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Abstract 

The mechanisms of thin phytoplankton layers development were investigated in the tropical La 

Fe reservoir in terms of the balance between convergence processes acting to thin the layers and 

turbulent diffusion acting to dissipate them. Our approach included the analysis of field data 

collected in a field campaign during September 2012, the calibration of the hydrodynamic and 

ecological model ELCOM-CAEDYM, and the application of a scaling analysis in order to 

understand and define the processes involved in the formation, maintenance and dissipation of 

the observed thin layers in the reservoir. Based on the scaling analysis applied to identify the 

mechanisms participating in the layering process, we defined in situ growth as the primarily 

mechanism involved in the formation of the layers. The influx of nutrients due to horizontal 

intrusions and vertical turbulent fluxes influenced this mechanism. Other analyzed mechanisms 

were convergent swimming and buoyancy of phytoplankton cells. The stratification of the water 

column together with the dissipation rates responsible to the turbulence around the layers 

defined local region with favorable conditions to the development of thin layers. Further studies 

are needed in order to characterize more precisely the mechanisms involved in the development 

of phytoplankton layers in this reservoir and other environments. 

Keywords: Thin layers · Phytoplankton · Distribution · Mechanisms · Reservoir · Chlorophyll a 

· Water column 
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Resumen 

Los mecanismos responsables de la formación de capas delgadas de fitoplancton en el embalse 

tropical La Fe fueron investigados en términos del balance entre los procesos de convergencia 

que actúan comprimiendo las capas y los procesos difusivos que actúan disipándolas. Nuestro 

planteamiento incluye el análisis de datos de campo medidos en una campaña de campo 

realizada en Septiembre de 2012, la calibración del modelo hidrodinámico y ecológico ELCOM-

CAEDYM y la parametrización de los mecanismos analizados con el fin de entender y definir los 

procesos involucrados en la formación, permanencia y disipación de las capas de fitoplancton 

observadas en el embalse. Basados en la parametrización desarrollada para identificar los 

mecanismos participantes en la formación de las capas de fitoplancton, definimos el crecimiento 

in situ de las células de fitoplancton como el principal mecanismo responsable de la formación de 

las capas. El flujo de nutrientes debido a la intrusión horizontal y a los flujos turbulentos en la 

vertical influenció este mecanismo. Los otros mecanismos analizados están relacionados con el 

desplazamiento y la boyancia de las células de fitoplancton en la columna de agua. La 

estratificación de la columna de agua junto con las velocidades de disipación responsables de la 

turbulencia alrededor de las capas definieron regiones locales con condiciones favorables para el 

desarrollo de las capas delgadas de fitoplancton. Se necesitan más estudios para caracterizar más 

precisamente los mecanismos que participan en el desarrollo de las capas de fitoplancton en este 

embalse y en otros escenarios. 

Palabras clave: Capas delgadas · Fitoplancton · Distribución · Mecanismos · Embalse · 

Clorofila a · Columna de agua 
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Introduction 

The variations of phytoplankton concentration along the water column are common and 

recognized as a recurrent feature in coastal and oceanic environments, and inland waters for over 

years (Alldredge et al., 2002; Dekshenieks et al., 2001; McManus et al., 2003; Vidal, Moreno-

Ostos, Escot, Quesada, & Rueda, 2010; Vidal, Rigosi, Hoyer, Escot, & Rueda, 2014; Wang & 

Goodman, 2009). Depending on different gradients in the water column (temperature, irradiance, 

velocities, and nutrients) and their intensity, phytoplankton can accumulate at different depths 

forming layers of varying vertical extent (George, 1993; Huisman, Van Oostveen, & Weissing, 

1999; Serra, Vidal, Casamitjana, Soler, & Colomer, 2007). Particularly, accumulations of cells may 

form thin layers with higher concentration of phytoplankton, i.e. regions within the water column 

with intense biological and chemical processes and interactions (McManus et al., 2008; Sevadjian, 

McManus, & Pawlak, 2010). Such structures have different dynamics and behavior from 

phytoplankton cells distributed throughout the water mass (Rines, Donaghay, Dekshenieks, 

Sullivan, & Twardowski, 2002; Vidal et al., 2010). These layers may be formed not only by 

phytoplankton, but also an aggregation of a wide variety of organisms such as zooplankton and 

marine snow, as well as viruses and bacteria (Alldredge et al., 2002; McManus et al., 2003; Rines 

et al., 2002; Sevadjian et al., 2010). 

Phytoplankton distributions are often heterogeneous in space and time. Phytoplankton patches 

may link large scale processes and microscale interactions, ranging scales from kilometers to 

centimeters (Mitchell, Yamazaki, Seuront, Wolk, & Li, 2008). At large scales, distributions are 

driven by enhancing growth rates due to processes such as nutrient upwelling and front 

formation (Lévy, 2008). At small scales, the interaction of phytoplankton with chemical and 

physical gradients originates the heterogeneity at the water column influencing trophic processes 

and changes into the food web (Durham & Stocker, 2012; Prairie, Franks, Jaffe, Doubell, & 

Yamazaki, 2011). In addition, the time scale must be taken into account to define the 

characteristics and dynamics of thin layers (Prairie et al., 2011), since the effects on the 

ecosystem in which they occur depend on their duration. Thereby, layers that persist for days to 

weeks will have more effects than temporary layers (Birch, Young, & Franks, 2008). The extent to 

which similar conditions remains depend mainly on wind forcing, on the geometry of the water 

body, and on the phytoplankton community (Vidal et al., 2014). 

In general, phytoplankton layers are generated in response to a balance between convergence 

processes such as growth, regulated buoyancy, vertical migration (Reynolds, 1984; McManus et 

al., 2003), advective transport (George & Edwards, 1976; George & Heaney, 1978), and 
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divergence process such as turbulent mixing (Serra et al., 2007; Steinbuck, Stacey, McManus, 

Cheriton, & Ryan, 2009). These processes change over time, so phytoplankton layers are 

expected to exhibit a variable behavior (Cloern, Alpine, Cole, & Heller, 1992). Considering physical 

processes from large-scales (hydrography changes) to small-scales (turbulent mixing) and 

biological processes for the phytoplankton species in the layers may contribute to discern which 

mechanisms participate in the development of the layers (McManus et al., 2003). Physical 

processes acting in large-scales influence phytoplankton distribution due to the changes 

generated, for example, in the pycnocline. At small scales, layers are developed under stable 

conditions of the water column where turbulence is low to disperse the layers (Dekshenieks et al., 

2001; McManus et al., 2003; McManus et al., 2005). Phytoplankton characteristics such as growth 

rates, buoyancy and swimming velocities can even superimpose on the physical processes 

affecting phytoplankton distributions. Thereby, the combination of these biological species-

specific processes along with physical processes define the spatio-temporal distribution of thin 

layers in the water masses (McManus et al., 2003). 

Taking into account that the combination of processes related with the formation, maintenance 

and dissipation of thin phytoplankton layers depend on the particular characteristics and 

conditions of each layer (McManus et al., 2003), a multidisciplinary approach with measurements 

at different scales is needed in order to understand layers dynamics and the consequences of 

these structures over the entire environment in which they occur (Menden-Deuer, 2008). 

The overall objective of this research focuses on the analysis of different mechanisms responsible 

for the development of thin phytoplankton layers, based on the balance between convergence 

processes forming the layers and the divergence processes that diffuse them. This document is 

divided in six chapters. The first chapter describes the theoretical framework including 

definitions, characteristics and criteria for the identification of thin layers. A description of the 

convergence-diffusion balance and the mechanisms of layer formation, maintenance and 

dissipation are also presented in this section. This chapter is followed by the motivation behind 

this study and the objectives defined. Next chapter presents the methods implemented through 

this research and the following one presents the results and their respective discussion. We close 

with the chapter of conclusions obtained with this research, and the chapter of recommendations 

and future work. In this context, this study contributes to knowledge, as an approximation, to the 

factors and mechanisms that drive phytoplankton formation, maintenance and dissipation in a 

tropical reservoir.  

The results of this research must be taken as an approximation of the real ones due to the 

mechanisms involved in the development of the observed thin layers were not measure directly, 

instead, those were estimated numerically from the observed distributions of thin phytoplankton 

layers and an hydrodynamic and ecological model. It was observed that the coupling between 

physical, chemical and biological measurements with a numerical model may provide insights into 

the responses of phytoplankton to the changes in the water column and help to develop most 

appropriate strategies to manage and control water quality in reservoirs. 



 

 
 

1. Theoretical framework 

1.1 Thin phytoplankton layers  

Thin phytoplankton layers are aggregations of large numbers of photosynthetic organisms within 

a small depth interval (Durham & Stocker, 2012). These layers exhibit optical, acoustical, physical, 

chemical, and biological characteristics that are different from the characteristics presented by 

other distributions of phytoplankton cells in the water column (Cowles, Desiderio, & Carr, 1998; 

McManus et al., 2003; McManus et al., 2005, 2008). This kind of layers was first reported by 

Gessner (1948) and then by Lorenzen (1967) using in vivo fluorescence as technique to detect 

chlorophyll maxima. A detailed description of chlorophyll profiles was made by Strickland (1968), 

followed by Derenbach, Astheimer, Hansen, & Leach (1979). Since then, phytoplankton layers 

have been observed in a variety of environments in vertical scales of a few meters to horizontal 

extent of kilometers (Anneville & Leboulanger, 2001; Cheriton, McManus, Stacey, & Steinbuck, 

2009; Mitchell et al., 2008; E. Moreno-Ostos, Cruz-Pizarro, Basanta-Alvés, Escot, & George, 2006; 

Velo-Suárez, Fernand, Gentien, & Reguera, 2010).  

1.1.1 Characteristics 

There are different kinds of phytoplankton aggregations within the water column including thin 

layers, deep chlorophyll maximum (DCM) and ephemeral small-scale patches. Thin layers are 

distinct from DCM by their fine vertical scales. Thin layers have thicknesses of a fraction of a 

meter to a few meters, much stronger vertical concentration gradients (Dekshenieks et al., 2001), 

and these layers can even have concentrations of phytoplankton cells much greater than the 

background concentrations (Durham & Stocker, 2012). On the other hand, DCM presents typically 

a less intense increase in chlorophyll concentrations (McManus et al., 2008), thickness of tens of 

meters, and weak vertical gradients of chlorophyll in the water column (Cullen, 1982). In another 

way, thin layers are distinguished from ephemeral small-scale patches by both shape and 

persistence time (Durham & Stocker, 2012). Thin layers have aspect ratios (horizontal to vertical 

extent) of the order of 1,000 (Moline et al., 2010) and last hours to weeks, in contrast to small-

scale patches with aspect ratios closer to unity and lifetimes of some minutes (Mitchell et al., 

2008). 

Thin phytoplankton layers have usually been identified as spikes in vertical profiles of 

fluorescence in the water column (Birch et al., 2008; Durham & Stocker, 2012). These spikes are 
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often many times the background concentration with tens of centimeters to a few meters thick, 

extend horizontally for kilometers, and persist for hours to days (Dekshenieks et al., 2001; 

McManus et al., 2003; Moline et al., 2010). In general, these layers often occur in regions of 

strong vertical density gradients and low turbulent mixing (Dekshenieks et al., 2001).  

Thin phytoplankton layers tend to occur within the euphotic zone during the daytime, but they 

can also occur at nighttime some meters below the water surface (Wang & Goodman, 2009). This 

behavior is driven by the vertical gradient of light and nutrients in the water column and the 

vertical migration characteristics of each species of phytoplankton. Thus, phytoplankton 

organisms can stay in the well-lit surface waters during the day (Ryan, McManus, & Sullivan, 

2010; Sullivan, Donaghay, & Rines, 2010) and move deeper at night where higher concentrations 

of nutrients are available and predation risks are reduced (Bollens, Rollwagen-Bollens, Quenette, 

& Bochdansky, 2011). 

Many thin layers are formed by motile phytoplankton species (Bjornsen & Nielsen, 1991; 

Steinbuck et al., 2009; Sullivan, Donaghay, et al., 2010; Townsend, Bennett, & Thomas, 2005), but 

also thin layers of nonmotile species, such as diatoms, have been observed (Alldredge et al., 

2002; Stacey, McManus, & Steinbuck, 2007; Sullivan, Donaghay, et al., 2010). Furthermore, 

depending on the buoyant characteristics of the phytoplankton cells, they will tend to accumulate 

near the surface (positively buoyant), at the bottom of the mixing layer (negatively buoyant), or 

be randomly distributed in the water column (neutrally buoyant) (Vidal et al., 2014).  

1.1.2 Criteria for identifying thin layers 

The work published by Dekshenieks et al. (2001) was the first study that define criteria to identify 

thin layers. However, universal criteria to identify thin layers from others forms of phytoplankton 

aggregations do not exist due to the diversity of organisms, instrumentation, and environmental 

conditions in each location where these structures are observed (Sullivan, McManus, et al., 2010). 

