
Chapter 4

Chiral nematics

confined in spheroids

The results presented in this chapter are to be submitted as a paper to Soft Matter under the

title “Hybridization and stability of blue phases via geometrical frustration”.

Blue phases consist in a highly chiral liquid crystal that forms networks of defect lines spontaneously,

often with some cubic symmetry [169]. The applicability of liquid crystals ranges from low energy

displays [15] to optical detection devices [27, 34, 35] and most recently the development of photonic

crystals [170, 10, 171, 85]. Blue phases are attractive because of their fast response to external

stimuli [172, 173]. However, their stability is subject to small changes of temperature which has

proven to be a challenge for technological applications. Efforts towards their stabilization focus

mainly on doping nematic phases [51–58] but its optimization remains to be an open problem.

It is possible to generate a new family of defect configurations by geometrical frustration,

this is creating a competition between the surface and elastic free energy [174]. When

confined in channels, cholesteric liquid crystals form structures similar to skyrmions and patterns

on the surface [175–177]; in droplets it is possible to reproduce the order of BPs or take

advantage of the intricate topology of chiral nematics and form knots to braid nanoparticles

[178, 179, 87, 180–182, 86, 183].

A phase diagram for micron size droplets of chiral LCs has been reported [182] showing an ample

variety of configurations like twist cylinder (TC), radial spherical structure (RSS), blue phase I
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(BPI) and blue phase II (BPII). Some regions of the phase diagram are in agreement with reports

from bulk systems [184, 185]. The stability of each region was determined by comparing the total

free energy of different Ginzburg–Landau relaxations of ansatz configurations.

From molecular simulations it is known that a freely suspended droplet morphs to prolate shape

domains, a deformation caused by the shape of the molecules[186]. The formation of non-spherical

droplets is also known for lyotropic liquid crystals [187–190]. The anisotropy of these geometries

induces chirality with a certain range of stability. Mechanical deformation of BPI has been reported

in order to tune optical response through an applied strain [17, 191], providing a different avenue for

the fabrication of low-voltage electro-optic devices. By observing results of the phases in different

geometries and the effect of strain in BP, we endeavor to ellucidate the effect of curvature in

confined LCs with different chiralities. Is it possible to stabilize phases by means of physical

constrains instead of chemical alteration of the material?

To achieve this, three different types of spheroids were set: oblates, spheres, and prolates. A

droplet of 500 nm radius was set as the base geometry, and the dimensions were modified to

obtain isochoric domains with different aspect ratios ϕ = c/a, being c and a the lengths of the

semi-principal axes aligned with the z and x Cartesian axes respectively. For ϕ < 1 the geometries

are called oblates, and for ϕ > 1 they are called prolates. The case of a sphere is reproduced by

setting ϕ = 1. Additionally, for all geometries the cross section parallel to the xy plane is a perfect

circle with radius R. The three types of geometries are illustrated in figure 4.1.

The thermodynamic model that was used for this set of simulation follows the descriptions

introduced in chapter 2, and the equilibrium configurations were found by employing a theoretically

informed Monte Carlo method presented in section 2.3.2 with a FEM implementation for the

geometry discretization in section 2.2.2.

The next section is dedicated to the analysis of the results which is divided into the free energy

perspective of the simulations, phase diagrams for the different geometries, and a section for

additional details of confined chiral nematics that should be highlighted.
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Figure 4.1. Schematic of the types of geometries. (Left) Oblate spheroid, ϕ < 1. The insert shows an
schematic of the behavior of a chiral nematic, where p0 is the cholesteric pitch and n is the
mean molecular orientation or director vector. (Center) Sphere, ϕ = 1. The insert shows the
planar alignment of the molecules at the surface. (Right) Prolate spheroid, ϕ > 1. The aspect
ratio ϕ is defined by the lengths c and a which are aligned with the Cartesian directions z and
y. The cartoons next to each spheroid will be used throughout this chapter to represent the
geometry.

