant, while the spatial resolution

was increased in the LRBF. The mesh ratio were 1:2, 1:3 and 1:5, where the biggest local system

had 25,000 nodes. We found that approximation errors were in the same order of magnitude, while

local resolution and time stability was improved.
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(a) (b) (c)

(d) (e) (f)

Figure 3.7. Liquid crystalline phases within homeotropic and planar droplets of size R = 500 nm. Radial
phases with (a) W = 3.226 × 10−2 J/m2 and (b) W = 3.226 × 10−4 J/m2. Bipolar phases
with (d) W = 3.226 × 10−2 J/m2, and (e) W = 3.226 × 10−4 J/m2. The red iso-surfaces
represent regions where the escalar order parameter is low: S = 0.4. Surface contours (c)
and (f) represent the alignment of the surface orientations with respect an average normal
direction. Red colors represent a normal perpendicular to the average direction, while blue is for
a normal parallel to the average direction. The total number of nodes was 5,000 with a random
distribution; the stencil size was 50.
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