Some common criteria have been established based on the thickness and concentration of 

phytoplankton cells in the layers (Dekshenieks et al., 2001; Sullivan, McManus, et al., 2010):  

a) The aggregation must be identifiable in two or more subsequent vertical profiles. This 

helps to preserve the spatial coherence of the measurement.  

b) The vertical extent of the layer must be no more than 5 m thick. This thickness was 

defined due to it is finer than the scale often used in the measurements with bottles and 

nets. The statistics of multiple studies on thin layers have shown that a 3 m cutoff is more 

adequate (Ryan et al., 2010).  

c) The maximum concentration must be at least three times the local background 

concentration. This criterion eliminates from the observations ephemeral aggregations. 
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Thresholds differ among studies, and some studies use additional criteria (Durham & Stocker, 

2012).  

1.2 Convergence–diffusion balance  

Based on the scaling framework developed by Stacey et al. (2007) describing layering process as 

the result of the balance between convergence and divergence processes, we evaluate which of 

the considered mechanisms participate in the formation and maintenance of the observed thin 

phytoplankton layers taking into account the effect of turbulent diffusion. 

Defining the characteristic length scale for the vertical thickness of the layer as 𝑙 and the net rate 

of change of the layer thickness as 

(
𝜕𝑙

𝜕𝑡
)

𝑛𝑒𝑡
= (

𝜕𝑙

𝜕𝑡
)

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒
+ (

𝜕𝑙

𝜕𝑡
)

𝑡𝑢𝑟𝑏
    (1) 

where the first term on the right side includes the different convergent mechanisms acting to thin 

the layer (negative), and the second term on the right side refers to the diffusive processes acting 

to dissipate the layer or at least maintain the layer thickness (positive). During the layer 

formation, convergence processes are more important than the processes trying to broaden the 

layer, leading to reduce layer thickness (the net rate of change of the layer thickness would be 

negative). In contrast, during the layer dissipation period the opposite occurs due to the diffusive 

processes acting to broaden the layer are stronger than other processes (the net rate of change 

of the layer thickness would be positive). An equilibrium condition is achieved when the 

convergence processes are balanced by the diffusive processes. Thus, the equilibrium condition 

for layer maintenance is given by 

(
𝜕𝑙

𝜕𝑡
)

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒
+ (

𝜕𝑙

𝜕𝑡
)

𝑡𝑢𝑟𝑏
= 0    (2) 

Considering turbulent diffusion acting in the cross-layer direction (assuming isotropic turbulence), 

the rate of change of layer thickness as a result of turbulent diffusion is given by (see, e.g., 

Fischer, List, Koh, Imberger, & Brooks (1979)) 

(
𝜕𝑙2

𝜕𝑡
)

𝑡𝑢𝑟𝑏

=  2𝑘𝑧    (3) 

where 𝑘𝑧 is the vertical turbulent diffusion coefficient. This equation reduces to 

(
𝜕𝑙

𝜕𝑡
)

𝑡𝑢𝑟𝑏
=  

𝑘𝑧

𝑙
    (4) 
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Thereby, the rate of change of layer thickness as a result of turbulent diffusion decreases with 

layer thickness. Thus, the equilibrium condition takes the form 

(
𝜕𝑙

𝜕𝑡
)

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒
+

𝑘𝑧

𝑙
= 0    (5) 

This equilibrium condition allows layers to persist through the balance between convergence and 

diffusion processes. Others diffusion processes may be acting to disperse the layers (e.g., 

contraction and expansion of isopycnals and undirected swimming), but in this scaling analysis 

only turbulence diffusion is considered as a mechanism responsible to dissipate the observed 

layers. 

These results define a scaling approach to the change of layer thickness based on convergence 

processes acting to thin the layer and diffusive processes acting to broaden it. These scaling 

results are applied to different convergent mechanisms to differentiate among them. 

1.3 Mechanisms  

Owing to the several factors associated with the development of thin phytoplankton layers, it is 

unlikely that a single mechanism governs all observed layers (Stacey et al., 2007; Prairie, Franks, & 

Jaffe, 2010). Different convergent mechanisms have been suggested to explain the formation and 

maintenance of layers of high phytoplankton biomass in the pycnocline considering the 

homogenizing effect of turbulent diffusion. In this context, the challenge lies in connecting scaling 

approach with field observations to define the mechanisms, processes, and factors underlying 

layers development.  

1.3.1 Straining 

Any process that generates horizontal distribution of water properties may form layers of those 

properties in the presence of vertical shear (Birch et al., 2008). This is the result of differential 

advection, whereby a patch is transported at different flow velocities until it is transformed into a 

thin layer (see Figure 1-1) (Durham & Stocker, 2012). This mechanism was initially proposed by 

Eckart (1948) to explain field observations of temperature and then extended to phytoplankton 

layers (Franks, 1995; Osborn, 1998). 
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Figure 1-1 Straining transforms a patch at time t1 into a thin layer by progressively tilting it. Figure 

taken from (Durham & Stocker, 2012).  

Initially, the dynamic of the layer is more influenced by straining than turbulent diffusion. 

Thereby the layer thickness will monotonically approach zero and, unlike other mechanisms, the 

phytoplankton concentration in the layer might be the same as straining cannot increase the local 

concentration of phytoplankton by itself (Durham & Stocker, 2012). However, its thickness 

decreases until the turbulent diffusion becomes stronger to broaden the layer, reducing 

phytoplankton concentration and increasing the layer thickness, thus placing a limitation on the 

lifetime and intensity of strained layers (Durham & Stocker, 2012).  

Based on the scaling analysis of Stacey et al. (2007) and the mathematical treatment of Steinbuck 

et al. (2010), the rate of change of layer thickness due to straining scales as 

(
𝜕𝑙

𝜕𝑡
)

𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
~ − 𝑈

𝑙

𝑙𝑥
~

𝑙2

𝑙𝑥

𝜕𝑢

𝜕𝑧
    (6) 

This scaling relationship defines the velocity in terms of the layer thickness and vertical shear, 

𝑈~𝑙 (
𝜕𝑢

𝜕𝑧
) , and where 𝑙𝑥  is the horizontal length scale of the initial phytoplankton patch 

(Steinbuck et al., 2010). In the equilibrium, the straining-diffusion balance takes the form 

− (
𝜕𝑙

𝜕𝑡
)

𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
~ (

𝜕𝑙

𝜕𝑡
)

𝑡𝑢𝑟𝑏
    (7) 

The horizontal length scale of the initial phytoplankton patch, with constant shear and diffusivity, 

can be estimated as 

𝑙𝑥~
𝑙3 (

𝜕𝑢
𝜕𝑧

)

𝑘𝑧
    (8) 

1.3.2 Convergent swimming 

For both zooplankton and phytoplankton species, motility is normally considered as one of the 

mechanism responsible for the formation and maintenance of thin layers (Genin, Jaffe, Reef, 
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Richter, & Franks, 2005; Rines et al., 2002). Many factors including a specific light intensity and 

nutrients concentrations can contribute to the formation of phytoplankton layers at particular 

depths by convergent swimming (see Figure 1-2) (Durham & Stocker, 2012). 

 

Figure 1-2 Aggregation of cells in a layer at depth with favorable conditions (e.g., a specific light 
intensity (L) and nutrient concentration (K)). Figure taken from (Durham & Stocker, 2012). 

Convergent swimming as the mechanism responsible of layering formation has been modeled 

assuming that cells aggregate at a particular depth. Stacey et al. (2007) proposed a model to 

determine the rate of convergence due to species motility in which it assumes that cells swim 

vertically at a constant velocity (𝑤𝑠) and oriented toward a target depth (𝑧𝑜) from both above and 

below that depth. If 𝑊(𝑧) corresponds to the vertical swimming velocity of the organism as a 

function of depth (with 𝑧 and 𝑊 positive downward), the model developed by Stacey et al. (2007) 

is given by 

𝑊(𝑧) = −𝑤𝑠 for 𝑧 > 𝑧𝑜 and 𝑊(𝑧) = 𝑤𝑠 for 𝑧 < 𝑧𝑜    (9) 

Assumptions considered in this model are justified in terms of the relative displacement and 

stronger gradients observed vertically than horizontally in properties such as light, nutrients, and 

temperature (Franks, 1992).  

In terms of the vertical swim velocity of cells in and around the layer, the rate of change of layer 

thickness due to convergent swimming is given by  

(
𝜕𝑙

𝜕𝑡
)

𝑠𝑤𝑖𝑚𝑚𝑖𝑛𝑔
~ − 𝑤𝑠    (10) 

Thus, the swimming-diffusion balance takes the form 

− (
𝜕𝑙

𝜕𝑡
)

𝑠𝑤𝑖𝑚𝑚𝑖𝑛𝑔
~ (

𝜕𝑙

𝜕𝑡
)

𝑡𝑢𝑟𝑏
    (11) 

And the vertical swim velocity required to maintain the layer scales as 

𝑤𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ~ 
𝑘𝑧

𝑙
    (12) 
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1.3.3 Buoyancy 

Particle buoyancy is other mechanism frequently observed in the formation and maintenance of 

layers on pycnoclines (Franks, 1992). Nonmotile phytoplankton species can also control their 

vertical position in the water column by regulating their buoyancy (i.e., the difference between 

their density (𝜌𝑐) and the water around (𝜌𝑜)), see Figure 1-3. For this, they use mechanisms such 

as gas vacuoles, carbohydrate ballasting, and active replacement of ions in the internal sap 

(Durham & Stocker, 2012).  

 

Figure 1-3 Nonmotile cells can sink (if heavier), rise (if lighter), or accumulate at their depth of 
neutral buoyancy (dotted line), generally at pycnoclines. Figure taken from (Durham & Stocker, 

2012). 

Considering a phytoplankton cell of density 𝜌𝑐 retained at an isopycnal of density 𝜌𝑜 (i.e., 𝜌𝑜 =

𝜌𝑐). If the cell is moved from its equilibrium position, a buoyancy-induced force acts on the 

particle returning it to its equilibrium depth (Stacey et al., 2007). For low Reynolds numbers and 

as a first approximation, Stokes’ law can be used to estimate a settling velocity at which a 

phytoplankton cell will displace back toward its equilibrium depth. This velocity can be then used 

to define a scaling relationship to the rate of change of layer thickness due to the effects of 

buoyancy on phytoplankton cells: 

𝑉𝑠𝑒𝑡𝑡𝑙𝑒 = (
𝜕𝑙

𝜕𝑡
)

𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦
= −

∆𝜌𝑔𝐷2

𝜌𝑜18𝜇
    (13) 

where ∆𝜌 is the difference between the cell density and water density, 𝐷 is the cell diameter 

(assuming a spherical shape), 𝑔 is the gravitational acceleration, and 𝜇 is the molecular viscosity 

of water (Stacey et al., 2007). 

We based our analysis on a cell in equilibrium at the center of a linear density profile (𝑧 = 𝑧𝑜), 

where the density difference can be associated to the position of the cell by 

∆𝜌

𝜌𝑜
𝑔 = −

𝑔

𝜌𝑜

𝜕𝜌

𝜕𝑧
(𝑧 − 𝑧𝑜) = 𝑁2(𝑧 − 𝑧𝑜)    (14) 
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where 𝑁2 is the squared buoyancy frequency defined as  

𝑁2 = −
𝑔

𝜌𝑜

𝜕𝜌

𝜕𝑧
    (15) 

Thus, the rate of change of layer thickness takes the form 

(
𝜕𝑙

𝜕𝑡
)

𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦
= −

𝑁2𝐷2

18𝜇
(𝑧 − 𝑧𝑜)    (16) 

Scaling (𝑧 − 𝑧𝑜) as the layer thickness leads to 

(
𝜕𝑙

𝜕𝑡
)

𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦
= −

𝑁2𝐷2

18𝜇
𝑙    (17) 

Now, the settling-diffusion balance takes the form 

− (
𝜕𝑙

𝜕𝑡
)

𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦
~ (

𝜕𝑙

𝜕𝑡
)

𝑡𝑢𝑟𝑏
    (18) 

Solving for the phytoplankton cell diameter required to counteract turbulent diffusion (Steinbuck 

et al., 2010) 

𝐷𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ~ √
18𝜇𝑘𝑧

𝑙2𝑁2
    (19) 

1.3.4 In situ growth 

The formation of layers of locally enhanced biomass at mid-depth may occur as the growth 

response of organisms to non limited conditions of light intensity and nutrients (see Figure 1-4) or 

to the availability of nutrients over a specific range of depths (Durham & Stocker, 2012). Here, we 

have considered the formation of layers due to in-situ growth based on the influx of nutrients in 

both ways: horizontal intrusions and vertical turbulent fluxes. 
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Figure 1-4 Layer formation due to in situ growth at a specific depth with favorable conditions 
(e.g., light intensity (L) and nutrient concentration (K)). The depth of maximal growth rate is 

denoted by a dotted line. Figure taken from (Durham & Stocker, 2012). 

