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Abstract
This thesis aims to study deep connections between statistical robustness and machine
learning techniques, in particular, the relationship between some particular kernel (the
Gaussian kernel) and the robustness of kernel-based learning methods that use it. This
thesis also presented that estimating the mean in the feature space with the RBF kernel, is
like doing robust estimation of the mean in the data space with the Welsch M-estimator.
Based on these ideas, new robust kernel to machine learning algorithms are designed
and implemented in the current thesis: Tukey’s, Andrews’ and Huber’s robust kernels
which each one corresponding to Tukey’s, Andrews’ and Huber’s M-robust estimator,
respectively. On the one hand, kernel-based algorithms are an important tool which is
widely applied to different machine learning and information retrieval problems including:
clustering, latent topic analysis, recommender systems, image annotation, and content-
based image retrieval, amongst others. Robustness is the ability of a statistical estimation
method or machine learning method to deal with noise and outliers. There is a strong
theory of robustness in statistics; however, it receives little attention in machine learning.
A systematic evaluation is performed in order to evaluate the robustness of kernel-based
algorithms in clustering showing that some robust kernels including Tukey’s and Andrews’
robust kernels perform on par to state-of-the-art algorithms.

Keywords: Machine Learning, Dimensionality Reduction, Unsupervised Learning,
Kernel Learning Approach, Robust Statistics, Welsch Estimator





xi

Resumen

Esta tesis apunta a mostrar la profunda relación que existe entre robustez estadística
y técnicas de aprendizaje de maquina, en particular, la relación entre algunos tipos de
kernels (kernel Gausiano) y la robustez de los métodos basados en kernels. Esta tesis tam-
bién presenta que la estimación de la media en el espacio de características con el kernel
rbf, es como hacer estimación de la media en el espacio de los datos con el m-estimador
de Welsch. Basado en las ideas anteriores, un conjunto de nuevos kernel robustos son
propuestos y diseñdos: Tukey, Andrews, y Huber kernels robustos correspondientes a los
m-estimadores de Tukey, Andrews y Huber respectivamente. Por un lado, los algorit-
mos basados en kernel es una importante herramienta aplicada en diferentes problemas
de aprendizaje automático y recuperación de información, incluyendo: el agrupamiento,
análisis de tema latente, sistemas de recomendación, anotación de imágenes, recuperación
de informacion, entre otros. La robustez es la capacidad de un método o procedimiento
de estimación aprendizaje estadístico automatico para lidiar con el ruido y los valores
atípicos. Hay una fuerte teoría de robustez en estadística, sin embargo, han recibido
poca atención en aprendizaje de máquina. Una evaluación sistemática se realiza con el
fin de evaluar la robustez de los algoritmos basados en kernel en tareas de agrupación
mostrando que algunos kernels robustos incluyendo los kernels de Tukey y de Andrews se
desempeñan a la par de los algoritmos del estado del arte.

Palabras clave: Aprendizaje de máquina, Reducción de la dimensionalidad, apren-
dizaje no-supervisado, aprendizaje con métodos de Kernel, estadística robusta, es-
timador de Welsch.
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Chapter 1

Introduction

Producing and storing a bunch of data is now easier with the recent development of
computers. Often, when we get a new data set, we cannot be certain that every sample was
saved with the same conditions. For example, some of the data points can be generated
by different noise errors like rounding off, changing a measurement system, images where
some pixels are occluded because of a defect in the lens of a camera, blurred pictures also
given by a sudden movement before obstruction, images with different illuminations and
so forth. Those kinds of errors bias the estimation of the parameter model. This means
that when we try to estimate (for example) several clusters in a data set, if we contaminate
it with a big point compared to the rest of the points, we will get a cluster that would try
to describe the contaminated point instead of the whole data. Nowadays, almost every
device produces and records several data because of this without proper algorithms that
build meaningful information, we will probably not be able to acquire new information
and find new patterns like clusters.

Robustness is a fundamental issue for all statistical analyses; in fact it might
be argued that robustness is the subject of statistics.

J.B.Kadane (1984)

Robust statistics is a new branch of statistics that deals with atypical observation called
outliers, these outliers are well separated from the vast majority of data. In classic
estimation, estimation of the mean, standard deviation and correlation could be influenced
by these outliers doing estimation fail to a provide good fit. Even a single point could
bias the estimation. Different approaches are developed in robust statistics to deal with
atypical observations, some of them rely on MLE (Maximum Likelihood Estimators),
for instance, M-estimators, order statistics such as L-estimators, and, test ranks such as
R-estimators. There are several methods in robust statistics that get better asymptotic
results when compared to classic methods, i.e. they converge to a correct result when the
sample grows, nevertheless, recent studies with computer simulation shows that not all
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methods could be used when the sample is small. Several assumptions are made in classic
statistics, including, for instance, the observations are randomly selected from a normal
distribution; when comparing groups of data, classic methods assume that groups have
the same variance even when the mean is different. Recent journal articles show that
classic statistics methods have less power compared to robust statistics methods [2] [3].
A probability distribution that comes from real phenomenon are generally highly skewed,
i.e. they have bigger tails and the samples often have outliers (unusually large measures
among sample observations). Bigger tails and outliers are hard problems because they
can grow the standard error of the parameter estimation, obtaining relative less power of
the estimation when all the groups are compared. For instance, when mean estimator is
compared to the median estimator, it can be observed that mean estimator is biased only
with one infinite point, in contrast to the median estimator, where more than a half of
the points are needed in order to bias the estimator. In this case, we can say that the
median has a bounded influence curve. In general, robust statistics deals with estimators
that have a bounded or asymptotically bounded influence curve.
The kernel methodology is a set of algorithms used in pattern recognition and machine
learning and their main task is to find patterns like clusters, principal components analysis,
correlations or classification in a data samples. Informally, in Machine Learning the kernel
function is regarded as a similarity function, where after computing the inner product
among data samples a number is obtained that measures how similar two different samples
are, but with the constraint that the produces matrix need to be positive semi-definite, for
further details see 2.3.1. Where a relationship that is a non-linear in first sight, is a linear
relationship in the features or inner product space. This kind of kernels has been studied
in different situations and was the bases that support vector machines to become one of
the favorite techniques to find patterns and classify them. Additionally, the methods of
kernels are one of the most important approaches to deal with unstructured data such as
trees, graphs, and text [1].

1.1 Problem Definition

Data-driven unsupervised learning is a paradigm that has been gaining the biggest mo-
mentum and establishing itself as a critical component of scientific discovery in domains
ranging from astrophysics to social sciences and computational journalism. It manifests
itself, in many forms, through modeling, machine learning, data mining, pattern recog-
nition, data analytics, anomaly detection, and visualization. Because this paradigm is
fueled by real data as a source of discovery, and because real data is inherently noisy and
imperfect, the robustness of the techniques employed within this paradigm is of paramount
importance.
The general problem addressed by this thesis is to evaluate the robustness of kernel-based
algorithms, and the design of a new robust kernel to non-supervised learning algorithms,
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that can deal with noise and outliers. Robustness, in this context, means that the tech-
niques should be affected by noise as little as possible, so that their results do not de-
teriorate with added contamination. Robustness has been studied mainly in statistical
estimation (e.g. the median is more robust than the mean) and various robust extensions
of the Maximum Likelihood Estimation (MLE) for Gaussian and other known distribu-
tions, such as the ε-contamination model, M-estimation, and robust clustering. Robust
statistics has been used in the machine learning field almost for ten years. However, as
far as we are concerned, none of these approaches showed connections among methods of
kernels and robust statistics. Thus, a theoretical analysis of the robust behavior of differ-
ent kernels is needed. A satisfactory solution to this general challenge requires answering
some particular research questions:

• What does a kernel robust do?

• Is it possible to develop a new kernel approach that behaves in a robust way?

This thesis presents a unified view of distinct areas that have had an immense impact
on data analysis and machine learning, and identify those methods that, although not
conceived to be robust, can be shown to possess some naturally built-in robustness mech-
anisms. This work seeks to achieve a more profound understanding of the robustness of
those methods that do have some robustness. Thus, our work results in a deeper un-
derstanding of the mechanisms of robustness in several crucial areas of machine learning.
All critical applications with broad impact on society (such as Information Retrieval, Vi-
sualization, Personalization, Anomaly Detection, etc) that benefit from these techniques
will naturally benefit from this deeper understanding. All the techniques and software
developed are published and made available to the public.
This thesis present (1) a unified view between distinct areas (robust estimation and kernel-
based clustering) that have had an immense impact on data analysis and machine learning
and (2) methods which, although not conceived to be robust, can be shown to have some
classical statistical robustness mechanisms naturally built-in. This thesis tries to fill this
gap by asking the question as to whether these methods are robust, and what are the
limits on their robustness. It follows rigorous standards and methodologies of a well-
established area, Robust Statistics has pioneered the study of robust estimation, yet to
date it has not intermingled much with the machine learning methods to be studied.

1.2 Objectives

The main objective of this thesis is to perform a systematic evaluation of the robustness
of some unsupervised learning algorithms based on kernels. To achieve this objective, the
work has been divided into the following specific objectives:
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• To perform a theoretical analysis of robust estimation based on a feature space
induced by a kernel.

• To propose new kernels based on robust estimators.

• To perform a systematic quantitative evaluation of the impact of using robust kernel
estimation for unsupervised learning.

1.3 Results and Contributions

The results and contributions of this work can be summarized as follows:

• This thesis presents a formal proof that doing mean estimation in the feature space
with some kinds of kernel is like doing robust mean estimation in the data space,
which can be found in chapter 3. The minimum distance among data points and the
mean in the feature space is approximate without explicitly calculate the mean in
the feature space (µ = 1

n

∑n
i=1 Φ(di) ). This new approximate optimization function

only depends on mapped data points in the feature space.

• This thesis presents a formal proof that when performing mean estimation with the
Gaussian kernel in the feature space is like doing robust mean estimation with the
robust Welsch’s estimator in the data space, which can be found in chapter 3.

• The definition of three new robust kernels is proposed in chapter 5. The construction
of these new kernels uses the definition of approximate pre-image to shows their
relationship with robust estimators like Huber’s, Tukey’s and Andrews’ estimators.

Most of the code is available in web repositories:

• Software for this thesis is available in:

https://bitbucket.org/jdbermeol/semantic_methods_toolkit/src
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1.4 Document Structure

The present thesis is divided into 7 chapters. Chapter 1 presents the problem statement,
objectives, results and contributions, and document structure. Chapter 2 presents a brief
review of the state-of-the-art divided into four parts; robust statistical estimator, cluster-
ing, kernels, and, robust statistics and robustness in unsupervised techniques. Chapter
3 presents a formal proof that doing mean estimation in the feature space with Gaus-
sian kernel is like doing robust mean estimation with Welsch M-estimator in the data
space. Chapter 4 presents two experiments where the Gaussian kernel is used in order
to show the advantage of using a robust kernel in clustering. Chapter 5 define three new
robust kernels with the ideas presented in chapter 3. Chapter 6 shows in an experiment
a comparison among several state-of-the-art algorithms and the new kernels presented in
chapter 3 and 5. Finally, Chapter 7 gives some concluding remarks and future work.
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Chapter 2

Background and Related Work

2.1 Robust Statistical Estimators

Robust statistics has recently emerged as a family of theories and techniques for estimat-
ing the parameters of a parametric model while dealing with deviations from idealized
assumptions [4, 5, 6, 7]. Examples of deviations include contamination of data by gross
errors, rounding and grouping errors, and departure from an assumed sample distribution.
Gross errors or outliers are data severely deviating from the pattern set by the majority
of the data. This type of error usually occurs due to mistakes in copying or computation.
They can also be due to part of the data not fitting the same model, as in the case of
data with multiple clusters. Gross errors are often the most dangerous type of errors. In
fact, a single outlier can completely spoil the Least Squares estimate, causing it to break
down. Rounding and grouping errors result from the inherent inaccuracy in the collection
and recording of data which is usually rounded, grouped, or even coarsely classified. De-
parture from an assumed model means that real data can deviate from the often assumed
normal distribution. Departure from the normal distribution can manifest itself in many
ways such as in the form of skewed (asymmetric) or longer tailed distributions. The most
common and practical robust estimators are M and W-estimators. Other estimators in-
clude L, Least Trimmed Squares, and Reweighted Least Squares estimators. Below, we
review only the first two estimators [6, 8].

