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Bogotá D.C., Colombia
24 de Noviembre de 2017





A todos los que hemos pasado por aqui.

I



Acknowledgements

First and foremost, I would like to thank my supervisor Raffaele Fazio. Through
his immense patience and dedicated guidance, I have been able to go beyond the
things I thought I could achieve by this point in my physics career. He has not only
been a wonderful teacher, opening to me the doors into the fascinating subject of
quantum field theory and scattering amplitudes, but he has also shown me how a
professional and, most of all, a man, must behave in order to succeed. For this and
more, I will be forever grateful to him.

I would also like to thank the PRISMA: cluster for excellence internship program
for providing me with the wonderful opportunity to work at the theoretical high
energy physics research group at Johannes Guttenberg Universität Mainz, through
which I was able to witness an environment completely devoted to fundamental
research that sparked even more my interest in the subject. Specially, I would li-
ke to express my gratitude to professor Stefan Weinzierl, who was my supervisor
throughout the internship and whose valuable advice and deep knowledge of the
subject allowed me to achieve some of the results of this thesis. Finally, I would
like to thank the students of the theoretical high energy physics group at Mainz
for making me feel welcome in the university, and specially Leonardo de la Cruz for
the various discussions about scattering amplitude and the occasional trip for drinks.

Finally, I would like to thank my family and friends who have shown me absolute
support through the journey I decided to take part on of getting a masters in physics.
Although they are far too many to mention name by name, I just want to say that
I would not be anything nearly close to the person I have become if they had not
been pushing me to go a little further in the way, when it seemed that I had hit a
wall on the road.

II



Abstract

Scattering amplitudes are one of the most important observables in perturbative
quantum field theory, because they allow for the calculation of cross-sections, which
are central to collision experiments. In this thesis, we perform a thorough review of
some of the modern method for the calculation of tree-level amplitudes, the leading
order contributions to the perturbative expansion of scattering amplitudes, focusing
on the gauge theories that make up the standard model of particle physics. We
will study methods for their calculation that overcome the issues and inefficiencies
of Feynman diagrams, focusing on the Cachazo-He-Yuan (CHY) formalism, which
provides closed formulas for tree amplitudes in arbitrary dimension as integrals over
n-punctured Riemann spheres localized on the solutions to a set of constraints that
relate the punctures over the Riemann spheres to the kinematic invariants of the
process, known as the scattering equations. We will introduce the CHY formalism
for pure Yang-Mills amplitudes, as well as one of its supersymmetric generaliza-
tions, the so-called maximally supersymmetric or N = 4 super Yang-Mills theory
(SYM). We will introduce the notion of basis amplitudes for Yang-Mills and Quan-
tum Chromodynamics (QCD), which are based on the idea of color decomposition,
the separation of color and kinematic degrees of freedom, and see how one can obtain
CHY representations for QCD amplitudes. We will use one of these representations,
given in terms of basis amplitudes, to derive soft theorems for the CHY integrand of
QCD, which is a first step into obtaining constraints on its mathematical structure.
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Resumen

Las amplitudes de dispersion representan algunos de los observables más impo-
rantes de la teoŕıa cuántica de campos perturbativa, puesto que estos permiten el
cálculo de las secciones eficaces, las cuales son centrales para los experimentos de
colisión. En esta tesis presentamos una revisión de algunos de los métodos moder-
nos para el cálculo de amplitudes a nivel árbol, las cuales constituyen la primera
contribución a la expansión perturbativa de las amplitudes, haciendo énfasis en el
caso de las teoŕıas de gauge a partir de las cuales el modelo estandar de la f́ısica
de part́ıculas está construido. Estudiaremos métodos que evitan los problemas e
ineficiencias de los diagramas de Feynman, enfocándonos en el formalismo Cachazo-
He-Yuan (CHY), el cual provee fórmulas cerradas para las amplitudes a nivel árbol
en dimensión arbitrary como integrales sobre esferas de Riemann con n punturas, lo-
calizadas en la solución de un conjunto de ecuaciones que relacionan dichas punturas
con el espacio de invariantes cinemáticos asociados al proces, las cuales son cono-
cidas como las ecuaciones de scattering. Haremos una introducción al formalismo
CHY para amplitudes en teoŕıas de Yang-Mills, aśı como una de sus generalizaciones
supersimétricas, conocida como supersimetŕıa maximal o śımplemente teoŕıa de su-
per Yang-Mills N = 4. Discutiremos la noción de las amplitudes base en Yang-Mills
y Cromodinámica Cuántica (QCD), la cual está basada en la idea de la descom-
posición de color, la cual representa una forma de separar los grados de libertad
cinemáticos de los grados de libertad de color, y veremos distintas alternativas para
obtener representations CHY para las amplitudes de QCD. Usaremos una de estas
representaciones, la cual estará dada en términos de amplitudes base, para obtener
teoremas de emisión infraroja sobre el integrando CHY de la QCD, lo cual representa
un primer paso en la obtención de restricciones sobre su estructura matemática.
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Introduction

Currently, at the Large Hadron Collider (LHC) at CERN, our knowledge of fun-
damental physics is being tested and possibly extended through particle collisions
occurring at ever-higher energy scales. This, in turn, produces experimental measure-
ments of higher accuracy, which demands the calculation of more precise theoretical
predictions. The key observable in these experiments often is the scattering cross
section, which brings information concerning the probability that a given process
will occur as function of the energy and momentum of the particles involved. More
precisely it amounts, in the so-called corpuscular or probabilistic definition [1], to the
probability that a given scattering process happens when there is only one-target
particle per unit surface. To obtain a cross-section in the framework of quantum
field theory, one needs first to compute a quantity known as the scattering ampli-
tude, which contains the information on the interactions that the colliding particles
undergo. We will first provide a definition of the scattering amplitudes in any inter-
acting field theory which, for example, can be specified either by a Lagrangian or a
Hamiltonian. In general, working with a Hamiltonian, it will have the structure

H = H0 +Hint (1.1)

where H0 denotes the free, non-interacting Hamiltonian and Hint contains the
interactions. Let the states |φn〉 = |p1...pn〉 represent the eigenstates of the free
Hamiltonian, which can be obtained from the free vacuum |0〉 by acting upon it
with creation operators, obtained from the quantization of the free classical theory.
We assume the interactions to be perturbations to the free theory and to be localized
to a particular region of space; when these conditions are satisfied, we can define the
so-called in and out, or asymptotic states, which are states with the property that
they behave as free states in the far past, t → −∞ and in the far future, t → ∞
respectively. However, these states do not in general behave as free states when
they are close to the region where the interaction occurs. Therefore, an arbitrary
in state |φ1〉in = |p1...pk〉in has a non-vanishing overlap with an out state out〈φ2| =

out〈pk+1...pn|1, which can be calculated as

P(φ1 → φ2) = out〈pk+1...pn|p1...pk〉in
= 〈pk+1...pn|S|p1...pk〉

(1.2)

1For simplicity, in writting the in and out states, we omit other possible degrees of freedom or
Lorentz indices, such as polarizations or helicities.
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where, in the second line, we have written the scalar product of the in and out
states in terms of the expectation value of an operator between two free states: the
operator S is known as the S-matrix, and for a general field theory can be defined
as

S = ĺım
t1→−∞
t2→∞

U(t2, t1) (1.3)

where U(t2, t1) is the time-evolution operator in the Dirac interaction picture,

U(t2, t1) = eiH0t2e−iH(t2−t1)e−iH0t1 = T exp

(
−i
∫ t1

t2

dtHint(t)

)
(1.4)

Here, T denotes a time-ordering operator. Since the transition probability P(φ1 →
φ2) is calculated as an expectation value between two free states, there can be the
case where no interactions happens. Then, we can write the S-matrix as

S = 1 + iT (1.5)

where T is known as the transfer matrix, and contains all the information on the
interaction. Moreover, the matrix elements of S (or T) should reflect the conservation
of the total four-momenta. Then, we can define the invariant Feynman amplitude,
or simply the scattering amplitude An, through the relation

〈pk+1...pn|iT |p1...pk〉 = (2π)DδD

(
k∑
i=1

pi −
n∑

j=k+1

pj

)
iAn(φ1 → φ2) (1.6)

where we have assumed a D dimensional spacetime, with metric

gµν = diag(1,−1,−1, ...), (1.7)

and all the labels as the momenta, polarizations and helicities are assumed to
be contained in φ1 and φ2. It is the objects An(φ1 → φ2) which we will study
throughout this thesis. In the particular case of 2→ (n− 2) particle scattering, one
can calculate the differential cross-section from the knowledge of the amplitude as
[2]

dσ =
1

2EAEB|vA − vB|

(∏
f

dD−1pf
(2π)D−1

1

2Ef

)
×

|An(A,B → {pf})|2(2π)DδD(pA + pB −
∑
f

pf )

(1.8)

which allow us to connect the scattering amplitudes to the observables of a co-
llision process, and which underpin the relevance of the calculation of amplitudes.

Scattering amplitudes enjoy the so-called crossing symmetry, which is the sta-
tement that a particle with momentum p in the initial state can be interpreted as
an antiparticle with momentum −p.Hence, we can consider that all particles are
outgoing and simply define the n-point amplitudes
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An = An(p1, ..., pn) ≡ An(p) (1.9)

denoting with p the complete set of n on-shell momenta on which the amplitudes
depend.

The idea that the interactions contained in Hint are perturbations to the free
dynamics governed by H0 means that the scattering amplitudes must be calculated
as a perturbative expansion, usually in the coupling constants of the theory, which
we assume to be small. Hence, an n-point scattering amplitude can be arranged
schematically as

An(p) =
∑
L

ALn(p) (1.10)

where, if we assume that the theory under consideration has a single coupling

constant g, roughly AL+1
n

ALn
∼ g. We refer to ALn as the L-loop contribution to the

amplitude. In this thesis, we will be interested in the structure of the leading contri-
butions, known as tree-level amplitudes. To a fixed loop order, the amplitudes are
also organized by the number of external amplitudes, which is known as the multi-
plicity. In this study, we will be interested in the properties of tree-level amplitudes
with arbitrary multiplicity.

The theoretical framework used for the description of the all known elemen-
tary particles and their electromagnetic, weak and strong nuclear interactions is the
Standard Model (SM), a gauge theory based on the group SU(3) × SU(2) × U(1).
However, events at the LHC are dominated by Quantum Chromodynamics (QCD)
interactions because the kinematic regimes involved in proton-proton collision imply
that LHC works largely as a gluon-gluon collider.The dynamics of gluons and quarks
is regulated by interactions with a non-abelian SU(3) gauge quantum field theory.
In order to separate the SM signals and possibly new physics, beyond SM, a highly
precise prediction of the QCD signals is required. There are large simplifications by
computing amplitudes for an arbitrary SU(N) gauge group and evaluate at the end
the results at N = 3.

In the last 30 years, there has been considerable work on the calculation of QCD
perturbative scattering amplitudes. The traditional approach of Feynman diagrams,
based on the locality of the interactions in a Lagrangian formulation, is not always
efficient specially for processes where the number of diagrams grow quickly with
number of external legs and at higher perturbative orders. As an example, consider
gluon scattering at tree level. We would have to compute

gggg 4 diagrams
ggggg 25 diagrams

gggggg 220 diagrams

to obtain the amplitude. Furthermore, to obtain the cross section, we have to
square the sum; in the 5 gluon case, this yields (25)2 = 625 terms. For the 6 gluon
case, this is (220)2 = 48400 terms. However, most of these terms cancel and the sum
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turns out to be a relatively simple result. As an example, the spin averaged sum of
squared amplitudes for four gluon scattering in Yang-Mills is given by

1

4

∑
|A4|2 ∝

(
3− st

u2
− su

t2
− tu

s2

)
(1.11)

where s, t, u denote the usual Mandelstam variables for a 2 → 2 process. This
hints at the fact that amplitudes have a simpler, inherent structure than the one
suggested by Feynman diagrams. It is one of our goals to show that this is in fact
the case.

Doing a procedure known as color decomposition, one can separate the gauge
group structure from the kinematic information of an arbitrary SU(N) amplitude,
obtaining kinematic objects which are known in the literature as color ordered am-
plitudes. One of the benefits of this decomposition is that the number of diagrams
contributing to an n-gluon tree primitive amplitude is reduced with respect to the
original, color-dressed amplitude. In [3], it is shown that the number of diagrams for
a given n is

n 3 4 5 6 7 ...
# diagrams 1 3 10 38 154 ...

In general, the number of trivalent graphs2 that contribute to the n-gluon tree
amplitude is counted by the Catalan numbers, Cn which are given by

Cn =
n∏
k=2

n+ k

n
. (1.12)

Evidently, the procedure of summing over Feynman diagrams becomes inefficient
beyond low multiplicity. Moreover, as seen for example in the analysis by the CMS
collaboration in [4], multileg amplitudes in Yang-Mills theories and QCD are of
phenomenological relevance because they provide a large portion of the background
against which to compare the data obtained at a particle accelerator, such as the
LHC, in order to distinguish missing information from possible new physics, such as
supersymmetry.

In this thesis, we review different formalisms that surpass the need for Feynman
diagrams and which allow for the calculation of amplitudes based on very thorough
analyses of the physical properties of amplitudes, which are imposed by Lorentz
invariance and locality (relativity), as well as unitarity (quantum mechanics). The-
refore, in a sense, one can arrive at the conclusion that scattering amplitudes provide
the prime example of the need to unify special relativity and quantum mechanics in
order to describe the interactions of fundamental particles. We focus particularly in
the so-called Cachazo-He-Yuan (CHY) formalism, which, in a nutshell, allows one to
obtain closed-form formulas for tree amplitudes of arbitrary multiplicity and in any
number of spacetime dimensions as complex multivariate contour integrals localized
to the solution of a set of algebraic so-called scattering equations. We study the
problem of the CHY formula for QCD primitive amplitudes, whose properties still

2By trivalent graphs, we mean Feynman diagrams that contain only three-gluon vertices.
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represent an open research problem, focusing particularly on its soft limit proper-
ties, for which we provide a new, original result concerning the factorization on soft
limits of the CHY integrand (to be defined in Chapters 4 and 6) for a particular set
of QCD primitive amplitudes with arbitrary number of gluons and up to 2 quark-
antiquark pairs.

As a starting step, we do a very general review of the properties of tree-level am-
plitudes in gauge theories. We introduce the notion of color decomposition [5], and
focus on the study of the color ordered amplitudes. In particular, we will specialize
to the so-called primitive amplitude, which are a subset of the color-ordered ampli-
tudes which are invariant under a cyclic permutation of the external legs. We will see
that color-ordered amplitudes in pure Yang-Mills theories automatically satisfy this
property, and that one begins to find color-ordered amplitudes which are not pri-
mitive when considering multiquark amplitudes. We then discuss the spinor-helicity
formalism in four dimensions, which gives us a set of variables in which amplitudes
take simpler expressions than those in terms of the momenta and polarizations, ex-
ploiting the fact that the vector representation of the Lorentz group is isomorphic to
the bispinor representation. We will see how SL(2,C) invariant contractions of the
helicity spinors allow us to write the different kinematic invariant of the scattering
process, and introduce an explicit formula for n-point tree level scattering amplitu-
des with a particular set of of helicities: the so-called maximally helicity violating
(MHV) amplitudes[6]. We also analyse the behaviour of gauge theory amplitudes
in soft limits, which occur when a gluon is emitted with a momentum very small
with respect to the momentum of the other particles in the scattering process, which
leads to Weinberg’s soft theorem[7], [8]. Afterwards, we review one of the most ef-
ficient methods for the analytic computation of tree-amplitudes, known as on-shell
recursion. By using Lorentz invariance, we will see that one can completely fix the
kinematic dependence of amplitudes with three external particles. Since these vanish
for physical, massless momenta, we introduce the notion of complex valued momen-
ta. We will see that this allows one to have non-vanishing three point amplitudes
where the on-shell conditions and momentum conservation are still satisfied. Later,
we will see how unitarity and locality determine the singularity structure of tree
amplitudes to come only in the form of simple poles that occur when a propagator
goes on-shell, and that the residues in these poles can be written as the product
of lower multiplicity amplitudes. Combining these results will allow us to obtain
the Britto-Cachazo-Feng-Witten (BCFW)[9] recursion relations, which express an
n-point tree amplitude in gauge theories in terms of lower point amplitudes by intro-
ducing a complex deformation of the external momenta and calculating a contour
integral whose residues coincide exactly with those of the physical amplitudes at
their poles, which is a consequence of Weinberg’s polology theorem [10] applied to
the deformed amplitude. Finally, we discuss the supersymmetric generalization of
gauge theories, focusing on the maximally supersymmetric Yang-Mills theory, or
N = 4 SYM. We will review the superfield and superamplitude formalism, as well
as the supersymmetric Ward identities and discuss the effective supersymmetry of
tree-level QCD amplitudes with massless quarks.

Moving on to Chapter 3, we introduce the so-called scattering equations, which
are at the heart of the Cachazo-He-Yuan (CHY) formalism, which was mainly de-
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veloped in the work by Cachazo et al in [11],[12],[13],[14] and [15]. These equations
will be at the center of the rest of this thesis, since their importance lies in the fact
that they provide an alternative way to define and calculate scattering amplitudes;
this occurs because the scattering equations provide a map from momentum space
to n-punctured Riemann spheres, in a way such that all the information on the ki-
nematic singularities of amplitudes can be understood through the deformation of
these Riemann surfaces, and the knowledge of the behaviour of these singularities
can be used to completely determine the tree amplitudes in a variety of theories,
such as Yang-Mills theories and Einstein gravity. We will analyse some of the details
of this mapping, and provide the various forms of the scattering equations, both
for massless and massive particles, as well as their reduction to four dimensions
in terms of helicity spinors. We will see that the scattering equations possess the
particular property of decoupling in kinematic limits which coincide with the poles
of tree-amplitudes. This provides an indication at the fact that amplitudes can be
written as formulas localized on their solutions. This observation naturally leads us
to the problem of solving the scattering equations; first, we will see that they can
be transformed from a set of rational equations to a set of polynomial equations
[16], and we will use both forms to obtain some solutions for particular numbers of
external particles. We finish the chapter by making a brief review of the approaches
to their solution for arbitrary number of external particles.

In Chapter 4, we introduce the CHY formalism for massless particles. First, we
will see how to define integrals localized on the solutions to the scattering equations,
which gives the CHY representation of a tree-level amplitude. These are closed for-
mulas which give the tree amplitudes of a theory with arbitrary multiplicity. One
striking feature of this representation is that it follows from Lorentz invariance and
kinematic constraints, and does not require the specification of any particular La-
grangian. This fact might lead to a formulation of quantum field theory where the
building blocks are the amplitudes, not the Lagrangians. We will discuss the form
of the integrand that gives pure Yang-Mills theory amplitudes and see how it can
be related to amplitudes in perturbative quantum gravity and scalar φ3 theory. We
proceed by reviewing one of the various methods for the calculation of the inte-
grands that appear in the CHY representation, which is based on interpreting them
as multidimensional contour integrals [17][18] and the amplitudes themselves as the
global residue of the integrand with respect to the polynomial scattering equations.
We compute a couple of examples using the CHY integrals, and provide a list of
the different methods which have been introduced in the literature. We close the
discussion of CHY representation by introducing the so-called connected formalism.
This formalism is based on the ideas of Witten, whom in [19] argued that the tree
superamplitudes of N = 4 SYM can be calculated as the scattering amplitudes
of a so-called twistor string theory whose target space is a Calabi-Yau superma-
nifold. These ideas led to the development of the Roiban-Spradlin-Volovich (RSV)
formula[20], and we discuss its connection to the CHY formalism in four dimensions.

Color-decomposition can be understood as process in which one expands a tree-
level amplitude in gauge theory in terms of basis amplitudes, with the special pro-
perty that they do not depend on the color degrees of freedom of the theory. Chapter
5 provides a general discussion of this idea and how to reduce this basis to a minimal
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set of linearly independent primitive amplitudes. First, we see that color decompo-
sition implies the existence of linear relations between primitive amplitudes with
different external orderings, known as the U(1) decoupling identity and the Kleiss-
Kuijf (KK) relations[21]. The origin of these relations is purely group-theoretical,
and does not depend on the kinematics of the process. Afterwards, we introduce the
Bern-Carrasco-Johansson relations [22], which are a consequence of a very special
property of gauge theory amplitudes, known as color-kinematics duality. Basically,
color-kinematics duality is the assertion that one can always write gauge theory am-
plitudes in way such that their kinematic numerators satisfy Jacobi-like relations,
which are dual to the corresponding relations of color factors. Assuming the duality
to hold results in further linear relations between primitive amplitudes, that howe-
ver, are kinematic in nature. We review a proof of a special kind of these relations,
known as the fundamental BCJ relations [23], for amplitudes that include quarks and
give a formula for the general BCJ identities. Having discussed the various relations
between gauge theory primitive amplitudes, we construct the minimal basis of pri-
mitive QCD amplitudes in the notation of words and shuffle algebras, which provide
a compact way to account for the external orderings of amplitudes. We will see that
multiquark amplitudes need other identities, known as no-crossed lines relations,
which state that primitive amplitudes with crossed fermion lines vanish. Finally, we
briefly study how Yang-Mills theory amplitudes can be used to obtain tree amplitu-
des in perturbative quantum gravity by the usage of the Kawai-Lewellen-Tye (KLT)
relations [24], and discuss how these relations are reflected in the CHY formalism.

Chapter 6 is devoted to the study of the proposals of CHY representations for
amplitudes with quarks in QCD, which is still an open problem. Although a pres-
cription for the CHY representation for pure Yang-Mills theory which captures all
the property of gluon amplitudes exists, there is, to this date and to the best of the
authors’ knowledge, no known closed-form formula for the integrand which would
allow for the calculation of amplitudes with fermions within the CHY formalism.
However, it is possible to prove that, given the existence of a minimal basis of QCD
primitive amplitudes, there must exist a pair of integrands whose product, integra-
ted on the support of the scattering equations, allow one to obtain QCD primitive
amplitudes. This proof, developed in the work by Weinzierl, De La Cruz and Kniss
[25] [26], is performed by formally evaluating the CHY integral, so that any am-
plitude is written as a linear expansion of integrands evaluated at the inequivalent
solutions to the scattering equations. Interpreting this expansion in terms of vec-
tors and matrices, it is shown that the existence of a CHY representation for QCD
primitive amplitudes is equivalent to being able to invert the linear expansion to
obtain one of the integrands in terms of the basis amplitudes. We will perform this
procedure explicitly when the number of quark-antiquark lines, nq, satisfies nq ≤ 2.
For arbitrary number of quarks, we will see that it is still possible to invert the
matrix equation relating the primitive amplitudes to the CHY integrands, if one
assumes that the matrix that gives the general BCJ identities (which is not a square
matrix) has full row rank. Afterwards, we perform an analytic calculation of the BCJ
matrix for the case of six massless quarks, and show that it does have full rank by
calculating the determinant of the square matrix constructed from multiplying the
BCJ matrix by its transpose. On the other hand, we discuss the usage of the connec-
ted formalism of N = 4 SYM to obtain connected formulas for QCD color-ordered
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amplitudes with massless quarks[27]. This is possible because, as first discovered in
[28], tree-level color-ordered QCD amplitudes with massless quarks can be written as
linear combinations of N = 4 SYM gluon-gluino amplitudes, and these in turn can
be obtained from the connected formula for the superamplitudes. This procedure
provides us with explicit integrands for QCD, and we can regard them as CHY re-
presentations for massless QCD in four dimensions. We then give a brief comparison
of both approaches, emphasizing on both their virtues and their possible drawbacks.

The last chapter of this thesis treats the subject of soft theorems within the fra-
mework of the CHY formalism. Soft factorization theorems in gauge theories are of
central importance because they are a consequence of gauge and Lorentz invariance,
and their existence is a reflection of these properties on the scattering amplitudes.
We will first derive the leading soft limits for scalar φ3 and Yang-Mills theories [13],
by using their explicit CHY representations. Afterwards, we discuss in detail the
main contribution of this thesis given to the problem of the CHY representation for
QCD, which is also an original result of our work: with the knowledge that the CHY
integrand for QCD primitive amplitudes with nq ≤ 2 can be expanded in terms
of the basis primitive amplitudes, we will show that, in the limit when a gluon is
emitted with a soft momenta, the integrand also factorizes into the integrand for the
original particles without the soft gluon, times an eikonal factor. The existence of
such a factorization theorem can be understood as a constraint on the possible form
that the CHY integrand for QCD with this different particle contents can take. We
also check that one recovers the soft theorem for amplitudes by integrating the soft
factor of the integrand over the puncture associated with the soft momenta, which
shows the self-consistency of our calculation.

We finish our discussion by drawing our conclusions, and discussing both the
possible generalizations of our results and some of the open problems related to the
CHY representation.



Tree amplitudes in gauge theories

In this chapter, we introduce methods for the calculation of tree-level amplitudes
in gauge theories in four dimensions, as well as some of their physical properties. For
a review of some of the topics treated in this chapter, we refer the reader to [29],[30].

We will start discussing the basic concepts of gauge theory amplitudes based on
Lie groups, as well as the coupling of gauge bosons to fermions. This will lead us to
the concept of color decomposition, a process that allow us to separate the gauge
group information from the kinematic degrees of freedom of the amplitudes. We
will give examples of this process and discuss the resulting kinematic objects, the
so-called primitive amplitudes, on which we will be focused throughout this thesis.

Focusing on the special properties of the Lorentz group in four dimensions we
arrive at the spinor-helicity formalism, which are variables that encode more natu-
rally the kinematic dependence of amplitudes than the usual four-momentum varia-
bles. We will see how to write the wavefunctions for either gauge bosons or fermions
in terms of these spinor products, and how they allow to obtain compact expressions
for scattering amplitudes. Further consideration of the properties of gauge theory
amplitudes will allow us to obtain the behaviour of a general amplitude in which a
gluon is emitted with momenta Pµ → 0, known as soft limits.

Then, we will see that Lorentz invariance fixes the kinematic dependence of all
three-point amplitudes in any theory of massless particles; this will also introduce
the need for complex-valued momenta in order for these three-particle amplitudes
to be non-vanishing. We will then see how the general properties of the S-matrix
determine the analytic structure of the scattering amplitudes by determining their
possible singularities: in the case of tree amplitude, these will only be single poles,
and their residues at these poles will have the form of products of lower multiplicity
amplitudes. The knowledge of this factorization properties will allow us to calcu-
late any tree-level n-point primitive amplitude in gauge theory by the use of the
so-called Britto-Cachazo-Feng-Witten (BCFW) recursion relations. This recursion
is based on a complex deformation of the external momenta, which then allows to
express the amplitude only in terms of its residues. Since these residues are given
by the product of lower-point amplitudes as a consequence of the unitarity of the
S-matrix, we will be able to calculate tree amplitudes with n external particles by
the knowledge of lower multiplicity tree amplitudes. This process can then be itera-

10



11

ted, so that fixing the three-point amplitudes provides a seed for the recursion: this
means that the physical properties of amplitudes completely fixes their values, inde-
pendent of the particular form that the Lagrangian describing the theory might have.

Finally, the N = 1 and N = 4 supersymmetric extensions of gauge theories
are briefly discussed. The focus will be on the special relations that supersymmetry
impose on the scattering amplitudes, the so-called supersymmetry Ward identities,
and on the on-shell superspace formalism of N = 4 super Yang-Mills theory, which
leads naturally to the concept of superamplitudes.

2.1. Basic concepts of gauge theory amplitudes

Yang-Mills theory are the non-Abelian gauge field theories which describes the
self-interaction of gauge bosons. Besides of Lorentz invariance, these theories enjoy
a local, continuous group of symmetries, known as gauge transformations. These
symmetries are based on semi-simple Lie groups. A Lie algebra is specified through
the commutation relations of the group generators, ta, as

[ta, tb] = ifabctc (2.1)

where fabc is a set of numbers known as the structure constants of the gauge
group. They can always be taken to be completely antisymmetric in the indices
a, b, c. An important property of the structure constants is that they satisfy the
Jacobi identity

fabdfdce + f bcdfdae + f cadfdbe = 0 (2.2)

For most applications in particle phenomenology, the gauge group is taken to
be SU(N) for some integer N , whose self-representations can be given in terms
of N × N unitary matrices with unit determinant. One can also couple the gauge
bosons to matter fields, like fermions or scalars, and each of the different states of
the theory will transform according to some representation of the gauge group. For
example, the external states of a given amplitude in QCD fill out two irreducible re-
presentations of the gauge group SU(N); the gauge bosons transform in the adjoint
representation, with indices a, b, c... that take values on the set {1, 2, ..., N2−1}. The
(anti)quarks transform in the (anti)fundamental representation, with indices i, j...
and i, j... , respectively, that take values on the set {1, 2, ...N}. We will be mainly
interested in the interactions between gauge bosons and fermions. We will use the
terms ”gauge boson” and ”gluon” interchangeably, and we will refer to fermions
transforming in the fundamental representation of the gauge group as quarks. Even
though this applies, strictly speaking, to the gauge group SU(3) of the strong inter-
actions in the Standard Model, we will use this terminology throughout this thesis.
For completeness, the Feynman rules for QCD are shown in Fig.2.1.

A couple of observations are in order. From a practical point of view, Feynman
rules and Feynman diagrams will serve as an illustration of the structure of simple
amplitudes to derive some of their properties. However, we will see that there are
more efficient methods to perform the calculation of a particular amplitude. Much
more important is that the methods we will develop are based on the physical and
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Fig. 2.1: Feynman rules for QCD

mathematical properties of scattering amplitudes, such as Lorentz invariance, lo-
cality and unitarity. The fact that many simplifications which are obscured by the
usual Lagrangian formalism arise by emphasizing the most basic properties an am-
plitude is expected to satisfy provides us with an indication that, perhaps, quantum
field theory can be reformulated in such a way that the space-time properties, such
as operator-valued distributions interacting locally (that is, field interactions) can
appear as emergent rather than manifest properties.

Following the convention of taking all the particles in an amplitude to be in the
final state, instead of talking of the amplitude for the annihilation of a pair of gluons
into a quark-antiquark pair, for example, we will talk about the four point amplitu-
de with two gluons and a quark-antiquark pair. This, of course, implies that some
particles will have negative energy. However, there is no problem with this techni-
cality, and we can obtain the physical amplitudes by crossing symmetry to recover
the initial states. One consequence of this convention is that, using Feynman rules,
one usually attaches a polarization vector to an initial state gluon and the complex
conjugate to a final state gluon. When talking about polarization vectors, we will
simply drop the complex conjugate with the understanding that it refers to a final
state gluon.

A basic property of Yang-Mills or QCD amplitudes (to any order in perturbation
theory) is gauge invariance, which manifests itself in the form of the so-called Ward
identity: suppose we are given an n-point amplitude, in which one of the external
particles is a gluon. Then, the amplitude can be written schematically as

AYMn = εµ(k)Aµn (2.3)

where k denotes the four momentum of the gluon we singled out. Gauge inva-
riance is then the statement that, if we replace the polarization vector εµ(k) with
its corresponding four-momentum, the result should vanish; that is,
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An = εµ(k)Aµn → kµA
µ
n = 0 (2.4)

A particularly interesting use of gauge invariance is as a consistency check: if one
is given a function of momenta and polarizations which is a gauge theory amplitude,
it should be possible to verify directly that replacing any polarization vector with
its corresponding momenta should yield a vanishing result. This will be one of the
consistency checks we will perform when we study the CHY representation of Yang-
Mills amplitudes.

2.2. Color ordered amplitudes

Using Feynman rules we can obtain, in principle, any QCD tree-level (or loop)
amplitude by constructing all possible diagrams contributing to the scattering pro-
cess, assigning each line its value through the Feynman rules, and summing those
expressions. However, as we have already mentioned, the number of diagrams con-
tributing to a single process, even at tree level, grows quickly with the number of
external legs. Moreover, since each diagram is a gauge-dependent quantity built out
of off-shell objects, as propagators, calculations become rapidly cumbersome and
involve a big amount of unphysical information, whose manifestation is to include a
huge number of terms which do not explicitly cancel but that drops out in the final
result.

Another issue is that gauge theory amplitudes have many degrees of freedom:
not only do they depend on the kinematics, but they also contain information on
the gauge group. One way to simplify this problem is to arrange the diagrams
contributing to a given matrix element into a smaller subset of quantities which are
gauge-invariant. This can be achieved through the process of color decomposition.
As a first step, we define a new set of generators T a, normalized to

Tr(T aT b) = δab (2.5)

which are related to the generators ta of the previous paragraph by a simple res-
caling, T a =

√
2ta. With this normalization, the structure constants can be written

as

fabc = − i√
2
Tr
(
[T a, T b]T c

)
(2.6)

With our choice, the amplitudes will have explicit factors of 1/
√

2 when directly
applying the Feynman rules. The generators T a satisfy the completeness relation

(T a)
j1
i1

(T a)
j2
i2

= δ
j2
i1
δ
j1
i2
− 1

N
δ
j1
i1
δ
j2
i2

(2.7)

which is nothing more than the statement that the matrices T a form a basis for
N × N traceless matrices. A proof of this statement can be found in Appendix A.
We can illustrate the process of color decomposition using the completeness relation
of the generators. As a simple example, consider the four gluon amplitude. The four
diagrams contributing to this process are shown in Fig. 2.2.
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Fig. 2.2: Feynman diagrams contributing to the process 0→ gggg. The labels atta-
ched to each line indicate the ordering of the external particles.

As is usual in four particle scattering, we label the diagrams with propagators as
the s, t and u channel diagrams, according to the Mandelstam invariant appearing
in its denominator. In Yang-Mills theory, one can associate a different color factor
to each channel, and we can use this to label each diagram. These can be written
schematically as

D1 = csKs (2.8)

D2 = ctKt (2.9)

D3 = cuKu (2.10)

D4 = csK
′
s + ctK

′
t + cuK

′
u (2.11)

where Ki, K
′
i contain all the kinematic information of the diagram Di, and the

color factors cs, ct, cu are defined as

cs = fa1a2bf ba3a4 (2.12)

ct = fa1a3bf ba4a2 (2.13)

cu = fa1a4bf ba2a3 (2.14)

where ai is the adjoint color index of gluon i. A consequence of the completeness
relation (2.7) is that, for any N ×N matrices A and B,

Tr(T aA)Tr(T aB) = Tr(AB)− 1

N
Tr(A)Tr(B) (2.15)

which we can use, along with the definition of the structure constants, to write
a general expression of the form fabef cde = fabef ecd as a sum of generator traces

fabef ecd = Tr([T a, T b]T e)Tr([T c, T d]T e)

= Tr(T aT bT cT d)− Tr(T aT bT dT c)− Tr(T aT cT dT b) + Tr(T aT dT cT b)
(2.16)

Writing the color factors cs, ct, cu in terms of traces and grouping kinematic terms
with the same trace factor, we can write the 4-gluon amplitude as

AYM4 (gggg) = A4(1234)Tr(T a1T a2T a3T a4) + A4(1243)Tr(T a1T a2T a4T a3)

+ A4(1324)Tr(T a1T a3T a2T a4) + A4(1342)Tr(T a1T a3T a4T a2)

+ A(1423)Tr(T a1T a4T a2T a3) + A(1432)Tr(T a1T a4T a3T a2)

=
∑

σ∈S4/Z4

Tr(T σ(a1)T σ(a2)T σ(a3)T σ(a4))A4(σ(1), σ(2), σ(3), σ(4))

(2.17)
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where S4/Z4 is the set of non-cyclic permutations of four objects. The quanti-
ties A4(σ), for some permutation σ, are known as color-ordered amplitudes. These
amplitudes contain all the kinematic information of the full, or color-dressed, ampli-
tude A4. Now, the color-dressed amplitude is a gauge-invariant object, in the sense
of (2.4). Since this is clearly a kinematic statement, this information cannot be ca-
rried by the color factor, and the color-ordered amplitude must have some special
property that makes the full amplitude gauge-invariant. In fact, if we let {σ} and
{σ′} denote two permutation of the gluon color indices, the traces satisfy the partial
orthogonality [[31]],

N2−1∑
ai=1

Tr(T σ1 ...T σn)
[
Tr(T σ

′
1 ...T σ

′
n)
]∗

= Nn−2(N2 − 1)
(
δ{σ}{σ′} +O(N−2)

)
(2.18)

where the Kronecker delta is equal to 1 when both permutations are the same, up
to cyclic permutations. This orthogonality is sufficient to guarantee that each partial
amplitude is a gauge-invariant quantity. In fact, each color-ordered amplitude can be
computed from the full amplitude by projection using the orthogonality of the traces.

This so-called trace decomposition can be generalized to color-dressed n-gluon
tree level amplitudes as

AYMn =
∑

σ∈Sn/Zn

Tr(T σ(a1)T σ(a2) · · ·T σ(an))An(σ(1), σ(2), · · · , σ(n)) (2.19)

in terms of primitive amplitudes An(σ(1), σ(2), · · · , σ(n)). The number of pri-
mitive amplitudes appearing in the sum (2.19) is (n− 1)!, which is nothing but the
number of permutations of (n− 1) elements. In a sense, color decomposition provi-
des an expansion of a gauge theory amplitude in which the basis elements are the
color-ordered amplitudes and the coefficients carry all the gauge group information.

The procedure of color decomposition allows us to put the information on the
gauge group aside and focus on the kinematic properties of the amplitudes, which
as we will see, can be calculated by a careful analysis of their physical properties.
However, primitive amplitudes, in a sense, ”remember” that they belong to a theory
with gauge symmetry: this is translated into the appearance of different linear re-
lations between them. For example, the partial amplitudes in the expansion (2.19)
satisfy a set of group-theoretical linear constraints, known as Kleiss Kuijf (KK) rela-
tions [21], which allow to write some partial amplitudes as a linear combinations of
other partial amplitudes with different external orderings. These relations make the
trace basis of amplitudes overcomplete; a decomposition which explicitly uses the
KK-independent amplitudes as a basis, using structure constants as color factors,
as well as further ways to reduce the amplitude basis will be discussed further in
chapter 5.

One can also consider a gauge theory in which the fermions transform in the
adjoint representation (one example of this will be given when we discuss supersym-
metric gauge theories). In this case, the color decomposition for an n-point amplitude
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with 2nf fermions and n−2nf is still given in terms of traces, as in Eq.(2.19). In this
case, there is no fundamental difference between the color structure of amplitudes
with fermions with those of pure Yang-Mills theory.