Intrusions can produce layers of phytoplankton directly through the transport of phytoplankton 

cells into adjacent waters or alternatively by the advective transport of nutrients-rich waters that 

then will enhance growth rates at local-depth (Durham & Stocker, 2012). In all cases, intrusions 

play a key role in supporting phytoplankton layers. Here, we evaluate whether intruding waters 

could have carried nutrients that then enhanced growth rates of phytoplankton. The increase in 

chlorophyll a concentration caused by growth (∆𝐶𝑔𝑟𝑜𝑤𝑡ℎ) can be estimated from a discrete form 

of the growth term in the advection-diffusion equation (Steinbuck et al., 2010) 

∆𝐶𝑔𝑟𝑜𝑤𝑡ℎ =  µ𝑛𝑒𝑡𝐶𝑏𝑡𝑝𝑟𝑜𝑝    (20) 

where µ𝑛𝑒𝑡  is the net production rate of chlorophyll a (growth minus mortality), 𝐶𝑏  is the 

background chlorophyll a concentration, and 𝑡𝑝𝑟𝑜𝑝 is the time scale of intrusion propagation 

(Fischer et al., 1979) estimated as  

𝑡𝑝𝑟𝑜𝑝 ~ 
𝐿2

2𝑘𝐻
    (21) 

where 𝐿 is the characteristic length scale of the patch and 𝑘𝐻  is the horizontal dispersion 

coefficient. This time scale implies an equilibrium flow where growth dominates over advection 

and diffusion processes due to its shortest time scale (Imberger, 1977; Imberger et al., 1983).  

The horizontal dispersion coefficient may be expressed by 

𝑘𝐻 = 𝛼𝐿𝛽    (22) 

with 𝛼 = 3.2𝑥10−4 and 𝛽 = 1.1 (Lawrence, Ashley, Yonemitsu, & Ellis, 1995). These parameters 

incorporate the effects of factors such as surface heat fluxes, wind speed, direction, turbulence 

levels, and the inevitable measurement errors. Values obtained with this equation have 95 

percent probability of being accurate within a factor of approximately 2.5 over length scales 

ranging from 10 m to > 100 km (Lawrence et al., 1995). 
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Now, comparing ∆𝐶𝑔𝑟𝑜𝑤𝑡ℎ with the observed chlorophyll a anomaly of the layers (∆𝐶𝑜𝑏𝑠) defined 

as the difference between the concentration at the maximum peak minus the background 

concentration (𝐶𝑏) of the layer (Steinbuck et al., 2010), we establish the viability of layer 

formation due to in-layer growth.  

A second possible mechanism for stimulating growth in layers is given by vertical turbulent fluxes 

of nutrients (Steinbuck et al., 2010) 

𝐹𝑁 = −𝑘𝑧 [
𝜕𝐶𝑁

𝜕𝑧
]    (23) 

where 𝐶𝑁 is the nutrient concentration.  

The timescale required to supply the nutrients needed to support in-layer growth of 

phytoplankton cells (Steinbuck et al., 2010) can be defined as  

𝑇𝑠𝑢𝑝𝑝𝑙𝑦 =  
∆𝑁𝑎𝑛𝑜𝑚

𝐹𝑁
    (24) 

where ∆𝑁𝑎𝑛𝑜𝑚  is the anomaly in the in-layer, vertically-integrated nutrients (nitrate or 

phosphate) required to support the observed chlorophyll a layers. This timescale (𝑇𝑠𝑢𝑝𝑝𝑙𝑦) 

assumes that the nutrients entering the layer are completely taken up by the phytoplankton cells 

(Steinbuck et al., 2010). 

1.3.5 Other mechanisms 

In addition, other physical and/or biological processes may play a role in thin layer formation not 

only forming the layer, but also contributing to its maintenance. These processes include for 

example gyrotactic trapping, reproduction, the increase in local viscosity, and differential grazing. 

Gyrotactic trapping is a mechanism based on the movement of motile phytoplankton into a 

region where flow induces tumbling of the cells, trapping them at depth in the form of a thin 

layer (Durham, Kessler, & Stocker, 2009; Durham & Stocker, 2012). Higher concentrations of 

phytoplankton could lead to increase reproduction rates, this may be important to some kinds of 

thin layers especially those formed during blooms (Nielsen, Kiørboe, & Bjørnsen, 1990). 

Phytoplankton cells can also contribute to the maintenance of the layer increasing the local 

viscosity of the surrounding waters and therefore reducing the turbulent diffusion acting on the 

layer (Jenkinson & Biddanda, 1995). Alternatively, the inhibition of potential predators may help 

to preserve the phytoplankton layers. In this case, zooplankton may avoid certain kinds of 

phytoplankton layers (e.g., layers formed by toxic species) helping to maintain those layers 

(Fiedler, 1982; Bjornsen & Nielsen, 1991). It is likely that several mechanisms are operating 

simultaneously at any given time. The relative contribution of any mechanism will depend on the 

local environment conditions and the planktonic community present in the water column (Franks, 

1995). 
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1.4 Maintenance 

The mixing environment can be characterized in terms of the stabilizing influence of the density 

gradient and the disturbing effect of velocity shear. Both parameters provide a framework to 

understand which conditions are favorable for layer persistence or not (Cowles et al., 1998). In 

general, stratification contributes to the formation and maintenance of phytoplankton layers in 

two ways: facilitating accumulation of the sinking cells that reach neutral buoyancy at a 

pycnocline and reducing vertical turbulent mixing in the water column (Durham & Stocker, 2012). 

On the other hand, shear can favor layer formation via mechanisms such as straining or gyrotactic 

trapping, but it can also generate instabilities and turbulence in the water column diffusing layers.  

The net stability of the water column is determined by the gradient Richardson number (𝑅𝑖), 

given by the ratio of the squared buoyancy frequency (𝑁2), and the squared shear (𝑆2) 

𝑅𝑖 =
𝑁2

𝑆2
    (25) 

where the squared vertical shear is defined, after Itsweire, Osborn, & Stanton (1989), as  

𝑆2 = (
𝑑𝑈

𝑑𝑧
)

2

+ (
𝑑𝑉

𝑑𝑧
)

2

    (26) 

where 𝑈 and 𝑉 are the components of the horizontal velocities. 

Persistent local minima in shear and local maxima in the density gradient create regions of 

stability that allow thin layers to persist. Conversely, local increments in shear and/or local 

decrements in the density gradient can dissipate small-scale structure through shear instabilities 

(Cowles et al., 1998). The critical value of 𝑅𝑖 = 0.25 has been accepted as a boundary between a 

stable or unstable water column (Eriksen, 1978; Miles, 1961; Scotti & Corcos, 1972). Thus, when 

𝑅𝑖 is greater than 0.25 the water column is expected to be stable to shear-instabilities (Miles, 

1961) and, in this way, able to support thin layer formation and maintenance (Dekshenieks et al., 

2001; McManus et al., 2003). 

Moreover, the competition between stratification and turbulent mixing can be assessed through 

the buoyancy Reynolds number defined as 

𝑅𝑒𝑏 =
𝜀

𝜇𝑁2
    (27) 

where 𝜀 is the turbulent dissipation rate. Based on this number, it has defined that turbulence is 

in general unaffected by stratification for 𝑅𝑒𝑏 > ~100 (Steinbuck et al., 2009). Stratification 

significantly affects the turbulence in the range ~15 < 𝑅𝑒𝑏 < ~100 (resulting in anisotropies), 

and dominates turbulence for 𝑅𝑒𝑏 < ~15 (Itsweire, Koseff, Briggs, & Ferziger, 1993; Ivey & 
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Imberger, 1991). In this last case, turbulence is insufficient to broaden the layer through vertical 

mixing (Steinbuck et al., 2010).  

1.5 Dissipation 

To analyze the role of layer divergence on the development of a thin phytoplankton layer, we 

need to estimate the vertical turbulent diffusion coefficient (𝑘𝑧). In order to reduce the broad 

uncertainty associated with this coefficient (Stacey et al., 2007), two methods have been applied 

to calculate turbulent dissipation rate.  

1.5.1 Thorpe scale 

We begin with the estimation of the Thorpe scale, also called overturning scale (𝐿𝑡). This scale 

was calculated as the root mean square displacement (𝑙𝑑) of water parcels from their equilibrium 

vertical position, based on the reordering of the density profile to make it gravitationally stable 

(Thorpe, 1977). In this sense, we first calculated from each measured and sorted profile of 

temperature: 

𝐿𝑡 = √𝑙𝑑
2    (28) 

Assuming that the Thorpe scale is equal to the Ozmidov scale (see, e.g., Gregg, 1987), where the 

Ozmidov scale (𝐿𝑜) is estimated as 

𝐿𝑜 = (
𝜀

𝑁3
)

1/2

    (29) 

the turbulent dissipation rate can be defined as 

𝜀 = 𝐿𝑡
2𝑁3    (30) 

Based on this estimation of the turbulent dissipation rate and considering a local balance 

between shear production, dissipation rate, and buoyancy flux, we may estimate the turbulent 

diffusion coefficient through (Osborn, 1980) 

𝑘𝑧 = 𝛾𝑚𝑖𝑥

𝜀

𝑁2
    (31) 

The value of mixing efficiency (𝛾𝑚𝑖𝑥) is generally at or close to 0.2 (Osborn, 1980). This value 

depends on turbulence conditions of the medium.  
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1.5.2 Turbulent fluctuations 

An estimation of the dissipation rate based on the turbulent density fluctuations is given by 

(Itsweire et al., 1993)  

𝜀 = (4~5)𝜑𝑁2𝐶𝑧   (32) 

where 𝜑 is the molecular diffusivity and 𝐶𝑧 the vertical Cox number defined as  

𝐶𝑧 = 3
(

𝜕𝜌′
𝜕𝑧

)
2̅̅ ̅̅ ̅̅ ̅̅ ̅

(
𝜕𝜌̅
𝜕𝑧

)
2     (33) 

where 𝜌′ designates the density fluctuations and 𝜌̅ the density average over 0.1 m vertical bin 

cells. Bins are defined as the length of the observation windows in which the vertical profile is 

divided and where the vertical attributes of the profile within each bin are averaged.





 

 
 

2. Motivation 

Generally, thin phytoplankton layers extend a few meter in vertical but extend for kilometers 

horizontally (Dekshenieks et al., 2001; McManus et al., 2003). This characteristic behavior of the 

layers has implications in many ecological and global processes such as fisheries productivity and 

climate (Mitchell et al., 2008; Sonntag & Hense, 2011). Accumulation of phytoplankton cells into 

thin layers may affect many ecological functions in the environment in which they occur, 

influencing trophic processes such as feeding, reproduction, growth, remineralization, 

competition and predation by other organisms (Alldredge et al., 2002; Birch et al., 2008; Cowles 

et al., 1998; McManus et al., 2003). Moreover, thin layers may contain toxic phytoplankton 

species disrupting grazing, increasing zooplankton and fish mortality (Durham et al., 2009), and 

enhancing the transfer of toxins to higher trophic levels such as marine mammals and seabirds 

(McManus et al., 2008).    

On the other hand, vertical distribution of phytoplankton relative to the availability of light and 

nutrients affects not only primary production (Alexander & Imberger, 2008; Ryan, McManus, 

Paduan, & Chavez, 2008), but also properties of the water column such as surface albedo and 

surface drag (Holliday, Pieper, Grennlaw, & Dawson, 1998; Holliday et al., 2003; Sonntag & Hense, 

2011; Sullivan, Twardowski, Donaghay, & Freeman, 2005; Zaneveld & Pegau, 1998). The 

concentration of organisms within thin layers is considerably higher than the concentration of 

organisms distributed immediately above and below the layers (Cheriton et al., 2009). Such dense 

accumulation of phytoplankton near the surface affects optical properties of the water column 

altering light penetration and thereby the distributions of heat in the water (Sonntag & Hense, 

2011). In addition, these surface mats can disturb the surface wind drag affecting momentum flux 

and thereby turbulence mixing in the water column (Hutchinson & Webster, 1994). 

At the same time, all drivers related with phytoplankton layers are subject to changes over space 

and temporal scales ranging from hourly to seasonal. Wind direction and magnitude, for example, 

are subject to diurnal variations due to changes in heating over land and water surface, weather 

fronts and seasonal variations in atmospheric pressure patterns (Vidal et al., 2010). The mixing 

environment is also expected to change at different scales (e.g. Fischer et al. (1979); Imberger 

(1985)). The mixed layer is expected to deepen at night in response to cooling at the surface or 

strong wind events while stratification of the water column is expected to occur during the day 

time under strong isolation and weak wind conditions. Aggregations of phytoplankton with 



18 Analysis of mechanisms of phytoplankton layer formation, maintenance and dissipation 

in a tropical reservoir 

 
different characteristics can also occur at different times during the season (succession) in 

response to the thermal stratification of the water column (Vidal et al., 2010).  

These drivers changes affect the generation and evolution of vertical and horizontal 

phytoplankton distributions due to the interaction that exists between physical properties of the 

water column (i.e. turbulent mixing, thermal structure, advective transport and light irradiance, 

among others) and the biological characteristics of each phytoplankton group (George & 

Edwards, 1976; George & Heaney, 1978; Moreno-Ostos et al., 2006; Vidal et al., 2014). For 

example, as shown by the balance between advective transport induced mainly by wind and the 

vertical structure of the phytoplankton functional group: positively buoyant species should tend 

to float near to the surface and concentrate downwind while negatively buoyant species in deep 

layers should be displaced upwind, and neutrally buoyant cells should be randomly distributed 

(Vidal et al., 2010). Vertical distribution of phytoplankton can even be linked to horizontal 

patchiness by physical process such as conveyor-belt circulation, in which wind drives movement 

of currents in opposite directions at different depths in the water column (George & Edwards, 

1976; Vidal et al., 2010).  

