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Abstract

In this thesis work, the problem of applying active learning for a label e�cient train-

ing of deep learning models is addressed.

Firstly, in chapter one, the problem is introduced as well as the objectives and results of

this thesis work. In the chapter 2, a state of the art of active learning and deep learning

models is presented with a particular emphasis in medical scenarios. In chapter three an

active learning approach based on the expected gradient length, is introduced for deep

convolutional neural networks for applying in medical problems where data is scarse and

train deep models could be unfeasible due the the lack of annotated samples.

In chapter four an implemented framework for interactively training of deep learning

models based on the previous discused algorithms is presented, where the active learn-

ing techniques improves the random selection strategy to classify between healthy eyes

patches and patches that contains an early stage of diabetic retinopathy.

Finally in the last chapter, the conclusions of this thesis work are discussed as well as

some promising lines of work for further research.

Keywords: Deep Learning, Active Learning, Medical Imaging, Expected Gradient

Length, On-line Learning
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Resumen

En ésta tesis, se estudia el problema del entrenamiento e�ciente de modelos de aprendizaje

automático basados en redes neuronales profundas para el caso en el que se cuenta con

pocos ejemplos anotados para su entrenamiento. Para esto se presentara una estrategia

de aprendizaje activo la cual hace mas e�ciente el aprendizaje de una representación pro-

funda utilizando los ejemplos que mas cambios aportan al modelo.

En el primer capítulo, se introduce el problema así como los objetivos y resultados de este

trabajo de tesis. Una revisión de los trabajos recientes en el área de aprendizaje activo

y modelos de aprendizaje profundo, con énfasis en escenarios médicos se presenta en el

capítulo 2.

En el capítulo 3, se presenta el enfoque propuesto de aprendizaje activo para modelos de

aprendizaje profundos basado en la longitud esperada del gradiente, el cual resulta útil

para la solución de problemas de imágenes médicas donde no se cuenta con la su�ciente

cantidad de ejemplos anotados.

En el capítulo 4, un marco experimental es implementado para el entrenamiento de mod-

elos basados en redes neuronales profundas, se muestra la aplicación de esta estrategía

para clasi�car parches de imágenes de fondo de ojo con pacientes sanos y en una etapa

temprana de retinopatía diabética. Se muestra que el algoritmo propuesto mejora el

desempe«o del modelo comparandolo con la estrategía clásica de selección aleatoria de

ejemplos.

Finalmente en el último capítulo se discuten las concluciones de este trabajo y también

se esbozan algunas lineas de trabajo prometedoras para el futuro.

Palabras clave: Aprendizaje de máquina, Redes Neuronales Profundas, Aprendizaje

Activo, Aprendizaje de la Representación, Análisis de Imágenes Médicas, Apren-

dizaje en Linea, Longitud esperada del gradiente.
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Chapter 1

Introduction

Nowadays data is a part of our daily lives like never before, we live in the so called

information age where everything �ows in bits at incredible speeds. Our basic social

interactions and high tech products each day relies more and more on data to produce a

more personalized and natural interaction. There are academic centexxxrs and industries

that have taken the more advantage in the use of algorithms to process the large amount

of data that we have available today e.g. social networks in sites like Facebook or Twitter,

music and media recommendation are at the order of the day in mobile apps like Spotify

and Net�ix, autonomous driving is emerging with dedicated research departments at

Google, Tesla Motors and Uber, and this would not have been possible by the impressive

academic results in the last years thanks to algorithms and the dedicated hardware that

allow us to process and learn from quantities and sources of data that exceeds in orders

of magnitude of what we had just a decade before. The �eld of deep learning[43, 3] borns

with those premises in mind, showing major advances in computer vision and speech

recognition, training high capacity models with hundreds of thousands labeled samples in

dedicated graphic processing units.

One of the challenging �elds which has partially bene�ted from such advantages is med-

ical imaging[25], were the patterns to look for reside in big digitalized histology images,

functional magnetic resonance images, computer tomography volumes, eye fundus images

among others. This bene�t is partial because for succesfull training of the deep learn-

ing models a large corpora of labeled data is required, which, in general, is a costly and

di�cult setup to �nd in the biomedical imaging community

Making more label-e�cient computer-aided systems would be of necessary step for (i)

reducing costs in building medical image datasets where the experts annotations take

much time and are costly and (ii) for succesfull usage of deep learning algorithms in the

medical imaging work�ow[10, 22].
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1.1 Problem de�nition

The approach in this thesis addresses the problem of training of automatic image anal-

ysis models using a reduced number of labeled instances. Speci�cally, the goal is to

devise a method based on learned image representations, active learning and visualiza-

tion techniques to automatically �nd visual patterns that compactly explain the visual

richness of images and the relationships between visuassl images and their meaning in

an interactive setup, but limiting as much as possible the interaction of the user with

the system. Working out this problem requires to solve three main subproblems: �rst,

to �nd an appropriate image representation that takes into account the structure of the

image collection and its feasibility of use for an interactive approach; second, to devise

appropriate active learning algorithms that, based on the image collection representation,

could extract visual, semantic and meaningful relationships between them using only a

limited number of annotated samples (or interactions); and third, how to visualize the

internal representations and generate an interactive visualization of the patterns found

by the algorithm. In order to address this research problem, my approach will be to work

out the following research questions:

� How to interactively train and learn a semantic enriched image representation from

an image collection?

� How to use the learned representation to �nd interesting patterns that connect visual

content and its meaning?

� Does this kind of representation improve the performance in tasks such as automatic

segmentation, image annotation and image captioning?

� How to use the learned representation to make image analysis models more inter-

pretable?

1.2 Objectives

The main objective of this thesis is to develop a method for interactive training of auto-

matic image analysis models based on learned image representations, active label learning

and visualization techniques. To cope with the objective, this work has been divided into

the following especi�c objectives:

1. To propose a strategy for generating image representations from image collections

suitable to be used in an active learning strategy.
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2. To propose or adapt a strategy for active learning in a collection of images based

on learned image representations.

