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Resumen

En esta tesis, nosotros caracterizamos, con ayuda de la relatividad numérica, los

efectos gravitomagnéticos para partículas de prueba con espín cuando se mueven en

un campo rotante. Dado este propósito, nosotros resolveremos numéricamente las

ecuaciones de Mathisson-Papapetrou- Dixon en una métrica de Kerr. Además, estu-

diaremos la influencia del valor y la orientación de espín en el efecto reloj.

Palabras clave: Relatividad general, relatividad numérica, ecuaciones de

Mathisson-Papapetrou-Dixon, métrica de Kerr, partículas de prueba con es-

pín.

Abstract

In this thesis, we characterize, with help of the numerical relativity, the gravito-

magnetic effects for spinning test particles when are moving in a rotating field. Since

this aim, we numerically solve the Mathisson-Papapetrou-Dixon equations in a Kerr



metric. Also, we study the influence of value and orientation of the spin in the clock

effect.

Keywords: General relativity, numerical relativity, Mathisson-Papapetrou-Dixon

equations, Kerr metric, the spinning test particles
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Chapter 1

Introduction

Historically one of the problems that the General Theory of Relativity has studied is

the description of the movement of a mass distribution in a gravitational field. The

importance of this topic is heightened when dealing with astrophysical phenomena

such as accretion discs in rotating black holes [1], gravitomagnetics effects [2] or

gravitational waves induced by spinning particles orbiting a rotating black hole [3].

Our approach for this mass distribution, which has small dimensions compared with

the central massive body [4], is to study the set of equations of motion for a spinning

particle in a rotating gravitational field. Thereafter, we calculate numerically the

trajectory for a spinning test particle when it is orbiting around a rotating massive

body. The aim of this thesis is to give a numerical solution to the full set of equations

for a spinning test particle orbiting around a rotating field.

To study the problem of motion of spinning test particles in an axially symmetric

metric, we will use two different formulations that had been worked: The formulation

of the Mathisson - Papapetrou - Dixon equatios (MPD equations) [5] and the Carter´s

equations [6]. The MPD equations describe the motion of a spinning body which

is moving in a rotating gravitational field. This set of equations is deduced by the
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multipole expansion of the energy-momentum tensor of a distribution of mass in the

middle of a gravitational field with a density of angular momentum (a). For the

momenta, of lower order, the equations relate the linear and angular momentum of

an extended body around a central mass with rotation. For the Carter´s equations,

the equations are deduced by the first integrals of motion which relate the constants

of motion such as the energy (E), the angular momentum (J), and the mass (M).

Carter uses another constant of motion (Q) which relates the angular momentum of

test body with the latitudinal motion of a body around a rotating mass.

With regard to the MPD equations, these equations study the problem of motion

in a distribution of mass in a rotating gravitational field and were researched initially

by Papapetrou [7] and Mathisson [8]. They, to study this motion, calculated a multi-

pole expansion of symmetric momentum - energy tensor (Tαβ) which represents the

distribution of mass in a rotating gravitational field [9] and from this expansion, they

yielded a set of equations which includes both the monopole and dipole momentum

for studying the motion of a spinning test body in a gravitational field [8]. Then,

Dixon took up this system of equations [10], and defined the total momentum vector

and the spin tensor for an extended body in an arbitrary gravitational field. In a

paper, Dixon studied the particular case of extended body in a Sitter universe and

used the spin supplementary condition uβSαβ = 0 to define the center of mass [10].

The majority of works that one finds are centered on the description of orbits

around a rotating massive bodies in the equatorial plane. Tanaka et al. [1] using

the Teukolsky formalism for the perturbations around a Kerr black hole calculate the

energy flux of gravitational waves induced by a spinning test particle moving in orbits

near the equatorial plane of the rotating central mass [3]. They use the equations

of motion for a spinning particle derived by Papapetrou, introduce the tetrad frame

and evaluate the equations of motion in the linear order of the spin with the aim of
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calculating the waveform and the energy flux of gravitational waves by a spinning

particle orbiting a rotating black hole. In the analytical solution given by Tanaka

et al., the spin value is fixed and orthogonal to the equatorial plane (S⊥). Another

work that uses an approximation method for describing the influence of spin on the

motion of extended spinning test particles in a rotating gravitational field is made by

Mashhoon and Singh [11]. In this paper, they study the case for circular equatorial

motion in the exterior Kerr spacetime and compare numerically their calculations

with the numerical solution of the extended pole-dipole system in Kerr spacetime

given by the MPD equations.

In the MPD equations, the solution of the motion of spinning test particles, it

is necessary to consider a spin supplementary condition (SSC) which determines

the center of mass of the particle for obtaining the evolution equation. Kyrian

and Semerek in their paper [12] consider different spin conditions and compare the

different trajectories obtained for various spin magnitudes and conclude that the

behaviour of a spinning test particle with different suplementary conditions fixing

different representative worldlines. For the numerical integration, they take the case

when the spin in orthogonal to the equatorial plane. In a previous paper, they

integrated the MPD equations with the Pirani condition (PσSµσ = 0) [13], and

studied the effect of the spin-curvature interaction in the deviations from geodesic

motion when the spinning test particles are ejected from the horizon of events of

central mass in a meridional plane.

To study the influence of the spin in the gravitomagnetic clock effect, Faruque

[14] calculates the first-order correction of the angular velocity analytically with the

aim of finding the orbital period both for the prograde period and for the retrograde

period of the two spinning test particles. He found that the spin value of the particle

reduces the magnitude value of the clock effect. The spin value (S) is fixed and does
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not change in the time.

In the last decades, authors such as Kyrian [12], Semerák [13], Plyatsko [15]

and Mashhoon [11] worked in the numerical solution of the equations of motion for

spinning test particles orbiting around a rotating gravitational field given by the

MPD equations. In each case, they performed numerical calculations for a particular

case, such as the particle in an equatorial plane or the spin value constant in time. For

the scope of this work, the most important contribution will be he numerical solution

of the full set of MPD equations without any restrictions on spin orientation. These

results will be material for studying the gravitomagnetics effects and for the influence

of the spin in Michelson-Morley type experiments.

The formulation of Carter´s equations in order to calculate the system of equa-

tions of motion for a test particle in a rotating field derived directly from the Kerr

metric using the symmetries of the geometry of a rotating massive body and from the

conserved quantities of energy (E), angular momentum (J) and a constant fourth

given by Carter (Q).

In the literature, there are papers that use the Carter´s equations to study the

motion of spinless test particles in the equatorial plane in a Kerr metric [16],[17]. In

particular for Carter´s equations, when the spinless test particle is orbiting in non

equatorial planes, there are two particular situations. First, authors as Kheng [18],

Teo [19] and Wilkins [20] study the case where the particle is out of the equatorial

plane and does not have spin, while Tsoubelis [21], [22] and Stog [23] work on the case

where the spinless test particles start from one of the poles of the rotating central

mass. We make a numerical comparison from the results obtained by the Carter´s

equations with our results given by numerical solution to the full MPD equations.

If one knows the conserved constants, the Killing vector and the covariant deri-

vative of this Killing vector in a point, one can establish a constant relation between
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the associated momentum to the conserved quantity and the spin of the test particle

in the case when the spinning test particles are in the equatorial plane. With this

relation and the Carter´s equations, we will study the particular case when the spin

of the particle is parallel to the symmetric axis of the massive rotating body and is

orbiting in an equatorial plane. The majority of papers consider the particular case

when the value spin is fixed and orthogonal to equatorial plane [24], [25].

One of the purposes of this thesis is to study the gravitomagnetic effects. These

effects are derived by the analogy between Coulomb´s law and the Newton´s gravita-

tion law. There is a relationship between the Maxwell´s equations and the linearized

Einstein equations. Therefore, our first step will be to linearize the Einstein field

equations and compare them with some electromagnetic phenomena. Then, we will

take the MPD equations given by Plyastsko et al. for a spinning test particle orbi-

ting around a rotating massive body [15]. Since is not possible to find an analytical

solution for the set of eleven coupled differential equations, we will give a numerical

solution for the case when the spinning test particle orbits in a Kerr metric. The

main contribution of this work is to yield the numerical solution for the case of spin-

ning particles around a rotating gravitational field. On the other hand, one finds

that the majority of works give the analytical solution for particular cases such as

spinless test particles in the Schwarzschild metric and in the equatorial planes or the

spin values constricted in the time. We calculate the trajectories of spinning test

particles in rotating gravitational fields without restrictions on its velocity and spin

orientation. From this work, we will study the gravitomagnetism effects and give an

exact numerical solution for the clock effect [26].

Thereafter, we study the effects of spin when a test particle travels in the field of

a rotating massive body with the aim of describing the trajectories of test particles

in Michelson and Morley type experiments.
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The present thesis is structured as follows. It begins with a theoretical chapter

which synthesises the basic elements that we will work for studying the motion of

spinning test particles around a rotating massive body. In this same chapter, we give

an overview of the MPD equations and the Carter´s equations that we will work in

this thesis for our numerical calculations.

In the third chapter, we will give the basic structure for describing the trajectories

of test particles in a Kerr metric both in the Mathisson-Papapetrou-Dixon equations

and in Carter´s equations. We yield the set of equations of motion for the spining

test particles when they are orbiting around a rotating massive body.

The fourth chapter is centered on the study of the gravitomagnetism with regard

to the study of trajectories of spinning test particles. First of all, we give an overview

about the Gravity Probe B experiment whose objetive was to detect both the Lense -

Thirring effect and the precession of a gyroscope when is orbiting the meridional plane

of Earth [27]. NASA launched a satellite which transported four gyroscopes with the

aim of measuring the drag of inertial systems and the geodetic effect produced by

the gravitational field [28]. Then we study the gravitomagnetic effects given by the

rotation of massive bodies and the relationship with spinning test particles. Also,

we study the effects by spin in the description of trajectories of test particles around

of rotating fields. Finally, we study the Michelson-Morley type experiments with the

aim of introducing the influence of stablishing the spin. For this famous experiment,

we study the consequences of introducing the spin for the test particle and considering

its behavior.

The last chapter is dedicated to the conclusions and outlook of work. We will

give a numerical solution both for the MPD equations and for Carter´s equation with

the objective of comparing these methods when the two test particles are orbiting

around a rotating body in opposite directions. We will compare our results with the
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literature and will give our conclusions [14]. Also, we will present a future work with

regard to the description of trajectories of spinning test particles when traveling in

non-equatorial planes.
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Chapter 2

Formulation for the equations of

motion

2.1 Introduction

In this chapter, we will consider the effects of the spin for the test particles. In

particular we will study the motion of spinning test particles in symmetric axial

gravitational fields in the weak field approach. We will use the two different standard

formulations by the Mathisson - Papapetrou - Dixon equations (MPD) [10], and the

Carter´s equations [6] as starting point of our specific problem. We will extend the

MPD formulation by including the spin, obtaining the equations of motion with an

explicit spin dependency. On the other hand, we will use the Carter formulation to

obtain the specific values for some constants and also to compare the contributions

of the final results respect to the already accepted calculations.

In the gravitational field the free particles follow a geodesic. The geodesic is

defined as the curve which its tangent vector (Xα = dxα/dλ) is parallel transported

along the curve, which in terms of its covariant derivative can be written [30] as:
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D

∂λ

(
∂

∂λ

)
= ∇xX = 0.

Using the coordinate basis, {∂/∂xα} and {dxα} one obtaines the equation for the

geodesics:

d2xα

dλ2 = Γαβγ
dxβ

dλ

dxγ

dλ
, (2.1)

where Γαβγ are the coeffi cients of connection and λ is an affi ne parameter. These

coeffi cients are defined in terms of the metric gµν as

Γαµν =
1

2
gαρ (∂νgρµ + ∂µgρν − ∂ρgµν) . (2.2)

The test particle follows a geodesic which represents the trajectory in a gravitation

field without taking into account any kind of forces.

There are two cases in consideration: first, the test particle has mass, that is, the

affi ne parameter λ is the proper time (τ) and the four velocity dxµ/dτ is normalized

as gµν (dxµ/dτ) (dxν/dτ) = c2. For the second case, the particle does not have mass

so that the tangent vector kµ is null, therefore gµνkµkν = 0.

We will solve the equations of motion for a spinning test particle in a Kerr metric.

For this chapter, we define the signature of the metric as ( -, -, -,+). This metric in

Boyer Lindquist (r, θ, φ, t) coordinates is given by [31]

ds2 = −ρ
2

∆
dr2 − ρ2dθ2 −

[
r2 + a2 +

2GMr

c2ρ2
a2 sin2 θ

]
sin2 θdφ2

+
4GMr

c2ρ2
ac sin2 θdtdφ+

(
1− 2GMr

c2ρ2

)
c2dt2, (2.3)
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where:

ρ2 = r2 + a2 cos2 θ, (2.4)

∆ = r2 − 2GMr

c2
+ a2, (2.5)

a is the angular momentum of the distribution for unit of mass:

a =
J

Mc
. (2.6)

2.2 Equation of linear field

For a given mass distribution and test particles far away from this distribution, the

gravitational field is asymptotically Minkowskian; in other words, when one is far

away from this distribution, the gravitational force is weak and the gravitational

space is a Minkowskian space. Therefore, one can consider under certain conditions

that the metric for this mass distribution deviates a little from the Minkowskian

metric and one would speak of a relativistic weak gravitational field.

In the approximation of weak gravitational field, we find the approximated solu-

tion for the Einstein field equations of the General Relativity Theory; that means,

we linearize the gravitational field equations.

2.2.1 Newtonian mechanics

The Newtonian gravitational theory is included in the General Relativity Theory for

the conditions of low velocities and weak field:
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The velocities are small relative to the speed of light 1

|u|
c
� 1 (2.7)

and under this condition (2.7) when a particle travels from a point where the gravita-

tional potential is equal zero to a distribution of mass, we have that the gravitational

potential Φ is given by

Φ = −GM
r
, (2.8)

and is called the condition of weak field. This potential must satisfices

2 |Φ|
c2
� 1. (2.9)

In this limit we are in the Newtonian gravity [32].

The second condition is the weak field and indepent of time, that is, the temporal

variations of field are negligible. In other words, the mass that produces the field is

moving slowly.

2.2.2 General Relativity for a weak field

Now, under the approximation of weak field (2.9) the metric can be written as:

gµν = ηµν + hµν , |hµν | � 1. (2.10)

In General Relativity and in the approximation of weak field, one can approach

a finite distribution of matter with a small deviation of plane space.

From (2.10) the contravariant components of the metric tensor are given by

1Bold characters correspond to vectors in R3
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gαβ = ηαβ − hαβ. (2.11)

Thus replacing (2.11) in the symbol of Christoffel (2.2) and retaining terms of

first order in hαβ we obtain

Γσµν =
1

2
ηασ (hαµ,ν + hαν,µ − hµν,α) . (2.12)

We consider a test particle in the gravitational field and free from external forces,

so the geodesic equation for the spatial components (i = 1, 2, 3) is given by

d2xi

dτ 2
+ Γiαβ

dxa

dτ

dxβ

dτ
= 0. (2.13)

In the approach of low velocities and weak field independent of time, the second

term of the left of (2.13) is reduced to

Γiαβ
dxa

dt

dxβ

dt
' c2Γi44. (2.14)

From (2.13) we have

d2xi

dt2
' −c2Γi44. (2.15)

The connection is showed as

Γi44 = −1

2
h44,i, (2.16)

then the geodesic equation is

d2xi

d2t
=
c2

2

∂h44

∂xi
. (2.17)
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Comparing (2.17) with equation of motion (2.1) we have

h44 = − 2

c2
Φ + cte. (2.18)

In a finite distribution of mass Φ −→ 0, when r −→ ∞, the metric is asymp-

totically flat, i.e., h −→ 0 for r −→ ∞. So in the equation (2.18) the constant

cte = 0.

The g44 component of the metric is

g44 ' −1− 2
Φ

c2
. (2.19)

The next step is to write the Einstein field equations in the approximation of

weak field and low velocities. For that case the equations are written in terms of h

and given by

Gµν ≡ Rµν −
1

2
gµνR =

8πG

c4
Tµν , (2.20)

and the Ricci tensor is given by

Rλµ = Γσσλ,µ − Γσλµ,σ + ΓτλσΓσµτ − ΓτλµΓστσ, (2.21)

where the comma represents the partial derivative.

We write the Christoffel symbols (2.2) in terms of hµν as:

Γγµν =
1

2
[hν

γ,µ +hγµ,ν − hµν‚γ] . (2.22)

So the Ricci tensor (2.21), in the approximation of weak field, using the expression

(2.22), is given by:
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Rµν =
1

2
[h,µν − hνα,µα − hµα,να + hµν,α

α] (2.23)

and the curvature scalar becomes:

R =
[
h,α

α − hαβ,αβ
]
. (2.24)

So we replace (2.10), (2.23), and (2.24) in the Einstein tensor (2.20) and we obtain

1

2
[h,µν − hνα,µα − hµα,να + hµν,α

α]− 1

2

(
ηµν + hµν

) [
h,α

a − hαβ,αβ
]

=
8πG

c4
Tµν . (2.25)

We define

hµν = hµν −
1

2
ηµνh, (2.26)

where h is defined as: h = hα
α. The equation (2.25) can be expressed as

−hµν,αα + ηµνh
αβ
,αβ − hνα,µα−hµα,να =

16πG

c4
Tµν , (2.27)

in this equation the first term corresponds to D ´lambertian operator which is defined

as

hµν,α
α = �hµν =

(
−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
hµν . (2.28)

If one use the Hilbert gauge or Lorentz gauge, the equation (2.27) is reduced to

h
µα
,α = 0. (2.29)
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From this gauge the linearized field equations (2.27) take the form of a non-

homogeneous wave equation:

�hµν = −16πG

c4
Tµν . (2.30)

After finding the relationship between the metric tensor and the potential in the

newtonian limit, we obtain a particular solution of (2.30), for a spherical uniform

mass distribution with a constant angular velocity. With help of this wave equation,

in the approximation of low velocities and weak field, the components of tensor Tµν

give the expressions analogous to the Maxwell´s equations.

The delayed solution of the non-homogenous wave, the equation (2.30) can be

written as

hµν (ct,x) = −4G

c4

∫
Tµν (ct− |x− x′| ,x′)

|x− x′| d3x′, (2.31)

where xµ = (ct,x). Now for the case stationary, that is, T µν ,0 = 0. In other words,

the momentum - energy tensor is constant in time, the solution (2.31) is reduced to:

h
µν

(x) = −4G

c4

∫
T µν (x′)
|x− x′| d

3x′. (2.32)

A particular case is the non-relativistic stationary source, where the velocity u of

any particle is small compared with the density of energy [35].