Tropical lakes have different dynamics compared to lakes in middle and high latitudes in part by 

the absence of seasons. In general, their stratification and mixing patterns are governed by: (1) 

the small difference between maximum and minimum annual radiation, (2) the relative constant 

fluxes of heat through the surface during the day as a result of the small diurnal variations of total 

radiation throughout the year (Lewis, 1987), and (3) the variation in weather conditions such as 

rainfall (Chaves, Lima, Leitão, Paulino, & Santaella, 2013). In addition, the reduced difference 

between the temperature at the bottom and the surface affects the stability of the water column 

and the variation of the epilimnion’s thickness (Lewis, 1987). In particular, the distribution of thin 

layers in these systems has been found to be subject to changes in factors such as light regime in 

the water column, nutrients and physical process (McManus et al., 2003). Stratification plays a 

critical role in the transport processes through the water column being a barrier to the transport 

of nutrients, oxygen, algal cells, heat to the surface and deeper waters (Vuorio, Nuottajärvi, 

Salonen, & Sarvala, 2003). However, vertical and horizontal phytoplankton aggregations are more 

intense in stratified water bodies (Moreno Ostos, 2004). Wind direction and magnitude, and 

changes in temperature may cause the stratification of the water column.  

In addition to the particular characteristics and dynamics associated to the geographical position, 

reservoirs are subject to changes in its hydraulic management. These changes can affect the 

distribution of phytoplankton patches due to variations in the thermal stability and the mixed 

layer depth (Cruz-Pizarro, Basanta-Alves, Escot, Moreno-ostos, & George, 2005; Elliott, Escot, 

Basanta-Alves, & Cruz-Pizarro, 2005; Moreno Ostos, 2004; Toja, Basanta, & Fernández-Ales, 

1992). As a result of the changes in the water column the concentration of phytoplankton 

organisms can be reduced at specific depths, but new thin layers can be generated due to the 

mixing of layers (Casamitjana, Schladow, & Roget, 1993; Imboden, 1992; Steinberg & Gruhl, 

1992). The specific water withdrawal depth, for example, has implications in the amount of 
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phytoplankton material that is removed from the reservoir affecting or favoring energy 

generation or water treatment processes depending on the depth in which mainly phytoplankton 

patches occur (Moreno-Ostos, Cruz-Pizarro, Basanta, & Glen George, 2008).  

As we have shown through this section, the appearance of phytoplankton layers has significant 

implications on ecosystems and water processes, depending layering processes on factors 

changing over space and time scales. The conditions under which phytoplankton layers develop in 

tropical environments are even more complex due to the particular characteristics and dynamics 

of these scenarios. In order to understand the appearance of blooms in water bodies and develop 

models capable of forecast them and predict their impacts on the ecosystem, first, we need to 

identify the factors that drive distributions of phytoplankton cells at different spatial and 

temporal scales (Rines et al., 2002) to then define the characteristics, dynamics and mechanisms 

governing layering process (Cowles et al., 1998; Gallager, Yamazaki, & Davis, 2004; Serra et al., 

2007). A better understanding of thin phytoplankton layers development might help to identify 

distinct niches and provide insights into the causes for presence, dominance and/or diversity of 

phytoplankton species in water bodies (Alexander & Imberger, 2008). It might also provide tools 

for predicting phytoplankton layers events, intensity, and persistence taking into account the 

biological response of phytoplankton species to the physical environment in which their occur 

(Dekshenieks et al., 2001; Prairie et al., 2011) as well as the development of strategies to the 

adequate management and control of water quality in water bodies (Moreno-Ostos et al., 2006; 

Moreno-Ostos, Cruz-Pizarro, Rueda, Escot, & Basanta-Alvés, 2005; Vidal et al., 2014).  

2.1 Objectives 

The primary objective of this research is to define the mechanisms responsible for the formation, 

maintenance and dissipation of thin phytoplankton layers in the Colombian La Fe reservoir. Our 

approach is: (1) to determine the local variability of external forcing and processes to define the 

environmental conditions where thin layers develop, (2) to identify the factors that influence 

phytoplankton thin-layer development relating thin-layer variability to local forcing and processes 

and, based on these information, (3) to estimate the mechanisms involved in the development of 

thin phytoplankton layers in order to explain the appearance of these layers in the reservoir. 

 

 

 





 

 
 

3. Methods 

3.1 Study site 

La Fe reservoir is located in the town of El Retiro, Antioquia, Colombia at coordinates 06°06’N, 

75°30’W. The water in this reservoir is primarily intended for the supply of drinking water to the 

community, for recreation (Román-Botero, 2011), and eventual power generation (EPM, 2005). 

As a result of the expansion in 1974 of the former reservoir named Los Salados, La Fe reservoir is 

divided in two zones with different characteristics product of the lateral narrowing of the first 

structure (see Figure 3-1). The bathymetry of this reservoir is also special due to its dam is 

submerged. 

 

Figure 3-1 Bathymetric map of the La Fe reservoir with inflows location and the measuring 
stations indicated as LFE02, LFE03, LFE04, LFE05, and LFE06. 
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The north zone has an area of 0.68 km2 with mean and maximum depths of 7.0 m and 18.2 m, 

respectively. The intake tower and the main natural inflows namely Las Palmas and Espíritu Santo 

at north and Boquerón and San Luis at west are located in this zone (see Figure 3-1). On the other 

hand, the south zone has an area of 0.65 km2 with mean and maximum depths of 14.7 m and 26.0 

m, respectively. In this zone are located the dam and two inflows of water pumped from the 

Pantanillo River, one pumped through a surface channel and the other one through a submerged 

pipeline within the reservoir (Román-Botero, 2011). In this study, we will consider these two 

inflows just like one due to the lack of detailed data about location, operation, and flow of the 

submerged pipeline. Thus, we consider a combined inflow of water from the Pantanillo River 

pumped only through the surface channel. The particular configuration of the reservoir together 

with its bathymetry make it a special study site. 

3.2 Field data 

This research was developed with field data collected for the study “Estudio de la problemática 

ambiental de tres embalses de Empresas Públicas de Medellín E.S.P para la gestión integral y 

adecuada del recurso hídrico”, a joint project developed for Empresas Públicas de Medellín 

(EPM), by Universidad de Antioquia and Universidad Nacional de Colombia, and which aimed at 

the understanding of the spatial and temporal evolution of the thermal structure and transport 

processes in three tropical reservoirs (Riogrande II, La Fe, and Porce II) in Antioquia, Colombia.  

Meteorological data include records of solar radiation, air temperature, relative humidity, wind 

speed and direction, atmospheric pressure, and rainfall collected each 5 minutes with a 

meteorological station (DAVIS Vantage Pro 2) installed on the intake tower in La Fe reservoir. 

Water temperature, conductivity, dissolved oxygen, and chlorophyll a profiles were recorded 

using a conductivity–temperature–depth instrument (CTD - Sea-Bird SBE 25) and a fluorescence 

sensor (bbe FluoroProbe Moldaenke) with up to 8 and 4 measurements per second, respectively, 

at five stations within the reservoir. In addition, profiles of nutrients (ammonium, nitrate, 

phosphate, and total phosphorous) were measured in the upper water column at the deepest 

point of the reservoir using a Van Dorn sample bottle. 

Despite we have data of meteorological variables and inflows over a 64-day period from 7th 

September to 9th November 2012, field data related with the vertical structure of chlorophyll a 

and nutrients both, at the inflows and the reservoir, are limited. In order to consider how these 

measurements coupled to explain phytoplankton layering processes and the specific relationships 

these layers have to the major physical-chemical forcing and processes in La Fe reservoir, we 

focus our analysis only in the field data collected between 25th and 27th of September 2012 in five 

stations in the reservoir and, specifically, in the deepest point of the reservoir where we have 

nutrients data. The analyzed stations correspond to stations LFE02, LFE03, LFE04, LFE05, and 

LFE06 accordingly to the nomenclature used in other studies where these same stations have also 

been analyzed (Román-Botero, 2011). 
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3.3 Modeling approach 

In this study, measurements of physical variables, chlorophyll a, and nutrients along with the 

three-dimensional hydrodynamic and ecological model ELCOM-CAEDYM are used to investigate 

the spatial and temporal distribution of thin phytoplankton layers, and the role of physical-

chemical-biological drivers and processes in the development of these layers. As in other studies, 

numerical modeling is used to overcome some of the restrictions imposed by field data, 

enhancing the spatial and temporal scales of the analysis (Alexander & Imberger, 2008). The 

modeling approach does not attempt to represent all processes related with the development of 

the layers, it includes only the most basic ones in order to explain the dynamics of the observed 

layers. Observed temperature, dissolved oxygen, and chlorophyll a profiles collected in 2012 

during a field campaign are compared with simulated profiles in order to calibrate the model. The 

calibration of the model may confirm that the key processes have been represented correctly. In 

our case, the validation of the model could not be carried out due to the limited data available. 

The model ELCOM-CAEDYM was developed by the Centre for Water Research (CWR) of University 

of Western Australia for simulation of lakes and reservoirs, wetlands, estuaries, and coastal 

ocean. ELCOM (Estuary, Lake and Coastal Ocean Model) is a numerical model that applies 

hydrodynamic and thermodynamic equations to simulate the spatial and temporal behavior of 

stratified water bodies subject to environmental forcing (Hodges & Dallimore, 2012b). The model 

uses a fixed grid structure to solve the unsteady Reynolds-averaged Navier-Stokes (RANS) and 

scalar transport equations, subject to boundary forcing and the Boussinesq and hydrostatic 

approximations, incorporating a mixing model to directly compute vertical turbulent transport 

(Laval, Hodges, & Imberger, 2003).  

Hydrodynamic equations in the model are solved based on the Euler-Lagrange method for 

advection of momentum with a conjugate-gradient solution for the free-surface elevation (Casulli 

& Cheng, 1992). Passive and active scalars (i.e. tracers, salinity, and temperature) are advected 

using a conservative ultimate quickest discretization (Leonard, 1991). Further description and 

details of the mathematical formulation and solution of the model can be found in (Hodges & 

Dallimore, 2012a). 

The Heat exchange through the water surface is separated into penetrative shortwave radiation 

and nonpenetrative components of long-wave radiation, sensible heat transfer, and evaporative 

heat loss. Hence, while nonpenetrative effects are described in terms of standard bulk transfer 

equations corrected to include the effects of atmospheric stability (Imberger & Patterson, 1989), 

short-wave radiation penetrates into the water following an exponential decay and an extinction 

coefficient as described by Beer’s Law (Hodges & Dallimore, 2012a).  

The transfer of vertical momentum is solved for each water column through a method that is 

more common to one-dimensional models (e.g. Imberger & Patterson, 1980). The depth of the 

mixed layer is determined by a balance between the energy produced by wind stirring and 
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velocity shear, and the energy required to mix a given density gradient in one model time step. 

The dependency of time-step to the mixing routine is reduced by the model carrying over unused 

mixing energy to the next time step (Alexander & Imberger, 2008).  

On the other hand, CAEDYM (Computational Aquatic Ecosystem DYnamics Model) is a process-

based ecological model designed to run independently or coupled with hydrodynamic models 

(Hipsey, Antenucci, & Hamilton, 2012). The CAEDYM model contains a series of coupled first-

order differential equations representing the major biogeochemical processes influencing water 

quality including primary and secondary production, nutrient and metal cycling, oxygen dynamics, 

and the movement of sediments (Rigosi, 2010). This model can be used to resolve different 

species or group specific ecological interactions and processes. In the most complex 

configuration, it can simulate up to seven phytoplankton groups, five zooplankton groups, fish, 

macrophytes, and pathogens (Hipsey et al., 2012). Further description and details of the model 

can be found in (Hipsey et al., 2012).  

CAEDYM can resolve at any sub-daily time step algal processes such as diurnal photosynthesis 

and nocturnal respiration. In general, it is run at the same time interval as the hydrodynamic 

model ELCOM (Hipsey et al., 2012). Thereby, while ELCOM simulates processes such as wind 

stresses, surface thermal forcing, inflows, outflows, transport of salt, heat and passive scalars, 

through coupling with the CAEDYM ecological module, ELCOM is used to simulate three-

dimensional transport, interactions and processes of physical, chemical and biological variables 

(Hodges & Dallimore, 2012b).  

3.4 Thin layers development 

In order to define the mechanisms of thin phytoplankton layers development, first, we calculated 

over 0.1 m vertical bin cells the buoyancy frequency, shear, Richardson number, turbulent 

dissipation rate, turbulent diffusion coefficient, and buoyancy Reynolds number from physical 

measurements made at the depth range of each layer and the results of the calibrated model. 

This resolution was chosen in order to average the changes observed in the profiles at small 

scales.   

As we described in the theoretical framework, thin layers are likely the result of various 

mechanisms operating at any given time. In this study we analyzed convergent swimming, 

buoyancy, and in situ growth as the mechanisms responsible for the formation of thin 

phytoplankton layers in La Fe reservoir. Owing to direct measurements of all contributing 

processes are not practical, and in our case are not possible, drivers of layers have been 

investigated via indirect techniques (Alexander & Imberger, 2008).  