3. To develop a method to visualize patterns automatically learned by deep learning

models from image collections.

4. To develop and evaluate a prototype for interactive training of image analysis mod-

els.

1.3 Thesis Scope

This research thesis will deal mainly with the underlying algorithmic issues of a frame-

work for interactive training of automatic image analysis models based on learned image

representations and active label learning. It is limited to the design and implementation

of the algorithms in a coherent framework, and the subsequent tasks of programming

and divulgation of results of the aforementioned methods. Even though the research will

develop general methods that can be applied to di�erent kind of images, the main focus

of the project will be in biomedical and eye fundus image collections where the potential

for the methods could lead to a big gain in specialized and costly time of training such

automatic methods. All the side-activities and research papers product of this thesis will

help to contribute in one or more research tasks assigned, even if the problem is not

directly related with biomedical and/or eye fundus image collections analysis.

1.4 Results and contributions

The results and contributions of this work can be summarized as follows:

� Sebastian Otálora et.al. , �Training Convolutional Neural Networks with Active

Learning for exudate classi�cation in eye fundus images�

In this work, we introduce the expected gradient length algorithm into the training

of deep convolutional neural networks for exudate classication in eye fundus im-

ages. Our proposed method was able to signicantly reduce training time obtaining

a really good performance. My contributions in this work include the code for the

algorithms, design and execution of experiments, writing of the draft and the nal

submitted paper to the international conference: Information Processing in Medical

Imaging - IPMI 2017, the algorithm and the approach are depicted in the chapters

3 and 4 of this document.
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� Oscar Perdomo, Sebastian Otálora, Fabio A.González, �A novel machine learning

model based on exudate localization to detect diabetic macular edema�. MICCAI

2016, the 19th International Conference on Medical Image Computing and Com-

puter Assisted Intervention. Athens, Greece. October 17th to 21st, in proceedings.

In this work, we introduce a novel convolutional neural network architecture to

detect diabetic macular edema. Our propossed method was able to surpass in

performance baseline CNN models. My contributions in this work included the

e�cient generation of predictions and design of experiments, corrections and the

�nal submission of the paper to a workshop event in the MICCAI 2016 conference.

� Sebastian Otálora, Angel Cruz-Roa, John Arevalo, Manfredo Atzori, Anant Mad-

abhushi, Alexander Judkins, Fabio A.González, Henning Müller and Adrien De-

peursinge. �Anaplastic Medulloblastoma tumor di�erentiation by combining Un-

supervised Feature Learning and Riesz wavelets for histopathology image repre-

sentation�. MICCAI 2015, the 18th International Conference on Medical Image

Computing and Computer Assisted Intervention. Munich, Germany. October 5th

to 9th, in proceedings.

In this work, we show that the combination of two complementary approaches for

feature learning (unsupervised and supervised) improves the classi�cation perfor-

mance for medulloblastoma tumor di�erentiation. Our approach outperforms the

best methods in literature by 2.5% achieving 99% accuracy over region-based data

comprising 7,500 square regions from 10 cases diagnosed with medulloblastoma (5

anaplastic and 5 non-anaplastic). My contributions in this work includes the de-

velopment of the code, design and execution of experiments, writing of the draft,

corrections for the �nal submission of the paper and elaboration of the poster pre-

sented at the main conference event in Munich, Germany by one of the co-authors.

� John Arevalo, Sebastian Otálora, Julien Wist and Fabio A. González. �Automatic

Infrared spectroscopy signal analysis with unsupervised feature learning and neural

networks�. 9th Colombian Computing Congress. Pereira, Colombia, September 3-5,

2014 9ccc proceedings.

In this paper we presented a novel method for the prediction of molecular frag-

ments from infrared spectra based on unsupervised feature learning. We evaluated

this method on a set of 6373 infrared signals obtaining an improvement in the pre-

diction stage with an automatically learned representation using an unsupervised

learning method. Our model improved the interpretation of the results by allowing

us to compute the best signal from a given structure label. One key advantage in
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the proposed approach is that it is required only one model that used a shared repre-

sentation to predict 512 labels. My contributions in this work include participations

in the development of the code, design and execution of experiments, writing of the

paper and corrections for the �nal submission for later presentation (oral presenta-

tion) of the work at the 9th Colombian Computing Congress conference event. This

paper is annexed to this document.

From February to June of 2015 I had the great oportunity to do an internship in the Swiss

research group MedGIFT in head of of professor Henning Müller's, in those months I was

able to work in my thesis project in a really nice enviroment with great collaborators to

write the third listed paper above and more important to strengthen the research link

between our MindLAB group at Bogotá. Thanks HES-SO for providing me the francs

necessarly to cover most of the internship costs and also for preparing such nice activities

with foreign students.

Besides my main thesis work I also collaborated on several projects of my research group

and in some cases those collaborations lead to an academic product, notably:

� Sanandres C. Eliana , Sebastián Otálora. "Una aplicación de topic modeling

para el estudio del trauma: El caso de Chevron-Texaco en Ecuador." Investigación

& Desarrollo 23.2 (2015).

In this work, we introduce topic modeling techniques using Latent Dirichlet Alloca-

tion for working qualitatively with large amounts of data addressing the emergence

of the trauma process resulting from the Chevron-Texaco case in Ecuador. My

contributions in this work include participations in the development of the code,

design and execution of experiments, writing of the method section and corrections

for the �nal submission of the paper for the submission to the journal. This paper

is annexed to this document.

� Jorge A. Vanegas, John Arevalo, Sebastian Otálora, Fabián Páez, Santiago A.