In any coordinated system xµ, where the four velocity is uµ, the contravariant

components of tensor are given by

T µν = ρuµuν , (2.33)

where ρ is the proper density of fluid and uµ is the four velocity of fluid which is
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defined as: uµ = γu (c,u). In the limit of low velocities the Lorentz factor γu =

(1− u2/c2)
−1/2 ≈ 1. Therefore the components of the metric tensor are

T ij = ρuiuj, T 4i = cji, T 44 = ρc2. (2.34)

From the relation |T ij| / |T 44| ∼ u2/c2, thus T ij ≈ 0 up to the order of appro-

ximation written above. Let be defined the scalar gravitational potential Φ and the

potential gravitational vector Ai, independent of time as

Φ (x) ≡ −G
∫

ρ (x́)

|x− x′|d
3x́, (2.35)

Ai (x) ≡ −4G

c2

∫
ρ (x́)ui (x́)

|x− x′| d
3x́. (2.36)

Thus the solution for (2.32), in the linearized equations, can be written as

h
ij

= 0, h
4i

=
Ai

c
, h

44
=

4Φ

c2
. (2.37)

The corresponding components of hµν are given by hµν = h
µν− 1

2
ηµνh. The result

(2.37) implies that h = h
44
and the components will be

h11 = h22 = h33 = h44 =
2Φ

c2
, h4i =

Ai
c
. (2.38)

From the line element

ds2 = gµνdx
µdxν

and in the approximation of weak field, where the metric is given by gµν = ηµν +hµν

we have
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gij = −1 +
2Φ

c2
g4i =

Ai
c
, g44 = 1 +

2Φ

c2
,

thus the line element is

ds2 = −
(

1− 2Φ

c2

)
δijdx

idxj +
4

c
(A·dx) dt+ c2

(
1 +

2Φ

c2

)
dt2. (2.39)

Now the aim is to find the analogy between the linearized Einstein field equations

and the electromagnetism. We already found that the elements of tensor h are

h11 = h22 = h33 = h44 =
2Φ

c2
, h4i =

Ai

c
, hij = 0 if i 6= j, (2.40)

where Φ and A are defined as the gravitational scalar and the potential vector

respectively. Now let´s consider the time independent Maxwell equations

∇2Φ = − ρ
ε0

y ∇2A = −µ0j

and take into account the following identifications [44]

ε0 ←→ −
1

4πG
y µ0 ←→ −

16πG

c2
, (2.41)

we can obtain the linerarized field equations:

∇2Φ = 4πGρ y ∇2A =
16πG

c2
j, (2.42)

where j ≡ ρv is the density (or density of mass current). These equations, time

independent, have the solutions (2.35 and 2.36).
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So we have the gravitomagnetic and gravitoelectric fields [33] :

B = ∇×A y E = −∇Φ− 1

c

∂

∂t
(A) . (2.43)

Using the equations (2.42), we verifyE andB fields are relationed to the Maxwell´s

equations as

∇ · E = −4πGρ ∇ · 1

2
B = 0 (2.44)

∇× E = −1

c

∂

∂t

(
1

2
B

)
∇×B =

1

c

∂

∂t
E− 4πG

c
j.

The same as in electromagnetism, we must postulate, in addition the Lorentz

force for describing this motion. In the last section, we wrote the equation of motion

for the test particle in a gravitational field is the geodesic equation:

··
x
σ

+ Γσµν
·
x
µ ·
x
ν

= 0, (2.45)

the points indicate the differentation in regard to the proper time τ of the particle.

It is taken a small velocity v and the relation γv = (1− v2/c2)
− 1
2 ≈ 1. Writing the

position xµ = (ct,x), the four velocity of the particle is given by [35]

·
x
µ

= γv (c,v) ≈ (c,v) .

Now we replace the derivatives with respect to t. Therefore, the spatial compo-

nents of (2.45) are written as
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d2xi

dt2
≈ −

(
c2Γi00 + 2cΓiojv

j + Γiijv
ivj
)

≈ −
(
c2Γi00 + 2cΓiojv

j
)
, (2.46)

where we had canceled spatials terms because their reason with respect to temporal

term c2Γi44 is order to v
2/c2. To first order of gravitational field hµν , the conecction

coeffi cients are given by (2.22). So we take (2.46) and remembering that hij = 0, we

obtain

d2xi

dt2
≈ c

(
h4j,

i−hi4,j
)
vj − c2hi4,4 +

1

2
c2h44,

i

= −cδik (h4j,k − h4k,j) v
j − c2δiσhi4,4 −

1

2
c2δijh44,j. (2.47)

Replacing the values of (2.40) in the previous equation, the expression for the

motion is written as

d2x

dt2
≈ −∇Φ− 1

c

∂

∂t
(A) + v × (∇×A) .

Then, we use (2.43) and obtain the Lorentz force for the case gravitational as:

d2x

dt2
≈ E+ v ×B, (2.48)

for particles that are moving very slowly in the gravitational field of a stationary

mass distribution.

Now then, we can conclude that the Gravitomagnetic Effects (GM) are generated

by a mass current, in analogy with the features of magnetismmade for a mass current.
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In the literature [33], [34] can be found a parallel between the problems characterized

by Maxwell´s Equations and the linearized Einstein field Equations. We will discuss

about this issue in the next sections.

2.3 Linearized Kerr Metric

We take the Kerr metric in the Boyer Lindquist coordinates (r, θ, φ, t) as in eq. (2.3).

This metric describes the spacetime geometry outside a rotating body. Also we

can approach the geometry far away from the source with the linearization of this

metric. Let´s define the lenghts, a and MG/c2, which are small compared to the

distance (r) from the central body to the spinning test particle, that is, a/r � 1 and

MG/c2r � 1. Then Kerr Metric can be linearized in a/r and MG/c2r [35] and be

written in the following way:

gµν ≈



−1 0 0 0

0 −r2 0 0

0 0 −r2 sin2 θ 0

0 0 0 1


+



−2MG
c2r

0 0 0

0 0 0 0

0 0 0 2GMa sin2 θ
cr

0 0 2GMa sin2 θ
cr

−2MG
c2r


. (2.49)

This linealization divides the metric two parts, in a flat part and an additive

perturbation part, allowing the interpretation to distinguish for the flat part, an

extra like effective potential
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gµν ≈ ηµν + hµν (2.50)

where ηµν are the components of flat spacetime, and |hµν | � 1 are the perturbative

elements. Therefore the line element for the Kerr Metric in the limit of weak field

[35] will be given by

ds2 = −
(

1 +
2GM

c2r

)
dr2 −

(
r2dθ2 + r2 sin2 θdφ2

)
+

4GMa

cr
sin2 θdφdt+ c2

(
1− 2GM

c2r

)
dt2. (2.51)

where the gtφ component is called the gravitomagnetic potential.

This metric is useful for calculating the General Relativity effects due to the

rotation of the Earth, or in astrophysical situations, where the gravitational field is

weak.

The gravitomagnetic term generally is refered to the set of gravitational pheno-

mena with relation to the orbiting test particles, precession of gyroscopes, motion

of clocks and atoms, and the propagation of electromagnetic waves which in the

system of General Relativity Einstein Theory comes from distributions of matter

and energy no static [34]. In the approximation of weak field and low velocities,

the Einstein field equations (2.20), are linearized and it is found the analogy with

the Maxwell´s equations for electromagnetism. As a consequence, a gravitomagnetic

field
−→
B g, induced for the components no diagonal g4i, i = 1, 2, 3 of the metric of

space time related with mass-energy currents are present. A particular case is given

when the particle is far away from a rotating body with angular momentum
−→
J , in

consequence the gravitomagnetic field can be written as
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−→
B g (−→r ) =

G

cr3

[−→
J − 3

(−→
J · r̂

)
r̂
]
, (2.52)

where G is the newtonian gravitational constant. This concerns, for instance, to a

test particle that is moving with a velocity −→v . The acceleration is given by

−→
AGM =

(−→v
c

)
×−→B g, (2.53)

which is the cause of two gravitomagnetic effects: Lense - Thirring Effect and the

geodesic precession.

Now we will present the basics for the motion of spinning test particles around a

rotating massive body, according to the formulations by MPD equations and Carter´s

equations.

2.4 Mathisson - Papapetrou - Dixon equations

In order to obtain the MPD equations of motion, we take the momentum energy

symmetric tensor for a mass distribution (Tαβ), which satisfies the equation of con-

tinuity

∇βT
αβ = 0. (2.54)

Using the geometrized units (c = G = 1), and the greek indices running from

1− 4.

This approximation works out for very small bodies, allowing for the neglect of

the influence of other bodies on the body of interest. This body is normally called

a test particle. As a consequence, the dimensions of the test particle are very small

compared to the characteristic lenght of gravitational field. In this way, the particle
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describes a narrow world tube (M) in a four dimensional space-time (Figure 2.1).

Inside this tube, the line l represents the motion of the particle [7]. In this thesis,

we take the particular spin condition which fixes a center of mass and establishs an

interaction between the intrinsic angular momentum and the gravitational field. A

world tube is formed by all possible centroids [12].

Now we define the linear and angular momentum for the test particle, which is

described for a momentum-energy symmetric tensor. For a test particle, described

by a tensor Tαβ, the radius of a world tube W is not zero (Figure 2.1). This tube is

spread in the time, both in the past and in the future, but it is bounded spatially. It

is assumed that spacetime accepts isometries that are described by the Killing vector

ξβ such that

∇(αξβ) = 0, (2.55)

and the equation (2.55) shows that

∇α

(
ξβT

αβ
)

=
(
∇αξβ

)
Tαβ + ξβ

(
∇αT

αβ
)

= 0. (2.56)

Integrating the expression (2.56) on a volume M which includes a part of world

tube W , and considering an arbitrary like time surface, and two spacelike hypersur-

faces Σ1 and Σ2, the integral takes the form [9]

∫
M

∇α

(
ξβT

αβ
)√
−gd4x = 0, (2.57)

which can be written as

∫
M

∂α
(√
−gξβTαβ

)
d4x = 0. (2.58)
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Figure 2.1: World tube line of the spinning test particle

Now writing each part that defines the surface M

∫
Σ2∩M

ξβT
αβdΣα +

∫
Σ1∩M

ξβT
αβdΣα +

∫
∂M

ξβT
αβdΣα = 0. (2.59)

The last term vanishes because Tαβ is zero in ∂M and the others two terms can

be restricted to Σα ∩W for the same reason. So,

∫
Σ2∩M

ξβT
αβdΣα = −

∫
Σ1∩M

ξβT
αβdΣα. (2.60)

Therefore, ∫
Σ

ξβT
αβdΣα = C, (2.61)

is a constant of motion, independient of the hypersurface.

Consider a general space time M̃ and let be x (λ, γ) a family parametric of geo-

desics in this space time, where γ classifies the geodesics and λ is the affi ne parameter

along of each geodesic. One has
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·
x
α

:=
∂xα

∂λ
and V α :=

∂xα

∂γ
, (2.62)

where
·
x
α
is the tanget vector to the geodesic and V α is the deviation vector. Then,

V α (λ, γ) satisfies the deviation equation of the geodesic for each value γ [10]

D2ξα

dλ2 +Rα
βγδ

·
x
β ·
x
γ
ξδ = 0. (2.63)

A solution for this equation is determined by the value of ξα and Dξα/dλ in any

fixed value of λ. Now one chooses any fixed point of z and supposes that the values

of ξα and ∇[αξβ] are given in z. One obtains

Dξα
dλ

=
·
x
β
∇[βξα]. (2.64)

Now, in the definition of world function, let us have z ≡ x (λ0 = 0) and x ≡

x (λ0 = λ). But for the reduced expression given by Dixon [10], σκ is the derivative

of the world function σ at the point z (γ), as

σκ = −λ ·x
κ

y σα = λ
·
x
α
, (2.65)

one obtains

σκ (z (v) , x (λ, γ)) = −λ ·x
κ

(0, γ) , (2.66)

where z (v) := x (0, γ). We derive (2.66) respect to γ and as the differentiation works

in each term separately, we have

σκ ϕV
ϕ + σκ αV

α = −λD
·
x
κ

dγ
(2.67)
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and from (2.62) we obtain
D
·
x
κ

dγ
=
DV κ

dλ
. (2.68)

It defined (σα.κ)
−1 as the inverse of the matrix σκ.α, therefore

(σα κ)
−1 σκ β = Aαβ , (2.69)

where Aαβ is the unit tensor. Then (2.67) with (2.68) one has

V α = (σα ϕ)−1 σϕ κV
κ − λ (σα κ)

−1 DV
κ

dλ
. (2.70)

The last equation is the formal solution of the deviation equation of the geodesic

(2.63). Now we define the bitensors as

Kα
.κ = (σα ϕ)−1 σϕ κ and Hα

κ = − (σα κ)
−1 ; (2.71)

therefore the equation (2.70) can be expressed as

V α = Kα
κV

κ − λHα
κ
DV κ

dλ
. (2.72)

If we apply the last equation to the case where ξα is a Killing field vector using

(2.64) and (2.66) we obtain

ξα = Kα
κξκ +Hα

κσϕ∇[κξϕ]. (2.73)

This expression is acceptable for all x in the neighbourhood of z, and is explicit the

setting of ξα for the values of the Killing field vector ξα and the covariant derivative

∇[κξγ] in a point. If one integrates the last Killing vector (2.73), with the expression

(2.61) one obtains
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∫
Σ

(
Kα

κξκ +Hα
κσλ∇[κξλ]

)
TαβdΣβ = C. (2.74)

Here ξκ = ξκ (z) and ∇[κξλ] = ∇[κξλ] (z), z is a fixed arbitrary point. We define

the linear and angular momentum as

pκ (z,Σ ) ≡
∫
Σ

Kα
κTαβdΣβ, (2.75)

Sκλ (z,Σ ) ≡ 2

∫
Σ

Hα
[κσ λ]TαβdΣβ, (2.76)

where pκ is the linear momentum and Sκλ is the spin tensor. There exists in each

point z a only four vector u such that u and p (x, u) are collinear [36]

u[µpν] (z, u) = 0, (2.77)

where [ ] means antisymmetrization. On the other hand, there exists a only world

line liketime zµ (λ) that satisfies [36]

pµ (z)Sµν (z) = 0,

this world line is called the center of mass of body.

The constant (2.74) can be written as

C = pκ (z,Σ ) ξκ +
1

2
Sκγ (z,Σ )∇[κξγ]. (2.78)

Since the definitions pκ and Sκλ do not depend on the Killing vector fields, the

definitions can be used for a arbitrary space time without any symmetry. However,
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when there exists isommetries in the space time, C gives a linear combination of

linear momentum and angular moment which is constant. So we have [37]

D

dλ

[
pκ (z,Σ ) ξκ +

1

2
Sκγ (z,Σ )∇[κξγ]

]
= 0, (2.79)

which can be explicit as

Dpκ

dλ
ξκ + pκ

D

dλ
ξκ +

1

2

(
DSκγ

dλ
∇[κξγ] + Sκλ

D

dλ
∇[κξγ]

)
= 0. (2.80)

From (2.55) we have D
dλ
ξκ = vµ∇[µξκ] with v

µ ≡ dzµ

dλ
, which it defines the tangent

vector to world line zµ (λ); and given that the Killing field vectors satisfies

∇α∇βξγ = Rβγαδξ
δ, (2.81)

so the expression (2.80) can be written as

D

dλ
C = ξκ

[
Dpκ

dλ
+

1

2
SδγuµRδγµ

κ

]
+

1

2
∇[κξγ]

[
DSκγ

dλ
− 2p[κuγ]

]
= 0. (2.82)

This equation has a solution for all Killing field vector if each term in the brackets

vanishes separately. These terms are defined both the total force and total torque

acting on a body [5],

F κ ≡ Dpκ

dλ
+

1

2
SδγuµRκ

δγµ (2.83)

Lκγ ≡ DSκγ

dλ
− 2p[κuγ]. (2.84)
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With these definitions one can write (2.82) as

ξκF
κ +

1

2
∇[κξγ]L

κγ = 0. (2.85)

These two definitions (2.83) and (2.84) can be generalized to arbitrary space

time, since they do not depend on Killing vectors. But in a general space time, the

higher multipolar momenta contribute to the force and to the torque. The expression

(2.85) express the conection between the integrals of motion and the isommetries of

space-time.

We take the particular case for a test particle, in this case the force and the torque

are zero in the equations (2.83) and (2.84); therefore these equations are reduced to

Dpκ

dλ
= −1

2
SδγuµRκ

δγµ (2.86)

DSκγ

dλ
= 2p[κuγ]. (2.87)

For our study, we take the pole-dipole approximation which deals with the equa-

tions of motion of a spinning test particle only including the mass monopole and

spin dipole. Multipoles of higher orders and non-gravitational effects are ignored.

First, when the analysis is restricted to particles whose dynamics is only affected by

the monopole moments the motion is simply a geodesic. Second, if it is the dipole

moment, the motion corresponds to a test particle with spin and is no longer a geo-

desic. In this case, the monopole and dipole moments give the kinematic momentum

pµ and the spin tensor Sµν of the body as measured by an observer moving along

the reference worldline with velocity V µ [38].

The set of equations (2.86) and (2.87) has more unknown variables than equations
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so the system is undermined. Therefore a spin supplementary condition (SSC) has

to be imposed in order to solve the set of equations. This condition is related to the

choice of a center of mass whose evolution is described by an observer and where the

mass dipole vanishes [39]. When the spinning test particle moves with a constant

velocity v the part which moves faster appears to be heavier and the one that moves

more slowly appears to be lighter. Therefore, there is a shift of the center of mass ∆x

compared to an observer with zero-3-momentum. Inside of body size, it is possible to

find an observer for whom the reference worldline coincides with the centre of mass.

All the possible centroids set up a worldtube whose size is Möller radius.

In the description of the motion of a spinning test particle the tangent vector

to the worldline (uµ) is no longer parallel to the linear momentum pµ as we know

it from geodesic motion. The choice of a supplementary condition is related to the

ability to find an expression between uµ and pµ [40]. In this case, the rest mass m is

not a constant so the kinematical mass is redefined by

pµu
µ = −m (2.88)

with respect to the kinematical four-velocity uµ. Then, the dynamical mass is de-

noted with regard to the four-momentum pµ by M which satisfies

pµp
µ = −M2. (2.89)

In this context a dynamical velocity is defined by

vµ =
pµ

M
. (2.90)

In the case, m = M , because the tangent vector uν is parallel to dynamical four

30



velocity vν when it is the motion of a geodesic.

In general, two conditions are usually imposed. The Mathisson-Pirani supple-

mentary condition is [8], [41]

uσS
µσ = 0. (2.91)

In this condition, the observer is comoving with the particle and is in the rest frame

of the particle. There is not a unique representative worldline and therefore it is

dependent on the observer´s velocity and on the initial conditions. Further, this

condition exhibits helical motion in contrast to a straight line in flat spacetime. In

the works by Costa et al. show that these helical motions are physical motions and

have a hidden momentum [42].

Another supplementary condition, it is the Tulczyjew-Dixon condition [43]

pσS
µσ = 0 (2.92)

where

pσ = muσ + uλ
DSσλ

ds
(2.93)

is the four momentum.