Along the same lines, one can make color decompositions for QCD amplitudes
including quarks. However, for an arbitrary number of quarks, the decomposition
cannot be given in terms of a single color structure, because the 1/N term in the
completeness relation do not drop out, as it does for pure gluon amplitudes 1. For
example, if we consider the process qq → (n−2)g, the full tree amplitude can written
as [5]

An,1 =
∑

σ∈Sn−2

(T σ1 ...T σn−2)ij A (q, σ, q) (2.20)

where i is the color index of the quark q and j the color index of the antiquark
q. For a higher number of quark-antiquark pairs, there are also color decomposi-
tions. These do not, in general, have the same properties that the above primitive
amplitudes2. The amplitudes appearing in a general color decomposition for QCD
are known as partial amplitudes.

To illustrate the difference between primitive and partial amplitudes, we will
explicitly work out the color decomposition for the A5(q1q̄2q3q̄4g) amplitude, where
the quark q1 and the antiquark q̄2 have the same flavour, q3 and q̄4 also have the
same flavour, but the flavours of 1 and 2 are different from the flavours of 3 and
4, and g is a gluon. For this example, we will use the standard Feynman diagram
expansion. To do this, we will extract the color structure of the Feynman diagrams
contributing to the amplitude and leave the kinematic dependence implicit. There
are five diagrams at tree level, which are shown in Fig. 2.3.

Consider the first diagram shown in Fig. 2.3. Denoting this diagram by F1, it
will have the general structure

F1 = c1D1 (2.21)

where c1 contains all color factors and D1 holds the kinematic information. Using
the Feynman rules of Fig. 2.1, modified to our convention for the generators and the
completeness relation (2.7), we can write

c1 = T a5i1jT
a
jj2
T ai3j4

= T a5i1j4δi3j2 −
1

N
T a5i1j2δi3j4

(2.22)

where a5 is the color of the external gluon, i1, i3 the colors of the quarks q1, q3 and
j2, j4 the colors of the antiquarks q̄2, q̄4, respectively (a sum over repeated indices
is understood in all cases). A similar computation yields the color factors for the
remaining diagrams where the gluon is emitted from a quark line. The results are

1Which occurs because the photon associated to the U(1) generator has Abelian dynamics
2In particular, they are not cyclic invariant because of the second term in (2.7)).
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Fig. 2.3: Feynman diagrams for the four quarks plus one gluon amplitude



18

c2 = T a5i3j2δi1j4 −
1

N
T a5i1j2δi3j4

c3 = T a5i3j2δi1j4 −
1

N
T a5i3j4δi1j2

c4 = T a5i1j4δi3j2 −
1

N
T a5i3j4δi1j2

(2.23)

Now, we consider the center diagram, in which we find a three gluon vertex.
Again, we call this diagram F5 = c5D5, where c5 is its color factor. The calculation
is a little more involved in this case, since it includes a contracted structure constant.
Using (2.6), we can see that

c5 = T ai1j2f
aba5T bi3j4

= T ai1j2T
b
i3j4

[
− i√

2
Tr
(
T aT bT 5 − T aT a5T b

)]
= − i√

2
(c5;1 − c5;2)

(2.24)

where, after some color algebra,

c5;1 = T ai1j2T
b
i3j4
Tr
(
T aT bT a5

)
= T a5i3j2δi1j4 −

1

N
T a5i1j2δi3j4 −

1

N
T a5i3j4δi1j2

(2.25)

and

c5;2 = T ai1j2T
b
i3j4
Tr
(
T aT a5T b

)
= T a5i1j4δi3j2 −

1

N
T a5i1j2δi3j4 −

1

N
T a5i3j4δi1j2

(2.26)

therefore, when we compute the difference c5;1 − c5;2, the 1/N terms will cancel
in pairs, and the color structure for this diagram is

c5 = − i√
2

(
T a5i3j2δi1j4 − T

a5
i1j4
δi3j2

)
=

i√
2

(
T a5i1j4δi3j2 − T

a5
i3j2
δi1j4

) (2.27)

The structure of all these color factors is the product of a matrix element of
the generator times a quark color Kronecker delta. Thus, we can factorize each of
these color factors, which will yield an expansion of A5(q1q̄2q3q̄4g) in terms of color
factors time kinematic factors; this is the color decomposition we are looking for. As
we anticipated, we will obtain two color structures, where one will have an explicit
1/N factor. In the case of primitive amplitudes, we only expect one color structure
to appear at tree level, which in this case is the one associated to the leading (in
1/N) term. Moreover, the partial amplitudes obtained by this method are not cyclic
invariant, as we will verify by explicit computation in Appendix D. Schematically,
we can write the color decomposition as

A5(q1q̄2q3q̄4g) =
∑
i

aiAi −
1

N

∑
i

ãiÃi (2.28)
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where we define

a1 = T a5i1j4δi3j2

a2 = T a5i3j2δi1j4

ã1 = T a5i1j2δi3j4

ã2 = T a5i3j4δi1j2

(2.29)

the reason for the additional term, proportional to 1/N , is because the U(1)
generator (related to the 1/N term in the completeness relation (2.7)) cannot be
ignored, as opposed to the pure gluon case where the structure constants associated
to a U(1) gluon are identically zero, and the color factors of gluon amplitudes are
built entirely out of structure constants. The partial amplitudes are defined, in terms
of the kinematic factors Di, as

A1 = D1 +D4 +D5

A2 = D2 +D3 −D5

(2.30)

and

Ã1 = D1 +D2

Ã2 = D3 +D4

(2.31)

Each of these amplitudes is separately gauge-invariant. It is interesting to no-
te that the diagram with the three gluon vertex contributes to two distinct color
ordered amplitudes. In a purely diagrammatic analysis, it can be seen that it is
topologically equivalent to orient the external gluon emitted from the propagator
downwards or upwards. This means that, using a reformulation of Feynman dia-
grams which only take into account diagrams with a particular external ordering
(which can be obtained from the so-called color ordered Feynamn rules), this dia-
grams gives the same contribution to two different color-ordered amplitudes, up to
a global sign.

Different ways to work out color decompositions for amplitudes with an arbi-
trary number of quark-antiquark pairs have been found, for example, using shuffle
relations [32] and Dyck words [33]. These decompositions provide an interesting
mathematical relation between amplitudes and combinatorics, and we will explore
them further in Chapter 5.

2.3. Spinor-Helicity formalism for massless parti-

cles

Scattering amplitudes in four dimensions are usually written as functions of
Lorentz invariant quantities build out of the momenta and wavefunctions of the ex-
ternal particles, according to a particular set of Feynman rules. Even though Lorentz
invariance is manifest in these expressions, the dependence of the amplitudes on the
external momenta is very much obscure. However, by choosing an appropriate set
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of variables, this dependence can be made explicit. With this motivation, we intro-
duce the so-called spinor-helicity variables, which are special to scattering in four
dimensions. Interestingly, it will turn out that these variables also have the advanta-
ge of producing extremely compact expressions for some special kinds of amplitudes.

The finite representations of the Lorentz group are labelled by two integer or
semi-integers (j, j′), and the total spin is j+ j′. Therefore, the spin 1 representation
is labelled by (1

2
, 1

2
). But, we also know that the spin 1

2
representations of the Lorentz

group are either the (1
2
, 0) or the (0, 1

2
), which correspond to left-handed or right-

handed two component spinors, respectively. So, in a sense, it is more natural to
represent four vectors pµ as bispinors pαα̇, where the indices α, α̇ = 1, 2. For the
unfamiliar reader, these indices can be raised or lowered with the 2D Levi-Civita
tensor, with components

ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = 1

ε21 = ε2̇1̇ = ε12 = ε1̇2̇ = −1
(2.32)

such that, for a left-handed spinor ξα and a right-handed spinor η̃α̇,

ξα = εαβξβ, η̃α̇ = εα̇β̇ η̃β̇ (2.33)

The Pauli matrices 3 gives us a map from the vector to the bispinor representa-
tion, through the relation

pαα̇ = pµ(σµ)αα̇ =

(
p0 − p3 p1 − ip2

p1 + ip2 p0 + p3

)
(2.34)

where we have written the relation in matrix form. It is straightforward to see
that det(pαα̇) = p2 = m2. Hence, all physical information is contained in this new
representation for on-shell momentum of the external particles.

An interesting feature of the bispinor representation is that, when the particles
are massless, det(pαα̇) = 0. A result from linear algebra tells us that any rank 1 2×2
matrix can be written as the outer product of a pair of two component vectors:

pαα̇ = λαλ̃α̇ (2.35)

the two-component vectors λ and λ̃ are known as helicity spinors, and we will
see that tree level amplitudes of massless particles can be written entirely in terms
of SL(2,C) invariant contractions of these spinors. Now, we will see how the two
component spinors are embedded in the four component Dirac spinors.

2.3.1. Spinor-helicity for fermions

Consider the Dirac equation in momentum space

/pu(p) = mu(p) (2.36)

3See Appendix B for definitions and conventions.
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where u(p) is a four component Dirac spinor. Although we will be concerned
with the massless case, there is no technical difficulty in considering massive states
in the few following lines. In the chiral representation of the Gamma matrices,

γµ =

(
0 σµ

σ̄µ 0

)
(2.37)

where σµ = (1, ~σ), σ̄µ = (1,−~σ), we can construct the matrix

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
(2.38)

which will be used in the definition of the chirality projectors (chirality and he-
licity are the same for massless particles).

An arbitrary four component Dirac spinor can be written in terms of two 2-
component spinors, λα and η̄α̇ as

u(p) =

(
λα
η̄α̇

)
(2.39)

where the two component spinors, known as Weyl spinors, satisfy the equations

pµσ̄
µλ−mη = 0, pµσ

µη −mλ = 0 (2.40)

which are known as the Weyl equations. In the massless limit, they decouple and,
in fact, their solutions are related to each other by complex conjugation because the
momenta is real. For this reason, we write

pαα̇ = λαλ̃α̇ (2.41)

so that λ̃α̇ = λ†α. We can define left handed Dirac spinors,

uL(p) =

(
λα
0

)
(2.42)

and right handed Dirac spinors

uR(p) =

(
0

λ̃α̇

)
(2.43)

as the embedding of the two component Weyl spinors into four component ob-
jects. If we define the projectors

PL =
1− γ5

2
, PR =

1 + γ5

2
(2.44)

we can see that

PLuL(p) = uL(p), PLuR(p) = 0

PRuL(p) = 0, PRuR(p) = uR(p)
(2.45)

that is, the spinors have definite chirality. Since they describe massless particles,
they also have a definite helicity.
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We also need spinors v(p) to describe antiparticles; however, since they obey the
same equation as u(p) in the massless case, we will use the same spinors for those
solutions, baring in mind that the helicity of the spinor v(p) is the opposite to the
physical helicity of the antiparticle. Thus, vL(p) describes a right-handed antifer-
mion and vR(p) a left-handed antifermion. Recalling our convention, we consider
all particles involved in the scattering process as final-state particles. If needed, the
initial states can be recovered by crossing symmetry. One useful consequence of this
convention is that momentum conservation is written as∑

i

pi = 0 (2.46)

It is common in the literature to introduce a Dirac bra-ket notation for the
spinors,

uR(p) = |p〉, uL(p) = |p], ūR(p) = [p|, ūL(p) = 〈p| (2.47)

We can form scalar, Lorentz-invariant quantities with products of these spinors.
These are the so-called spinor products

〈ij〉 ≡ ŪL(pi)UR(pj) = εαβλ
α
i λ

β
j , [ij] ≡ ŪR(pi)UL(pj) = −εα̇β̇λ̃

α̇
i λ̃

β̇
j (2.48)

(it can easily be seen that expressions like 〈ij] or [ij〉 vanish, as well as 〈ii〉 and
[ii], due to the antisymmetry of the Levi-Civita tensor). The usual completeness
relation can be written in terms of helicity spinors as

/p = |p〉[p|+ |p]〈p| (2.49)

Various identities satisfied by the spinor products can be found in Appendix B.

2.3.2. Vector boson polarizations

Polarization vectors can be conveniently written in terms of spinors [34, 35, 36].
Let εµ(p) be the polarization vector of a gluon with momentum p. Let q be an
arbitrary lightlike four-momentum satisfying p · q 6= 0. Then, we can write

εµ+(p) =
1√
2

〈q|γµ|p]
〈qp〉

, εµ−(p) = − 1√
2

[q|γµ|p〉
[qp]

(2.50)

where the subscripts (+,−) refer to the helicity h = ±1 of the associated gluon.
Positive helicity gluons are also known as right-handed while negative helicity gluons
are also known as left-handed. The momentum q is known as the reference momenta,
and it holds the information of gauge-invariance for each leg separately, which means
that there can be n independent reference momenta. In fact, let us choose two
reference momenta q and p for the same polarization εµ(k). Also, let us suppose,
without loss of generality, that it is right-handed. Then, we can see that
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εµ+(k, p)− εµ+(k, q) =
1√
2

〈p|γµ|k]

〈pk〉
− 1√

2

〈q|γµ|k]

〈qk〉

=
1√
2

(
〈p|γµ|k]〈qk〉 − 〈q|γµ|k]〈pk〉

〈pk〉〈qk〉

)
=

1√
2

(
−〈p|γ

µ|k]〈kq〉+ 〈q|γµ|k]〈kp〉
〈pk〉〈qk〉

)
=

1√
2

(
−〈p|γ

µ/k|q〉+ 〈q|γµ/k|p〉
〈pk〉〈qk〉

)
=

1√
2

1

〈pk〉〈qk〉
(〈q|/kγµ|p〉+ 〈q|γµ/k|p〉)

=
1√
2

1

〈pk〉〈qk〉
(〈q|(/kγµ + γµ/k)|p〉)

=
1√
2

〈qp〉
〈pk〉〈qk〉

· 2kµ

(2.51)

then, if we dot the gluon-stripped amplitude Anµ with the difference of both
polarization vectors, we obtain zero as result, due to gauge-invariance. Thus, any
gauge theory amplitude is independent of the choice of reference momenta. This is
a very convenient property when doing explicit calculations, because an amplitude
can be greatly simplified by choosing an appropriate set of reference momenta.

Moreover, using the definitions (2.50), we can show that, for example, the right-
handed polarization vectors satisfy the usual transversality condition

pµε
µ
R(p) =

1√
2

〈q|pµγµ|p]
〈qp〉

=
1√
2

〈q|/p|p]
〈qp〉

= 0 (2.52)

due to the Dirac equation, /p|p] = 0. Also, they are properly normalized,

|εµR(p)|2 =
1

2

〈q|γµ|p]
〈qp〉

〈p|γµ|q]
[pq]

=
1

2

2〈qp〉[qp]
〈qp〉[pq]

= −1 (2.53)

Armed with the helicity spinors and the polarization vectors written in terms of
them, we can try to calculate any amplitude of massless particles as a function of
spinor products. Since both the spinors and polarization vectors are defined as quan-
tities with definite helicity, it is natural to consider amplitudes where the external
particles have an specific helicity, the so-called helicity amplitudes. Then, generally,
an n-point amplitude is written as

An = An({λi, λ̃i, hi}) (2.54)

that is, as a function of the list of spinors and helicities of the external particles.
Helicity amplitudes in gauge theory may take strikingly simple forms for some special
helicity configurations. These are known as MHV amplitudes, and will be our next
topic of discussion.

2.3.3. MHV classification

Consider an n-point gluon tree amplitude. Typically, it will be a function of
Lorentz invariants of the form
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pi · pj, pi · εj, εi · εj (2.55)

and we want to rewrite them in terms of spinor variables. First, using the Fierz
identity (B.16), it is easy to see that, for a pair of gluons with momenta pi and pj
with respective reference momenta qi and qj,

ε+(pi) · ε+(pj) ∝ 〈qiqj〉
ε−(pi) · ε−(pj) ∝ [qiqj]
ε+(pi) · ε−(pj) ∝ 〈qipj〉[qjpi]

(2.56)

Now, looking at the Feynman rules in Fig. 2.1, we can see that an arbitrary
n-gluon tree amplitude takes the schematic form

AYMn v
∑∏

(εi · εj)(εi · pj)(pi · pj)∏
P 2

(2.57)

where the sum runs over the different diagrams contributing to the process, the
product goes over all possible contractions appearing in the diagram, and P denotes
the momentum flowing through each propagator of the diagram. Now, consider for
a moment tree diagrams with only cubic vertices. The three gluon vertex has mass
dimension +1. Then, if we start ”sewing” cubic vertices to construct an arbitrary
n-point diagram, each time we need to add a new vertex and a new propagator to
the diagram; this means that both the number of vertices and propagators in a given
diagram grow linearly with n. In general, there will be (n− 2) vertices and (n− 3)
propagators. Since propagators have mass dimension −2, then

[An] ∼ (mass)n−2

(mass2)n−3
∼ (mass)4−n (2.58)

which is the mass dimension that an amplitude with n external states in an ar-
bitrary four-dimensional field theory should have in order to give the cross section
the dimensions of area. However, it will be important that the mass dimension of
the numerator cannot exceed (n− 2) for an n-point amplitude.

Now, suppose we wanted to compute an helicity amplitude with either all positive
or all negative helicities. Recalling that we can choose each reference momenta to
have an arbitrary value, we could make the choice qi = q for all i = 1, ..., n. Then,

ε+(pi) · ε+(pj) = ε−(pi) · ε−(pj) = 0 (2.59)

Since each external gluons contributes with one polarization vector to the am-
plitude, each diagram is the product of a tensor in Lorentz indices times the n
polarization vectors of the process. Thus, in order to obtain a non-zero result for
either helicity configuration, every polarization vector should appear contracted as
εi ·kj, where k is a some linear combination of external momenta. However, we have
seen that the mass dimension of the numerator of a Yang-Mills amplitude is at most
(n−2). This means that we can, at most, contract (n−2) of the external polarization
vectors with momentum factors coming from the cubic vertices. This implies that
each diagrams must contain at least one product of polarization vectors. Hence,

AYMn (1+2+....n+) = 0
AYMn (1−2−....n−) = 0

(2.60)
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Similarly, assume that we wanted to calculate the amplitudes AYMn (1−2+....n+)
or AYMn (1+2−....n−). Then, if we take the reference momenta qi = p1 for i 6= 1, the
equal-helicity polarization vector products would all vanish, and ε1+ ·εi− = ε1− ·εi+ =
0. Therefore, we find again that all possible products of polarization vectors vanish,
and from the same argument as before, we obtain

AYMn (1−2+....n+) = 0
AYMn (1−2+....n+) = 0

(2.61)

The first non-vanishing helicity amplitudes are those where two particles have
positive helicity and the rest have negative helicity, and vice-versa. These amplitu-
des are known as Maximally Helicity Violating (MHV) and anti-MHV amplitudes,
respectively. These were first proposed by Parke and Taylor [6], who guessed their ge-
neral structure after performing specific calculations with up to six external gluons,
and were proven afterwards with the of-shell recursive relations of Berends and Giele
[37] and are given, for n gluon scattering, by

An(1−...i+...j+...n−) =
〈ij〉4

〈12〉〈23〉...〈(n− 1)n〉〈n1〉
(2.62)

and

An(1+...i−...j−...n+) = (−1)n
[ij]4

[12][23]...[(n− 1)n][n1]
(2.63)

where we have omitted the powers of the gauge coupling that appear as pre-
factors. The denomination of ”maximally helicity violating” comes from thinking
of the n-point amplitude as a 2 → (n − 2) process; in this scenario, it is the non-
vanishing amplitude where the difference between the total incoming and outcoming
helicity takes its maximum value. MHV amplitudes have the remarkable property
that they do not have any multiparticle pole, which renders them remarkably sim-
ple. Sometimes, MHV amplitudes are also referred to as holomorphic and anti-MHV
amplitudes as antiholomorphic 4, because of the fact that the former only depend
on angle spinor products and the latter on square spinor products.

Usually, ”flipping” more positive helicities into negative ones yield more compli-
cated expressions. In particular, gluon amplitudes with k = 3 negative helicity and
(n− 3) positive helicity gluons are known as Next-to-MHV, or NMHV amplitudes.
In general, an n-gluon amplitude with K + 2 negative helicity and (n − K − 2)
positive helicity gluons is known as NKMHV amplitude.

Full QCD amplitudes with quarks satisfy similar relations. As an example, con-
sider an amplitude with one qq̄ pair and n − 2 external gluons. Since helicity is a
conserved quantity along any fermion line, the quark and antiquark must have op-
posite helicites. In this case, MHV and anti-MHV amplitudes occur when all gluon
helicites are the same, except for one. These are given by

A(q−2+...i−...(n− 1)+q̄+) = ign−2 〈1i〉3〈ni〉
〈12〉〈23〉...〈(n− 1)n〉〈n1〉

(2.64)

4They are also known as googly, in the context of twistor theory
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Fig. 2.4: Emission of a soft gluon from a quark line

and

A(q−2+...i−...(n− 1)+q̄+) = ign−2 [1i][ni]3

[12][23]...[(n− 1)n][n1]
(2.65)

These formulas can be obtained from the pure gluon MHV formulas by using
the supersymmetric Ward identities, which we introduce at the end of this chapter.

2.3.4. Soft limits

There are a special kind of singularities in which the amplitude factorizes when
approaching a pole, which are known as soft limits. These occur when the momenta
of some external massless particles is very small compared to the momenta of the
remaining particles 5. In this limit, the amplitudes exhibit a universal factorization
(in the sense that the factorization is independent of whom the soft particles couples
to). In particular, we focus on the single soft limit where only one external particle
has a soft momentum that can be taken as kµ = δKµ, where Kµ is some constant,
finite momentum and δ → 0 parametrizes the soft limit. This can occur, for example,
when a photon or gluon is emitted with very small momenta. Seeing that we are
interested in gauge theories, we will consider the case of a color ordered amplitude
where the soft gluon is emitted from a quark line. This is illustrated in 2.4.

Let An denote the amplitude without the soft gluon, and consider how this am-
plitude is modified when the gluon is inserted in the line with a quark of momentum
pa and antiquark of momentum pb. To simplify the calculation, we assume the quarks
to be massless. We can write the amplitude An as

An = ū(pa)A
′
n(pa, pb)v(pb) (2.66)

that is, we define A′n as the n-point amplitude stripped off the fermion wave
functions. The resulting amplitude from the insertion of the gluon on the quark line
can be written as

An+1 = −igū(pa)
[
γµεµ(k)

i(/pa+/k)

(pa+k)2
A′n(pa + k, pb) +

i(/pb−/k)

(pb−k)2
An‘(pa, pb + k)

]
v(pb) (2.67)

Now, since the gluon has a soft momenta k = δK with δ → 0, we can make the
following approximations

5These are usually given the name of hard particles.
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A′n(pa + k, pb) ≈ A′n(pa, pb + k) ≈ A′n(pa, pb)

/pa + /k ≈ /pa

/pb + /k ≈ /pb

(2.68)

hence, the numerators are simplified by using the anticommutation relation of
the Gamma matrices, from which it follows that

/pbγ
µεµv(pb) = 2pb · εv(pb)

ū(pa)γ
µεµ/pa = ū(pa)2pa · ε

(2.69)

and the squares in the denominators can be simplified to

(pa + k)2 = 2pa · k
(pb − k)2 = −2pb · k

(2.70)

Putting everything together, we find that, in the soft limit, the amplitude facto-
rizes

An+1 ≈
1

δ
gS(a, k, b)An (2.71)

where S(a, k, b) is known as the eikonal or Weinberg soft factor, and is given by

S(a, k, b) =
pa · ε
pa · k

− pb · ε
pb · k

(2.72)

We note that the soft factor does not depend on the spin of the particles from
which the gluon is emitted, only on their momenta. This reflects the fact that low
energy gluon (or photon) emission must be understood as a classical phenomena.
Moreover, the soft factor enjoys a couple of properties, the first of which is the
antisymmetry under the exchange of the momenta labelled by a and b, that is

S(b, k, a) = −S(a, k, b) (2.73)

and what could be called a Schouten identity,

S(a, k, b) + S(b, k, c) = S(a, k, c) (2.74)

These identities will play a crucial role in chapter 7, where we study the soft
behaviour of the CHY integrand for QCD and show that it enjoys similar factoriza-
tion properties to those of the amplitudes in the soft limit.

Soft theorems also have strong physical consequences: in the case we have derived,
they imply the existence of a conserved charge associated to the coupling of the spin-
1 massless particle to the other particles (for example, Weinberg’s theorem for soft
photon emission implies the conservation of electric charge). Similarly, gravitons,
understood as spin-2 massless particles, also enjoy soft factorization theorems, and
their existence implies that these particles must couple in a unique, universal way to
every kind of matter field. Moreover, they also imply that there are no interacting
theories of massless particles with spin greater than 2 [8].

Having discussed the singularity structure of amplitudes on general grounds and
specialized on the case of gauge theories, we are in a position to use the analytic
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properties of amplitudes we have derived to develop a framework in which to calcu-
late tree amplitudes recursively in the number of external legs, which is the subject
of the following section.

2.4. On-shell recursion relations

The fact that we can write explicit expressions for arbitrary multiplicity ampli-
tudes is astonishing from the point of view of Feynman diagrams: for arbitrary n, we
would need to compute the sum of about O(n!) diagrams, each of which is not a gau-
ge invariant quantity defined in terms of the wavefunctions of the external particles,
like the polarization vectors fo gluons or Dirac spinors for quarks. Then, by some
miracle, we arrive to extremely simple formulas like (2.62). Summing an arbitra-
rily high number of diagrams and obtaining such a simple result, however, does not
seem like an easy problem at all. This is because, as we have mentioned, Feynman
diagrams do not know too much about the physical properties of amplitudes. In this
spirit, we introduce a scheme that will allow us to construct amplitudes only from
on-shell, gauge invariant blocks, which generally fits into what we will call on-shell
recursion relations. As a first step, we will construct the building blocks upon which
to start the recursion, which will be the lowest multiplicity tree amplitudes we can
possibly calculate: three-point amplitudes.

2.4.1. Three-point amplitudes and complex momenta

Consider the scattering process of three massless particles with momenta p1, p2

and p3. The amplitude for this process can be a function of the three kinematic
invariants s12, s23 and s31 (the invariant s123 is identically zero due to momentum
conservation). Given the amount of variables it can depend, this amplitude ought
to be very simple. In fact, let us use momentum conservation to manipulate, for
example,

s12 = (p1 + p2)2

= p2
3

= 0

(2.75)

from the on-shell conditions and the fact that the particles are massless. Similarly,
one can show that s23 = s31 = 0. Furthermore, as proved in Appendix B,

sij = 〈ij〉[ji] (2.76)

for an arbitrary, massless four momenta pi and pj, and that [ji] = 〈ij〉∗. Hence,

sij = |〈ij〉|2 = |[ij]|2 (2.77)

so, whenever sij vanishes, so do the spinor products. We have exhausted the
possible Lorentz invariants we can build out of the momenta to construct the ampli-
tude, which seems to imply that there are no non-vanishing three-point amplitudes
of massless particles. This is of particular interest in Yang-Mills theory, where the
external states are exactly massless (as opposed to massless limits of fermions, which
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occur only on high energy regimes). If we set n = 3 in the Parke-Taylor formula
(2.62), we would obtain

AYM3 (1−2−3+) = i
〈12〉4

〈12〉〈23〉〈31〉
(2.78)

From this expression, we can say that AYM3 = 0, roughly because there are
more powers of the momenta in the numerator than the denominator, and all spinor
products tend to zero. However, this expression is not entirely useless. In fact, the
complex conjugate relation [ji] = 〈ij〉∗ is only valid with Lorentzian metric when
the momenta pi and pj have real components. If we allow for the momenta to have
complex components, the angle and square bracket products are independent, but
the relation (2.76) is still valid. Hence, we have two possible kinematic configurations

〈ij〉 6= 0 and [ij] = 0, or

〈ij〉 = 0 and [ij] 6= 0

then, the amplitude (2.78) is a perfectly valid, non-vanishing result for the three-
point amplitude satisfying momentum conservation and the on-shell conditions, pro-
vided that the momenta are complex and all square brackets vanish. The most ge-
neral form that a three-point amplitude in an arbitrary field theory can take is
[38]

A3 = AH3 (〈12〉, 〈23〉, 〈31〉) + AA3 ([12], [23], [31]) (2.79)

where the superscripts H and A refer to ”holomorphic” and ”antiholomorphic”,
respectively. For each of the two kinematic configurations, one should find that either
the holomorphic or antiholomorphic term vanishes. As we will see shortly, Lorentz
covariance of the amplitudes will allow us to determine the general form of AH3 and
AA3 , up to multiplicative constants. Using the physical constraint that the complete
three-point amplitude must vanish when the momenta is taken to be real, we will
be able to determine, given the helicities of the the external particles, which part
vanishes on each kinematic configuration.

2.4.2. Little group scaling

For massless particles, the bispinor representation can be realized through the
completeness relation

/p = |p〉[p|+ |p]〈p| (2.80)

The physically meaningful quantity is the momentum, not the spinors. Hence,
we can see that there is a redundancy in the bispinor decomposition of the momen-
ta: (2.80) is invariant under the transformation |p〉 → t|p〉, |p] → t−1|p]. For real
momenta, t is restricted to be a complex phase6; for complex momenta, t might be
an arbitrary complex number. The origin of this redundancy can be traced to the
little group, the subset of Lorentz transformations which leave the momentum of
an on-shell particle invariant. For a massless particle whose four momentum can be

6In this case, the transformation of, for example, the angle spinor, implies the transformation
of the square spinor through complex conjugation.
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parametrized by its energy as pµ = (E, 0, 0, E), the little group is the group SO(2) of
orthogonal transformations in the x−y plane. Since SO(2) is isomorphic to U(1), the
states of massless particles only pick up a phase under little group transformations.
These transformations act on the one-particle states which define the irreducible
representations of the Poincaré group. Assuming that amplitudes inherit the trans-
formation properties of these one-particle states under little group transformations
will allow us to obtain the values of three-point amplitudes in a variety of theories
with massless particles.This means that, in order to find how the amplitudes scale
under little group transformations, we assume that the only objects with non-trivial
transformations are the external wavefunctions. Then, by definition of the scaling
transformation, the fermion wavefunctions, which are the spinors, scale as t−2h, whe-
re h = ±1

2
denotes the helicity. Also, by inspection of 2.50, the polarization vectors

also scale as t−2h, where h = ±1 is the helicity of the vector boson. In general, an
n-point amplitude of massless particles scales under little group transformation of
the spinors for particle i, |i〉 → |i′〉 = ti|i〉, |i]→ |i′] = t−1

i |i] as

An (1, 2, ..., i′, ..., n) = t−2h
i An(1, 2, ..., i, ...n) (2.81)

This scaling property will suffice to determine any three-point amplitude of mass-
less particles, subject to the condition of complex momenta. This scaling property
can be recast in terms of the action of the helicity operator,(

λαi
∂

∂λαi
− λ̃α̇i

∂

∂λ̃α̇i

)
A3(1h1 , 2h2 , 3h3) = −2hiA3(1h1 , 2h2 , 3h3) (2.82)

where hi is the helicity of the i-th particle. Since the holomorphic term only
depends on λ and the antiholomorphic part only depends on λ̃, this relation can be
recast as the pair of equations(

λαi
∂

∂λαi
+ 2hi

)
AH3 = 0 (2.83)

and (
λ̃α̇i

∂

∂λ̃α̇i
− 2hi

)
AA3 = 0 (2.84)

To find the solution to, say, (2.83), consider the special kinematics in which
[ij] = 0. As an ansatz, the more general form that the amplitude can take is

AH3 (1h1 , 2h2 , 3h3) = kH〈12〉c1〈23〉c2〈31〉c3 (2.85)

where kH is a scalar function of the momenta. This function can be fixed in
terms of the coupling appearing in the interaction vertex of the three particles that
form the external states of A3, as we will argue later due to dimensional analysis.
Hence, this procedure completely fixes the structure of the three-point amplitudes
to all loop orders, up to quantum corrections to the coupling constants.

To determine the coefficients c1, c2 and c3, we use our ansatz and Eq. (2.83).
Consider, for example, the action of the helicity operator for particle 1. The deriva-
tive with respect to the spinor λ1 will pick up a factor of (c1 + c3), coming from the
spinor products 〈12〉 and 〈31〉 in which this spinor appears. This yields the condition
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− 2h1 = c1 + c3 (2.86)

Similarly, by using the remaining equations, one obtain the equations

− 2h2 = c1 + c2, −2h3 = c2 + c3 (2.87)

Then, we have obtained a simple linear system which can be solved for the
unknown exponents c1, c2, c3, which can be solved in terms of the helicities to yield

AH3 (1h1 , 2h2 , 3h3) = kH〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h1−h3 (2.88)

By making the substitution 〈ij〉 → [ij] and hi → −hi, we immediately obtain
the antiholomorphic solution,

AA3 (1h1 , 2h2 , 3h3) = kA[12]h1+h2−h3 [23]h2+h3−h1 [31]h1+h3−h2 (2.89)

which implies that the exact three-particle amplitude is given by

A3({λi, λ̃i, hi}) = kH〈12〉d3〈23〉d1〈31〉d2 + kA[12]−d3 [23]−d1 [31]−d2 (2.90)

where d1 = h1− h2− h3, d2 = h2− h1− h3 and d3 = h3− h1− h2. To obtain the
correct physical behaviour in the limit where the momenta are taken to be real, we
must require that A3 vanishes when both angle and square spinor products go to
zero simultaneously. It is easy to see that the sum of the powers of the terms in the
holomorphic part is pH = −h1−h2−h3, and pA = −pH in the antiholomorphic part.
Then, if pH > 0, we must take kH = 0 in order to avoid an inconsistent, divergent
result, while pH < 0 means we must take kA = 0. The case pH = 0 is special, since
neither the holomorphic nor the antiholomorphic part can be discarded on these
grounds. However, since we will not find amplitudes with such helicity configura-
tions, we will simply omit such particular cases.

Now, we consider a few specific examples. If we take h1 = h2 = −1 and h3 = 1,
we should obtain the helicity amplitude for three spin one massless bosons. Note
that pH = −1; hence, we will obtain an holomorphic configuration. Inserting these
values in (2.88) we obtain

A3(g−1 , g
−
2 , g

+
3 ) = kH〈12〉3〈23〉−1〈31〉−1

= kH
〈12〉3

〈23〉〈31〉

= kH
〈12〉4

〈12〉〈23〉〈31〉

(2.91)

which is nothing more than the three-gluon MHV amplitude. Two comments
are in order here. First, recall that, in four dimensions, an n-point amplitude must
have mass dimension (4 − n). Now, since the spinor products satisfy 〈ij〉 ∼ √sij,
each spinor product has dimensions of mass. Therefore, we can see that the total
mass dimensions of the three point amplitude in Eq.(2.91) is [kH ] + 1, where [kH ]
is the mass dimension of the constant kH . Thus, in order for the amplitude to have
the correct mass dimension, we must have [kH ] = 0. Since the only dimensionless
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parameter in Yang-Mills theory is the gauge coupling g, we conclude that kH should
be proportional to g at all orders in perturbation theory. This is a very strong sta-
tement about the general structure of the three-point amplitudes.

Also, note that the amplitude in Eq. (2.91) is completely antisymmetric under
the exchange of two boson labels. However, observables involving bosons must be
completely symmetric under the exchange of any pair of particle labels. This pro-
blem is solved in Yang-Mills theory if we assume that this three-particle amplitude
has gone through a process of color decomposition, and we set the full amplitude to
be A3(g−1 , g

−
2 , g

+
3 ) times a structure constant fabc. However, we obtained this result

only through Lorentz covariance, so there is no a priori information on the gauge
group. What we have obtained is a very powerful result: Lorentz covariance implies
that there cannot be an interacting theory of less than three massless particles of
spin 1 (this result actually generalizes to odd spin), and that the coupling constant
of these massless bosons must be completely antisymmetric in its indices.

Similarly, with h1 = −1/2, h2 = −1 and h3 = 1/2, which corresponds to a quark-
antiquark-gluon amplitude (the quarks must have opposite helicity) we obtain

A3(q−1 , g
−
2 , q̄

+
3 ) = kH〈12〉2〈23〉0〈31〉−1

= kH
〈12〉2

〈31〉

= kH
〈12〉3〈23〉
〈12〉〈23〉〈31〉

(2.92)

which again reproduces the MHV formula with a quark-antiquark pair. Finally,
before pointing out the subtleties of this approach, consider the case h1 = h2 = −2,
h3 = 2, which would be the MHV analog of the three graviton amplitude7. Denoting
a graviton by G, we see that the net effect in comparison to the gluon case is to
multiply every helicity by two. Hence,

A3(G−1 , G
−
2 , G

+
3 ) = kH

〈12〉8

〈12〉2〈23〉2〈31〉2
= (A3(g−1 , g

−
2 , g

+
3 ))2 (2.93)

Apart from the fixing of the constant kH , this is an example of the profound (and
celebrated) statement gravity = (gauge theory)2. In chapter 5, we will discuss two
particular ways in which this statement is realized: the KLT relations, which have
their origin in string theory and relate closed and open string amplitudes, and the
double copy formulation obtained from the BCJ relations, which have their origin
in the so-called color-kinematics duality. However, this does not take anything away
from the surprising fact that the on-shell three point correlation functions of Eins-
tein gravity are exactly equal to the square of the Yang-Mills case, for this is not at
all obvious from either the Lagrangians or the Feynman rules of either theories.

7The wavefunctions of a graviton are tensor products of gauge boson helicity vectors, εµν± = εµ±ε
ν
±
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2.4.3. Unitarity and locality

We have used Lorentz invariance to determine the form of all possible three-
point amplitudes that can be calculate in a relativistic field theory. This procedure
provides an example of the constraints imposed by the physical properties of am-
plitudes in their kinematic structure. Now, we will consider the consequences of the
unitarity of the S-matrix and the locality of interactions. This reasoning will lead us
to conclude that the only singularities that a tree amplitude can possess are simple
poles that occur when a propagator goes on-shell, and that the residue at each pole
will be given in terms of products of lower point amplitudes, whose multiplicity is
specified by the structure of the singular propagator under consideration.