Taking into account that each convergence mechanism produces distinctive layer characteristics 

and correlations with the biophysical environment, a diagnosis of the processes involved in field 

observations can be carried out (Durham & Stocker, 2012). In this context and based on the 
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scaling analysis for these mechanisms, we estimated the following representative parameters: 

𝑤𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , 𝐷𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , ∆𝐶𝑔𝑟𝑜𝑤𝑡ℎ, and 𝑇𝑠𝑢𝑝𝑝𝑙𝑦. Then these parameters were compared to known or 

inferred values to determine which mechanisms are capable of producing salient features of the 

layer and to rule out mechanisms with attributes that are incompatible with observations made 

in the reservoir. 





 

 
 

4. Results and discussion 

4.1 Field information 

4.1.1 Meteorological data 

Previous studies in the reservoir have shown the bimodal behavior of rainfall and flows due to the 

influence of the Inter-Tropical Convergence Zone (ITCZ) in the region (Román-Botero, 2011). 

Specifically, during the last week of September 2012 in development of the field campaign, the air 

temperature, short wave radiation, and relative humidity showed the characteristic diurnal 

behavior of meteorological variables at tropical zones (see Figure 4-1). Air temperature oscillated 

approximately between 12 and 22 °C with maximum during the day and minimum at night. A 

similar day–night pattern was shown by the short wave radiation. Otherwise, relative humidity 

was lowest during the morning and afternoon and reached a maximum value of 1 at night. Long-

wave radiation showed a large variation during the day–night cycle. On the other hand, the wind 

direction was approximately 290–330° around midday, thus blowing from the intake tower to the 

dam of the reservoir. In the evening the wind reversed to 20–90°, thus blowing from the dam to 

the main body of the reservoir. Weak winds prevailed, maximum speeds of about 7 m s-1 

occurring during the midday-afternoon and minimal during the night. A mean rainfall of 16.3 mm 

occurred at afternoon of 24th of September during 275 minutes. These meteorological data 

present the typical behavior observed for these variables in previous years during the same 

period of time. 
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Figure 4-1 Meteorological data: a) air temperature, b) short and c) long wave radiation, d) rain, e) 
relative humidity, and wind f) magnitude and g) direction. 

Inflows rates, during the last week of September, varied from 1.15 to 1.5 m3 s-1 in Las Palmas and 

Espíritu Santo, and from 0.37 to 0.48 m3 s-1 in Boquerón and San Luis (see Figure 4-2). The total 

pumped water from the Pantanillo River oscillated from 0 to 6.5 m3 s-1. Outflow varied from 2 to 6 

m3 s-1 corresponding to the total water captured by the intake tower. Inflows are greater than the 

outflow and, consequently, the water level in the reservoir increased during the study period. As 

observed in the Figure 4-2, the flow of the inflows Las Palmas and Espíritu Santo, and Boquerón 

and San Luis increased the day 24th of September as a result of the rainfall presented at the 

afternoon of this day. The water temperature of inflows oscillated both at diurnal and longer time 

scales in response to meteorological forcing. The range of diurnal temperature oscillations in 

inflows was up to 5 °C, which is large compared to variations in temperature exhibited at diurnal 

scales in the reservoir surface. The water temperature of outflow was assumed approximately 

equal to a value of 17 °C based on field data collected in 2011 under similar conditions in the 

reservoir.  
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Figure 4-2 Inflows and outflow in the reservoir with their respective temperature: a) Las Palmas 
and Espíritu Santo, b) Boquerón and San Luis, c) Pantanillo River (total pumped), and d) intake 

tower (total extracted). 

4.1.2 Field observations 

Over the study period the temperature, dissolved oxygen, conductivity, and total chlorophyll a 

vertical profiles were different due to the specific characteristics at each measurement station 

(see Figure 4-3 to Figure 4-7). It was not possible to define clearly the epilimnion, metalimnion 

and hipolimnion in the temperature profiles due to the weak gradients observed along the water 

column, as it has been reported by Román-Botero (2011) in a previous research conducted in this 

same reservoir and other studies (Lewis, 1987; Roldán & Ramírez, 2008).  

The main changes in the profiles occurred in the same first meters of the water column. In the 

upper part of the water column the temperature decreased faster with depth. The maximum 

oxygen peak depth varied from 2.7 and 3.8 m between profiles. The maximum oxygen 

concentrations were measured at station LFE04, followed by station LFE06 and then station 

LFE02, the stations closest to the entrance of flows. The conductivity at stations LFE02 and LFE03 

seem to be affected by the intake tower due to the changes in the conductivity profiles coincided 
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with the depths of the intake gates. Total chlorophyll a profiles showed that their maximum peak 

was positioned within the top 5 m depth with magnitudes from 23.2 to 223.0 µg L-1. Nitrate and 

phosphate varied from 0.062 to 0.476 mg L-1 and 0.004 to 0.014 mg L-1, respectively, with the 

maximum at the base of the nitracline between 7-10 m depth (see Figure 4-7). At station LFE06, 

the depth of the maximum chlorophyll a peak was allocated top of the nitracline and the 

phosphocline. 

 

Figure 4-3 Temperature profiles collected between 25th and 27th of September. 

 

Figure 4-4 Dissolved oxygen profiles collected between 25th and 27th of September. 
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Figure 4-5 Conductivity profiles collected between 25th and 27th of September. 

 

Figure 4-6 Total chlorophyll a profiles collected between 25th and 27th of September. 
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Figure 4-7 Ammonium, nitrate, phosphate, and total phosphorous profiles collected at station 
LFE06. 

4.2 Thin layers identification 

Thin phytoplankton layers were identified in each profile by an examination of the fine-scale 

vertical structure of the chlorophyll a concentration profile. The layer thickness was defined as 

the width of the peak measured at the half concentration of the maximum peak (see Figure 4-8), 

and the background concentration as the nearest minima surrounding the peak (Prairie et al., 

2010). Based on the criteria to identify thin phytoplankton layers mentioned in the theoretical 

framework and the definitions of layer thickness and background concentration, we identified 

different thin phytoplankton layers along the reservoir. Attributes of the identified thin 

phytoplankton layers are presented in Table 4-1. The thickness of the chlorophyll a maximum 

peaks ranged from 1.2 to 3.1 m with its maximum at station LFE04. Maximum peak 

concentrations of 218.9 and 223.0 µg L-1 were found at stations LFE02 and LFE04, respectively. 

Before considering thin layers distributions and statistics, boundaries of the thin layers in each 

profile must be first defined. The upper and lower edges of the thin layers were identified as the 

depths at the full-width, half-maximum (FWHM) of the chlorophyll a profile peak (Cheriton et al., 

2009). In other words, the upper and lower edges of the thin layers coincide with the upper and 

lower points that define the layer thickness, respectively (see Figure 4-8). The boundaries defined 

through the FWHM method allow capturing precisely the peak and the characteristics 

surrounding the peak. The defined boundaries of the thin layers were then used to distinguish 

along the characteristics related with the development of the thin layers observed above, 

between, and below the layers, i.e. buoyancy frequency, shear, turbulent dissipation rate, and all 
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other variables estimated over the vertical depth range of the thin layers. These data were then 

averaged for each profile. 

 

Figure 4-8 Example of parameters of a thin layer. Upper and lower depth boundaries of the thin 
layer are defined through the FWHM of the chlorophyll a profile peak (dashed lines). T represents 

layer thickness, BC background concentration, and PD peak depth. 

Table 4-1 Parameters extracted from each identified thin layer. 

Parameter 
Stations 

LFE02 LFE03 LFE04 LFE05 LFE06 

Peak concentration 
(µg/L) 

218.9 195.0 223.0 23.2 49.7 

Peak depth (m) 1.3 1.3 3.2 2.7 1.9 

Upper limit depth 
(m) 

1.0 0.8 0.7 1.9 1.1 

Lower limit depth 
(m) 

2.2 2.2 3.8 3.9 3.1 

Thickness (m) 1.2 1.3 3.1 2.0 2.0 

Background 
concentration (µg/L) 

71.1 13.1 65.0 2.4 0.1 

 

4.3 Model calibration 

In order to calibrate the hydrodynamic and ecological model ELCOM-CAEDYM, we defined the 

computational grid and the temporal step necessary to ensure precision and numeric stability of 
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the model. The model uses the Courant-Friedrichs-Lewy condition (CFL) to assess the stability of 

the numeric solution, values of CFL < 1 are required to consider stable the numeric solution.  

Three simulations with the same configuration, time step, and vertical discretization were carried 

out in order to evaluate uniform horizontal grids of 25x25, 30x30, and 40x40 m. These grids were 

chosen based on previous studies with the model in other reservoirs. As a result, the CFL of the 

horizontal grid of 40x40 m cells presented instabilities in the solution with values of CFL > 1 (see 

Figure 4-9). For this reason the horizontal grid of 40x40 m cells was discarded and the analysis 

continue only with the horizontal grids of 25x25 and 30x30 m cells. Both grids presented a stable 

solution with values of CFL < 1 (see Figure 4-9). An analysis of the temporal evolution of 

temperature at each depth allowed to define the computational grid (see Figure 4-10).  

 

Figure 4-9 Maximum CFL in directions X, Y, and Z to three different horizontal grids. 
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Figure 4-10 Temperature evolution simulated with horizontal grids of 25x25 and 30x30 m cells.  

As observed in the figure, the simulated isotherms behaved similarly with both horizontal grids 

with more variability at surface as expected. These results showed that temperature differences 

due to the size of the horizontal grid were not significant. In this sense, each horizontal grid can 

be used to analyze the thermal structure of the reservoir. After evaluating uniform horizontal 

grids of 25x25, 30x30, and 40x40 m cells under the same model configuration, we have selected a 

uniform horizontal grid of 30x30 m cells based on the computational efficiency (shorter 

calculation time with regard to the horizontal grid of 25x25 m cells) and stability of the numeric 

solution.  

An analysis of the vertical grid resolution of the model is required to adequately represent the 

fine–scale processes in the water column. We evaluated two vertical discretizations. In the first 

configuration, we used a discretization of 0.4 m thick layers in the shallower 12 m that then 

gradually increased up to 2.3 m thick layers in the deeper layers of the reservoir. This 

discretization divided the water column into a total number of 49 layers. In the second 

configuration, we used a finer vertical discretization of 0.2 m thick layers in the shallower 12 m 

and then a coarser discretization until 27.5 m depth. In this case, this discretization divided the 

water column into a total number of 79 layers. Both vertical discretizations were evaluated with 

the model. As a result, changes in the vertical grid resolution of the water column have no effect 

on temperature profiles as shown in the Figure 4-11. Therefore, the selection of the vertical grid 
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resolution to be used in the model will depend on the amount of information required at each 

cell to represent adequately the fine–scale processes in the water column.  

 

Figure 4-11 Temperature profiles with two different vertical grid resolutions. 

Based on the scale at which the analyzed processes are developed, we selected a vertical grid 

resolution of 0.2 m thick layers in the upper part of the water column until 12 m depth and then a 

resolution with thickness gradual increments of 0.5, 0.7, 1.0, 1.2, 1.4, 1.7, and 2.3 m between 12 

and 27.5 m depth. The maximum layer thickness was 2.3 m at the deeper layers of the reservoir. 

Thus, this vertical grid resolution divided the water column into a total number of 79 layers. 

The time step at which the model resolves the hydrodynamic equations was also analyzed. As 

before, time steps of 30, 60, and 90 s were evaluated in terms of the CFL condition and the 

temporal evolution of temperature. In the three cases the CFL condition had values less than 1 

during the entire simulation period in the three directions and the temperature profiles did not 

show significant differences between the evaluated time steps (data not shown). Based on these 

results, we chose a time step of 60 s as appropriate to carry out the simulations in terms of the 

balance between computational efficiency and stability of the numeric solution.  

Once the numerical parameters were defined, the calibration of the model was performed 

adjusting the initial conditions and parameters related with temperature, dissolved oxygen, 

chlorophyll a, nutrients, and atmospheric conditions in the configuration files of the model. First, 

we will calibrate the hydrodynamic model adjusting the thermal structure and then based on the 

calibrated hydrodynamic model, we will calibrate the ecological module of the model. 
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Based on a previous calibration of the hydrodynamic model ELCOM, we simulated the 

temperature in the stations LFE02, LFE03, LFE04, LFE05, and LFE06 by adjusting the temperature 

profiles defined as initial conditions in each station and the parameters related with thermal 

structure in the reservoir. A uniform extinction coefficient of light and wind forcing were also 

included. The extinction coefficient of light was adjusted analyzing sensitivity of the results. On 

the other hand, the ecological model CAEDYM was calibrated adjusting biological parameters 

based on other similar studies which this model has been also applied (Carraro et al., 2012; 

Hillmer, Van Reenen, Imberger, & Zohary, 2008; Rigosi, 2010; Robson & Hamilton, 2004; Romero, 

Antenucci, & Imberger, 2004; Vidal et al., 2014) and analyzing the sensitivity of the results. Some 

of the modified parameters included: the maximum potential growth rate of phytoplankton, the 

light regimen, constant of saturation of nutrients, maximum and minimum concentration of 

nutrients, vertical migration parameters, nitrification and denitrification constants. The complete 

configuration file with the parameters and values used can be found in the Appendix. In addition, 

initial profiles of dissolved oxygen, chlorophyll a, and nutrients were included and distributed 

along the stations into the reservoir in order to reproduce the observed behavior of profiles in 

each station. 