2.1.1 M-estimators

The ordinary Least Squares (LS) method to estimate parameters is not robust because
its objective function,

∑N
j=1 d

2
j , increases indefinitely with the residuals dj between the

jth data point and the estimated fit, with N being the total number of data points in a
data set. Hence, extreme outliers with arbitrarily large residuals can have an infinitely
large influence on the resulting estimate. M-estimators [5] attempt to limit the influence of
outliers by replacing the square of the residuals with a less rapidly increasing loss function
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of the data value, x, and parameter estimate, t, ρ (x; t). The M-estimate, T (x1, · · · , xN)

for the function ρ and the sample x1, · · · , xN , is the value that minimizes the following
objective:

min
t
{J =

N∑
j=1

ρ (xj; t)}. (2.1.1)

The optimal parameter, T , is determined by solving:

∂J

∂t
=

N∑
j=1

ψ (xj; t) = 0 (2.1.2)

where, except for a multiplicative constant,

ψ (xj; t) =
∂ρ (xj; t)

∂t
. (2.1.3)

When the M-estimator is equivariant, i. e., T (x1 + a, · · · , xN + a) = T (x1, · · · , xN) + a

for any real constant a, we can write ψ and ρ in terms of the residuals x − t. Also, in
general, an auxiliary scale estimate, S is used to obtain the scaled residuals r = x−t

S
.

Hence, we can write:

ψ (r) = ψ

(
x− t
S

)
= ψ (x; t) ,

and
ρ (r) = ρ

(
x− t
S

)
= ρ (x; t) .

The ρ−functions for some familiar M-estimators are listed in Table 2-1. Note that LS
can be considered an M-estimator, even though it is not a robust M-estimator. As seen
in this table, M-estimators rely on both an accurate estimate of scale and a fixed tuning
constant, c. Most M-estimators use a multiple of the Median of Absolute Deviations
(MAD) as a scale estimate which implicitly assumes that the noise contamination rate is
50%. MAD is defined as follows:

MAD(xi) = medi{|xi −medj(xj)|}

where medi is the median value. The most common scale estimate used is 1.483×MAD

where the 1.483 factor adjusts the scale for maximum efficiency when the data samples
come from a Gaussian distribution.

2.1.2 W-estimators

W-estimators [3] represent an alternative form of M-estimators. Each W-estimator has a
characteristic weight function, w(.) that represents the importance of each sample in its
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Figure 2-1: Different examples of robust M-contrast functions using c := 1: (a) Huber
contrast function for different k parameters, note that parameter k is chosen arbitrary
and modifying the weight of the residuals 2.1.1 , (b) Welsch contrast function 2.1.1,
(c) Andrews contrast function for different k parameters, note that a higher value of k
decrease the power of the residual in the estimation of ρ 2.1.1, (d) Tukey’s Bisqueare
contrast function for different k parameters 2.1.1.
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Table 2-1: Different familiar M-estimators with ρ-contrast function, ψ(r), w(r), scale
parameter k defines the breakpoint where the principal residual function is replaced with
a less rapidly increasing loss function, the range of r defines the range for residual r where
every residual function is defined, used scale is the most common value for the parameter
k .

Type ρ(r) ψ(r) w(r) Range used
of r scale

L2 (mean) 1
2
r2 r 1 IR none

L1 (median) |r| sgn(r) sgn(r)
r

IR none
Huber 1

2
r2 r 1 |r| ≤ k MAD

k|r| − 1
2
k2 k sgn(r) ksgn(r)

r
|r| > k

Cauchy c2

2
log
[
1 + ( r

c
)2
]

r
1+( r

c
)2

1
1+( r

c
)2

IR MAD

Welsch c2

2

[
1− exp(−( r

c
)2)
]

r exp(−( r
c
)2) exp(−( r

c
)2) IR MAD

Tukey’s 1
6

[
1− (1− r

c
)2
]3

r(1−
(
r
c

)2
)2

[
1−

(
r
c

)2
]2

|r| ≤ k MAD
Biweight 1

6
0 0 |r| > k

Andrews c
[
1− cos( r

c
)
]

sin( r
c
) |r| ≤ k MAD

2c 0 |r| > k

contribution to the estimation of T , which is related to the corresponding M-estimator as
follows:

ψ (r) = w (r) r. (2.1.4)

The optimal parameter is determined by solving:

N∑
j=1

w (rj) rj = 0, (2.1.5)

which is similar to the equations for a “weighted LS” regression problem. W-estimators
offer a convenient and simple iterative computational procedure for M-estimators, where
the W-estimator equations in the current iteration are solved by fixing the weight values,
w (rj), to those of the previous iteration. The resulting procedure is called the Iterative
Reweighted Least Squares (IRLS). The IRLS relies on an accurate and prefixed scale
estimate for the definition of its weights. The most common scale estimate used is 1.483×
MAD. The ρ, ψ, and w functions for some familiar M- and W-estimators are listed in
Table 2-1.

2.1.3 Resistance Properties of M-estimators

An estimator is resistant if a small number of gross errors or any number of small rounding
and grouping errors have only a limited effect on the resulting estimate [3]. As seen below,
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most of the resistance properties of an M-estimator can be inferred from the shape of its
Influence Curve.

The Influence Curve The Influence Curve (IC) tells us how an infinitesimal propor-
tion of contamination affects the estimate in large samples. Formally [3], the IC gives
a quantitative expression of the change in the estimate that results from perturbing the
samples’ underlying distribution, F , by a point mass at sample location x. For an esti-
mator given by the functional T (F ) and defined by the ψ function ψ(u), the IC at F0

is:
IC (x;F0, T ) = lim

ε→0

T [(1− ε)F0 + εδx]− T (F0)

ε
,

where δx is a point mass perturbation at x and F0 is the underlying or empirical distri-
bution. The IC can be shown to reduce to:

IC (x;F0, T ) =
S (F0)ψ

[
x−T (F0)
S(F0)

]
∫
ψ′
[
x−T (F0)
S(F0)

]
dF0(x)

where S (F ) is the auxiliary scale estimate. The IC can be further shown to be of the
form:

IC = (const)ψ(u). (2.1.6)

Hence, the shape of the IC depends only on the shape of the ψ function, not the data
distribution.
The Breakdown (BD) bound or point [5] is the largest possible fraction of observations
for which there is a bound on the change of the estimate when that fraction of the sample
is altered without restrictions. M-estimators of location with an odd ψ() function have a
BD bound close to 50%, provided that the auxiliary scale estimator has equal or better
BD bound [9].

Gross Error Sensitivity The Gross Error Sensitivity (g.e.s.) expresses asymptotically
the maximum effect a contaminated observation can have on the estimator. It is the
maximum absolute value of the IC. The asymptotic bias of an estimator, defined as the
maximum effect of the contamination of a given distribution with a proportion ε from an
outlying distribution, is given by ε.(g.e.s.). Unfortunately, it was reported in [3] that - in
general - poor g.e.s. corresponds to higher Gaussian efficiency, and vice versa.

Local Shift Sensitivity The local Shift Sensitivity (l.s.s.) measures the effect of the
removal of a mass ε at y and its reintroduction at x. Therefore, it measures the effect
of rounding and grouping errors on an estimator. For highest resistance, it is required
that the l.s.s. be bounded. For a continuous and differentiable IC, l.s.s. is given by the
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maximum absolute value of the slope of IC at any point. In [3], it was reported that - in
general - a lower (hence better) l.s.s. corresponds to higher Gaussian efficiency.

Winsor’s Principle Winsor’s principle [3] states that all distributions are normal in the
middle. Hence, the ψ−function of M-estimators should resemble the one that is optimal
for Gaussian data in the middle. Since the Maximum Likelihood estimate for Gaussian
data is the mean which has a linear ψ− function, it is desired that ψ(u) ≈ ku for small
|u|, where k is a nonzero constant. In general, a ψ− function that is linear in the middle
results in better efficiency at the Gaussian distribution.

2.2 Clustering

Clustering is the most important problem in non-supervised learning. In general, the goal
of a clustering algorithm is to find groups in a set of data samples. The groups found
are expected to be homogeneous, i.e. to contain similar samples. Depending on the type
of clustering algorithm, this could be accomplished in different ways. In this study, we
focus on a particular type of clustering algorithm which is based on the optimization of
an objective function.
One of the most popular clustering algorithms is k-means. The algorithm represents the
clusters by a set of centroids M = {m1, · · · ,mk} that minimizes the following function:

SSE = min
M

k∑
i=1

∑
x∈Ci

(x−mi)
2 (2.2.1)

where {C1, . . . , Ck} is a disjunct partition of the input data set X, such that X =
⋃k
i=1Ci.

The minimization is accomplished by an optimization process that iteratively reassigns
data points to clusters refining the centroid estimations.

2.2.1 Non-negative Matrix Factorization

The general problem of matrix factorization is to decompose matrix X into two matrix
factors A and B :

Xn×l = An×kBk×l (2.2.2)

This could be accomplished by different methods including singular value decomposi-
tion (SVD), non-negative matrix factorization (NMF), and probabilistic latent semantic
analysis, among others [10]. The factorization problem can be seen as a problem of opti-
mization:
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Algorithm 2.2 k-means Clustering
1: D = {d1, · · · , dn ⊆ X : input data set
2: 1 < m ∈ N : number of clusters
3: Initialize the set of centers Θ0 = {µ0

1, · · · , µ0
m}, µi ∈ F

4: l← 0
5: repeat
6: for all j ∈ {1, · · · ,m} : C l+1

j ← ∅
7: for all di ∈ D :
8: j ←arg minj

∥∥di − µlj∥∥ . point-cluster assignment
9: C l+1

j ← C l+1
j ∪ {di}

10: for all j ∈ {1, · · · ,m}:
11: µl+1

j ← 1
n

∑
di∈Cl+1

j
di. cluster centroid estimation

12: l← l + 1
13: until Θl = Θl−1

min
A,B

d(X,AB) (2.2.3)

where d(, ) is a distance or divergence function and the problem could have different types
of restrictions. For instance, if d(, ) is the Euclidean Distance and there are no restrictions,
the problem is solved by finding the SVD; if X, A and B are restricted to be positive,
then the problem is solved by NMF.
This type of factorization may be used to perform clustering. The input data points are
the columns of X (l n-dimensional data points). The columns of A correspond to the
coordinates of the centroids. The columns of B indicate to which cluster each sample
belongs, specifically if xj belongs to Ci, then Bi,j = 1, otherwise Bi,j = 0. With this
interpretation, the function in (2.2.1) is equivalent to the function in (2.2.3) with Euclidean
distance. An important advantage of this approach is that values in the matrix B are
not required to be binary; in fact, they can be continuous values. These values can be
interpreted as soft membership values of data samples to clusters, i.e. NMF can produce
a soft clustering of the input data [10].
NMF has been shown to be equivalent to other non-supervised learning methods such
as probabilistic latent semantic analysis and kernel k-means. Also, there are different
versions of NMF which impose new restrictions or weaken some of its restrictions. For
instance, semi-NMF allows negative values in matrices X and A in (2.2.3), convex-NMF
impose that A must be a combination of the data input, A = XW [11].
Let X=(x1,x2, · · · ,xn) be the input positive data matrix containing n samples as column
vectors, NMF attempts to factorize X as:

X+ ≈ F+G
T
+
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Algorithm 2.3 NMF Clustering
1: D = {d1, · · · , dn ⊆ X : input data set
2: 1 < m ∈ N : number of clusters
3: ε : reconstruction error
4: 1: Initialize W and G.
5: 2: l← 0
6: repeat
7: update Gkn ← Gkn

(FTX)kn
(FTFG)kn

8: updateFpk ← Fpk
(XGT )pk

(FGGT )pk

9: set Xcalculate = FGT

10: until ‖X −Xcalculate‖2 > ε

where positive symbols means X,F,G > 0 and X ∈ Rp×n, F ∈ Rp×k and G ∈ Rn×k.
Having said this, NMF solves the following optimization problem:

arg min
W,G
||X − FGT ||2F F,G ≥ 0

where || · ||F is the Frobenius norm and it is defined as ||A||F =
√∑m

i=1

∑n
j=1 |aij|2. This

problem is non-convex in both matrices F and G. If we set one then optimize the other,
the problem becomes convex. Lee and Seung propose the following multiplicative update
rules:

G′kn ← Gkn
(FTX)kn

(FTFG)kn
F ′pk ← Fpk

(XGT )pk
(FGGT )pk

2.2.2 Convex NMF

Convex nonnegative matrix factorization (Convex-NMF) method [11] was developed by
Ding and Li in Convex and Semi-Nonnegative Matrix Factorizations. The CNMF is also
a nonnegative matrix factorization method that attempts to find a subspace where the
data lies, but this time the basis vector F is restricted to the space spanned by X space.
This occurs because matrix F can be anything in space. There are no restrictions in the
factorization of X that we obtain, i.e. the elements of A that do not have any restrictions
and can be any value.