As we mention in the introduction, the S-matrix is defined as the operator which
gives the transition probability from one free state to another. Then, since probabi-
lity must be conserved, the S-matrix has to be an unitary operator

S†S = 1 (2.94)

where 1 is the identity operator in the space where we define the S-matrix. We
can obtain constrains on the scattering amplitudes by looking at the conditions that
the unitarity of the S-matrix imposes on the transfer matrix T, whose definition we
recall

S = 1 + iT (2.95)

hence, we find that the matrix T must satisfy the condition

− i(T − T †) = T †T (2.96)

Now, consider two free states 〈φ1| and |φ2〉 such that the total number of external
particles is n. Then, we can calculate the matrix element of Eq.(2.96) between these
states to obtain a statement involving amplitudes, namely

− i(An(φ1 → φ2)−A∗n(φ2 → φ1)) = 〈φ1|T †T |φ2〉 (2.97)

we assume that, generically, the amplitudes depend on the momenta pi of the
external particles. Inserting a complete set of free states, we obtain

− i(An(φ1 → φ2)−A∗n(φ2 → φ1))

=
∑
m

(
m∏
i=1

∫
d4qi

(2π)4
δ(+)(q2

i )

)
A∗(φ1 → {qi})A(φ2 → {qi})

(2.98)

where the sum goes over all possible sets of m final on-shell particles into which
the states φ1 and φ2 can scatter into, and

δ(+)(q2
i ) = θ(Eqi)δ(q

2
i ) (2.99)

where θ(x) denotes the Heaviside step function. An important special case is
when |φ1〉 = |φ2〉 = |p1p2〉 are both the same two particle state. Then, one can use
the different kinematic integrations to reconstruct a cross-section of the form Eq.
(1.8) on the right hand side of Eq. (2.98). On the left hand side, we obtain the
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imaginary part of the amplitude for the state |p1p2〉 to scatter onto itself. Then, we
obtain the so-called optical theorem

ImA4(p1p2 → p1p2) = 2Ecmpcmσtot(p1p2 → anything) (2.100)

where Ecm and pcm are the center of mass energy and momenta of the process.
Here, the appearance of an imaginary part can be understood from the fact that
we can assume evaluate amplitudes on complex momenta, as we have done in the
previous section.

Now, due to crossing symmetry, we can move all the states into the out-state
〈φ1|. Then, we find the condition

Im(An) =
∑
m

(
m∏
i=1

∫
d4qi

(2π)4
δ(+)(q2

i )

)
AnL+mAnR+m (2.101)

where nL,nR count the number of particles in the in- and out- states, and are
subject to the constraint nL + nR = n. This result allows for the calculation of the
discontinuity of the n-point amplitude when the momentum invariant P 2 = (

∑
L pi)

2

goes on-shell, where pi label the momentum of the external particles and the sum
over L means to sum only over the momenta that was originally in the state |φ2〉,
when regarding the amplitude as a complex function of the momenta. Since we have
a product of amplitudes in the right-hand side of Eq.(2.101), it relates amplitudes
of different multiplicity and loop order. In particular, the discontinuities of one-loop
amplitudes are determined by products of tree amplitudes, which means that, un-
derstanding tree amplitudes as classical quantities and loop amplitudes as quantum
effects, unitarity implies that the structure of the quantum theory is determined by
its classical counterpart.

Now, in order to derive the factorization properties of amplitudes near a mul-
tiparticle pole, we will use a result known as the polology theorem and the LSZ
reduction formula. Its proofs can be found in the textbooks by Weinberg [10] and
Schwartz [39].

Consider a theory of an interacting scalar field ψ(x). Then, the most general
observables we can compute in this theory are the momentum space correlation
function

Gn(p1, ..., pn) =

∫ n∏
j=1

d4xje
ipj ·xj〈Ω|T {ψ(x1)...ψ(xn)}|Ω〉 (2.102)

where |Ω〉 is the vacuum of the interacting theory. The momenta on which the
correlation function depends on may be off-shell (but they do satisfy momentum
conservation). The polology theorem states that, if there is a sum of the momenta
P µ = pµ1 ...p

µ
r for some 1 < r < n and if there is a one particle state |Ψ〉 of mass

m such that 〈Ψ|ψ(x1)...ψ(xr)|Ω〉 6= 0, then Gn will have a pole at P 2 = m2 and
the residue at this pole is given by the product of lower-point correlation functions.
That is,
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Gn(p1, ..., pn) = (2π)4δ4(
∑

p)
i

P 2 −m2 + i0
G1,r

Ψ (Gr+1,n
Ψ )† + non-singular (2.103)

where ”non-singular” refers to the remaining contributions, which are finite when
P µ goes on-shell, and G1,r

Ψ are the lower point correlation functions,

G1,r
Ψ =

∫ r∏
j=2

d4xje
ipj ·xj〈Ω|T {ψ(0)ψ(x2)...ψ(xr)}|Ω〉 (2.104)

On the other hand, the LSZ reduction formula allow us to obtain amplitudes
from correlation functions as

An(p1, ..., pn) = in
∫ n∏

k=1

d4xke
ipk·xk(∂2

k +m2)〈Ω|T {ψ(x1)...ψ(xn)}|Ω〉 (2.105)

where we have written the formula for the case of scalar fields. Then, mixing
these results, we find that near a multiparticle pole an n-point amplitude factorizes
as (specializing to the case of gluons, which are massless),

An = AnL+1
1

P 2
AnR+1 + finite (2.106)

where by finite we mean terms that are not singular when P 2 → 0. This can be
represented pictorically as

This property of factorization is the manifestation of the unitary nature of the
S-matrix and the locality of field interactions on the scattering amplitudes.

2.5. BCFW recursion formula

Now, we are in a position to derive the Britto-Cachazo-Feng-Witten (BCFW)
recursion formula [9]. These are relations which construct n-point tree amplitudes as
the sum of products of lower point amplitudes. Hence, finding all the amplitudes in
a given theory for a fixed number of external particles, one can calculate recursively,
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in the number of external legs, a higher point amplitude. The idea is to perform a
deformation of the on-shell momenta of the external particles parameterized by a
complex number. Then, following our arguments on the analytic structure of tree
amplitudes, we will be able to construct the contour integral of a rational function
related to the amplitude whose residues will sum into the amplitude we desire. The
poles of this function will include all poles of the amplitude and, because of unitarity,
these poles will be simple and the residue at each pole will be the product of two
lower point amplitudes.

Our first task is to see how to actually make the complex shifts of the momenta.
To do this, we must ask ourselves: what constraints are put on the momenta of
a scattering process? For massless scattering, we know that the external momenta
must be on-shell, that is, p2

i = 0, and that momentum conservation must be satisfied.
Hence, we should consider shifts that preserve these conditions. It turns out that the
simplest way to do this is by shifting two momenta, say p1 and pn in the following
manner

p̂1 = p1 − zv, p̂n = pn + zv (2.107)

where z is a complex number and v is a light-like four vector. Since p̂1 + p̂n =
p1 + pn, momentum conservation is preserved for an arbitrary light-like v. However,
imposing the on-shell condition p̂2

1 = 0 implies that v must also satisfy

v · p1 = 0 (2.108)

and an equivalent relation with pn. It turns out that there are two solutions to the
constraints v2 = 0 and v · p1 = v · pn = 0. Instead of trying to solve these equations,
let us study these shifts from the perspective of the helicity spinors. Again, we choose
p1 and pn, but let us think that we shift the spinors, as

λ̂1 = λ1 − zλn, ˆ̃λ1 = λ̃1

λ̂n = λn,
ˆ̃λn = λ̃n + zλ̃

(2.109)

which can be translated to Dirac spinor notation as

|1̂〉 = |1〉 − z|n〉, |1̂] = |1]

|n̂〉 = |n〉, |n̂] = |n] + z|1]
(2.110)

Now, to obtain the momentum shifts associated with this spinor shifts, we use
the relation

pµ =
1

2
σµαα̇λ

αλ̃α̇ =
1

2
〈p|γµ|p] (2.111)

to obtain

p̂µ1 = pµ1 −
1

2
z〈n|γµ|1]

p̂µn = pµn +
1

2
z〈n|γµ|1]

(2.112)
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and we identify vµ = 1
2
z〈n|γµ|1]. The fact that v · p1 = v · pn = 0 follows from

the Dirac equation, and v2 = 0 is a consequence of the Fierz identity.

Now, of what use is this complex shift? To answer this, consider a tree amplitude
An(p1, {pi}, pn), where we denote by {pi} the remaining momenta on which the
amplitude depends on. If we shift the momenta according to (2.112), we obtain a
rational function of z which we will call An(z). Setting z = 0 restores the physical
values of the momenta, which implies that the amplitude we want to calculate is
given by An(0). So, let C denote the circle at infinity in the extended complex plane,
and consider the integral

I =

∮
C

dz

2πi

An(z)

z
(2.113)

Using the residue theorem, we can see that∮
C

dz

2πi

An(z)

z
= An(0) +

∑
zi

Res

(
An(z)

z
, zi

)
(2.114)

where zi are the poles of An(z), and An(0) is simply the pole at z = 0. If
An(z) → 0 as |z| → ∞, the integral vanishes because there is no pole at infinity.
Assuming this does happen, we find that

An(0) = −
∑
zi

Res

(
An(z)

z
, zi

)
(2.115)

But, as we have argued, An(0) is the physical amplitude we actually want to
calculate. Thus, we need to find the value of the residues of An(z). We will now
focus on the case of gauge theory partial amplitudes.

As we have discussed, an amplitude develops a pole when a propagator goes on-
shell. In the particular case of partial amplitudes, due to the fact that the external
lines are ordered according to some permutation of {1, 2, ..., n}, these can only take
the form

1

(pi + pi+1 + ...+ pj)2
(2.116)

that is, each propagator can only carry a sum of adjacent momenta. Moreover,
these poles are simple. Hence, since the propagator which produce singularities in z
necessarily has to carry either p̂1(z) or p̂n(z), these can only take the form

1

P̂i(z)2
=

1

(p̂1(z) + p2 + ...+ pi−1)2
=

1

(pi + pi+1 + ...+ p̂n(z))2

=
1

P 2
i − z〈n|Pi|1]

(2.117)

where Pi = p1 + ...+ pi−1 and 〈n|Pi|1] = λnαP
αα̇
i λ̃1α̇, we see that An(z) can only

develop poles at the locations

z = zi ≡
P 2
i

〈n|Pi|1]
, i = 3, ..., n− 1 (2.118)
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Fig. 2.5: Diagrammatic representation of the BCFW recursion

Now, consider the graphical representation in Fig. 2.5. In a given tree level color-
ordered diagram, a propagator separates two diagrammatic structures. The one at
the left is related to all the particles that appear before particle i in the cyclic
ordering and the one at the right is related to all the particles appearing at the right
in the cyclic ordering. If one isolates, for example, the structure to the left, it is
not hard to convince oneself that the sum of all the ”left structures” obtained when
separating all diagrams contributing to the partial amplitude by the propagator i,
one obtains all the possible diagrams that contribute to the i − 1 particle partial
amplitude whose on-shell states correspond to all particles at the left of i. Similarly,
the same happens with the structure to the right. Therefore, this graphical picture
implies that, near to a particular pole zi, the amplitude factorizes as

An(z ∼ zi) ∼ 1
z−zi

−1
〈n|Pi|1]

∑
sAL(1̂(zi), 2, ..., i− 1,−P̂ s(zi))AR(P̂ s̄(zi), i, ..., n− 1, n̂(zi)) (2.119)

where the sum over s is over the helicities of the propagating particle between
the left and right subamplitude, and s̄ = −s. For example, in QCD, the singular
propagator may be associated either to a gluon or quark propagator going on-shell8,
and one must sum over these possible assignments. Also, one must sum over the he-
licities of the propagating particles. This is an example of the general factorization
property we found by studying the implications of the unitarity of the S-matrix,
resulting in Eq. (2.106). So, in pure Yang-Mills theory, it is a sum over s = ±1.

Now, if we consider our integrand An(z)/z and recall the value of the poles zi,
we can see that (without writing the explicit argument of the amplitudes)

ĺım
z→zi

An(z)

z
=

1

z − zi
−1

zi〈n|Pi|1]

∑
s

AsL(zi)A
s̄
R(zi)

= − 1

z − zi

∑
s

AsL(zi)
1

P 2
i

As̄R(zi)

(2.120)

which implies that

Res

(
An(z)

z
, zi

)
= −

∑
s

AsL(zi)
1

P 2
i

As̄R(zi) (2.121)

With this, we finally obtain the BCFW recursion relation

8Quark propagators will appear only if there are external quarks in the process as well
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An =
n−1∑
i=2

∑
s

AsL(zi)
1

P 2
i

As̄R(zi) (2.122)

It should be emphasized that the 1/P 2 term, although it has the algebraic form
of a propagator, is evaluated at on-shell kinematics, and does not carry any off-shell
degrees of freedom associated to the propagation of virtual particles. Basically, this
formula implies that any tree level amplitude can be constructed from the knowledge
of the 3-point amplitudes, which we already calculated based on Lorentz covariance
and locality. In the context of Yang-Mills theory, this seems to imply that only the
three gluon vertex is needed to calculate the scattering amplitudes of the theory.
Although in a sense this is true, the amplitudes must be gauge invariant, and the
four gluon vertex is needed, in order to preserve gauge invariance of the Yang-Mills
Lagrangian. However, from the point of view of the on-shell amplitudes, the three
gluon vertex captures all the information needed to construct the tree S-matrix of
the theory. In Appendix E, we apply the BCFW relations to prove the Parke-Taylor
formula.

By this point, we have seen how to organize the different degrees of freedom
of scattering amplitudes in four dimensions, focusing on the amplitudes of theories
with a gauge group. First, color decomposition allow us to separate the gauge group
information from the actual dynamics of the theories. As a second step, we intro-
duce the spinor-helicity variables to parametrize the momentum dependence of the
amplitudes, and show how these allow us to obtain highly compact expressions for
amplitudes that, in principle, are very complicated to calculate (such as the MHV
amplitudes at high multiplicity). Finally, we have shown how Lorentz invariance
determines all possible three-point amplitudes and that the unitarity and locality
of the S-matrix, allow us to construct tree amplitudes of arbitrary multiplicity by
using three-point amplitudes as building blocks in a recursive approach. Now, we
will go a step further into another aspect of gauge theory amplitudes, which will be
the final subject of this chapter: their supersymmetric extensions.

2.6. Supersymmetric gauge theories

The Coleman-Mandula theorem [40] puts severe restrictions on the possible sym-
metries of any relativistic, interacting field theory: it states that the Lie group sym-
metries must be a direct product between the Poincaré group and an internal sym-
metry group, such as isospin. This implies, in other words, that the only conserved
quantities that can appear with Lorentz indices are the Poincaré generators, P µ for
translations and Mµν for rotations and boosts.

However, the theorem does not rule out symmetry transformations whose con-
served charges carry spinor indices; these are the so-called supersymmetry trans-
formations. One particular property of a supersymmetry transformation is that it
transforms bosonic fields (scalars or vector bosons) into fermionic fields and vice
versa. Furthermore, the infinitesimal parameter of a supersymmetry transformation
is a Grassmann or anticommuting variable.
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The supersymmetry generators, Qα, Q
†
β̇
, are defined to satisfy

{Qα, Q
†
β̇
} = 2σµ

αβ̇
Pµ = 2Pαβ̇

{Qα, Qβ} = 0

{Q†α̇, Q
†
β̇
} = 0

(2.123)

where Pµ is the momentum operator, and {, } denotes an anticommutator. One
can increase the number of supersymmetry generators by considering an internal
symmetry group (which we will always take to be SU(N )) and use the set of gene-
rators

QA
α , (Q

B
β̇

)†, A,B = 1, 2, ...,N (2.124)

which satisfy

{QA
α , (Q

B
β̇

)†} = 2δABPαβ̇ (2.125)

this is known as extended supersymmetry. In four dimensions, the maximum
value of N that we can consider in order to avoid states of helicity higher than 1 is
N = 4 [41]. We will discuss this maximally supersymmetric Yang-Mills theory, or
simply N = 4 super Yang-Mills, at the end of this section

Since supersymmetry mixes the bosonic and fermionic degrees of freedom of the
field theory under consideration, one necessary (but not sufficient) condition for a
theory to be supersymmetric is that the number of bosonic degrees of freedom equals
the fermionic degrees of freedom. These requirement introduces the concept of a su-
permultiplet, which is a multiplet of bosonic and fermionic states that are connected
through supersymmetry transformations. Following [42], in order to construct these
multiples, we first consider the case of a massive state |s〉. In the rest frame, where

Pµ = (m, 0, 0, 0) (2.126)

the non-trivial anticommutation relations 2.123 read

{Qα, Q
†
β̇
} = 2mδαβ̇ (2.127)

Now, if we assume that Qα|s〉 = 0, we can easily construct the representation of
the supersymmetry algebra by acting on the state |a〉 as

|a〉, Q†1|a〉, Q†2|a〉, Q†1Q
†
2|a〉 (2.128)

that is, in the same way as the representations of two anticommuting annihila-
tion operators. If we assume that |a〉 represents a spin-j particle, the states Q†β|a〉
have spin j ± 1

2
if j 6= 0 while for j = 0 they must have spin 1

2
, Finally, the state

Q†1Q
†
2|a〉 has the same spin as |a〉, since it transforms as a singlet under right-handed

rotations. This procedure then yields (2j − 1
2

+ 1 and 2j + 1
2

+ 1 fermionic (Weyl)
states corresponding to the 2(2j + 1) bosonic states, for j 6= 0, and a set of two
scalar plus two Weyl fermion states for j = 0. In particular, this implies that, in
order to construct a consistent supersymmetric theory which includes scalar fields,
they must be complex.
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For massless states, we take the momentum to be in the frame

Pµ = (E, 0, 0, E) (2.129)

where E is the total energy of the particle. Then,

{Qα, Q
†
β̇
} = 4E

(
1 0
0 0

)
(2.130)

which implies that Q2 and Q†2 vanish for any massless representation. The only
possible states we can construct are then

|b〉, Q†1|b〉 (2.131)

and, if |b〉 has helicity λ then Q†1|b〉 has helicity λ+ 1
2
. In order to preserve CPT

invariance, one must introduce a conjugate multiplet with helicities {−λ,−λ − 1
2
}.

A particular example of a massless multiplet, which will be important for us, is the
vector multiplet with helicites

λ = {−1,−1

2
,
1

2
, 1} (2.132)

On the other hand, we are interested in gauge theories. If we want to construct
a gauge theory with supersymmetry, the complete field content of the theory must
transform in the same representation of the gauge group, which, due to the construc-
tion of the gauge field, will always be the adjoint representation. Hence, QCD cannot
be supersymmetric, since quarks transform in the fundamental representation of the
gauge group. We will first study the simplest supersymmetric gauge theory, N = 1
Super Yang-Mills (SYM) theory.

2.6.1. N = 1 SYM

In order for us to obtain a supersymmetric gauge theory, there must be both
bosonic and fermionic degrees of freedom, and all of these must transform in the
adjoint representation of the gauge group. Hence, consider a gauge group G =
SU(N). The N = 1 supersymmetric Yang-Mills theory in four dimensions can be
defined by the Lagrangian

LN=1 = −1

4
F aµνF a

µν + iλa†σ̄µDµλ
a (2.133)

where F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν is the field strength, λa is a massless

Weyl spinor transforming in the adjoint representation and the covariant derivative
acts on λ as Dµλ

a = ∂µλ
a + gfabcAbµλ

c.

The spectrum of this theory is composed of the vector multiplet, Eq. (2.132).
The particle associated to this fermionic field is generically known as a Gaugino. We
will refer to them as gluinos, which are the superpartners of the gluons.

From this point of view, it is necessary that λ satisfies the Weyl condition; that
is,

λ = ±γ5λ (2.134)
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this is because the vector field Aµ carries only the two transversal, physical
degrees of freedom, while a general spinor in four dimensions has four degrees of
freedom. The Weyl condition reduces the degrees of freedom of the spinor field by a
factor of two, and hence we have the same number of bosonic and fermionic degrees
of freedom, which are required for supersymmetry. In four dimensions, one could
also impose the Majorana condition

λ = Cλ̄T (2.135)

where C is the charge conjugation operator, which also halves the number of
fermionic degrees of freedom. However, Weyl spinors are defined to be chirality ei-
genstates, and since they must be massless for the theory to be supersymmetric,
they naturally describe helicity eigenstates, which makes them particularly well sui-
ted for the study of helicity amplitudes.

Supersymmetry Ward identities

Upon canonical quantization, the free fields can be written as plane wave ex-
pansions, in which the coefficients are creation and annihilation operators. Since
supersymmetry transforms bosonic fields into fermionic fields and vice-verse, it is
natural to expect that the supersymmetry generators Q,Q† = Q̃ have a non-trivial
action on the ladder operators. In fact, if we let a±(p) be the operator that annihila-
tes a ±1 helicity gluon with momentum p and b±(p) be the operator that annihilates
a ±1

2
helicity gluino, using the explicit form of the supersymmetry transformation,

one obtains

[Q̃, a+(pi)]± = 0, [Q, a+(pi)]± = [i|b+(pi)

[Q̃, b+(pi)]± = |i〉a+(pi), [Q, b+(pi)] = 0

[Q̃, b−(pi)]± = 0, [Q, b−(pi)]± = [i|a−(pi)

[Q̃, a−(pi)]± = |i〉b−(pi), [Q, a−(pi)] = 0

(2.136)

where [·, ·]± denotes a graded commutator, which is an anticommutator when
both arguments are fermionic, and is a commutator otherwise, and |i〉, [i| denote
helicity spinors. From this, we can see that Q̃ increases the helicity by +1

2
and Q

decreases the helicity by −1
2
.

We can define an n-point amplitude as the vacuum expectation value of n annihi-
lation operators acting on the out bra vacuum state 〈0|, with the S-matrix operator
Ŝ acting on the in ket vacuum state |0〉,

An = 〈0|O1(p1)...On(pn)Ŝ|0〉 (2.137)

where Oi(pi) denotes the annihilation operator associated to a particle of mo-
mentum pi. If we assume that the vacuum is supersymmetric, i.e. Q|0〉 = Q̃|0〉 = 0
and that the supersymmetry generators commute with the S-matrix, We find that

0 = 〈0|[Q̃,O1(p1)...On(pn)Ŝ]pm|0〉

=
n∑
i=1

(−1)
∑
j<i |Oj |〈0|O1(p1)...[Q̃,Oi(pi)]±...On(pn)Ŝ|0〉

(2.138)
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where |Oj is 0 when it is associated to a bosonic operator and −1 when it is
associated to a fermionic operator. Interpreting each of the terms in the sum as
an amplitude, we obtain linear relations, valid to all orders in perturbation theory,
between amplitudes with different external states that are linked by supersymmetry
transformations. These relations are known as supersymmetric Ward identities. For
example, letting Oi(pi) = a+(pi) for i 6= 1 and O1(p1) = b+(p1), we can use the
commutation relations (2.136) to obtain

0 = 〈0|[Q̃, b+(p1)a+(p2)...a+(pn)Ŝ]±|0〉

= 〈0|
(
|1〉a+(p1)...a+(pn)Ŝ + b+(p1)[Q̃, b+(p1)a+(p2)...a+(pn)Ŝ]±

)
|0〉

= |1〉〈0|a+(p1)...a+(pn)Ŝ|0〉
= |1〉An(g+

1 ...g
+
n )

(2.139)

from which we can see that the all-plus gluon amplitude vanishes. Since the
SUSY Ward identities are independent from perturbation theory, we can see that
in N = 1 SYM, the all-plus gluon amplitudes vanishes to all orders in perturbation
theory. From our analysis of the polarization vectors in spinor-helicity variables, we
expected this to happen at tree-level; since the coupling of gluons to gluinos is cubic,
there cannot be internal gluinos propagating on any diagram at tree-level. Hence,
this implies that gluon tree amplitudes are equal in pure Yang-Mills theory, QCD
and N = 1 SUSY. In fact, gluons can only have cubic or quartic couplings with
scalars, which means that tree amplitudes whose external states are only gluons
are equal in any Yang-Mills theory with the same gauge group, with any degree of
supersymmetry. However, the cancellations that occur due to supersymmetry are far
more powerful than the simple relations found at tree-level in Yang-Mills. Similarly,
taking Oi(pi) = a+(pi) for i 6= 1, 2, O1(p1) = a−(p1) and O2(p2) = b+(p2), we find

0 = 〈0|[Q̃, a−(p1)b+(p2)a+(p3)...a+(pn)Ŝ]±|0〉
= |1〉An(λ−1 λ

+
2 g

+
3 ...g

+
n ) + 〈0|a−(p1)[Q̃, b+(p2)a+(p3)...a+(pn)Ŝ]±|0〉

= |1〉An(λ−1 λ
+
2 g

+
3 ...g

+
n ) + |2〉An(g−1 g

+
2 ...g

+
n )

(2.140)

from which, ”dotting” the spinors 〈1| or 〈2|, we obtain, respectively

An(λ−1 λ
+
2 g

+
3 ...g

+
n ) = An(g−1 g

+
2 ...g

+
n ) = 0 (2.141)

which, again, is one of the cancellations we found from gluon amplitudes at
tree level. Moreover, since gluons have only cubic couplings with both quarks and
gluinos, the only difference between QCD gluon-quark and N = 1 SUSY gluon-
gluino amplitudes, at tree-level, is in their color factors: the gqq̄ vertex carries a
generator matrix T aij, while the gλλ̄ vertex carries a structure constant fabc. Hence,
after color decomposition, not only are gluon amplitudes in both QCD and N = 1
SUSY equal at tree-level, but gluon-quark and gluon-gluino amplitudes are equal as
well. Hence, one can consider that massless QCD is effectively supersymmetric at
tree-level.
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2.6.2. N = 4 SYM

A possible way towards obtaining other supersymmetric gauge theories is to
consider the generalization of the Lagrangian 2.133 to space-time dimensions D 6= 4.
For generalD, the number of degrees of freedom of the massless vector field is (D−2),

while a Dirac spinor in D dimensions has 2
D
2 degrees of freedom. Hence, different

supersymmetric theories can be constructed in different number of dimensions by
reducing the fermionic degrees of freedom with either Majorana or Weyl conditions
or by including scalar field to increase the bosonic degrees of freedom. One possible
case is to take D = 10. Here, both the Majorana and Weyl conditions can be applied
to the spinor field, and one obtains exactly eight bosonic and fermionic degrees of
freedom. This yields a supersymmetric theory in ten dimensions, with action

S =

∫
d10x

(
−1

4
F aµνF a

µν + iλa†σ̄µDµλ
a

)
(2.142)

In [41] [43] , it is shown that performing a dimensional reduction of the ten-
dimensional N = 1 gauge theory to four dimensions, one obtains what is known as
maximally supersymmetric Yang-Mills theory, or simply N = 4 super Yang-Mills; it
is known as maximal because it has the greatest number of possible supersymmetry
generators that don’t require the addition of particles with spin greater than one.
Denoting with ΓI the ten-dimensional representation of the Clifford algebra, the
action of N = 4 SUSY can be written as

S =

∫
d4x

[
−1

4
F a
µνF

aµν − 1
2
(Dµφ

a
I)

2 + i
2
ψ̄a /Dψa + g

2
ψ̄aΓI [φI , ψ]a + g2

4
([φI , φJ ]a)2

]
(2.143)

where all fields transform in the adjoint representation of the gauge group, ψa

are Majorana-Weyl spinors and φaI is a set of real scalar fields with an SO(6) interal
symmetry index I = 1, ..., 6 that allows to obtain a Lorentz invariant coupling of
the extra components of the Clifford algebra that remain after performing the di-
mensional reduction. These six scalars can also be arranged in the antisymmetric
two-index representation of SU(4), ϕAB = −ϕBA subject to the self-duality condi-
tion ϕ̄AB = 1

2
εABCDϕ

CD. This simplifies the description of the theory, because the
N = 4 supersymmetry generators transform in the fundamental representation of
SU(4).

On-shell superspace, superfields and superamplitudes

The spectrum of N = 4 SUSY can be organized in terms of the representation
of SU(4) under which they transform. Specifically, we have a positive helicity gluon
g+ transforming in the trivial representation and a negative helicity gluon g− trans-
forming in the totally antisymmetric four index representation; the positive helicity
gluinos λA that transform in the 4 representation and the negative helicity gluinos
λABC ∼ λ̄D transforming 4̄ representation, and six scalars SAB transforming in the
totally antisymmetric 2-index representation. These states can all be organized in
what is known as a superfield. In order to do this, one introduces the Grassmann
variables ηA which transform in the fundamental representation of SU(4). The su-
perfield is defined as
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Ω = g+ + ηAλ
A − 1

2!
ηAηBS

AB − 1

3!
ηAηBηCλ

ABC + η1η2η3η4g
− (2.144)

in the previous equation, one must think of each state, say g+ or SAB as repre-
senting the creation or annihilation operator associated to each external particle.
Hence, what we are doing essentially is to introduce the Grassmann variables ηA in
order to describe the states of the theory in terms of SU(4) invariants. Moreover,
assigning helicity +1

2
to all the Grassmann variables, we can see that the superfield

have uniform helicity +1. The signs in each of the term of the superfield are cho-
sen so that the differential operators 1, ∂A, ∂A∂B, ∂A∂B∂C , ∂1∂2∂3∂4, acting on the
superfield, extract the correct component with the corresponding number of indices
after setting ηA = 0.

The supersymmetry generators (2.125) can be realized in terms of spinors and
Grassmann variables as

qAa = [p|a ∂

∂ηA
, q†ȧA = |p〉ȧηA (2.145)

These realization of the supersymmetry generators, along with the superfield
description of the states, is known as the on-shell superspace of N = 4 SUSY.

The most important use of superfields is that the allow us to define objects known
as superamplitudes. If we let Ωi = Ω(pi) be a superfield (or superwavefunction)
associated to the i− th external particle, we can define a superamplitude as

ASn[Ω1, ...,Ωn] ≡ 〈0|Ω1, ...,ΩnS|0〉 (2.146)

The object ASn is then a function of the on-shell momenta pi of the external
particles and the Grassmann variables associated to each superfield, ηiA. In parti-
cular, the superamplitude will be a polynomial in the Grassmann variables, and the
coefficients in the expansion of the superamplitude in terms of the Grassmannians
are the amplitudes whose external states come from the spectrum of N = 4 SUSY;
these are also known as component amplitudes, and correspond to the amplitudes
we have been calculating and whose properties we have studied so far. Moreover,
in order to have external states that combine to a SU(4) singlet, the Grassmann
polynomial whose coefficient is an NKMHV amplitude must be of degree 4(K+ 2).

Component amplitudes can be obtained from the superamplitudes using deriva-
tive operators; for example, the MHV gluon amplitude can be calculated from the
superamplitude as

An[g+
1 , ..., g

−
i , ..., g

−
j , ...g

+
n ] =

(
4∏

A=1

∂

∂ηiA

)(
4∏

B=1

∂

∂ηjB

)
ASn[Ω1, ...,Ωn]ηkc=0 (2.147)

The fact that the theory is supersymmetric is reflected on the superamplitudes
by their vanishing under the action of the supercharges
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QA =
n∑
i=1

qAi =
n∑
i=1

[i| ∂
∂ηA

Q̃A =
n∑
i=1

q†iA =
n∑
i=1

|i〉ηiA
(2.148)

Similarly to the way in which the Lorentz invariance of regular amplitudes is
implemented through a momentum conservation delta function, the vanishing of
the superamplitudes under the action of the supercharges can be implemented by
defining a supermomentum conservation delta function

δ8(Q̃) =
1

24

4∏
A=1

Q̃AȧQ̃
ȧ
A

=
1

24

4∏
A=1

n∑
i,j=1

〈ij〉ηiAηjA

(2.149)

Then, since this delta function already has degree two in the Grassmann varia-
bles, the term of the superamplitude which corresponds to the NKMHV sector can
be written as

AS NKMHV
n = δ8(Q̃)P (4K)

n (2.150)

where P
(4K)
n is a degree 4K polynomial in ηiA. For example, the superamplitude

associated to the MHV amplitudes is given by

AS MHV
n (1, ..., n) =

δ8(Q̃)

〈12〉〈23〉...〈n1〉
(2.151)

Finding the superamplitude would allow one to calculate any amplitude in the
theory by calculating derivatives with respect to the Grassmann variables. In Chap-
ter 4, we will introduce the so-called connected formalism, which allows for the
calculation of the superamplitude in terms of integrals localized on the solutions to
rational equations, which happen to be exactly the four dimensional version of the
scattering equations.



The scattering equations

Let Φn be the momentum configuration space of n on-shell massless particles,

Φn = {(p1, p2, ..., pn) ∈ (CM)n|
∑
i

pi = 0, p2
i = 0, ∀i ∈ {1, 2, ...n}} (3.1)

where CM is the space of complex-valued, D-dimensional momenta. Using the
elements of this configuration space, we can construct the Mandelstam invariants
Si1...ir = (pi1 +...+pir)

2, which are the variables that the Lorentz-invariant scattering
amplitudes will depend on.

In the previous chapter, we have studied various properties of scattering ampli-
tudes in four dimensional spacetime. We found that, for massless particles, we can
define the spinor-helicity variables to encode all the kinematic dependence of the am-
plitudes. This is particular to four dimensions, because the little group of massless
particles, SO(2), is an Abelian group and it is straightforward to define quantities
with definite transformation properties under the action of the little group (which
amounts to knowing how the states change under Lorentz transformations). Further-
more, singularities of the amplitudes, which give the information on their analytic
structure, are captured in the spinor products.

Recall the Parke-Taylor formula, Eq. (2.62),

An(1−...i+...j+...n−) =
〈ij〉4

〈12〉〈23〉...〈(n− 1)n〉〈n1〉
(3.2)

and consider the following parametrization of the spinors, λiα = (zi, 1), which
is always possible due to little group scaling. In these special variables, the spinor
products take a particularly simple form

〈ij〉 = zi − zj ≡ zij (3.3)

The momenta associated to these spinors is then written as

kµi =
1

2
(1 + |zi|2, zi + z̄i,−i(zi − z̄i), 1− |zi|2) (3.4)

which is easily seen to satisfy the on-shell condition k2
i = 0. Choosing the refe-

rence spinors to have a similar form, that is, λqα = (zq, 1), the polarization vectors
can be written similarly, for example

47
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εµi,+ =
1

2
(1 + zqz̄i, zq + z̄i,−i(zq − z̄i), 1− zqz̄i) (3.5)

In these variables, the Parke-Taylor formula takes a particularly simple form

An(1−...i+...j+...n−) =
z4
ij

z12z23...zn1

(3.6)

Then, we can think of the amplitude as a function of several complex variables on
Cn. In terms of the z variables, the statement of momentum conservation becomes∑

i

zi = 0 (3.7)

that means that the amplitude is defined on the hyperplane of Cn defined by
Eq.(3.7). Moreover, from the denominator structure of Eq.(3.5), we can see that the
poles of the amplitude occur when zk → zm for k 6= m, and the associated residue
would be the Parke-Taylor amplitude for (n − 1) particles, defined in Cn−1, along
the deformed hyperplane

2zm +
∑
i 6=k,m

zi = 0 (3.8)

This is a very simple characterization of the singularities that the amplitudes
possesses. However, MHV amplitudes have the particular property that they only
have two-particle poles: that is, their only singularities occur when a kinematic
invariant sij goes on-shell. However, more complicated amplitudes can have multi-
particle poles, associated to the invariant si1...ik going on-shell. Characterizing the
singularities of an amplitude is difficult in terms of the Mandelstam invariants;
however, we have seen that the variables zi provide a simple way in which we can
describe the singularity structure of scattering amplitudes. The natural question
that arises is if it is possible to find a set of variables that enjoy similar properties
to those that the zi have in four dimensions, but in arbitrary spacetime dimensions,
and how they are related to the space of kinematic invariants. In this chapter, we
introduce the scattering equations, which provide a map from Φn to the moduli space
of n-punctured Riemann spheres and show that they encapsulate all the physical
properties of amplitudes in terms of the punctures over the Riemann sphere, through
the study of their singularities.

3.1. Mapping of momentum space to the Riemann

sphere

Consider a Riemann sphere, the set defined by Ĉ = C ∪ {∞}. A puncture is a
specific point that is taken out of a set. When we talk about n-punctured Riemann
spheres, we refer to the set Ĉ/{z1, ..., zn} for some specific choice of the points
z1, ..., zn. Thus, a punctured sphere is defined by the position of its punctures. In
order to find a map from the momentum configuration space to the Riemann sphere,
we must find a function that takes momentum invariants into the punctures. One
simple way to this is given by Cauchy’s theorem,
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pµi =
1

2πi

∮
|z−zi|<δ

dz ωµ (3.9)

where i = 1, 2, ...n, labels the external momenta. Here, δ defines a contour on Ĉ
that surrounds the puncture zi and,

ωµ =
n∑
i=1

pµi
z − zi

(3.10)

The map provided by Eq. (3.9) would not work if it had a pole at infinity, because
its residue at z = zi would not be pi. However, by deforming the contour, one can see
that the residue at infinity is simply the sum of all the residues at the n punctures,
which is equal to the sum of the external momenta. This sum, of course, vanishes
due to momentum conservation. On the other hand, each external momenta must
satisfy the on-shell condition p2

i = 0; this allows one to obtain a constraint on ωµ.
We can calculate the contraction

F = ωµωµ

=
n∑
i=1

n∑
j=1
j 6=i

pi · pj
(z − zi)(z − zj)

(3.11)

Then, since F (z) is proportional to p2
i , it must vanish everywhere; in order for

this to happen, all its residues must vanish, and we can see that F has both simple
and double poles. The residue at a double pole z = zi is simply p2

i , which is zero
because of the on-shell conditions. The absence of simple poles yields a non-trivial
constraint,

0 =
1

2πi

∮
|z−zi|≤δ

dzF (z)

=
n∑
j=1
j 6=i

pi · pj
zi − zj

(3.12)

which must hold for 1 ≤ i ≤ n. Hence, we define

fi(z, p) =
∑
j 6=i

sij
zij

(3.13)

where sij = (pi+pj)
2 = 2pi ·pj and zij = zi−zj. For a fixed set of momenta, that

is, for a fixed n-tuple p ∈ φn, the scattering equations are the system of equations
which comes from the constraint of having vanishing residue at the simple poles,
and are defined by

fi(z, p) = 0, 1 ≤ i ≤ n (3.14)

The scattering equations were first introduced in [44] by Fairlie, while looking for
an alternative way to calculate amplitudes in the so-called dual models (what would
after some time become string theory) in the Veneziano model such that it would be
free of tachyons. Afterwards, they appeared in the work of Gross and Mende [45],
[46] as the solutions to the saddle-point integrals that govern high-energy string
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scattering. The system (3.14) was given the name of the scattering equations by Ca-
chazo, He and Yuan [11], who found them to generalize the RSV formula constraints
to arbitrary spacetime dimension, and their properties were subsequently studied in
the series of papers [12], [13], [14] by the same authors.