In addition to the MPD equations, we take the Tulczyjew´s condition as supple-

mentary condition (2.92) which implies that dm/dτ = 0. The motion effects induced

by this condition must be confined to the worldtube of centroid, that is, the world-

tube formed by all the possible positions of the center of mass, as measured by every

possible observer [45]. In the the flat spacetime case, it is a tube of radius S/M

centered around the center of mass measured in the zero 3-momentum frame.

We contract Sµν in the equation (2.84) and use the condition (2.92), we obtain

the magnitude S of spin which it is defined as
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S2 = SµS
µ =

1

2m2
SµνS

µν , (2.94)

this is a constant of motion. We obtain the constant too [43]

m2 = pµp
µ, (2.95)

where m is interpreted as the mass of the particle.

In general the four momentum pµ and the tangent vector uµ are not colinear. In

fact, from the set of equations (2.83), (2.84) and the supplementary condition (2.92),

we deduce that [10]

p[µuν] = − 1

4m

√
−gεµνλρRλαβγu

αSβγSρ, (2.96)

where εµνλρ is the antysimmetric tensor and Sρ is the spin vector which is defined by

Sρ =
1

2m

√
−gεµνλρpµSνλ. (2.97)

The next step is to parametize the four vector of velocity uµ and vµ, with the

parameter of proper time τ , as

uµ (τ) vµ (τ) = 1 (2.98)

where vµ is the four velocity of center of mass, parallel to the line of world l and

Dixon calls "dynamic velocity" [43] (2.1). uµ is called "kinematical velocity" and is

perpendicular to hypersurface (Σ ).

Now we derive the equation of evolution of vµ (τ) in terms of uµ (τ). For this we

take the definition of total four momentum as
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pµ = muµ − uσ
·
S
µσ

. (2.99)

We multiply each one of the sides of the equation for m

mpµ = m2uµ − pσ
·
S
µσ

,

m2uµ −mpµ = pσ
·
S
µσ

. (2.100)

We resolve uµ

uµ =
m

m2
pµ +

pσ
m2

·
S
µσ

.

It is imposed the restriction uσSµσ = 0, therefore the right part of the equation

can be written (2.100) as

pσ
·
S
µσ

= − ·pSµσ. (2.101)

We replace this definition in the expression of uµ

uµ =
m

m2
mvµ −

·
p

m2
Sµσ,

uµ = vµ −
·
p

m2
Sµσ.

With the help of the tensor Sµν , we find that

(
4m2 +RραβγS

αρSβγ
) ·
pσS

µσ = −2mSµσRσαβγp
αSβγ. (2.102)
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From the equations (2.100), (2.101), and (2.102) we obtain the following result

vµ = uµ − 2mSµσRσαβγp
αSβγ

m2 (4m2 +RραβγSαρSβγ)

vµ = uµ − 2mSµσRσαβγmu
αSβγ

m2 (4m2 +RραβγSαρSβγ)

vµ = uµ − 2SµσRσαβγu
αSβγ

4m2 +RραβγSαρSβγ
(2.103)

vµ − uµ = −1

2

(
SµνRνρσκu

ρSσκ

m2 + 1
4
RχξζηSχξSζη

)
. (2.104)

With this equation (2.104) and the equations (2.86) and (2.87) we determine

completely the evolution of the orbit and of the spin for a small spining test particle.

Sometimes it is more useful to work with a spin four-vector Sµ than the tensor

Sµν . The antisymmetry of the spin tensor only allows six independent spin values

to be reduced to a four vector. Of course, this four vector Sµ depends on the SSC

[46] and is defined as (2.97). The measure of the spin divided by the dynamical rest

mass, i.e. S/M defines the minimal radius or Möller radius.

When the space-time admits a Killing vector ξυ, there is a property that includes

the covariant derivative and the spin tensor, which gives a constant and is given by

the expression [47]

pνξν +
1

2
ξν,µS

νµ = constant, (2.105)

where pν is the linear momentum, ξν,µ is the covariant derivative of Killing vector,

and Sνµ is the spin tensor of the particle. In the case of the Kerr metric, there are two

Killing vectors, owing to its stationary and axisymmetric nature. In consequence, Eq.

(2.105) yields two constants of motion: E, the total energy and Jz, the component

of its angular momentum along the axis of symmetry [48].

The next section presents other possible formulation for solving the equation of
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motion of a test particle around to a rotating body. This method is called Carter´s

equation [6].

2.5 Carter´s equations

Now we present, in a brief form, the Carter´s equations for a particle around a mas-

sive rotating body. In a Kerr type metric, the symmetries provide three constant of

motion: Energy (E), the angular momentum (J) and the mass (M). In addition,

there is another constant which is due to the separability of the Hamilton - Jacobi

Equation and is called Q. The Lagrange equation for a Kerr metric gives immedi-

atelly the first integrals of t and ϕ. For the others two integrals for (r) and (θ) are

obtained for a separable solution of the Hamilton - Jacobi equation [49]. The set of

equations is given by [23]

Σ
·
t = a

(
J − aE sin2 θ

)
+

(r2 + a2) [E (r2 + a2 − aJ)]

∆
, (2.106)

Σ
·
r = ±R = ±

 [E (r2 + a2)∓ aJ ]
2

−∆
[
r2 +Q+ (J ∓ aE)2]


1/2

, (2.107)

Σ
·
θ = ±Θ = ±

{
Q− cos2 θ

[
a2
(
1− E2

)
+

J2

sin2 θ

]}1/2

, (2.108)

Σ
·
φ =

J

sin2 θ
− aE +

a

∆

[
E
(
r2 + a2

)
− aJ

]
, (2.109)

where J , E and Q are constants and
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Σ := r2 + a2 cos2 θ, (2.110)

∆ := r2 + a2 − 2Mr,

M and a = J/M are the mass and specific angular momentum of the central source.

The Carter´s constant (Q) is a conserved quantity of the particle in free fall

around of rotating massive body. This quantity affects the latitudinal motion of the

particle and is related with the angular momentum in the direction θ. From (2.108)

one analyzes that in the equatorial plane, the relation between Q and the motion in

θ is given by

Σ
·
θ

2

= Q (2.111)

When Q = 0 correspondes to equatorial orbit and for the case when Q 6= 0 one

has a non-equatorial orbit.

In the next section, we find that when there are isommetries in the space time,

there exist two constants (2.78) that relate the linear and angular momenta.
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Chapter 3

Trajectories of test particles in a

Kerr metric

In this chapter, we study the set of equations of motion for test particles with spin

and without spin, in a Kerr metric [50], [51]. For the scope of our work, in the first

formulation (MPD), we used both the Christoffel symbols for a Kerr metric and the

values of the curvature tensor [1]. In the second formulation, Carter originally showed

that the first integrals of the equations of motion have four constants of motion [52].

We will consider both spinless test particles and spinning test particles, using not

only the first formulation (MPD), but also the second formulation (Carter) to be

able to compare explicity the respective trajectories (with spin and without spin of

the test particle), and study their similarities and discrepancies.

In the literature one can find many works that study all these issues, however

most of them are focused on restricted orbits on the equatorial plane of the central

mass [53] and only for spinless test particles. We will take these formulations (MPD

and Carter) for two different cases. In the first case, we study the equation of motion

of spinless test particles. The second case regards to intrinsic spin, that is, with test
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particles in rotation [54]. In the literature we found works both for one formulation

and for the other, but these works study especially orbits in the equatorial plane

of the central mass [55]. One of the main contributions of this work is to include

spinning test particles in this framework particulary calculating the equations of

motions for spinning test particles out of the equatorial plane.

In this chapter we will present in the first section the first formulation (MPD)

for the spinning test particles in an explicit schematic form. This schematic form for

the set of equations of MPD is not restricted to a particular metric [56]. We take the

Kerr metric which describes the space time ot a rotating massive body. The study of

this kind of metric will give us elements to describe the phenomena asociated with

gravitomagnetic effects such as Lense-Thirring effect or the clock effect among others

[57].

Also, in this chapter, we will study the Carter´s equations. This formulation

describes the spinless test particles orbiting in a rotating field. We take this descrip-

tion because we will numerically compare the trajectories of geodesics (Carter) with

the trajectories of spinning test particles (MPD). We will take specially both the

coordinate time (t) and the cartesian coordinates (x, y, z) for the two cases: trajec-

tories of spinless and spinning test particles. Theses parameteres are a good guide

for describing the gravitomagnetic effects in rotating massive bodies.

3.1 Mathisson - Papapetrou - Dixon equations

Given the equations of motion for a test spinning body suffi ciently small (Eqs. 2.86

and 2.87), we take the case when the test particles are orbiting a Kerr metric.

According to R.M. Plyatsko et al. [58] the full set of the exact MPD equations

for the motion of a spinning test particle in the Kerr field. The signature used

38



here is (−,−,−,+) and the coordinates are (r, θ, ϕ, t). Moreover the dimensionless

quantities are introduced y i with particle´s coordinates by

y1 =
r

M
, y2 = θ, y3 = ϕ, y4 =

t

M
, (3.1)

for its 4-velocity with respect to the proper time s

y5 = u1, y6 = Mu2, y7 = Mu3, y8 = u4, (3.2)

and the spatial spin components [59]

y9 =
S1

mM
, y10 =

S2

mM2
, y11 =

S3

mM2
. (3.3)

In addition, they introduce another dimensionless quantities in regard to the

proper time s and the constant of motion E, Jz

x =
s

M
, Ê =

E

m
, Ĵ =

Jz
mM

. (3.4)

The set of the MPD equations for a spinning particle in the Kerr field is given by

eleven equations. The four first equations are

·
y1 = y5,

·
y2 = y6,

·
y3 = y7,

·
y4 = y8, (3.5)

where a dot denotes the usual derivative with respect to x.

The fifth equation is given by the first three equations of (2.86) with the in-

dexes λ = 1, 2, 3. Also the set of equations (2.87) has three independent differen-

tial equations and the condition (2.91) we obtain the relation between Sλν and uµ.

The result is multiplied by S1,S2, S3 and taking the relationships: Si4 = uk
u4
Ski and
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Si = 1
2u4

√−gεiklSkl, we obtain

mSi
Dui

ds
= −1

2
uπSρσSjR

j
πρσ (3.6)

which can be written as

y9
·
y5 + y10

·
y6 + y11

·
y7 = A− y9Q1 − y10Q2 − y11Q3 (3.7)

where

Qi = Γiµνu
µuν , A =

uβ√−gu4ε
iρσSiSjR

j
βρσ. (3.8)

In other words, we worked out the MPD equations given by Plyatsko et al. [15]

under the Pirani - Mathisson spin supplementary condition (2.91). This option

brings some physical features for the trajectory of a spinning test particle that we

shall explain later.

The sixth equation is given by

uν
Duν

ds
= 0 (3.9)

which can be written as

p1
·
y5 + p2

·
y6 + p3

·
y7 + p4

·
y8 = −p1Q1 − p2Q2 − p3Q3 − p4Q4 (3.10)

where

pα = uα = gαµu
µ. (3.11)
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The seventh equation is given by

E = P4 −
1

2
g4µ,νS

µν (3.12)

which can be written as

c1
·
y5 + c2

·
y6 + c3

·
y7 = C − c1Q1 − c2Q2 − c3Q3 + Ê (3.13)

where

c1 = −dg11g22g44u
2S3 − d

(
g2

34 − g33g44

)
g11u

3S2

c2 = dg11g22g44u
1S3 + d

(
g2

34 − g33g44

)
g22u

3S1

c3 = d
(
g2

34 − g33g44

)
g11u

1S2 − d
(
g2

34 − g33g44

)
g22u

2S1 (3.14)

C = g44u
4 − dg44u

4g43,2S1 + d
(
g44u

4g43,1 − g33u
3g44,1

)
S2 + dg22u

2g44,1S3 (3.15)

d =
1√−g

where −g is the determinant of the metric.

The eighth equation is given by

Jz = −P3 +
1

2
g3µ,νS

µν (3.16)
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which can be written as

d1
·
y5 + d2

·
y6 + d3

·
y8 = D − d1Q1 − d2Q2 − d3Q4 − Ĵ (3.17)

where

d1 = −dg11g22g34u
2S3 + dg11g33g34u

3S2 + dg11g
2
34u

4S2 − dg11g33g44u
4S2

d2 = −dg11g22g34u
1S3 − dg22g33g34u

3S1 − dg22g
2
34u

4S1 + dg22g33g44u
4S1

d3 = −dg11g
2
34u

1S2 + dg22g
2
34u

2S1 + dg22g33g44u
2S1 − dg11g33g34u

1S2 (3.18)

Finally, the last three equations are given by

u4
·
Si + 2

(
·
u[4ui] − uαuρΓρα[4ui]

)
Sku

k + 2SnΓnα[4ui]u
α = 0 (3.19)

which give the derivatives of three spatial components of spin vector (
·
Si):

·
y9,

·
y10

and
·
y11. The full set of the exact MPD equations for the case of a spinning test

particle in a Kerr metric under the Pirani condition (2.91) is in appendix [58].

In Appendix A, we write down the full set of MPD equations of motion for a

spinning test particle in a Kerr metric. This set is composed by eleven coupled

differential equations of first grade.

In the literature, we find that the majority of works are focused by the study of

spinless test particles. Therefore, in this part, we work the particular case where the

test particle does not have spin and compare our numerical calculations for this case.

First, we have the traditional form of MP equations is [8]

D

ds

(
muλ + uµ

DSλµ

ds

)
= −1

2
uβSρσRλ

βρσ. (3.20)
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We consider the motion of a spinning test particle in equatorial circular orbits

(θ = π/2) of the rotating source, that is, a/r � 1 and MG/c2. For this case we take

[58]

u1 = 0, u2 = 0, u3 = const 6= 0, u4 = const 6= 0 (3.21)

when the spin is perpendicular to this plane, with

S1 ≡ Sr = 0, S2 ≡ Sθ 6= 0, S3 ≡ Sϕ = 0 (3.22)

The equation is given by

−y3
1y

2
7 − 2αy7y8 + y2

8 − 3αε0y
2
7 + 3ε0y7y8 − 3αε0y

2
8y
−2
1

+3αε0y
2
1y

4
7 − αε0

(
1− 2

y1

)
y4

8y
−3
1 + α

(
y6

1 − 3y5
1

)
y3

7y8y
−3
1 +

αε0

(
3y3

1 − 11y2
1

)
y2

7y
2
8y
−3
1 + ε0

(
−y3

1 + 3y2
1

)
y7y

3
8y
−3
1 = 0 (3.23)

For the case when the particle does not have spin the set of equations (3.20) with

the dimensionless quantities y i (3.1) and (3.2) is given by

−y3
1y

2
7 − 2αy7y8 + y2

8 = 0 (3.24)

where α = a/M .

In addition to Eq. (3.24), we take the condition uµuµ = 1 and obtain

−y2
1y

2
7 + 4α

y7y8

y1

+

(
1− 2M

y1

)
y2

8 = 1. (3.25)

We solve the system of equations (3.24) and (3.25) for the case of a circular orbit

and obtain the values of y7 = Mu3 and y8 = u4.
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This system of coupled differential equations of second order is composed of seven

equations with seven unknowns and this will be solved via the numerical integration.

The system has as output the Cartesian coordinates (x, y, z) which are drawn in

3D. These graphics change according the initial conditions such as the mass M , the

radius r, the density of angular momentum a and the four velocity vector (dxµ/ds).

The numerical table that comes from this work will be compared with the results

given by the Carter´s equations [18] in the next chapter.

3.2 Carter´s equations

In this section, we will study the equations of motion for test particles in a Kerr type

space time via Carter´s equations. These equations will be given both for orbits in

equatorial planes and spherical orbits, that is, non equatorial planes [60].

3.2.1 Equatorial orbits for spinless test particles

In the equatorial plane and with a constant radius, the Carter´s equations are reduced

to

Σ
·
t = a (J − aE)

+
(r2 + a2) [E (r2 + a2 − aJ)]

∆
, (3.26)

Σ
·
ϕ = J − aE +

a

∆

[
E
(
r2 + a2

)
− aJ

]
, (3.27)

where J , E , and Q are constants and
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Σ := r2 + a2 cos2 θ, (3.28)

∆ := r2 + a2 − 2Mr.

In the Carter´s equations, the orbital angular frequency es given by

Ω =
dϕ

dt
=

∆J −∆aE + a [E (r2 + a2)− aJ ]

∆a (J − aE) + (r2 + a2) [E (r2 + a2 − aJ)]
. (3.29)

If we compare this last expression for angular frequency with the expression

obtained for the MPD equations we find that for the Carter´s equations the values

of the motion constants J , E andM , remain while for the first formulation the result

is given by the mass M , and the radius (r) of the orbit.

3.2.2 Equatorial orbits for spinning test particles

In the previous section, we considered the four equations for the motion of particles

when they are orbiting in a space time Kerr type (2.106 - 2.109). These equations

have four constants of motion: the mass in rest (m), the energy (E), the projection

of angular momentum in the rotation axis (J), and the Carter´s constant (Q). When

this last constant is equal to zero we guarantee that the motion is restricted to the

equatorial plane of the central source, Eq. (2.108). The solution of these equations

was given with the help of the numerical integration. Knowing the value of the

constants of motion and the initial conditions, it is possible to find the trajectory of

a spinning test particle [24]. This property is expressed as

pµξµ −
1

2
ξµ;νS

µν = constant (3.30)
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A Kerr metric admits two Killing vectors ξ4
i = δ4

i and ξϕ
i = δiϕ , which are

own of the stationary nature and axial symmetry. So the two constants of motion

with spin are given by

p4 +
1

2
g4µ,νS

µν = −E

p3 −
1

2
g3µ,νS

µν = J

We replace the values of line elements and the system of equations will be give

by [24]

p4 =

−E +
M
∧
S

r3
(aE − J)

1− M
∧
S

2

r3

−1

pϕ =

J + E
∧
S − M

∧
Sa

r3
(Ea− J)

1− M
∧
S

2

r3

−1

where
∧
S = S/m.

3.2.3 Spherical orbits for spinless test particles

For the case where the particle orbits in trajectories that are out of equatorial plane,

the Carter´s constant Q is different of zero. In this case, it is necessary to calculate

the values of Q and J which depend on the values of E, r and a. To find the values

(Q and J), the following conditions are imposed [18]

∂R

∂r
= 0,

∂2R

∂r2
< 0, (3.31)
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Figure 3.1: Orbit with radius r = 10, the constans Q = 4.224806 and J = 2.810974.
Maximum latitude θ = 53.9292◦

in the Equation (2.107) from the first integrals of motion. The first condition has

relation with the type of orbits, in this case, we call spherical orbits, that is, with

constant radius. The second expression has relation with the stability condition of the

orbits. The first equation has two signs, that is, this equation gives two simultaneous

equations which can be solved for to obtain Q and J in function of E, r and a.

As we wrote before, this system of equations (2.106 - 2.109) can be solved using

numerical integration methods [18]. We input the values of E, r and a in the equa-

tions (2.107, 2.108 and 2.109) for to find the spatial coordinates of the orbits (Figure

3.1).