Pérez-Rubiano, and Fabio A. González. MindLab at ImageCLEF 2014: Scalable

Concept Image Annotation. CLEF (Working Notes) 2014: 404-410

This paper describes the participation of the MindLab research group of Universidad

Nacional de Colombia at the ImageCLEF 2014 Scalable Concept Image Annotation

challenge. Our strategy mainly relies in �nding a good visual representation based on

deep convolutional neural networks. Despite the simplicity of the proposed classi�er

which allows to deal with the large-scale nature of this task, we can achieve good

performance (our proposed approach achieved the best MAP) thanks to the rich

visual representation based on learned features. My contributions in this work

include programming the features extraction process and the evaluation using the

proposed experimental setup. This paper is annexed to this document.
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� de Herrera, Alba Garc�a Seco, Henning Müller, and Stefano Bromuri. "Overview

of the ImageCLEF 2015 medical classi�cation task." Working Notes of CLEF 2015

(2015).

This paper describes the participation of the MindLab research group of Universidad

Nacional de Colombia at the ImageCLEF 2015 Multi�label Classi�cation subtask

of the ImageCLEF 2015 medical classi�cation task. Our strategy was based on

building a visual representation by means of deep convolutional neural networks, by

relying on the theory of transfer learning which is based in the ability of a system

to recognize and apply knowledge learned in previous domains to novel domains, we

obtain the best Hamming Loss value, demonstrating again the suitability of aplying

deep learning representations to biomedical domains. My contributions in this work

were programming of the experiments, evaluation and a small paragraph explaining

our strategy. This paper is annexed to this document.

Most of the code is available in personal web repositories:

� The code for the articles "Training Convolutional Neural Networks with Active

Learning for exudate classi�cation in eye fundus images" and "A novel machine

learning model based on exudate localization to detect diabetic macular edema" is

available at

https://bitbucket.org/sebastianffx/paper_labels_miccai

� The code for the articles "MindLab at ImageCLEF 2014: Scalable Concept Image

Annotation" and "Overview of the ImageCLEF 2015 medical classi�cation task" is

available at

https://bitbucket.org/sebastianffx/imageclef-2014-scia

1.5 Document structure

This thesis is divided in 5 chapters. Chapter 1 presents the thesis problem statement,

scope, objectives, results and contributions, and this document structure. Chapter 2

presents a brief review of the state of the art in automatical image analysis in the biomed-

ical domain using active learning algorithms and deep learning representations. In chapter

3, the expected gradient length algorithm is presented as well as its adaptation to use as

a sample and image selector for sample-e�cient training of deep convolutional neural net-

works. Chapter 4 presents the application of the previously presented strategy to detect

exudates in eye fundus images with minimal number of labeled samples used, in this

https://bitbucket.org/sebastianffx/paper_labels_miccai
https://bitbucket.org/sebastianffx/imageclef-2014-scia
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chapter a visualization strategy to identify interesting regions in the image is presented

as well. Finally, in chapter 5 concluding remarks and future work in this line of research

are discussed.
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Chapter 2

State of the art

In medical imaging work�ows the use of the interdisciplinary computer vision techniques

to analysis the wide spectra of diseases present in digitalized images has been an usefull

and important aplication of computer science since the birth of X-rays in XIX century,

with several milestones that allowed medical content obtained by di�erent modalities and

sources to be analysed with aid of a computer [40], with the evolution of the computer

vision techniques along with the clear de�nition of the challenges and application areas for

speci�c diseases more computer aided systems and tools are being used into the medical

practice but stills there is a limited reach of this techniques, a concrete modern example

is digital pathology, which is an image-based information work�ow that is enabled by

computer technologies and machine learning methods that allows for the management of

information generated from a light microscopy-digital slide. With the advent of Whole-

Slide Imaging, the �eld of digital pathology has exploded and is currently regarded as

one of the most promising avenues of diagnostic medicine in order to achieve even better,

faster and cheaper diagnosis, prognosis and prediction of cancer and other important

diseases In the digital pathology work�ow there are main challenges to be faced: In

�rst place, the semantic gap between image descriptors and the complex histopathology

patterns involved in the domain, secondly the noise in histopathology images and its

subsequent feature extraction process[32], and in addition to these, there are several

challenges in making the process of annotation and visualization of the features extracted

more e�cient and useful for the pathologist, particularly the problem of minimize the

labeling e�ort from the pathologist has not been fully addressed [17], for this reasons

there are few successful attempts of introducing computer-aided decision support systems

into the medical practice [23].

This thesis can be classi�ed in the research areas of active learning [44] algorithms, deep

learning [3] and visualization. Its applications are in the emerging research areas of digital

and computational pathology [32, 10, 22, 23] and also in more classical applications such

as automatic biomedical image analysis and understanding, computer-aided diagnosis,

natural image analysis.
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Figure 2-1: The active learning framework, in which the label oracle is represented by a
human annotator that dynamically annotates unlabeled samples to include them in the
training set, image taken from [44]

2.1 Active Learning and applications to medical imag-

ing

In a classical supervised ( passive) machine learning model, there is a whole annotated

data set from which the model learns the patterns given the pairs of samples and labels,

in active learning (AL) [44]the main assumption is that one can learn such model with a

reduced number of labels if one is allowed to choose from which samples to learn. Figure

1. shows a visual depiction of an active learning scenario.

An active learner may ask label queries for a given unlabeled sample and then, with

an informativeness measure decide if it is included in training dataset along with its

label, in this way the expensive time of the human annotator is reduced. Active learning

has been a topic of signi�cant research over the past decades with a growing attention

for both, the theoretical and practical considerations of leveraging knowledge with few

data samples[44]. The active learner aims to achieve high accuracy using as few labeled

instances as possible, thereby minimizing the cost of obtaining labeled data, e.g. in the

medical imaging domain, where the time for a medical specialist to exhaustively examine

the images where the patterns reside is expensive. Probably the most cited and and

relevant survey of the AL �eld is [44] where the author compiles the relevant literature

of the �eld and present it in a coherent way up to 2008, nevertheless there are other

comprehensive references for active learning that includes [13][4][7].