The scattering equations form the backbone of the so-called CHY representation
of tree-level amplitudes, which is our main object of study. The idea of the CHY
formalism is to write closed formulas for amplitudes in arbitrary dimension, locali-
zed to the solutions of the scattering equations. This is because, as we will show,
the scattering equations contain all the information on the analytic structure of the
scattering amplitudes and have factorization properties that mirror, in a sense, those
of the amplitudes. However, we must understand in what sense the equations ”fac-
torize”. We will also explore some its properties as well as its solutions. But before,
let us see how can be generalized to the case of massive momenta. Also, we will
see the form the scattering equations take in four dimensions, in terms of helicity
spinors.

Generalizations to massive particles

Now, assume that the on-shell momenta of the external particles may be massive,
that is, p2

i = m2
i . In this case, the Mandelstam invariants sij do not take the simple

form of the product 2pi · pj, which have implicitly used throughout our previous
treatment of the scattering equations. This means that the numerator of each term
in the scattering function fi(z, p) must be modified, in order to account for the
fact that the momenta may not be massless. As first proposed in [47], one possible
generalization of the scattering equations is defined by setting

fmassi (z, p) =
∑
j 6=i

2pi · pj + ∆ij

zij
= 0 (3.15)

where the constants ∆ij are symmetric with respect to its indices, ∆ij = ∆ji and
satisfy the constraints ∑

j 6=i

∆ij = 2m2
i (3.16)

There is no unique way to choose the constants ∆ij. One particular election of
these constants, which we will use when discussing the CHY representation of QCD
amplitudes, is to take

∆qiq̄i = m2
qi

(3.17)

and the remaining constants equal to zero. Here qi denotes the label of a quark
with mass mqi and q̄i the label of its corresponding antiquark.

As long as the constants ∆ij are chosen to satisfy the constraints of symmetry and
Eq.(3.16), these will enjoy the same properties of the massless scattering equations,
which we derive in the next few paragraphs.
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Scattering equations in 4D

The scattering equations have a natural reduction to four dimensions, which was
first studied in [48] and then exploited in [49] to obtain a four dimensional version
of the CHY representation for Yang-Mills theory.

Since we are working in four dimensions, it is natural to solve the equations in
terms of helicity spinors. Now, recall that we have derived the scattering equations,
from the condition that the square of the polynomial P (z) vanishes (which amounts
to demanding that we map the whole of CP1 to the null cone in momentum space).
In four dimensions, this is equivalent to the existence of spinors λ(z), λ̃(z), such that

Pαα̇(z) = λα(z)λ̃α̇(z) (3.18)

This means that scattering equations in four dimensions can be written as a set
of equations determining the punctures in terms of the spinors associated to the
external momenta. This can be achieved in two different ways, related to each other
by a linear transformation. The first one is a set of polynomial equations of degree
d = 1, ..., n− 3:

n∑
i=1

tiσ
m
i λ̃

α̇
i = 0, m = 0, 1, ..., d,

λαi − ti
d∑

m=0

ραmσ
m
i = 0, i = 1, ..., n

(3.19)

in the variables σi and ti for i = 1, 2, ..., n and ραm for m = 0, ..., d. These equations
decompose into (n − 3) sectors labelled by d, which are in a one-to-one correspon-
dence with the helicity sector K = d−1 of amplitudes in the NKMHV classification.

The second form of the equations involves a rational set of equations, in which
one divides the n particles in the process into two sets of K and n − K particles,
respectively. This form of the scattering equations reads

λ̃α̇I −
n∑

i=K+1

titI λ̃
α̇
i

σI − σi
= 0, I = 1, .., K

λαi −
K∑
I=1

titIλ
α
I

σI − σi
= 0, i = K + 1, .., n

(3.20)

These forms of the scattering equations can be used to write closed formulas for
the superamplitudes of N = 4 SUSY, through the Roiban-Spradlin-Volovich (RSV)
formula, which was derived from the twistor string formalism of Witten [19] [20].
Since the constraints Eqs. (3.19),(3.20) are equivalent to the scattering equations, the
RSV formula provides a CHY representation for superamplitudes in four spacetime
dimensions. We will introduce this formalism in Chapter 4.
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3.2. Properties of the scattering equations

The scattering equations (3.14) are invariant under Möbius or SL(2,C) trans-
formations; that is, under transformations of the form

zi → ζi =
azi + b

czi + d
, ∀i (3.21)

where ad−bc = 1 in the sense that, if z = (z1, ..., zn) is a solution to the scattering
equations, then ζ = (ζ1, ..., ζn) will also be a solution. To show this, we note that

ζi − ζj =
azi + b

czi + d
− azj + b

czj + d
=

zi − zj
(czi + d)(czj + d)

(3.22)

where the condition ad− bc = 1 has been used. This implies

fi(ζ, p) =
∑
j 6=i

(czi + d)(czj + d)sij
zij

= (czi + d)

[
c
∑
j 6=i

zjsij
zij

+ dfi(z, p)

]

= c(czi + d)
∑
j 6=i

[−zij + zi]sij
zij

= c(czi + d)

[
−
∑
j 6=i

sij + zifi(z, p)

]

= c(czi + d)

(
−2pi ·

∑
j 6=i

pj

)
= c(czi + d)(−2p2

i ) = 0

(3.23)

where we have used fi(z, p) = 0, conservation of momentum and the fact that,
for massless particles, sij = 2pi · pj. This means that, out of the n equations, only
(n− 3) are actually independent. This is reflected on the additional conditions 1,

∑
i

fi(z, p) = 0,
∑
i

zifi(z, p) = 0,
∑
i

z2
i fi(z, p) = 0 (3.24)

which can be easily proved algebraically. The first one

∑
i

fi(z, p) = 0 (3.25)

is a simple consequence of the fact that zji = −zij. On the other hand, we can
see that

1Which can be seen to be direct consequences of SL(2,C) invariance, by considering an infini-
tesimal Möbius transformation
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∑
i

zifi(z, p) =
∑
ij

zisij
zij

=
∑
ij

1

2

(zi + zi)sij
zij

=
1

2

∑
ij

(
zisij
zij

+
zjsji
zji

)
=

1

2

∑
ij

zijsij
zij

=
1

2

∑
ij

sij

=
1

2

∑
i

2pi ·

(∑
j 6=i

pj

)
= −

∑
i

p2
i = 0

(3.26)

where, in the third line, we have exchanged the indices i, j and in the fourth
line we have used the symmetry of the kinematic invariants, sij = sji, and the re-
lation zji = −zij. Finally, we have used momentum conservation and the on-shell
conditions on the momenta. The remaining relation with z2

i is obtained in analogous
fashion. These three conditions imply that we have more equations than variables
to solve for and, in practice, will allow us to fix the values of three of the punctures.

We can show that the massive scattering equations, Eq. (3.15) are also SL(2,C)
invariant, provided the condition Eq. (3.16) holds. Under the transformation Eq.
(3.22), fmassi (z, p) transforms as

fmassi (ζ, p) = (czi + d)2fmassi (z, p)− c(czi + d)
∑
j 6=i

(2pi · pj + ∆ij) (3.27)

hence, if the equations fmassi = 0 are SL(2,C) invariant, the second term must
vanish. Since ∑

j 6=i

2pi · pj = −2p2
i = −2m2

i (3.28)

we find that the equations are indeed invariant if Eq. (3.16) is satisfied.

It is clear from the fact that the scattering equations are invariant under a
continuous set of transformations that they have an infinite number of solutions.
However, a very large amount of them are related to each other by a Möbius trans-
formation and, in fact, there is a finite number of solutions which are not related
by SL(2,C) transformations; these are known as inequivalent solutions. In the follo-
wing paragraphs, we will study the behaviour of the scattering equations on different
factorization channels. We will first focus on soft limits and use them to determine
the number of inequivalent solutions for a given n and then consider how the system
factorizes on more general singularities.
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3.2.1. Singular kinematic behaviour of the scattering equa-
tions

As we have discussed in Chapter 2, an amplitude of massless particles develops a
singularity when a kinematic invariant si1...ik vanishes. When approaching this singu-
larity, the amplitude factorizes into smaller amplitudes due to its analytic structure.
This implies that, if the scattering equations serve as building blocks upon which
one can construct scattering amplitudes, they must have special properties in these
singular kinematic configurations which mirrors in some sense those of the amplitu-
des. We have mentioned that the scattering equations factorize when approaching
a pole of the amplitude, but, what do we understand as factorization of the system
of equations? As we will see, the physical factorization of amplitudes is reflected on
the scattering equations by decoupling them, in the sense that the complete set of
equations separates into independent subsets of equations for the punctures associa-
ted to the different subset of particles that are compose the lower-point amplitudes
that appear in the residues of the n-point amplitude

As a first step towards showing that this is indeed the case, which will also be of
particular interest to us throughout this thesis, let us consider one special singular
configuration: the limit when one of the external particles is emitted with a soft
momenta, by which we mean that |pn| << |pi|, where we take the soft particle to
have the label n and i = 1, ..., n−1. The fact that the scattering equations decouple
in the soft limit was first discovered in [12].

Soft limit of the scattering equations

Suppose that, in some n particle scattering event, the momentum of the n-th
particle obeys pn → 0. One way to parametrize this soft limit is to write pn = εP ,
for some arbitrary D-momentum P and consider the limit ε → 0. In this limit, we
find

fi(z, p) =
∑
j 6=i,n

sij
zij

+ ε
sin
zin

= 0 (3.29)

for i 6= n. Then, the leading order (in ε) term of each of these equations is nothing
more but the associated scattering equation which describes a process with (n− 1)
external particles. On the other hand, the remaining equation is

fn(z, p) = ε
∑
j 6=n

snj
znj

= 0 (3.30)

which is solved by setting either ε = 0 or the remaining term equal to zero. The
interesting point is that, for ε → 0, the system fi = 0 for i 6= n becomes indepen-
dent of zn. Therefore, the equation fn = 0 decouples from the original system and
can be converted into a polynomial equation for zn, where the coefficients of this
polynomial depend on the momenta and the remaining punctures zi, i = 1, ..., n−1.
Rationalizing and using momentum conservation, one can show that this polynomial
equation is of degree (n− 3). Hence, there are (n− 3) complex roots for zn. Hence,
in this singular kinematic configuration, the scattering equations exhibit properties
akin to those of the amplitude: as anticipated, they ”factorize”, in the sense that the
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information on the momenta of the hard particles decouples from the information
on the kinematics of the soft emitted particle. This is an indication that the scatte-
ring equations should have similar properties to those of the amplitudes in general
factorization channels. Before showing that this is in fact true, let us consider how
the soft limit behaviour of the scattering equations allow us to deduce its number
of independent solutions.

As we have argued, once we take the soft limit, the equation associated to the
soft momenta decouples from the rest of the equations, and becomes a polynomial
equation of degree (n− 3). This means that, if we let Nn be the number of solutions
to the original system and Nn−1 the number of solutions to the system of (n − 1)
scattering equations, we see that the total number of solutions in the soft limit is
given by

Nn = (n− 3)×Nn−1 (3.31)

This defines a recursion relation for the number of solutions Nn, which is easily
solved in terms of N4, the number of solutions to the scattering equations with four
external particles, as

Nn = (n− 3)!×N4 (3.32)

Moreover, since the scattering equations obey the additional constraints Eq.(3.24),
there is only one independent equation for n = 4 and, as we will show explicitly when
we derive some particular solutions to the scattering equations, this equation has
only one independent solution. This implies that, for an arbitrary number of exter-
nal particles n, the scattering equations have (n − 3)! independent solutions. Also,
as shown in [12], the factorization in soft limits provide an algorithm to find appro-
ximate solutions to the scattering equations.

General factorization channels

Now, we consider a general multiparticle singularity. Without loss of generality,
we consider the factorization channel defined by the invariant

s1,..,nL = (p1 + ...+ pnL)2 ≡ sL (3.33)

where 2 ≤ nL ≤ n − 2. This defines a partition of the set {1, 2, ..., n} into two
sets, namely L = {1, 2, ..., nL} and R = {nR, ..., n} where nR = n − nL. We want
to study the behaviour of the scattering equations when sL → 0. We follow the
discussion in [50].

In order to describe the solutions to the scattering equations in this factorization
channel, the punctures are also split into two sets,

zi =
χ

ui
, i ∈ L

zi =
vi
χ
, i ∈ R

(3.34)
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Thus, we introduce a new variable χ and solve for the ui, vi and χ. Since SL(2,C)
invariance allows us to fix three of the solutions, the introduction of this new variable
allows us to fix one further value, which we may take to be two of the u’s and two
of the v’s. This means that we will take χ as a variable whose value is determined
by solving the scattering equations.

Now, recall our discussion of the Parke-Taylor amplitude at the beginning of the
chapter. Introducing the parametrization of the spinors λi = (zi, 1), we argued that
all singularities of the amplitudes occurred when two or more of the z variables where
equal to each other. Hence, if the scattering equations are to provide a mapping
from momentum space to the Riemann space that correctly maps the kinematic
singularities of the amplitudes, we expect that there will be solutions where χ→ 0,
so that every puncture associated to the particles whose Mandelstam invariant goes
on-shell is equal. To check that this is indeed the case, we will assume that χ is a
small number and study the behaviour of the scattering equations as an expansion
in χ. To this end, we consider the scattering equations with i ∈ R. In general, these
will be given by

fi∈R =
∑
j 6=i

sij
zij

=
∑
j∈L

sij
vi
χ
− χ

ui

+
∑
j∈R
j 6=i

sij
vi
χ
− vj

χ

= χ
∑
j∈R
j 6=i

sij
vi − vj

+
∑
j∈L

sij
vi
χ
− χ

ui

(3.35)

Now, rewriting the denominator of the second term, we can expand around χ = 0

1
vi
χ
− χ

ui

=
χ

vi

1

1− χ2

uivi

=
χ

vi

(
1 +

χ2

uivi
+ ...

)
=
χ

vi
+

χ3

uiv2
i

+ ...

(3.36)

hence, to subleading order in χ, setting fi∈R = 0, we obtain the equation

χ
∑
j∈R
j 6=i

sij
vi − vj

+
χ

vi

∑
j∈L

sij + χ3
∑
j∈L

sij
v2
i ui

= 0 (3.37)

From this equation we can see that there is, indeed, a solution for χ = 0. Beyond
the leading order in χ, one can also have solutions were χ 6= 0; these correspond to
the fact that the factorization of scattering amplitudes when an arbitrary propaga-
tor goes on-shell is a phenomenon that only occurs at leading order, that is, when
we say that amplitudes factorize along a kinematic singularity, we mean that the
residue associated with the pole at, say, sL = 0 is a product of lower point amplitu-
des. However, we should not expect this to happen at higher orders in the Laurent
expansion.
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Now, we must check that the original equations do decouple, as in the case of the
soft limits, into two sets, each associated with the particles in L and R, respectively.
To do this, we first consider Eq. (3.37) at leading order in χ, that is

χ
∑
j∈R
j 6=i

sij
vi − vj

+
χ

vi

∑
j∈L

sij = 0

χ

2
pi · pL
vi

+
∑
j∈R
j 6=i

sij
vi − vj

 = 0

(3.38)

where we defined pL =
∑

j∈L pj. If we associate the puncture vL = 0 to the
momentum pL, we find that the term in brackets is exactly the system of scatteri-
ng equations for the punctures associated to the particles in R plus an additional
particle, which we can expect to find from our discussion of unitarity and the op-
tical theorem: when we approach a singularity, the amplitude factorizes into two
lower-point amplitudes which are connected by a ”propagator”, and each of the pro-
duct amplitudes sees that propagator as an external, on-shell particle. In analogous
fashion, one can show that the remaining scattering equations decouple at leading
order, which results into two independent sets of equations, each of them descri-
bing a lower-point amplitude. This is the essential property which suggests that the
scattering equations can be used to describe scattering amplitudes in any number
of dimensions.

3.3. Polynomial form of the scattering equations

The scattering equations (3.14) are a deceptively difficult system of equations.
The first natural step to perform if we wanted to solve them would be to convert
them into polynomial equations for the punctures. This procedure can be realized in
a general form. as shown by Dolan and Goddard [16], who found a system of equa-
tions equivalent to (3.14) which is known as the polynomial form of the scattering
equations. To state these polynomial equations, define I = {1, 2, ..., n} and consider
a subset S ⊆ I. Then, if we let

PS =
∑
i∈S

pi, zS =
∏
i∈S

zi (3.39)

where for completeness we let P∅ = 0 and z∅ = 1 for the empty set ∅. For
1 ≤ m ≤ n, we can define the polynomials

hm(z, p) =
1

m!

∑
S⊂I,|s|=m

P 2
SzS (3.40)

That is, we take all subsets of I with m elements, and then sum over the product
of their corresponding P 2

S and zS. From this definition, it becomes evident that each
polynomial hm is a homogeneous function of degree m. Moreover, each polynomial
is linear in each different puncture; that is,
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∂2hm
∂z2

j

= 0, ∀m, j = 1, ..., n (3.41)

Furthermore, it is easy to see that the polynomials h1, hn−1 and hn are identically
zero, using momentum conservation and the on-shell conditions. For 2 ≤ m ≤ n−2,
the system of the scattering equations is equivalent to solving

hm(z, p) = 0 (3.42)

where, as before, we solve for the puncture z given a configuration of momenta
specified by p. This form of the equations also allows to determine the number of
inequivalent solutions to the scattering equations due to Bézout’s theorem, which
states that the number of solutions to a system of polynomial equations is bounded
by the product of its degrees. From the definition of the polynomials hm(z, p), one
can see that this bound is (n − 3)!. Moreover, since the punctures zi are different
for non-singular kinematics, the equations exactly saturate the bound of Bézout’s
theorem, confirming our analysis using the soft limit.

3.3.1. Overview of the equivalence

It is an interesting exercise to see how to derive (3.42) from (3.14). To start with,
define

gm(z, p) =
n∑
i=1

zm+1
i fi(z, p) (3.43)

For m ≥ 2, the function gm is a polynomial of degree m in zi. Note that, for the
particular values m = −1, 0, 1, gm vanishes identically due to (3.24). Now, using a
similar strategy to the one we used to prove these identities, we can write

gm(z, p) =
n∑

i,j=1
i 6=j

pi · pjzm+1
i

zi − zj

=
1

2

n∑
i,j=1
i 6=j

pi · pj
zm+1
i − zm+1

j

zi − zj

=
1

2

n∑
i,j=1
i 6=j

pi · pj
m∑
r=1

zri z
m−r
j

(3.44)

Now, if we let −1 ≤ m ≤ n − 2 and define the n × n matrix with entries
Zmi = zm+1

i , we can write (3.43) as the matrix equation gm = Zmifi. Furthermore,
since Zmi is nothing else but a Vandermonde matrix2, it has the determinant

detZ =
n∏
i<j

(zi − zj) (3.45)

2A Vandermonde matrix is an n×n matrix whose rows are the values of a geometric progression
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which is non-singular since zi 6= zj for i 6= j. Hence, imposing the scattering
equations fi(z, p) = 0 imply that gm(z, p) = 0 for all values of m, which then yields
a polynomial system of equations equivalent to (3.14). Now, let m = 2. We can see
that, for example,

g2(z, p) =
n∑

i,j=1
i 6=j

pi · pjz2
i +

1

2

n∑
i,j=1
i 6=j

pi · pjzizj

=
∑
j 6=i

pj ·

(∑
i

piz
2
i

)
+

1

2

n∑
i,j=1
i 6=j

pi · pjzizj

= −
∑
i

p2
i z

2
i +

1

2

n∑
i,j=1
i 6=j

pi · pjzizj

=
1

2

n∑
i,j=1
i 6=j

pi · pjzizj

=
1

4

n∑
i,j=1
i 6=j

(pi + pj)
2zizj

= h2(z, p)

(3.46)

where the first term in the sum vanishes due to the on-shell conditions and we
obtain the squares of the momenta using momentum conservation to evaluate the
sum over j. This construction can be generalized to arbitrary 2 ≤ m ≤ n− 2, and,
as shown in [16], yield the relations

hm(z, p) = 2
m∑
r=1

(−1)rgr(z, p)Σm−r (3.47)

where

Σr =
∑
S∈I
|S|=r

zS (3.48)

that is, Σr is the product of all the z’s whose indices are in the subset S of I.
Then, since the scattering equations fi = 0 are equivalent to gr = 0, then they are
also equivalent to the condition hm = 0 due to Eq. (3.47), which are just Eq.(3.42).

3.4. Particular solutions

Now, we turn to the problem of solving the scattering equations, in either the
standard (3.14) or polynomial (3.42) form. This is important because, as we have
mentioned, the CHY representation will give us formulas for amplitudes in terms
of integrals localized into the solutions to the scattering equations, which means
that, in practice, we will define some quantities which depend on the punctures and,
in order to obtain the amplitude, we will need to evaluate those functions on the
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solutions. We will consider only the simplest of cases, which are with n = 4 and
n = 5 external particles, and we will see how both forms yield the same solutions.
We do not consider the case n = 3 because, in this case, the SL(2,C) constraints
imply that the system can be solved by any arbitrary values of z1, z2 and z3 as long
as z1 6= z2 6= z3. For higher multiplicity, this means that we will fix the values of
three of the punctures and solve for the remaining punctures. In all cases, we will
fix z1 = 1, zn−1 = 0 and zn =∞.

3.4.1. Solution for n=4

The scattering equations (3.14) for n = 4 external, massless particles are given
by

fi(z, p) =
4∑
j 6=i

sij
zij

(3.49)

Now, consider the particular set of equations obtained when we fix z1 = 1, z3 = 0
and z4 = ∞. With this choice for the fixed punctures, it is clear that f4 vanishes
identically for any finite value of z1, z2 and z3. On the other hand, the remaining
equations are

f1(z, p) =
∑
j=2,3

s1j

z1 − zj

=
s12

1− z2

− s13 = 0,

(3.50)

f2(z, p) =
∑
j=1,3

s2j

z2 − zj

=
s12

z2 − 1
+
s23

z2

= 0

(3.51)

and, the last one,

f3(z, p) =
∑
j=1,2

s3j

z3 − zj

=
s31

z3 − z1

+
s32

z3 − z2

= −s13 −
s23

z2

= 0

(3.52)

which has the solution z2 = − s23
s13

. This value can also be seen to be a solution to
the other two equations, become an equation for z2, using momentum conservation
and the on-shell conditions.

We will now obtain this solution using the polynomial form of the scattering
equations, 3.42. In this case, there is only one polynomial equation, and the first
step is to write down the polynomial h2(z, p) explicitly. In order to do this, we first
identify all the subsets of {1, 2, 3, 4} which contain two elements. The number of this
subsets is

N2 =
4!

2!(4− 2)!
= 6 (3.53)
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which is just the binomial coefficient. These are given by {1, 2}, {1, 3},{1, 4},
{2, 3},{2, 4} and {3, 4}. Then,

h2(z, p) = s12z1z2 + s13z1z3 + s14z1z4 + s23z2z3 + s24z2z4 + s34z3z4 (3.54)

Now, we first fix the values z1 = 1 and z3 = 0. These yields the partially fixed
polynomial

h2(z, p) = s12z2 + s14z4 + s24z2z4 (3.55)

we can set this polynomial equal to zero, and solve for z2 to obtain

z2 = − s14z4

s12 + s24z4

(3.56)

From this, we see that, for every value we take of z4 we obtain a different value of
z2. However, this is not a problem because we expect the scattering equations to have
an infinite set of solutions, related to each other through SL(2,C) transformations.
In particular, if we let z4 =∞, we obtain

z2 = −s14

s24

= −s23

s13

(3.57)

where we used momentum conservation in the last equality. This is nothing but
the same solution we found when using the original form of the scattering equations.

3.4.2. Solution for n=5

Now, we will solve the scattering equations for five external particles using the
polynomial form of the scattering equations.

We need to determine the two polynomials h2 and h3, which after being set to
zero, will be the equations to solve. Hence, we must find the number of distinct
subsets with two and three elements of the set {1, 2, 3, 4, 5}. Simple combinatorics
show that there are 10 of each kind of subsets. The two-element subsets are

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3}
{2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

(3.58)

while the subsets with three elements are given by

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5}
{1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

(3.59)

Then, using the definition 3.40, we can write

h2 =s12z1z2 + s13z1z3 + s14z1z4 + s15z1z5 + s23z2z3

+s24z2z4 + s25z2z5 + s34z3z4 + s35z3z5 + s45z4z5

(3.60)

For h3, we would find terms of the form s123z1z2z3, involving three-particle inva-
riants. However, using momentum conservation we can see that, for example,
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s123 = (p1 + p2 + p3)2

= (p4 + p5)2

= s45

(3.61)

which yields a term z1z2z3s45. Then, h3 is a polynomial with terms of the form
zizjzkslm, where, if we think of the labels as a set, {i, j, k, l,m} = {1, 2, 3, 4, 5}.
Then,

h3 =s12z3z4z5 + s13z2z4z5 + s14z2z3z5 + s15z2z3z4 + s23z1z4z5

+s24z1z3z5 + s25z1z3z4 + s34z1z2z5 + s35z1z2z4 + s45z1z2z3

(3.62)

Now, we use our values for the fixed punctures z1 = 1, z4 = 0 and z5 = ∞.
In order to implement the value z5 = ∞ in a consistent manner, we note that the
equations hm = 0 for m = 2, 3 are equivalent to the equations hm

z5
= 0 for any non-

zero value of z5. Hence, we divide each equation by z5 and take the limit z5 → ∞
in the resulting equations. These results in the system of equations

h′2 = s25z2 + s35z3 + s13 = 0

h′3 = s34z2 + s24z3 + s14z2z3 = 0
(3.63)

Solving for z3 in the equation h′2 = 0, we find

z3 = −s13 + s25z2

s35

(3.64)

which, upon substitution in h′3 = 0 yields the quadratic equation for z2

s14s25z
2
2 + (s13s14 + s24s25 − s34s35)z2 + s13s24 = 0 (3.65)

Which, of course, has two different solutions, which we simply call z+
2 and z−2 ,

and these in turn determine two values z+
3 and z−3 for the puncture z3. Then, the

two independent solutions to the scattering equations that we expect to find are
given by the sets

z1 = 1, z2 = z+
2 , z3 = z+

3 , z4 = 0, z5 =∞
z1 = 1, z2 = z−2 , z3 = z−3 , z4 = 0, z5 =∞

(3.66)

which is what we expect from the general counting of solutions. Note that, tech-
nically, although we look for equations to solve for each individual puncture, what
we call an independent solution to the scattering equations is the complete n-tuple
(zi1, z

i
2, ..., z

i
n) and that there might be some punctures equal to each other in diffe-

rent solution n-tuples.

We finish this chapter with some comments on how to approach the solution of
the scattering equations in general scenarios. In [51], it is shown that in D = 4 spa-
cetime dimensions, out of the (n−3)! solutions, one can always write two of them for
any multiplicity as cross-ratios of spinor products and that, for n = 6, the remaining
(6−3)!−2 = 4 solutions can be written in terms of algebraic functions which depend
on the Mandelstam invariants. In the series of related papers [52], [53], [54] solutions
are derived in special kinematic scenarios; afterwards, in [55] elimination theory is
used to obtain the (n− 3)! degree polynomial equation for each individual puncture
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starting from the polynomial form (3.14). The polynomial equation is also worked
out in [56] and is shown to be identified with the hyperdeterminant of a multidimen-
sional matrix, and use that construction to give another proof of the fact that the
scattering equations have (n−3)! solutions for a given number n of external particles.

In this chapter, we have introduced the scattering equations and showed that
they provide a consistent mapping from momentum space to the Riemann sphere
with the property of characterizing the singularity structure of scattering amplitudes.
Now, we need to relate these mapping to the amplitudes themselves, and that is the
subject of the following chapter.



The CHY representation of tree-
level amplitudes

In this chapter, we introduce the Cachazo, He, Yuan (CHY) formalism [12]
[13][14] for tree level scattering amplitudes. We will first define what it means for
an amplitude to have a CHY representation and the different elements that com-
pose the CHY formula for the amplitudes of a particular theory. Following that, we
will introduce the objects that enter into the CHY integrand for pure Yang-Mills
theory, and show how the ingredients entering the formula are related to amplitu-
des in scalar φ3 theory and Einstein gravity. As a next step, we briefly discuss one
way in which the CHY integrals can be calculated and illustrate it with some basic
examples. Finally, we will discuss the analogue of the CHY representation in four
dimensions for N = 4 superamplitudes, the so-called connected formalism.

4.1. CHY formula

Let A0
n denote an arbitrary tree amplitude with n external particles. In general,

this amplitude will be a function of the momenta of the external particles, as well
as their wavefunctions. Also, in the case of gluon scattering, it may also depend on
the cyclic ordering of the particles, if we consider color-ordered amplitudes. For this
reason, we write the arguments of A0

n implicitly as x. A theory is said to have a
CHY representation if we can write

A0
n(x) = i

∮
C

dΩCHY I(z,x) (4.1)

that is, if we can write the amplitude in terms of an universal integration measure
dΩCHY and a theory-dependent integrand I(z,x). The contour C is defined so that
it encloses all the inequivalent solutions to the scattering equations. In general, the
integrand will be of the form

I(z,x) = IL(z,x)IR(z,x) (4.2)

and we refer to IL, IR as half-integrands. Although such a separation seems
arbitrary, we will see through various examples that the CHY integrands usually split
into two factors, in such a way that the various degrees of freedom of the amplitudes
factorize. For example, a Yang-Mills primitive amplitude is a function of the cyclic

64
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ordering of the external particles, w, and the polarizations of each external gluon,
denoted by ε. As we will see, the CHY integrand for Yang-Mills can be written as the
product of two functions, one of which only depends on the cyclic ordering and the
other which depends only on the polarizations [15]. In fact, the factorization of the
dependence on the cyclic orderings and the external polarizations will be one of the
properties we demand of the CHY representation for multiquark QCD amplitudes.

4.1.1. Definition of the measure

In the previous chapter, we constructed the scattering equations as a map from
momentum space to an n-punctured Riemann sphere and showed that the kinematic
singularities of the scattering amplitudes are in correspondence with the singular
behaviour of the scattering equations. Hence, if we want to associate to each Riemann
sphere a scattering amplitude, the integral in Eq. (4.2) should be localized to the
solutions of the scattering equations. However, we know that the solutions to the
scattering equations are SL(2,C) invariant. This means that we must perform a
Fadeev-Popov procedure to fix this gauge redundancies. A natural candidate for the
measure is then given by

dΩCHY =
dz1...dzn
dω

′∏
δ(fa(z, p)) (4.3)

where

′∏
δ(fa(z, p)) = (−1)i+j+kzijzjkzki

∏
a6=i,j,k

δ(fa(z, p)) (4.4)

and

dω = (−1)p+q+r
dzpdzqdzr
zpqzqrzrp

(4.5)

is the invariant SL(2,C) measure. The gauge fixing procedure can be understood
as follows: in general, there are n punctures for a process with n external particles.
Therefore, the natural way to localize a quantity which depends on the n punctures
to the solutions of the scattering equations would be to integrate over dnz = dz1...dzn
and weight the integral with the product of n delta functions δ(fi). However, the
SL(2,C) invariance of the scattering equations allow us to fix three of the puncture
to any arbitrary, different values. To compensate for this fact and in order to obtain
a finite result after the integration, we must choose a gauge orbit for the integral,
and this is realized by dividing over the invariant volume of SL(2,C), which is given
by the integral of dω. Hence, we simply define the CHY measure to include a factor
of 1/dω, which cancels the gauge redundancy of the integral.

The phases (−1)i+j+k and (−1)p+q+r guarantee that the integral is independent
of the choice of i, j, k, p, q, r. In practice, we will always take two sets such that
{i, j, k} = {p, q, r}.

Since the integral is completely localized, we can formally evaluate it as a sum of
the integrand, divided by an appropriate Jacobian, calculated at each of the inde-
pendent solution to the scattering equations. This Jacobian is obtained by using the
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transformation properties of the delta functions, and to define it we first introduce
the n× n matrix

(Φn)ab :=


sab
z2ab

if a 6= b

−
∑

c=1
c 6=a

(Φn)ac if a = b
(4.6)

The Jacobian is defined as

Jn(z, p) =
1

det′(Φn)
= (−1)i+j+k+q+p+r zijzjkzkizpqzqrzrp

det[Φn]ijkpqr
(4.7)

Here, we denote by [Φn]ijkpqr the minor of Φn obtained by deleting the rows i, j, k
and the columns p, q, r. With this, we can write

A0
n =

∑
(j)

J(z(j), p)I(z(j),x) (4.8)

where the sum runs over (j) = 1, 2, ..., (n− 3)! and z(j) is the (j)-th inequivalent
solution to the scattering equations. We will find this form of the CHY represen-
tation more useful when we consider the construction of the integrand for QCD
primitive amplitudes. The CHY representation of scattering amplitudes, as locali-
zed integrals on the solutions to the scattering equations, was first introduced in [14].

Determining what is the CHY representation of the tree amplitudes of a parti-
cular field theory amounts to finding a prescription for the integrand I(z,x). This
non-trivial task is simplified by the mathematical and physical assumptions one can
make depending on the theory under consideration. One very general statement
about the integrand can be made on the basis of the SL(2,C) invariance that the
integral must inherit from the scattering equations. So, as a first step, we will attack
this problem.

4.1.2. General transformation properties of the integrand

Although the solutions to the scattering equations are SL(2,C) invariant, the
functions fi(z, p) themselves change under Möbius transformations. To see this, con-
sider the transformation

z → ζ =
az + b

cz + d
(4.9)

then, using Eq. (3.22), it is easy to see that, in either the massive or massless
case,

fi(ζ, p) = (czi + d)2fi(z, p) (4.10)

which means that, using the properties of the Delta function,

δ(fi(ζ, p)) =
1

(czi + d)2
δ(fi(z, p)) (4.11)

On the other hand, since
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dζ

dz
=

1

(cz + d)2
(4.12)

we can see that

dnζ =
n∏
i=1

1

(czi + d)2
dnz (4.13)

On the other hand, the gauge fixing term dω is Möbius invariant by construction.
Hence, the CHY measure is not invariant under Möbius transformations; instead, it
picks up an overall z-dependent factor

dΩ′CHY =

(
n∏
i=1

1

(czi + d)4

)
dΩCHY (4.14)

What we want, however, is to have a completely SL(2,C) invariant object un-
der the integral, due to the invariance of the solutions to the scattering equations,
which are the values to which we are localizing the integral. Hence, independent
of the theory, we require that the integrand I(z,x) will transform under Möbius
transformations as

I(ζ,x) =

(
n∏
i=1

(czi + d)4

)
I(z,x) (4.15)

This Möbius covariance property of the integrand then becomes one of the consis-
tency checks that any integrand candidate must satisfy in order to have a consistent
CHY representation. Thus, by construction, the scattering equations limit the pos-
sible integrands which can be used in order to define the tree level S-matrix of a
particular theory.

4.1.3. CHY measure using the polynomial form of the scat-
tering equations

The CHY representation provides an extremely compact expression for tree level
scattering amplitudes; the fact that one can write a closed formula for amplitudes
of arbitrary multiplicity is striking by itself, from the point of view of Feynman
diagrams. However, in order to obtain this compact formulas, one must introduce the
auxiliary variables zi and solve the constraints imposed by the scattering equations in
order to determine the values that the punctures take as functions of the Mandelstam
invariants. As we have mentioned in the previous chapter, this is a highly non-trivial
task. This can be simplified by noting that the delta functions in Eq. (4.3) can also
be understood as denominators, that is, as contour integrals on Cn over a contour C
which encloses the simultaneous solutions to the scattering equations. This can be
visualized in the case of n = 4 external particles, were the gauge fixing of the CHY
integrals implies that there is only an integration over one puncture; say, z2. Using
Eq. (4.3), for a general integrand I4(z,x), we can write the four particle amplitude
related to this integrand as

AI4 =

∮
C

dz2IGF4 (z,x)δ

(∑
i 6=2

s2i

z2 − zi

)
(4.16)
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where IGF4 (z,x) denotes the integrand obtained by including the factors that
arise from the gauge fixing procedure. Now, recall that, in a real variable, we define
the Dirac delta function as the distribution which, for any well-behaved functions
g, satisfies

g(x) =

∫ ∞
−∞

dx′g(x′)δ(x− x′) (4.17)

How does one obtain a similar definition for a complex variable? For an analytic
function y(z), Cauchy’s theorem states that

1

2πi

∮
C

dz′
y(z′)

z′ − z
= y(z) (4.18)

where C is a contour that encloses the point z′ = z. Hence, for any analytic
function, we can define the complex delta function as 1

δ(z′ − z) =
1

2πi

1

z′ − z
(4.19)

Applying this definition to the (n − 3) integrations of the CHY representation,
we rewrite the measure as

dΩCHY =
1

(2πi)n−3

dnz

dω

′∏ 1

fa(z, p)
(4.20)

and the CHY integrals are actually multidimensional complex contour integrals,
under the conditions that the integrands are meromorphic functions on the solutions
to the scattering equations. Then, we will write the amplitudes as

A0
n(x) = i

(−1)i+j+k

(2πi)n−3

∮
C

dnz

dω

zijzjkzki∏′ fa(z, p)I(z,x) (4.21)

where C is a contour in Cn that encloses the simultaneous solutions to the scat-
tering equations, fi(z, p) = 0. Now, since the scattering equations are equivalent
to the polynomial equations Eq. (3.40) , there should be a contour integral equiva-
lent to Eq.(4.21) where the denominators are written in terms of the polynomials
hm(z, p) given in Eq. (3.40). Using Eqs.(3.43) and (3.47), it is possible to do this
by calculating the Jacobian of the transformations from fi to hm. The result, which
was proven in [16], can be written as

A0
n(x) = i

(−1)n

(2π)n−3

∮
C

∏
i<j zij∏n−2

m=2 hm(z, p)
I(z,x) (4.22)

We will use this form in Appendix F, when we use the CHY representation to
calculate a 5-point example in scalar φ3 theory. Now, we will introduce the CHY in-
tegrand which allows to calculate n-point tree amplitudes in pure Yang-Mills theory,
and see how the recipes of the integrand allow one to define the integrands for both
scalar φ3 theory and Einstein gravity.