Xn×l ≈ An×kG
T
k×l (2.2.4)

The objective underlies the use of convex NMF is to restrict the values of A in such a way
as for the values of A to be a linear combination of points of X, that is to say:
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A = w1x1 + w2x2 + ...+ wnxn

Thus, we can define A as a weighted sum of certain data points. Therefore, it can be
observed that we can define CNMF as:

Xn×l ≈ Xn×lWl×kG
T
k×l (2.2.5)

It is worth noting that one of the interesting properties when doing this type of factoriza-
tion is that vectors W and G are sparse, i.e. the majority of the matrices have zeros. Upon
a revision of Chris Ding’s paper, it is found that the matrix G also captures information
with regard to the centroids wherein these data fall [11]. Ding performs optimization
in 2.2.5, based on an iterative rule algorithm, i.e. Ding leaves one of the variables as a
constant whilst optimizing the other. This process is repeated until Frobernius’ difference
between variable X and its approximation Xn×lWl×kG

T
k×l is less than a threshold.

||Xn×l −Xn×lWl×kG
T
k×l||2F < ε

Let X=(x1,x2, · · · ,xn) be the input positive data matrix containing n samples as column
vectors, CNMF attempts to factorize X as:

X± ≈ X±W+G
T
+

Where X ∈ Rp×n, F ∈ Rp×k and G ∈ Rn×k. Having said that, CNMF solve the following
optimization problem:

arg minW,G ||X −XWGT ||2F

We can solve this problem with the following update rules:

G′kn ← Gkn

√
[(XTX)+W ]ik+[GWT (XTX)−W ]ik
[(XTX)−W ]ik+[GWT (XTX)+W ]ik

W ′
pk ← Wpk

√
[(XTX)+G]ik+[(XTX)−WGTG]ik
[(XTX)−G]ik+[(XTX)+WGTG]ik

2.2.3 Projective NMF

Projective NMF [12] minimizes the reconstruction error of the original matrix accord-
ing to two possible measures of dissimilarity; Frobenius matrix norm and the modified
Kullback-Leibler distance. The Kullback-Leibler distance is defined as: DI(X||X̂) =∑

ij(Xijlog
Xij

X̂ij
−Xij + X̂ij).When the reconstruction error is minimized, two constraints

on the optimization are added; the matrix needs to be positive and at a low rank. In this
case, both measures are minimized using multiplicative rules [12].
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Algorithm 2.4 CNMF Clustering
1: D = {d1, · · · , dn ⊆ X : input data set
2: 1 < m ∈ N : number of clusters
3: ε : reconstruction error
4: 1: Initialize W and G.
5: l← 0
6: repeat
7: update Gkn ← Gkn

√
[(XTX)+W ]ik+[GWT (XTX)−W ]ik
[(XTX)−W ]ik+[GWT (XTX)+W ]ik

8: update Wpk ← Wpk

√
[(XTX)+G]ik+[(XTX)−WGTG]ik
[(XTX)−G]ik+[(XTX)+WGTG]ik

9: set Xcalculate = FGT

10: until ‖X −Xcalculate‖2 > ε

Let X=(x1,x2, · · · ,xn) be the input positive data matrix containing n samples as column
vectors, PNMF attempts to factor X as:

X+ ≈ W+W
T
+X

T

where positive symbols means W > 0 and X ∈ Rp×n and W ∈ Rp×k . Having said this,
PNMF solves the following optimization problem:

arg min
W,G
||X −WH||2F

s.t.W ≥ 0, H = W TX

Where || · ||F is the Frobenius norm. Zhirong Yang proposed the following multiplicative
update rules:

W ′
pn ← Wpn

(XXTW )pn
(WWTXXTW )pn

2.2.4 Orthogonal NMF (ONMF)

Orthogonal Nonnegative matrix factorization (ONMF) method [13] was developed by
Ding and Li in Orthogonal Nonnegative Matrix Tri-factorizations for Clustering. ONMF
is also a matrix factorization method that attempts to find a subspace where the data
lies, but this time the basis vector F and G are restricted to be orthogonal, i.e. F TF = I

and GTG = I. This occurs because the matrix F and G can be anything in the space in
general. With this restriction, we achieve (1) uniqueness from the solution and (2) the
interpretation of clustering. The problem is that doing the reconstruction matrix as FGT

makes the optimization very restricted and gets a poor matrix low-rank approximation
[13]. In order to solve this problem, a new parameter S is added to the optimization
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problem: FSGT , where this new parameter S absorbs the different scales of the matrices
F and G. The optimization problem is as follows:

arg min
W,G
||X − FSGT ||2F F,G ≥ 0

s.t.F TF = I,GTG = I

where X ∈ Rp×n, F ∈ Rp×k ,S ∈ Rk×l and G ∈ Rn×l. Ding and Li proposed the following
multiplicative update rules:

G′jk ← Gjk

√
(XTFS)jk

(GGTXTFS)jk

F ′ik ← Fik

√
(XGST )jk

(FFTXGST )jk

G′ik ← Gik

√
(FTXG)ik

(FTFSGTG)ik

2.2.5 Normalized Cuts (NCUT)

Normalized cuts (NCUT) [14] try to take an arbitrary set of data and represent them as
a weighted undirected graph G = (V, E), where each node represents a data point in the
feature space, and the edge is a function of similarity between data. With this graph,
we can partition the nodes into a disjoint set v = v1, v2, · · · , vn, where the measure of
similarity between each pair of nodes of one of this sets vi is high and the other is low
between nodes of two different sets vi, vj.
The degree of similarity between two sets can be calculated as the total weight of vertices
that have been removed. In graph theory, this is called the cut and it is defined as follows:

cut(A,B) =
∑

u∈A,v∈B

w(u, v)

Although it is an np-complete problem, an approximate discrete solution can be found
efficiently. When using the cut for clustering tasks, k-subgroups can be found that have
some dissimilarities between them. A problem with using the cut is that the measure
favors the creation of isolated groups of a single element, to counteract this unnatural
behavior, the normalized cut is used and it is defined as follows:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

where assoc(A, V ) =
∑

u∈A,t∈v w(u, t) is the total connection from the nodes in A to all
the nodes in the graph and assoc(B, V ) is similarly defined.



18 2 Background and Related Work

Algorithm 2.5 Normalized cuts
1: Given an image or image sequence, set up a weighted graph G(V,E) and set the weight

on the edge connecting two nodes to be a measure of the similarity between the two
nodes.

2: Solve (D −W )x = λDx for eigenvectors with the smallest eigenvalues.
3: Use the eigenvector with the second smallest eigenvalue to bipartition the graph.
4: Decide if the current partition should be subdivided and recursively repartition the

segmented parts if necessary.

Given a partition of nodes of a graph, V, into two sets A and let x be an N = |V | dimen-
sional indicator vector, xi = 1 if node i is in A and 1, otherwise. Let d(i) =

∑
j w(i, j) be

the total connection from node i to all other nodes. Let D be an N ×N diagonal matrix
with d on its diagonal called the adjacency matrix, W be an N × N symmetrical matrix
with W (i, j) = wij called the degree matrix and after some mathematical operations, the
optimization problems becomes as follows:

minxNcut(x) = miny
yT (D −W )y

yTDy

with the condition y(i) ∈ {1,−b} and yTD1 = 0. This optimization problem is minimized
by solving the generalized eigenvalue system [14],

(D −W )x = λDx

2.2.6 Nonnegative Spectral Cut (NSC)

The principal idea in a Nonnegative Spectral Cut (NSC) [15] is to impose a nonnegative
restriction in the optimization of a Normalized Cut:

maxHTDH=I,H≥0Tr(H
TWH)

where the following multiplicative update rules are used, in order to impose the nonneg-
ative restriction to the eigenvector:

Hij ← Hij

√
(WH)ij
(DHα)ij

The initialization is as follows: An approximate solution to the normalized cut problem can
be obtained by K-means clustering in an eigenspace embedding. It use such a clustering
to initialize H. Specifically, it is compute the K principal eigenvectors of D−1/2WD−1/2,
(2) normalize each embedded point to the unit sphere, and (3) perform K-means on the
normalized points. This gives H0. then initialize the update rule Eq. (2.2.6) with H0 +
0.2 and iterate until convergence [15].
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2.2.7 Left-Stochastic Matrix Factorization (LSD)

The principal idea in the left-stochastic matrix factorization (LSD) [16] is to produce a
probability matrix P ∈ Rn×k where each column i indicates a probability that each row
sample j belongs to the i cluster. This method deals with the similarity matrix that is
a more general matrix compared to the kernel matrix where the similarity matrix does
not need to be positive semi-definite (PSD) and it can be an indefinite kernel matrix. For
further details, see 2.3.1 and 2.3.5.
The optimization problem is given a similarity matrix K and the algorithm finds a prob-
ability matrix P ∗ that solves:

argminc∈R+,P≥0,PT 1k=1n||cK − P
TP ||2F

where c is given by c∗ =
||(MMT )−1M1n||22

k
and K = MTM is any decomposition of K [16].

The algorithms in order to solve the last equation is as follows:

Algorithm 2.6 Left-Stochastic Matrix Factorization (LSD)
1: Scale the similarity matrix K by c∗ given to produce K0 = c∗K.
2: Factor K0 = MTM , for some M ∈ Rk×n.
3: Rotate M to form Q ∈ Rk×n, whose column vectors all lie in the hyperplane that

contains the probability simplex.
4: Rotate Q about the vector û = 1k[1, ..., 1]T to form the left-stochastic solution P ∗ ,

whose column vectors all lie in the probability simplex.

2.3 Learning with Kernels

Learning with kernels is a strategy where it is desired to map the data to a feature space, so
that, in the new space, the patterns can be discovered as a linear relationship. The process
for mapping and finding new patterns can be done in two steps. The first step is the kernel
function, which defines the mapping implicitly. This mapping is defined according to the
type of data and the knowledge domain. The second step is the algorithm, which work
with any type of kernels (general purpose), and must be robust, statistically stable and
efficient.
In [1] the author proposes four key aspects as the main ingredients for finding patterns
with a kernel methodology, which are as follows:

1. Data items are embedded into a vector space called the feature space.

2. Linear relations are sought among the images of the data items in the feature space.

3. The algorithms are implemented in such a way that the coordinates of the embedded
points are not needed, only their pairwise inner product.
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Figure 2-2: . The stages involved in the application of kernel methods. First, we have a
data in a matrix form where each rows represents a sample. Second, we have the kernel
function that is a inner product among samples. Third, we have a kernel matrix that
must to be semi definitive positive in order to satisfies Mercer theorem’s2.3.1. Fourth, a
pattern algorithm use the kernel matrix as the input data in order to generate knowledge.
This figure was taken from [1].

4. The pairwise inner product products can be computed efficiently from the original
data items using a kernel function.

2.3.1 Kernels

Definition. A kernel is a function k that for all x, z ∈ X satisfies

k(x, z) =< Φ(x),Φ(z) >

where Φ is a mapping from X to an inner product or feature space F

Φ : x→ Φ(x) ∈ F

Kernel methodology emerges like an algorithmic procedure adapted to use only pairwise
inner products. The main idea behind this procedure is to use a learning algorithm that
work with any kernel and hence in any domain. The kernel component is data specific,
but can combined with different algorithms to solve the full range of tasks that we will
consider. In fig.2-2 shows the stages involved in the application of kernel methods. The
data is processed using a kernel function to create a kernel matrix. This kernel matrix is
used by a pattern analysis algorithm to produce a pattern function [1].

Theorem 2.3.1. Characterization of kernels. A function

k : X ×X → R
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which is either continuous or has a finite domain, can be decomposed

k(x, z) =< Φ(x),Φ(z) >

into a feature map Φ into a Hilbert space F applied to both its arguments followed by
the evaluation of the inner product in F if and only if it satisfies the finitely positive
semi-definite property

Definition 2.3.2. A gram matrix K is a real symmetric NxN matrix, and it is defined
as a positive semi-definite matrix if for any nonzero coefficient vector c = [c1, c2, . . . , cn],
its associated quadratic form is positive, i.e.