There have been several attempts to apply the concepts and algorithms of active learning

in the medical domain. In [21] the author explores active learning algorithms as a way to

reduce the requirements for large training sets in medical text classi�cation tasks obtaining

statistically signi�cant better performance that the passive algorithms. In [27] Hoi et. al.
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present a framework for batch active learning that applies the Fisher information matrix

to select a number of informative examples simultaneously. They tackle the computational

challenge of how to e�ciently identify the subset of unlabeled examples that can result in

the largest reduction in the Fisher information. To resolve this challenge, they propose

an e�cient greedy algorithm that is based on the property of submodular functions, their

results with �ve UCI datasets and one real world medical image classi�cation show that

the proposed batch mode active learning algorithm is more e�ective than the state-of-the-

art algorithms for active learning.

There is a particular interest in the community of active learning on the task of automatic

segmentation, for instance In [50] the authors formulate interactive 3D image segmentation

in an AL framework. Speci�cally, they evaluate a given segmentation by constructing an

uncertainty �eld over the image domain based on boundary, regional, smoothness and

entropy terms. Their contributions is to being the �rst work to formulate interactive 3D

image segmentation as a formal AL process. They validate their method against random

plane selection showing an average Dice score improvement of 10% in the �rst �ve plane

suggestions (batch queries). Furthermore, their experiments shows that the method saves

64% of user's time, on average.

Wang et. al. [53] focus on how to actively recommend crucial regions to reduce user in-

puts. The main contribution lies in two aspects: �rst, they propose an approach which can

successively recommend informative regions based on random walks; second, they propose

a novel criterion, maximal Expected Cost of Change, which aims to select regions that

will change most on the expected con�dence over all unlabeled ones. Experiments on the

GrabCut database demonstrate that, compared with conventional interactive segmenta-

tion methods, their approach can signi�cantly reduce user e�orts and help more quickly

achieve satisfactory results.

In [31] The authors introduced an approach to exploiting the geometric priors inherent to

images to increase the e�ectiveness of Active Learning for segmentation purposes. For 2D

images, it relies on an approach to Uncertainty Sampling that accounts not only for the

uncertainty of the prediction at a speci�c location but also in its neighborhood. For 3D

image stacks, it adds to this the ability to automatically select a planar patch in which

manual annotation is easy to do.

In [52] the authors presented an approach for interactive segmentation that combines

active learning with the GrowCut interactive segmentation. Using a two-way interaction

approach their algorithm suggests locations for drawing gestures to the user, who in turn

can label the pixels as suggested or pick where to draw. They showed that using active

learning guided gesture suggestions reduces the variability of the segmentation and reduces

the user interactions by almost (50%) compared to segmenting the novel images with no

learning. Additionally, the learning is completely transparent to the user and does not

require the user to explicitly provide a lot of labelled data for learning.

In [19] Ertekin et. al. deals with the class imbalance problem which has a negative impact
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on the classi�ers performance. The paper show how it is possible to use an active learning

method that selects informative instances from a randomly picked small pool of examples

rather than making a full search in the entire training set. By focusing the learning on

the instances around the classi�cation boundary, more balanced class distributions can

be provided to the learner in the earlier steps of the learning. Their empirical results on

a variety of real-world datasets shows that active learning is comparable or even better

than other popular re-sampling methods in dealing with imbalanced data classi�cation,

nevertheless, the authors don't mention the sample bias, which is the problem of the

learner to be biased by the samples that are close to the boundary.

In the PhD. thesis of Monteleoni [38] she analyzes and designs algorithms for learning

under the following online constraints: i) the algorithm has only sequential, or one-at-a-

time access to data; ii) the time and space complexity of the algorithm must not scale

with the number of observations. This was an important advance in understanding more

theoretical aspects of active learning.

In [56] the same line of online active learning research is explored where an active learn-

ing from data streams algorithms is devised and also they develop a minimal variance

measure to derive weight updating rule for the optimization problem, in a similar way to

expected change cost, similarly in [12] where the authors propose a maximum classi�cation

optimization method for actively selecting unlabeled images to acquire labels.

In [42] the authors propose a method called rule induced active learning query for con-

structing generic active learning queries based on rule induction. Their method is able to

construct shorter and more intuitive queries that are easier for a human oracle to answer,

allowing to better utilize human resources.

The authors of [20] propose an interesting statistical framework for AL called model re-

training improvement. This approach is both theoretical and practical, giving new insights

into AL, and competitive AL algorithms for applications which inspires the experimental

setup for various experiments made for this thesis.

In [16] a generalization of the concept of active learning is introduced, called proactive

learning, is designed to relax unrealistic assumptions and thereby reach practical appli-

cations, whereas in traditional AL the oracle is assumed to be infallible (never wrong),

indefatigable (always answers), individual (only one oracle), and insensitive to costs (al-

ways free or always charges the same). Proactive learning relaxes all four of these as-

sumptions, relying on a decision-theoretic approach to jointly select the optimal oracle

and instance, by casting the problem as a utility optimization problem subject to a bud-

get constraint. Results on multi-oracle optimization over several datasets demonstrating

the competitivity their approach over the single-imperfect-oracle baselines in most cases.

Another important issue in the AL framework is the scalability of the algorithms, in [29]

the authors partially tackle this by considering the binary feedback scenario in a multi-

class classi�cation problem and proposing an algorithm based on information theoretic

measures.
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Figure 2-2: A typical framework for applying supervised deep learning approaches like
CNN to patch classication in histopathology images

2.2 Deep Learning and Unsupervised Representations

Deep learning (DL) techniques are the most studied and successful kinds of machine learn-

ing nowadays. In the last decade, DL based techniques have been shown to outperform

classical machine learning algorithms with hand-crafted features in diverse �elds such as

computer vision [33], speech recognition[15], natural language processing [24] and also

recently in biological elds like functional genomics [39].