1note that this definition means that, unlike the real case, the delta function is antisymmetric
in the exchange of its arguments.
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4.2. CHY integrand for Yang-Mills theory

We have mentioned that the CHY integrand I(z,x) usually takes the form of
a product, I(z,x) = IL(z,x)IR(z,x). These half-integrands are defined so that
the information on some of the various degrees of freedom of a given amplitude are
related only to one of the half-integrands. Primitive amplitudes in Yang-Mills theory
have essentially three types of degrees of freedom: the cyclic ordering of the external
particles, the momenta and the polarizations. The CHY integrand for Yang-Mills
separates the information on the cyclic ordering from the information on that from
the polarizations. We will be able to write the tree-level primitive amplitudes in
Yang-Mills theories as

AYMn (w, p, ε) =
(−1)i+j+k

(2π)n−3
i

∮
C

dnz

dω

zijzjkzki∏
a6=i,j,k fa(z, p)

Cn(w, z)En(z, p, ε) (4.23)

Now, we define the two half-integrands in Eq.(4.23). On one hand, the first half-
integrand of Yang-Mills theory is the so-called Parke-Taylor factor

Cn(w, z) =
1

zl1l2 ...zlnl1
(4.24)

where w = l1...ln is a word of length n. Essentially, a word is a set of labels that
specifies the external ordering of a primitive or color-decomposed amplitude. We
review the formalism of words and shuffle algebras to organize this dependence of
amplitudes in Appendix G. These receive the name of Parke-Taylor factor because
of their similarity to the denominator of the MHV gluon amplitude when written as
in 3.6.

On the other hand, the information on the polarizations is encoded in what we
will call the polarization function, En(z, p, ε), where it is understood that it depends
on the complete set of polarization vectors εi, i = 1, 2, ..., n. From the structure of
Feynman diagrams, we know that an arbitrary Yang-Mills amplitude is a multilinear
function of the external polarization vectors; hence, we should expect that, if the
polarization function does encode all the information on the polarization vectors,
it must be a multilinear function of these vectors. Moreover, it should also hold
the information on gauge invariance, since we already know that each color-ordered
amplitude is a gauge-invariant object and the Parke-Taylor factor has no dependence
on the polarizations. In order to define the polarization function for a given number
of external particles n, we introduce the (2n)× (2n) matrix

Ψn =

(
An −CT

n

Cn Bn

)
(4.25)

which is constructed in terms of three n×n matrices An,Bn and Cn, with entries

Aab =

{ 2pa·pb
zab

a 6= b,

0 a = b,
(4.26)

Bab =

{ 2εa·εb
zab

a 6= b,

0 a = b,
(4.27)
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and, finally,

Cab =


2εa·pb
zab

a 6= b,

−
n∑

j=1,j 6=a

2εa·pj
zaj

a = b.
(4.28)

There are two obvious properties Ψn which can be seen from its definition: it is
antisymmetric and is always even-dimensional. An important feature of any matrix
with these two properties (with dimension (2n)× (2n)) is that its determinant can
be written as the square of a polynomial of degree n in its matrix entries with integer
coefficients, which only depends on the size of the matrix. This polynomial is known
as the Pfaffian. For an arbitrary, (2n)× (2n) antisymmetric matrix M with entries
mij, one can define the Pfaffian as

Pf (M) =
1

2nn!

∑
σ∈S2n

sgn(σ)
n∏
i=1

mσ(2i−1)σ(2i) (4.29)

where, we encounter a sum over permutations of 2n elements and sgn(σ) equals
1 if the permutation is even and −1 if it is odd. For example, if we have a 4 × 4
antisymmetric matrix M with entries

M =


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 (4.30)

its Pfaffian is given by

Pf (M) = af − be+ cd (4.31)

which can be easily seen to square to the determinant of M. One important
property of the Pfaffian is that it can be expanded in terms of Pfaffians of minors,
in similar fashion to the determinant, as

Pf (M) =
∑
j 6=i

(−1)i+j+1+θ(i−j)mijPf (Mij) (4.32)

Where θ(x) denotes the Theta function, and Mij is the minor obtained by remo-
ving rows and columns i, j of the matrix M .

Now, we can see that the n × (2n) matrix (A,−CT ) has two null vectors,
~n1 = (1, ..., 1) and ~n2 = (z1, z2, ..., zn). To see this, note that either of the products
~nk(A,−CT ) is a 1 × (2n) vector whose first n entries vanish due to the scattering
equations, in the case of ~n1, and because of the constraints imposed on the scat-
tering equations by SL(2,C) invariance of the scattering equations in the case of
~n2. On the other hand, to see that the remaining n entries vanish, we can see that,
in the case of ~n1, each entry is the sum of a column of C, which vanishes due to
the diagonal element Caa. On the other hand from its definition, for a fixed value
1 ≤ a ≤ n, we can see that
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n∑
b=1

zbCab = 2
∑
b=1
b 6=a

zbεa · pb
za − zb

− 2za
∑
b=1
b 6=a

εa · pb
za − zb

= −2εa ·

∑
b=1
b 6=a

pb

+ 2za
∑
b=1
b 6=a

εa · pb
za − zb

− 2za
∑
b=1
b 6=a

εa · pb
za − zb

= −2εa · pa = 0

(4.33)

where we used momentum conservation and the transversality of polarization
vectors. This means that two rows of Ψn are linearly dependent, and the Pfaffian of
Ψn vanishes. However, if we denote the minor of Ψn obtained by removing both rows
and columns i, j for 1 ≤ i ≤ j ≤ n by (Ψn)ijij, we obtain a matrix with non-vanishing
Pfaffian. With this, we define

En(z, p, ε) =
(−1)i+j

zij
Pf ′ Ψn (4.34)

where we define the shorthand notation Pf ′ Ψn = Pf (Ψn)ijij. Gauge invariance
is easily proven by noting that, if we take εk → pk for an arbitrary k, the Pfaffian
vanishes because the columns k and k + n of Ψn become identical after noting that

Ckk = −
∑
b 6=k

2εk · pb
zkb

→ −
∑
b 6=k

2pk · pb
zkb

(4.35)

The formula Eq.( 4.23) was first proposed by Cachazo, He and Yuan in [13] and
later proven to yield the correct Yang-Mills tree amplitudes by Dolan and Goddard
in [57] by showing that it satisfies the same BCFW recursion relations as Yang-
Mills tree amplitudes. This integral representation for Yang-Mills amplitudes was
also obtained afterwards by Mason and Skinner [58] as the worldsheet integral of the
n-point correlation function of an ambitwistor superstring theory, and by Bjerrum-
Bohr et al in [59] as the field theory limit of open string correlators.

4.2.1. Integrands for scalar φ3 theory and gravity

The Parke-Taylor factor Eq. (4.24) and the polarization function Eq. (4.29) can
also be used to define the CHY representation of scalar φ3 theory and Einstein gra-
vity.

We can define a scalar theory with two gauge groups U(N1) and U(N2) by the
lagrangian

L = ∂µφaa
′
∂µφaa′ +

1

3!
fabc1 fa

′b′c′

2 φaa′φbb′φcc′ (4.36)

where fabc1 and fa
′b′c′

2 are the structure constants of U(N1) and U(N2), respecti-
vely. This is known as a biadjoint scalar theory. The amplitudes of the theory can
be color decomposed in the same fashion as Yang-Mills tree amplitudes, but in this
case it can be done with respect to both gauge groups, yielding partial amplitudes
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which depend on two external orderings; denoting such an amplitude by mn(w1|w2),
where w1 = l1l2...ln, w2 = l′1l

′
2...l

′
n, its CHY representation can be written as

mn(w1|w2) =
(−1)i+j+k

(2π)n−3
i

∮
C

dnz

dω

zijzjkzki∏
a6=i,j,k fa(z, p)

Cn(w1, z)Cn(w2, z) (4.37)

The complete amplitude mBA
n is then obtained by multiplying by the traces

Tr(T l1T l2 ...T ln) and Tr(T l
′
1T l

′
2 ...T l

′
n) and then summing over all possible permuta-

tions. Performing this procedure and setting all traces equal to 1 yield the amplitude
of ordinary λφ3 theory.

On the other hand, tree-level graviton amplitudes ME
n can be computed from

the formula

ME
n =

(−1)i+j+k

(2π)n−3
i

∮
C

dnz

dω

zijzjkzki∏
a6=i,j,k fa(z, p)

E2
n(z, p, ε) (4.38)

which means that the integrand will be proportional to a determinant. In Chap-
ter 5, we will see that the similarity of the integrands is no coincidence, and that
this formula for graviton amplitudes can be obtained from ”squaring” the Yang-
Mills formula and applying the so-called Kawai-Lewellen-Tye (KLT) orthogonality
of the Parke-Taylor factors, which is the manifestation of the field theory limit of
the KLT relations [24] between gravity and gauge theory amplitudes in the CHY
formalism.

It is interesting to note that CHY representations for other theories, such as
Dirac-Born-Infeld (DBI), Einstein-Yang-Mills (EYM) Yang-Mills scalar and the
U(N) non-linear sigma model have been obtained in [15] and [50], by taking the
integrands above and applying different manipulations, such as dimensional reduc-
tion. One of the main features found with these representations is that the KLT
relations are not exclusive to gravity and Yang-Mills amplitudes, but rather, that
one can find general KLT relations between pairs of theories whenever one of them
has a structure of color-ordering. We will see how this happens when we study the
KLT relations from the CHY perspective in Chapter 5.

4.3. Calculation of CHY integrals

Now, we will see how to calculate amplitudes by using the CHY representation.
First, we present two elementary examples: the three gluon amplitude and the four
scalar amplitude in the biadjoint scalar theory. Three and four point amplitudes
in the CHY representation have the virtue of not needing any mathematical tools
beyond algebra and basic complex analysis. Afterwards, we will introduce one ap-
proach to calculating a general n-point amplitude using the CHY representation,
which is based on the interpretation of the CHY integrals as multidimensional resi-
dues developed in [17] by Søgaard and Zhang and further refined in [18] by Bosma,
Søgaard and Zhang.
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Three-gluon amplitude

As a first example, we will use Eq. (4.23) to calculate the three-gluon amplitude.
Explicitly,

AYM3 (w, p, ε) = (−1)i+j+ki

∮
C

d3z

dω

zijzjkzki∏
a6=i,j,k fa(z, p)

C3(w, z)E3(z, p, ε) (4.39)

We will take the cyclic order w = 123. As we mentioned in the previous chapter,
the solution to scattering equations for n = 3 is completely fixed by SL(2,C) inva-
riance and can be fixed to any three arbitrary values. Moreover, in Eq. (4.39), the
only possible choice for the indices i, j, k is a permutation of 1, 2, 3. Hence, without
loss of generality, we take i = 1, j = 2 and k = 3. Then,

AYM3 (w, p, ε) = i
(z12z23z31)2

z12z23z31

E3(z, p, ε)

= i(z1 − z2)(z2 − z3)(z3 − z1)E3(z, p, ε)

(4.40)

where we have replaced the explicit expression of the Parke-Taylor factor Eq.(4.24)
for n = 3 and used the form of the SL(2,C) invariant measure dω, Eq. (4.5) with
p = 1, q = 2 and r = 3. Therefore, all we need to do is to compute the polarization
function for n = 3, using Eq.(4.34). We choose to calculate the minor with i = 2
and j = 3 to calculate the reduced Pfaffian Pf ′ Ψ3 , obtaining the 4× 4 matrix

(Ψ3)23
23 =


0

(
2ε1·p2
z1−z2 −

2ε1·p3
z3−z1

)
2ε2·p1
z1−z2 − 2ε3·p1

z3−z1

−
(

2ε1·p2
z1−z2 −

2ε1·p3
z3−z1

)
0 2ε1·ε2

z1−z2 − 2ε1·ε3
z3−z1

− 2ε2·p1
z1−z2 − 2ε1·ε2

z1−z2 0 2ε2·ε3
z2−z3

2ε3·p1
z3−z1

2ε1·ε3
z3−z1 − 2ε2·ε3

z2−z3 0

 (4.41)

Now, we can use the formula Eq. (4.31) for the Pfaffian of a 4 × 4 matrix, to
obtain

Pf (Ψ3)23
23 =

(
2ε1 · p2

z1 − z2

− 2ε1 · p3

z3 − z1

)
2ε2 · ε3
z2 − z3

+
4(ε1 · ε3)(ε2 · p1)

(z1 − z2)(z3 − z1)
− 4(ε1 · ε2)(ε3 · p1)

(z1 − z2)(z3 − z1)
(4.42)

This expression can be simplified by noting that

2ε1 · p2

z1 − z2

− 2ε1 · p3

z3 − z1

=
ε1 · p2(z3 − z1)− ε1 · p3(z1 − z2)

(z1 − z2)(z3 − z1)

=
−z1ε1 · (p2 + p3) + ε1 · p2z3 + ε1 · p3z2

(z1 − z2)(z3 − z1)

=
ε1 · p2(z3 − z2)

(z1 − z2)(z3 − z1)

(4.43)

where the term proportional to z1 in the numerator is identically zero because
ε1·(p2+p3) = −ε1·p1 = 0 using momentum conservation and the transversality of the
polarization vectors, and we write ε1 ·p3 = −ε1 ·p2. Similarly, writing ε2 ·p1 = −ε2 ·p3

in the numerator of the second term, we obtain
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Pf (Ψ3)23
23 = −4[(ε1 · ε2)(ε3 · p1) + (ε2 · ε3)(ε1 · p2) + (ε1 · ε3)(ε2 · p3)]

(z1 − z2)(z3 − z1)
(4.44)

Hence, including the prefactor −(z2− z3)−1, we obtain the polarization function

E3(z, p, ε) =
4[(ε1 · ε2)(ε3 · p1) + (ε2 · ε3)(ε1 · p2) + (ε1 · ε3)(ε2 · p3)]

(z1 − z2)(z2 − z3)(z3 − z1)
(4.45)

Multiplying by the Parke-Taylor factor, the z dependence cancels, as expec-
ted. This reflects the fact that, in kinematics where the three-point amplitudes are
non-vanishing (for example, in complex momenta), the three-point amplitudes have
vanishing residues in all their possible singularities, and we obtain the three-point
Yang-Mills amplitudes

AYM3 (w, p, ε) = 4i[(ε1 · ε2)(ε3 · p1) + (ε2 · ε3)(ε1 · p2) + (ε1 · ε3)(ε2 · p3)] (4.46)

which can be seen to be the correct result by using the Feynman rule for the
three-gluon vertex in Yang-Mills theory.

Four scalar amplitude in biadjoint theory

For simplicity, we will calculate the four scalar amplitude for the same external
ordering w1 = w2 = 1234 for the two Parke-Taylor factors that will appear in the
integrand of 4.37, with n = 4. Then, using the polynomial form of the scattering
equations, our task is to calculate the integral

m4(1234|1234) = i

∮
C

1

2πi

d4z

dω

∏4
i<j zij

h2(z, p)

1

(z12z23z34z41)2
(4.47)

where we have used the fact that the only non-trivial polynomials hm occur for
2 ≤ m ≤ n− 2, and with n = 4 the only possible value that m can take is 2. Now,
we first need to write down the polynomial h2(z, p) explicitly. In order to do this, we
first identify all the subsets of {1, 2, 3, 4} which contain two elements. The number
of this subsets can be found using the binomial coefficient

N2 =
4!

2!(4− 2)!
= 6 (4.48)

The subsets are easy to find, and are {1, 2}, {1, 3},{1, 4}, {2, 3},{2, 4} and {3, 4}.
Then,

h2(z, p) = s12z1z2 + s13z1z3 + s14z1z4 + s23z2z3 + s24z2z4 + s34z3z4 (4.49)

Notice that, since the particles are assumed to be massless, four point kinematics
implies that

s12 = s34, s13 = s24, s14 = s23

0 = p2
i = (pj + pk + pl)

2 = sjk + sjl + skl
(4.50)
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where, in the second equation, the indices i, j, k, l take any value out of 1, 2, 3, 4
in such a way that i 6= j 6= k 6= l. For example,

s12 + s14 + s24 = 0 (4.51)

which is equivalent to the relation s+t+u = 0 of the usual Mandelstam variables
for massless particles, only written in a different notation. Now, we can easily write
out the product

4∏
i<j

zij = z12z13z14z23z24z34 (4.52)

With these equations, we have the explicit form of our integrand. Now, let us
take

dω =
dz1dz3dz4

z13z34z41

(4.53)

(notice that the (−1)i+j+k factor equals one in this case). Then, prior to fixing
the values of the three ”free” punctures, we put all the factors of the integrand
together to obtain

m4(1234|1234) = −i
∮
C

dz2

2πi

z12z
2
13z

2
14z23z24z

2
34

z2
12z

2
23z

2
34z

2
41

1

h2

= i

∮
C

dz2

2πi

z2
13z42

z12z23

1

h2

(4.54)

where we have used the fact that zij = −zji. Now, we perform the gauge-fixing
z1 = 1, z3 = 0, z4 = ∞; the first two conditions are easily applied, and we are left
with

m4(1234|1234) = i

∮
C

1

z2(1− z2)
ĺım
z4→∞

z42

h2

(4.55)

where h2 is implicitly evaluated at z1 = 1, z3 = 0. Now, we can easily calculate
the limit

ĺım
z4→∞

z42

h2

= ĺım
z4→∞

z4 − z2

z4(s14 + s24z2) + s12z2

=
1

s14 + s24z2

(4.56)

thus, we must solve the contour integral

m4(1234|1234) = i

∮
C

dz2

2πi

1

z2(1− z2)

1

s14 + z2s24

(4.57)

Since the integrand vanishes for z2 →∞, there is no residue at infinity. Morever,
although the integrand has two singularities (at z4 = 1 and s13 + z4z34 = 0), only
the second one contributes because, for general kinematics, zi 6= zj for i 6= j given
a particular solution to the scattering equations. Note that, so far, we have not
needed to solve the scattering equations, even though we already found the solution
in Chapter 3. This is because we are implicitly solving them when finding the poles
of the polynomials hm. In this case, we find a pole at
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z2 = −s14

s24

(4.58)

The evaluation of the integral is a simple application of the residue theorem, and
yields

m4(1234|1234) = −i s24

s12s14

= i

(
1

s12

+
1

s24

) (4.59)

Beyond four-points, the integrals we have to perform in the CHY formalism take
the form of multidimensional contour integrals. Therefore, our task is to introduce
the concepts that allow for the calculation of such integrals.

4.3.1. Multidimensional residues

Consider a function p = (p1, ..., pn), defined in Cn. Each of the components is an
scalar function that takes a point in Cn into the complex plane. Assume that the
system of equations pi(z) = 0 has a finite number of solutions z(j). Furthermore,
let f(z) denote a function in Cn which is non-singular at all the solutions z(j). The
local residue of f with respect to the divisors pi at z(j) is defined as the integral

Res(p1,...,pn)(f, z
(j)) =

1

(2πi)n

∮
Tδ

f(z)dz1 ∧ ... ∧ dzn
p1(z)...pn(z)

(4.60)

where ∧ stands for the wedge product (that is, we understand the measure as a
differential form in Cn), the integration contour is taken to be an n-torus,

Tδ = {z ∈ Cn| |pi(z)| = δ} (4.61)

where δ is a small number such that Tδ encloses the point z(j). The contour is
oriented according to

d arg p1 ∧ d arg p2 ∧ ... ∧ d arg pn ≥ 0 (4.62)

The global residue of f with respect to the divisors p1, ..., pn is defined as the
sum of all its local residues,

Res(p1,...,pn)(f) =
∑
j

Res(p1,...,pn)(f, z
(j)) (4.63)

In practice, one can encounter three situations. The first one is when the divisors
are each functions of only one complex variable, i.e. pi(z) = pi(zi). Then, each
local residue is said to be factorizable and can be calculated as the product of one-
dimensional contour integrals,

Res(p1,...,pn)(f, z
(j)) =

(
n∏
i=1

∮
|pi(zi)|=δ

dzi
2πi

1

pi(zi)

)
f(z(j)) (4.64)

where z(j) is the vector in Cn whose components are given by the solutions to
the n independent equations fi(z

(j)
i ) = 0.
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In the general case where each divisor is a function of several complex variables,
one can calculate the Jacobian

J(z) = Det

(
∂(p1, ..., pn)

∂(z1, ..., zn)

)
(4.65)

and evaluate it at the point z = z(j). Then, if J(z(j)) 6= 0, we say the residue is
non-degenerate and can be evaluated by performing the change of variables

xi = pi(z), i = 1, ..., n (4.66)

which then yields

Res(p1,...,pn)(f, z
(j)) =

1

(2πi)n

∮
Tδ

f(z)dz1 ∧ ... ∧ dzn
p1(z)...pn(z)

=
f(z(j))

J(z(j))
(4.67)

On the other hand, if J(z(j)) = 0, we say that the local residue is degenerate,
and algebraic geometry methods are required for their calculation.

From this discussion, we see that the CHY representation provides a concise mat-
hematical formulations of tree level amplitudes: an n-point amplitude is the global
residue of a holomorphic function with respect to the functions fi(z, p), 1 ≤ i ≤ n,
or with respect to the polynomial functions hm(z, p), 2 ≤ m ≤ n−2. If the solutions
to the scattering equations are known, we can apply Eq. (4.67) to calculate each
local residue and then sum all the local residues to obtain the amplitude. We will
apply this method in Appendix F to calculate the 5-point amplitude in φ3 scalar
theory.

However, as we have discussed, the solution to the scattering equations for n ≥ 6
is in general very difficult to obtain. Moreover, since the amplitudes are given by the
global residue, one can focus on the structure of the complete sum instead of the
structure of each individual residue. Taking advantage of the fact that the divisors of
the CHY integrand can be written as the polynomials hm, the authors of [17], [18]
developed an approach based on algebraic geometry which allows for the compu-
tation of the global residue without calculating the local residues individually. For
this discussion, we will need some concepts of abstract algebra reviewed in Appendix
H.

The idea is as follows: consider a set of n polynomials pi(z) in the ring R =
C[z1, ..., zn], and assume that the ideal I = 〈p1, p2, ..., pn〉 is zero-dimensional, that
is, that the set of solutions to the equations pi = 0 for i = 1, 2, ..., n contains only
a finite number of points. This means that the quotient ring R/I is a finite di-
mensional vector space with coefficients in C. Hence, for any function f(z) which
is non-singular in the points z(j) where the polynomials vanishes, one defines the
global residue as in Eq. (4.63) as the sum of all local residues, which will simply be
denoted by Res(f). We will refer to f generically as the numerator.

Due to a theorem from algebraic geometry2, one can define a symmetric, non
degenerate inner product on the quotient ring R/I as

2Whose proof can be found, for example, in [60]
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〈f1, f2〉 = Res(f1f2) (4.68)

Now, since R/I is finite dimensional, all of its elements can be expanded in a
basis {ei}. From the existence of an inner product in R/I, one deduces the existence
of a dual basis ∆i that satisfies

〈ei,∆j〉 = δij (4.69)

Hence, we can expand the numerator f in the basis {ei}

f(z) =
∑
i

ciei (4.70)

Also, we can expand the identity 1 in the dual basis,

1 =
∑
j

ui∆i (4.71)

This allows to write the global residue as

Res(f) = Res(f × 1)

= 〈f, 1〉

=
∑
i,j

ciuj〈ei,∆j〉

=
∑
i,j

ciujδij

=
∑
i

ciui

(4.72)

In particular, this means that, if one of the elements in the dual basis is a
constant, say ∆r, the expansion of the identity in the dual basis is simply 1 = ∆r

∆r
,

which implies

Res(f) =
cr
∆r

(4.73)

The usefulness of this approach, as discussed in [17], is that the dual basis always
has a constant element for the ideal generated by the polynomials hm. The basis {ei}
can be calculated as Gröbner basis (which we define in Appendix H) and the dual
basis is then obtained by the Bezoutian matrix method. In [18], this method was
further refined by showing that the polynomials hm form what is known as Macauly
H-basis. A review of the full algorithm to calculate CHY integrals based on these
H-basis is provided in [61]. This approach is further explored and applied to loop
amplitudes in [62].

We finish this section by mentioning some of the other approaches to the cal-
culation of CHY integrals that have been developed. In [63], Cachazo and Gomez
introduce rules for the calculation of a particular class of integrals based on graph
theory, Hamiltonian cycles and the KLT relations; later, Baadsgaard et all provide
the so-called ”integration rules” for CHY integrands with simple poles in [64], based
on combinatorics, and further generalize this rules to CHY loop integrands in [65].
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Also, in [66], Cardona et al. introduce the so-called cross-ratio identities, which allow
to reduce integrands with higher order poles as sum of integrals with simple poles,
which can be evaluated by the integration rules.

4.4. Connected formalism

To finish this chapter, we introduce the so-called connected prescription or con-
nected formalism for tree-level superamplitudes in N = 4 Super Yang-Mills theory.

As we discuss in Appendix C, when scattering amplitudes are transformed from
momentum to twistor space, they are supported on algebraic curves, which is very
similar to the scattering amplitudes obtained in the perturbative expansion in string
theory, where L-loop order contribution to the n-point amplitude can be written as
an integral over a genus L Riemann surface. For example, tachyon tree amplitudes
in closed string theory are given by the closed formula

Aclosedn ∼ 1

Vol(SL(2,C)

∫ n∏
i=1

d2ziexp

(
α′

2

∑
j,l

pj · pl log |zj − zl|

)
(4.74)

which, for n = 4, gives the famous Virasoro-Shapiro amplitude. In this expression,
α′ is the inverse string tension. The integration in 4.74 is performed over n insertion
points of the Riemann sphere, and the exponential is obtained from the string path
integral as the expactation value of a product of vertex operators at the insertion
points z1, z2, ..., zn. However, the integral is not localized, but rather performed over
an ordered region |z1 < |z2| < ... < |zn|. The fact that gauge theory amplitudes
are supported on algebraic curves in twistor space led Witten [19] to propose that
the scattering amplitudes in N = 4 SUSY could be computed form the D-instanton
expansion of the so-called topological B model, whose target space is the Calabi-Yau
supermanifold CP3|4.

4.4.1. RSV formula

Originally, Witten conjectured that different instanton expansions (for example,
the completely connected expansion with a degree D instanton or the completely
disconnected expansion with D degree 1 instantons) should give different contribu-
tions to the N = 4 scattering amplitudes at each fixed loop order. However, each
of these expansions happened to yield the complete tree level S-matrix, thus provi-
ding different prescriptions for the calculation of amplitudes in Yang-Mills theory.
For example, the completely disconnected instantons yield the so called CSW rules,
[67], where amplitudes are computed using a set of diagrams where each vertex co-
rresponds to an MHV amplitude. In [20] Roiban, Spradlin and Volovich introduce
the so-called connected prescription, which is the formula arising from Witten’s twis-
tor string theory when using the completely connected D-instanton. In the original
notation, the RSV formula can be written as

AN=4
n = i(2π)4

n−3∑
d=1

∫
dMn,d

n∏
i=1

δ2(λαi − ξiPα
i )
∏d

k=0 δ
2
(∑n

i=1 tiσ
k
i λ̃

α̇
i

)
δ4
(∑n

i=1 tiσ
k
i ηiA

)
(4.75)
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where Pα
i , i = 1, 2 are degree d polynomials

Pα
i =

d∑
k=0

ραkσ
k
i (4.76)

and the measure is given by

dMn,d =
d2d+2ρdnσdnt

Vol(GL(2)

n∏
i=1

1

ti(σi − σi+1

(4.77)

Where we identify σn+1 ≡ σ1. We can see some similarities with the CHY formula,
Eq. (4.1). First, we have to include a factor of Vol(GL(2)) that cancels a gauge
redundancy of the integral; in this case, the one can fix four of the integration
variables to arbitrary values, just like we fix three of the z integration variables of
the scattering equations. Moreover, we see the appearance of the Parke-Taylor-like
factor

1

(σ1 − σ2)(σ2 − σ3)...(σn − σ1)
(4.78)

Also, as pointed out in the original RSV paper, the integral is fully localized
to the solutions of a set of polynomial equations. To note this, we can see that
the number of integration variables, after substracting the four integration variables
fixed by the GL(2) symmetry is 2n+ 2d− 2 for a given d. On the other hand, each
term in the sum has 2n+ 2d+ 2 delta functions. However, the delta functions set

n∑
i=1

tiσ
k
i λ̃

α̇
i = 0 (4.79)

For every 1 ≤ k ≤ d. Hence, any linear combination of them should also be zero
on the support of the delta functions; this yields

0 =
d∑

k=1

ραk

(
n∑
i=1

tiσ
k
i λ̃

α̇
i

)

=
n∑
i=1

tiλ̃
α̇
i

(
d∑

k=1

ραkσ
k
i

)

=
n∑
i=1

tiP
α
i λ̃

α̇
i

=
n∑
i=1

λαi λ̃
α̇
i

=
n∑
i=1

pαα̇i

(4.80)

where, in the second to last step, we use another set of delta functions to trans-
form ξiP

α
i into λαi . What we just obtained is the statement of momentum conser-

vation; this means that, by introducing a Jacobian, one can pull out a momentum
conservation delta function explicitly. In four dimensions, this reduces the number of
delta functions by 4, yielding a total of 2n+ 2d− 2 delta functions, which is exactly
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the same as the number of integration variables. Hence, the integral is completely
localized to the solutions of the equations

n∑
i=1

tiσ
k
i λ̃

α̇
i = 0, k = 0, ..., d, α̇ = 1, 2

λαi − ti
d∑

k=0

ραkσ
k
i = 0, i = 1, ..., n, α = 1, 2

(4.81)

which are just the four dimensional form of the scattering equations, Eq.(3.19).
Indeed, the first appearance of the scattering equations in the work of Cachazo et
al. in [11] came from trying to generalize the constraints of the RSV formula to
arbitrary space-time dimension. After the introduction of the scattering equations,
it was shown by Mason and Skinner [58] that both the CHY formula and the RSV
formula can be derived from ambitwistor string theory in ten and four dimensions,
respectively, and later generalized to arbitrary number of supersymmetry in four
dimensions by Geyer, Lipstein and Mason in [68].

With this, we finish our first approach to the CHY representation of tree level
amplitudes. We have shown it allows to write closed formulas for amplitudes in a
variety of theories, independent of the spacetime dimension. However, one problem
which we did not touch upon is that the set of theories which have a known CHY
integrand seem to include only bosons. This is not a problem in the connected for-
malism, since one can extract component amplitudes with an arbitrary number of
gluinos from the complete superamplitude; however, not only gluinos are funda-
mentally different from quarks, since they transform in different representations of
the gauge groups, but are also massless if supersymmetry is unbroken. In chapter
6, we attack this problem from two different point of views: on one hand, we will
use the approach of [26] to show that, under suitable assumptions, there must exist
a CHY representation for QCD primitive amplitudes with an arbitrary number of
massive quarks with the property that the half-integrands separate the information
on the polarizations and the external orderings in a way that mirrors that of the
pure Yang-Mills case. On the other, we will use a rewritten version of the connected
formula and the results of [28] to write down QCD amplitudes with massless quarks
as linear combinations of gluon-gluino amplitudes in N = 4 SUSY, which yields the
four dimensional integrands of the CHY representation for amplitudes with quarks.



Basis QCD amplitudes

Recall that, in Chapter 2, we discussed that an arbitrary Yang-Mills n-point tree
amplitude AYMn can be color decomposed according to Eq.(2.19) as

AYMn =
∑

w∈Sn/Zn

Tr(T (al1 )T σ(al2 ) · · ·T σ(aln ))An(l1l2...ln) (5.1)

Where the objects An are what we have called primitive amplitudes, and we have
rewritten the permutations in terms of words. We can think of color decomposition
as a process where we expand the complete, color-dressed amplitude into a basis
of amplitudes where the coefficients are purely group-theoretical factors. Moreover,
as we discuss in Appendix G, we can understand color-ordered amplitudes as linear
operators that act on the vector space of words, that is, of external orderings. Hence,
it would be both interesting and useful to determine a minimal set of linearly inde-
pendent color-ordered (more precisely, of primitive) amplitudes, which would form
a basis for this vector space. This immediately poses a question: what is the size of
the basis? Note that in Eq. (2.19) we only sum over non-cyclic permutations; this
is because the trace of a product of matrices is cyclic, which means that primitive
amplitudes are invariant under a cyclic permutation of its external indices1. Naively,
one would be led to think that there are (n − 1)! primitive amplitudes, correspon-
ding to all the non-cyclic permutations of the external legs. However, we will see
that these amplitudes are not all independent, and thus the size of the basis can be
reduced.

In this Chapter, we will consider the different linear relations that exist between
primitive amplitudes, and how they allow one to reduce the size of the amplitude
basis for a given number of external particles. We will use the CHY representation
of Yang-Mills amplitudes to prove different relations between primitive amplitudes.

Recall that the CHY integrand for Yang-Mills primitive amplitudes splits into
two parts: the Parke-Taylor factor Cn(w) and the polarization function En(z, p, ε).
Since the polarization function does not depend on the external ordering, all the
properties related to the cyclic ordering should be reflected on the Parke-Taylor
factor

1This becomes obvious from the point of view of Feynman diagrams: a cyclic permutation
corresponds to a rotation of the diagram, which does not change the structure of the amplitude.
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Cn(w) =
1

zl1l2 ...zlnl1
(5.2)

where we use a generic word of length n, given by w = l1l2...ln. We will prove
that the Parke-Taylor factors satisfy the so-called U(1)-decoupling and reflection
identities, as well Kleiss-Kuijf (KK) relations, which are purely group-theoretical
in nature. This will suffice to prove that the Yang-Mills primitive amplitudes also
satisfy these relations, since the Parke-Taylor factor carry all the information on the
external orderings. We will then see how the KK relations allow one to reduce the
number of basis amplitudes to (n− 2)! in the case of gluons.

Afterwards, we will introduce the Bern-Carrasco-Johansson (BCJ) relations,
which are a set of linear relations between primitive amplitudes that also depend on
the kinematics, and underpin the so-called Color-Kinematics duality. In a sense, the
BCJ relations arise from constructing the amplitudes out of quantities where the
kinematics have algebraic properties that mirror those of the color factors. We will
discuss the different types of BCJ relations, and briefly comment on their relation
to gravity tree amplitudes. The BCJ relation will allow us to reduce the size of the
amplitude basis to (n− 3)!.

Following this discussion we will construct the amplitude basis for QCD ampli-
tudes, by introducing the no-crossed fermion line relations and the so-called Dyck
words. The no-crossed fermion line relations will be seen to be related to the KK
relations, and the consequence of this will be to reduce the size of the amplitude
basis by a factor of 2(nq−1)/(nq)! when the amplitude has nq quark-antiquark pairs.
These will form the backbone of the construction of the CHY integrand for QCD
primitive amplitudes which we will work out in Chapter 6.

We will end this chapter by introducing the Kawai-Lewellen-Tye (KLT) relations,
which allow one to obtain gravitational amplitudes as the sum of certain ”squares”
of Yang-Mills amplitudes. We will see how this are obtained in the CHY formalism
and how their origin is linked to the existence of a color decomposition. This will
allow us to see the KLT relations in a much more general context, in which one can
obtain objects that may behave as amplitudes from the knowledge of the amplitudes
of theories that have any gauge degrees of freedom.

5.1. Consequences of trace decomposition

5.1.1. Cyclic invariance

As we have mentioned, the fact that the trace of a product of matrices is cyclic
in its arguments imply that the primitive amplitudes in the expansion Eq. (2.19)
are also invariant under a cyclic permutation of their labels. If we consider a word
w = l1l2...ln, this condition is

An(l1l2...ln) = An(l2...lnl1) (5.3)

This is known as cyclic invariance. This is a property only of primitive amplitu-
des, in the case of quarks: in general, the partial amplitude that arise in the 1

N
terms
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of the SU(N) completeness relations do not satisfy this. Since cyclic invariance im-
plies that all amplitudes related by a cyclic permutation of particle labels are equal,
this reduces the basis from n! to (n − 1)!, and we can use it to fix the position of
one of the external legs, for example, to set l1 = 1. Then, we rewrite

AYMn =
∑
Sn−1

Tr(T (a1)T σ(al2 ) · · ·T σ(aln ))An(1l2...ln) (5.4)

where we sum over all permutations of the (n− 1) labels l2, l3, ..., ln. Now, let us
state and prove the reflection and U(1) decoupling identities, using the properties
of the Parke-Taylor factors.

5.1.2. Reflection and U(1) decoupling identities

Through this section, we use the word w = l1l2...ln to specify the external orde-
ring of the primitive amplitudes. First, consider the reflection identity, which states
that, given a primitive Yang-Mills amplitude,

An(w) = (−1)nAn(wT ) (5.5)

where wT = ln...l2l1 is the word with the order reversed. Then, what we need to
show is

Cn(w, z) = (−1)nCn(wT , z) (5.6)

which is trivial, since each factor in the denominator of the Parke-Taylor factor
satisfies zab = za− zb = −(zb− za) = −zba. Then, to obtain Cn(wT ) from Cn(w), we
should simply flip the two labels of each factor in the denominator. Since there are
n such terms in an n-point Parke-Taylor factor, we pick up an overall sign of (−1)n.

Now, to state the U(1) decoupling (or photon decoupling) identity, we recall
that, for two words u = k1...kj, v = kj+1...kr,

u� v =
∑

shuffles σ

kσ(1)...kσ(r) (5.7)

where the sum over all permutations of the set k1...kr that preserves the relative
order of the letters that make up the words u and w. When we write an amplitude
(or a Parke-Taylor factor) whose argument is a shuffle product, what we mean is

Ar(u� v) =
∑

shuffles σ

Ar(kσ(1)...kσ(r)) (5.8)

That is, every time a shuffle product appears in the argument of an amplitude
we assume that there is an implicit sum over the terms appearing in it.