Thus, the hydrodynamics and water ecology of La Fe reservoir were simulated with the coupled 

model ELCOM-CAEDYM during a period of 30 days, starting on September 7th. Three different 

groups of phytoplankton were simulated with the model according to the groups identified in the 

reservoir: cyanobacteria, cryptophytes, and freshwater diatoms. Zooplankton species were not 

included in the model. The model was forced using temperatures and inflow rates of Las Palmas 

and Espíritu Santo, Boquerón and San Luis, and Pantanillo River at time scales of minutes, a few 

records of nutrients concentration in the inflows, and meteorological data from the 

meteorological station every 5 minutes. The initial temperature, dissolved oxygen, and 

chlorophyll a profiles were spatially distributed and defined from field data. Nutrients profiles 

were defined only to the station LFE06.    

The calibration of temperature, dissolved oxygen, and chlorophyll a parameters is carried out in 

order to reproduce the observed profiles at specific times of the day in each station. Considering 

that the effect of the initial conditions imposed on the model disappears after 15 days of 

simulation, during the period of analysis the model reproduces well the temperature at the 

surface and the bottom of the water column as well as the spatial variability of the profiles (see 

Figure 4-12). Gradients are captured by the model mainly in the upper part of the water column. 

The simulated dissolved oxygen profiles adjusted well to the measured profiles as occurred with 

temperature (see Figure 4-12). Model results at the bottom of the water column were less 

accurate possibly due to the interactions that may exist with sediments as well as other processes 

occurred at the bottom that the model did not represent.  
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Figure 4-12 Temperature, dissolved oxygen, and total chlorophyll a profiles for stations a) LFE02 
at 12:47 on September 25th, b) LFE03 at 10:44 on September 26th, c) LFE04 at 11:58 on September 

26th, d) LFE05 at 13:59 on September 26th, and e) LFE06 at 10:16 on September 25th. 

In the case of total chlorophyll a profiles, the model reproduces the depth of maximum peak 

concentration as well as the maximum concentration of each peak (see Figure 4-13). The main 

characteristics of each thin phytoplankton layer are also reproduced as shown in Table 4-2.  
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Figure 4-13 Thin layer parameters from the measured and simulated profiles of total chlorophyll a 
at station LFE06. 

Table 4-2 Parameters extracted from each simulated thin layer. 

Parameter 
Stations 

LFE02 LFE03 LFE04 LFE05 LFE06 

Peak concentration 
(µg/L) 

199,5 182,4 202,6 22,9 46,5 

Peak depth (m) 1,3 1,4 1,9 2,7 1,9 

Upper limit depth 
(m) 

0,9 0,8 0,9 1,8 1,1 

Lower limit depth 
(m) 

2,3 2,2 3,4 4.0 3,5 

Thickness (m) 1,4 1,4 2,6 2,2 2,3 

Background 
concentration (µg/L) 

47,3 5,9 21,5 2,6 0,8 

 

Field data of velocities in the water column were not available. An approximation of these 

velocities can be carried out with the model, but first a validation of these approximations is 

required. For this, we analyzed the ability of the model to reproduce the behavior of the inflows 

using conductivity as a tracer (Vidal et al., 2011). Therefore, the comparison between conductivity 

and tracers profiles will give an idea of how well the model is representing the inflows, and 

associated to the inflows, the velocities into de water column. In this sense, we released three 

passive tracers with the same concentration into the main inflows of the reservoir: Tracer1 – Las 

Palmas and Espíritu Santo, Tracer2 – Boquerón and San Luis, and Tracer3 – Pantanillo River. The 

conductivity and simulated tracers profiles in each station are shown in the Figure 4-14. 
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Figure 4-14 Conductivity and tracers profiles in each analyzed station. 

As shown in the last figure, tracers were well represented by the model mainly in the upper part 

of the water column. The observed changes below the 14 m indicated water with different 

characteristics due to the accumulation of dissolved substances at these depths as reported by 

Román-Botero (2011). This accumulation of substances is not represented by the model, however 

the general characteristics of the conductivity profiles are well represented. 

As a result of the rigorous calibration process of temperature, dissolved oxygen, and chlorophyll 

a, we achieved to reproduce the main characteristics of the water column at the specific hours of 

the day which the observed thin phytoplankton layers develop, and in this way, we obtained a 

coherent approximation to the velocities required to evaluate the mechanisms participating in 

the formations of the layers as described in the theoretical framework. 

4.4 Layer maintenance and dissipation 

Theoretical (e.g., Birch et al., 2008; Osborn, 1988) and in situ studies (e.g., Cowles et al., 1998; 

Cowles, 2003; Dekshenieks et al., 2001; Rines et al., 2002; Steinbuck et al., 2009), and numerical 

simulations (e.g., Franks, 1995) have demonstrated that vertical stratification and shear play an 

essential role in the formation and maintenance of vertical fine structures in the water column. 

We estimated the Richardson number as an indicator of the water column stability in order to 

determine the relationship between stratification and shear in the development of the observed 

thin layers in the reservoir. This number was calculated at each station in terms of the density 

estimated from the measurements and the velocities simulated with the model as presented in 

the theoretical framework. 

As a result, we found that the squared vertical shear was relatively weak with values between 10-6 

and 10-3 s-2. Maximum values were found above and within the layers. Otherwise, squared 

buoyancy frequency was in the range of 10-5 and 10-2 s-2. The Richardson number criterion was 

mostly higher than 0.25, this means that buoyancy becomes more important as the Richardson 

number increases (Stacey et al., 2007). Thereby, the stratification of the water column was 

stronger than the shear favoring the stability of the water column and the formation and 

maintenance of the observed thin layers. The squared vertical shear, squared buoyancy 

frequency, and Richardson number profiles are shown in the Figure 4-15. In this figure can be 

observed the similar behavior of 𝑁2 estimated from measured profiles and simulated profiles 

with the model. 
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Figure 4-15 Squared vertical shear, squared buoyancy frequency, and normalized Richardson 
number profiles for each analyzed station: a) LFE02, b) LFE03, c) LFE04, d) LFE05, and e) LFE06. 
Thin layer edges are marked with a solid line in all panels. The red dashed line corresponds to a 

value of 𝑅𝑖 = 0.25. 

Because we do not have direct measurements of turbulence during the sampling period, the layer 

divergence was estimated through the turbulent dissipation rate calculated from the temperature 

profile at each station. Two methods were used. The first method determined the turbulent 

dissipation rate from the estimation of the Thorpe scale. An example of the Thorpe scale 

calculated from the temperature profile at station LFE03 is presented in the Figure 4-16. The 

second method calculated fluctuations of temperature from the temperature profile in each 

station. The mathematical procedure of both methods was described before in the theoretical 

framework. The values calculated by both methods are approximate and, in the case of the first 

method, based on the assumption that the Thorpe scale is approximately equal to the Ozmidov 

scale (Dillon, 1982; Gibson, 1980). This assumption has been confirmed by observations (Dillon, 

1982) and it is according to the state of turbulence at maximal efficiency (Ivey & Imberger, 1991). 

Despite of the approximations made by both methods, results are in the same order of 

magnitude (see Figure 4-17). 
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Figure 4-16 Example of the original and sorted temperature profiles, temperature difference 
between both profiles, displacement of water parcels, and the Thorpe scale for station LFE03. 

Thin layer edges are marked with a solid line in all panels. 
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Figure 4-17 Dissipation, vertical turbulent diffusion coefficient, and buoyancy Reynolds number 
profiles estimated by Thorpe scale and turbulent fluctuations methods in each analyzed station: 
a) LFE02, b) LFE03, c) LFE04, d) LFE05, and e) LFE06. Thin layer edges are marked with a solid line 

in all panels.  

Within the thin phytoplankton layers, turbulence intensity and mixing rates varied in different 

orders of magnitude. Dissipation rates were in general low within the layers with 𝜀 primarily in 
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the range of 10-9 and 10-7 m2 s-3. On the other hand, the vertical diffusion coefficients varied 

within the layer ranging from 10-6 to 10-3 m2 s-1. A large proportion of in-layer buoyancy Reynolds 

numbers were in the range of 𝑅𝑒𝑏 < ~ 15, this means that stratification dominates turbulence at 

depths of the observed layers. The mixing conditions at the top and bottom of the layers in the 

water column were similar. The dissipation rates and the vertical diffusion coefficients were 

primarily between 10-9 to 10-6 m2 s-3 and 10-6 to 10-3 m2 s-1, respectively. In general, buoyancy 

Reynolds numbers were in the range of ~15 < 𝑅𝑒𝑏 < ~100 indicating that turbulence was 

affected by stratification. In this sense, the obtained values of 𝑅𝑒𝑏 represent the interaction 

between weak stratification and weak turbulence in the water column. 

4.5 Layer convergence 

We applied the scaling approach described in the theoretical framework in order to examine the 

mechanisms responsible for the formation of the observed thin layers. The evaluated 

mechanisms included convergent swimming, buoyancy, and in situ growth. First, we analyzed 

convergent swimming as the mechanism responsible for the formation of the observed thin 

layers. Based on the vertical diffusion coefficients estimated before and the thickness of each 

observed thin layer, we calculated the median swim velocities required for the phytoplankton 

species to maintain the layers under diffusion conditions. These velocities were in the range of 

3.2 x 10-6 to 0.1 x 10-5 m s-1 (see Table 4-3). The estimated velocities were smaller than velocities 

typically reported in the literature for the phytoplankton species found in the reservoir 

(Cyanobacteria, Cryptophytes, and Freshwater diatoms) between 0.4 x 10-5 to 2 x 10-4 m s-1 

(Reynolds, 1984; Vidal et al., 2014). According to these results, the observed layers should 

disperse in the water column due to the diffusion processes are stronger than the swimming 

velocities required for these species to form and maintain in the observed depths. Instead of this, 

the layers maintain in the water column. Therefore, the convergent swimming mechanism is not 

a clear candidate for the formation and maintenance of the layers at the observed depths. 

 Table 4-3 Parameters estimated for each evaluated mechanism. N: nitrogen, P: phosphorus. 

Mechanism 
Stations 

LFE02 LFE03 LFE04 LFE05 LFE06 

Convergent swimming 
(𝑤𝑏𝑎𝑙𝑎𝑛𝑐𝑒) [ms-1] 

9.8 e-06 9.9 e-06 4.7 e-06 0.1 e-05 3.2 e-06 

Buoyancy (𝐷𝑏𝑎𝑙𝑎𝑛𝑐𝑒) [m] 4.4 e-04 5.1 e-04 1.9 e-04 5.8 e-04 2.3 e-04 

In situ growth 

(∆𝐶𝑜𝑏𝑠 - 
∆𝐶𝑔𝑟𝑜𝑤𝑡ℎ) 

[µgL-1] 

Cyanobacteria 51.7 27.3 55.3 4.17 17.4 

Cryptophytes 51.0 26.2 54.9 4.11 16.9 

Freshwater 
diatoms 

52.5 28.2 55.8 4.26 17.5 

In situ growth 
(𝑇𝑠𝑢𝑝𝑝𝑙𝑦) 

[days] 

Cyano. 
N - - - - 0.9 

P - - - - 20.2 

Crypt. 
N 

- - - - 
3.8 

P 90.7 
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Fdiat. 
N 

- - - - 
0.9 

P 20.2 

 

In order to examine buoyancy mechanism, we estimated the median diameters of phytoplankton 

cells required to balance the diffusive effect of turbulence on layer thickness. Accordingly with 

the theoretical framework, diameters were calculated in terms of the viscosity of water, vertical 

diffusion coefficient, buoyancy frequency, and thickness of each observed layer. The calculated 

diameters were in the range of 1.9 x 10-4 to 5.8 x 10-4 m (see Table 4-3). These values were higher 

than the diameters reported in the literature to Cyanobacteria, Cryptophytes, and Freshwater 

diatoms cells between 1 x 10-6 and 0.5 x 10-4 m. This difference between the diameters of the 

phytoplankton cells represents the unbalance between buoyancy-induced force and diffusive 

processes showing that the settling rate of phytoplankton cells is insufficient to counter turbulent 

mixing. Therefore, the buoyancy mechanism is unlikely to primarily contribute to the formation of 

the observed layers. 