4.1 Results

The chiral liquid crystal was modelled with parameters of nematic coherence length ξN =√
L1/A = 10 nm, and splay elastic constant k11 = 16 pN. The systems were confined with strong

(W = 1 × 10−3J/m2), moderate (W = 1 × 10−4J/m2), and weak (W = 1 × 10−5J/m2)

anchoring strength. The imposed molecular orientation at the surface is planar degenerate.

The chirality is controlled with the adimensional parameter N = 4R/p0, indicating the number

of π-turns the director makes along a distance R. In order to build consistent phase diagrams

for all geometries, we calculate the pitch necessary to keep N constant as ϕ varies. The phase

diagrams are built in terms of the inverse reduced temperature τ = 9 (3− U) /U and the chirality

parameter N that spans from low chirality (N ≤ 2) to high chirality (N ≥ 3).

We start this discussion by studying the changes in the three contributions of the free energy for

a scenario with strong anchoring conditions and at a fixed temperature, see figures 4.2–4.4. The

dominance of chirality and its consequences in the final configuration of the system is evident from

the free energies. Then, from the complete set of results we are able to build phase diagrams

for the three families of geometries and analyze how curvature effects and anchoring conditions
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modify stability regions and characteristics of the equilibrium configurations, see figures 4.5–4.7.

At the end, we highlight three phenomena that occur on specific regions of the phase diagram

with an special interest on the adaptation of blue phases as ϕ changes.

4.1.1 Free energy analysis
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Figure 4.2. Total free energy in function of the aspect ratio, ϕ, for strong anchoring W = 1× 10−3J/m2

and U = 2.9. Different markers indicate the chirality through the parameter N . The cartoons
in the top of the figure indicate the type of spheroid.

Figure 4.2 shows the total free energy for different chiralities and aspect ratios. As chirality

increases, the associated elastic term dominates over the other contributions resulting in a

monotonic decrescent tendency. It is important to note that the surface of the tactoids is rigid and

there is no possible deformation of the geometry beyond that established by ϕ. The minimum of

the total free energy is not necessarily reached by increasing ϕ, as apparently happens in figure 4.2.

Recall that for the same value of N , prolates have a smaller pitch than an oblate, and for N > 3

we expect to observe blue phases. In those cases, a change in the free energy is interpreted as a

drastic change in the nature of the defect network as we will show in the phase diagrams. To study

the complete effect of curvature and chirality, we separate each contribution of the free energy.

Figure 4.3 shows the Landau–de Gennes free energy and surface free energy. These two

contributions follow the same behavior as chirality and ϕ increase. The monotonic behavior

of the bulk free energy as chirality increases (purple arrow in figure 4.3) is a consequence of the

formation of defects. Note that for all cases with N < 2, where pitch values vary between 850 nm
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and 6 µm, this component of the free energy is constant. The systems exhibit a cholesteric

configuration identified by the continuous twist of the director field so the distribution of the

scalar order parameter in the bulk is uniform. For highly chiral systems, the defect density increases

dramatically and so the change in the local nematic order is more abrupt. The effect of ϕ (blue

arrow in figure 4.3) translates to an increase in the dimensions in the z-direction so it fits more

nematic layers, thus increasing the Landau–de Gennes energy.

For the surface free energy, see figure 4.3, the only defects for low chirality are two surface boojums

and are present in all geometries. For shorter pitch, the networks of disclination lines are distributed

throughout the bulk and touch the surface forming a Schlieren-like texture or patterns composed

of various λ−1/2 and λ+1 rotations of the director field. The surface area is minimized when ϕ = 1,

as shown in the insert, but although the oblate has the maximum surface area it also shows the

largest patterns.
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Figure 4.3. (Top) Landau–de Gennes free energy and (Bottom) surface free energy in function of the aspect
ratio, ϕ, for strong anchoring W = 1× 10−3J/m2 and U = 2.9. The insert shows the surface
area for different ϕ and constant volume.