Since early 2010's the neural networks based representations have regained interest in the

machine learning and particular in computer vision and speech recognition communities

because they have been systematically surpassing state of the art hand-crafted representa-

tions in computer vision challenges and standard benchmark datasets [43], this is in part

due to the following factors: feasibility of training models with a great learning capacity

with a large number of hidden layers, improved accuracy and relatively fast training times

with the aid of GPU computing[35, 37, 3, 18, 34], a large number of practical consider-

ations that have been studied in the last decade for monitoring the training process and

selection of hyperpameters of deep models [2]. In �gure 2.3, a comparison between the

trends of search for this �eld of study is compared with the machine learning one, an inter-

esting shared elbow in the graph that could be related with the increasing of attention by

the media and several companies that have made use of such technologies is evident. The

convolutional neural network (CNN) is one of the most studied deep supervised models

nowadays, with this model is possible to learn hierarchical visual representations which

are of particular interest for biomedical applications where one is interested in �nding
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Figure 2-3: Interest over time of the of active learning (above) and machine learning-deep
learning concepts , image taken from google trends

the building blocks of the high level features extracted with the aim of havin additional

interpretability, an example CNN for histopathology patch-based image classi�cation is

depicted in �gure 2.2.

In Cruz-Roa's PhD. thesis the suitability of these methods for the histopathology image

analysis domain is studied with promising results[54, 1, 11, 9, 8] and providing some

insights about the future research work on this �eld. One of the research focus of this

work, will be to study and devise the use of these deep learning techniques in the context

of active learning.



Chapter 3

Training Convolutional Neural

Networks with Active Learning

3.1 Introduction

Deep convolutional Neural Networks (CNN) are a particular kind of a supervised multi-

layer perceptrons inspired by the visual cortex[6]. The CNN are able to detect visual

patterns with minimal pre-processing, trained with the robustness to respond to the dis-

tortion, variability and invariances to the exact position of the pattern, and being bene�ted

of data augmentation that subtle transform the inputs for learning more invariances[33].

We will call an architecture an arrangement of the parameters that are learned by an

optimization algorithm. The architecture of the CNN is usually composed by stacking

convolutional, pooling, normalization and fully connected layers, a typical CNN architec-

ture is depicted in Figure3.1. The convolutional layer is a set of learnable windows or

�lters moving through a stride with a kernel size that represent the receptive �eld. Each

window is convolved computing the dot product between the �lter and the input generat-

ing an activation map for that �lter. Pooling layer is a non-linear function to reduce the

size of the convolutional layer by extracting the most representative value in a window

de�ned by a kernel with a given stride. Max Pooling is a particular pooling function

that is commonly used in architectures in computer vision and it works by choosing the

maximum activation of the �lter in a particular neighbourhood. Usually the last layer

is a fully-connected that is a layer where all the neurons have full connections among

all the neurons in the previous layer, and its non-linear function is a soft-max activation

function, that outputs the probability for each of the output classes.

The deep learning algorithms have the drawback of being really data intensive algorithms,

because for a successful application of this models, thousands or hundreds of thousands,

sometimes even millions of labelled data samples are required for the model to converge,

this is in part due to the high capacity that has to be �t and codi�ed in a really big

parameter matrix where all the weights that represents the internal con�guration of the
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Figure 3-1: A typical deep convolutional neural network architecture, with 7 layers and
a �nal layer with two outputs that represents the probabilities for the sample to belong
to the output classes.

network have to be set with an optimization algorithm.

The stochastic gradient descent (SGD) algorithm [5]has been used as the de facto algo-

rithm to optimize loss functions in deep architectures, this optimization algorithm works

well with this this kind of models because is able to achieve a good local optima pro-

cessing iteratively hundreds of thousand of samples packaged in small batches. The main

hypothesis when using this algorithm is that one have as many labelled samples available

as needed for the algorithm to converge, for this reason, in SGD the batch samples are fed

randomly to the model up to convergence or over-�tting. Active learning models helps

to alleviate the problem of having that many labelled samples by selecting only a few se-

lected annotated samples to be used in the training of such deep models, in the following

subsection we explain how this can be accomplished when training deep convolutional

neural networks.

3.2 Active Learning Model For CNN

Traditional supervised learning algorithms use whatever labelled data is provided to in-

duce a model. By contrast, active learning gives the learner a degree of control by allowing

it to select which instances are labelled and added to the training set. A typical active

learner begins learning with a small labelled set L, selects one or more informative query

instances from a large unlabelled pool U , learns from these labelled queries (which are

then added to L), and repeats[46]. The principle behind active learning is that a machine

learning algorithm can achieve similar or even greater accuracy when trained with fewer

training labels than the fully supervised one if the algorithm is allowed to choose the data

from which it learns from [45]. An active learner may pose queries, usually in the form of
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unlabelled data instances to be labelled by an oracle (e.g., a human annotator). Active

learning is well-motivated in many modern machine learning problems, where unlabelled

data may be abundant or easily obtained but labels are not, this is an interesting direction

for the so-called deep learning in the small data regime1, where the objective is to train

the time consuming and high sample complexity algorithms, with less resources, as in the

case of medical imaging.

3.2.1 Expected Gradient Length

SGD works by stochastically optimizing an objective function J with respect to the model

parameters θ, this is, �nding the model parameters by optimizing with only one random

sample or random sample batches instead of the full training dataset:

θt+1 = θt − η∇Ji(θ) (3-1)

Where Ji(θt) is the objective function evaluated at the i-th sample tuple (xi, yi) at iteration

t, η is the learning rate and ∇ is the gradient operator.

Since for computing ∇Ji(θ) we need the i-th sample representation and its corresponding

label, if we measure the norm of this term, i.e. the gradient length term‖∇Ji(θ)‖, this
will quanti�es how much the i-th sample and its label contributes to each component

of the gradient vector. A natural choice for selecting the most informative patches for

each batch iteration of SGD is to select the instances that gives the highest values for

the gradient length weighted by the probability of that sample having the yi label. In

other words, to select that instances that would impact the greatest change to the current

model as if we knew their labels:

Φ(xi) =
c∑
j=1

p(yi = j|xi)‖∇Ji(θ)‖ (3-2)

Where c is the total number of labels or classes, the Expected Gradient Length algorithm

(EGL) works by sorting the Φ values from an unlabelled pool of samples and then adding

them to the training dataset by asking an oracle to give us the ground truth label of those

samples. The EGL algorithm was �rstly mentioned by Settles et. al. [47] in the setting

of multiple-instance active learning, nevertheless to the best of our knowledge this is the

�rst time that is used in the selection of samples in CNN.