Let wn−2 = l2...ln−1 be a subword, such that w = l1wn−2ln. The U(1) decoupling
identity states that

Cn(l1(wn−2� ln)) = 0 (5.9)

We will prove that this is a simple algebraic identity in terms of the Parke-Taylor
factor, but directly in terms of amplitudes it is a consequence of the fact that we
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can couple an additional U(1) photon to an SU(N) gauge theory in order to have
a theory with the gauge group U(N); since the U(1) photon has Abelian dynamics,
all the structure constants involving such a photon vanish and that is reflected on
the partial amplitudes as the U(1) decoupling identity.

In order to prove this identity, let wj = l1l2...ljlnlj+1...ln−1 be the word where ln
is between the letters lj and lj+1 for j = 1, 2, ..., n− 1. Then, we can rewrite

Cn(l1(wn−2� ln)) =
n−2∑
j=1

Cn(wj) + Cn(l1l2...ln) (5.10)

then, to show that the U(1) decoupling identity holds, we prove the equivalent
statement

n−2∑
j=1

Cn(wj) = −Cn(l1l2...ln) (5.11)

To do this, we can see that any word wj can be rewritten as

Cn(wj) =
1

zl1l2 ...zlj lnzlnlj+1
...zln−1l1

zlj lj+1

zlj lj+1

= Cn−1(l1...ln−1)
zlj lj+1

zlj lnzlnlj+1

= Cn−1(l1...ln−1)Z(lj, ln, lj+1)

(5.12)

where we define

Z(a, b, c) =
zac
zabzbc

=
1

zab
+

1

zbc
(5.13)

where the second line is obtained by adding and subtracting zc in the denomi-
nator. This allows us to show that

Z(a, b, c) + Z(c, b, d) =
1

zab
+

1

zbc
+

1

zcb
+

1

zbd
= Z(a, b, d) (5.14)

due to the antisymmetry of zab. Using this relation iteratively, one finds that the
cross-ratios Z(a, b, c) satisfy the Eikonal identity,

c−1∑
j=a

Z(j, b, j + 1) = Z(a, b, c) (5.15)

Hence, we can see that

n−2∑
j=1

Cn(wj) =
n−2∑
j=1

Cn−1(l1...ln−1)Z(lj, ln, lj+1)

= Cn−1(l1...ln−1)
n−2∑
j=1

Z(lj, ln, lj+1)

= Cn−1(l1...ln−1)Z(l1, ln, n− 1)

= −Cn(l1...ln)

(5.16)
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which is what we wanted to prove. Note that the U(1) identity is independent of
the values of the variables z; it just relies on the cyclic structure of the Parke-Taylor
factors. This confirms that it does not depend on the kinematic configuration of the
amplitude, only on the fact that it can be color decomposed.

5.2. Kleiss-Kuijf relations

Now, we will prove what can be seen as generalization of the U(1) decoupling
identities, the so-called Kleiss-Kuijf relations [21]. Afterwards, we will see how they
apply to the case with quarks.

The amplitudes independent under the KK relations naturally span a basis in
which one can expand the color-dressed amplitude, in which the color factors are
not traces of gauge group generators, but rather products of structure constants
contracted in a suitable way. This basis forms what is known as the Del Duca-
Dixon-Maltoni (DDM) decomposition [69].

5.2.1. Derivation of the KK relations

In this section, we derive the KK relations for pure Yang-Mills theory, using the
CHY representation. Our argument closely follows [70].

Let w1 = lα1 ...lαn−m−2 and w2 = lβ1 ...lβm be two subwords of the word w = l1...ln,
subject to the conditions

{l1} ∪ {lα1 ...lαn−m−2} ∪ {lβ1 ...lβm} ∪ {ln} = {l1, l2, ..., ln} (5.17)

Then, we can state the KK relations as

Cn(l1w1lnw2) = (−1)mCn(l1(w1� wT2 )ln) (5.18)

We will prove the KK relations by induction, both on m and on n. As a short-
hand notation, let k = n−m−2 be the length of the subword w1. For m = 1 and for
arbitrary m, the KK relations are simply the U(1) decoupling identity we just have
proven, which are true for arbitrary n. Now, assume as the inductive hypothesis that
the relations are valid for all multiplicities equal to or less than (n+ 1) and for some
m > 1. Then, we can see that

Cn+1(l1w1lnw2lβm+1) = Cn(l1w1lnw2)Z(lβm , lβm+1 , l1)

= (−1)mCn(l1(w1� wT2 )ln)Z(lβm , lβm+1 , l1)
(5.19)

where we have used the inductive hypothesis. Now, we rewrite the sum over
shuffles in a more explicit way. In order to this, define /w2 = lβ1 ...lβm−1 as the word
w2 without its last letter; for s = 1, ..., k, let ws = lα1 ...lαs be a subword of w1

of length s, and wCs be the word such that wsw
C
s = w1, which we will call the

complement of ws. Finally, we let

C̃n(l1...ln) =
1

zl1l2 ...zln−1ln

= zlnl1Cn(l1...ln) (5.20)
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With these definitions, we can write

Cn(l1(w1� wT2 )ln) =
k∑
s=1

C̃s+2(l1, ws, lβm)C̃n−s−3(lβm(wCs � /wT2 )ln)

zlnl1
(5.21)

Furthermore, we can reconstruct a Parke-Taylor factor out of C̃s+2 by multiplying
with the cross-ratio,

C̃s+2(l1, ws, lβm)Z(lβm , lβm+1 , l1) = Cs+3(l1wslβmlβm+1)zlβm l1 (5.22)

With this, we can see that

Cn+1(l1w1lnw2lβm+1) = (−1)m
k∑
s=1

Cs+3(l1, ws, lβm , lβm+1)C̃n−s−3(lβm(wCs � /wT2 )ln)
zlβml1

zlnl1

= (−1)m+1

k∑
s=1

Cs+3(l1(ws�
′ lβm+1)lβm)C̃n−s−3(lβm(wCs � /wT2 )ln)

zlβml1

zlnl1

= (−1)m+1

k∑
s=1

Cs+3(l1(ws�
′ lβm+1)lβm)zlβm l1C̃n−s−2(lβm(wCs � /wT2 )l1)

= (−1)m+1

k∑
s=1

C̃s+3(l1(ws�
′ lβm+1)lβm)C̃n−s−2(lβm(wCs � /wT2 )l1)

= (−1)m+1Cn+1(l1(w1� (w2lβm+1)
T )ln

(5.23)
where, in the second line, we use the U(1) relation to move the letter lβm to the
right by introducing the sum, and in the other we regroup terms to arrive at the
(n+ 1)-points Parke-Taylor factor.

To make the KK relations a little more clear, let us consider a simple example
with n = 6. Consider the word w = 132645. We want to use the KK relations to
expand the Parke-Taylor factor C6(w) in terms of six-point Parke-Taylor factor with
external orderings of the form 1w46. In order to do this, we can see that the subwords
w1 and w2 that enter the definition of the KK relations are given by

w1 = 32, w2 = 45 (5.24)

therefore, we can calculate the shuffle product

w1� w2 = 3245 + 3425 + 3452 + 4352 + 4325 + 4532 (5.25)

moreover, since w2 is composed of two letters, the overall sign in the KK relations
is (−1)2 = 1. Hence,

C6(132645) = C6(132456) + C6(134256) + C6(134526) + C6(143526) + C6(143256) + C6(145326) (5.26)

which can be checked to hold directly from the definition of the Parke-Taylor
factors.
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Fig. 5.1: (i) graph representing the quark amplitude with ordering (12345678); (ii)
graph with crossed fermion lines

In terms of constructing an amplitude basis, we can use the KK relations to fix
the position of a second leg, say, ln = n. Then, in the case of Yang-Mills theory, we
arrive at a basis with elements of the form An(1wn−2n), where wn−2 is a word of
length (n−2) whose letters are a permutation of the labels {2, 3, ..., n−1}. The size
of this basis is (n− 2)!.

In the case of quarks, the KK relations also hold when one considers primitive
amplitudes. However, these amplitudes satisfy additional constraints which can be
understood as KK relations. To illustrate them, consider the case of pure quark
amplitudes; that is, an n = 2nq point amplitude, where nq is the number of quark-
antiquark pairs. As discussed by Melia in [71], one can consider a basis of amplitudes
of the form An(1wn−2n), where the label n indicates an antiquark and 1 its corres-
ponding quark. These amplitudes can be described graphically in the following way:
draw a circle to represent the plane. Then, write the quark labels clockwise around
the circle, according to their cyclic ordering, and connect each quark with its corres-
ponding antiquark. This is illustrated in Fig.(5.1).

These graphs not only are useful to clear the structure of the color-ordered
Feynman diagrams that contribute to the primitive amplitude under consideration,
but also allow one to see that, having fixed the labels to specify each quark and
antiquark, there are some primitive amplitudes (in this case, A8(12354678)) which
vanish, because the corresponding pairs cannot be connected along the circle in a
planar way. This means that there are less than (n−2)! independent, non-vanishing
primitive amplitudes; moreover, some of them can be seen to satisfy linear relations.
For example, due to the antisymmetry of the color-ordered Feynman rules, one can
see that
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Fig. 5.2: Linear relation between primitive amplitudes with different orderings

A8(16547328) = −A8(15647328) (5.27)

which is represented graphically in Fig.(5.2). As pointed out by Melia, this rather
trivial relation can be seen to be a KK relation where we take the words w1 = 64732
and w2 = 5, and where the remaining amplitudes appearing in the sum of Eq.
(5.18) vanish because they involve crossed fermion lines. A systematic study of
these relations reveals that these quark KK relations reduce the number of basis
amplitudes from (n− 2)! to (n− 2)!/(nq)!. This fact wil play a major role when we
count the number of basis amplitudes for a generic QCD amplitude. However, in
order to do this, we first need to discuss the BCJ relations, which are the subject of
the next section.

5.3. BCJ relations: color-kinematics duality

Now, we introduce the Bern-Carrasco-Johansson (BCJ) relations, at tree level.
These are linear relations involving primitive amplitudes with different external or-
derings, independent under the KK relations, that involve coefficients which are
rational functions of the momentum invariants si1...ik . These relations were first con-
jectured by Bern, Carrasco and Johansson in [22] for the case of pure Yang-Mills
amplitudes, based on the idea that the one could find a set of kinematic numerators
for the gauge theory Feynman diagrams that satisfied an algebra analogous to that
of the color factors. They provided non-trivial examples for fixed number of par-
ticles and provided a possible generalization to arbitrary number of external legs,
which was later proven by taking the field theory limit of open string amplitudes
in [72][73], and later in [74], [75] and [76] by applying the BCFW recursion rela-
tions both in Yang-Mills theory and N = 4 SYM. They were later conjectured to
generalize to QCD amplitudes with arbitrary number of massive or massless quarks
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in [77] by Johansson and Ochirov. Afterwards, proofs of the so-called fundamental
BCJ relations for QCD amplitudes and that they allow to obtain a minimal basis
for QCD primitive amplitudes were provided in [23] and [33], respectively.

We will first introduce these relations by considering the simple example of the
four gluon tree-amplitude. Then, we will discuss the fundamental BCJ relations
and review the proof given in [23] for QCD primitive amplitudes. Afterwards, we
introduce the general BCJ relations, which will allow us to write the minimal basis
of QCD amplitudes. Finally, we will illustrate how the BCJ relations can be derived
in N = 4 SYM from the connected formalism.

5.3.1. Introduction: four gluon amplitude

When discussing the color decomposition of pure Yang-Mills theory amplitudes,
we found that the color structure of the four gluon amplitude can be arranged in
terms of the color factors cs = fa1a2bf ba3a4 , ct = fa1a3bf ba4a2 and cu = fa1a4bf ba2a3 ,
that each of these factor appears in the s-channel, t-channel, and u-channel diagrams,
respectively, and that the four gluon vertex contains a sum of all these factors,
which allows this vertex term to be distributed into the diagrams with only three
gluon indices. This decomposition can be done similarly for any tree level n-gluon
amplitude, in such a way that it can be written in terms of diagrams with three-gluon
vertices only [78]. Then, we can write the color-dressed amplitude as

An =
∑

i∈trivalent

cini∏
a p

2
a

(5.28)

The denominator is given as the product of all propagators appearing in a given
diagram, and the numerators ni are purely kinematic functions, which can, however,
be in general not local. In particular, the four gluon amplitude will have the structure

A4(4g) =
csns
s

+
ctnt
t

+
cunu
u

(5.29)

where the four gluon vertex has been split into the different channels through
their corresponding color factors. Since the color factors satisfy the Jacobi identity

cs + ct + cu = 0 (5.30)

There is not a unique way to rearrange the four gluon vertex into the other dia-
grams, which implies that the numerators ni are not uniquely defined. Furthermore,
this implies a new symmetry of the amplitude: if we redefine ns → ns + sf(p, ε),
nt → tf(p, ε), nu → uf(p, ε) for some arbitrary function f , the modified amplitudes
acquires a term proportional to cs+ct+cu, which vanishes due to the Jacobi identity.
This is known as a generalized gauge transformation.

The color-kinematics duality is the statement that one can always find a repre-
sentation for An such that, if there are three color factors ci, cj, ck embedded in
the amplitude that satisfy the Jacobi identity ci + cj + ck = 0, their corresponding
numerators also satisfy the same algebraic relation, namely ni + nj + nk = 0.
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Cyclic invariance and the Kleiss-Kuijf relations imply that there are only (n−2)!
independent primitive amplitudes for a given gluon amplitude An. Since the expan-
sion of the color-dressed amplitudes in primitive amplitudes sets the coefficients to
be color factors, there will also be only (n − 2)! independent color factors, in this
case, under the Jacobi identities. If we assume color-kinematics duality to hold, then
there will also be only (n−2)! independent numerator factors ni. Then, we can write,
for some ordering wi,

An(wi) =

(n−2)!∑
j=1

Θijn̂j (5.31)

where the primitive amplitudes An(wi) are all linearly independent, as well as all
numerators n̂i. The matrix Θij was introduced by [79], and is known as the propa-
gator matrix. Consider the case n = 4 and take the independent partial amplitudes
to be A4(1, 2, 3, 4) and A4(1, 3, 2, 4). From the color-ordered Feynman rules, one can
see that

A4(1, 2, 3, 4) = −ns
s

+
nu
u
, A4(1, 3, 2, 4) = −nu

u
+
nt
t

(5.32)

Now, assuming that color-kinematics holds, nt = −ns−nu. Taking the indepen-
dent numerators to be n̂1 = ns, n̂2 = nu, we find

Θij =

(
−1
s

1
u

−1
t
− 1
u
− 1

t

)
(5.33)

If the matrix Θij was invertible, color-kinematics duality would be trivial since
one could always find the numerators in terms of color-ordered amplitudes and use
the Jacobi identities to generate whatever numerators are missing. However, this
is not the case; Θij does not have full rank, and is therefore not invertible. Using
Eq.(5.31), we can write

n̂1 = −sA4(1, 2, 3, 4) +
s

u
n̂2 (5.34)

and then

A4(1, 3, 2, 4) = − n̂1

t
− n̂2

t
− n̂2

u
=
s

t
A4(1, 2, 3, 4)−

(
s

tu
+

1

t
+

1

u

)
n̂2 (5.35)

Now, since s + t + u = 0 for massless particles, the second term above vanishes
and we obtain the identity

A4(1, 3, 2, 4) =
s

t
A4(1, 2, 3, 4) (5.36)

This is an example of the BCJ relations.

An interesting consequence of color-kinematics duality are the so-called double
copy relations. These relations allow to find gravitational amplitudes from their
Yang-Mills counterparts. At tree-level, suppose that numerators ni have been found,
which satisfy the color-kinematics duality. Then, if in the expansion Eq.(5.28) we
replace each color factor by its corresponding kinematic factor, the quantity
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Agravn =
∑

i∈trivalent

n2
i∏
a p

2
a

(5.37)

gives the tree n-point graviton amplitude in pure Einstein gravity. One could
go further, and expand 5.28 in terms of numerators ñi which do not satisfy color-
kinematics. Then, if one replaces ci → ni, where ni is a set of numerators which do
satisfy the duality, the resulting expansion, with numerators of the form niñi will
also yield expressions for gravitational amplitudes in theories beyond pure Einstein
gravity. As an example, let us consider the the 4 graviton amplitude. In terms of the
kinematic numerators ns, nt and nu, this amplitude would be given by

Agrav4 =
n2
s

s
+
n2
t

t
+
n2
u

u
=
n2
s

s
+
n2
t

t
+

(ns + nt)
2

u
(5.38)

assuming color-kinematics duality to hold. Hence, doing the same identification
of (ns, nu) with (n̂1, n̂2), we can set n̂2 = 2, and obtain

Agrav4 = −su
t

(A4(1234))2 = −uA4(1234)A4(1324) (5.39)

which is an example of the KLT relations we will discuss later in this chapter.
Therefore, since the KLT relations are known to hold, this verifies the validity of
the double copy relations for four point amplitudes.

5.3.2. Fundamental BCJ relations

The simplest BCJ relations, known as the Fundamental BCJ relations, can be
written in the form

n−1∑
i=2

(
n∑

j=i+1

2p2 · pj

)
An(1, 3, ..., i, 2, i+ 1, ...n) = 0 (5.40)

or, equivalently, using momentum conservation on the sum over j, as

n−1∑
i=2

(
i∑

j=1

2p2 · pj

)
An(1, 3, ..., i, 2, i+ 1, ...n) = 0 (5.41)

These relations were shown to hold, for gluon primitive amplitudes, in [72]-[74],
For QCD primitive amplitudes, where particle 2 is a gluon, they were later proven
in [23], and we will review their argument, which is based on the BCFW recursion
relations.

Recall that in Chapter 2, we introduced the complex momentum shifts by shifting
two of the momentum variables in such a way that momentum conservation and the
on-shell conditions were still satisfied. However, one can consider shifting more than
two momenta; this will, in general, improve the large-z behaviour of the shifted
amplitudes. To prove the fundamental BCJ relations, Weinzierl et al consider a
three particle shift, that is, they deform the momenta p1 → p̂1(z), p2 → p̂2(z) and
pn → p̂n(z), in such a way that
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p̂1(z) + p̂2(z) + p̂n(z) = p1 + p2 + pn

p̂2
i (z) = p2

i , i = 1, 2, n
(5.42)

which guarantees that both momentum conservation and the on-shell conditions
hold for the shifted momenta. Then, they show that, if particle 2 is a gluon and
particles 1 and n are either two gluons or a quark-antiquark pair, there exists a shift
such that the boundary term in the BCFW recursion relations vanishes. We will not
construct such a shift, and just take as a given that it does exist. Define the quantity

In(z) =
n−1∑
i=2

(
n∑

j=i+1

2p̂2 · p̂j

)
An(1̂, 3, ..., i, 2̂g, i+ 1, ..., n+ 1, n̂) (5.43)

where we write 2g to emphasize that particle 2 is a gluon and p̂j is a shifted
momenta whenever j = 1, n and the unshifted, physical momenta otherwise. Hence,
in order to prove the fundamental BCJ relations, we need to show that

In(0) =
1

2πi

∮
C

dz

z
In(z) = 0 (5.44)

where the contour C encloses all the poles In(z) plus the pole at z = 0. Then,
since the shift of the momenta p1, p2 and pn is defined so that In(z) → 0 when
|z| → ∞, we can see that

In(0) = −
∑
α

Res

(
In(z)

z

)
zα

(5.45)

where zα are the poles of In(z). Now, we proceed by induction on n. We take
the first step with n = 3. In this case, we do not perform any contour integral and
simply evaluate at z = 0 to obtain

I3(0) = 2p2 · p3A3(1, 2g, 3) (5.46)

Three particle kinematics imply that p1 + p2 + p3 = 0. Moreover, p2
1 = p2

3 = m2,
because these particles either belong to the same quark line or are both gluons, and
p2

2 = 0. Hence, for generic values of the momenta the amplitude A3(1, 2g, 3) will
be non-vanishing (in the all-gluon or massless case we assume the momenta to be
complex). Thus, since

2p2 · p3 = (p2 + p3)2 −m2 = p2
1 −m2 = 0 (5.47)

we conclude that I3(0) = 0, which means that the fundamental BCJ relations
hold for n = 3.

Now, we perform the inductive step by assuming that In(0) = 0 for all j < n,
and prove it for n.

Recalling from Eq.(2.121) that

Res

(
An(z)

z

)
zα

= −
∑
s

AsL(zα)
1

P 2
i

As̄R(zα) (5.48)

due to the factorization properties imposed by unitarity, we can see that
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Res
(
In(z)
z

)
zα

= −
∑n−2

i=2

(∑n
j=i+1 2p̂2 · p̂j

)∑
sAk+1(1̂, 2̂g, ..., k, P̂ ) i

P 2An−k+1(−P̂ , ..., n− 1, n̂) (5.49)

with the understanding that the hatted quantities are evaluated at z = zα.
That is, the residue of In(z) at a particular pole zα is the sum of the residues of
different shifted amplitudes, and the sum over s is over the helicities of the internal
propagating particle that connects the left and right subamplitudes. As in [23], we
introduce the short-hand notation

An(1̂, 2̂g, ..., k, P̂ | − P̂ , k + 1, ..., n− 1, n̂) =
∑

sAk+1(1̂, 2̂g, ..., k, P̂ ) i
P 2An−k+1(−P̂ , ..., n− 1, n̂) (5.50)

This means that the sum over residues is replaced by a sum over the possible
insertion points of particle k, and we can write

In(0) =
n∑
i=2

n∑
j=i+1

∑
k

(2p̂2 · p̂j)An(1̂, 2̂g, ..., k, P̂ | − P̂ , k + 1, ..., n− 1, n̂)

= R1 +R2 +Rn

(5.51)

where we split the sum over k according to the three possible the shifted legs can
enter the subamplitudes: the first one will be the one on which the shifted leg 1̂ is on
the left subamplitude, while the other two shifted legs are on the right subamplitude;
the second one will have the leg 2̂g on the left subamplitude, while the legs 1̂ and n̂
will be on the right subamplitude, and the final one will have legs 1̂ and 2̂g in the left
subamplitude. Similarly to the two particle shifts, one cannot have a configuration
where all shifted legs belong to either the left or the right subamplitude, because
their z dependence would cancel in order to preserve momentum conservation. Then,
we find that

R1 =
∑n

i=2

∑n
j=i+1(2p̂2 · p̂j)

∑i
k=3An(1̂, 3, ..., k, P̂ | − P̂ , k + 1, ..., i, 2̂g, i+ 1, ..., n− 1, n̂), (5.52)

R2 =
∑n

i=2

∑n
j=i+1(2p̂2 · p̂j)

∑i
k=2

∑n−1
l=1

(k,l)6=(i,i)
An(k + 1, ..., i, 2̂g, i+ 1, .., l, P̂ | − P̂ , l + 1, ..., n̂, 1̂, ..., k) (5.53)

and, finally

Rn =
n∑
i=2

n∑
j=i+1

(2p̂2 ·p̂j)
n−2∑
k=i

An(1̂, 3, ...i, 2̂g, i+1, ..., k, P̂ |−P̂ , k+1, ..., n−1, n̂) (5.54)

Now, we proceed to show that each of these terms vanishes. In the case of R1

and Rn, one simply must exchange the order of the sums over i and k; for R1, this
is

n−1∑
i=2

i∑
k=3

f(i, k) =
n−1∑
k=3

n−1∑
i=k

f(i, k) (5.55)



95

with which we can write

R1 =
n−1∑
k=3

[∑n−1
i=k

(∑n
j=i+1 2p̂2 · p̂j

)
An(1̂, 3, ..., k, P̂ | − P̂ , k + 1, ..., i, 2̂g, i+ 1, ..., n− 1, n̂)

]
(5.56)

Now, if we use Eq. (5.50) to rewrite the residueAn(1̂, 3, ..., k, P̂ |−P̂ , k+1, ..., i, 2̂g, i+
1, ..., n − 1, n̂) in terms of the subamplitudes, we find that nested within the sum
over k is a term of the form

n−1∑
i=k

(
n∑

j=i+1

2p̂2 · p̂j

)
An−k+2(−P̂ , k + 1, ..., i, 2̂g, i+ 1, ..., n− 1, n̂) = 0 (5.57)

which vanishes because it is just the BCJ fundamental relation for (n − k + 2)
particles, and for k > 3 we have n − k + 2 < n. This is enough to guarantee that
R1 = 0. The case of Rn is similar: once the sums over i and k are exchanged as

n−1∑
i=2

n−2∑
k=i

f(i, k) =
n−2∑
k=2

k∑
i=2

f(i, k) (5.58)

the BCJ fundamental relations for k−2 particles appear on the left subamplitude,
after using momentum conservation on the invariants 2p̂2 · p̂j, and vanish because of
the induction hypothesis. To complete the proof, we need to show that R2 vanishes;
in order to this, we exchange the order of the sums in order to rewrite

R2 =
n−2∑
k=2

n−1∑
l=k+1

l∑
i=k

(∑n
j=i+1 2p̂2 · p̂j

)
An(k + 1, ..., i, 2̂g, i+ 1, ..., l, P̂ | − P̂ , l + 1, ..., n̂, 1̂, 3, ..., k)

=
∑
k,l,i

((∑l
j=i+1 +

∑n
j=l+1

)
2p̂2 · p̂j

)
An(k + 1, ..., i, 2̂g, i+ 1, ..., l, P̂ | − P̂ , l + 1, ..., n̂, 1̂, 3, ..., k)

(5.59)

Then, R2 splits into two different terms. In the first one, where the sum over j
goes from i + 1 to l, we can reconstruct the BCJ fundamental relations with the
left subamplitudes Al−k+2(k + 1, ..., i, 2̂g, i + 1, ..., l, P̂ ) and these vanish due to the
induction hypothesis, since l−k+2 < n. On the other term, we can freely exchange
the sums over i and j, since the sum over j no longer depends on i, and we find
terms of the form

l−1∑
i=k

Al−k+2(k + 1, ..., i, 2̂g, i+ 1, ..., l, P̂ ) = 0, (5.60)

and this linear combination vanishes due the the U(1) decoupling identity Eq.
(5.9). Hence, we have shown that R2 is also zero, and thus

In(0) = 0 (5.61)

which proves the fundamental BCJ relations. As we have already mentioned, the
proof that the three-particle shift that makes the recursion relations valid exists is
provided in the paper [23], based on four dimensional kinematics and helicity spinors,
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suitably constructed for massive particles. Given that the only role of dimensiona-
lity is in providing the spinor variables to construct the shifts, we will assume in
the following that there exist analogous shifts in arbitrary dimensions so that the
fundamental BCJ relations are satisfied in spacetime dimension D 6= 4.

5.4. Construction of the basis for QCD primitive

amplitudes

Armed with the different relations among primitive amplitudes we have develo-
ped so far, we will construct a minimal basis of QCD primitive amplitudes. In order
to do this consistently for amplitudes with an arbitrary number of quark-antiquark
pairs, we will need a few more identities, which we have already mentioned in our
discussion of the KK relations, the so-called ”no-crossed fermion line” relations.
Also, we will introduce the concept of generalized Dyck words, which allow us to or-
ganize appropriately the labels of the quarks. This will lead us to define an standard
orientation of fermion lines. Using these new properties of multiquark amplitudes
and the relations developed above, we will construct the QCD basis in terms of the
different external orderings that the basis amplitudes depend on.

To clarify notation, we recall from Appendix G that a generic QCD primitive
amplitude with n external particles can be split according to

n = ng + 2nq (5.62)

where ng is the number of gluons and nq the number of quark-antiquark lines.
The set of all possible external orderings of the primitive amplitudes is given in
terms of words

W0 = {w = l1l2...ln|li ∈ A, li 6= lj if i 6= j} (5.63)

where A, the set of all particle labels, is what we call the alphabet.

5.4.1. Fermion lines and Dyck words

In our treatment of the KK relations, we found that quark amplitudes could
be visualized by using a class of circle graphs, around which the quark lines were
cyclically ordered. We saw that not all of the quark amplitudes could be represented
with a circle graph in which the quark lines were all connected in a planar way, and
that this implied that quark primitive amplitudes with crossed fermion lines vanish.
In a general QCD primitive amplitude with an arbitrary number of quark-antiquark
pairs and gluons, the appearance of a crossed fermion line would imply that there is
a vertex that joins two quarks of different flavour, which is not possible. Therefore,
QCD primitive amplitudes satisfy the so-called ”no crossed fermion line” relations,

An(...qi, qj, ..., q̄i, q̄j, ...) = An(..., qi, q̄j, ..., q̄i, qj, ...) = 0 (5.64)

Primitive amplitudes with no crossed fermion lines are non-vanishing, and their
external orderings may de described by generalized Dyck words [71] [80]. In order
to define them, let us consider an alphabet, C, with two elements
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C = {(, )} (5.65)

A Dyck word is defined to be any word w = l1...lk where li ∈ C, i = 1, 2, ..., k
such that no bracket is unmatched. For example, the word w1 = ((())) is a Dyck
word, while w2 = (()(() is not. We can generalize this idea [26] by defining opening
brackets (i and closing brackets )i for i = 1, 2, ..., nq, with which we will form an
alphabet

D = {(1, (2, ...(nq , )1, )2, ..., )nq} (5.66)

Then, a generalized Dyck word is a word wD = l1...lm where li ∈ D for i =
1, 2, ...,m) such that each opening bracket (i is matched by its corresponding closing
bracket )i. For example, the word w1 = (i(j)j)i is a generalized Dyck word while
w2 = (i(j)i)j is not. We will consider generalized Dyck words in which each opening
and closing bracket occurs exactly once and have length 2nq. The number of such
words is

Ndyck =
(2nq)!

(nq + 1)!
(5.67)

We associate the quark qi with the opening bracket → (i and the antiquark q̄i
with the closing bracket →)i. Define a projection operator P that acts on words
w ∈ W0 such that P (w) = P (l1)P (l2)...P (ln), where

P (qi) = (i, P (q̄i) =)i, P (gj) = e (5.68)

were e stands for the empty word. The action of this operator allow us to in-
troduce the concept of orientation of the fermion lines, and to define an standard
orientation for these lines. We say that a primitive amplitude An(w) is in the stan-
dard orientation if the word P (w) is a generalized Dyck word.Then, the set

Dycknq = {w ∈ W0|P (w) is a generalizedDyck word} (5.69)

Contains all possible words in which the fermion labels are in the standard orien-
tation. It is obvious that some of the non-vanishing primitive amplitudes with quarks
are not in the standard orientation. However, it is always possible to bring an am-
plitude to the standard orientation using cyclic invariance, the KK relations and the
fact that amplitudes with crossed fermion lines vanish. We will outline how this is
realized, and refer the reader to the detailed procedure given in [26].

The idea is to consider the class of amplitudes

An(wk−1qiwkq̄jwk+1qjukq̄iuk−1) (5.70)

where wk−1,wk, wk+1, uk−1 and uk are subwords of the word defining the external
ordering. The subscript k denotes the so-called level of the fermion line, which is
the number of fermion lines that separate the k-the fermion line from the line n1 in
a circle graph. For example, in graph (i) of Fig.(5.1) the line 32 is of level one, the
line 54 is of level two, and so on. With this notation, we are assuming that the line
qi − q̄i is already in the standard orientation and is of level (k − 1). Furthermore,
the fermion lines in wk−1 and uk−1 are already in the standard orientation. However,
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the fermion line qj − q̄j, which is of level k, is not in the standard orientation. Then,
if we let

wk = li1 ...lir , uk = lj1 ...ljs (5.71)

be two words which may contain fermion lines of arbitrary level L ≥ k. Also,
assume that wk+1 may contain fermion lines of level l ≥ k + 1. Then, we can bring
the line qj − q̄j into the standard orientation by expressing the amplitude in Eq.
(5.70) as a linear combination of amplitudes with the standard orientation of the
line qj − q̄j as

An(wk−1qiwkq̄jwk+1qjukq̄iuk−1)

= (−1)γ+1

r∑
a=0

s∑
b=0

An(wk−1qili1 ...liaqjw
′
k+1q̄jljb+1...lsq̄iuk−1)

(5.72)

where t is the length of the word wk+1, and

w′k+1 = (lia ...lir)� wTk+1� (lj1 ...ljb) (5.73)

We refer to Eq.(5.72) as the fermion orientation relation. Recursively applying
this relation, an amplitude with no crossed fermion lines but with an arbitrary num-
ber of amplitudes with the wrong orientation of the fermion lines can be written in
terms of amplitudes where all fermion lines are in the standard orientation. It is
worthwhile to note that some of the amplitudes appearing in the sum may vanish
due to the appearance of crossed fermion lines.

5.4.2. Definition of a basis for QCD primitive amplitudes

All the relations among amplitudes described above allows us to write a given
primitive amplitude in terms of basis of amplitudes. Since primitive amplitudes with
nq ≤ 1 satisfy cyclic invariance, KK and the full BCJ relations, the size of this basis
is (n− 3)!. For amplitudes with nq ≥ 2, the size of the basis is reduced by a factor
2(nq − 1)/(nq)!. We summarize this as

Nb =

{
(n− 3)! if nq ≤ 1

(n− 3)!2(nq−1)

(nq)!
if nq ≥ 2

(5.74)

Now, let Nper = n! be the number of permutations of particle labels. Since the
factor 2(nq − 1)/(nq)! is always less than or equal to 1, the number of indepen-
dent primitive amplitudes for nq ≥ 2 is always smaller or equal to (n− 3!). This will
play a crucial role when we try to obtain a CHY representation for QCD amplitudes.

Now, we can define the set of words corresponding to the n particle amplitude
basis. For nq = 0, we set

Bn = {w ∈ W0|l1 = g1, ln−1 = gn−1, ln = gn} (5.75)

For nq = 1,

Bn = {w ∈ W0|l1 = q1, ln−1 = gn−2, ln = q̄1} (5.76)
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and, for nq ≥ 2,

Bn = {w ∈ W0|l1 = q1, ln−1 ∈ {q̄2, ..., q̄nq}, ln = q̄1} (5.77)

To construct this basis, we use cyclic invariance, the KK and BCJ relations,
the no-crossed fermion lines relation and we bring all quark-antiquark pairs into
the standard order. First, we use cyclic invariance to fix leg 1 to be g1 for the pure
gluonic case and q1 for primitive amplitudes with nq 6= 0. We define the set W1 ⊂ W0

as

W1 =

{
{w ∈ W0|l1 = g1} if nq = 0

{w ∈ W0|l1 = q1} if nq 6= 0
(5.78)

The number of words in this set is (n − 1)!. Then, using the KK relations, we
can fix leg n to be gn for nq = 0 and to be q̄1 for nq 6= 0. We then define the subset
W2 ⊂ W1 as

W2 =

{
{w ∈ W1|ln = gn} if nq = 0

{w ∈ W1|ln = q̄1} if nq 6= 0
(5.79)

Now, the number of words in W2 is (n−2)! and correspond to all words with the
first and last letters fixed. We then set to zero any amplitude with crossed fermion
lines, and put every other one in the standard orientation. Again, define a subset
W3 ⊂ W2 as

W3 =

{
W2 if nq ≤ 1

{w ∈ W2|w ∈ Dycknq} if nq ≥ 2
(5.80)

Finally, we use the fundamental BCJ relations to fix leg n − 1 to be a gn−1 in
the pure gluonic case, gn−2 for nq = 1 and an antiquark q̄ ∈ {q̄2, ..., q̄nq} for the
case nq ≥ 2; this is done by removing any gluon from that position and, since the
amplitudes are in the standard orientation, that position will necessarily be occupied
by an antiquark. In general, we define the basis Bn as the set

Bn =


{l1l2...ln ∈ W3|ln−1 = gn−1, nq = 0

{l1l2...ln ∈ W3|ln−1 = gn−2, nq = 1

{l1l2...ln ∈ W3|ln−1 ∈ {q̄2, ..., q̄nq}, nq ≥ 2

(5.81)

Then, the set Bn contains all possible orderings of the particle labels, such that
the amplitudes with these orderings form a basis for the primitive amplitudes of a
given n particle QCD scattering process. Note that Bn ⊆ W3 ⊆ W2 ⊆ W1 ⊆ W0.

5.4.3. General BCJ identities

Now, we can state the general BCJ identities by relating the Parke-Taylor fac-
tors whose external orderings are in W3 to those whose external orderings are in
W2 when nq = 0. That is, we expand the (n − 2)!, KK independent Parke-Taylor
factors in terms of the (n−3)! BCJ independent ones. We note that, although cyclic
invariance and the KK relations are valid for arbitrary Parke-Taylor factors, these
will satisfy the BCJ relations only when evaluated on the solutions to the scattering
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equations, and the primitive amplitudes will of course satisfy them.

Consider the alphabet

Ao = {1, 2, ..., n} (5.82)

this is simply the set of n-particle labels, were we omit the information on flavour.
Furthermore, let wk = l1...lk be a subword of length k of a word w ∈ W0, where we
understand W0 as defined by the alphabet Ao. For this subword, define

s(wk) =
∑
σinSk

lσ(1)...lσ(k) (5.83)

Now, assume that w = 1wn−2n ∈ W2 can be written in terms of subwords
w1 = l1...lj and w2 = lj+1...ln−3 in such a way that w = 1w1(n − 1)w2n. Then, the
general BCJ relations can be written as

C(w, z
(j)) =

∑
w′

Fww′C(w′, z(j)) (5.84)

where the sum is over the subset of B whose elements appear in the sum 1(w1�

s(w2))(n − 1)n. For fixed w, we define Fww′ = 0 if w′ does not appear in the sum;
otherwise, if we write w′ = 1(σ)(n− 1)n for some permutation σ of 23...(n− 2), the
matrix elements are given by [26]

Fww′ =
n−3∏
k=j+1

F(1(σ)(n− 1)|lk)
s̃n,lk,...,l3

(5.85)

where the denominators are linear combinations of momentum invariants

s̃m1...mk =
∑
i<j

(2pmi · pmj + 2∆mimj) (5.86)

with ∆ij defined by Eq.(3.17). For a permutation ρ = 1σ(n − 1), the function
F(ρ|lk) can be written as

F(ρ|lk) = F1(ρ|lk) + F2(ρ|lk) (5.87)

where

F1(ρ|lk) =

{∑tlk−1

r=1 G(lk, ρr) if tlk < tlk+1

−
∑n−1

r=tlk+1 G(lk, ρr) if tlk > tlk+1

(5.88)

and

F2(ρ|lk) =

{
ŝn,lk,...,l3 if tlk−1

< tlk < tlk+1

−ŝn,lk,...,l3 if tlk−1
> tlk > tlk+1

(5.89)

here, we use ta to denote the position of letter a in the string of letters ρ, except
for tln−2 and tlj , which are always fixed to the positions

tln−2 = tln−4 , tlj = n (5.90)
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Finally, the function G(lk, ρr) is defined by

G(lk, ρr) =


2plk · pρr + 2∆lkρr if ρr = 1, (n− 1)

2plk · pρr + 2∆lkρr if ρr = lt and t < k

0 in other cases

(5.91)

The BCJ relations for primitive amplitudes are then written as

An(w) =
∑
w′

Fww′An(w′) (5.92)

with the same conditions as the BCJ relations for the Parke-Taylor factors.
We will explicitly construct the matrix Fww′ when the alphabet consists of three
massless quark-antiquark pairs of different flavour in Chapter 6, where we will see
that this matrix plays a crucial role in defining whether one can construct a CHY
representation for QCD primitive amplitudes.