Now considering the potential formation of the layers by horizontal intrusions, we first analyzed 

the temperature and dissolved oxygen profiles in the different stations. Thin layers were colder 

and more oxygenated than the water immediately above in the water column, and warmer than 

the water below. Horizontal intrusions could explain the observed temperature and dissolved 

oxygen distributions as well as the chlorophyll a layers. The model was used to simulate the 

continuous release of passive tracers from the main inflows (Las Palmas and Espíritu Santo, 

Boquerón and San Luis, and Pantanillo River) into the reservoir. These simulations carried out 

during the period of analysis were developed to visualize at what depths and how the inflows 

(plumes) were transported along the analyzed stations (see Figure 4-18). 
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Figure 4-18 Temporal evolution of tracers concentration in each analyzed station: a) LFE02, b) 
LFE03, c) LFE04, d) LFE05, and e) LFE06. Thin layer edges are marked with a white dashed line in 

all panels. 
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In the upper meters of the water column, in a range similar to the described by Román-Botero 

(2011), were observed at stations LFE02 and LFE03 the plume of the inflow Las Palmas and 

Espíritu Santo and at station LFE04 the plume of the inflow Boquerón and San Luis. With respect 

to the plume of the Pantanillo River, we found that this plume moved in the upper 10 m of the 

water column according to the simulated results reported by Román-Botero (2011). However, in 

the same study Román-Botero (2011) demonstrated that the plume moved in the 14 meters 

depth which showed that the simulated plume of the Pantanillo River was not being completely 

represented by the model. The difference between measured and simulated results about the 

plume of the Pantanillo River may be due to the considerations made before related with the 

entrance of this inflow.  

Comparing the depths of thin layers occurrence and intrusions we found that the broad range of 

depths at which intrusions develop did not coincide with the narrow range of depths of the 

observed thin layers. Therefore, the horizontal intrusion may not be considered as a mechanism 

contributing to thin layers formation by itself, but it may be considered as a trigger of other 

mechanisms such as in-layer growth. In order to analyze with more details the relationship 

between thin layers occurrence and intrusions, we considered the role of phytoplankton growth 

as a mechanism involved in the formation of the layers. 

In-layer growth depends on the influx of nutrients through the water column. Here, we 

considered two potential supplies of nitrogen and phosphorus: horizontal intrusions and vertical 

turbulent fluxes. In the first scenario we examined whether intruding waters may carry nutrients 

that then stimulated phytoplankton growth according to Steinbuck et al. (2010). In this sense, we 

approximated the characteristic length scale of the patches through the simulated length 

observed of total chlorophyll a in each station (see Figure 4-19). Then, each characteristic length 

scale was used to estimate the horizontal dispersion coefficient for each layer. The resulting 

values ranged from 0.27 m2 s-1 to 0.82 m2 s-1.  

Based on these estimations we calculated the increase in chlorophyll a concentration due to 

growth. The median values of ∆𝐶𝑔𝑟𝑜𝑤𝑡ℎ were less than ∆𝐶𝑜𝑏𝑠 for all of the observed layers, 

however, the difference between them was acceptable considering the uncertainty associated to 

each parameter (see Table 4-3). The error percentages ranged between 15 and 37 percent. These 

results identify in situ growth as a possible mechanism involved in the layering process. This 

suggests that intrusions may contribute to the in-layer growth mechanism in the five analyzed 

stations through the supply of the nutrients required by phytoplankton to growth. The maximum 

net production rates of phytoplankton were 0.92, 0.80, and 1.06 day-1 for Cyanobacteria, 

Cryptophytes, and Freshwater diatoms respectively, according to Vidal et al. (2014) and the 

parameters reported in the model. 
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Figure 4-19 Characteristic length scale of the patches at stations: a) LFE02, b) LFE03, c) LFE04, d) 

LFE05, and e) LFE06. Contours were plotted from each station marked as ■ to the respective 

inflow at the observation time of the layers. 

Now, we considered the supply of nitrogen and phosphorus from vertical turbulent fluxes as a 

factor stimulating growth. The vertical gradient of nitrogen and phosphorus was estimated from 

the measured nutrients at station LFE06. The upward vertical flux of nitrogen and phosphorus 

was at most 2.4 x 10-4 and 1.4 x 10-6 µgL-1 ms-1, respectively. The values of the anomaly of the in-

layer nitrogen and phosphorus nutrients (∆𝑁𝑎𝑛𝑜𝑚) were calculated from the chlorophyll a 

anomaly of the layers according to Steinbuck et al. (2010). The chlorophyll a anomaly was 

estimated as the difference between vertically integrating chlorophyll a content of the observed 

layers and the background chlorophyll a content. Then, the amount of phytoplankton carbon was 

calculated from the ratio of carbon to chlorophyll a (C:Chl-a), whose values were 40, 180, 40 mg 

mg-1 for Cyanobacteria, Cryptophytes, and Freshwater diatoms, respectively, according to the 

configuration used in the model. Finally, the mass of phytoplankton carbon was converted to 
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moles of nitrogen and phosphorus using the molar mass of carbon and molar ratios for C:N:P 

according to the Redfield ratio, C:N:P=106:16:1 (Redfield, 1934).  

The resulting timescales required for the supply of nitrogen were 0.9, 3.8, and 0.9 days for 

Cyanobacteria, Cryptophytes, and Freshwater diatoms, respectively (see Table 4-3). On the other 

hand, the timescales for the supply of phosphorus were 20.2, 90.7, and 20.2 days for 

Cyanobacteria, Cryptophytes, and Freshwater diatoms, respectively. Clearly, the timescales of 

phosphorus were too long compared to expected duration of thin layers in the water column. In 

the case of nitrogen, these results suggest that the vertical flux of nitrogen at station LFE06 was 

enough to stimulate the phytoplankton growth in the layer at the observed depth. Further, the 

proximity between the thin layer and the nitracline may favor such layered growth. 

4.6  Thin layers development 

In summary, thin phytoplankton layers were observed in stable regions of the water column, 

close to the mixed surface layer and above the stratified interior. The stratification at the top of 

the layers insulated the layers from the mixing above allowing the layers to persist. Thus, the 

strong influence of density in the water column created local regions with favorable conditions to 

the formation and maintenance of the observed phytoplankton layers as reported in other 

studies (Dekshenieks et al., 2001; McManus et al., 2003, 2005). In addition, the results showed 

that the low dissipation rates responsible to the turbulence around the layers were too low to 

disperse, erode or even broaden the layers contributing to layers maintenance. 

Below the layers, stratification was also present and mixing rates were low. On the other hand, 

mixing was stronger in the upper meters of the water column where the flow may be affected by 

shear instabilities (𝑅𝑖 < 0.25). However, if these instabilities occurred, they were not strong 

enough to disperse the layers. The location of the layers coincided also with regions of strong 

temperature and dissolved oxygen gradients. All of these characteristics of the water column 

contributed to the formation of the layers. Owing to the layers occurred in the upper meters of 

the water column, the available of light was not considered as a limiting factor in the formation of 

the layers. 

Based on the analysis of the mechanisms responsible of thin phytoplankton layers development, 

we have identified the possible mechanisms involved in the layering processes in the reservoir. 

We concluded that the formation of the layers was primarily triggered by the mechanism of in 

situ growth. This mechanism was favored by the fluxes and transport from the inflows (Las 

Palmas and Espíritu Santo, Boquerón and San Luis, and Pantanillo River) of the nutrients required 

by the phytoplankton cells to growth forming the observed layers. In the five analyzed stations 

the growth of phytoplankton cells due to the supply of nutrients from intruding waters may be 

considered as a possible mechanism of layer formation. The growth of phytoplankton cells due to 

the fluxes of nutrients in the water column could also be verified at the deeper station (LFE06). In 

this station the increased amount of nutrients in the layer, specifically nitrogen due to the vertical 



56 Analysis of mechanisms of phytoplankton layer formation, maintenance and dissipation 

in a tropical reservoir 

 
fluxes generated in the water column, will stimulate phytoplankton growth and contribute to the 

formation of the thin layer as observed in the measured profile of chlorophyll a. The rainfall event 

occurred at the afternoon of 24th of September could contribute to the availability of nutrients in 

the water column increasing fluxes and transport from the inflows, thereby stimulating the 

growth of phytoplankton cells at the observed depths. 

Mechanisms such as convergent swimming and buoyancy were discarded as the primarily 

mechanisms responsible of the formation of the layers, however, it does not mean that these 

mechanisms not participated in another period of time or location in the formation of layers due 

to these mechanisms depend particularly on the water conditions and specific phytoplankton 

species in the water column. Thereby, the formation of the layers at the specific observed depths 

and locations in this study was a consequence of the interaction between the analyzed 

mechanisms, the stratification and turbulence conditions around the formed layers, and the 

specific requirements of the phytoplankton cells at the different stations.  

Here, we have developed our analysis in terms of the more common mechanisms observed in 

layer formation, i.e. convergent swimming, buoyancy, and in situ growth. An analysis of other 

mechanisms such as straining involves the definition of parameters as the initial conditions of the 

patch, the interactions of the strained patch with the organisms around it, and the complete 

length of the strained patch. All these parameters must be taken into account to the detailed 

analysis of this mechanism. In our case, the knowledge about these parameters limited our 

analysis due to the impossibility with the data available or the model to calculate them and then 

demonstrate the participation of this mechanism in the formation of the observed layers. 

The development of thin phytoplankton layers was probably influenced by more than one 

mechanism, however, we have assumed that each of these mechanisms acts independently and 

is essentially homogeneous, in addition to the other assumptions made in each mechanism. The 

validity of these assumptions will depend on the scale at which the physical parameters vary. 

Even if the parameters present some vertical variation, a first approximation like this is likely to 

be appropriate to define layers characteristics. In this sense, the simplifying assumptions together 

with our limited field data restricted our analysis to the more basic case of thin layers formation, 

maintenance and dissipation, considering our analysis as an approximation to the study of the 

mechanisms acting in the reservoir.  

In spite of the particular characteristics of thin layers observed in this study, our results were in 

agreement with those of similar thin layers studies. We associated the development of thin 

phytoplankton layers to the stratified conditions of the water column together with the 

destabilize effect of shear instabilities according to Dekshenieks et al. (2001) and McManus et al. 

(2003,2005). They found that observed thin layers occurred in regions where the Richardson 

number was >0.25, which is consistent also with other studies (Cheriton et al., 2007; Prairie et al., 

2010; Sevadjian et al., 2010; Steinbuck et al., 2009). 
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In our analysis we followed the study conducted by Steinbuck et al. (2010) which they defined 

that the observed layers may have formed from horizontal intrusion of water with elevated 

phytoplankton concentrations. We coincided with this study and previous ones in the fact that 

layers occurred in density stratified regions with variables rates of turbulent mixing as well as in 

the necessity of detailed measurements to evaluate the potential processes involved in thin 

layers development. 

With regard to other studies related with the development of thin layers, Franks (1992) 

developed a model to explain the enhanced biomass through the interactions of floating, sinking 

or swimming with the flow whilst Stacey et al. (2007) provided a framework extending Franks' 

(1995) analysis of kinematic straining to include turbulent mixing into the analysis of straining, 

motility and buoyancy mechanisms. Birch et al. (2008) described plankton distributions in terms 

of four phases of layer evolution and plankton growth, and then Birch, Young, & Franks (2009) 

following the previous work of Stacey et al. (2007) analyzed in detailed the form of the peaks 

produced by straining, motility and buoyancy mechanisms. Recent studies about the mechanisms 

responsible of the formation of thin layers were reported by Steinbuck et al. (2009,2010) in which 

they evaluated in the earlier study an Eulerian advection–diffusion model and Lagrangian particle-

tracking model to explain the formation of thin layers, and then in the second study they analyzed 

the fine-scale phytoplankton layer dynamics in the context of turbulent mixing. Despite to the 

diverse studies about the mechanisms involved in the development of thin layers, in each case 

the approach to identify the mechanisms participating in the formation of the layers was different 

due to the specific conditions, assumptions, data, models and unique characteristics of each 

observed thin layer. All of those approaches showed the broad uncertainty associated with the 

definition of the mechanisms governing layer dynamics and the gaps in theory that we still have 

and need to complement in order to understand, identify and define with more details thin layers 

mechanisms and characteristics. 

With this in mind, our study sought to provide elements to understand how the observed thin 

layers developed in La Fe reservoir. Understanding of layer dynamics and the factors governing it 

may help to develop mathematical models and scaling parameters capable to represent and 

estimate more appropriately phytoplankton distributions and blooms as well as predict the 

impacts of these layers in the ecosystems. Besides, if we know how and where thin 

phytoplankton layers develop we could control the factors influencing a specific event and in this 

way disrupt its propagation. Taking into account that the water in La Fe reservoir is primarily to 

the supply of drinking water, this kind of studies are essential to preserve the quality of water in 

the reservoir. 

Particularly, in Colombia a study of these characteristics had not done before. In this sense, this 

study may contribute to the generation of new projects in order to broad the knowledge about 

thin phytoplankton layers dynamics in Colombia and in general, in tropical scenarios. Taking into 

account that there are only a few studies related with the governing mechanisms of thin layers 

development in reservoirs, and even less in tropical reservoirs, the results of this study may also 
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contribute to the discussion of the scientific community about phytoplankton dynamics in terms 

of the difference between tropical, middle and high latitude systems. 



 

 
 

5. Conclusions 

In this study, thin phytoplankton layers development was considered in the context of turbulent 

mixing. Layers were observed within the upper water column at depths between 0 and 5 m, in 

density-stratified regions with different rates of turbulent mixing. In general, these layers were 

limited by a turbulent surface layer and a weakly turbulent, stratified interior. Thin layers were 

mainly associated to the stable conditions of the water column. Besides, these layers persisted in 

the water column because the turbulence acting to broaden the layers was insufficient to disrupt 

the layers for prolonged periods of time. As other studies, we recognized the necessity of detailed 

measurements of turbulence and specific parameters to adequately define the mechanisms 

participating in the development of the layers. The methods used to estimate the turbulent 

dissipation rates gave similar results, however, these values must be considered as an 

approximation of the real ones due to the natural variability of dissipation rates and the inherent 

uncertainty associated to the assumptions made.  