1In 2016 there was a workshop in the International Conference on Machine Learning deal-
ing with this topic https://sites.google.com/site/dlworkshop16/, also in the 2016 International
Conference on Medical Image Computing and Computer Assisted Intervention, there was a
workshop dedicated to study and evaluate particular solutions to this topic in medical imag-
ing:http://campar.in.tum.de/LABELS2016/WebHome .

https://sites.google.com/site/dlworkshop16/
http://campar.in.tum.de/LABELS2016/WebHome
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3.3 Expected Gradient Length for Convolutional Neu-

ral Networks

3.3.1 EGL for Patch Selection in Convolutional Neural Networks

For being able to select the most informative samples in a CNN architecture we have to

compute the two terms involved in equation (3.2.2), �rst, for the probability of a sample

having the j-th label we can perform a forward propagation through the network and

obtain the corresponding probabilities from the soft-max layer of the network, secondly,

to measure the gradient length we can perform a backward propagation through the

network to measure the Frobenius norm of the gradient parameters, in a CNN architecture

we have the �exibility to compute the backward/forward phases up to a certain layer, in

our experiments in next section we made the backward down to �rst fully connected layer

as this values showed no signi�cative di�erence for in-between layers. This process must

be done over all the possible labels for each sample. Once we have computed the Φ values

for all the samples, we sort them and select the k samples with higher EGL values.

In the �rst iteration, a small portion of labelled samples L′ ⊂ L is used to train an initial

model M, and then incrementally adding the k samples to L′ to update M parameters.

The steps of the algorithm are depicted in Algorithm 3.3.1.

Algorithm 3.1 EGL for Active Selection of patches in a Convolutional Neural Network

Require: Patches Dataset L, Initial Trained Model M, Number k of most informative
patches

1: while not converged do
2: Create and shu�e batches from L
3: for each batch do
4: Compute Φ(x) using M,∀x ∈ batch
5: end for

6: Sort all the Φ Values and return the higher k corresponding samples Lk
7: Add the samples in Lk to L′. Update M using L′

8: end while

3.3.2 EGL for Image Selection in Convolutional Neural Networks

Since we are able to compute the most signi�cant patches it is straightforward to ex-

tend the procedure to select not only the most informative patches but also the most

informative images within training set, the modi�cation is that instead of computing the

EGL values for all the ground truth exudate and healthy patches we compute the in-

terestingness of an image by patchifying the image with a given stride and then densely

computing Φ, then sorting the images by their top EGL values and �nally adding the la-

bels and patches that belongs to the more interesting image to the training set for further
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parameter updates using Algorithm 3.3.1 until convergence, we believe that this is a more

realistic scenario where medical specialists does not have the time to manually annotate

all the images but only the ones that contains more information to train a computer aided

system. The full algorithm is described in Algorithm 2.

Algorithm 3.2 EGL for active selection of images in a convolutional neural network.
Require: Training Image Set T , Patch Dataset L, Number µ of initial images to look at

Select an initial set Tµ of images randomly
2: Train initial model M using the ground truth patches from the µ images
while not converged do

4: for each image in T \ Tµ do

Patchify image and compute σimage =
∑

patch∈image

Φ(patch), using M

6: end for

Sort all the σimage values and return Imax, the image with higher sum
8: Tµ = Tµ ∪ Imax

Lµ = { patch ∈ LI ,∀I ∈ Tµ}
10: Update M with k selected patches using Algorithm 3.3.1 and the patches in Lµ

end while

We can also plot an interestingness mask based on the computed EGL values of the images

simply by reshaping the EGL values of all the patches to the image size, this is illustrated

for the application of this algorithms to the problem of exudate detection in the next

chapter, where we plot what regions of the image will be more useful to train a CNN

model.4.4
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Chapter 4

Training Deep Convolutional Neural

Networks with Active Learning for

exudate classi�cation in eye fundus

images

4.1 Introduction

In this chapter the evaluation of the EGL for CNN technique described in the previous

chapter will be performed on the problem of detecting exudates in eye fundus images.

Diabetes Mellitus is one of the leading causes of death according to the World Health

Organization1. Diabetic Retinopathy (DR) is a condition caused by prolonged diabetes,

causing blindness worldwide in the productive age (20-69 years). The main problem is that

most people have no symptoms and su�er the disease without have been timely diagnosis.

Because the retina is vulnerable to microvascular changes of diabetes, diabetic retinopathy

is the most common complication of diabetes. Eye fundus imaging is considered a non-

invasive and painless route to screen and monitor DR[48]. Diabetic retinopathy has four

phases: I) Nonproliferative diabetic retinopathy (NPDR) - in this earliest stage, exudates

and microaneurysms occur, which are small areas of in�ammation in balloon shape in

the tiny blood vessels of the retina; II) moderate nonproliferative diabetic retinopathy

(MNDR) - as the disease progresses, a few of the blood vessels that nourish the retina are

blocked; III) severe non-proliferative diabetic retinopathy (SNDR) - blocking many more

blood vessels occurs, which prevents the blood supply to various areas of the retina, and

IV) proliferative diabetic retinopathy (PDR) - at this late stage, the signals sent by the

retina for nourishment trigger the growth of new blood vessels. These new blood vessels

are abnormal and fragile, growing along the retina surface with transparent vitreous gel

1http://www.who.int/diabetes/en/
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which �lls the interior of the eye.