In the study of the orbits of test particles in a Kerr metric, there is a class of

orbits called spherical. This type of orbits intersects the equatorial plane in a point

called node. Since the metric has an angular momentum, the nodes of the spherical

orbits are dragged in the same direction of the spin of rotating massive body. When

there is a particle orbiting in a nonequatorial orbit, this traces a kind of helix that
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ascends until a maximum point of latitude and when reachs it, the particle begins

to descends until a minimum point of latitude which is symmetric to the maximum

point [18].

The program code given by Kheng et al. [18] yields information with respect

to the characteristics of the orbits, the maximum value of latitude and the value of

movement of node, in the equatorial plane, when the particle pass from a hemisphere

to another. To this point is called ascend node. This node is displaced each time

that the particle complets an orbit because the particle is submited to a dragging

force in the same direction of rotation of the central mass.

3.2.4 Spherical orbits for spinning test particles

When the spinning particle travels in different planes to equatorial plane, symmetries

associated with a motion constant do not exist (3.30), therefore the calculation of

the equations of motion for spinning test particles in non equatorial planes with the

help to Carter´s equations is more complex.
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Chapter 4

Gravitomagnetism and spinning

test particles

We present experiments which are associated with the study of trajectories of test

particles around the rotating massive bodies as is the Gravity Probe B experiment.

Then, we will study the phenomena with regard to the analogy between the Maxwell

equations and the field theory of Einstein which is also called gravitomagnetic effects

[62].

4.1 Gravity Probe B experiment

Gravity Probe B (GP-B) is an experiment whose objetive is to detect the Lense

- Thirring effect when is measured the precession of an orbiting gyroscope. This

experiment was thought of fifty years ago, but it was two years ago, before the first

experimental results were given to know. Basically it was designed to prove two

fundamentals predictions of General Relativity from Einstein. On the one hand, the

curvature of spacetime exerts a torque in a gyroscope that orbits around a rotating
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mass, in this case the Earth. This preccession is 6.6 arcseconds per year and is called

the geodetic effect [28]. The same phenomenon around a mass without rotation is

called geodesic effect. This experiment sought to measure the dragging effect of

the rotation of the Earth on a gyroscope orbiting around to it. For this case, the

measurement is 39 miliarc seconds per year. This phenomenon was predicted by

Joser Lense and Hans Thirring in 1918, but it was only in the 60’s that George Pugh

and Leonard Schiff set out the experiment to measure it with the help of gyroscopes

[27].

In the experiment of Gravity Probe B (GP-B) four gyroscopes were installated in

a satellite which was orbiting to 640 kilometers of the Earth in a polar plane. This

satellite was fitted to focus on the far away star "IM Pegasi" and had four drives for to

keep the same polar orbit all the time. The four gyroscopes were set out in a line, two

of them were turning in a clockwise direction and the other two counter clockwise.

The axis of the rotation of each gyroscope was oriented in different directions with

the purpose of detecting any movement in any direction. These gyroscopes are

totally spheric crystalls and are covered by Niobium a super conductive material. In

this way when they turn on, the supercurrents in the Niobium produce a magnetic

momentum parallel to the spin axis. So this system is able to detect any change in

the orientation of magnetic mometum of a gyroscope and of course the precession in

the rotation predicted by the General Relativity [28]. The results are showed in the

Figure 4.1.

The relativistic deviation in the direction north - south (Geodetic effect) for the

assumption of the General Relativity is 6606,1 miliarc second per year, while for the

west-east deviation (Dragging effect) is 39.2 miliarc second per year. According to

the average of the four gyroscopes used in Gravity Probe B is 6601.8± 18.3 miliarc

seconds per year for the geodetic effect and 37.2 ± 7.2 miliarc seconds per year for
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Figure 4.1: Experimental results from Gravity Probe B taken from Everitt, C.W.
and et al. Phys. Rev. Lett. 106, 221101 (2011).

dragging effect. This experiment is considered high precision and confirms once more

the two phenomena predicted by the General Relativity.

The satellite transports the four gyroscopes that are orbiting in a height of 640

km and the rotation axis of gyroscope experiments a dragging of its inertial frame.

The reason for the change of the precession is given by the equation

·
ΩG =

3

2

GM

c2R3
(R× v) +

GI

c2R3

[
3R

R2
(ωe ·R)− ωe

]
(4.1)

where M , I and ωe are, respectively the mass, the inertial momentum and angular

rotation of massive body. The vectors R and v are the position and the velocity

of the gyroscope relative to the center of the mass of body. The first term is the

Sitter precession and is calculated as 6.6 miliarc seconds per year for the gyroscope

of GP-B; and the second term, the dragging system of Lense- Thirring of 39 miliarc

seconds per year.
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4.2 Gravitomagnetic effects

There is a formal analogy between the Coulomb law for the electrostatic and the

law of Gravitation of Newton. This analogy describes the newtonian gravitation in

terms of a gravitoelectric field [63]. The gravitomagnetic effects concern firstly the

electric field. Then, this effect has a relationship with the magnetic field [66]. The

gravitomagnetic field is generated by the movement of the matter. In the above

section, we studied the experiment of Gravity Probe B (GP-B) which had its as

purpose the measurement of the dipolar gravitomagnetic field generated by the Earth

with some superconductive gyroscopes on board a satellite that traveled around the

Earth [61].

In the second chapter, we linearized the gravitational field equations and found

the approximated solution for the Einstein field equation. This set of equations lead

to the analogy with Maxwell´s equations [33].

In some cases, when the Einstein equations are perturbed about flat spacetime,

they can be written in a form similar to Maxwell´s equations where the Newtonian

gravitational field corresponds to the gravito-electric field and mass-currents have an

analogy to the electric currents [64]. In addition, since the laws of electromagnetism

are well studied, this analogy has proved to be a good source of study to understand

the phenomena of gravito-electromagnetism. Now, any theory that combines both

the Newtonian gravity and Lorentz invariance must include the study of gravito-

magnetism effects which are generated by mass current. One of these cases it is the

Lense-Thirring effect in which a rotating mass generates a gravitomagnetic effect,

which causes a precession of planetary orbits.

In recents works, there have been possible improvements in the study of the Lense

- Thirring precession [65], for instance the experiment to observe the effects of the
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gravitomagnetism of the Earth, this is GP-B [27]; the experiment GP-C which reveals

the space-time structure and evidences clock effects around a spinning massive body.

In the study of test particles around of rotating massive bodies there exist some

phenomena in regard to the gravitomagnetism effects such as the Lense-Thirring

effect which describes the precession of the orbital plane when the test particle is

orbiting the rotating central source, the Schiff effect which characterizes the spin of

the test particle when is orbiting the rotating body and the gravitomagnetic clock

effect which describes the delay time for two test particles traveling around a rotating

body [53].

There is an analogy between the Lense-Thirring precession and the precession of

the angular momentum of a charged particle, orbiting around a magnetic dipole. The

gravitomagnetic field produced by a spinning mass, as measured by the congruence

of static observers, is similar to the magnetic field produced by a spinning charge

[45].

With regard to the delay time, i.e., the gravitomagnetic clock effect which refers

to different time for two clocks orbiting a rotating body, on a prograde orbit and on

a retrograde orbit. This phenomemum was studied first by Cohen and Mashhoon in

1993. They considered that two clocks on circular equatorial orbits traveling on the

same orbit, but in opposite directions have a traveling time difference of:

τ+ − τ− ≈ 4π
J

mc2
. (4.2)
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4.2.1 Gravitomagnetic coupling between Spin and Angular

momentum

In the study that with regards to the rotation of spinning test particles around rota-

ting massive bodies, we find that there is a coupling between the angular momentum

of the test particle and the angular momentum of the central mass. In addition, it

is possible to clarify this phenomenon via the gravitomagnetic effects.

A spinning particle around a rotating massive body possesses a gravitomagnetic

dipole moment which couples to the gravitomagnetic field produced by the rotating

mass with an interaction energy analogous to the magnetic interaction

H = −m ·B (4.3)

wherem is the magnetic dipole and B the magnetic field. The effects of this coupling

have been studied and it wasfound that the paths of circularly polarized photons,

in the gravitational field of rotating body, split because of the coupling between

the helicity and the angular momentum of the source, much like in a Stern-Gerlach

experiment with polarized matter passing through an anisotropic magnetic field [33].

In our study we take the Kerr metric linearized as gravitational field, with the

gravitational potentials

Φ ≡ M

r
,

−→
A ≡

−→
J ×−→r
r3

, Θij ≡ Φδij. (4.4)

The electromagnetic potentials are

φ ≡ Q

r
,

−→
A ≡

−→µs ×−→r
r3

. (4.5)
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In the gravitational case, we are working with linearized theory, so we consider

electromagnetic fields weak enough that only their linear contributions are relevant

to the dynamics. In the weak field regime, when the particles are at rest, there is a

gravitational spin-spin force analogous to the electromagnetic one.

There is an another gravito-electromagnetic analogy, it is the decomposition of

the Maxwell tensor Fαβ in electric and magnetic fields and the decomposition of

the Riemann tensor (in vacuum) in electric and magnetic tidal tensors [45]. In the

equatorial plane of Kerr spacetime the gravito-magnetic tidal tensor vanishes for

some velocity field, in analogy with the vanishing of the magnetic field. In other

words, for some velocities the magnetic dipole does not precess. First, we take the

case electromagnetic as a guide for the gravitational case. The Maxwell tensor splits

into the two spatial vectors (3 independent components each)

Eα ≡ Fαβuβ

Bα ≡ ?Fαβuβ (4.6)

which are the electric and magnetic fields as measured by an observer of four-velocity

uα.

The electromagnetic field produced by a spinning charge (magnetic moment −→µ )

is described by the four potential Aα =
(
φ,
−→
A
)
:

φ =
Q

r
−→
A =

1

c

−→µ ×−→r
r3

. (4.7)
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4.2.2 Gravitomagnetic effect in the equatorial plane: Clock

effect

In this section we make use of a gravito-electromagnetic analogy between the decom-

position of the Maxwell tensor Fαβ in electric and magnetic fields and the decompo-

sition of the Riemann tensor (in vacuum) in electric and magnetic tidal tensors We

can compare the scalar invariants of Fαβ and the invariants of Rαβγδ, and studied

in the equatorial plane of Kerr metric that, for some velocities, the gravito-magnetic

tidal tensor vanishes [66]. It is analogous to the vanishing magnetic field (not the

magnetic tidal tensor). The explanation for this last situation is that a magnetic

dipole with those velocities does not precess. For the gravitational case, we investi-

gate if there is a velocity for gyroscopes such that they do not precess relative to the

distant stars [67]. The result positive is important in the context of the study of the

curvature [26].

First, we have as a guide the electromagnetic system to study the gravitational

case. With regard, to the four-vector uα, the Maxwell tensor splits into the two

spatial vectors, which are a covariant definition for the electric and magnetic fields:

(Eu)α ≡ Fαβuβ and (Bu)α ≡ ∗Fαβuβ (4.8)

where the Maxwell tensor Fαβ and its dual ∗Fαβ are measured by an observer of

four-velocity uα as

Fαβ = 2u[α (Eu)β] + εαβγδu
δ (Bu)µ ; (4.9)

∗Fαβ = 2u[α (Bu)β] − εαβγσuσ (Eu)γ . (4.10)

Combining (Eu)α and (Bu)α one can construct the two second order scalar in-
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variants:

EαEα −BαBα = −1

2
FαβF

αβ (4.11)

EαBα = −1

4
Fαβ ∗ Fαβ. (4.12)

The physical interpretation for these two scalar invariants is: first, if EαBα 6= 0

then the electric Eα and magnetic Bα fields are both non-vanishing for all observer;

second, if EαEα − BαBα > 0 (< 0) and EαBα = 0, there are observers uα for which

both the magnetic field (Bυ)α and the electric field (Eu)α are equal to zero [61].

The components for the magnetic field (Bu)α ≡ ∗Fαβuβ seen by an arbitrary

observer are given by

Br =
2µs cos θ

r3
ut, Bθ =

(
usu

t

r4
− uφQ

r2

)
sin θ,

Bφ =
Quθ

r2 sin θ
, Bt =

µs
r3

(
2ur cos θ + ruθ sin θ

)
where Q is the static point charge and µs is the electromagnetic moment.

In the equatorial plane, the condition Br = 0 implies θ = π/2, the second condi-

tionBt = 0 implies uθ = 0, and the third conditionBθ = 0 implies uφ/ut = µs/ (Qr2).

If we assume that the charge and mass are identically distributed in the body, its

gyromagnetic ratio is µs/J = Q/2M , and we conclude that observers with angular

velocity

vφ =
uφ

ut
=

J

2Mr2
≡ vφ(B=0), (4.13)

see a vanishing magnetic field in the equatorial plane [61].

Now, we have a test particle which is orbiting in a rotating field. In the previous

chapter, we obtained the MPD equations for the cases of test particles with spin and

without spin in a rotating field. In this part, we have the set of equations for motion
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and study the gravitomagnetic effect when the spinning test particles are orbiting an

equatorial plane.

First, we take the traditional form of MP equations whose set of equations is

given by [74]

D

ds

(
muλ + uµ

DSλµ

ds

)
= −1

2
uπSρσRλ

πρσ (4.14)

DSµν

ds
+ uµuσ

DSνσ

ds
− uνuσ

DSµσ

ds
= 0 (4.15)

where uλ ≡ dxλ/ds is the four velocity of the particle. In addition, we need a spin

supplementary condition (SSC) for fully describing the trajectory of the particle´s

center of mass. We have two conditions; the Mathisson-Pirani supplementary condi-

tion [41]:

Sλνuν = 0 (4.16)

and the Tulczyjew-Dixon condition [68]:

SλνPν = 0 (4.17)

where

P ν = muν + uλ
DSνλ

ds
(4.18)

is the four momentum.

We have the equation for the spin evolution under Mathisson-Pirani condition

(4.16), simplifies to
DSµ
ds

= εµαβνU
νuαBβ (4.19)
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or, equivalently:
DSµ
ds

= Sνa
νUµ + εµαβνU

νuαBβ (4.20)

where a ≡ DUα/ds denotes the acceleration, and Bβ is the magnetic field as mea-

sured by the spinning test particle. The first term in (4.20) embodies the Thomas

precession; the second term is a torque τ = −→µ × −→B causing the Larmor precession

of a magnetic dipole under the influence of a magnetic field [45]. In this case, "pre-

cession" of the gyroscope is an artifact of the reference frame, with no local physical

meaning.

With the goal of calculating the value of the clock effect both for the spinless test

particles and for the spinning test particles, we will obtain the set of MPD equations

for two cases in equatorial plane from a rotating gravitational field. Then we will

solve numerically this set of equations and obtain the cartesian coordinates (x, y,

and z) of the trajectories of these test particles when they are traveling in the same

direction of the rotating body and in the opposite direction.

Clock effect with spinless test particles

In general, we have a Kerr metric and calculate the equations of motion for spinless

test particles with radius constant (dr/ds = 0) in the equatorial plane [14]. The

equation is given by

gtt,r

(
dt

dϕ

)2

+ 2gtϕ,r

(
dt

dϕ

)
+ gϕϕ,r = 0. (4.21)

The solutions for this equation (4.21) are

dt

dϕ
= a± 1

ωK
(4.22)
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where ω2
K = M/r3 is the keplerian frequency. The equation (4.22) is integrated from

0 until 2π for the co-rotating orbits and from 0 a −2π for counter-rotating orbits for

spinless test particles. The integration is given by t± = TK±2πa, where TK = 2π/ωK

is the keplerian period. The gravitomagnetic clock effect is

t+ − t− = 4πa. (4.23)

In the particular case of a spinless test particle in a gravitational field, the tra-

ditional form of the MPD equations (4.14 and 4.15) is reduced to the equation of

geodesics
Duλ

ds
≡ duλ

ds
+ Γλαβu

αdx
β

ds
= 0. (4.24)

The set of equations for spinless particles is given by

·
u

3
+
·
u

4
+ Γ1

33

(
u3
)2

+ 2Γ1
34u

3u4 + Γ1
44

(
u4
)2

+ Γ2
33

(
u3
)2

+ Γ2
34u

3u4 = 0 (4.25)

where a dot denotes differentiation with respect to the proper time s. In the other

hand, we have the relationship

uµu
µ = 1. (4.26)

The second equations is given by

u4 =

(
1− 2

r

)− 1
2
√

1 + r2 (u3)2. (4.27)

With the equations (4.25) and (4.27), we calculate the values of u3 and u4.
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Clock effect with spinning test particles

Tanaka et al. studied the trajectories of spinning test particles in circular orbits for

a Kerr metric when the spin value is fixed and orthogonal to equatorial plane [1].

The orbital angular velocity is given by

Ω :=
dϕ

dt
= ±

√
M

r3/2 ± a
√
M

[
1−

(
3S⊥

2

)
±
√
Mr − a

r2 ± a
√
Mr

]
(4.28)

where S⊥ := S2.

For the particular case of a spinning test particle with a fixed value, the gravito-

magnetic effect is given by [14]

t+ − t− = 4πa− 6πS. (4.29)

If we compare with the spinless test particles, we found there is an extra element

given by the spin of the particle (S). Even, according to this expression (4.29), there

would be a special case and is when a = 3S/2. In this case, there would not be a shift

of time between the particles that travel in the same orbit around of the rotating

mass.

Now, we take the MPD equations when the spinning test particles is orbiting in

the equatorial plane of a weak Kerr metric at Mathisson-Pirani condition (4.16). In

this particular case, we have

u1 = 0, u2 = 0, u3 = constant, u4 = constant

and

S12 = 0, S23 = 0, S13 6= 0.
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The equations are given by

Γ1
33

(
u3
)2

+ 2Γ1
34u

3u4 + Γ1
44

(
u4
)2

+ Γ2
33

(
u3
)2

= −2u4u
3

√−g S2R
1
313 (4.30)

where g is the determinant of the metric tensor. We have the relationship uµuµ = 1

and write the coordinate u4 through u3 as

u4 =

(
1− 2

r

)− 1
2
√

1 + r2 (u3)2. (4.31)

Inserting u4 from (4.31) into equation (4.30) we obtain the expression for u3:

Γ1
33

(
u3
)2

+ 2Γ1
34u

3

(
1− 2

r

)− 1
2
√

1 + r2 (u3)2 +

Γ1
44

(
1− 2

r

)−1 (
1 + r2

(
u3
)2
)

+ Γ2
33

(
u3
)2

= −
2
(
1− 2

r

)− 1
2

√
1 + r2 (u3)2u3

√−g S2R
1
313 (4.32)

We yield the exact numerical solution for the case when two spinning test particles

describe circular orbits in the equatorial plane and travel in opposite sense. This

gravitomagnetic phenomenum is called clock effect. We take the MPD equations

(4.14) and (4.15) for a Kerr metric and the Mathisson-Pirani spin supplementary

condition Sλνuν = 0. For this, we write the code in C++ and obtain the initial

values by the four velocity (dxµ/ds) and the spatial values for the spin vector (Si).

The code is in Appendix A.