< f, f >=
N∑
i=1

N∑
j=1

αiαkk(xi, xj) = α′Kα ≥ 0

The semi-positive definite matrix guarantees the existence of a mapped feature space.
Semi-Positive definite kernels (sPDK) have some interesting properties, which make it
desirable for a variety of Machine Learning tasks. sPDK are symmetric given by the
inner product symmetric property:

k(i, j) =< Φ(x),Φ(y) >=< Φ(y),Φ(x) >= k(j, i)

Definition. The reproducing property of the kernel is defined as:

< f, k(x, ·) >=
N∑
i=1

αik(xi, x) = f(x)

Theorem. (Mercer) Let X be a compact subset of Rn. Suppose k is a continuous sym-
metric function such that the integral operator Tk : L2(X)→ L2(X)

(Tkf)(·) =

∫
X

k(·, x)f(x)dx

is positive, that is ∫
X

k(x, z)f(x)f(z)dxdz ≥ 0

for all f ∈ L2(X). Then we can expand k(x, z) in a uniformly convergent series in terms
of function Φ, satisfying < Φi,Φj >= δij

k(x, z) =
∞∑
j=1

Φj(x)Φj(z)
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New semi positive definite kernels (sPDK) can be constructed because they have some
interesting algebra properties. For instance, if k1and k2are two PDK, and c1and c2 are
two positive real numbers, then

c1k1(xi, xj) + c2k2(xi, xj) = k(xi, xj)

is a kernel. When we multiply two sPDK, the resulting kernel is a sPDK [17]:

k1(xi, xj)k2(xi, xj) = k(xi, xj)

Definition. An isotropic kernel is a kernel which depends only on the pairwise distance
of the data samples

k(xi, xj) = f(||xi − xj||)

where || · || is any suitable norm, usually the L2-norm. Intuitively, this means that the
direction of the deviation is not important. For instance, in a two dimensions spaces, a
change in variable x1 is equally important to a change in variable x2, which is of course
often a too strong assumption. Isotropic kernel are rotationally (and also translationally)
invariant, i.e. their level curves are cycles and they can be expressed as unitary variable
functions [18].

Definition. A radial basis function kernel (RBF Kernel) is defined as follows:

k(x, y) =< Φ(x),Φ(y) >= e
||x−y||
2σ2

where σ is a parameter [17]. This kernel is an isotropic kernel.
Many authors have modified existing algorithms and added the version with kernels.
One of such examples is the kernel version of k-mean, that is kernel-k-means. This new
approach is defined only on terms of inner products, using the kernel trick, i.e. the full
high dimensionality of the embedded map is not computed explicitly. Instead, we compute
only the inner product of pairs for samples [19,20].

2.3.2 Kernel K-means

Kernel k-means (KKM) is a generalization of the k-means clustering algorithm. Basically,
KKM performs k-means in a feature space implicitly defined by a kernel. Let Φ : X → F

be mapping from an input space X to a Hilbert space, called the feature space, F .
The dot product of X in F is calculated by a kernel function k : X × X → R, i.e.
k(x, y =< Φ(x),Φ(y) > for all x, y ∈ X. The KKM algorithms is as follows:
The most important characteristic of KKM is that it is possible to carry it out without
explicitly use the mapping Φ. This is done using the kernel trick:



2.3 Learning with Kernels 23

Algorithm 2.7 Kernel k-means Clustering
1: D = {d1, · · · , dn ⊆ X : input data set
2: 1 < m ∈ N : number of clusters
3: Initialize the set of centers Θ0 = {µ0

1, · · · , µ0
m}, µi ∈ F

4: l← 0
5: repeat
6: for all j ∈ {1, · · · ,m} : C l+1

j ← ∅
7: for all di ∈ D :
8: j ←arg minj

∥∥Φ(di)− µlj
∥∥ . point-cluster assignment

9: C l+1
j ← C l+1

j ∪ {di}
10: for all j ∈ {1, · · · ,m}:
11: µl+1

j ← 1
n

∑
di∈Cl+1

j
Φ(di). cluster centroid estimation

12: l← l + 1
13: until Θl = Θl−1

∥∥Φ(di)− µlj
∥∥2

=< Φ(di)− µlj,Φ(di)− µlj >
=< Φ(di),Φ(di) > + < µlj, µ

l
j > −2 < Φ(di), µ

l
j >

= k(di, di) +
1

|C l
j|2

∑
dp∈Clj

∑
dq∈Clj

k(dp, dq)−
2

|C l
j|
∑
dq∈Clj

k(di, dq)

The KKM algorithms attempts to solve the following optimization problem:

arg min
c

∑
Cj∈C

∑
di∈Cj

||Φ(di)− µj||2

where µj = 1
n

∑
di∈Cl+1

j
Φ(di)

2.3.3 Kernel-Convex NMF

Convex NMF can be generalized to utilize a function of Kernels, instead of just the
data, thereby gaining the possibility of conducting optimization within an area of great
dimensionality [11]. The first thing to be done is mapping the values of xi → φ(xi), where
φ(xi) is a non – linear function of xi. In this case, the factorization of 2.2.5 becomes:

φ(Xn×l) ≈ φ(Xn×l)Wl×kBk×l (2.3.1)

The interesting thing that happens as we conduct this non - linear transformation, is
that by performing all necessary changes it is found that target function minimization
optimization only depends on the kernel function < φ(X), φ(x) >, i.e.
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||φ(x)− φ(x)WB||2 = Tr(I −BTW T ) < φ(X), φ(x) > (I −BTW T )

Where Tr is the trace of the corresponding matrix, i.e.

Tr(A) = a11 + a22 + ...+ an (2.3.2)

2.3.4 Pre-image of RBF Kernel

The cluster centroids estimated by the kernel versions are in the feature space and corre-
spond to the points Cj = 1

n

∑
xi∈Cj Φ(xi). However, we are interested in the pre-image in

the original space of these centroids, i.e. points Ĉj such that Φ(Ĉj) = Cj. However, it is
possible that a exact pre-image may not even exist, so we look for the Ĉj that minimizes

the following objective function: minĈj

∥∥∥Ĉj − Cj∥∥∥2

. According to [21], the optimum Cj

can be found by iterating the following fixed-point formula:

Ĉt+1
j =

∑N
i=1 exp

(
−||Ĉtj−xi||)

s

)
xi∑N

i=1 exp

(
−||Ĉtj−xi||

s

) (2.3.3)

2.3.5 Indefinite Kernels and Reproducing Krein Spaces

Indefinite kernels are those kernels that do not satisfy Mercer’s theorem. Such a kernels
induce an associated functional spaces called Reproducing Kernel Krein Spaces (RKKS).
RKKS are a generalization of Reproducing Kernel Hilbert spaces. The key difference
between indefinite kernels and positive definite kernels is that the inner product among
samples could be either positive or negative such that the eigenvalues associated with the
kernel matrix M are a mix of positive and negative values, i.e. zMzT ≥ 0 for every non
zero column vector z [22].
First, we may define a positive inner product that is positive, if ∀f ∈ k we have < f, f >k≥
0 and a negative, if ∀f ∈ k we have < f, f >k≤ 0. An indefinite kernel is defined as a
kernel that is neither positive nor negative. Second, a Krein Spaces (K) is a spaces where
exist two Hilbert spaces H+ and H−spanning K such that:

• f can be decomposed into f = f+ − f− where f+ ∈ H+and f− ∈ H−

• ∀f, g ∈ K the inner product of < f, g >K can be decomposed in < f, g >K=<

f+, g+ >H+ − < f−, g− >H−

Third, the decomposition of a Krein Spaces into the Hilbert spaces defines an associated
Hilbert Space:
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K̄ = H+ ⊕H− =< f+, g+ >H+ + < f−, g− >H−

Now, we can define the Reproducing Kernel Krein spaces. Let K be a RKKS with
K = < f+, g+ >H+ − < f−, g− >H− then

1. H+ and H− are Reproducing Kernel Hilbert Spaces with kernels k+ and k−.

2. k = k+ − k−

2.4 Robust Statistics and Robustness in Unsupervised
Techniques

Many methods have been developed in order to robustify machine learning algorithms,
these methods are meant to improve learning when data is contaminated. Some of these
techniques have a deep formal proof to show its robustness whereas other techniques rely
in experiments. The main idea of this section is to show how some of the most updated
methods are dealing with contaminated data.

2.4.1 K-means

k-means has been one of the main methods used to partition the data into groups or
clusters that have a similarity in terms of the Euclidean distance. In this case, it can
be seen that the Euclidean distance as it looked in the section 2.2 is not robust, since
a single outlier will bias the centroid estimation. In this sense, several methods have
been proposed in order to robustify the k-means algorithm: create a new cluster where
all the outliers are added so that every point in the data set will be equidistant from the
cluster [23]; finding a new optimization function using expectation-maximization(EM)
algorithm in which a parameter oi,∀i ∈ 1, · · · , n, will have a value of one if the point
is considered an outlier and zero otherwise [24]; robust fuzzy c-means contains a fuzzy
membership parameter and the typical value matrix, in this case we have a parameter uij
that indicates the degree of fuzzy membership matrix, and the matrix T is the typical
value matrix or the possibilistic membership matrix [25]; and the α-cut fuzzy k-means
which redefines the optimization function in such a way that when µj is greather than
threadshold the sample will belong with probability 1 to the j-cluster [26].

2.4.2 PCA

The principal component analysis is a method of projecting the data into an orthogonal
space from the original coordinates system in order to reduce the dimensionality of the
input vector space. This new system of coordinates given by the orthogonal space is called
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principal components. Like k-means, you have a dataset X = [x1, x2, · · · , xn] ∈ Rd×n

where d is the dimensionality of the points and n is the number of samples. The idea is to
find a low-rank matrix that fits the original matrix X. Thus, we want to find the solution
of the following optimization problem:

arg min
Z
||X − Z||2F

After having the full rank decomposition, it can be found that the problem becomes an
eigenvalue decomposition in which λv = Cv, where C is defined as the covariance matrix
of the matrix X, λ is defined as the eigenvalues of the matrix C and v is defined as the
eigenvectors. Since the optimization was made from the euclidean distance, it makes the
traditional PCA not robust against outliers. [27].
In one of the first efforts of robustify the PCA algorithm was finding a robust estimate of
the covariance matrix. However, this approach where the dimensionality of the data set
is the main concern becomes the knowledge extraction intractable [28].
Another problem addressed in the robustness of PCA is to center the data because the
data are assumed typically centered, i.e.

∑n
i=1 x = 0. One idea to address this problem

is to use the standard l2,1 defined as
∑n

i=1 || · ||2. This approach will give equal weight to
the outlier and normal values [29].
Reformulating the function of reconstruction has been one of the ways to robustify PCA,
(Fernando de la Torre), in his paper shows that the lost function can be changed by a
related m-estimator (Geman-MCLure). The idea is to define the reconstruction error as:

arg min
Z,µ,σ

ρ(X − µ− Z, σ)

where σ is scale parameter of the Geman-MClure function, defined as ρ(x;σ) = x2

x2+σ2 . In
this case σ is responsible of the outlier percentage [30].

2.4.3 Kernel PCA

Kernel principal component analysis (Kernel PCA) is an extension of the well-studied
method of PCA where data is projected into a lower dimensionality. In this case, data
are first transformed from a Euclidean space into a feature space by a φ-function where
the normal PCA method is performed. Interestingly, explicit vectors in the feature space
are not necessary because with the kernel trick only the actual data is needed, where the
dot product can be exchanged for any kernel function.
Several methods to robustify Kernel PCA have been proposed: One of them is developed
by Michiel Debruyne, he defines a new way of center the data in the feature space. He
uses the norm L1 in order to center the data in a robust way [31]; Instead of removing
the outliers in the input space, the outliers can be deleted in the feature space. This is
achieved through the reconstruction error which can be found in the feature space and
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by doing so, see the points that have a large deviation with respect to the normal values.
The authors claims that in the case of Kernel PCA, the kernel chosen does not have any
significance [32].

2.4.4 Kernel Methods

Working with kernels has been well studied by Vapnik, Scholkopf, Cristianini and others.
Despite this, little work is found that links m-estimators with kernels. Two representative
works can be found below. Chen proposes a new kernel for support vector machines.
In this new process, the euclidean distance between the samples is exchanged for a more
robust distance given by the m-estimators defined as SRDρ,γ(x, x

′) =
∑d

j=1 ρ(|xj−x′j|, γ),
so the new kernel is constructed as shown below:

K(x, x)′ = exp

(
SRDρ,γ(x, x

′)

2σ2

)
In the paper is shown that by using the tri-media as the robust distance, the best per-
forming is achieved. [33]
CT Liao propose a robust kernel inspired in a robust m-estimator. In this paper states
that the robustness is one of the critical points in machine learning, and the author
achieves the robustness by building a kernel inspired from the m-estimators, so that the
new kernel is less corrupted than a normal kernel. One of the key ideas in the paper
is that a-priori knowledge from the distribution of the data robustifies the algorithm to
various types of pollution, but it is very difficult to predict in reality. To make the new
kernel, a Geman-McLure m-estimator defined as ρ(x;σ) = x2

x2+σ2 , where σ2 is a parameter
of scale. Thus, the new kernel is built as follows:

K(xi, xj) =
n∑
l=1

(
σ2
l

|x(i)
l − µl|2 + σ2

l

)(
σ2
l

|x(j)
l − µl|2 + σ2

l

)
where µ is a measure of central tendency and σ is a measure of spread. In the paper,
µ is calculated as the mean and σ is calculated based on the median absolute deviation
(MAD). Although the authors claim that this is inspired in m-estimators a formal proof
is not given [34].