The manual segmentation of exudates in eye fundus images, a key step to classify the

grade of DR, is very time consuming and repetitive for clinical personnel[48]. Moreover,

the analysis of many images without any pathologies increases the work time and leaves

less time to analyze images with pathologies in detailed form. Computer-aided diagnosis

systems (CADx) are a good solution to optimize the work of ophthalmologist, giving the

proper time for patients with progressing disease or critical eye conditions, that require

all of the ophthamologist attention. CADx helps to perform automatic grading of the

disease, increasing the number of patients diagnosed and supporting early detection. This

helps to reduce the cost of manual labelling [51], most CADx systems rely on techniques

from computer vision and have evolved along with the advances in this �eld[30], which

is shown by the low speci�city performance of earlier systems [55][49] which are based

on morphological and appearance features in combination with classical machine learning

algorithms[26][41].

In recent years, deep learning techniques have greatly surpassed the performance of com-

puter vision systems[33], such as deep convolutional neural networks (CNN), �rstly used

for classify natural images and recognize digits and now have start to being used in the

biomedical imaging work�ows and in particular to play an important role in DR grading

showing superior performance in several settings and datasets, for example, in 2015 the

data science competitions website Kagle2 launched a DR Detection competition were both

the winner and top entries won using CNN in more than 35000 labeled images, demon-

strating that for a succesful training of such algorithms a signi�cative amount of labeled

data is required. This presents the problem where the algorithms involved in CADx for

DR have to be feed with the order of thousand of samples which in practice is really

hard in both time and money, this impose the challenge of how to transform the good

performance algorithms such as CNN to be less data intensive and thus able to learn only

with a few selected number of samples.

The rest of this chapter is organized as follows: First, in section 4.2, we give an overview of

the architecture for the deep neural network model and the preprocessing steps to handle

the eye fundus images that �t the model. The active learning strategy is explained in

section ??. In section 4.3 we describe the experimental setup using the reference baseline

[?] for dataset setup and parameters of architecture and the performance reported on it.

In Section 4.4, the experimental results are presented and discussed. Finally, in section

?? we discusse how to interactively use the EGL algorithm to proposse masks of interest

regions for further reduction labeling e�ort.
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Figure 4-1: Deep CNN architecture to classify between healty and exudate patches

4.2 Deep Learning Model

Supervised CNN models are one of the most successful deep learning models for computer

vision and medical imaging �eld is rapidly adapting this models to solve and improve in

a plethora of applications[25]. Our deep learning model is based in the LeNet CNN

architecture [36] with 7 layers as shown in the inner block of Figure 1, this architecture is

composed of a patch input layer followed by two convolutions and max pooling operations

to �nalize in a softmax classi�cation layer that outputs the probability of a patch being

healty or exudate.

The �rst stage of the block diagram shown at Figure 1 is the cropping of the eye fundus

image with size ranging from 1440× 960 to 2540× 1690 pixels. The extraction of healthy

and exudate patches of 48 × 48 pixels were made as follows, for healty a strati�ed set

of patches were selected in which the borders and internal sections of the eye were both

considered in order to train a more robust model, for exudates patches, were considered

positives just the ones that exceed on a threshold of a 60% the exudate area.

4.2.1 Preprocessing

Preprocessing is a usual step in the medical image processing pipeline to enhance the

characteristics of the image. The application of a set of transformations may improve

the performance in the following stages. We enclose the exudate in a bounding box in

order to extract the Region of interest (ROI) from the eye fundus image. Computer-aided

diagnosis (CADx) systems aim at classifying a previously identi�ed ROI in the whole �lm

image. This ROI can be obtained by a manual segmentation or automatically detected

by a computer aided detection system. Because of lesions in e-ophtha dataset 4.3.1 were

manually segmented, we �xed the input size to ROIs of 48 × 48 pixels according to the

mean of the lesion's size. With this, ROIs can be easily extracted by taking a bounding

box of the segmented region. Speci�cally, images were cropped to the bounding box of

the lesions, where the lesion is centered without scaling and preserving the surrounding

region. The condition to label a patch as a true exudate is that the intersection of the

2https://www.kaggle.com/c/diabetic-retinopathy-detection

https://www.kaggle.com/c/diabetic-retinopathy-detection
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patch with an exudate region be greater than the 60% of the ROI. Otherwise, the patch

was labelled as healthy patch.

Data augmentation The expressiveness of neural network models, and particularly

deep ones, comes mainly from the large number of parameters that are learnt. However,

more complex models also increase the chance of over�tting the training data. Data

augmentation is a good way that helps to prevent this behaviour [33]. Data augmentation

is the process of arti�cially create new samples by applying transformations to the original

data. In a classi�cation problem, data augmentation makes sense because an exudate can

be presented in any particular orientation. Thus, the model also should be able to learn

from such transformations. In particular, for each training image, we have arti�cially

generated 7 new label-preserving samples using a combination of �ipping and 90, 180 and

270 degrees rotation transformations. 4.4

4.3 Experimental setup

4.3.1 Ophtha Dataset

The e-ophtha database with color fundus images was used in this work. The database

contains 315 images with size ranging from 1440× 960 to 2540× 1690 pixels, 268 images

with no lesion and 47 with exudates which were segmented by ophthalmologists from the

OPHDIAT Tele-medical network under the the French Research Agency (ANR) project

[14].

The labeled patch dataset was created with 48Ö48 pixel patches that contain both exudate

and healthy examples. After the preprocessing steps of cropping and data augmentation,

the dataset splits were built with randomly selected patches of each class as follows: a

training split with 8760 patches for each class, a validation split with 328 per class and

a test split with 986. Images of a given patient could only belong to a single group

according to the described dataset distribution. At test time, only patches of unseen

patient images in trainng are forward propagated in the trained network to obtain their

class probabilities.