For cheking our results, we review the papers with regarts to gravitomagnetic

clock effect [21] and compare their numerial results with ours. There is a phenomenon

called the gravitomagnetic clock effect which consists of a difference in the time it

takes for two test particles to travel around a rotating massive body in opposite
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directions [2]. This difference is given by t+ − t− = 4πa/c, where a = J/Mc is the

angular density of the central mass. Tartaglia has studied the geometrical aspects of

this phenomenon [69], [70] and Faruque yields the equation of the gravitomagnetic

clock effect with spin as

t+ − t− = 4πa− 6πS0, (4.33)

where S0 is the magnitude of the spin.

In true units this relation is given by

t+ − t− =
4πJM
Mc2

− 6πJ

mc2
, (4.34)

where the first relation of the right could be used to measure J/M directly for an

astronomical body; in the case of the Earth t+ − t− ' 10−7 s, while for the Sun

t+ − t− ' 10−5 s [80].

4.3 Michelson - Morley type experiments

Historically the Michelson-Morley experiment was done to measure the effects of

ether on the traveling time of a light beam . In the experiment, a beam of light

is sent from a source s, is split in two perpendicular paths, which are recombined

the beams, to observe the resulting interference fringes in the process final [71]. A

calculation shows that the motion of the earth with a speed v should cause the light

traveling along a path parallel to the direction to take longer than light traveling

along a path perpendicular to the direction of motion, the difference in travel time

being

∆t =
L

c

v2

c2
(4.35)
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to second order in v/c, where L is the lenght of the interferometer arms. If the

interferometer rotates ninety degrees, Michelson expected to shift of interference

fringes equal to 0.4 fringe. What he measured was at most 0.01 fringe shift. This is

generally interpreted as a null result [72]. In this experiment there are two implict

assumptions: first, that, there exists an absolute reference frame in which light travels

at a constant speed c = 3.00× 108 m/ s relative to this reference frame, and second,

that, the geometry of the interferometer is not changed by its motion.

The first explanation for the null result in the experiment was proposed by

Fitzgerald and Lorentz. They abandoned the second assumption. They consi-dered

that if the arm of the interferometer in the direction parallel to the directions of

motion shrank by a factor of
√

1− v2/c2, the expected fringe shift would be exactly

canceled, resulting in the observed null result. This explanation did not gain general

acceptance.

The second explanation was presented by Einstein who chose a philosophical ex-

planation to abandon the first assumption, assuming the non-existence of an absolute

reference frame. Even though it is an important point, the special theory of relativity

considers that the non-existence of an absolute reference frame, does not prove this

non-existence, only the impossibility of detecting it from an inertial reference frame

In this section, we study the interferometer where the source of the field is rota-

ting, thus the situation in principle changes. In other words, there is a tiny anisotropy,

depending on the angular momentum of the source. In other works, we studied the

influence of the angular momentum density on a Michelson-Morley type experiment

[73]. In this case, we shall include not only the angular momentum of the central

source, but also the spin for describing the trajectory of the test particle when it

travels in each arm of the interfometer. Numerical calculations will show that the

effects are quite small in any case, however the results will give values comparable

64



with those expected and planned to measured with big interferometric detectors like

LIGO and VIRGO .

In general the Michelson-Morley type experiments are located in two dimensions

which consist in two perpendicular arms. There is an observer in the inertial frame

who measures the time of beams of light from the source until the beams are collected

in a pattern of interference after colliding with a screen at the end of each arm. In

our case, we have a challenge because we are studying trajectories of spinning test

particles in three dimensions, while, in many papers, the authors describe these orbits

only in the equatorial plane. Since we only have an observer that measures the time

of the two spining particles travelling around a massive rotating body when they do

a lap, we will just take the projection of the trajectories in a spatial plane of two

dimensions (Cartesian coordinates: x, y) after an orbit, that is, when x = x0(radius)

y = 0; then we will measure the difference of distance and finally will calculate the

delay time for these two trajectories that travel in opposite directions.
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Chapter 5

Conclusions, remarks and future

works

At the start of this research we took the works on General Relativity with regards

to the dynamics of extended bodies orbiting around massive rotating bodies. The

first step was to study the equations of motion for test particles, both in equatorial

planes and in non equatorial planes, given by Carter and the study of Mathisson-

Papapetrou-Dixon equations for test particles with spin and non spin.

With help of the numerical calculation, we found the trajectories of spinning

test particles around a rotating massive body. The type of trajectory is given by

the features of the gravitational field and for the relationship between the angular

momentum of massive body and the spin of the test particle. First of all, we found

that the central mass exerts a drag on inertial systems. This phenomenon is compared

with a magnetic field via an analogy called gravitomagnetic effect [26]. When we

calculate the coordinate time of a lap both in the direction of the angular momentum

of the central source and in the opposite direction, we found a delay time with regards

to a fixed observer with respect to the fixed starts. This phenomenon is called clock
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effect [2]. Also, we concluded that the difference of time decreases with the spin

value, even though this delay time is higher when the spinning test particle does not

have restrictions in its spin direction. We proved numerically that the clock effect

decreases with the spin and is neglected for a particular value. This phenomenon is

not only related to the dragging from the central mass but also to the coupling of

the angular momentum of the rotating field with the intrinsic angular momentum of

the test particle.

One of the goals of this thesis is to research the influence of both the angular

momentum of the central mass and the spin value of the test particle in Michelson-

Morley type experiments. Tartaglia and Ruggiero, in one of their papers, set up a

interferometer which its horizontal arm coincident with the equatorial plane of the

rotating massive body and its vertical arm with one of the polar planes [73]. If two

spinning test particles get out from the same point and each one travels respectivally

for each arm a determined distance; then, these spinning test particles come back

to the initial point, found different situations. The spinning test particle takes a

one-way and one-time return traveling for the horizontal arm of the interferometer.

A time for the trip when the test particle goes in the same direction of rotation of

the central mass and an other time when the test particle comes back for the same

arm but in opposite direction to the rotation of the rotating field. Then, we take the

round trip time for the spinning test particle when it is traveling along the vertical

arm of the interferometer. As the trip along the horizontal arm, the spinning test

particle experiments a delay time due to the dragging of the rotating massive body.

This delay time is not only caused by the dragging of the central mass, but also by

the coupling between the angular momentum of the central source and the spin of

the test particle [14].

Regarding to the gravitomagnetic effect, this phenomenon is not only influenced
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by the angular momentum of the central source, but also for the angular momentum

of the test particle. There is a relationship between the gravitational field and the

angular momentum of the particle. The numerical calculations that we obtained in

this research show clearly that central mass in rotating exerts a drag on the inertial

frames around to it, but on the other hand, the direction of spin axis of the test

particle experiences a tiny deviation when the latter orbits around to the central

source [70]. In this way, it is proved the need to establish a coupling between the

particle spin and the rotating gravitational field, therefore it is necessary to explain

these phenomena with the field theory more than distant forces to the Newtonian

mode.

Phenomena such as the gravitomagnetics effects are conjugated the large scales,

because massive bodies at very large angular velocities, but the features of these

phenomena arise on very small scales. The study of these situations will provide

elements to address physical phenomena such as the gravitational waves which are

produced by masses of astronomical order, but they are too small to be detected by

the traditional instruments. This is still an open question for the astrophysics, the

way in which these waves can be detected, and characterized [34].

There is a mutual relationship between the description of the movement of spin-

ning test particles with the description of rotating space-time by which that particle

is displaced, so that when studying the characteristics of motion is given in the same

time the features of space-time. Checking one more time the link the displacement

and the gravitational field where is traveling the test particle.

Most of the calculations are located in very high values for the central mass just

as for the angular momentum; however, there is the limit for weak gravitational fields

as the Earth and for unrelativistic velocities. This in order to describe phenomena

close to the earth´s surface and objects orbiting around it such satellites [29]. The
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description of these phenomena contributes to the advancement of technologies such

as the global position system or comunication satellites.

Phenomena such as the Lense Thirring effect, where the mass current carry out

a drag of the inertial systems in the equatorial plane or the precession of gyroscope

spin, called Schiffeffect have been studied in the equatorial plane. With this research,

this can be extended to trajectories of spinning test particles in non equatorial planes

where phenomena are characterized in another way [45].

To set up Michelson-Morley type experiments that take the totality of an orbit

around from the central source and with a scales of larger time, perhaps a year,

where the particles orbit such as the case of Gravity Probe B, which took more of a

year to register the shift both of the Lense Thirring effect and the geodetic effect for

the space time curvature [28]. Even the construction of this experiment is complex,

and it is possible to use geostationary satellites for proving the effects both from

mass currents generated by the rotation of central mass, and the spin effects of the

particle when this later is moving in contrary sense [48].

5.1 Numerical comparison of the two methods

Each one of the formulations studied in last chapter (MPD equations and Carter´s

equations), has a set of coupled differential equations. It is impossible solving the

system of analytical way, only for some exceptional cases [74]. Since this limitation,

we proceed to solve these systems with help of numerical integration. For each one of

the methods, we take the cartesian coordinates (x, y, z) of the test spinning particle

in a Kerr space time. As in the last section, we will take two cases: spinless and

spinning test particles [59].

The aim of this section is to restore the numerical results that are presented

69



in the literature [18], for this case of spinless test particles both in the equatorial

plane and in the spherical orbits. We will compare our results with the numerical

integration with the results given of Carter´s equations for to validate the method

of MPD equations. After we will take this data and will compare both for the case

without spin and with spin under the MPD equations.

5.1.1 Equatorial orbits for spinless test particles

We take two set of parameters in order to attach the initial conditions of the trajec-

tories: First set belongs to central mass and the second set has relation with the test

particle. With regards to central mass, one has the density of angular momentum

(a) which relates the angular momentum to the unit of mass. The maximum value

allowed is a = M , where M is the mass of the central mass. Further, in this section

we take the spinless test particles, i.e., the particles which do not have spin.

A property of the Kerr metric (2.3) is when the denominator of coeffi cient for

the dr2 component tends to zero, this term goes to infinity. This is the radius that

defines the horizon of event of rotating massive body and is given by

rh = M +
√
M2 − a2. (5.1)

In this case M = a the horizon of event is in r = M . For values of a > M there

are not real radii in which the horizon of event exists.

The mass of a massive body is defined as M and in many of the calculations

that we will do, we will give it the value of one. In this decision there is not lost of

generalitiy because the other quantities related with M can be rescaled by reason of

M .

Basically we will take three parameters for describing the motion of a spinless
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particle. First the angular momentum of the particle per unity of mass (J) in the φ

direction of the central source due to Lense - Thirring effect. Second, the energy per

unit of mass of the particle (E). This parameter corresponds to the total energy of

the particle. A stationary particle in the infinity with respect to the rotating massive

body will have E = 1 (in geometrized units). For coupled orbits |E| < 1 y E < 0

correspond to the values of energy of orbits inside of the ergosphere. In this tesis,

we will work positive energies, that is 0 < E < 1. Finally, the third parameter is the

Carter´s constant (Q) which was given by Carter ([6]). This conserved quantity of a

particle in free fall around to a rotating mass affects the latitudinal movement and is

related with the orbital angular momentum of the particle in the θ direction. From

the Equation (2.108) we can study, in the equatorial plane, the relation between Q

and the motion in θ

r2
·
θ

2

= Q. (5.2)

From the equation (2.108) we can deduce that for bounded orbits (E ≤ 1), Q

must always be positive. In addition, for that the orbit will be stable we impose the

condition that the radius should be constant for an allow radius, that is

·
r =

dr

dτ
= 0 =⇒ R = 0 (5.3)

where R is from the Equation (2.107). In this case there is no radial velocity. The

second condition for stable orbits is

∂R

∂r
= 0 (5.4)

which ensures that there is not radial acceleration for given radius. This last equation
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gives two simultaneous equations which can be solved to obtain Q and L as functions

of E, r and a. The equations are

Q =
r2

a2 (1− r)2 [1− E2]. (5.5)

5.1.2 Equatorial orbits for spinning test particles

We calculate the Cartesian coordinates (x, y, z) for the case when the spinning test

particle is orbiting in an equatorial plane around on a rotating massive body. The

code in C++ (see Appendix A) needs the initial condition both for the four position

vector (xµ) and the four velocity vector (dxµ/ds). The particle is traveling in the

plane when θ = π/2 and the polar component is equal zero (dθ/ds = 0).

We use as step size h = 2−25. The numerical calculation uses integral powers

of 2. The aim of this choice is to avoid rounding off error in the step size. In this

numerical work the double precision minimizes rounding errors.

The choice of the fourth-order Runge Kutta method is to provide a suitable

balance between error and computational time [75]. The average of computational

time is around four weeks, even in some cases the CPU took twelve weeks. On the

other hand, a typical calculation involves 500 million iterations, and needs a lot of

memory. There were cases where the program yielded more of one billion lines.

In general, we obtained three types of graphs: the first one draws the trajectory

of spinning test particle orbiting around a rotating massive body. The orbit is a circle

of radius r = 10 (geometrized units). As we will see later, we obtain the trajectories

when the particle travels in the same sense of the central body and the contrary

direction.

The second graph is the magnitude of the spin vector versus coordinate time (t).

We work the case when the spin is orthogonal to the equatorial plane (S2 6= 0). For
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Figure 5.1: The magnitude of the spin when the spinning particle is orthogonal to
the equatorial plane (S2 6= 0)

this case, the magnitude of spin is constant (Figure ??).

The third graph describes the orbital motion and the helical motion, therefore the

trajectory is almost a sinusoidal curve around on a circle (Figure 5.3). This shape is

given by the supplementary spin condition which is the Mathisson-Pirani condition

Sµνuµ = 0. (5.6)

The paper by Costa et al. explains the reason why this motion is helical and

is considered a physical situation [42]. Given the MP condition the center of mass

is shiftted from its proper center and the body experiments a "hidden momentum"

which moves the spinning particle more to one side. Therefore the motion of the

particle is helical.

5.1.3 Numerical calculate of the MPD equations

We calculate numerically the MPD equations as presented by Plyastsko et al. [15]

for the particular case of a spinning test particle in the field of rotating massive body
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for a constant radius. We take the set of the eleven equations (3.5 - 3.19) and deduce

the eleven differential equations of the dimensionless quantities yi (Appendix B). We

write the code in C++ language and with help of the four order Runge-Kutta method

[75], we yield the trajectory of a spinning test particle in Cartesian coordinates

(x, y, z). We use the signature (−,−,−,+), the Boyer - Lindquist coordinates

(r, θ, φ, t), Latin indices run 1, 2, 3 and Greek indices 1, 2, 3, 4. Geometrized units

(c = 1, G = 1)

We introduce in the code the initial values and obtain four tables of data. First,

the Cartesian coordinates (x, y, z) of the trajectory of a spinning test particle orbiting

to a massive rotating body in the equatorial. Second table, the program will output

the spatial coordinates of the 3-vector of spin (S1, S2, S3). Third table, the magnitude

of 3-vector of spin versus the coordinate time (t). Fourth table, the graph both on

the orbital motion and the nutation of the spinning particle.

Particular case: r = 10

In order to check out our results, we take the particular case (r = 10) given by Kheng

et al. in their project "Massive Particle Orbits Around Kerr black Holes" (Unpub-

lished, 2007) [18]. The radius r = 10 is in geometrized units. Given this radius, we

calculate the E -range whose allowed values are 0.95191 ≤ Er=10 ≤ 0.96292. With the

energy value (0.9525), we find the constants: Carter´s constant (Q) and the angular

momentum (J), with the conditions (3.31). The constants of motion are given: en-

ergy (E), Carter´s constant (Q), z-component of angular momentum (Jz), mass (M)

and angular momentum density of central body (a). Given these values, we calcu-

late the initial value of four vector velocity (dxµ0/ds = dr0/ds, dθ0/ds, dφ0/ds, dt0/ds)

with the set of Carter´s equations (2.106 - 2.109). Finally, we take the set of MPD

equations given by Plyatsko et al. (3.1 - 3.19) and yield the phase space for the
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Figure 5.2: The nutation of a spinning test particle with Pirani condition

spatial components of three vector of spin (S1, S2, S3).

Graphs for this case

The program code (Appendix A) in C++ language outputs three graphs in particular:

the Cartesian coordinates of the trajectory of a spinning test particle orbiting around

a massive rotating body, the magnitude of the spin and the motion of the spinning

particle both orbital and the nutation.

We obtain different kinds of graphs, the first graph describes in Cartesian coordi-

nates the gyro axis z of the spinning test particle which is perpendicular to equatorial

plane initially. Then, the top of axis describes a tiny circumference in the plane z−y

(Figure 5.2). The radius of this circumference is 1× 10−10.

We do a second graph with the help of these two graphs and obtain a spherical

cycloide. That is, a curve generated by a curve rolling on another curve [76]. Ac-

cording with the Pirani´s spin condition, we should obtain a helicoidal movement

[77] inside a world tube.

If we draw at the same time the orbital motion and the spin motion, we obtain an
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Figure 5.3: The trajectory of a spinning test particle with the spin supplementary
condition of Pirani has a helical motion

ascending and descending movement within an enveloping sinusoidal wave (Figure

5.3). This movement is called "bobbing" [78]. Moreover, this ascendent and descen-

dent movement is due to the supplementary spin condition that we take which is

the MP condition (Sµνuν = 0), where uν is the center of mass four velocity. In this

situation, the center of mass is measured in its proper frame (that is, the frame is

at rest). This phenomenon is due the shiftting of the center of mass, and in addi-

tion, the momentum of the particle not being parallel to its four-velocity in general.

There is a “hidden momentum" that produces this nutation. In an analogy with the

electric (E) and magnetic (B) fields, there would be E×B drift, that is, the motion

is described by helical motions [79]. Costa et al. describe this physical situation, due

to the supplementary condition [61].

Numerical results for the spinning test particles

When we calculate numerically the MPD equations, we take two cases for the spin of

the particle. The first one, the spin of the test particle is orthogonal to the equatorial

plane. In this case, the spatial components r and φ are constrained in the time. The
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test particle is defined as S2. For the second case, the spatial components of the

particle (S1, S2, S3) can revolve around on its gyro axis.

For these two cases, we take the same initial conditions both for the position

vector and for the four velocity vector in the particular case when r = 10.

The period of time for the spinning test particle when it travels orthogonal to the

equatorial plane (S2 6= 0) both for the prograde orbit and for the retrograde orbit is

given in geometrized units as (time has the dimension of length)

t+ = 334.07729152971453 m

t− = 326.53881036659527 m

∆t = 7.5384116316618189 m (5.7)

According with the numerical results, the spinning test particle when it travels

in the opposite sense to the motion of the source central, takes longer to reach its

starting point than the test particle that is traveling in the same sense (5.7). In other

words, there is clear influence of the angular momentum of the rotating massive

body with respect to the motion of the spinning test particle. This phenomenon

is produced by the dragging of the inertial systems and is called Lense - Thirring

effect. In addition, there exists an analogy between the Maxwell equations and the

linearized field equations of Einstein that was studied above.