2.4.5 Robust Manifold Nonnegative Matrix Factorization (RM-
NMF)

Robust manifold nonnegative matrix factorization (RMNMF) [35] uses the norm l2,1 in-
stead of Frobernius’ rule. Based on the following data set X = [x1, x2, · · · , xn] ∈ Rp,n

where p defines the number of dimensions, and n the number of points. The rule l2,1 is
defined as follows:
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||X||2,1 =
n∑
i=1

||xi||2 (2.4.1)

The objective function of algorithm RMNMF between matrix X and factorization FGT

need to be robust. This is achieved by using a robust distance at the values with noise in
matrix X. The target function is defined as follows:

min
G≥0
||X − FGT ||2,1 (2.4.2)

In addition to having a function which depends on the distance between the points, the
author proposes a regularization with the laplacian graph, in order to build spectral
clustering. The target function proposed by the author is as follows:

min
G≥0
||X − FGT ||2,1 + λTr(GTLG) (2.4.3)

where lambda is a parameter of regularization. Since this is the greatest value, factoriza-
tion will be more sparse, since the trace will have more weight in minimizing the function.
To solve this minimization - related problem, the author proposes an iterative, 4 - step
method. For further reference, see [35].
RMNMF solves the following optimization problem:

minF,E,H,G||E||2,1 + λTr(GTLH) + (2.4.4)
µ

2
||X − FGT − E +

1

µ
Λ|2F +

µ

2
||G−H +

1

µ
Σ||2F (2.4.5)

s.t.H ≥ 0, GTG = I

where H = G and µ,Λ and Σ are parameters for the Augmented Lagrangian Multiplier
framework. A scheme of 4 steps was proposed by Huang herein to optimize the formula
2.4.4. For further details, see [35].

2.4.6 Nonnegative Matrix Factorization Using Graph Random
Walks (NMFR)

Nonnegative matrix factorization using graph random walks (NMFR) [36] uses the random
walks notion in order to improve clustering results in Spectral Clustering. To do so, a W
regularization parameter is added, thus:

min
W≥0
−Tr(W TAW ) + λ

∑
i

(
∑
k

W 2
ik)

2 (2.4.6)
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s.t.W TW = I

In so doing, the author claims that the trace is minimized since by augmenting parameter
λ optimization will tend to give lesser values to its diagonal. This is desirable since
the self-similarity usually does not give us valuable information. In order to perform
optimization, the author uses Lagrangian multipliers to impose the restriction of W TW .
Interestingly, a random walk is used in the optimization process. This means a random
step in each point of the optimization process, in order to randomize optimization and
run a smooth optimization process [36]:

update A← αQF + (1− α)W (2.4.7)

Iterative rules are utilized to optimize the function. The following update is conducted in
each iteration:

W new
ik ← Wik

√
(AW+2λWWTVW )ik
(2λVW+WWTAW )ik
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Chapter 3

The Robustness of Kernel Estimation

In [37] the author proposes that the uses of non-linear kernel make the unsupervised tech-
niques more robust to outliers compared to a linear kernel. The results show that when the
contamination is increased, the linear kernel has a higher bias measure between estimators
and real parameters compared to the Guassian kernel. Taking this into account, in this
chapter we want to show the intrinsic relationship that exists between kernels and some
robust m-estimators. This chapter proposes a formal proof that doing mean estimation in
the features space with some kinds of kernel is like doing robust mean estimation in the
data space. Figure 3-1 shows in graphic form the main idea of the chapter: first, data
is located in the problem space where a non-robust centroid is calculated with the mean
estimator; second, a kernel function is used to map every data point in the data space to
an induced feature space; third, the parameters are estimated in the feature space where a
centroid is calculated (note that in the feature space the centroid is not necessary robust);
and, finally, with the help of an approximate inverse function 4.2.2 (P (Φ)), every point
in the feature space is mapped to the data space. Furthermore, parameter estimates in
the data space with nonrobust estimate are biased toward contaminated data. One of the
most interesting findings of this chapter is the relationship between kernels like Gaussian
kernel and m-estimators like Welsch-estimator. This relationship is shown in proposition
3.2.2

3.1 Approximate Pre-Image Definition

Lets k : X ×X → R be a kernel (not necessarily positive semidefinite) and lets Φ : X → F
a mapping from the original space to the corresponding reproducing kernel Hilbert space
(RKHS), or reproducing kernel Krein space (RKKS) in case k being indefinite. Since Φ

is not onto, in general, there are elements φ ∈ F which do not have a pre-image, i.e.
6 ∃x ∈ X ,Φ(x) = φ. The next definition is motivated by this fact.
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Figure 3-1: Graphical Explanation of the intrinsic relationship that exist between kernels
and some robust m-estimators: first, data is located in the problem space where a non-
robust centroid is calculated with the mean estimator; second, a kernel function is used to
map every data point in the data space to an induced feature space; third, the parameters
are estimated in the feature space where a centroid is calculate (note that in the feature
space the centroid is not necessary robust); and, finally, with the help of an approximate
inverse function 4.2.2 (P (Φ)), every point in the feature space is mapped to the data
space.



3.2 Kernel Robust Estimation 33

Proposition 3.1.1. Approximate pre-image.

PΦ : F → P(X )

φ 7→ arg min
x∈X

‖Φ(x)− φ‖2
F

where ‖f‖2
F = 〈f, f〉F is the squared norm in the corresponding Hilbert (or Krein space).

3.2 Kernel Robust Estimation

In the following propositions, we want to show that if we find the centroid’s pre-image from
a set of points projected in a feature space, they correspond to robust mean estimators,
if the appropriate kernel is used [21]. In this case, appropriate means that the kernel
is isotropic. An isotropic kernel is a kernel that only depends on the distance, in the
input space, between its arguments, i.e k(x, y) = g(‖x− y‖) [17]. We will indistinctly use
the notation k(‖x− y‖) and k(x, y) to refer to the application of the kernel hoping the
meaning will be clear from the context.

Proposition 3.2.1. Let k : X × X → R be an isotropic kernel with Φ : X → F the
associated mapping to the induced feature space and {d1, · · · , dn} ⊆ X a set of samples,
then

PΦ(µ) = arg min
y∈X

n∑
i=1

‖Φ(di)− Φ(y)‖2
F , with µ =

1

n

n∑
i=1

Φ(di)

Proof.

PΦ(µ) = arg min
y∈X

‖Φ(y)− µ‖2
F = arg min

y∈X

∥∥∥∥∥Φ(y)− 1

n

n∑
i=1

Φ(di)

∥∥∥∥∥
2

F

= arg min
y∈X

k(‖y − y‖) +
1

n2

n∑
i=1

n∑
j=1

k(‖di − dj‖)−
2

n

n∑
i=1

k(‖y − di‖)

= arg min
y∈X

n∑
i=1

k(‖y − y‖) +
n∑
i=1

k(‖di − di‖)− 2
n∑
i=1

k(‖y − di‖)

= arg min
y∈X

n∑
i=1

(
k(‖y − y‖) + k(‖di − di‖)− 2k(‖y − di‖

)
= arg min

y∈X

n∑
i=1

< Φ(y),Φ(y) >F + < Φ(di),Φ(di) >F −2 < Φ(y),Φ(di) >F

= arg min
y∈X

n∑
i=1

‖Φ(di)− Φ(y)‖2
F



34 3 The Robustness of Kernel Estimation

The equality in the third line follows by the fact that the first and second terms in the
right side of the second equality do not depend on y, since k(‖y − y‖) = k(0), so they can
be substituted by an arbitrary constant (an expression that does not depend on y).

Proposition 3.2.2. Given a set of points S = {x1, . . . , xn} ⊆ X , the approximate pre-
image of its centroid in a feature space, F , induced by a Gaussian kernel, k, corresponds
to the Welsch location M-estimator. In other words:

PΦ(µ) = PΦ

(
1

n

n∑
i=1

Φ(di)

)
= arg min

y∈X

∑
xi∈S

ρwelsch(‖xi − y‖)

Proof. Let PΦ(µ) be the approximate pre-image of µ, defined as in proposition 3.2.1,

PΦ(µ) = arg min
y∈X

n∑
i=1

‖Φ(xi)− Φ(y)‖2
F

= arg min
y∈X

n∑
i=1

< Φ(xi),Φ(xi) >F + < Φ(y),Φ(y) >F −2 < Φ(xi),Φ(y) >F

= arg min
y∈X

n∑
i=1

k(xi, xi) + k(y, y)− 2k(xi, y)

= arg min
y∈X

n∑
i=1

2− 2e
−
(
‖xi−y‖2

2σ2

)

= arg min
y∈X

n∑
i=1

ρwelsch(‖xi − y‖)

with c =
√

2σ. Where the first equality follows by the proposition 3.2.1.

3.3 Conclusions

In this chapter, it is proposed that when an estimation is doing with the Gaussian kernel
is like doing robust estimation in the data space using a robust Welsch estimator. Also,
it is defined the Approximate pre-image, because depending on the kernel used, it is not
always possible to find the exact pre-image as in the case of the Gaussian kernel. With the
definition of the Approximate Pre-Image, in section 3.2 it is proved that the estimation of
the mean in the feature space is not explicitly calculated and only needs the mapped data
points. It is also proved that when an estimation is doing with the Gaussian kernel is like
doing estimation with the Welsch estimator in the data space. In chapter 5 it is defined
a three new kernels; Huber’s, Andrews’, and Tukey’s kernels with the proofs exposed in
this chapter.
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Contamination Experiment

The main goal of the chapter is to conduct two experiments to prove that when a robust
kernel is used in unsupervised learning like in the chapter 3, the estimation of the param-
eters is less biased compared to non robust approaches. There are different types of noise
which could exist in a database, for the current chapter two experiments are performed;
the first experiment use a synthetic uniform contamination, and, the second experiment
use an occlusion pixels contamination. See section 2.1 for further information. In the
chapter 3 it is proved that doing an mean estimation in the features space with some
kinds of kernel is like doing robust mean estimation in the data space. For example, when
using the Gaussian kernel to do parameter estimates in the feature space is like doing
parameter estimate with the robust Welsch estimator in the data space. In light of what
has been put forward up to this point, different algorithms are used; first experiment
use k-means and Kernel k-means with the Gaussian kernel, and, second experiment use
k-means, Kernel k-means, Kernel Convex NMF and RMNMF with the Gaussian kernel.

4.1 Datasets

Two experiment are conducted; the first experiment use a synthetic dataset generated by
three multi-normal Gaussian distribution, see figure 4-1. To perform the contamination
experiment a uniform contamination is used in the range of the data points, see figure
4-2.
The second experiment uses Jaffe dataset. Jaffe is a dataset of images with 10 different
Japanese females, where each set of images has 7 facial expressions. To manage the
dimensionality of the images that have 400 pixels x 400 pixels, we use an image resize of
1 over 25, obtaining image of 32 pixels x 32 pixels, see figure 4-3. Every image in the
dataset was contaminated with occlusion pixels contamination 4-3, i.e. a random half of
the picture is chosen, afterwards, the pixels of the selected half are shutdown (number
zero for gray images).
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Figure 4-1: Synthetic data set generated by a multivariate normal distribution and uni-
form contamination in a three-dimensional space.
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Figure 4-2: Synthetic data set generated with different degrees of Guassian Contamina-
tion
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Figure 4-3: Synthetic data set generated by Jaffe image dataset with Occlusion Contami-
nation: Every image in the dataset was contaminated with occlusion pixels contamination
4-3, i.e. a random half of the picture is chosen, afterwards the pixels of the selected half
are shutdown (number zero for gray images).
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4.2 Experimental Setup

The goal of the experimental evaluation in this chapter is to prove that when a robust ker-
nel is used in unsupervised learning, the estimation of the parameter is less bias compared
to nonrobust approaches. As shown in chapter 3, Gaussian Kernel is robust because of
its close relationship with Welsch M-Estimator. In order to prove the main hypothesis,
the bias between the real mean parameter and the pollute mean estimation will be used
to show the robustness of Gaussian Kernel.