The total elastic free energy and the gradients of the chiral term are shown in figure 4.4. The

decrescent character of this contribution is caused by the dominance of the chiral term led by the

elastic constant L5. The elastic constant L5 is directly proportional to the inverse pitch q0, so

smaller pitch values mean a greater energetic penalty for twist deformation making the chiral term

more dominant in prolates than oblates.
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For each curve of N , we observe a plateau in the gradients of the chiral term in the bottom of

figure 4.4. By removing the changing value of p0 we note there is a cutoff aspect ratio for each

chirality, indicating that the final configuration will not change beyond a certain value of ϕ. This

is more clear if we observe the curve for N = 0.5, which shows a TwBs phase or TC. For prolates,

there are two well–defined poles that help preserve the same bispherical characteristic of the phase

in a droplet. For high chirality, the plateau is not evidenced which indicates the characteristics of

the configuration change between cases.

In summary, for low chirality the equilibrium configuration is similar between geometries and the

only indicative of a preferred geometry is induced by a slight twist of the director field. As chirality

increases, prolates induce a more intricate network of defects which results in penalization on all

the contributions of the free energy.
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Figure 4.4. Elastic free energy in function of the aspect ratio, ϕ, for strong anchoring W = 1× 10−3J/m2

and U = 2.9.

Now that the phenomenology of the free energy has been described, we proceed to present the

effects that different interplays have on the equilibrium configurations of the tactoids. First, phase

diagrams for the three types of geometries as the anchoring is weakened show how morphologies are

transformed or suppressed. In the alternate geometries, some phases persist or rearrenge expanding

the family of possible configurations. There are some special cases that we shall examine in more

detail at the end of this section.
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4.1.2 Phase diagram: Droplet

The phase diagram for a ϕ = 1 geometry with strong anchoring conditions is shown in figure 4.5A.

In this diagram we can observe two families of phases: one dictated by the surface ordering, and

other dictated by the bulk. When the surface dominates, the phases are Bipolar (B), Twisted

Bipolar (TwBs), and Radial Spherical Structure (RSS). The blue phases (BPI and BPII) are

configurations where the bulk dominates over the surface and defect structures within the droplet

are present.

For non-chiral materials, the formation of a bipolar phase is predicted and characterized by the

formation of two surface boojums connected by symmetrical director field lines. If chirality

increases, the boojums are preserved in opposite poles as the director field twists inside the droplet

in a helical fashion; this phase is called Twisted Bipolar (TwBs). For low temperatures (τ < 0),

the phase is somehow frozen and the two surface defects are preserved. However, the boojums

attract each other to satisfy the twisting of the director field so they are not located in opposite

poles. Eventually the two boojums combine in one single surface defect that ties a knot defect in

the bulk following a Frank-Prize like structure.

The bulk-dominated phases are present at high temperatures (τ > 0) and high chirality regions.

The structures are characterized by the formation of a network of disclination lines. When the

systems are not confined, the network follows a cubic symmetry and are reported in the literature

as Blue Phase II (BPII) with a O2 symmetry, and Blue Phase I (BPI) with O8 symmetry. For

confined phases the periodicity of the structure is interrupted, and specifically for curved surfaces

the defect lines bend and deform the shape of each cell. We differentiate the blue phases as BPII

if the defect lines merge in the center of the cell (blue higlights in (e)) or BPI if such defects avoid

each other (green lines in (f)). Although the defects are highly bent, the surface structure forms a

regular hexagonal pattern composed of an array of λ−1/2 and λ+1 disclinations. These defects are

typical of cholesteric phases where there is no abrupt change in the molecular orientations. The

hexagons are better defined for a narrow interval of temperatures that coincide with the stability

region of the BPII. As the temperature is lowered, the pattern presents more red regions where

molecules satisfy the anchoring conditions.
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