In the case of the spinning test particle in which is not restricted in the spin

orientation (S1 6= 0, S2 6= 0, S3 6= 0), the period of time both for the prograde orbit
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Figure 5.4: Detail of the bobbing of the spinning test particle in the circular orbit

and for the retrograde orbit is given in geometrized units as

t+ = 514.73954619635052 m

t− = 512.89836830460433 m

∆t = 1.8411778917461561 m (5.8)

As in the case of the orthogonal spin, there is a delay time when the spinning test

particle travels in the same sense as the rotation of source central or the opposite

sense. Moreover of the Lense - Thirring effect, the difference of time between the

orthogonal spinning test particle (5.7) is longer than the difference for the spinning

test particle that rotates freely in its three axes.

When we compare the period of time for a spinning test particle that does not

have restrictions in the spin orientation (5.8), with the period for a spinning test

particle that is orthogonal to equatorial plane (5.7) we find that the former takes

more time to complete a lap than the test particle that is perpendicular to the
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equatorial plane. According to these results, the test particle with more degrees of

freedom in the spin needs more time in to arrive at the point of departure. Therefore,

there is a influence both on the angular momentum of the central source and on the

rotating gravitational field in the trajectory of the test particle [80].

5.1.4 Numerical calculate of Carter´s equations

As fruit of a project in National University of Singapore, Kheng et al. [18] considered

a particle orbiting around a rotating massive body. They, with help of Carter´s

equations studied the equations of motion for spherical orbits, that is, with radius

constant and in non equatorial planes. The first step for obtaining the allowed ranges

of E is to find the boundary lines of these range. Therefore, the conditions from the

equation (2.107) are imposed

∂R

∂r
= 0,

∂2R

∂r2
< 0 (5.9)

Given these conditions, the E−range table for differents radius is calculated [18].

For our study, we take as radius of comparation r = 10 in geometrized units. For

the latter radius the allowed values of E are 0.95191 ≤ Er=10 ≤ 0.96292.

With the first equation of the two above conditions (5.9), it is possible to obtain

two simultaneously which can be solved to yield Q and J as functions of E, r and

a. The equations for obtaining Q and J are given by
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Q1 =
r2

a2 (1− r)2


(1− E2) r4 + (4E2 − 5) r3 + (8− 5E2) r2

+ (2aE2 − a2 − 4) r + a2

+2E∆
√
r [1 + r (E2 − 1)]


J1 =

1

a (r − 1)

[
Er2 − a2E −∆

√
r [1 + r (E2 − 1)]

]
(5.10)

where ∆ = r2 − 2mr + a2.

The next step is to replace the values of E and r in the last equations and

obtaining Q and J for a given radius. Then, to replace the values of r, E, Q and

J in the Carter´s equations so we obtain the components of the four velocity vector

(dx/ds). With these inputs, the code will output the spatial coordinates (x, y, z) of

the orbits.

Numerical results for the spinless test particles

In this section, we calculate the numerical results from the spinless test particles.

In the code, we take the step as 2−22 and the value of the revolution equal to 1.01

both in the retrograde motion and prograde motion. The program yiels the following

values in geometrized units:

t+ = 216.08928266085720 m

t− = 203.522912056498 m

∆t = 12.5663706043592 m (5.11)

This result (5.11) is the delay time for the case when two spinless test particle

are orbiting around a rotating massive body in the same orbit, but in opposite sense.
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5.1.5 Comparing the numerical results for the two methods

In the case of the MPD equations, we calculate numerically the time for spinning

test particles when they orbit around to a rotating massive body and find that the

spinning test particle that travels in the opposite direction to the rotation of the

central mass takes more time to complete a lap. For the case of the spinless test

particles, the phenomenon is the same. The spinless test particle that orbits in a

contrary direction takes more time in to complete a lap (5.11) than the particle

that travels in the same direction with the rotation of the central mass. On the

other hand, the difference in time for a spinless test particle (5.11) is longer than

the difference both for a spinning test particle which is orbiting perpendicular to the

equatorial plane (5.7) and for the spinning test particles that do not have restrictions

in the spin orientation (5.8). Even the difference of time decreases when the degrees

of freedom increase [81]. The difference of time reduces from 11.114332m for the

spinless test particles to 1.8411778917m for the spinning test particles.

We evaluate the delay time for the two methods in non-geometrized units, that is,

the factors of G and c must be reinserted. In this case, the conversion factor relative

to geometrized units for a quantity with dimension of time is c for the difference in
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time in the two cases that we had studied is given by

For spinless test particles (Si = 0)

∆t = 4.191724408539× 10−8 s

For orthogonal spinning test particle (S1 = 0, S2 6= 0, S3 = 0)

∆t = 2.521207903565826× 10−8 s

For spinning test particle without restriction (Si 6= 0)

∆t = 0.615778559112427× 10−8 s

(5.12)

According to the analytical solution, the equation (4.33) predicts that the clock

effect is reduced by the spin value of the test particle [14]. If we take the difference

between the clock effect for spinless test particles and the clock effect when the test

particles have spin, we obtain

∆t = 4πa− 6πS. (5.13)

Now we take the numerical solution for the two cases and obtain

∆tspinless −∆tspin_S2 = 1.6705165049732× 10−8 s

∆tspinless −∆tspin_S123 = 3.5759458494266× 10−8 s. (5.14)

According to these results, the delay time increases when the spinning test particle

does not have restrictions in the spin orientation.
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5.2 Effects by spin

In this section, we study the trajectories of spinning test particles in the equatorial

plane. As we have mentioned before, in addition to MPD equations (4.14) and (4.15),

it is necessary to add a spin suplementary condition for choosing the particle´s center

of mass. We have the Mathisson-Pinari condition

Sλνuν = 0. (5.15)

By this condition the components Si4 can be expressed through Sik:

Si4 =
uk
u4

Ski. (5.16)

Sometimes, it is more convenient to express the spin tensor in spatial components

by the relationship

Si =
1

u4

√
−gεiklSkl (5.17)

where εikl is the spatial Lévi-Cività symbol.

For the equatorial case, according the motion of the spin the particle has a pre-

cession which is described by the projection of the head of the particle in three

dimensions. This precession is caused by the relationship between the curvature of

space time with angular momentum of the particle (Figure 5.4). For the numerical

calculation, we take two cases: first, when the components radial (S1) and azimuthal

(S3) are constrained, that is, we take the axis of spin perpendicular to equatorial

plane, and second, there is no restriction on the components of gyro by spin. For the

first case, the projection of spin in 3D describes a tiny tilted circular orbit. For the

other case, the projection makes up a bunch of trajectories whose are embedded in

a sphere. This is because in general the value of spin is not constant [38], [82].
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The other set of graphs describe the magnitude of the spin versus proper time.

When the components radial (S1) and azimuth (S3) of the spin or the components

radial (S1) and polar (S2) are constrained simultaneously the magnitude is constant

(Figure ??).

Above, we study the case where the two spinning test particles travel in opposite

direction and in the same orbit. Also, the spin axis is parallel to the central axis

of the rotating massive body. In this part, we take the case where the spin axis

is antiparallel to the axis of the central mass. In this case, the trajectory of the

spinning test particle has a helical movement too. However, if we compare these two

trajectories, we found a phase difference and a different interaction between spin -

spin [78].

5.2.1 Futures works

Like almost all the research, this thesis gave us many answers about the motion of

spinning test particles in a Kerr metric in the equatorial plane, but also, it presents

many questions for future work, among others, the movement of test particles in a

non-equatorial plane. In the near future, we will be studying the gravitomagnetism

effects in planes out of the equator and the relationship between in the angular

momentum of the central mass and the particle spin when the particle is rotating in

a rotating field. In this section, we will describe the basics elements for the study of

gravitomagnetic phenomena in non-equatorial planes.

Tidal Tensors in Gravitational and Electromagnetic fields

In the second chapter, we studied that the motion of a spinless test particle is de-

scribed by a geodesic. Then, we studied the spinning test particles and found that

the trajectories of theses particles deviate from the way of the geodesics. This devia-
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tion is described by the geodesic deviation equation. We take the geodesic deviation

equation for studying the tidal forces in gravity whose are given by

D2δxα

ds2
= −Rα

.µβσU
µUσδxβ (5.18)

this equation describes the relative acceleration between two neighbouring particles

with the same four-velocity Uα. There is a ratio between gravitational and inertial

mass, but the ratio between electrical charge and inertial mass does not exist, that

is, there is no electromagnetic counterpart of the equivalence principle. In electro-

dynamic, the worldline deviation equation is

D2δxa

ds2
=

q

m
Fα
.µ;βU

µδxβ, (5.19)

where Fαβ is the Maxwell tensor. Thereby, there is a physical analogy between the

two tensors:

Eαβ ≡ RαµβσU
µUσ ←→ Eαβ ≡ Fαµ;βU

µ (5.20)

where Eαβ is the covariant derivative of the electric field Eα = FαβUβ seen by the

observer of four velocity field Uα. This is called electric tidal tensor and Eαβ is known

as electric part of the Riemann tensor or the electric gravitational tidal tensor. From

the electric tidal tensor is defined the magnetic tidal tensor as

Bαβ ≡ ?Fαµ;βU
µ =

1

2
εγλ...αβFγλ;βU

µ (5.21)

where ? means the Hodge dual and εγλ...αβ is the Levi-Civita tensor. The tidal effects

given by magnetic field Bα = ?FαβUβ are measured by the tensor Bαβ. There is an

85



analogy with the magnetic part of the Riemman tensor

Hαβ ≡ ?RαµβσU
µUσ =

1

2
εγλ...αβRγλβσU

µUσ. (5.22)

Therefore, there is a physical gravitational analogue of Bαβ:

Bαβ ←→ Hαβ. (5.23)

On the other hand, the Maxwell equations are tidal equations and are defined by

electromagnetic tidal tensor as:

Eα
.α = 4πρc

E[αβ] =
1

2
Fαβ;γU

γ

Bα
.α = 0

B[αβ] =
1

2
? Fαβ;γU

γ − 2πεαβσγj
σUγ (5.24)

where jα and ρc = −jαUα are respectively, the current four-velocity and the charge

density as measured by the observer of four-velocity Uα. The tensors are expressed

by

Fαβ;γU
γ = 2U[αEβ]γU

γ + εαβµσU
σBµγUγ

?Fαβ;γU
γ = 2U[αBβ]γU

γ + εαβµσU
σEµγUγ (5.25)

Maxwell´s field equations in vacuum are

F µ
.ν;µ = 0, F[µν;α] = 0 (5.26)
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We split the Maxwell tensor into the two spation vector fields for observers with

four-velocity field Uα as

Eα = Fα
β U

β, Bα = ?Fα
.βU

β (5.27)

Now, let be Eα and Bα two tensorial quantities which are Uα independent, and

are given by

EαEα −BαBα = −FαβF
αβ

2
, EαBα = −Fαβ ? F

αβ

4
, (5.28)

these are the two independent relativistic invariants in four spacetime dimensions

[62].

Spinning charge and spinning mass

We have a sphere of charge q, mass m, rotating with constant angular momentum

Jez and the contibutions of electric monopole and magnetic dipole, therewith the

potential is given by

A = −q
r
dt+

µ sin2 θ

r
dφ (5.29)

where µ = Jq/2m is the magnetic dipole moment of the rotating sphere. This

element will be important when we define the motion of the spininng test particle

[62].

The electric and magnetic tidal tensors are symmetric for the static observer with

4-velocity Uµ = δµ0 as

Eαβdx
αdxβ = −2q

r3
dr2 +

q

r
dΩ

Bαβdx
αdxβ =

3µ

r2

(
−2 cos θ

r2
dr2 + cos θdΩ− 2 sin θ

r
drdθ

)
. (5.30)
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Trajectories in non-equatorial planes

One of the works that we will do is the study of trajectories of spinning test particles

when these particles are traveling in non-equatorial planes and orbiting a Kerr metric.

Figure 5.5: The trayectory of a spinning test particles in non-equatorial planes

The code that we worked for the spinning test particles was for the case of a

spining test particles orbiting an equatorial plane, now we write the code for the

case where the test particle is on the non-equatorial plane (Figure 5.5 )
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Chapter 6

Appendix A

Program code

#include <cstdio>

#include <cstdlib>

#include <cmath>

#include <iostream>

#include <fstream>

using namespace std;

const int N = 12; // Number of equations + 1.

The first one is a dummy

/* Variables */

const double E1 = 0.951906373;

const double y_1 = 1*pow(10,1); /* starting value of r */

const double a = 1;

const double M = 1;

const double y_2 = 1.57079632679;

const double revol = 1.1; /* number of revolutions to run */
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const double stepsize = 10; /* 2^-n */

const double Q = /*(pow(y_1,2)/(pow(a,2)*pow((M-y_1),2)))*

((1-pow(E1,2))*pow(y_1,4)+(4*M*pow(E1,2)-5*M)*pow(y_1,3)+

(8-5*pow(E1,2))*pow(M,2)*pow(y_1,2)+

(2*a*pow(E1,2)-pow(a,2)-4*pow(M,2))*M*y_1+

pow(a,2)*pow(M,2)+2*M*E1*(pow(y_1,2)-(2*M*y_1)+

pow(a,2))*sqrt(y_1*(M-y_1+y_1*pow(E1,2))));

const double J1 = /*(1/(a*(y_1-M)))*(M*E1*pow(y_1,2)-

pow(a,2)*M*E1-(pow(y_1,2)-2*M*y_1+

pow(a,2))*sqrt(y_1*(M-y_1+y_1*pow(E1,2))));

const double y_3 = 0.;

const double y_4 = 0.;

const double y_5 = sqrt(abs(pow((E1*(pow(y_1,2)+pow(a,2))-

a*pow(J1,2)),2)-(pow(y_1,2)-M*y_1+pow(a,2))*(pow(y_1,2)+

Q+pow((J1-a*E1),2))))/(pow(y_1,2)+pow(a,2)*pow(cos(y_2),2));

const double y_6 = sqrt(Q-pow(cos(y_2),2)*(pow(a,2)*

(1-pow(E1,2))+pow(J1,2)/pow(sin(y_2),2)))/(pow(y_1,2)+

pow(a,2)*pow(cos(y_2),2));

const double y_7 = ((J1/pow(sin(y_2),2))-a*E1+(a*(E1*

(pow(y_1,2)+pow(a,2))-a*pow(J1,2))/(pow(y_1,2)-2*M*y_1+

pow(a,2))))/(pow(y_1,2)+pow(a,2)*pow(cos(y_2),2));

const double y_8 = (a*(J1-a*E1*pow(sin(y_2),2))+

(pow(y_1,2)+pow(a,2)/(pow(y_1,2)-2*M*y_1+pow(a,2)))*

(E1*(pow(y_1,2)+pow(a,2))-

a*pow(J1,2)))/(pow(y_1,2)+pow(a,2)*pow(cos(y_2),2));

const double y_9 = pow(10,-10);
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const double y_10 = 157;

const double y_11 = pow(10,-10);

double EPS; /* step size */

const double alpha = (a/M);

void rk4_vector(double t, double h, double y[]);

// Runge-Kutta of four order

double f_dot(const double t, const double y[], const int idx);

int main (void)

{

int i, sgn_y1, sgn_y2, sgn_y1_set = 0., sgn_y2_set = 0.;

double y[N] = {0};

double REVOL;

double c1, c2, c3, Q1, Q2, Q3, Q4, A, C, p, p1, p2, p3, p4,

E1, J1, D, d1, d2, d3;

ofstream foutvariables("constrainS13_variables_equator_minus.txt");

ofstream fout("constrainS13_coord_equator_cycloid_plus.txt");

ofstream foutspin("constrainS13_mov_spin_equator_cycloid_plus.txt");

ofstream foutspinmagplus("constrainS13_mag_spin_equator_cycloid_plus.txt");

ofstream foutcycloid("constrainS13_equator_spherical_cycloid_plus.txt");

/* Evaluating EPS, REVOL and REPT_FREQ */

EPS = pow(2, -stepsize);

REVOL = revol*2*M_PI;

/* specify initial values */

y[1] = y_1;

y[2] = M_PI/2;

y[3] = 0.;
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y[4] = 0.;

y[5] = y_5;

y[6] = y_6;

y[7] = y_7;

y[8] = y_8;

y[9] = y_9;

y[10] = y_10;

y[11] = y_11;

printf("%f %f %f %f %f %f %f %f %f %f %f\n",y[1], y[2], y[3], y[4],

y[5], y[6], y[7], y[8],y[9],y[10],y[11]);

foutvariables<<y[1] << "\t" << y[2] << "\t" << y[3] << "\t" << y[4] <<

"\t" << y[5] << "\t"<< y[6] << "\t"<< y[7] << "\t" << y[8] << "\t"

<< y[9] << "\t" << y[10] << "\t" << y[11] << "\t" << endl;

fout<<y[1]*sin(y[2])*cos(y[3]) << "\t" << y[1]*sin(y[2])*sin(y[3]) << "\t"

<< y[1]*cos(y[2]) << "\t" << endl;

foutspin<<y[9]*sin(y[10])*cos(y[11]) << "\t" << y[9]*sin(y[10])*sin(y[11])

<< "\t"<< y[9]*cos(y[10]) << "\t" << endl;

foutspinmagplus<< y[4]<< "\t" <<sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2)) << endl;

foutcycloid<<(cos(y[3]))*(y[1]-

(cos(pow(tan((sqrt((pow(y[9]*sin(y[10])*cos(y[11]),2))+

(pow(y[9]*sin(y[10]*sin(y[11])),2))))/(y[9]*cos(y[10]))),-1)))*

(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +pow(y[9]*cos(y[10]),2))-

(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+
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pow(y[9]*sin(y[10])*sin(y[11]),2)+pow(y[9]*cos(y[10]),2)))*

sin((y[1]*y[3])/(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) + pow(y[9]*cos(y[10]),2))))))-

(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2)))*(sin(y[3]))*

(cos(((y[1]*y[3])/(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2)))))) << "\t" <<

(sin(y[3]))*(y[1]-(cos(pow(tan((sqrt((pow(y[9]*sin(y[10])*cos(y[11]),2))+

(pow(y[9]*sin(y[10]*sin(y[11])),2))))/(y[9]*cos(y[10]))),-1)))*

(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+ pow(y[9]*sin(y[10])*sin(y[11]),2)

+pow(y[9]*cos(y[10]),2))-(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2)))*sin((y[1]*y[3])/(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) + pow(y[9]*cos(y[10]),2))))))+

(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+ pow(y[9]*sin(y[10])*sin(y[11]),2)

+pow(y[9]*cos(y[10]),2)))*(cos(y[3]))*

(cos(((y[1]*y[3])/(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) + pow(y[9]*cos(y[10]),2))))))

<< "\t" <<(sin(pow(tan((sqrt((pow(y[9]*sin(y[10])*cos(y[11]),2))+

(pow(y[9]*sin(y[10]*sin(y[11])),2))))/(y[9]*cos(y[10]))),-1)))*

((sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+ pow(y[9]*sin(y[10])*sin(y[11]),2)