Bias In statistics, it is very often assumed that we have a model parameterized by
θ that gives us the possibility of building a probability model Pθ(X) = P (X|θ) and a
statistical parameter θ̂ that is an estimate of the unknown θ parameter. With this in
mind, we can obtain the bias as the difference between the estimated parameter and the
real parameter as follows:

Biasθ[θ̂] = E[θ̂]− θ (4.2.1)

where Eθ denotes expected value over the distribution Pθ(x) = P (x | θ), i.e. averaging
over all possible observations x. So, for our experiment, we get E[θ̂] as the centroids
estimation given by k-means and pre-image of Kernel k-means. The real parameter θ is
known beforehand when synthetic data are generated.

Bias k-means We obtain the clusters of a data set with k-means algorithm. After that,
we can calculate the bias of the estimation as subtractions between the real centroids and
the estimated centroids of the cluster.

Bias Kernel k-means In the case of Kernel k-means we need to calculate the pre-
image in order to obtain the estimated centroids. Set x a point in the input space. Given
φ ∈ F , it’s pre-image Pφ is defined as:

Pφ = arg min
x∈X

‖Φ(x)− φ‖ (4.2.2)

Several different methods have developed in the last decades to resolve this problem, one
of the most widely used methods to retrieve the pre-image with the RBF kernel, is the
method developed by Kwok when the kernel-k-means algorithm is used [21] (see section
2.3.3).

Percentage of Contamination For this experiment, we will be adding one percentage
of uniform contamination to the real data set, so that the new contamination sample will
be at the end of the data set.
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Sigma Parameter In the case of Kernel-k-means we need a sigma parameter that can
be understood as a spread parameter. For this experiment we search the sigma parameter
in a logarithm vector [2^-5,2^-4,...,2^5].

Noise factor

Noise factors for our experiments depend on the initialization of k-means, or Kernel-k-
means. This initialization for our experiment is random and it depends on the clock of the
computer, so we can’t handle or measure the noise factor. We can avoid this noise factor
with a different initialization like heuristics or performing a preliminary cluster; however,
in order to compare the technique rather than the initialization itself, we choose random
initialization. For every 1 percentage of contamination adding, we run each algorithm 30
times and compute bias for every time. After that, we compute the mean of the values.
We need to define the number of iterations to calculate the pre-images of the kernel (3.1.1),
in this case we use 200 iterations to get the pre-images of the clusters centroids.

Algorithms

• First experiment

To perform the Gaussian experiment the algorithms KMeans and Kernel-Kmeans are
used.

• Second experiment

To perform the occlusion pixels contamination experiment the algorithms k-means, Kernel
k-means, Convex NMF, NMF y RNMF are used.

4.3 Results and Discussion

In the first experiment, for every percentage, we plot a graph 4-4 with the mean of the
bias one for each algorithm. In addition, we can see the dataset is contaminated with each
run. In figure 4-4, it can be observe that when a property parameter σ is chosen, Kernel
K-Mean does not change the centroids’ estimation. In the case of k-means, it tries to
explain every sample with what it suffices only one extreme point to pollute the centroid
estimation.
Choosing the sigma parameter is sometimes not so easy, given the restriction of time by
the increasing complexity of the algorithms using Kernels. Calculating the kernel matrix
is O(n2), so if we were to make an exhaustive parameter search with a large n-samples,
the process would turn out to be highly time consuming. In our case, a logarithmic vector
was used in order to find the optimal σ parameter. With this σ-parameter, the Kernel
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Figure 4-4: First experiment: results comparing KMeans vs Kernel k-means clustering
accuracy in Gaussian Contamination. The c-parameter for Gaussian kernel is 2−4. The
x-axis indicates the number of outliers added to the original dataset. The y-axis indicates
the bias measure and is obtained using equations given in 4.2.

k-means algorithms with Gaussian kernel is less affected in contrast of k-means algorithm
where the increase in pollution shows a linear bias, moving the current centroid away from
the current centroid of the data set.
In the second experiment, for every percentage, we plot the mean of the bias in a graph -
one per algorithm. Figure 4-5 shows an increasing pollution when images with occlusion
are added to the training data. The estimation of the clusters in the case of k-means
is biased to a greater extent than in the case of Kernel KMeans and Kernel Convex
NMF. It can be explained given the existing relationship between Gaussian kernel and
the Welsch M-estimator also shows an insignificant difference among the estimations of
the centroids for the three algorithms in the beginning, but when the contamination
increases, the difference between the bias of Kernel Convex-NMF and the Robust Manifold
NMF begins to increase. This goes to show that the use of a robust kernel improves the
robustness of the estimation. It can be observe that Kernel CNMF with a Guassian
kernel is less corrupted with the occlusion contamination. When less than thirty(30)
percent of the dataset was contaminated with occlusion pixels the differences between the
reals clusters and the approximates one’s are not so different compare to the dataset with
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Figure 4-5: Second experiment: bias of Kernel Convex NMF, Kernel KMeans and KMeans
in occlusion contamination in Jaffe Database. The x-axis indicates the percentage of
contaminated data. The y-axis indicates the bias in squared-distance from estimated
centroids to the real centroids.

no contamination.

4.4 Conclusions

The robustness of using Gaussian kernel in clustering is discussed in chapter 3. This
chapter shows a comparison between non-kernel algorithms like k-means and RNMNF,
and, kernel algorithms like Kernel k-means and Kernel CNMF. The kernel-based tech-
niques shows better result when the data is contaminated compared to non kernel-based
techniques like RMNMF. In the next chapter 5 is proposed three new kernels that have
similar properties to the Gaussian kernel and in chapter 6 these new kernels are evaluated
in a systematic experiment.



Chapter 5

Robust Kernels

Chapter 3 proposed that when an estimation is being made with the Gaussian kernel.
This is like doing a robust estimation in the data space using a robust Welsch estimator.
Despite this example, the proposition 3.2.1 is a general result, and it can be used as a
framework to build new robust kernels. Given the number of useful ideas in Chapter 3
a new set of three robust kernels has been building; Tukey’s, Andrew’s, and, Huber’s
kernel are motivated by their corresponding robust estimators. This set of kernels has
the characteristic of doing a mean estimation of the parameters in the feature space
which is like doing robust mean estimation in the data space. These three new kernels
defined in this chapter are indefinite kernels, i.e. these new kernels are embedded in a
Reproducing Kernel Krein Spaces, see sec. 2.3.1. The issue of optimizing the loss function
in Reproducing Kernel Krein Spaces to obtain a local minimum or maximum value is no
longer possible, instead, we need to stabilize the loss function [22]. One of the most
remarkable findings of these new kernels has been the relationship found between Tukey’s
robust kernel and the Epanechnikov defined by Ong Cheng.

5.1 Tukey’s Robust Kernel

Definition. Tukey’s robust kernel is defined as follows:

k(‖y − xi‖) =

{
1
12

(1− ( ||xi−y||
c

)2)3, if ||xi−y||
c

<= 1

0, if ||xi−y||
c

> 1

}
(5.1.1)

Proposition. Given a set of points S = {x1, . . . , xn} ⊆ X , the preimage of its centroid
in a feature space, F , induced by a Tukey’s kernel, k, corresponds to the Tukey Bisquare
location M-estimator. In other words:

PΦ(µ) = PΦ

(
1

n

n∑
i=1

Φ(di)

)
= arg min

y∈X

∑
xi∈S

ρtukey(‖xi − y‖)
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Proof. Let PΦ(µ) be the approximate pre-image of µ, defined as in proposition 3.2.1,

PΦ(µ) = arg min
y∈X

n∑
i=1

‖Φ(xi)− Φ(y)‖2
F

= arg min
y∈X

n∑
i=1

< Φ(xi),Φ(xi) >F + < Φ(y),Φ(y) >F −2 < Φ(xi),Φ(y) >F

= arg min
y∈X

n∑
i=1

k(xi, xi) + k(y, y)− 2k(xi, y)

= arg min
y∈X

n∑
i=1

{
1
12

+ 1
12

+ 2
12

(1−
(
||xi−y||

c

)
2)3, if ||xi−y||

c
<= 1

1
12

+ 1
12

+ 0, if ||xi−y||
c

> 1

}

= arg min
y∈X

n∑
i=1

{
1
6
(1− (1−

(
||xi−y||

c

)
2)3 if ||xi−y||

c
<= 1

1
6
, if ||xi−y||

c
> 1

}

= arg min
y∈X

n∑
i=1

ρtukeys(‖xi − y‖)

In [22] Ong Cheng defines the Epanechnikov kernel as follows:

k(‖y − xi‖) =

{
(1−

(
||xi−y||

σ
2
)

)p, if ||xi−y||
σ

<= 1

0, if ||xi−y||
σ

> 1

}
He shows that if principal eigenvalues are calculated, some of them are negative. For
this reason, this kernel is an indefinite kernel. Some modifications were made to use this
kernel as a similarity measure, noting that a similarity measure should be between zero
and one, using one when the two samples are very similar and zero when the two samples
are dissimilar. Given this, the fraction 1

12
is removed in order to have a [0, 1] co-domain

of the kernel function, and it is defined as follows:

k(‖y − xi‖) =

{
(1−

(
||xi−y||

c

)
2)3, if ||xi−y||

c
<= 1

0, if ||xi−y||
c

> 1

}
(5.1.2)

This kernel is sparse since after a threshold given by ||di−y||
c

> 1 every value goes to zero.
It can be observed that when the difference is close to zero the function is not smooth.
However, the sparse condition of the kernel brings us the possibility of designing new
kernel algorithms that scale with the increasing amount of data given in big data 5-1.
This new Tukey’s kernel does not satisfy Mercer’s theorem, i.e. the kernel matrices
generated by the Tukey’s kernel have negative eigenvalues [1]. Figure 5-2 presents an
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Figure 5-1: 3D Surface of Tukey’s robust kernels in respect to the origin. Each surface is
computed with a different C-value. It can be observed that when a tiny C-value is used
the vast majority of the kernel data goes to zero.
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Figure 5-2: Eigenvalues of Tukey’s robust kernel in Jaffe dataset. Each line on the graph
is computed with a different C-value. The zeros percentage indicates the percentage
of zeros that exist in the computed kernel matrix.
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overview of the eigenvalues, obtained from kernel matrices in the Jaffe dataset. In this
figure, various parameters that were used have shown negative eigenvalues. For this
reason, it was necessary to extend the proof in 3.1.1 for Krein space, where the distance
between two vectors can be negative.

5.2 Andrews’ Robust Kernel

Definition 5.2.1. Andrews’ robust kernel is defined as follows:

k(‖y − xi‖) =

{
1

2π2 cos
(
π ||xi−y||

c

)
, if ||xi−y||

c
<= 1

− 1
2π2 , if ||xi−y||

c
> 1

}
(5.2.1)

Proposition. Given a set of points S = {x1, . . . , xn} ⊆ X , the preimage of its centroid
in a feature space, F , induced by Andrews’ kernel, k, corresponds to the Andrews’ location
M-estimator. In other words:

PΦ(µ) = PΦ

(
1

n

n∑
i=1

Φ(di)

)
= arg min

y∈X

∑
xi∈S

ρandrews(‖xi − y‖)

Proof. Let y be the Φ-preimage of µ, defined as in proposition 3.2.1,

PΦ(µ) = arg min
y∈X

n∑
i=1

‖Φ(xi)− Φ(y)‖2
F

= arg min
y∈X

n∑
i=1

< Φ(xi),Φ(xi) >F + < Φ(y),Φ(y) >F −2 < Φ(xi),Φ(y) >F

= arg min
y∈X

n∑
i=1

k(xi, xi) + k(y, y)− 2k(xi, y)

= arg min
y∈X

n∑
i=1

{
1

2π2 + 1
2π2 − 2

2π2 (cos
(
π ||xi−y||

c
|
)

), if ||xi−y||
c

<= 1
1

2π2 + 1
2π2 − 2

(
− 1

2π2

)
, if ||xi−y||

c
> 1

}

= arg min
y∈X

n∑
i=1

{
1
π2 (1− cos

(
π ||xi−y||

c

)
if ||xi−y||

c
<= 1

2
π2 , if ||xi−y||

c
> 1

}

= arg min
y∈X

n∑
i=1

ρandrews(‖xi − y‖)

By making experiments with different datasets and different parameters for Andrews’
kernel, it was found that some of the eigenvalues are negative. Thus, this kernel is an
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Figure 5-3: 3D Surface of Andrews’ robust kernels in respect to the origin. Each surface
is computed with a different C-value. It can be observed that when a tiny C-value is used
the vast majority of the kernel data goes to zero.

indefinite kernel. Like Tukey’s kernel, some modifications are needed to use the kernel
as a similarity measure. Given this, the fraction 1

π2 is removed and also the fraction 2

π2

exchanging it for zero is removed. Now, Andrews’ kernel is defined as follows:

k(‖y − xi‖) =

{
cos
(
π ||xi−y||

c

)
, if ||xi−y||

c
<= 1

0, if ||xi−y||
c

> 1

}
(5.2.2)

Just as the Tukey’s robust kernel, figure 5-3 presents a sparse matrix when several C-
values were used, given the new definition of Andrew’s kernel 5.2.2. It can be observed
that when a huge number of C is chosen, all the values of the kernel matrices go to
zero. That makes this new kernel more useful to machine learning approaches, where new
functions can be constructed using this sparse matrix.