5.5. KLT relations

To finish this chapter, we introduce the so-called Kawai-Lewellen-Tye (KLT) re-
lations, first found by the authors in [24], as a set of identities between closed and
open string amplitudes. In this context, they arise from the fact that closed string
tree amplitudes are calculated as integrals over the moduli space of the Riemann
sphere, while open string tree amplitudes are calculated as integrals over its boun-
dary. Based on this observation, Kawai, Lewellen and Tye managed to rewrite the
closed string integrals as a sum over products of two open string integrals, weigh-
ted by kinematic factors. Taking the field theory limit, one finds relations between
graviton and gluon scattering amplitudes. In this section, we will start by reviewing
the kinematic factors appearing in the field theory limit of the KLT relations, the
so-called momentum kernel, and state the KLT relations. Following this, we will see
how the Parke-Taylor factors, evaluated at the solutions to the scattering equations,
allow one to define an inner product under which Parke-Taylor factors evaluated
at two different, inequivalent solutions to the scattering equations are orthogonal,
and we will see how this orthogonality is related to the existence of KLT relations
(beyond those between gravity and gauge theory amplitudes).

5.5.1. KLT relations and the momentum kernel

Consider the set of primitive Yang-Mills amplitudes An(w, p, ε) such that w ∈
B, where B denotes the basis defined in Eq.(5.81). Gravitons are spin-2 massless
particles, and their polarization states can be described by two index Lorentz tensors
constructed as the product of two gluon polarization vectors, εµν± = εµ±ε

ν
±

2. Then,
a logical idea would be to construct graviton amplitudes out of products of two
Yang-Mills amplitudes. This is the content of the KLT relations; if we let ME

n (p, ε)
denote the n-graviton tree amplitude, we can write it as

2Note that we only consider products where both polarization vectors have the same helicities.
The product of polarization vectors with different helicities do not describe gravitons, but rather the
dilaton (a scalar) or an antisymmetric tensor. We will not be concerned with such fields throughout
this work.
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ME
n (p, ε) =

∑
w1,w2∈Bn

An(w1, p, ε)S̃n[w1|w̄2]An(w2, p, ε) (5.93)

where, for a given word w = l1...ln−1ln, we the w̄ = l1...lnln−1, and the bilinear
function S̃n[w|v̄] is the so-called momentum kernel

S̃n[w|v̄] = (−1)n
n−2∏
i=2

(
ŝ`1`i +

i−1∑
j=2

θv̄(`j, `i)(ŝ`i`j)

)
(5.94)

where θv̄(`j, `i) is 1 if the letter `j comes before `i in the word v̄ and is zero
otherwise, and we have introduced the notation

ŝij = 2pi · pj (5.95)

This terminology was first introduced in [81], where the KLT relations were
written in a form akin to Eq. (5.93) and some its properties were derived. A genera-
lization of the momentum kernel to include massive quarks was introduced in [26],
and be written as

Sn[w|v̄] = (−1)
n−2∏
i=2

(
ŝ`1`i + ∆`1`i +

i−1∑
j=2

θv̄(`j, `i)(ŝ`i`j + ∆`i`j)

)
(5.96)

which we will need in order to construct the CHY representation for QCD pri-
mitive amplitudes, and to derive the soft limit of the integrand. Now, let us work
out the relation of the momentum kernel with the Parke-Taylor factors Cn(w).

5.5.2. KLT orthogonality of Parke-Taylor factors

In [12], Cachazo et al noted that the momentum kernel allowed the definition
of an inner product, under which suitable Parke-Taylor factors are orthogonal. To
define this inner product, consider two words w1, w2 ∈ Bn. A general Parke-Taylor
factor is a function of an external ordering w and the punctures z. Noting by z(i)

the inequivalent solutions to the scattering equations, with i = 1, 2, ..., (n − 3)!, we
can construct

(i, j) =
∑

w1,w2∈Bn

Cn(w1, z
(i))S̃n[w1|w̄2]Cn(w2, z

(j)) (5.97)

Then, KLT orthogonality is the claim that the Parke-Taylor factors, evaluated
at different solutions to the scattering equations, are orthogonal with respect to the
inner product (i, j); that is,

(i, j)

(i, i)
1
2 (j, j)

1
2

)
= δij (5.98)

The proof of this statement, which is a bit technical, can be found in [12]. We
also note that

(i, i) =
1

J(z(i), p)
(5.99)
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Fig. 5.3: Four graviton amplitude as the product of two four gluon amplitudes over
a scalar amplitude. Image taken from [61].

where J(z, p) is the Jacobian of the scattering equations, defined in (4.7). One
consequence of KLT orthogonality is related to the biadjoint scalar amplitudes de-
fined in Eq. (4.37), which, as we recall, depend on two external cyclic orderings u
and v. Rewriting them as a sum over the inequivalent solutions to the scattering
equations, we obtain

mn(u|v) =
∑
(j)

J(z(j), p)Cn(u, z(j))Cn(v, z(j)) (5.100)

Now, assume that u, v ∈ Bn, and define the (n−3)!× (n−3)! matrix mn
uv̄ whose

entries are given by the biadjoint amplitudes mn(u|v̄). Then, if we denote by Snuv̄ the
(n− 3)!× (n− 3)! matrix whose entries are given by the momentum kernel Sn[u|v̄],
we have the relation

S̃nuv̄m
n
v̄,w = δuw (5.101)

that is, the momentum kernel forms a matrix which is the inverse of the matrix
formed by the biadjoint scalar amplitudes with different external orderings.We can
prove this statement by defining the (n− 3)!× (n− 3)! matrices

A(i)w =
√
J(z(i))Cn(z(i), w), D(i)w̄ =

√
J(z(i))Cn(z(i), w̄) (5.102)

where the index i ranges over the inequivalent solutions to the scattering equa-
tions and the indices w and w̄ take values on the basis B, with the understanding
that elements of the form w̄ have the last two letters exchanged with respect to the
ordering induced by Bn. Then, we KLT orthogonality can be written as

AS̃nDT = Isol (5.103)

where Isol is the identity in the space of solutions to the scattering equations.
Now, both matrices, A and B, are invertible, because they are constructed from a set
of Parke-Taylor factors that are independent under cyclic invariance, KK and BCJ
relations, and Jacobians are non-vanishing for general kinematics. Then, multiplying
by (DT )−1 on the right and DT on the left, KLT orthogonality is equivalent to
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DTAS̃n = Iperm (5.104)

where Iperm is the identity on the space of the different permutations of the words
w ∈ B. Moreover, we can see that

(DTA)w̄v =
∑
(j)

Jn(z(j))Cn(w̄, z(j))Cn(v, z(j)) (5.105)

which is nothing but the biadjoint scalar amplitudes. With this, we obtain a
refined interpretation of the KLT relations between gravitons and Yang-Mills: a
graviton amplitude is the sum of products of two Yang-Mills amplitudes, divided
over an scalar amplitude with cubic interactions. This is depicted in Fig. 5.3.

5.5.3. KLT relations in the CHY formalism

To finish this chapter, let us see how KLT orthogonality allow us to obtain the
CHY representation for gravity, Eq. (4.38) from the CHY representation of Yang-
Mills theory. We will develop first a general argument valid for any two field theories
with a gauge group, and then consider the particular case of Yang-Mills.

To start, consider two general field theories whose tree amplitudes can be color
decomposed with respect to some gauge group G. Their CHY integrand will then
have the form

I in(z, w,y) = Cn(w, z)I iRn(z,y) (5.106)

where i = 1, 2 denotes that the right integrands belong to possibly different
theories, and y denotes the variables upon which this integrands can depend other
than the punctures. In order for I in to be CHY integrands, we must impose the
condition

I iRn(ζ,y)→

(
n∏
i=1

(czi + d)

)2

I iRn(z,y) (5.107)

for an SL(2,C) transformation ζ = (az+ b)/(cz+ d). The n-point amplitudes of
this theories are then written as

Ain(w) =
∑
(j)

J(z(j), p)I in(z, w,y) (5.108)

Now, omitting the explicit dependence on y and the momenta p, consider the
combination
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A3
n =

∑
w,v∈Bn

A1
n(w)S̃n[w|v̄]A2

n(v̄)

=
∑

(j),(k)

J(z(j))J(z(k))I1
Rn(z(j))I2

Rn(z(k))
∑

w,v∈Bn

C1
n(w, z(j))S̃n[w|v̄]C2

n(v̄, z(k))

=
∑

(j),(k)

δjk
J(z(k))

J(z(j))J(z(k))I1
Rn(z(j))I2

Rn(z(k))

=
∑
(j)

J(z(j))I1
Rn(z(j))I2

Rn(z(j))

(5.109)
Now, we can see that the combination I1

RnI
2
Rn transforms properly as a CHY in-

tegrand under a Möbius transformation. Therefore, we can assume that the quantity
A3
n yields the n-point tree amplitudes of a third theory, whose CHY representation

can be constructed out of those of the other two theories. This means that, whene-
ver we have two sets of amplitudes belonging to theories with gauge groups, we can
construct amplitudes of new theories by calculating the linear combination of the
amplitudes of the two known theories weighted by the momentum kernel. This cons-
truction immediately yields the CHY integrand of the new theory as the product of
the half-integrands of the original theories that are separated from the Parke-Taylor
factors. In particular, recall that the integrand for a primitive Yang-Mills theory
amplitude can be written as

IYMn (z, w, p, ε) = Cn(w, z)En(z, p, ε) (5.110)

where the polarization function is defined as the reduced Pfaffian in Eq.(4.34.
The KLT combination of Yang-Mills primitive amplitudes is nothing but the tree-
level graviton scattering amplitudes. Thus, we conclude that the CHY integrand for
gravity is given by

IGRn (z, p, ε) = E2
n(z, p, ε) (5.111)

in agreement with Eq.(4.38) in Chapter 4.



CHY representation for fermions

In this chapter, we will introduce two of the possible schemes that allow us to
define a CHY representation for amplitudes with fermions.

The first scheme exploits the fact that QCD primitive amplitudes have an exter-
nal cyclic ordering, and as we have seen, multiple linear relations between primitive
amplitudes allow us to obtain a minimal set of independent primitive amplitudes,
which we have called the basis. We saw that the number of basis amplitudes de-
pended on the specific particle content of the amplitudes under consideration, and
that the maximum number of these independent amplitudes for n external partons
was (n − 3)!. In particular, the CHY integrand for QCD primitive amplitudes we
construct will be a direct generalization of the Yang-Mills integrand,

AQCDn (w, p, ε) = i
∑
(j)

Jn(z(j))Ĉn(w, z(j))Ên(z, p, ε) (6.1)

in the sense that the function Ĉn will carry all the information on the exter-
nal orderings and Ên(z, p, ε) will only depend on the external polarizations, which
we denote generically by ε (of course, this also includes spinor wavefunctions for
the quarks). These functions will be referred to as the generalized Parke-Taylor
factor and generalized polarization function, respectively. Rewriting the CHY repre-
sentation as a matrix equation between the basis amplitudes and the generalized
polarization function evaluated at different inequivalent solutions to the scattering
equations, we will see that it is always possible to invert the equation and write the
integrand Ên(z, p, ε) in terms of the basis amplitudes, assuming that the matrix Fww′
defined by Eq.(5.85) has full row rank. We will verify this conjecture for the case of
the six quark amplitude analytically. One obvious drawback of this approach is that
the CHY integrand will be given in terms of the amplitudes themselves; therefore,
what we accomplish with this is to obtain a proof that the CHY representation
always exists for QCD primitive amplitudes in arbitrary dimension.

The second way to obtain the CHY representation for QCD amplitudes will be
based on the construction of a connected formalism prescription for amplitudes with
massless quarks. Using the relation between N = 4 SYM and QCD amplitudes with
up to four massless quark-antiquark pairs obtained in [28] (which were later shown
to also hold for arbitrary, massless QCD primitive amplitudes in [80]), one uses the
connected formulas for the superamplitudes of N = 4 SYM to write down the equi-

106



107

valent formulas for the case of QCD. As we have discussed, the scattering equations
in four spacetime dimensions, when written in terms of spinors, are exactly the same
constraints of the connected prescription formulas. Therefore, we can interpret these
connected formulas as the CHY representation of QCD amplitudes with fermions.
However, in this case, we only obtain results which are valid in D = 4, and that
only hold for massless fermions.

It should be noted that CHY integrands for amplitudes with fermions can also
be obtained from string theory, as shown in [59]. We will not work out this in detail,
but we offer a brief outline of the idea. The n-gluon open string amplitude in the
Ramond-Neveu-Schwarz (RNS) formalism for the superstring can be written as an
integral over the expectation value a product of n vertex operators on the disk as

Astringn =
1

α′g2
o

〈cU (−1)(z1)cU (−1)(zn−1)cU (0)(zn)

∫ n−2∏
i=2

dziU
(0)(z2)...U (0)(zn)〉 (6.2)

Here, α′ is the inverse string tension and go is the open string coupling. The
subscript on the vertex operators U denote the ghost picture in which they are
defined, and the integral is to be performed over the ordered region zn−2 > zn−3 >
... > z2, once the values of z1, zn−1, zn are fixed to arbitrary values, which is the
analogue of the SL(2,C) gauge fixing of the scattering equations. Evaluating the
expectation value by performing the corresponding Grassmann integrations, the
integrand of Eq. (6.2) becomes an expansion in α′, whose leading order is the Pfaffian
of the CHY formalism for Yang-Mills theory. The subleading terms then become
proportional to the scattering equations, and thus, introducing by hand the product
of delta functions in the CHY measure Eq. (4.3), one obtains a new dual model whose
low energy limit (which corresponds to α′ → 0) precisely coincides with the CHY
formulas for tree amplitudes. Performing this procedure for the vertex operators
associated to superstring amplitudes with fermions, it is possible to obtain the CHY
representation by this prescription after calculating the correlation functions of the
appropriate vertex operators and taking the leading term in the limit α′ → 0. We
refer the interested reader to the original paper for details.

6.1. Construction of the CHY integrand for QCD

In this section, we will review the construction of the CHY integrand for QCD
primitive amplitudes developed in [26].

Since we will work with massive quarks, we will need the generalization of the
scattering equations to massive particles, given in Eq. (3.15). Also, since the form
of the CHY representation as a sum over the inequivalent solutions will prove to be
more useful for our purposes, we will need to generalize the Jacobian, Eq.(4.7), to
account for the modification of the scattering equations. The only modification need
is in the matrix (Φn), which will be given by

(Φn)ab :=


2pa·pb+2∆ab

z2ab
if a 6= b

−
∑

c=1
c 6=a

(Φn)ac if a = b
(6.3)
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in terms of which, as before, the Jacobian is

Jn(z, p) =
1

det′(Φn)
= (−1)i+j+k+q+p+r zijzjkzkizpqzqrzrp

det[Φn]ijkpqr
(6.4)

Now, consider an n-point QCD primitive amplitude AQCDn = An such that n =
ng + 2nq, with ng the number of gluons and nq the number of quark-antiquark
pairs. We would like to show that An can be written as a sum over the inequivalent
solutions to the scattering equations as

An(w, p, ε) = i
∑
(j)

Jn(z(j))Ĉn(w, z(j))Ên(z(j), p, ε) (6.5)

where the function Ĉn(w, z(j)) carries all the information on the cyclic orde-
ring and the function Ên(z, p, ε) contains all the dependence on the polarizations of
the external particles. In order to respect the SL(2,C) invariance of the scattering
equations, we demand that, under a Möbius transformation

z → ζ =
az + b

cz + d
, ad− bc = 1 (6.6)

the half-integrands Ĉn(w, z(j)) and Ên(z, p, ε) transform as

Ĉn(w, ζ) =

(
n∏
i=1

(czi + d)2

)
Ĉn(w, z)

Ên(ζ, p, ε) =

(
n∏
i=1

(czi + d)2

)
Ên(z, p, ε)

(6.7)

Note that, however, there is no unique way to construct such two integrands,
because a rescaling Ĉ → tĈ, Ê → 1

t
Ê leaves the product ĈÊ invariant. More ge-

nerally, we can multiply Ĉ by any function of cross-ratios of the punctures, which
is SL(2,C) invariant, and divide Ê by this same function. Such a modification not
only leaves the product ĈÊ invariant, but also leaves the transformation proper-
ties of the half-integrands unaltered. Therefore, this implies that there is a freedom
in the definition of either the generalized Parke-Taylor factor Ĉ or the generalized
polarization function Ê. To fix this freedom, we will constrain the structure of the
generalized Parke-Taylor factors: for nq ≤ 1, we will assume that Ĉn(w) = Cn(w)
for all n, that is, for the pure Yang-Mills case and the QCD amplitudes with one
quark line, we define the generalized Parke-Taylor factor as the standard Parke-
Taylor factors given in Eq.(4.24). For amplitudes with nq ≥ 2, we also demand that

Ĉn(w) = Cn(w), but only for the subset of words with the standard orientations
of fermion lines, which were described in Chapter 5. Since these subset of words
exactly define the amplitude basis for nq ≥ 2, we will impose cyclic invariance, the
KK and fundamental BCJ relations, as well as the the fermion orientation relations
to express all the other generalized Parke-Taylor factors as linear combinations of
standard Parke-Taylor factors. In a nutshell, this means that we will take the ge-
neralized Parke-Taylor factors to satisfy the different linear relations that primitive
amplitudes must satisfy. Since the dependence on the external orderings will be en-
coded completely in the generalized Parke-Taylor factors, this will guarantee that
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the primitive amplitudes satisfy them by construction. Let us describe how to do this.

For w ∈ W3, we have simply defined

Ĉn(w, z) = Cn(w, z) (6.8)

since, for nq ≥ 2, the words in W3 are exactly those where the fermion lines are
all in the standard orientations. Now, for w ∈ W2/W3, we first define

Ĉn(w) = 0 (6.9)

for words with crossed fermion lines; this guarantees that the amplitudes with
crossed fermion lines vanish. For words with no crossed fermion lines but with that
are in the wrong orientation, we expand the generalized Parke-Taylor factors as

Ĉn(wk−1qiwkq̄jwk+1qjukq̄iuk−1)

= (−1)γ+1

r∑
a=0

s∑
b=0

Ĉn(wk−1qili1 ...liaqjw
′
k+1q̄jljb+1...lsq̄iuk−1)

(6.10)

with the conventions used in Eq. (5.72). This means that, after applying Eq.
(6.10) recursively enough times, we will be able to expand the generalized Parke-
Taylor factors with the wrong orientation of the fermion lines in terms of standard
Parke-Taylor factors with the standard orientation of the fermion lines.

For w ∈ W1/W2, the word w has the general form

w = l1w1lnw2 (6.11)

for two subwords w1 and w2. Letting |w2| denote the length of w2, we demand
that they can be expanded according to the KK relations,

Ĉn(l1w1lnw2, z) = (−1)|w2|Ĉn(l1(w1� wT2 )ln, z) (6.12)

which gives the generalized Parke-Taylor factors with external ordering w ∈
W1/W2 in terms of generalized Parke-Taylor factors with legs l1 and l2 fixed. Finally,
for words w ∈ W0/W1, which are the words that do not have the letter l1 fixed at
position one, such as w = w′1l1w

′
2 for some subwords w′1, w

′
2, we demand cyclic

invariance

Ĉn(w′1l1w
′
2, z) = Ĉn(1w′1w

′
2, z) (6.13)

hence, ultimately, we define the generalized Parke-Taylor factor as a linear com-
bination of standard Parke-Taylor factors whose orderings belong to the amplitude
basis.

In order to define the generalized polarization function Ên, we rewrite Eq. (6.5)
as a matrix equation relating an Nb = (n− 3)! dimensional vector of basis primitive
amplitudes, indexed by the word w that specifies its external ordering,

Aw = An(w)
and a Ns = (n−3)! vector of generalized polarization functions, where each entry

is evaluated at the j-th solution to the scattering equations,
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Êj = Ên(z(j), p, ε) (6.14)

Then, the CHY formula Eq. (6.5) for the primitive amplitude An(w) can be
written as

Aw = iM̂wjÊj (6.15)

where a sum over j is understood and M̂ is the Nb ×Ns matrix, with entries

M̂wj = Jn(z(j), p)Ĉn(w, z(j)) (6.16)

This definition can also we done, of course, for w 6∈ Bn. However, we will see
that it is sufficient to consider only the primitive amplitudes in the basis B in order
to define Ên. The benefit of using this notation is that we can understand the CHY
representation for QCD primitive amplitudes (or, in fact, for any theory with color-
ordered amplitudes) as that of finding a basis in which we can expand the primitive
amplitudes, such that the information on the external orderings is separated from
the information on the spin, and which localizes to the solutions to the scattering
equations. Then, given the definition of the generalized Parke-Taylor amplitude, a
CHY representation for QCD primitive amplitudes will exist if Eq. (6.15) can be
inverted to obtain the generalized polarization function Ê. However, recall that

Nb =

{
(n− 3)! if nq ≤ 1

(n− 3)!2(nq−1)

(nq)!
if nq ≥ 2

(6.17)

hence, the matrix M̂ is an square matrix for nq = 0, 1, 2 1, but is in general a
rectangular matrix with less rows than columns for nq > 2. Let us treat these cases
separately.

To simplify the discussion, we will work with the alphabet Ao, given in Eq. (5.82),
which we remind is given by

A0 = {1, 2, ..., n} (6.18)

that is, we omit the information on the flavour of the particles. With this termi-
nology, the set W2 is simply given by

W2 = {w ∈ W0|l1 = 1, ln = n} (6.19)

Moreover, since the size of the basis B for nq = 0, 1, 2 is (n− 3)!, we define the
set

Bnq≤2 = {w ∈ W0|l1 = 1, ln−1 = n− 1, ln = n} (6.20)

which provides a basis for amplitudes with nq ≤ 2. Furthermore, since in all these
cases the words w ∈ Bnq≤2 have the standard orientation of the fermion lines, the
matrix in Eq.(6.16) simplifies, because all of the generalized Parke-Taylor factors
in it become standard Parke-Taylor factors, and we introduce the notation for this
simplified matrix

1for nq = 2, the factor
2(nq−1)
(nq)!

is equal to 1
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Mwj = Jn(z(j), p)Cn(w, z(j)) (6.21)

which is a square matrix. Furthermore, for these values of nq, we can define the
matrix Ns ×Nb matrix (which is also square),

Njw =
∑

v∈Bnq≤2

Sn[w|v̄]Cn(v̄, z(j)) (6.22)

where Sn[w|v̄] is the massive momentum kernel, given in Eq.(5.96). Now, since
both the momentum kernel and the Jacobian are modified in the same way by the
inclusion of massive particles, we can see that KLT orthogonality holds when we
replace S̃n by Sn and the Jacobian by its massive form. Therefore, we can conclude
that Njw defines an inverse to Mwj,

NiwMwj =
∑

w,v∈Bnq≤2

Jn(z(j))Cn(w, z(j))Sn[w|v̄]Cn(v̄, z(i))

= δij

(6.23)

Moreover, note that the j-th row of Njw depends only on the j-th inequivalent
solution z(j) to the scattering equations, and is independent of the other solutions
z(k) for k 6= j. Hence, given a primitive amplitude An(w) = Aw with w ∈ Bnq≤2

which can be expanded in terms of the generalized polarization functions

Aw = iMwjÊj (6.24)

multiplying by Niw from the left, we find

Êj = −iNjwAw (6.25)

or, rewriting Êj and Aw in terms of its arguments,

Ên(z(j), p, ε) = −i
∑

w∈Bnq≤2

Sn[w|v̄]Cn(v̄, z(j))An(w, p, ε) (6.26)

hence, we have shown that, for at least two quark-antiquark pairs, which may
either be massive or massless and for an arbitrary number of gluons, there must
exist a CHY representation in the form of Eq.(6.5). Note that, as we anticipated,
this does not provide a closed expression which allow us to compute the amplitudes,
since we are expanding the generalized polarization function in term of the basis am-
plitudes. Nonetheless, the expansion in Eq.(6.26) will allow us to derive the leading
soft limit of the generalized polarization function by using the known soft limit of
the primitive amplitudes, which is the main result of this thesis and will be worked
out in detail in Chapter 7.

What happens when nq > 2? In this case, the number of basis amplitudes is
smaller than the number of inequivalent solutions to the scattering equations, Nb <
Ns. Hence, the matrix M̂ is not a square matrix. However, since we have restricted
w ∈ B, the generalized Parke-Taylor factors also become standard Parke-Taylor
factors as in the nq ≤ 2 case,

M̂wj = Jn(z(j), p)Cn(w, z(j)) (6.27)
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In this case, to solve Eq.(6.15) for the generalized polarization function in terms
of the primitive basis amplitudes, we must find a right inverse to M̂ . Before we
proceed, let us introduce some basic notions of pseudo-inverse matrices, which ge-
neralize the notion matrix inversion to non-square matrices. We follow partially the
treatment in [82], where pseudo-inverses have also been studied in the context of
loop BCFW relations. For an extensive treatise of the theory of generalized inverses,
we refer the reader to [83].

Let A be an m × n matrix, and let x and b denote two n dimensional vectors.
Then, consider the problem of solving the following linear system

Ax = b (6.28)

where we want to solve for x. If A were a square, non-singular matrix, the solution
would be easily obtained in terms of the inverse A−1 as x = A−1b. For a non-square
matrix, there is no simple notion of matrix inversion (which means that the system
is either under- or over-determined). In this case, we define the generalized inverse
G as the n×m matrix that satisfies

AGAT = A (6.29)

which allows to obtain a solution to the system Ax = b. However, in order to
provide a solution to the system, G must also satisfy the condition

AGb = b (6.30)

and the general solution to the linear system is given in terms of an arbitrary
vector y as

x = Gb+ (I +GA)y (6.31)

where I is the n× n identity matrix.

With this conditions, it can be seen that, given a non-square matrix A, a right-
inverse is defined by

A−1
R = AT (AAT )−1 (6.32)

which exists only if the square matrix AAT is invertible. Moreover, the genera-
lized inverse G can be seen to be non-unique for, if we define

G′ = G+ (I −GA)Y +W (I − AG) (6.33)

for arbitrary matrices Y and W of size n×n and m×m, respectively, and where
I denotes the corresponding identity matrices, then

AG′A = AGA = A (6.34)

which allows one to obtain a family of generalized inverses. Hence, when trying
to obtain a right inverse for M̂wj, we will make the simplest choice, given by the
right inverse defined in Eq.(6.32). This will only be possible if

rankM̂wj = Nb (6.35)
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that is, if the matrix M̂wj has full row rank. Having full row rank means that the

Nb vectors formed from the rows of M̂ are linearly independent. It should be noted
that the right inverse is not unique 2, and we will be interested in finding a right
inverse with the property that the entries on its j-th row is independent on the k-th
inequivalent solution to the scattering equations for k 6= j. In order to do this, we
expand the Parke-Taylor factors in Eq. (6.27) in terms of the Parke-Taylor factors
with w′ ∈ Bnq≤2 using the general BCJ relations,

Cn(w, z(j)) = Fww′Cn(w′, z(j)) (6.36)

where the elements of Fww′ have been defined in Eq.(5.85). What is important
to us is that the coefficients Fww′ are purely kinematic, and do not depend on the
solutions to the scattering equations. We then have

M̂wj = Fww′Mw′j (6.37)

From our previous discussion, we know that the matrix Mw′j is square and in-

vertible. Hence, the condition on the rank of M̂ becomes a condition on the rank of
F ,

rankFww′ = Nb (6.38)

which is a purely kinematic statement, since F does not depend on the solutions
to the scattering equations. There is no proof of this statement to the best of my
knowledge, and the equivalence to a weaker statement is provided in Appendix C of
[26]. In this thesis, we will explicitly calculate the elements of Fww′ for the non-trivial
case of six massless quarks, and we will show that, in this case, the square matrix
FF T has a non-vanishing determinant, which is equivalent to Fww′ having full rank.

Now, assuming that F does have full rank, we take the right inverse to be

G = F T (FF T )−1 (6.39)

and then the right inverse of M̂ can be written as

N̂jw = Njw′Gw′w (6.40)

and then, multiplying Eq. (6.15) from the left and writting out the explicit
elements of Njw′ , we obtain the generalized polarization function

Ên(z, p, ε) = −i
∑

u,v∈Bnq≤2

∑
w∈Bn

Sn[u|v̄]GuwC(v̄, z)An(w, p, ε) (6.41)

Note that we could have constructed a right inverse to M̂ directly, as

M̂T (M̂M̂T )−1 (6.42)

however, such an inverse could possibly mix Parke-Taylor factors evaluated at
different, inequivalent solutions to the scattering equations in a given row j. The
specific construction of the right inverse N̂jw has the property that its j-th row is
depends only on the j-th solution z(j) to the scattering equations.

2In contrast to the case of square matrices, were the inverse A−1 to a given matrix A is always
unique
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6.1.1. F matrix for six massless quarks

Now, we consider the explicit calculation of the matrix elements Fww′ for the
case of the six quark amplitude. If we denote the quarks and their corresponding
antiquarks according to

q1 = 1, q2 = 2, q3 = 3 q̄3 = 4, q̄2 = 5, q̄1 = 6. (6.43)

We can construct the basis

B = {123456, 125346, 132546, 134256}. (6.44)

We also define the set

Bnq≤2 = {123456, 124356, 132456, 134256, 142356, 143256} (6.45)

which would correspond to the basis for the six gluon amplitude. The matrix F6q,
whose elements are Fww′ , will be of 4 × 6 size and it can be regarded as the linear
operator relating the multiquark amplitude with the purely gluonic one. In order to
determine the non-trivial elements (that is, those different from one or zero), one
fixes the word w and using the linear expansion appearing in the BCJ relations, Eq.
(5.84), one can find the words w′ for which the element Fww′ is non-trivial. Since
the letters 1, 5, 6 are fixed in the elements of Bnq≤2 and the letters 1, 6 are fixed in
the elements of B, it is sufficient to consider the words in B which are not in Bnq≤2.
The amplitudes with those external orderings are the only ones that will have a
non-trivial linear expansion in terms of the amplitudes whose external orderings
are in Bnq≤2. As an example of the calculation of the elements, we consider the
word w = 125346. To determine the words w′ ∈ Bnq≤2 that contribute to the linear
expansion of w, we consider two subwords of w,

w1 = 2, w2 = 34 (6.46)

these are chosen in such a way that w = 1w15w26 6∈ Bnq≤2. Then, we calculate

s(w2) = 34 + 43 (6.47)

Finally, we need to calculate the shuffle product

w1� s(w2) = 234 + 243 + 324 + 342 + 324 + 432 (6.48)

If we let σ denote an arbitrary term appearing on the sum in 6.48, we construct
the word w′ = 1σ56, and we can calculate the element Fww′ for the fixed w and
each of those w′. In this particular case, we need to calculate six matrix elements.
For example, we can calculate the matrix element for w = 125346 and w′ = 123456.
Using the definition of Fww′ in Eq. (5.85), we can see that, in this case,

Fww′ =
F(1σ5|3)

ŝ6,`2,`3

F(1σ5|4)

s̃6,`3

(6.49)

where σ = 234. Then, we form the string ρ = 12345, and we need to calculate
the factors F(ρ|3) and F(ρ|4), defined in Eq. (5.87). For a general factor F(ρ|`k),
we recall that one needs to determine the position of `k in the string ρ = 1σ(n− 1),
t`k , and compare it with the positions of `k+1 and `k−1; furthermore, if we let `j be
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the last letter appearing in w1, which in our case is the letter 2, the position of said
letter is always fixed to t`j = n, the number of particles in the scattering process.
Finally, for k = n− 4, we always have the condition t`n−4 = t`n−2 .

For the factor F(ρ|3) in our example, since `2 = 3 and `3 = 4, t`2 < t`3 . Furt-
hermore, since `1 = 2, from the general condition t`j = n, we find t2 = 6 so that
F(ρ|3) = 2(p1 + p2) · p3. From the general condition t`n−2 = t`n−4 , we find that
t`3 > t`4 therefore F(ρ|4) = −2p4 · p5. This implies

Fww′ = −4(p1 + p2) · p3(p4 · p5)

s̃6,3,4s̃6,4

. (6.50)

The calculation of the rest of matrix elements proceeds similarly. That is, once
w is fixed, one constructs the sum in (6.48) and calculates the element Fww′ for each
of those two words. In the case w = w′, Fww′ = 1 and the rest of elements are zero.
With this in mind, we can arrange the matrix F6q, and find the square matrix

F6qFT6q =


1 0 0 D
0 1 A E
0 A A2 +B2 + C2 AE +BF + CG
D E AE +BF + CG D2 + E2 + F 2 +G2 +H2 + I2

 .
The non-zero elements are rational functions of various kinematic invariants and

masses, and are given by

A = −2[(p1 + p3) · p4 +m2
3]

s̃6,4

, B =
2[p4 · (p1 + p2 + p3) +m2

3]

s̃4,6

, C =
2p1 · p4

s̃4,6

E = −4 ((p2 + p5) · p4) (p1 · p3)

s̃6,3,4s̃6,4

, F = −4(p1 · p3)(p4 · p5)

s̃6,3,4s̃6,4

G = −2p1 · p4 (2p3 · (p2 + p5) + s̃6,4,3)

s̃6,4,3s̃6,4

H = −2[(p1 + p2) · p4][2p3 · p5 + s̃6,4,3]

s̃6,4,3s̃6,4

, I = −−2p1 · p4 (2p3 · p5 + s̃6,4,3)

s̃6,4,3s̃6,4

(6.51)
and D is given by the expression on (6.50). For general kinematics, this matrix

has a non-vanishing determinant. Thus, by explicitly computing the matrix elements
and the determinant, we have confirmed the claim [26] that the CHY representation
exists for the six quark primitive amplitude in QCD [84].

6.2. Connected formalism prescription for QCD

amplitudes

A different route to obtaining CHY/Connected formulas for QCD color-ordered
amplitudes with massless quarks, which is the subject we review in this chapter,
was provided in [27]. The idea is to exploit the fact that, as first detailed in [28]
for amplitudes with up to four quark lines and then shown to hold for an arbitrary
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number of quark lines in [85], all color-ordered amplitudes in QCD can be written
as linear combinations of gluon-gluino amplitudes in N = 4 SYM. Therefore, one
can use the connected formula , Eq.(4.75), which contains all the information on the
superamplitudes of N = 4 SYM; in particular, by suitable Grassmann differentia-
tion (or integration), one can extract the component amplitudes corresponding to
gluon-gluino amplitudes. We will see, through a couple of examples, that combining
the different connected formulas for gluon-gluino amplitudes gives simple forms for
the gluon-quark QCD amplitudes. As a first step, we will see how to combine the
N = 4 component amplitudes to obtain QCD amplitudes. Since connected formulas
are explicitly four-dimensional, we can also make use of helicity amplitudes. Howe-
ver, besides the fact that this approach cannot be applied for massive fermions, it is
not valid in arbitrary dimension, which is one of the main advantages of the CHY
formalism.

The fundamental difference between QCD and N = 4 SYM amplitudes lies in
the fact that, while quarks transform in the fundamental representation of the gauge
group and there can be an arbitrary number of quark flavours, gluinos transform
in the adjoint representation and come only in four flavours which arise from the
SU(4) R-symmetry of the theory. Moreover, the spectrum of N = 4 contains six
SU(4) antisymmetric scalars SAB, which give rise to flavour changing interactions
for the gluinos via the interaction term SABψAψB. The first problem is solved by
color-decomposition, because once one separates the color information to obtain the
color-ordered amplitude, the information on the gauge group (and hence, the re-
presentation under which the external states transform) is irrelevant, and then it
is possible to obtain the full quark-gluon amplitude by using gluon-gluino partial
amplitudes.