+pow(y[9]*cos(y[10]),2))-(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2)))*sin((y[1]*y[3])/(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+
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pow(y[9]*sin(y[10])*sin(y[11]),2) + pow(y[9]*cos(y[10]),2))))))

<< "\t" << endl;

for (i = 1; fabs(y[3])< REVOL; i++)

{

// runge kutta step

rk4_vector(i, EPS, y);

foutvariables<<y[1] << "\t" << y[2] << "\t" << y[3] << "\t"

<< y[4] << "\t" << y[5] << "\t" << y[6]<< "\t"<< y[7] << "\t" << y[8]

<< "\t" << y[9] << "\t" << y[10] << "\t" << y[11] << "\t" << endl;

fout<<y[1]*sin(y[2])*cos(y[3]) << "\t" << y[1]*sin(y[2])*sin(y[3])

<< "\t" << y[1]*cos(y[2]) << "\t" << endl;

foutspin<<y[9]*sin(y[10])*cos(y[11]) << "\t" << y[9]*sin(y[10])*sin(y[11])

<< "\t"<< y[9]*cos(y[10]) << "\t" << endl;

foutspinmagplus<< y[4]<< "\t"<<sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2)) << endl;

foutcycloid<<(cos(y[3]))*(y[1]-(cos(pow(tan((sqrt((pow(y[9]*sin(y[10])*cos(y[11]),2))+

(pow(y[9]*sin(y[10]*sin(y[11])),2))))/(y[9]*cos(y[10]))),-1)))*

(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+ pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2))-(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2)))*sin((y[1]*y[3])/(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) + pow(y[9]*cos(y[10]),2))))))-

(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) + pow(y[9]*cos(y[10]),2)))*(sin(y[3]))*

(cos(((y[1]*y[3])/(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+
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pow(y[9]*sin(y[10])*sin(y[11]),2) + pow(y[9]*cos(y[10]),2))))))

<<"\t"<<(sin(y[3]))*(y[1]-(cos(pow(tan((sqrt((pow(y[9]*sin(y[10])*cos(y[11]),2))

+(pow(y[9]*sin(y[10]*sin(y[11])),2))))/(y[9]*cos(y[10]))),-1)))*

(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+ pow(y[9]*sin(y[10])*sin(y[11]),2)

+pow(y[9]*cos(y[10]),2))-(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2)))*sin((y[1]*y[3])/(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) + pow(y[9]*cos(y[10]),2))))))+

(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2) + pow(y[9]*sin(y[10])*sin(y[11]),2)

+ pow(y[9]*cos(y[10]),2)))*(cos(y[3]))*(cos(((y[1]*y[3])/

(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2)))))) << "\t" <<

(sin(pow(tan((sqrt((pow(y[9]*sin(y[10])*cos(y[11]),2))+

(pow(y[9]*sin(y[10]*sin(y[11])),2))))/(y[9]*cos(y[10]))),-1)))*

((sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+ pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2))-(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2)))*

sin((y[1]*y[3])/(sqrt(pow(y[9]*sin(y[10])*cos(y[11]),2)+

pow(y[9]*sin(y[10])*sin(y[11]),2) +

pow(y[9]*cos(y[10]),2)))))) << "\t" << endl;

}

}

void rk4_vector(double t, double h, double y[]) //

Runge-Kutta method of four order
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{

double k1[N], k2[N], k3[N], k4[N];

double ytmp[N];

int ii;

// k1

for (ii = 0; ii < N; ++ii) {

k1[ii] = h*f_dot(t, y, ii);

}

for (ii = 0; ii < N; ++ii) {

ytmp[ii] = y[ii] + k1[ii]/2;

}

// k2

for (ii = 0; ii < N; ++ii) {

k2[ii] = h*f_dot(t + h/2, ytmp, ii);

}

for (ii = 0; ii < N; ++ii) {

ytmp[ii] = y[ii] + k2[ii]/2;

}

// k3

for (ii = 0; ii < N; ++ii) {

k3[ii] = h*f_dot(t + h/2, ytmp, ii);

}

for (ii = 0; ii < N; ++ii) {

ytmp[ii] = y[ii] + k3[ii];

}

//k4
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for (ii = 0; ii < N; ++ii) {

k4[ii] = h*f_dot(t + h, ytmp, ii);

}

// update

for (ii = 0; ii < N; ++ii) {

y[ii] = y[ii] + (1.0/6.0)*(k1[ii] + 2*k2[ii] + 2*k3[ii] + k4[ii]);

}

}

double c1, c2, c3, Q1, Q2, Q3, Q4, A, C,

p, p1, p2, p3, p4, D, d1, d2, d3;

double f_dot(const double t, const double y[], const int idx)

{

// check correct indexes in [1, 11]

printf("%f %f %f %f %f %f %f %f %f %f %f\n",y[1], y[2], y[3], y[4],

y[5], y[6], y[7], y[8],y[9],y[10],y[11]);

if ( idx < 0 || idx >= N)

{

std::cerr << "ERROR: Calling f_dot with erroneous index =

" << idx << endl;

exit(1);

}

double c1, c2, c3, c4, d1, d2, d3, d4, p, p1, p2, p3, p4;

double z, q, psi, eta, chi, Xi, alpha, beta, Delta;

double D, C, Q1, Q2, Q3, Q4, A;

z = pow(y[1],2) + pow(alpha,2)*pow(cos(y[2]),2);

q = y[1]*(y[1] - 2) + pow(alpha,2);
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psi = pow(y[1],2) - pow(alpha,2)*pow(cos(y[2]),2);

eta = 3*pow(y[1],2) - pow(alpha,2)*pow(cos(y[2]),2);

chi = (pow(y[1],2) + pow(alpha,2));

Xi = pow(y[1],2) - 3*pow(alpha,2)*pow(cos(y[2]),2);

p1 = -z*y[5]*pow(q,-1);

p2 = -z*(y[6]);

p3 = (2*alpha*y[1]*y[8]*pow(sin(y[2]),2) -

y[7]*(z*(pow(y[1],2) + pow(alpha,2)) +

2*pow(alpha,2)*y[1]*pow(sin(y[2]),2))*pow(sin(y[2]),2))*pow(z,-1);

p4 = (2*alpha*y[1]*y[7]*pow(sin(y[2]),2) +

y[8]*(z - 2*y[1]))*pow(z,-1);

c1 = y[7]*y[10]*sin(y[2]) - (z - 2*y[1])*y[6]*y[11]*

pow(q,-1)*pow(sin(y[2]),-1);

c2 = y[5]*y[11]*(z-2*y[1])*pow(q,-1)*pow(sin(y[2]),-1)-

y[7]*y[9]*(q*sin(y[2]));

c3 = (y[6]*y[9]*q-y[5]*y[10])*sin(y[2]);

d1 = -(2*alpha*pow(q,-1)*y[1]*y[6]*y[11] + y[8]*y[10])*sin(y[2]);

d2 = (2*alpha*pow(q,-1)*y[1]*y[5]*y[11]+q*y[8]*y[9])*sin(y[2]);

d3 = (y[5]*y[10]-q*y[6]*y[9])*sin(y[2]);

p = 2*alpha*y[1]*y[7]*pow(sin(y[2]),2) + (z - 2*y[1])*y[8];

Q1 = (y[1]*q-z*(y[1]-1))*pow(y[5],2)*pow(z,-1)*pow(q,-1)-

q*y[1]*pow(y[6],2)*pow(z,-1)- q*(y[1]*pow(z,2)-

pow(alpha,2)*psi*pow(sin(y[2]),2))*

pow(y[7],2)*pow(z,-3)*pow(sin(y[2]),2)+

q*psi*pow(y[8],2)*pow(z,-3)-

pow(alpha,2)*y[5]*y[6]*pow(z,-1)*sin(2*y[2])-
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2*alpha*q*psi*y[7]*y[8]*pow(z,-3)*pow(sin(y[2]),2);

Q2 = (-0.5*pow(alpha,2))*pow(z,-1)*pow(y[6],2)*sin(2*y[2])+

0.5*pow(alpha,2)*pow(y[5],2)*pow(z,-1)*pow(q,-1)*sin(2*y[2])-

0.5*pow(y[7],2)*(pow(z,2)*(pow(y[1],2) + pow(alpha,2)) +

2*pow(alpha,2)*y[1]*((pow(y[1],2) + pow(alpha,2)) + z)*

pow(sin(y[2]),2))*pow(z,-3)*sin(2*y[2])

-pow(alpha,2)*pow(z,-3)*y[1]*pow(y[8],2)*sin(2*y[2])+

2*y[1]*y[5]*y[6]*pow(z,-1) +

2*alpha*y[1]*y[7]*y[8]*(pow(y[1],2) + pow(alpha,2))*pow(z,-3)*sin(2*y[2]);

Q3 = 2*y[5]*y[7]*(y[1]*z*(z-2*y[1])-pow(alpha,2)*psi*

pow(sin(y[2]),2))*pow(z,-2)*pow(q,-1)+

2*alpha*y[5]*y[8]*psi*pow(z,-2)*pow(q,-1)+2*y[6]*y[7]*(pow(z,2) +

2*pow(alpha,2)*y[1]*pow(sin(y[2]),2))*

pow(z,-2)*pow(tan(y[2]),-1) -

4*alpha*y[1]*y[6]*y[8]*pow(z,-2)*pow(tan(y[2]),-1);

Q4 = -2*alpha*y[5]*y[7]*(2*y[1]*y[1]*z+psi*(pow(y[1],2) +

pow(alpha,2)))*pow(z,-2)*pow(q,-1)*pow(sin(y[2]),2)+

2*y[5]*y[8]*psi*(pow(y[1],2) + pow(alpha,2))*pow(z,-2)*pow(q,-1)+

2*pow(alpha,3)*y[1]*pow(z,-2)*y[6]*y[7]*

pow(sin(y[2]),2)*sin(2*y[2]) -

2*pow(alpha,2)*y[1]*pow(z,-2)*y[6]*y[8]*sin(2*y[2]);

C = -(1 - 2*y[1]*pow(z,-1))*y[8] -

2*alpha*y[1]*y[7]*pow(z,-1)*pow(sin(y[2]),2) +

2*pow(alpha,2)*q*pow(z,-3)*y[1]*y[7]*y[9] -

2*alpha*q*y[1]*y[8]*y[9]*

pow(z,-3)*cos(y[2])
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+ (pow(y[1],2) + pow(alpha,2))*psi*y[7]*y[10]*pow(z,-3)*sin(y[2]) -

alpha*pow(z,-3)*y[8]*y[10]*psi*sin(y[2])-

2*pow(alpha,2)*y[1]*y[5]*y[11]*pow(q,-1)*pow(z,-2)*cos(y[2])-

y[6]*y[11]*psi*pow(z,-2)*pow(sin(y[2]),-1);

D = -2*pow(alpha,3)*y[1]*pow(z,-3)*y[7]*y[9]*pow(sin(y[2]),4)*cos(y[2])+

q*(pow(z,2) + 2*pow(alpha,2)*y[1]*pow(sin(y[2]),2))*

y[8]*y[9]*pow(z,-3)*cos(y[2])

- alpha*y[7]*y[10]*((pow(y[1],2) + pow(alpha,2))*psi +

2*pow(y[1],2)*z)*pow(z,-3)*pow(sin(y[2]),3)-

y[8]*y[10]*(y[1]*z*(z -2*y[1])-

pow(alpha,2)*psi*pow(sin(y[2]),2))*pow(z,-3)*sin(y[2])

+2*alpha*y[1]*y[5]*y[11]*(pow(y[1],2) +

pow(alpha,2))*pow(q,-1)*pow(z,-2)*cos(y[2])+

alpha*psi*y[6]*y[11]*pow(z,-2)*sin(y[2]) +

pow(p,-1)*(2*alpha*y[1]*pow(y[7],2)*

(z*(pow(y[1],2) +pow(alpha,2))* +

2*pow(alpha,2)*y[1]*pow(sin(y[2]),2))*pow(z,-1)*pow(sin(y[2]),2)

+q*z*y[7]*y[8]*(1-8*pow(alpha,2)*pow(y[1],2)*pow(q,-1)*

pow(z,-2)*pow(sin(y[2]),2)) -

2*alpha*y[1]*(z - 2*y[1])*pow(z,-1)*pow(y[8],2))*pow(sin(y[2]),2);

A = -2*alpha*y[5]*y[6]*y[9]*y[10]*eta*pow(z,-3)*cos(y[2])-

2*alpha*y[5]*y[7]*y[9]*y[11]*eta*pow(z,-4)*((pow(y[1],2) + pow(alpha,2))*+

2*pow(alpha,2)*pow(sin(y[2]),2))*cos(y[2])

-6*alpha*y[1]*y[6]*y[7]*y[9]*y[11]*q*Xi*pow(z,-4)*sin(y[2]) +

6*y[1]*y[6]*y[8]*y[9]*y[11]*q*Xi*pow(z,-4)*pow(sin(y[2]),-1)

+6*alpha*y[1]*pow(y[7],2)*y[9]*y[10]*q*Xi*(pow(y[1],2) +

100



pow(alpha,2))*pow(z,-5)*pow(sin(y[2]),3) -

6*y[1]*y[7]*y[8]*y[9]*y[10]*q*Xi*pow(z,-5)*

((pow(y[1],2) + pow(alpha,2))* +

pow(alpha,2)*pow(sin(y[2]),2))*sin(y[2])

+6*alpha*y[1]*pow(y[8],2)*y[9]*y[10]*q*Xi*pow(z,-5)*sin(y[2])+

2*alpha*y[6]*y[7]*y[10]*y[11]*eta*pow(z,-4)*(2*(pow(y[1],2) +

pow(alpha,2))* + pow(alpha,2)*pow(sin(y[2]),2))*cos(y[2])-

6*alpha*y[1]*y[5]*y[10]*y[11]*Xi*(pow(y[1],2) +

pow(alpha,2))*pow(q,-1)*pow(z,-4)*sin(y[2])+

6*pow(alpha,2)*y[1]*y[5]*y[8]*y[10]*y[11]*Xi*pow(q,-1)*pow(z,-4)*sin(y[2])

+alpha*pow(y[6],2)*pow(y[9],2)*q*eta*pow(z,-3)*cos(y[2]) +

alpha*pow(y[7],2)*pow(y[9],2)*eta*q*(pow((pow(y[1],2) +

pow(alpha,2)),2) +

2*q*pow(alpha,2)*pow(sin(y[2]),2))*pow(z,-5)*pow(sin(y[2]),2)*cos(y[2])

- 2*pow(alpha,2)*pow(z,-5)*y[7]*y[8]*pow(y[9],2)*

eta*q*(3*(pow(y[1],2) +

pow(alpha,2)) -4*y[1])*pow(sin(y[2]),2)*cos(y[2])

+ alpha*eta*q*(2*q +pow(alpha,2)*pow(sin(y[2]),2))*pow(z,-5)*pow(y[8],2)*

pow(y[9],2)*cos(y[2])+ alpha*eta*pow(y[5],2)*pow(y[10],2)*

pow(q,-1)*pow(z,-3)*cos(y[2])

- alpha*eta*(2*pow((pow(y[1],2) + pow(alpha,2)),2) +

pow(alpha,2)*q*pow(sin(y[2]),2))*pow(y[7],2)*pow(y[10],2)*

pow(z,-5)*pow(sin(y[2]),2)*cos(y[2])

- alpha*eta*(q +2*pow(alpha,2)*pow(sin(y[2]),2))*pow(y[8],2)*

pow(y[10],2)*pow(z,-5)*cos(y[2]) +

2*pow(alpha,2)*pow(z,-5)*eta*(3*(pow(y[1],2) + pow(alpha,2)) -

101



2*y[1])*y[7]*y[8]*pow(y[10],2)*pow(sin(y[2]),2)*cos(y[2])

+ alpha*eta*(q+2*pow(alpha,2)*pow(sin(y[2]),2))*pow(y[5],2)*

pow(y[11],2)*pow(q,-2)*pow(z,-3)*

pow(sin(y[2]),-2)*cos(y[2])-alpha*eta*(2*q+pow(alpha,2)*pow(sin(y[2]),2))*

pow(y[6],2)*pow(y[11],2)*pow(q,-1)*pow(z,-3)*pow(sin(y[2]),-2)*cos(y[2])+

6*alpha*Xi*y[1]*y[5]*y[6]*pow(y[11],2)*pow(q,-1)*

pow(z,-3)*pow(sin(y[2]),-1)

- 4*pow(alpha,3)*pow(y[1],2)*eta*pow(y[7],2)*

pow(y[11],2)*pow(q,-1)*

pow(z,-5)*pow(sin(y[2]),2)*cos(y[2]);

beta = y[5]*y[9]+y[6]*y[10]+y[7]*y[11];

// return appropriate derivate according to indexes

if (idx == 1) {

return 0.;

}

else if (idx == 2) {

return 0.;

}

else if (idx == 3) {

return y[7];

}

else if (idx == 4) {

return y[8];

}

else if (idx == 5) {

return 0.;
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}

else if (idx == 6) {

return -(((-C - E1 + c1*Q1 + c2*Q2 + c3*Q3)*y[11] -

c3*(-A + Q1*y[9] + Q2*y[10] + Q3*y[11]))/

(-c3*y[10] + c2*y[11])) +

((-c3*y[9] + c1*y[11])*(-(-d3*p3*y[10] + (d3*p2 - d2*p4)*y[11])*

((-C - E1 + c1*Q1 + c2*Q2 + c3*Q3)*y[11] -

c3*(-A + Q1*y[9] + Q2*y[10] + Q3*y[11])) +

(-c3*y[10] + c2*y[11])*

((-p4*(-D + J1 + d1*Q1 + d2*Q2 + d3*Q4) +

d3*(p1*Q1 + p2*Q2 + p3*Q3 + p4*Q4))*y[11] -

d3*p3*(-A + Q1*y[9] + Q2*y[10] + Q3*y[11]))))/

((-c3*y[10] + c2*y[11])*((-c3*y[10] + c2*y[11])*(-d3*p3*y[9] +

(d3*p1 - d1*p4)*y[11]) -

(-c3*y[9] + c1*y[11])*(-d3*p3*y[10] + (d3*p2 - d2*p4)*y[11])));

}

else if (idx == 7){

return -((-A*c2 + c2*Q1*y[9] + C*y[10] + E1*y[10] -

c1*Q1*y[10] -c3*Q3*y[10] + c2*Q3*y[11])/

(-c3*y[10] + c2*y[11])) +

((c2*y[9] -c1*y[10])*(-(-d3*p3*y[10] + (d3*p2 - d2*p4)*y[11])*

((-C - E1 + c1*Q1 + c2*Q2 + c3*Q3)*y[11] -

c3*(-A + Q1*y[9] + Q2*y[10] + Q3*y[11])) + (-c3*y[10] +c2*y[11])*

((-p4*(-D + J1 + d1*Q1 + d2*Q2 + d3*Q4) +

d3*(p1*Q1 + p2*Q2 + p3*Q3 + p4*Q4))*y[11] -

d3*p3*(-A + Q1*y[9] + Q2*y[10] + Q3*y[11]))))/
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((-c3*y[10] + c2*y[11])*((-c3*y[10] + c2*y[11])*