With regard to the simulation results, the model ELCOM-CAEDYM reproduced well at the 

observation time of the events the hydrodynamic conditions and phytoplankton layers in the five 

analyzed stations in the reservoir. Despite to the lack of velocity data, the results obtained from 

the model were coherent with the field observations and previous studies. In this sense, the 

results were an acceptable approximation to the real ones. These results showed the good 

performance of this model simulating a stratified reservoir as well as its potential as a tool to 

analyze layers distributions after an adequately calibration, and if possible, validation. Despite of 

the results of the model, the calibrated parameters only apply to the specific events analyzed. 

More field data at different spatial and temporal scales are required to calibrate and validate this 

model, and in this sense, use it to predict the behavior of the reservoir under different 

environmental conditions and events. 

The scaling analysis showed that convergent swimming and cell buoyancy were not the primarily 

candidate mechanisms for layer formation and maintenance, but eventually, these mechanisms 

could participate under other conditions in the water column. Instead, the results indicated that 

the layers may have formed primarily from in situ growth mechanism. Based on the scaling 

analysis, we showed that intrusions may contribute to the formation of the layers influencing in-

layer growth mechanism. In this sense, in-layer growth stimulated by nutrient-rich intrusions and 

vertical turbulent fluxes of nutrients was responsible to produce the observed phytoplankton 
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layers. This conclusion showed the fundamental role of inflows in the definition of the water 

dynamics in a reservoir, and specifically, in the formation of phytoplankton layers.   

Although we cannot determine the exact mechanisms by which the observed thin phytoplankton 

layers were formed in the reservoir, we were able to identified possible mechanisms by analyzing 

the concurrent physical, chemical, and biological data. Further studies are required to define 

more appropriately the mechanisms involved in the formation of layers as well as its 

characteristics (initial patches dimensions, tilt angles, swimming velocities, species diameters, 

nutrient fluxes). The melding of theory, field observations and numeric simulations pursued in 

this study showed how these different ways to face the identification of mechanisms can be 

coupled in order to achieve a deeper understanding of thin layers development. 



 

 
 

6. Recommendations and future work 

This study provided a mechanistic approximation to the mechanisms governing phytoplankton 

layers formation, maintenance, and dissipation in La Fe reservoir. It would be highly desirable to 

complement this approach with direct and detailed observations of velocities and turbulent 

dissipation rates as well as measures at diurnal and monthly scales that allow a more complete 

description and evaluation of the layering mechanisms (e.g., initial patches dimensions, tilt 

angles, swimming velocities, species diameters, nutrient fluxes). These measures will contribute 

to build more definitive conclusions about the mechanisms involved in layering processes. 

Considering even other processes occurred in the water column will complement our analysis and 

contribute to better insights about the thin layer characteristics, dynamics, and associated 

environmental conditions. 

The mechanisms reviewed in this study not include the effects generated by the contraction and 

expansion of isopycnals and other divergent mechanisms that contribute to the dissipation of the 

layers. These effects could be incorporated, in the first case, with the addition of an additional 

term on the balance equations to account for the waves responsible of the changes on 

isopycnals. Other divergent mechanisms, different to the homogeneous turbulent diffusion 

considered here, include diffusive (undirected) swimming and out migration from the layer 

(directed swimming) (Stacey et al., 2007). In each case, a velocity scale could be defined in order 

to quantify the rate of layer thinning or thickening. This velocity could be then incorporated in the 

analyzed scaling framework.  

Besides, other mechanisms such as straining, gyrostatic trapping, and differential grazing can be 

studied in order to include more mechanisms into the analysis. An analysis of other velocity scales 

for vertical swimming velocity of phytoplankton species as proposed by Birch et al. (2009) and for 

the settling velocity used in the buoyancy mechanism may contribute to the understanding of 

layers development and the discussion about this scaling framework. On the other hand, the 

considerations and simplifying assumptions made in each mechanism have to be revised in detail 

in order to study more real phytoplankton events and interactions into the water column.  

It would be interesting to apply the scaling approach of these mechanisms in other tropical 

reservoirs and environments in order to test the universality of the proposed analysis. Thereby, 

further studies are needed to understand the dynamic of the layers and the factors that influence 

it as well as to develop methods to quantify the relative participation of each mechanism in the 

formation of the layers. 



 

 
 

Appendix: CAEDYM parameters 

PHYTOPLANKTON constants 

 CYANO CRYPT FDIAT 

Maximum potential growth rate of 
phytoplankton (Pmax) [/day] 

0.64 1.48 1.80 

Average ratio of C to chlorophyll a (Ycc) [mg 
C/mg chla]                       

40 180 40 

Light limitation 

Type of light limitation algorithm (2=no 
photoinhibition, 3=photoinhibition) (algt) [no 
units]                    

2 3 3 

Parameter for initial slope of P_I curve (IK) 
[microE/m2/s]                  

140 40 60 

Light saturation for maximum production (ISt) 
[uEm-2s-1]                  

1300 200 120 

Specific attenuation coefficient (Kep) [ug chlaL-

1m-1]                       
0.1264 0.0890 0.0140 

Nutrient parameters                                                           

Half saturation constant for phosphorus (KP) 
[mg/L]                         

3.00E-4 3.00E-2 3.00E-2 

Low concentrations of PO4 at which uptake 
ceases (Po) [mg/L]                   

0.0 0.0 0.0 

Half saturation constant for nitrogen (KN) 
[mg/L]                              

8.46E-2 2.00E-2 4.00E-2 

Low concentrations of N at which uptake ceases 
(No) [mg/L]                     

0.0 0.0 0.0 

Constant internal Silica concentration (Sicon) 
[mg Si/mg Chla] 

0.0 0.0 120 

Half saturation constant for silica (KSi) [mg/L]                          0.0 0.0 0.44 

Low concentrations of Si at which uptake ceases 
(Sio) [mg/L]                   

0.0 0.0 0.01 

Half saturation constant for carbon (KCa) [mg/L]  2 2 2 

Minimum internal N concentration (INmin) [mg 
N/mg Chla] 

2.5 3.0 5.6 

Maximum internal N concentration                      
(INmax) [mg N/mg Chla] 

5.0 9.0 7.5 

Maximum rate of phytoplankton nitrogen 
uptake (UNmax) [mg N/mg Chla/day]    

1.5 1.5 15.0 
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Minimum internal P concentration (IPmin) [mg 
P/mg Chla]                   

0.40 0.30 0.25 

Maximum internal P concentration (IPmax) [mg 
P/mg Chla]                     

0.8 1.5 1.0 

Maximum rate of phosphorus uptake (UPmax) 
[mg P/mg Chla/day]                

0.20 0.04 0.14 

Minimum internal C concentration (ICmin) [mg 
C/mg Chla]                     

15 15 15 

Maximum internal C concentration (ICmax) [mg 
C/mg Chla] 

80 80 80 

Maximum rate of carbon uptake (UCmax) [mg 
C/mg Chla/day] 

50 50 50 

Constant Internal P ratio if no int P is modelled 
(IPcon) [mg P/mg Chla]    

0.1 0.3 0.1 

Constant Internal N ratio if no int N is modelled 
(INcon) [mg N/mg Chla] 

2 3 2 

Maximum nitrogen fixation rate (NFixationRate) 
[mg N/mg Chla /day] 

2 2 2 

Growth rate reduction under maximal N 
fixation (gthRedNFix)                 

1 1 1 

Temperature representation                                                    

Temperature multiplier (vT) [no units]                                         1.092 1.080 1.060 

Standard temperature (Tsta) [Deg C]                                      20.0 -6.4 16.0 

Optimum temperature (Topt) [Deg C]                                      28 -29 20 

Maximum temperature (Tmax) [Deg C]                                      35.00 -0.05 29.00 

Respiration mortality and excretion 

Respiration rate coefficient (kr) [/day] & (krp) []                           0.08   0.00 0.20   0.00 0.10   0.00 

Temperature multiplier (vR) [no units]                          1.068 1.095 1.070 

Fraction of respiration relative to total 
metabolic loss rate                 

0.7 0.7 0.7 

Fraction of metabolic loss rate that goes to 
DOM (rest goes to POM)           

0.7 1.0 0.7 

Salinity limitation                                                           

Maximum potential salinity (maxSP) [psu]                                      36 36 36 

Type of water environment (phsal) [no units]                                                            0 0 0 

Minimum bound of salinity tolerance (Sop) 
[psu] 

3 1 1 

Salinity limitation value at S=0 and S=maxSP 
(Bep) [no units] 

3 2 5 

Salinity limitation value at S=Sop (Aep) [no 
units]     

1 1 1 

Vertical migration and settling 

Type of vertical migration algorithm (0-stokes, 
1-constant, 2-motile 3-motile with 
photoinhibition) (phvel) [no units] 

2 3 1 

Rate coefficient for density increase (c1) [kgm- 0.2 0.9 0.9 
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3min-1] 

Minimum rate of density decrease with time 
(c3) [kgm-3min-1]                 

0.0500 0.0415 0.0415 

Rate for light dependent migration velocity (c4) 
[mhr-1] 

0.30 0.85 0.85 

Rate for nutrient dependent migration velocity 
(c5) [mhr-1]                  

0.30 0.65 0.65 

Half saturation constant for density increase 
(IKm) [uEm-2s-1]               

278 25 25 

Minimum phytoplankton density (min_pd) 
[kg/m3] 

990 980 980 

Maximum phytoplankton density (max_pd) 
[kg/m3] 

1002 1050 1025 

Density of water at 20 deg C (pw20) [kgm-3] 1000 

Diameter of phytoplankton (dia) [m]                                            0.15E-03 0.10E-04 0.10E-04 

Constant settling velocity (ws) [ms-1]                                     1.12E-06 -0.36E-05 -6.72E-05 

DO threshold which motile phytos will not 
migrate below (oth) [mg O/L]     

0.0 0.0 0.0 

Resuspension 

Critical shear stress (tcpy) [N/m2]                                   0.001 0.001 0.001 

Resuspension rate constant (alpPy ) [mg 
Chla/m2/s] 

0.008 

Controls rate of resuspension (KTPy) [mg 
Chla/m2] 

0.01 0.01 1.00 

Phytoplankton sediment survival time (DTphy) 
[days] 

2 2 2 

Algal toxin and metabolite dynamics 

Internal metabolite conc when growth is zero 
(IXmin) [mg/L (mg Chla/L)-1]     

0.2 0.0 0.0 

Internal metabolite conc when growth is Pmax  
(IXmax) [mg/L (mg Chla/L)-1]   

2.0 0.0 0.0 

Temperature decay constant for metabolites 
(mX)                               

0.01 0.0 0.0 

 

OXYGEN constants 

Maximum limit of polychaete biomass 
(PCmax) [g/m2] 

50 

Respiration stoichiometric ratio of C to O2 
(YOC) [mg C/mg O] 

2.66667 

Frac of net DO allocated to seagrass roots (fox) 
[no units] 

0.10 

Stoichiometric factor, seagrass  C : DO (YSG) 
[mg sgC/mg O] 

2.66667 

Stoichiometric factor, jellyfish C : DO (YOJ) [mg 
jelC/mg O] 

2.66667 
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Minimum DO in the bottom layer (mg/L) 
(oxmin) [mg/L] 

0.03 

Photo-respiration phytoplankton DO loss (prc) 
[no units] 

0.014 

 

ORGANIC PARTICLES (POM) 

Max transfer of POCL->DOCL (POC1max) 
[/day] 

0.0100 

Max transfer of POCR->DOCR (POC2max) 
[/day] 

0.0005 

Max transfer of POPL->DOPL (POP1max) [/day] 0.0500 

Max transfer of POPR->DOPR (POP2max) 
[/day] 

0.0005 

Max transfer of PONL->DONL (PON1max) 
[/day] 

0.0100 

Max transfer of PONR->DONR (PON2max) 
[/day] 

0.0005 

 

DISSOLVED ORGANICS (DOM) 

Max mineralisation of DOCL->DIC (DOC1max) 
[/day] 

0.003 

Max mineralisation of DOCR->DIC (DOC2max) 
[/day] 

0.0005 

Max mineralisation of DOPL->PO4 (DOP1max) 
[/day] 

0.007 

Max mineralisation of DOPR->PO4 (DOP2max) 
[/day] 

0.0005 

Max mineralisation of DONL->NH4 (DON1max) 
[/day] 

0.007 

Max mineralisation of DONR->NH4 (DON2max) 
[/day] 

0.0005 

 

Nitrification/Denitrification 

Temp multiplier for denitrification (vN2)  []           1.08 

Denitrification rate coefficient (koN2) [/day] 0.40 

Half sat const for denitrification (KN2) [mg/L]        0.30 

Temp multiplier for nitrification (vON) [] 1.08 

Nitrification rate coefficient (koNH) [/day] 0.20 

Half sat constant for nitrification (KOn) [mg 
O/L] 

4.00 

Ratio of O2 to N for nitrification (YNH)  [mg 
N/mg O] 

3.42857 
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