Figure 5-4 presents the eigenvalues decomposition of the kernel matrix using the Andrews’
robust kernel in the ATT dataset. It can be observed that some of the eigenvalues are
negative consequently Andrews’ robust kernel is an indefinite kernel. Andrews’ robust
kernel is indefinite as Tukey’s robust kernel. For this reason, Andrews’ robust kernel does
not satisfy Mercer’s theorem.
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Figure 5-4: Eigenvalues of Andrews’ robust kernel in ATT. Each line on the graph is
computed with a different C-value. The zeros percentage indicates the percentage of
zeros that exist in the computed kernel matrix.
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5.3 Huber’s Robust Kernel

Definition 5.3.1. The Huber’s robust kernel is defined as follows:

k(‖y − di‖) =

{
−1

4
||x− y||2, if ||di−y||

c
<= 1

− c
2
||x− y||+ c2

4
, if ||di−y||

c
> 1

}
(5.3.1)

Proposition. Given a set of points S = {x1, . . . , xn} ⊆ X , the preimage of its centroid
in a feature space, F , induced by a Huber’s kernel, k, corresponds to the Huber’s location
M-estimator. In other words:

PΦ(µ) = PΦ

(
1

n

n∑
i=1

Φ(di)

)
= arg min

y∈X

∑
xi∈S

ρhuber(‖xi − y‖)

Proof. Let y be the Φ-preimage of µ, defined as in proposition 3.2.1,

PΦ(µ) = arg min
y∈X

n∑
i=1

‖Φ(xi)− Φ(y)‖2
F

= arg min
y∈X

n∑
i=1

< Φ(xi),Φ(xi) >F + < Φ(y),Φ(y) >F −2 < Φ(xi),Φ(y) >F

= arg min
y∈X

n∑
i=1

k(xi, xi) + k(y, y)− 2k(xi, y)

= arg min
y∈X

n∑
i=1

{
0 + 0 + 1

2
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c
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0 + 0− 2(− c
2
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4
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}

= arg min
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{
||xi,y||2

2
, if ||xi−y||

c
<= 1

c||xi, y|| − c
2
, if ||xi−y||

c
> 1

}

= arg min
y∈X

n∑
i=1

ρhuber(‖xi − y‖)

5.4 Conclusions

In this chapter, three new kernels are proposed; Tukey’s, Andrews’, and, Huber’s kernel.
These three new kernels are motivated by their corresponding robust estimators. The
intrinsic relationship between those kernels and robust statistics will be validated in an
experimental setup in the next chapter. In order to use those indefinite kernels in real
problems, it is appropriate to amend the co-domain of the gram-matrix, i.e. for all x, y
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pairs of samples, the kernel value is k(x, y) ∈ [0, 1]. This ad-hoc amendment is validated
through experiments in the next section.



52 5 Robust Kernels



Chapter 6

Evaluation of Robust Kernels

The use of kernels in unsupervised learning has been well studied [23,33,38,39]. In Chapter
3 a general result is presented in which it is possible to calculate the approximate pre-image
of the mean in the feature space without explicitly calculating the mean in the feature
space. Later in the same chapter, the intrinsic relationship between the Gaussian kernel
and the robust Welsch m-estimator was shown. In Chapter 5 using the general result
of Chapter 3, three new kernels were defined: Tukey’s, Andrews’ and Huber’s kernel.
This chapter is intended to show how the use of these new robust kernels outperforms or
equals the results given by state-of-the-art algorithms. As already stated in Chapter 5,
the issue of optimizing the loss function in Reproducing Kernel Krein Spaces to obtain a
local minimum or maximum value is no longer possible, instead, we need to stabilize the
loss function [22]. Nevertheless, in this section, we will show in a systematic approach
that Tukey’s robust kernel outperforms the results given by linear and Gaussian kernels.
This section evaluates different clustering algorithms; some of them use the kernel trick,
thereby allowing the use of a linear, Gaussian, Tukey’s, and Andrews’ kernel. We use a
clustering accuracy metric to evaluate and compare the results of the different algorithms.

6.1 Datasets

Thirteen different data set were used, five of them were image datasets AR, AT&T, Jaffe,
Orl and Yale; the remaining eight sets were UCI datasets: abalone, balance scale, coil,
fault, movement libras, image segmentation, Umist and wine quality [40,41]

• Abalone is a dataset that predicts the age of an abalone by physical measurement.
Predicting the age of an abalone is a time-consuming task. Because of this, eight
different features are extracted such as sex, length, diameter, and height, to predict
age in three different classes with an automatic classifier [40].

• AR is a dataset of cropped images having 100 different faces of people, 50 men and
50 women. Those images are frontal view faces that were taken in two different
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sessions with different facial expressions, lighting conditions, and occlusions which
use of glasses and scarves. To manage the dimensionality of the images, we use an
image resize of one over five [41].

• AT&T is a dataset of 40 distinct subjects, where each subject has 10 different images.
Those images were taken at different times, varying the lighting, facial expressions,
and facial details. To manage the dimensionality of the images, we use an image
resize of one over eight [42].

• Balance Scale is a dataset that models psychological and experimental results where
each example is classified as having the balance scale tip to the right, tip to the left,
or balanced [40].

• Coil is a dataset that consists of images of twenty objects that contain both the
object and the background [43].

• Steel Plate Faults are a dataset of steel plates, classified into seven different types
[40].

• Jaffe is a dataset of images with 10 different Japanese females, where each set of
images has 7 facial expressions. To manage the dimensionality of the images, we
use an image resize of one over twenty-five [44].

• Movement Língua Brasileira de Sinais (LIBRAS) is a dataset that contains references
to a hand gesture in LIBRAS which is the name of the official Brazilian sign language
[40].

• Orl database of faces is a dataset of images. It contains a set of facial images of 40
distinct subjects. The images were taken at different times, varying light, different
facial expressions, among others. This database is the same as AT&T but with a
non-reduction of the dimensionality [40].

• Image Segmentation (Segment) is a dataset of high-level numeric-valued attributes.
The images were drawn randomly from a database of 7 outdoor images [40].

• The Sheffield (Umist) is an images dataset of 20 individuals (mixed races/gender-
s/appearances). The photograph of the individuals shows a range of poses from
profile to frontal views [45].

• Wineq is a dataset of chemical analysis to determine the origin of different wines [40].

• Yale is a grayscale image dataset of 15 individuals. There are 11 images per indi-
vidual. Each image has a different configuration or expression [40].
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Table 6-1: Data set description
Data set Number of features Number of samples Number of class

Abalone 8 4177 3
AR 792 2600 100

AT&T 168 400 40
Balance Scale 4 625 3

Coil 484 1440 20
Fault 27 1941 7
Jaffe 100 213 10

Movement Libras 90 360 15
Orl 1024 400 40

Segment 19 2310 7
Umist 644 575 20
Wineq 11 4898 3
Yale 1024 2414 38

6.2 Experimental Setup

The goal of the experimental evaluation in this chapter is to show the robustness of kernel
algorithms in unsupervised learning. In the case of kernel algorithms, four different kernels
will be used; linear kernel, Gaussian kernel, Tukey’s robust kernel and Andrews’ robust
kernel. In order to use the kernels defined in Chapter 5, it is necessary to modify the
original definition of the kernels. Without this modification, it will be necessary to modify
the current definition of the algorithms.

To evaluate our goal, we compared eleven different algorithms, some of them using the
kernel trick. The algorithms are k-means, kernel k-means, Convex NMF, kernel Convex
NMF [11], Robust Manifold NMF [35], NCUT, PNMF, NSC, ONMF, LSD and NMFR.
We used one extrinsic metric extensively in data mining to evaluate our algorithms. This
metric is clustering accuracy which is a one to one map between the cluster and the class.
With this metric we want to get the precision of the clustering algorithm. First, construct
the contingency matrix, and second, we change the rows and columns of the contingency
matrix, so the trace of the matrix is maximized.

Acc =
max Trace(contigency_matrix())

N
.
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6.3 Results and Discussions

Table 6-2 presents the findings after running each algorithm thirty (30) times for each
algorithm in every dataset. Each cell of the table presents the mean accuracy and the
standard deviation for the column algorithm with the row dataset. It can be observed
that none of the algorithms is the best in every dataset, also that the Gaussian, Tukey’s
and Andrews’ kernel together are the best in five of the thirteen datasets. NMFR state-
of-the-art algorithm performs quite well, being the best in five of the thirteen datasets
but with poor performance in datasets like abalone, AR and WineQ. Given that none of
the algorithms is the best in every dataset, it is necessary to do a non-parametric test to
compare if a significant difference exists among algorithms.

Non-parametric Test for Significant Difference Between Algorithms

A variance analysis in a non-parametric test was used in order to test the behavior of
different algorithms. It was sought to determine whether or not there was a significant
difference between the different algorithms in table 6-2. The test was implemented as
follows: based on {xij}m×n - a data table wherem was the data base number and n was the
number of algorithms used. The range was defined for each of the databases, organizing
them from highest to lowest in accordance with the clustering accuracy presented in table
6-2, it must be taken into account that, because there were two equal data in different
algorithms; the range would be the average of their corresponding ranges. Thus, we
obtained the following table:
Let rji be the range for the j − th of k algorithms over the i − th database. Friedman’s
test compared the range Rj = 1

N

∑
i r
j
i . The null hypothesis was that all algorithms were

equivalent; therefore, Friedman’s statistical data must be compared:

χ2
F

=
12N

k(k + 1)

(∑
j

R2
j −

k(k + 1)2

4

)
it was distributed according to a χ2

F
with k− 1 degrees of freedom. A better statistic was

found using:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

This statistic was distributed in accordance with an F-distribution containing k − 1 and
(k − 1)(N − 1) degrees of freedom: ∑

j

R2
j = 1532.93

Where N = 13 and K= 15
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Table 6-2: Clustering Accuracy Results for different robust kernel and non-kernel meth-
ods.

Algorithm RBF Kernel KMeans Andrews Tukey Kernel RBF

KMeans Kernel KMeans KMeans KConvexNMF

Abalone 0.5088±0.0001 0.4991± 0.0002 0.5051± 0.0019 0.5075± 0.0 0.5133±0.0004

AR 0.1461±0.0270 0.1061±0.0064 0.1049±0.0049 0.1108±0.0092 0.2234±0.0017

AT&T 0.6684±0.0049 0.6505±0.0049 0.5918±0.0210 0.5965±0.0443 0.7353±0.0074

Balance Scale 0.5313±0.0253 0.5170±0.0249 0.5965±0.0169 0.5158±0.0159 0.5386±0.0083

Coil 0.6176±0.0568 0.5613±0.0531 0.5149±0.0297 0.6496±0.0464 0.6204±0.0398

Fault 0.1677±0.0055 0.3337±0.0228 0.1686±0.0036 0.3460±0.0017 0.3459±0.0.0016

Jaffe 0.7763±0.0596 0.7077±0.0852 0.7629±0.0746 0.8187±0.0271 0.8488±0.0445

Movement Libras 0.4333±0.0250 0.4478±0.0188 0.4422±0.0206 0.4350±0.0336 0.4750±0.0074

ORL 0.5140±0.0372 0.4925±0.0742 0.5120±0.0366 0.5055±0.0129 0.6230±0.0163

Segment 0.5201±0.0719 0.2248±0.0734 0.5452±0.0477 0.5037±0.0675 0.6155±0.0408

Umist 0.4456±0.0350 0.3802±0.0378 0.4362±0.0229 0.4748±0.0155 0.4320±0.0277

Wineq 0.4806±0.0292 0.4379±0.0235 0.4730±0.0005 0.4605±0.0166 0.4574±0.0039

Yale 0.1234±0.0102 0.0957±0.0067 0.0871±0.0101 0.0852±0.0033 0.2426±0.0111

Algorithm ConvexNMF Andrews Tukey RMNMF NCUT

KConvexNMF KConvexNMF

Abalone 0.4079±0.0071 0.5297±0.011 0.5006±0.0024 0.5202±0.0377 0.387±0.0014

AR 0.1606±0.0030 0.1813±0.010 0.2033±0.045 0.212±0.005 0.1818±0.0070

AT&T 0.6386±0.0264 0.6310±0.0394 0.7380±0.0159 0.6937±0.0156 0.8017±0.0059

Balance Scale 0.5438±0.0654 0.5904±0.0875 0.5331±0.0312 0.5853±0.0719 0.5596±0.0155