(-d3*p3*y[9] + (d3*p1 - d1*p4)*y[11]) -

(-c3*y[9] + c1*y[11])*(-d3*p3*y[10] + (d3*p2 - d2*p4)*y[11])));

}

else if (idx == 8){

return -((-D + J1 + d1*Q1 + d2*Q2 + d3*Q4)/d3) +

(d2*((-C - E1 + c1*Q1 + c2*Q2 + c3*Q3)*y[11] -

c3*(-A + Q1*y[9] + Q2*y[10] + Q3*y[11])))/

(d3*(-c3*y[10] + c2*y[11])) +

((d1/d3 - (d2*(-c3*y[9] + c1*y[11]))/(d3*(-c3*y[10] + c2*y[11])))*

(-(-d3*p3*y[10] + (d3*p2 - d2*p4)*y[11])*

((-C -E1 + c1*Q1 + c2*Q2 + c3*Q3)*y[11] -

c3*(- A + Q1*y[9] + Q2*y[10] + Q3*y[11])) + (-c3*y[10] + c2*y[11])*

((-p4*(-D + J1 + d1*Q1 + d2*Q2 + d3*Q4) +

d3*(p1*Q1 + p2*Q2 + p3*Q3 + p4*Q4))*y[11] -

d3*p3*(-A + Q1*y[9] + Q2*y[10] + Q3*y[11]))))/

((-c3*y[10] + c2*y[11])*(-d3*p3*y[9] + (d3*p1 - d1*p4)*y[11])-

(-c3*y[9] + c1*y[11])*(-d3*p3*y[10] + (d3*p2 - d2*p4)*y[11]));

}

else if (idx == 9) {

return /*-((beta*(-D + J1 + d1*Q1 + d2*Q2 + d3*Q4)*

z*(z - 2*y[1])*y[5])/(d3*p*q)) +

(2*alpha*beta*z*pow(sin(y[2]),2)*y[1]*y[5]*

(-A + Q1*y[9] +Q2*y[10] + Q3*y[11]))/(p*q*y[11]) -

(1/p)*(-((2*alpha*beta*pow(sin(y[2]),2)*(z*(-1 + y[1])*y[1]+

q*(z - 3*pow(y[1],2)))*
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pow(y[5],2)*y[7])/pow(q,2)) -

(2*alpha*beta*(z + 2*pow(alpha,2)*pow(sin(y[2]),2))*

sin(2*y[2])*y[1]*y[5]*y[6]*y[7])/q -

2*alpha*beta*pow(sin(y[2]),2)*pow(y[1],2)*pow(y[6],2)*y[7] -

(1/(q*pow(z,2)))*2*alpha*beta*pow(sin(y[2]),4)*y[1]*(z*(z - 2*y[1])*

y[1]*(pow(y[1],2)+pow(alpha,2))+pow(alpha,2)*pow(sin(y[2]),2)*

(q*z - 2*pow(alpha,2)*pow(sin(y[2]),2)*pow(y[1],2) +

4*pow(y[1],3)))*pow(y[7],3) -(beta*(3*psi*q + pow(alpha,2)*z*pow(sin(y[2]),2)*

(1 - y[1]))*pow(y[5],2)*y[8])/pow(q,2) -

(pow(alpha,2)*beta*sin(2*y[2])*(z - 4*y[1])*y[5]*y[6]*y[8])/q -

beta*(z - 2*y[1])*y[1]*pow(y[6],2)*y[8] -

(beta*pow(sin(y[2]),2)*(-pow(alpha,2)*psi*

pow(sin(y[2]),2)*(z - 6*y[1]) +

pow(z,2)*(z - 2*y[1])*y[1])*pow(y[7],2)*y[8])/

pow(z,2) - (2*alpha*beta*psi*pow(sin(y[2]),2)*

(z - 3*y[1])*y[7]*pow(y[8],2))/pow(z,2) +

(beta*psi*(z - 2*y[1])*pow(y[8],3))/pow(z,2) -

(alpha*pow(sin(y[2]),2)*

(pow(alpha,2) - pow(y[1],2))*y[5]*y[7]*y[9])/q +

(pow(alpha,3)*pow(sin(y[2]),2)*sin(2*y[2])*y[1]*y[6]*y[7]*y[9])/z -

(pow(alpha,2)*pow(sin(y[2]),2)*(-1 + y[1])*y[5]*y[8]*y[9])/q +

(0.5*pow(alpha,2)*sin(2*y[2])*(z - 2*y[1])*y[6]*y[8]*y[9])/z -

(alpha*sin(2*y[2])*y[1]*y[5]*y[7]*y[10])/q -

(2*pow(sin(y[2]),2)*pow(y[1],2)*y[6]*y[7]*y[10])/z -

(0.5*pow(alpha,2)*sin(2*y[2])*(z - 4*y[1])*y[5]*y[8]*y[10])/(q*z) -

((z - 2*y[1])*y[1]*y[6]*y[8]*y[10])/z -
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(alpha*psi*pow(y[5],2)*y[11])/pow(q,2) +

(2*alpha*pow(tan(y[2]),-1)*y[1]*y[5]*y[6]*y[11])/q -

(2*alpha*pow(sin(y[2]),2)*y[1]*

(-pow(alpha,2)*psi*pow(sin(y[2]),2) +

z*(z - 2*y[1])*y[1])*pow(y[7],2)*y[11])/(q*pow(z,2)) -

((-pow(alpha,2)*psi*pow(sin(y[2]),2)*(z - 4*y[1]) +

z*pow((z - 2*y[1]),2)*y[1])*y[7]*y[8]*y[11])/(q*pow(z,2)) -

(alpha*psi*(z - 2*y[1])*pow(y[8],2)*y[11])/(q*pow(z,2))) +

(1/(-c3*y[10] + c2*y[11]))*

((beta*d2*z*(z - 2*y[1])*y[5])/(d3*p*q) -

(2*alpha*beta*z*pow(sin(y[2]),2)*y[1]*y[5]*y[10])/(p*q*y[11]))*

((-C - E1 + c1*Q1 + c2*Q2 + c3*Q3)*y[11] -

c3*(-A + Q1*y[9] +Q2*y[10] + Q3*y[11])) +

(((beta*d1*z*(z - 2*y[1])*y[5])/(d3*p*q) +

(-((2*alpha*beta*z*pow(sin(y[2]),2)*y[1]*y[7])/q) +

(beta*z*(z - 2*y[1])*y[8])/q)/p -

(2*alpha*beta*z*pow(sin(y[2]),2)*y[1]*y[5]*y[9])/(p*q*y[11]) -

(((beta*d2*z*(z - 2*y[1])*y[5])/(d3*p*q) -

(2*alpha*beta*z*pow(sin(y[2]),2)*y[1]*y[5]*y[10])/(p*q*y[11]))*

(-c3*y[9] + c1*y[11]))/(-c3*y[10] + c2*y[11]))*

(-(-d3*p3*y[10] + (d3*p2 - d2*p4)*y[11])*

((-C - E1 + c1*Q1 + c2*Q2 + c3*Q3)*y[11] -

c3*(-A + Q1*y[9] + Q2*y[10] + Q3*y[11])) +

(-c3*y[10] + c2*y[11])*

((-p4*(-D + J1 + d1*Q1 + d2*Q2 + d3*Q4) +

d3*(p1*Q1 + p2*Q2 + p3*Q3 + p4*Q4))*y[11] -
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d3*p3*(-A + Q1*y[9] +Q2*y[10] +

Q3*y[11]))))/((-c3*y[10] + c2*y[11])*(-d3*p3*y[9] + (d3*p1 - d1*p4)*y[11]) -

(-c3*y[9] + c1*y[11])*(-d3*p3*y[10] + (d3*p2 - d2*p4)*y[11]))*/0.;

}

else if (idx == 10) {

return -((beta*(-D + J1 + d1*Q1 + d2*Q2 +

d3*Q4)*z*(z - 2*y[1])*y[6])/(d3*p)) -

(2*alpha*beta*z*pow(sin(y[2]),2)*y[1]*y[6]*

(-A + Q1*y[9] + Q2*y[10] + Q3*y[11]))/(p*y[11]) -

(1/p)*((2*pow(alpha,3)*beta*cos(y[2])*pow(sin(y[2]),3)*

y[1]*pow(y[5],2)*y[7])/q +

2*alpha*beta*eta*pow(sin(y[2]),2)*y[5]*y[6]*y[7] -

alpha*beta*(2*z + 3*pow(alpha,2)*pow(sin(y[2]),2))*

sin(2*y[2])*y[1]*pow(y[6],2)*y[7] -

(2*alpha*beta*cos(y[2])*pow(sin(y[2]),3)*y[1]*

((pow(y[1],2)+pow(alpha,2))*pow(z,2) +

4*pow(alpha,2)*z*pow(sin(y[2]),2)*y[1] + 2*pow(alpha,4)*y[1]*

pow(sin(y[2]),4))*pow(y[7],3))/pow(z,2) -

(0.5*pow(alpha,2)*beta*sin(2*y[2])*

(-z + 2*y[1])*pow(y[5],2)*y[8])/q -

2*beta*(4*pow(y[1],2) - z*(1 + y[1]))*y[5]*y[6]*y[8] -

pow(alpha,2)*beta*cos(y[2])*sin(y[2])*(z - 6*y[1])*pow(y[6],2)*y[8] -

(0.5*beta*sin(2*y[2])*(q*pow(z,3) + 2*pow(alpha,2)*

pow(sin(y[2]),2)*y[1]*(q*z - 6*(pow(y[1],2)+

pow(alpha,2))*y[1]))*pow(y[7],2)*y[8])/pow(z,2) -

(2*alpha*beta*sin(2*y[2])*y[1]*(-(pow(y[1],2)+pow(alpha,2))*(z - 2*y[1]) +
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pow(alpha,2)*pow(sin(y[2]),2)*y[1])*y[7]*pow(y[8],2))/pow(z,2) -

(pow(alpha,2)*beta*sin(2*y[2])*(z - 2*y[1])*y[1]*pow(y[8],3))/pow(z,2) +

(2*pow(alpha,3)*cos(y[2])*pow(sin(y[2]),3)*y[1]*y[5]*y[7]*y[9])/z -

(alpha*q*pow(sin(y[2]),2)*(z - 4*pow(y[1],2))*y[6]*y[7]*y[9])/z -

(0.5*pow(alpha,2)*sin(2*y[2])*(-z + 2*y[1])*y[5]*y[8]*y[9])/z -

(q*(4*pow(y[1],2) - z*(1 + y[1]))*y[6]*y[8]*y[9])/z -

(2*alpha*pow(sin(y[2]),2)*

pow(y[1],2)*y[5]*y[7]*y[10])/z -

alpha*sin(2*y[2])*y[1]*y[6]*y[7]*y[10] -

((z - 2*y[1])*y[1]*y[5]*y[8]*y[10])/z +

0.5*pow(alpha,2)*sin(2*y[2])*y[6]*y[8]*y[10] -

(alpha*(-z + 2*pow(y[1],2))*y[5]*y[6]*y[11])/q +

2*alpha*pow(tan(y[2]),-1)*y[1]*pow(y[6],2)*y[11] -

(alpha*sin(2*y[2])*y[1]*(z + 2*pow(alpha,2)*pow(sin(y[2]),2)*y[1])*

pow(y[7],2)*y[11])/pow(z,2) -

(pow(tan(y[2]),-1)*(pow(z,3) + 2*z*(-z + pow(alpha,2)*pow(sin(y[2]),2))*y[1]-

8*pow(alpha,2)*pow(sin(y[2]),2)*pow(y[1],2))*y[7]*y[8]*y[11])/pow(z,2) -

(2*alpha*pow(tan(y[2]),-1)*y[1]*(-z + 2*y[1])*

pow(y[8],2)*y[11])/pow(z,2)) +

(1/(-c3*y[10] + c2*y[11]))*((beta*d2*z*(z - 2*y[1])*y[6])/(d3*p) +

(2*alpha*beta*z*pow(sin(y[2]),2)*y[1]*y[7] + beta*z*(z - 2*y[1])*y[8])/p +

(2*alpha*beta*z*pow(sin(y[2]),2)*y[1]*y[6]*y[10])/(p*y[11]))*

((-C - E1 + c1*Q1 + c2*Q2 + c3*Q3)*y[11] -

c3*(-A + Q1*y[9] +Q2*y[10] + Q3*y[11])) +

(((beta*d1*z*(z - 2*y[1])*y[6])/(d3*p) +

(2*alpha*beta*z*pow(sin(y[2]),2)*y[1]*y[6]*y[9])/(p*y[11]) -
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(1/(-c3*y[10] + c2*y[11]))*((beta*d2*z*(z - 2*y[1])*y[6])/(d3*p) +

(2*alpha*beta*z*pow(sin(y[2]),2)*y[1]*y[7] + beta*z*(z - 2*y[1])*y[8])/p +

(2*alpha*beta*z*pow(sin(y[2]),2)*y[1]*y[6]*y[10])/(p*y[11]))*

(-c3*y[9] + c1*y[11]))*(-(-d3*p3*y[10] + (d3*p2 - d2*p4)*y[11])*

((-C - E1 + c1*Q1 + c2*Q2 + c3*Q3)*y[11] -

c3*(- A + Q1*y[9] +Q2*y[10] +

Q3*y[11])) + (- c3*y[10] + c2*y[11])*((-p4*(-D + J1 + d1*Q1 + d2*Q2 + d3*Q4)

+

d3*(p1*Q1 + p2*Q2 + p3*Q3 + p4*Q4))*y[11] - d3*p3*(-A+Q1*y[9] +Q2*y[10]

+

Q3*y[11]))))/((-c3*y[10] + c2*y[11])*(-d3*p3*y[9] +

(d3*p1 - d1*p4)*y[11]) - (-c3 *y[9] + c1*y[11]) *

(-d3*p3*y[10] + (d3*p2 - d2*p4)*y[11]));

}

else if (idx == 11) {

return /*-((beta*q*(-D + J1 + d1*Q1 + d2*Q2 + d3*Q4)*

z*pow(sin(y[2]),2)*y[7])/(d3*p)) +

(beta*q*z*pow(sin(y[2]),2)*y[8]*

(- A + Q1*y[9] +Q2*y[10] + Q3*y[11]))/(p*y[11]) -

(1/p)*((2*alpha*beta*((pow(y[1],2)+pow(alpha,2))*psi +

2*z*pow(y[1],2))*pow(sin(y[2]),4)*y[5]*pow(y[7],2))/z -

(4*pow(alpha,3)*beta*q*cos(y[2])*pow(sin(y[2]),5)*

y[1]*y[6]*pow(y[7],2))/z +

(2*beta*pow(sin(y[2]),2)*(-psi*((pow(y[1],2)+pow(alpha,2)) +

pow(alpha,2)*pow(sin(y[2]),2)) +

z*(z - 2*y[1])*y[1])*y[5]*y[7]*y[8])/z +
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beta*q*z*sin(2*y[2])*y[6]*y[7]*y[8] +

(2*alpha*beta*psi*pow(sin(y[2]),2)*y[5]*pow(y[8],2))/z -

(2*alpha*beta*q*sin(2*y[2])*y[1]*y[6]*pow(y[8],2))/z +

(alpha*q*pow(sin(y[2]),4)*(pow(alpha,2)*psi + pow(y[1],2)*

(z + 2*pow(y[1],2)))*pow(y[7],2)*y[9])/pow(z,2) -

(q*pow(sin(y[2]),2)*(psi*((pow(y[1],2)+pow(alpha,2)) +

pow(alpha,2)*pow(sin(y[2]),2)) +

z *y[1]*(-z + 2*y[1]))*y[7]*y[8]*y[9])/pow(z,2) +

(alpha*psi*q*pow(sin(y[2]),2)*pow(y[8],2)*y[9])/pow(z,2) -

(2*pow(alpha,3)*q*cos(y[2])*pow(sin(y[2]),5)*y[1]*

pow(y[7],2)*y[10])/pow(z,2) +

(0.5*q*sin(2*y[2])*(pow(z,2) + 4*pow(alpha,2)*pow(sin(y[2]),2)*y[1])*

y[7]*y[8]*y[10])/pow(z,4) -

(alpha*q*sin(2*y[2])*y[1]*pow(y[8],2)*y[10])/pow(z,2) -

(alpha*pow(sin(y[2]),2)*(-2*pow(alpha,2)*pow(sin(y[2]),2)*

pow(y[1],2) - 4*pow(y[1],3) +

(pow(y[1],2)+pow(alpha,2))*(-z + 4*pow(y[1],2)))*

y[5]*y[7]*y[11])/(q*z) +

(2*pow(alpha,3)*cos(y[2])*pow(sin(y[2]),3)*y[1]*y[6]*y[7]*y[11])/z -

((pow((z - 2*y[1]),2)*y[1] + pow(alpha,2)*sin(y[2])*

(z - 2*pow(y[1],2)))*y[5]*y[8]*y[11])/(q*z) -

(pow(tan(y[2]),-1)*(z*(z - 2*y[1]) + 2*pow(alpha,2)*

pow(sin(y[2]),2)*y[1])*y[6]*y[8]*y[11])/z) +

(beta*q*z*pow(sin(y[2]),2)*(-d3*y[8]*y[10] + d2* y[7]* y[11])*

((-C - E1 + c1*Q1 + c2*Q2 + c3*Q3)*y[11] -

c3*(-A + Q1*y[9] +Q2*y[10] + Q3*y[11])))/

110



(d3*p*y[11]*(-c3*y[10] + c2*y[11])) +

(((beta*q*z*pow(sin(y[2]),2)*

(-d3*y[8]*y[9] + d1*y[7]*y[11]))/(d3*p*y[11]) -

(beta*q*z*pow(sin(y[2]),2)*(-c3*y[9] + c1*y[11])*

(-d3*y[8]*y[10] + d2*y[7]*y[11]))/

(d3*p*y[11]*(-c3*y[10] + c2*y[11])))*

(-(-d3*p3*y[10] + (d3*p2 - d2*p4)* y[11])*

((-C - E1 + c1*Q1 + c2*Q2 + c3*Q3)*y[11] -

c3*(-A + Q1*y[9] + Q2*y[10] + Q3*y[11])) +

(-c3*y[10] + c2*y[11])*

((-p4*(-D + J1 + d1*Q1 + d2*Q2 + d3*Q4) +

d3*(p1*Q1 + p2*Q2 + p3*Q3 + p4*Q4))*y[11] -

d3*p3*(-A + Q1*y[9] + Q2*y[10] + Q3*y[11]))))/

((-c3*y[10] + c2*y[11])*(-d3*p3*y[9] + (d3*p1 - d1*p4)*y[11]) -

(-c3*y[9] + c1*y[11])*(-d3*p3*y[10] + (d3*p2 - d2*p4)*y[11]))*/0.;

}
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