4.3.2 Evaluation

The technique of Decencieriere et al[14] was chosen as our baseline. A method based

on machine learning and image processing techniques is proposed to detect exudates in

eye fundus images reporting speci�city and sensitivity in a patch-wise experimental setup

using the e-ophtha dataset. The base LeNet model was trained using stochastic gradient

descent (SGD) from scratch without any trans- fer learning from other datasets. The

learning rate and batch size were explored in a grid search and showed robustness in the
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Figure 4-2: Results for F-meassure, Sensitivity and Speci�city, using Random Strategy
(Green) and EGL (Blue)

range of 32-64 in terms of batch size with a learning rate of 0.01 when trained with all

the training patches. In our �nal experiments we set the batch size to 32 and 0.01 for the

learning rate, using 30 as the number of epochs to train the model.

The model M is the LeNet CNN model in Figure 4.2, for the patch selection algorithm

we made the initial training with 5 batches of 32 samples and select for each call of EGL

the 32 most informative patches, as this �ts the batch size.

The proposed approach was implemented with Python 2.7 and the Ca�e deep learning

framework [28], which allows for e�cient access to parameters and data in memory, so

the . We use a NVIDIA GTX TITAN X GPU for our experiments. During all the

experiments, training loss and validation loss, as well as the accuracy over the validation

set were monitored.

4.4 Results

Figure 4-2 shows the results of the evaluation of the patch active selection algorithm

(Algorithm 3.3.1) compared to a strategy that randomly select patches from the training

data set.

When selecting the most informative patches for training the deep CNN using Algorithm

3.3.1 we can see an important improvement in terms of sample convergence. With as few

as 50 batches (50 Ö 32 = 1600 patches), the EGL approach is able to converge whereas

the usual random SGD strategy takes up to 200 batches, or 6400 patches. This shows

that with only 25% of the annotated dataset, our model is able to achieve the expected

performance of a fully annotated strategy. We want to test our image selector algorithm

(Algorithm 3.3.2) in the more realistic scenario where an ophthalmologist selects only a

few important or relevant images instead of patches to annotate and train the model.

With this approach we also have interesting results, as shown in Figure 3, where the left

side of the orange line is when the initial model training is performed. Then, the Algorithm

3.3.2 is used to select the most interesting image for the model and subsequently to update

the model. It is interesting that the convergence is reached even at an earlier stage than

when using the patch strategy (see Figure 4-3). As few as 30 batches are enough for
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Figure 4-3: Results for F-Measure, Sensitivity and Speci�city, using a random strategy
(blue) and active learning using EGL (green) for image selection. In this setup only the
patches of the 4 initial training images were used for training the model in the �rst 6 SGD
iterations, after this (orange line) we add the patches from the images with maximum EGL
value to the training set.

Method Sensitivity Speci�city

Decencieriere et al [14] 90 70
Full training dataset 99.8 99.5

Our approach with 25% Samples 98.7 99.7

Table 4-1: Performance measures in the baseline model and the proposed method.

the model convergence, showing that in this more realistic scenario our strategy also

outperforms the standard way of training deep CNN models.

4.4.1 Measuring and Visualizing Interestingness

Once we have an initial training of the model we can measure the interestingness of a full

image computing the sum of its EGL values. This was the criteria for selecting images in

algorithm 3.3.2. We can plot this value and see how this evolves as the model sees more

batches.

These values are illustrated in Figure 4-5. Here we can see how the interestingness

value decays after the model has converged, when the loss function does not decrease

anymore and the norm of the parameters is nearly 0. In Table 4-1 the accuracy, sensitivity

and speci�city of our proposed method are reported and compared with the baseline

method and the CNN model trained with the full dataset. The proposed method clearly

outperforms our baseline in both sensitivity and speci�city and obtains almost the same

performance of the classic SGD strategy that sees the entire dataset randomly. This shows

that the proposed method is able to capture the visual features that characterize exudates

even when there is a limited annotated dataset.
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Figure 4-4: A test image with several exudate areas for testing the interestingnes mask
below

Figure 4-5: Interestingness over training time. After the model converges the interest-
ingness value decays to 0 because the norm of the gradient is close to 0.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions and discussion

In this thesis, methods for sample-e�cient training of deep models using active learning

were presented . The novelty of the work here presented resides in three main issues:

1. Exploring and adapting active learning algorithms to make more label-e�cient deep

convolutional neural networks

2. Show their feasibility to apply to medical imaging work�ows where data is scarse

and expensive.

3. Present a visualization for label the most interesting parts within an image.

Some of our methods show that even with an small portion of the training dataset of ∼ 25

of original samples were enough to train the model with almost the same performance of

the model that was trained with all the samples, showing the feasibility of active learning

strategies for deep CNN training.

Our approach presents a computational drawback when the number of unlabeled datasam-

ples to check is large, but we think that this could be overcome with traditional sampling

techniques. Despite our results showing good performance using only a portion of the

data, we would like to do further experimentation involving scenarios where the need for

labeled data is even more critical and also in large�scale datasets where the combination

of our sample selection techniques with transfer learning could lead to a performance

boost.

We think that active learning techniques has a promising application landscape in the

challenging tasks of medical imaging using deep learning because of their potential to

relief the need for large amounts of labeled data. This will allow the usage of deep

learning models in a broader set of medical imaging tasks like detection and segmentation

of structures in specialized domains such as histopathology image analysis or computed

tomography scans where the labels are costly
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5.2 Future Work

Currently important issues exists regarding the use of deep learning technologies in the

medical imaging work�ow, the label cost problem was partially addressed in this thesis,

giving insights with methods that helps to overcome this issue. Nevertheless the following

problems are currently being investigated[25] and I strongly believe that are prommising

research directions:

1. Do we need to work on getting real Big Data for each medical task, or will transfer

learning be su�cient?

2. Is the fusion of image modalities and other medical information fusion approaches

feassible with deep learning?

3. The creation and participation of challenges: Those events provide a precise de�ni-

tions for tasks to be solved and de�ne one or more evaluation metrics that provide a

fair and standardized comparison between proposed algorithms, thus, making more

reliable and traceable the progress in the �eld.
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