Coil 0.5733±0.0363 0.6074±0.0302 0.6688±0.0183 0.5543±0.0122 0.8049±0.0028

Fault 0±0 0.2754±0.0007 0.3464±0.0002 0.3379±0.0204 0.2624±0.0005

Jaffe 0.8089±0.0612 0.8667±0.0671 0.8751±0.0475 0.8091±0.0998 0.9108±0

Movement Libras 0.4328±0.0200 0.4794±0.0220 0.4867±0.0093 0.4292±0.0119 0.4679±0.0015

ORL 0.5515±0.0302 0.5645±0.0405 0.6000±0.0352 0.3280±0.0266 0.6711±0.0063

Segment 0±0 0.5448±0.0217 0.5688±0.0070 0.4915±0.0314 0.6105±0.0084

Umist 0.4223±0.0278 0.4616±0.0196 0.4456±0.0257 0.4334±0.0292 0.5886±0.0013

Wineq 0.4501±0.0272 0.4661±0.0042 0.4823±0.0122 0.4436±0.0001 0.4565±0.000

Yale 0.0998±0.0079 0.0728±0.0000 0.2805±0.0032 0.2155±0.0070 0.3086±0.0003

Algorithm PNMF NSC ONMF LSD NMFR

Abalone 0.404±0.0014 0.3886±0.0009 0.3838±0.0003 0.3889±0.0011 0.3726±0.003

AR 0.1776±0.0070 0.1837±0.0020 0.1383±0.0077 0.1718±0.002 0.162±0.0022

AT&T 0.8±0.0048 0.7994±0.0058 0.7981±0.0039 0.8106±0.0074 0.8100±0.000

Balance Scale 0.557±0.0252 0.5621±0.0251 0.5509±0.0392 0.5463±0.0515 0.5691±0.0376

Coil 0.735±0.016 0.8063±0.000 0.6698±0.0144 0.7542±0.0058 0.8505±0.0018

Fault 0.2468±0.000 0.2793±0.0001 0.2463±0.0144 0.2524±0.000 0.2341±0.0008

Jaffe 0.9108±0 0.9108±0.000 0.9108±0.000 0.9108±0.000 0.9108±0.000

Movement Libras 0.500±0.0019 0.4701±0.0019 0.5000±0.000 0.4966±0.0065 0.4611±0.000

ORL 0.6625±0.000 0.6617±0.0066 0.6653±0.0092 0.6764±0.0022 0.6719±0.0017

Segment 0.5066±0.0367 0.6114±0.0034 0.5042±0.0069 0.6416±0.0052 0.7333±0.000

Umist 0.5130±0.000 0.6155±0.0005 0.5757±0.000 0.6139±0.000 0.6806±0.033

Wineq 0.4134±0.000 0.4459±0.0000 0.4175±0.000 0.4002±0.000 0.3938±0.000

Yale 0.2688±0.000 0.3140±0.000 0.2585±0.000 0.3007±0.0014 0.2962±0.0016
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Table 6-3: The average range for clustering accuracy experiment according to table 6-2.
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Scale Libras
NSC 12 4 5 5 2 6 1 7 6 4 2 9 1 4.923
NCUT 13 5 3 6 3 8 1 8 3 5 4 7 2 5.230
LSD 11 8 1 9 4 9 1 3 1 2 3 14 3 5.307
NMFR 15 9 2 4 1 12 1 9 2 1 1 15 4 5.846
Tukey KCNMF 7 3 7 12 7 1 7 4 8 6 9 1 5 5.923
PNMF 10 7 4 7 5 10 1 1 5 10 6 13 6 6.538
RBF KCNMF 3 1 8 11 9 3 9 6 7 3 13 6 8 6.692
Andrews KCNMF 1 6 13 2 11 7 8 5 9 8 8 4 15 7.461
ONMF 14 12 6 8 6 11 1 1 4 11 5 12 7 7.538
RMNMF 2 2 9 3 14 4 11 15 15 13 12 10 9 9.153
RBF KKMeans 4 11 10 13 10 14 13 13 11 9 9 2 10 9.923
Tukey KKMeans 5 13 14 15 8 2 10 12 13 12 7 5 14 10
Andrews KKMeans 6 15 15 1 15 13 14 11 12 7 11 3 13 10.461
ConvexNMF 9 10 12 10 12 15 12 14 10 15 14 8 11 11.692
KMeans 8 14 11 14 13 5 15 10 14 14 15 11 12 12

χ2
F

=
12 ∗ (13)

15(15 + 1)

(
1021.49− 15(15 + 1)2

4

)

χ2
F

= 39.9653

FF =
(13− 1)39.9653

13(15− 1)− 39.9653

FF = 3.3765

With 15 algorithms and 14 databases, we found that F-Fisher will be n = 15−1 = 14 and
(15−1)∗ (13−1) = 204 degrees of freedom. In the table, it yielded 1.7510. With this, we
ruled out the null hypothesis that stated that there is no significant statistical difference
in the accuracy of the methods. In light of the above results, a Nemenyi post-hoc test
was performed in order to attempt to determine whether there was a significant difference
between two algorithms. To this effect, two algorithms were significantly different if the
range average differed by at least one critical difference:
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Figure 6-1: indicated Pair-wise Nemenyi-test with a critical difference of 3.4 in results
of clustering accuracy in table 6-2. NSC was the algorithm with a less average range
(4.923) followed by NCUT with 5.230 of average range. The worst method according to
the average range is k-means with 12.

CD = qα

√
k(k + 1)

6N

Where k = 18 and N = 13. qα is obtained as the t standardized distribution, divided by√
2.

Table 6-4: Critical Distance
#Classifiers 2 3 4 5 · · · 12 13 14 15

q0.05 1.96 2.34 2.56 2.72 · · · 3.273 3.32 3.36 3.40

Upon conducting a pair-wise Nemenyi-test, it was concluded that no significant difference
could be found amongst the 15 algorithms compared.
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6.4 Conclusions

In this chapter, a systematic comparison between state-of-the-art algorithms and robust
kernels built under proposition 3.2.1 was presented. It was found at first glance that
the kernel algorithms; kernel k-means and kernel Convex NMF, performed better when a
robust kernel was used like Gaussian or Tukey’s robust kernel compared with the use of
a linear kernel. Furthermore, it was found in the experiment that Tukey’s robust kernel
improved the results obtained by the Gaussian kernel. This would imply that this kernel
could be used in other domains where the Gaussian kernel had been successful such as
support vector machines. Finally, when comparing the state-of-the-art algorithms with
Convex NMF and Tukey’s kernel there was not a significant difference found. Something
worth noting was that the two algorithms RMNMF and Random Walks NMF used the
framework of augmented Lagrangian optimization, which could be used to improve the
results of kernel Convex NMF. Another possibility was to kernelized the two algorithms
RNMF and RMNMF in order to use the three new robust kernels.



Chapter 7

Conclusions and Future Works

Unsupervised methods in data analysis are used to find patterns in data samples. Due
to the high dimensionality and increase in the number of data samples, these patterns
are difficult to obtain in a robust way. Robustness in the statistical sense is treated as
shown in Chapter 2 in the fact of learning patterns, despite that data do not come from a
normal distribution, or contain atypical values due to possible contamination. In machine
learning, it is common to find images containing occluded pixels, deviations in light and
camera movements. A typical example of occluded pixels in an image dataset is showed
in Chapter 4. To work in these databases containing atypical values, in this thesis we
based our work on the Huber, Hampel and Cauchy work, where robust M-estimators are
constructed. These estimators allow making the residual of the extreme atypical values
grow not too fast as in the case of least square.
Clustering tries to find subgroups within the dataset that contain some similarity between
each sample. In Chapter 2 we have discussed several methods to perform clustering;
among them is k-means which tries to find k centroids and minimizes the quadratic
distance to each point within the subgroup k. This construction method of the objective
function is not robust since by taking only one point to infinity will bias the cluster’s
median estimation to infinity. The nonnegative matrix factorization splits matrix X into
two matrices F and G, so that the matrices are nonnegative. As for the NMF, and the
Frobenius norm is used to optimize, the residuals become more significant as they move
away from the average, with the corresponding optimization bias.
Different modifications have been made to these two algorithms. For example: kernel
k-means uses the kernel matrix to perform the learning and Convex NMF restricts the F
matrix in NMF in such a way that it relapses in space spanned by the X data. There is
also the kernelized version of Convex NMF which was used in this work with Gaussian,
Tukey’s, Andrews’, and Huber’s kernel showing good performance in clustering tasks.
Generally, the databases come with atypical values so new methods were developed to
fight against pollution. Some of them are the RMNMF that uses the Laplacian graph
framework to make the optimization smooth and the use of the L2,1-norm to decrease the
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weight of the atypical values and the NMFR that uses spectral clustering for optimization
and adds a parameter of regularization lambda in order to minimize the trace of the
optimization. Both RMNMF and NMFR use a similarity matrix. This matrix is a kernel
as long as it satisfies the positive semi-definite property explained in 2.3.1. In the case that
matrix A is not semi-definite positive, the matrix A becomes indefinite where the inner
product can be either positive or negative as seen in section 2.3.5. Although RMNMF is
presented as a robust algorithm with the use of L2,1-norm, in the experiments performed
in Chapter 4, it has found that the accuracy of the algorithm was not robust.
In Chapter 3, it has been shown that estimating the mean in the feature space with
the RBF kernel is like to estimating the mean in the data space with the Welsch M-
estimator. Consequently, the pre-image was defined in the same way as the rbf kernel
case in which a centroid in the feature space may not have an exact pre-image. With the
help of a proposition 3.2.1, a framework was obtained whereby new kernels were built.
M-estimators have been used recently in different areas of machine learning, pattern
recognition, and data mining. This new connection between the M-estimators and the
kernels provides the possibility of working with contaminated data in a non-linear space,
opening new possibilities in the area of machine learning. As seen in chapter 5, three new
kernels are built; Andrews’, Tukey’s and Huber’s robust kernel. Although only the rbf
kernel satisfies the positive semi-definite property, it was possible to discover, in a practical
way, that the kernels of Tukey’s and Andrews’ work quite well. Moreover, without the
help of Convex NMF as well as NSC and NCUT it could not have been statistically proven
that significant difference between their methods existed, see ec.
During the experimentation, it was found that when generating uniform noise in three
Gaussian distributions, k-means moved away from the real centroids whenever we in-
creased the contamination. On the contrary, when using a robust kernel like the rbf
kernel, the kernel k-means kernel version of k-means the estimation of clusters is no bias
despite the contamination. RMNMF, which uses the l2,1 standard to increase the con-
tamination (increase occlusion of the images) increases the bias in greater proportion to
the Convex NMF Kernel with the Gaussian kernel. Tukey’s and Andrews’ robust kernel
show good results in a machine learning task called clustering. In the experimentation
of Chapter 6, it was found that the NSC algorithm was the best one to behave among
the databases, although when performing the Nemenyi test on paired data, no significant
difference between the algorithms could be found.
For future research, it is necessary to build new algorithms that escalate with new ro-
bust kernels. These kernels have the particularity of being sparse in accordance with the
regularization parameter. Finally, other suggestions include optimization conducted with
sparse matrices instead of full ones. Additional testing in other areas such as dimension-
ality reduction with PCA or classification with support vector machines is needed to show
the superiority of using this type of robust kernels for basic machine learning tasks. These
kernels have the property of being sparse according to the regularization parameter. With
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this, you could think of a work in which the optimization is using sparse matrices instead
of full ones. On the other hand, one could think of using some of the four techniques
indicated in Similarity-based Classification: Concepts and Algorithms [46] to make the
kernels become Mercer’s kernels. In the case of wanting Andrews, Tukey’s and Huber’s
robust kernels to show properties of the Mercer’s theorem, one could think of four pos-
sible solutions that were not tested in this work. These possibilities are: spectrum clip,
spectrum flip, spectrum shift and spectrum square. It should be noted that the LSD,
NMFR, and PNMF algorithms use a similarity matrix for learning and this could be a
kernel. For experimentation, the matrix of k-nearest-neighborhood was used. More could
be thought of using the algorithms of LSD, NMFR and PNMF, with Andrews’, Tukey’s,
RBF and Huber’s robust kernels.
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