However, the non-trivial problem one has to solve in order to express QCD
amplitudes in terms of N = 4 SYM amplitudes is to avoid the exchange of internal
scalars, which of course are not present in QCD. Also, it is not obvious that the
flavours of all the quark lines can be taken to be different from each other. In order
to this, one first notes that, similarly to the pure gluon sector, N = 1 SYM is a
closed subsector of N = 4 SYM. By closed sector we mean that, if out of the four
gluino flavours, we single out one of them (say, ψ1), then amplitudes whose external
states are only formed by gluons g and gluinos ψ1 are the same in N = 4 SYM and
in N = 1 SYM, where the spectrum is simply a gluon and a gluino. This happens
because the scalars in N = 4 SYM only couple different flavoured scalars; hence,
the only internal particles that can be exchanged to produce ψ1ψ̄1 pairs are gluons,
and these are exactly the same interactions that appear in N = 1 SYM. This is
similar to the argument of why pure gluon tree amplitudes are the same in all gauge
theories: since both the scalars and fermions couple only to the gluon by pairs, there
can be no internally propagating scalar or fermion which produces a pair of gluons;
if an internal fermion generates a gluon, it must be accompanied by a corresponding
antifermion and similarly in the case of scalars. The consequence of this is that QCD
color-ordered amplitudes with an arbitrary number of massless quark lines with the
same flavour are identical to the corresponding amplitude, where the gluino ψ1

replaces the quark, in N = 4 SYM. If we want to calculate amplitudes with a higher
number of flavours, we start to face the problem of the scalar exchange that couple
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Fig. 6.1: Color-ordered QCD amplitude with four quark-lines (left hand side) as a
linear combination of N = 4 SYM gluon-gluino amplitudes. The number indicates
the flavour and ± the helicity.

different flavoured gluinos. In order to avoid the exchange of scalars, one needs to
take in account the following facts about the interaction vertices of N = 4 SYM:

1. The scalars SAB cannot couple equal-flavoured gluinos due to their antisym-
metry in the SU(4) indices A,B,

2. fermion helicity is conserved in gauge theories. Therefore, a Yukawa interaction
coupling the scalar SAB with two gluinos ψ+,A and ψ−,B, as well as gluon-
gluino-gluino vertex where both gluinos carry the same helicity vanish (in the
convention where all particles are outgoing),

3. a gluon-gluino-gluino vertex with different flavour gluinos vanish because gluons
do not change flavour

In particular, the fact that gluons cannot change gluino flavours mean that one
can focus on amplitudes with only external gluinos. In order to avoid this exchange,
we first look at the position of the gluinos in the color ordering. If two adjacent
gluinos have the same helicity, then we choose them to have the same flavour; that
is, configurations of the form (..., A±, B±, ...) for A 6= B are forbidden, where we
note each gluino simply by its flavour. Moreover, it is necessary to also forbid con-
figurations of the form (..., A±, C±, C∓, B±, ...) because the line (C±, C∓) can be
produced from an internal gluon and connect the line (A±, B±). Similarly, if the
two adjacent gluinos have opposite helicity, they are either chosen to have the same
flavour, or they are given a different flavour which matches the quark fermion flow.
This can be illustrated with graphs similar to the ones we used in Chapter 5 to
describe multiquark primitive amplitudes. As an example, consider the graphs given
in Fig.(6.1). Algebraically, this relation means
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AQCD8 (q̄−1 , q
+
1 , q̄

−
2 , q

+
2 , q

+
3 , q̄

−
3 , q

+
4 , q̄

−
4 ) = AN=4

8 (1−, 1+, 1−, 1+, 1+, 1−, 1+, 1−)

− AN=4
8 (2−, 1+, 1−, 2+, 2+, 2−, 2+, 2−)− AN=4

8 (2−, 2+, 2−, 2+, 2+, 1−, 1+, 2−)

+ AN=4
8 (2−, 1+, 1−, 2+, 2+, 1−, 1+, 2−)

(6.52)
In order to write down similar formulas for more than four quark flavours, one

must use flavour recursions, as derived in [80], which allow to write multiflavour
color-ordered (and also, primitive) amplitudes in terms of amplitudes with only one
flavour, which can be directly extracted from the N = 1 subsector of N = 4 SYM.

Now, to write connected formulas for the color-ordered QCD amplitudes from
the connected formulation of N = 4 SYM, we fill find convenient to rewrite the RSV
formula, Eq.(4.75), using the rational form of the 4D scattering equations, given in
Eq. (3.20). In order to do this, we first introduce the short hand notation

(ab) =
σa − σb
tatb

(6.53)

then, as shown in [68], the superamplitude in the sector with k negative helicity
particles and be written as

AN=4
n,k =

∫ ∏n
a=1 d

2σa
vol GL(2,C)

∏
I∈−

δ2

(
λ̃I −

∑
i∈+

λ̃i
(Ii)

)∏
i∈+

δ2

(
λi −

∑
I∈−

λI
(iI)

)

=
∏
I∈−

δ0|4

(
ηI −

∑
i∈+

ηi
(Ii)

)
1

(12)(23)...(n1)

(6.54)

where + and − denote two sets into which we split the particles, such that there
are k particles in − and the remaining n − k particles in +, and we denote the
elements of −,+ with I and i, respectively.

As discussed in Chapter 2, component amplitudes can be obtained from the su-
peramplitude by calculating derivatives of the Grassmann variables η, according to
the superfield prescription of Eq.(2.144). Grassmann differentiation can of course be
also performed as Grassmann integration, and it is in this way which it proves more
easy to perform the calculations.

For example, assume we want the component amplitude with (n− 2) gluons and
one pair of gluinos {ψ̄I,A, ψAi }, with I ∈ − and i ∈ +. This means that we take
negative helicity gluinos to be in the set − and positive helicity gluinos to be in the
set +. Ignoring the contribution from the gluons, we need to perform the Grassmann
integrals over 3 (d3ηI)Adη

A
i . This leaves only one delta function,

δ0|4
(
ηI −

ηi
(Ii)

)
=

1

(Ii)
δ0|4(ηI − ηi) (6.55)

3Recall that the positive helicity gluinos are associated to a single Grassmann variable ηA,
while the negative helicity gluinos are associated to the product of three Grassmann variables in
the definition of the superfield.
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using the properties of the fermionic delta functions. Hence, the overall effect
of the integration over the Grassmann variables of a gluino-antigluino pair is to
introduce a Jacobian factor J = 1

(Ii)
. This generalizes to m gluino pairs, which we

can label by (I1, i1)...(Im, im), and yields the formula

Ag;ψψ̄n,k =

∫ ∏n
a=1 d

2σa
vol GL(2,C)

det Ξ

(12)(23)...(n1)

∏
I∈−

δ2

(
λ̃I −

∑
i∈+

λ̃i
(Ii)

)∏
i∈+

δ2

(
λi −

∑
I∈−

λI
(iI)

)
(6.56)

where Ξ is the m×m matrix with entries, for r, s = 1, 2, ...m,

Ξrs =
δAIrAis

(Iris)
(6.57)

where AIr , Ais refer to the flavour of the gluinos. Naturally, to avoid an ambiguity
with respect to the overall sign of the determinant, one must choose in which order
to label the rows and columns of Ξ; these are arranged such that row r corresponds
to Ir and column s to is.

From our discussion of the relation between N = 4 SYM and QCD color-ordered
amplitudes, we know that the component amplitudes with only one flavour are
exactly equal to the amplitudes in single-flavour QCD. Hence, from Eq.(6.56), we
obtain the connected formula for single-flavour, massless QCD by setting δAiAi = 1
in all the entries of Ξ.

Now, consider the case where there are two quark lines with distinct flavours,
which we denote by {a1, a2} and {b1, b2}. These two lines can be ordered in two pos-
sible ways: (a−1 , b

−
1 , b

+
2 , a

+
2 ) and (a−1 , a

+
2 , b

−
1 , b

+
2 ). As before, the position of the gluons

can be ignored.

In the first case, note that the vertices connect the different flavour gluinos a−1 , b
−
1

and a+
2 , b

+
2 . Therefore, in order to avoid the propagation of an internal scalar SAB,

we identify the QCD color-ordered amplitude with the N = 4 SYM amplitude
with A = B, which guarantees that the diagrams with scalar exchange vanish. This
corresponds to taking the entries of Ξ for two gluinos of equal flavour, which results
in the Jacobian

J (a−1 , b
−
1 , b

+
2 , a

+
2 ) =

∣∣∣∣∣ 1
(a1a2)

1
(a1b2)

1
(b1a2)

1
b1b2)

∣∣∣∣∣ (6.58)

In the second case, the vertices already connect the equal flavour gluinos. In this
case, to avoid contributions with the form of amplitudes with equal flavours (which
would arise from gluon exchange), one takes two different flavours, A 6= B, which
cancel the off-diagonal elements of Ξ and the Jacobian simplifies

J (a−1 , a
+
2 , b

−
1 , b

+
2 ) =

1

(a1a2)

1

b1b2)
(6.59)

In general, the connected formula obtained from this procedure for an arbitrary
number of quark-antiquark pairs has the form



120

Ag;qq̄n =

∫ ∏n
a=1 d

2σa
vol GL(2,C)

J ({σq,q̄})
(12)(23)...(n1)

∏
I∈−

δ2

(
λ̃I −

∑
i∈+

λ̃i
(Ii)

)∏
i∈+

δ2

(
λi −

∑
I∈−

λI
(iI)

)
(6.60)

where the Jacobian J is obtained from the matrix Ξ, by setting to zero different
elements of the one-flavour matrix with entries Ξrs = 1/(Iris), depending on the
ordering of the external quarks. This construction is given explicitly for up to four
quark-antiquark pairs in [27].

Let us do some final remarks on this two alternative approaches. On one hand,
the method based on inverting the CHY representation to obtain the polarization
function in terms of the primitive amplitudes has the advantage of satisfying, by
construction, the various linear relations between primitive amplitudes with dif-
ferent external orderings in arbitrary spacetime dimension. Also, it allows one to
obtain mathematical properties of the integrand by using the known properties of
the amplitudes (for example, the subject of Chapter 7 will be to show that the ge-
neralized polarization function for nq ≤ 2 factorizes on soft limits to leading order,
in a way similar to the primitive amplitudes). However, as we already mentioned, it
has the obvious problem of depending on the amplitudes, making it useless for the
calculation of the amplitudes themselves.

On the other hand, the connected formalism provides us with explicit formulas
for the integrands with fermions. However, although cyclic invariance and the KK
relations are manifest from the definition in terms of the Parke-Taylor like factor
1/(12)...(n1), the BCJ relations are not so obvious, and would require a case-by-case
check, because there is no explicit expression for the fermion Jacobian J with m
quark-antiquark pairs, even though it can be calculated in principle for any number
of quark-antiquark lines. Moreover, there is no clear way to generalize the result to
massive quarks, because the spectrum of N = 4 SYM is massless, and the intro-
duction of masses breaks the supersymmetry of the theory, which makes the whole
superfield and superamplitude construction fall apart. Moreover, the formula is only
valid in four dimensions, and its generalization to arbitrary dimension is complica-
ted due to the fact of choosing to express the fermion Jacobian in terms of spinors
and helicity amplitudes, which of course exist only in four dimensions4. It would be
interesting to see how these two approaches can be connected to each other, and
if the existence of the four dimensional connected formulas provide hints into the
proof that Fww′ has full row rank.

4In D > 4 dimensions, the little group of a massless particle is SO(D − 2), which is of course
non-Abelian, and thus the simplicity of the SO(2) little group in four dimensions is lost.



Soft limits in the CHY formalism

In this final chapter, we study the factorization of amplitudes in the soft limit
using the CHY representation and present an original result, not given still in the
literature, concerning the soft behaviour of the generalized polarization function for
nq ≤ 2.

We will show that using the prescription for the integrands of Yang-Mills theory,
Eq.(4.23) and for the biadjoint scalar theory, Eq.(4.37) and the decoupling of the
scattering equations discussed in Chapter 3, it is possible to derive the leading soft
factors when a gluon or a massless scalar is emitted with momenta ps → 0, respec-
tively.

Finally, we will use the universal soft limit for gluon emission derived in Chapter
2 and the expansion of the generalized polarization function in terms of primitive
amplitudes for nq ≤ 2 given in Eq. (6.26) to show that the polarization function
also exhibits a factorization property in the single soft limit, which will be the main
result of this thesis. We will check the self-consistency of our result by showing that
the soft factor of the generalized polarization function integrates over the puncture
associated to the soft momenta to yield the eikonal factor for the amplitudes. We
close this chapter with a discussion of the difficulties that arise when one tries to
perform a similar procedure in order to derive a factorization theorem for the gene-
ralized polarization function with an arbitrary number of quarks.

The fact that the CHY representation allow one to obtain explicit factorization
theorems in certain kinematic limits for arbitrary multiplicity and in any spacetime
dimension has been widely exploited in the literature, of which we quote a few results
(but by no means intend to by extensive). Subleading soft theorems for both Yang-
Mills and gravity 1 were obtained in [86], by performing a similar analysis to ours;
later on, the result was extended to the sub-subleading order for gravity amplitudes
in [87]. Double soft theorems, which occur when two massless particles are emitted
with momenta p1 = εP1, p2 = εP2 with ε → 0 (that is, they are controlled by the
same scale) were derived in [88] for various effective theories such as Dirac-Born-
Infeld (DBI) and the Non-linear Sigma model (NLSM), as well as Yang-Mills scalar.
The double soft graviton theorem was derived afterwards in [89]. Also, collinear li-

1The subleading terms for soft theorems in QCD were worked out from the point of view of
on-shell recursion relations in [91].
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mits were considered in [90], where agreement was found with the leading collinear
factorization when 2 out of n external gluons become collinear, and it was shown
that, at the subleading order, the amplitude can be written as the convolution of
(n− 1)-point gluon amplitudes and a so-called universal collinear kernel.

As a reminder to the reader and in order to clear the notation of this chapter, we
denote by sij = (pi + pj)

2, which in the case of massless particles is equal to 2pi · pj.
However, this is no longer true for massive particles, and we will use the notation
ŝij = 2pi · pj with the understanding that, in this relation, the momenta pi and pj
may be massive.

7.1. Soft limits in the CHY formalism

Let us establish the general notation we will need for the derivation of the soft
theorems.

Recall that the CHY representation can be written as the multidimensional con-
tour integral

A0
n(x) = i

(−1)i+j+k

(2πi)n−3

∮
C

dnz

dω

zijzjkzki∏′ fa(z, p)In(z,x) (7.1)

where the contour C encloses the (n−3)! inequivalent solutions to the scattering
equations. Now, suppose that one of the particles of the scattering process, say the
one with momentum pn, is massless. Hence, it makes sense to consider the limit when
this momentum is very small, which as in Chapter 3, we parametrize as pn = εPn,
with ε→ 0. In this limit, the (massless) scattering equations

fi(z, p) =
∑
j 6=i

sij
zij

= 0 (7.2)

decouple, in the sense that, for i 6= n, we can write

fi(z, p) =
∑
j 6=i,n

sij
zij

+ ε
sin
zin

= 0 (7.3)

and, for i = n,

fn(z, p) = ε
∑
j 6=n

snj
znj

= 0 (7.4)

which, as we discussed, means that if we keep only the leading order terms
in ε, in the soft limit the equations fi(z, p) = 0 for i 6= n become a system of
scattering equations for the (n − 1) particles were the soft particle is omitted, and
the equation fn(z, p) = 0 becomes an order (n−3) polynomial equation for zn, whose
coefficients depend on the remaining hard punctures and the momenta. This means
that, by performing a contour deformation, if we can separate the dependence of
the integrand In(z,x) on the puncture zn associated to the soft momenta, we can
integrate over this puncture individually as a simple contour integral in one complex
variable to obtain the leading contribution to the soft factor associated with the
emission of the particle with momenta pn. We will first see how this occurs in the
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biadjoint scalar φ3 theory, and afterwards we will consider the case of Yang-Mills
theory.

7.1.1. Leading soft limit in φ3

The integrand for biadjoint scalar theory is given by the product of two standard
Parke-Taylor factors with possibly different external orderings,

Iφ3n (z, w1, w2) = Cn(w1, z)Cn(w2, z) (7.5)

In general,

w1 = l11...l
1
s−1l

1
s l

1
s+1...l

1
n

w2 = l21...l
2
t−1l

2
t l

2
t+1...l

2
n

(7.6)

Suppose that particle n is in arbitrary positions given by the letters l1s in the
word w1 and l2t in the word w2. If we assume that the letters l1s−1 and l1s+1 are
associated to particles i and j respectively, with 1 ≤ i, j ≤ n, and similarly that
the letters l2t−1 and l2t+1 are associated to the particles k and m, with 1 ≤ k,m ≤ n,

we can rewrite the n particle Parke-Taylor factors in the integrand Iφ3n (z, w1, w2) in
terms of Parke-Taylor factors for (n − 1) particles, in analogous fashion to how we
did when deriving the KK relations,

Iφ3n (z, w1, w2) = Z(i, n, j)Z(k, n,m)Cn−1(w′1, z)Cn−1(w′2, z) (7.7)

where

w′1 = l11...l
1
s−1l

1
s+1...l

1
n

w′2 = l21...l
2
t−1l

2
t+1...l

2
n

(7.8)

and Z(a, b, c) is defined by Eq. (5.13). Note that the (n−1) particle Parke-Taylor
factors are independent of the puncture zn. Hence, in the soft limit pn → 0, choosing
not to gauge fix any of the punctures i, j, k,m, n, the CHY integral for the n-point
scalar amplitude can be written as

mn(w1|w2) =

∮
C

dΩ
(n−1)
CHY Cn−1(w′1, z)Cn−1(w′2, z)

(
1

2πi

∮
fn=0

dzn
fn
Z(i, n, j)Z(k, n,m)

)
(7.9)

where by dΩ
(n−1)
CHY we denote the CHY measure associated to (n − 1) particles.

Now, omitting the explicit integration contour, let us introduce a special notation
for the one-dimensional contour integral,

Inijkm ≡
1

2πi

∮
dzn
fn

Z(i, n, j)Z(k, n,m) (7.10)

We want to evaluate this integral for generic values of the indices i, j, k,m and
n. As a first step, let us rewrite the denominator 1/fn explicitly as

1

fn
=

∏
a6=n zna∑

a6=n sna
∏

b 6=a,n znb
(7.11)
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which can be easily obtained by multiplying 1
fn

by the factor (
∏

a6=n zna)/(
∏

a6=n zna)
and noting that the denominators appearing in each of the terms of the sum defining
fn, which are of the form snb/znb, cancel exactly against the term znb in the product∏

a6=n zna) . Hence, we rewrite

Inijkm =
1

2π

∮
dzn

∏
a6=n zna∑

a6=n sna
∏

b6=a,n znb
Z(i, n, j)Z(k, n,m) (7.12)

The contour of integration has to enclose the (n − 3) solutions to the equation
fn = 0. Then, as a first step, we notice that there is no residue at infinity, because
there are (n − 1) power of zn in the numerator and (n − 2) + 2 = n in the de-
nominator, which come from multiplying the denominators of Z(i, n, j)Z(k, n,m)
with the factor that remains from 1/fn. Moreover, using the residue theorem, it is
possible to see that the only non-vanishing residues come from the denominators in
Z(i, n, j)Z(k, n,m). Hence, these factors determine completely the structure of the
integral.

Before performing the actual evaluation, let us consider some symmetry cons-
traints on the integral Inijkm. First, by definition, it is obvious that, when i = j or
k = m, we have

Iniikm = Inijkk = 0 (7.13)

because of the numerators in

Z(a, b, c) =
zac
zabzbc

(7.14)

Moreover, since Z(a, b, c) = −Z(c, b, a), the integral is antisymmetric under the
exchange of its first two indices keeping the third and fourth fixed

Injikm = −Inijkm (7.15)

and is also antisymmetric under the exchange of the third and fourth indices,
keeping the first two fixed

Inijmk = −Inijkm (7.16)

From these two properties, we can see that under a simultaneous exchange of
both pairs of particle labels, the integral is symmetric

Injimk = Inijkm (7.17)

Moreover, all of the following combinations are vanishing

Iniiii = Iniiij = Iniikk = 0 (7.18)

Hence, the only non-vanishing integrals are given by the combinations ijij for
i 6= j, and ijim for i 6= j 6= m . All other non-vanishing integrals are related to these
cases by symmetry or antisymmetry under exchange of the different indices.

Now, let us evaluate the integrals of the type ijij and ijim. First, let us write
out the integral explicitly
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Inijij =
1

2πi

∮
dzn

∏
a6=n zna∑

a6=n sna
∏

b 6=a,n znb

z2
ij

z2
inz

2
nj

(7.19)

Notice that the product in the numerator contains one power each of zni and
znj. This cancels the squares in the denominator, leaving only two single poles.
Furthermore, when evaluating the residue at each pole (which are either zn = zi or
zn = zj), a generic term in the sum∑

a6=n

sna
∏
b6=a,n

znb (7.20)

will contain either a factor of zii or zjj, which are of course zero. The only non-
vanishing term when calculating the residue, say, at zi, is then

sni
∏
b6=i

zib (7.21)

therefore, using the residue theorem, the integral is obtained as the sum of the
two residues at zn = zi and zn = zj, that is

Inijij =
1

2πi

∮
dzn

∏
a6=n zna∑

a6=n sna
∏

b6=a,n znb

z2
ij

z2
inz

2
nj

=
1

2πi
z2
ij

∮
dzn

∏
a6=n,i,j zna∑

a6=n sna
∏

b 6=a,n znb

1

zniznj

= z2
ij

[
1

zij

∏
a6=i,j zia

sni
∏

b 6=i zib
+

1

zji

∏
a6=i,j zja

snj
∏

b6=j zjb

]

= z2
ij

[
1

z2
ij

1

sni
+

1

z2
ji

1

snj

]
=

1

sni
+

1

snj

(7.22)

Hence, the integral is independent of the hard punctures, which is what we need
in order to obtain a soft theorem. A similar calculation yields

Inijim =
1

sni
(7.23)

These results can be compactly written in terms of Kronecker delta functions as

Inijkm =
1

sni
(δik − δim)− 1

snj
(δjk − δjm) (7.24)

which is a simple consequence of the two integrals we calculated explicitly and the
different symmetries under the exchange of indices we have discussed. This means
that, in the soft limit when the momenta of a scalar pn → 0, the biadjoint amplitude
factorizes as

mn(w1|w2) ≈ Inijkmmn−1(w′1|w′2) (7.25)

which depends on the position of the scalar n in the external orderings w1 and
w2. A comment is in order: at first glance, it seems like there is a mismatch in
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the dimensionality of the quantities appearing in Eq. (7.25). However, this occurs
because we have omitted throughout our calculations the coupling constant of the
theory, λ. To see that reintroducing this coupling constant restores the dimensional
consistency of this equation, consider the case D = 4. In this scenario, the coupling
constant has mass dimension +1, and an n-point tree amplitude goes like λn−2.
Hence, when taking the soft limit, one must attach a factor of λ to the soft factor
Inijkm in order to reconstruct the λn−3 factor in the definition of the (n − 1)-point
amplitude mn−1(w′1|w′2). Thus, the rescaled soft factor λ × In has mass dimension
−1, which then makes Eq. (7.25) consistent. It is worth noting that this soft factor
for biadjoint scalars with cubic interaction has also been found by using a so-called
transmutation operator applied to the gluon soft factor in [92].

This result not only provides a leading soft theorem for biadjoint φ3 theory, but as
we will also see, it will allow us to prove the self-consistency of the soft factorization
of QCD primitive amplitudes.

7.1.2. Leading soft limit for Yang-Mills theory

Now, we use the reduced Pfaffian, Eq. (4.34), as first worked out in [13], to obtain
the leading soft theorem for Yang-Mills theory. Note that we have already derived
the Weinberg soft factor (also known as eikonal factor) from a Feynman diagram
analysis in Chapter two. This provides an alternative derivation of the eikonal factor,
which was also one of the first hints at the fact that the Pfaffian provides a correct
prescription for the evaluation of gauge theory tree amplitudes from the CHY re-
presentation.

We recall that the n-point gluon primitive amplitude with external ordering w
can be written as the CHY integral

AYMn (w, p, ε) =
(−1)i+j+k

(2π)n−3
i

∮
C

dnz

dω

zijzjkzki∏
a6=i,j,k fa(z, p)

Cn(w, z)En(z, p, ε) (7.26)

where En is the reduced Pfaffian,

En(z, p, ε) =
(−1)i+j

zij
Pf ′ Ψn (7.27)

of the matrix Ψn, which we defined in Eq.(4.25). For simplicity, we will derive
the soft limit for the canonical ordering w = 12...(n − 1)n, and assume that gluon
n has a soft momenta pn → 0. Then, we choose to compute Pf ′ Ψn = Pf (Ψn)ijij
eliminating columns and rows i, j such that i, j 6= n. As we discussed in Chapter 4,
the Pfaffian satisfies an expansion in terms of Pfaffians of minors, similarly to the
determinant, as in Eq.(4.32). The leading term, in the soft limit, for the Pfaffian of
n gluons is given by

Pf (Ψn)ijij ≈ CnnPf(Ψn−1)
ijn(2n)
ijn(2n) (7.28)

where Cnn is the diagonal element of the C matrix in the definition of Ψn, which
is given by
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Cnn = −
∑
a6=n

2εn · pa
zna

(7.29)

Hence, separating the Parke-Taylor factor in analogous fashion to the procedure
we performed to obtain the soft theorem for the scalars, we find that

AYMn (12...(n− 1)n) ≈

(
1

2πi

∮
fn=0

dzn
fn

∑
a6=n

2εn · pa
zna

zn−1,1

zn−1,nzn1

)
AYMn−1(12...(n− 1))

= S(n− 1, n, 1)AYMn−1(12...(n− 1))
(7.30)

where

S(n− 1, n, 1) =
1

2πi

∮
fn=0

dzn
fn

∑
a6=n

2εn · pa
zna

zn−1,1

zn−1,nzn1

(7.31)

Similarly to the case of the scalars, after writing the explicit expression for fn,
we can multiply and divide by

∏
a6=n zna to rewrite the integral as

S(1, n, n− 1) =
1

2πi

∮
fn=0

dzn

∑
a6=n 2εn · pa

∏
b 6=a,n znb∑

a6=n sna
∏

b6=a,n znb

zn−1,1

zn−1,nzn1

(7.32)

Now, this integral has the same pole structure of Eq. (7.12). Thus, to evaluate
it, we simply compute the residues at zn = zn−1 and zn = z1. By a similar argument
to the one we used when evaluating Inijkm, only one term of the sums in the numera-
tor and denominator contribute to each residue, and the product of the remaining
punctures cancels out, yielding

S(n− 1, n, 1) = − εn · pn−1

pn · pn−1

+
εn · p1

pn · p1

(7.33)

where the minus in the first term comes from writing the denominator zn−1,n =
−zn,n−1 when calculating the residue at zn = zn−1. This result agrees with the one
derived in Eq.(2.72).

With this, we have shown that the CHY formalism provides a very versatile
scheme in which to derive factorization theorems of amplitudes in soft limits. In both
of the examples we have worked out, we have seen that one of the main features
which allow us to obtain the soft theorems is the fact that the integrand themselves
factorize in the soft limit into lower point integrands, and that the remaining factors
integrate over the soft puncture to yield a function which does not depend on the
punctures associated to the hard particles. Therefore, we may ask ourselves: is the
soft factorization a general property of CHY integrands? Although we are not able
to answer this question in its full generality, we will see that the integrand for
primitive QCD amplitudes with nq ≤ 2 does have this property by using the leading
soft theorem for the primitive amplitudes to derive the soft factor associated to the
integrand Ên. We will also verify that this is self-consistent by integrating the soft
factor over the soft puncture, which will yield the correct soft factor for the primitive
amplitude.
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7.2. Soft limit of the QCD integrand

In this final section, we will derive the soft factorization theorem for the inte-
grand Ên in Eq.(6.26), which describes QCD primitive amplitudes with an arbitrary
number of gluons and up to nq = 2 massive or massless quark lines. In these cases,
we can write the amplitude basis simply as

Bn = {w ∈ W |l1 = 1, ln−1 = n− 1, ln = n} (7.34)

where, for nq = 0, we identify g1 = 1, gn−1 = n − 1 and gn = n; for nq = 1, we
set q1 = 1, gn−2 = n−1, q̄1 = n and for nq = 2, we set q1 = 1, q̄2 = n−1 and q̄1 = n.

As a first step, we rearrange the sum in Eq.(6.26) in a convenient fashion. To do
this, we let the elements w ∈ Bn be labelled explicitly as wi, where i = 1, 2, ..., (n−
3)!. Then, we can rewrite the sums over Bn as

Ên(z, p, ε) = −i
(n−3)!∑
i,j=1

Sn[wi|w̄j]Cn(w̄j, z)An(wi, p, ε)

= −i
(n−3)!∑
i=1

eiAn(wi, p, ε)

(7.35)

where we have chosen to abbreviate one of the sums to put the polarization fun-
ction as an expansion in terms of primitive amplitudes weighted by some coefficients,
which are given by

ei =

(n−3)!∑
j=1

Sn[wi|w̄j]Cn(w̄j, z) (7.36)

7.2.1. Projection of n particle basis into (n−1) particle basis

When we obtained the soft limits for scalar φ3 and Yang-Mills theories, we re-
marked that one of the properties that allowed us to obtain the soft theorems was
that the integrands factorized into integrand soft factors, times (n−1) particle inte-
grands. In order for this to be possible for the QCD integrand, Eq.(7.35), we would
like to find a way in which to express the sums over the (n − 3)!, independent n-
point basis amplitudes, as sums over the (n − 4)!, independent (n − 1)-point basis
amplitudes were the soft gluon has been stripped off. In order to do this, first note
that for a fixed word wi = 1l

(i)
2 l

(i)
3 ...l

(i)
n−2(n−1)n ∈ Bn, there is some k ∈ {2, ..., n−2}

such that l
(i)
k = n − 2, where we take the label (n − 2) to describe a gluon, which

will be the one we take the soft limit upon.

We need a procedure to convert the sums over the set Bn into sums over the
smaller set Bn−1, whose elements are all the independent external orderings of (n−1)
particle amplitudes obtained from those of Bn by the removal of the soft gluon. To
this end, let us define a projection operator

T :Bn → Bn−1

wi 7→ T (wi)
(7.37)
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whose action on wi is to remove the letter corresponding to the label (n − 2).
Explicitly

T (wi) = T (1l
(i)
2 ...l

(i)
k ...l

(i)
n−2(n− 1)n)

= 1l
(i)
2 ...l

(i)
k−1l

(i)
k+1...l

(i)
n−2(n− 1)n

= 1l
(i′)
2 ...l

(i′)
k−1l

(i′)
k ...l

(i′)
n−3(n− 1)n

≡ w′i′

(7.38)

where i′ is a new index taking values on {1, 2, ..., (n − 4)!}. Then, the notation

l
(i′)
t indicates which letter occupies the position t in the word w′i′ .

The function T is not injective, because the gluon (n − 2) can be anywhere
between positions 2 and (n− 2) for an arbitrary external ordering. To illustrate this
point, consider the case n = 6 and let w1 = 123456, w2 = 124356 and w3 = 142356.
We assume the label n− 2 = 4 refers to a gluon. Then, we can see that

T (w1) = T (w2) = T (w3) = 12356 ≡ w′1 (7.39)

Furthermore, we can see that for n = 6, there are no more elements in the set
B6 whose image under T is w′1, and that these elements of B6 differ from each other
only by the position of letter 4. Since the set B6 has (6 − 3)! = 3! = 6 elements, it
is helpful for the general construction to see what happens with all the elements of
the set. We have already enumerated three of its elements; the other three are given
by w4 = 132456, w5 = 134256, w6 = 143256. We can see that

T (w4) = T (w5) = T (w6) = 13256 ≡ w′2 (7.40)

The words w′1 and w′2 can be seen to form a basis for five-particle amplitudes,
since the set B5 has (5 − 3!) = 2 independent elements with the first, fourth and
fifth letters with fixed values in each word of the set, which in this case are set to
the values 1, 5, 6 that make reference to the labels of the particles of the six-particle
amplitudes. Furthermore, we can write the set B6 as

B6 = S1 ∪ S2 (7.41)

where

S1 = {w1, w2, w3} S2 = {w4, w5, w6}, S1 ∩ S2 = ∅ (7.42)

Moreover, we can see that

T (S1) = {w′1}, T (S2) = {w′2} (7.43)

This means that the projection operator T defines a partition of the set B6. This
construction can be generalized in a straightforward fashion to the case of arbitrary
n. That is, we can construct a partition of the basis Bn

Bn =

(n−4)!⋃
i′=1

Si′ (7.44)

such that
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T (Si′) = {w′i′} (7.45)

for every i′ = 1, 2, ..., (n − 4)!. Using these decomposition, we can write the
polarization function as

Ên = −i
(n−4)!∑
i′,j′=1

∑
wa∈Si′

∑
w̄b∈S̄j′

Sn[wa|w̄b]Cn(w̄b, z)An(wa, p, ε) (7.46)

the indices take values a, b = 1, 2, ..., (n− 3) and, for wa ∈ Si′ , w̄b ∈ S̄j′ , we have

wa = 1l
(a)
2 ...l

(a)
k ...l

(a)
n−2(n− 1)n, w̄b = 1l

(b)
2 ...l(b)p ...l

(b)
n−2n(n− 1) (7.47)

where, as before, the letters (n− 1) and n have their ordered reversed in words

with a bar, and we assume that l
(a)
k = l

(b)
p = n−2 for some k, p ∈ {2, ..., n−2}. This

simply means that the gluon whose position in the canonical external ordering 12...n
is specified by (n− 2) must be in some position in the words wa and wb. Note that,
in general, k 6= p. Using the shuffle product, we can see that each set Si′ contains
all the words appearing in the sum

wa = w′i′ � (n− 2) (7.48)

An important detail in what follows is that the value of a fixes the value of k in
the word wa and the value of b fixes the value of p in the word wb. That is, specifying
a external ordering with the word w ∈ Bn determines the position of each of the
particles in that given ordering. In particular, it specifies the position of the letter
(n− 2).

7.2.2. Soft behaviour of Ên

Before we continue, it is useful to see how each of the quantities defining the
integrand in Eq.(7.35) behaves in soft limits.

To start with, we use the fact that n-particle Parke-Taylor factors can always
be decomposed as the product of an (n − 1)-particle PT factor, times a function
Z(a, b, c). In our case of interest, we write

Cn(w̄b) = Z(l
(b)
p−1, n− 2, l

(b)
p+1)Cn−1(w̄′j′) (7.49)

An important property of Z(a, b, c), which we have already discussed in Chapter
5, is that Z(a, b, c) satisfies the eikonal identity

b∑
i=a

Z(i, x, i+ 1) = Z(a, x, b) (7.50)

On the other hand, if we let pn−2 → 0, each primitive amplitude will factorize,
at leading order in pn−2, as

An(wa) ≈ S(l
(a)
k−1, n− 2, l

(a)
k+1)An−1(w′i′) (7.51)

where S(a, b, c) is the Weinberg soft factor derived in Eq.(2.72). This soft factor
also satisfies the eikonal identity
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b∑
i=a

S(i, x, i+ 1) = S(a, x, b) (7.52)

Finally, we need the leading soft behaviour of the momentum kernel. Since the
momentum kernel is a polynomial in the kinematic invariants and squared masses,
this leading behaviour is given by the linear term in the soft momentum pn−2. In
order to find this term, let us parametrize pn−2 → xpn−2, where x is a real parameter,
and we consider the limit x→ 0 of the momentum kernel. Then, noting that ∆ij = 0
whenever i or j are gluon indices, we can expand the momentum kernel as

Sn[wa|w̄b] = (−1)n
(
ŝ

1l
(a)
2

+ ∆
1l

(a)
2

)(
ŝ

1l
(a)
3

+ ∆
1l

(a)
3

+ θw̄b(l
(a)
2 , l

(a)
3 )(ŝ

l
(a)
2 l

(a)
3

+ ∆
l
(a)
2 l

(a)
3

)
)

× ...×
[
x
(
ŝ1(n−2) + θw̄b(l

(a)
2 , n− 2)ŝ

l
(a)
2 (n−2)

+ ...+ θw̄b(l
(a)
k−1, n− 2)ŝ

l
(a)
k−1(n−2)

)]
× ...×

(
ŝ

1l
(a)
k+1

+ ∆
1l

(a)
k+1

+ ...+ xθw̄b(n− 2, l
(a)
k+1)s

(n−2)l
(a)
k+1

)
...×

(
ŝ

1l
(a)
n−2

+ ...+ xθw̄b(n− 2, l
(a)
n−2)ŝ

(n−2)l
(a)
n−2

+ ...+ θw̄b(l
(a)
n−3, l

(a)
n−2)(ŝ

l
(a)
n−3l

(a)
n−2

+ ∆
l
(a)
n−3l

(a)
n−2

)
)

(7.53)
From this we can see that the momentum kernel always is, at least, linear in x.

Then, to obtain the leading term in pn−2, we set to zero every term with powers of
x greater than one, and set x = 1. With this, we obtain

Sn[wa|w̄b] ≈ −

(
ŝ1(n−2) +

k−1∑
r=2

θw̄b(l
(a)
r , n− 2)ŝ

l
(a)
r (n−2)

)
Sn−1[w′i′|w̄′j′ ] (7.54)

Putting everything together, the soft limit of the polarization function can be
written as

Ên(z, p, ε) ≈
(n−4)!∑
i′,j′=1

fni′j′Sn−1[w′i′|w̄′j′ ]Cn−1(w̄′j′ , z)An−1(w′i′) (7.55)

where we define the coefficients

fni′j′ = −
∑
wa∈Si′

∑
w̄b∈Sj′

(
ŝ1(n−2) +

∑k−1
r=2 θw̄b(l

(a)
r , n− 2)ŝ

l
(a)
r (n−2)

)
Z(l

(b)
p−1, n− 2, l

(b)
p+1)S(l

(a)
k−1, n− 2, l

(a)
k+1) (7.56)

The next step is to perform the sums over a and b. If we can show that this sum
is independent on the election of i′ and j′, we will be able to put this factor outside
the sums and obtain a soft theorem for the generalized polarization function Ên.
Before tackling the general case, let us see the simplest non-trivial example: the six
point amplitudes.

7.2.3. Example: six-point amplitudes

When n = 6, the possible ways to distribute the particles are either ng = 6, nq =
0; ng = 4, nq = 1 or ng = 2, nq = 2. Since there is essentially no difference between
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the different cases, we will ignore the specific particle content. Then, we consider
the alphabet

A6 = {1, 2, 3, 4, 5, 6} (7.57)

With which we can form the six particle basis

B6 = {w1, w2, w3, w4, w5, w6} (7.58)

where we take

w1 = 123456

w2 = 124356

w3 = 142356

w4 = 132456

w5 = 134256

w6 = 143256

(7.59)

Now, let T be the projection operator that removes the letter 4 from an arbitrary
wi ∈ B6. Then, following our general arguments, we can construct the subsets

S1 = {w1, w2, w3}, S2 = {w4, w5, w6} (7.60)

which satisfy

T (S1) = {w′1}, T (S2) = {w′2} (7.61)

where w′1 = 12356, w′2 = 13256, and we can define the five particle basis as

B5 = T (S1) ∪ T (S2) = {w′1, w′2} (7.62)

Moreover, since n = 6, (n − 3)! = 3! = 6; hence, we can write the six particle
generalized polarization function as

Ê6 = −i
6∑

i,j=1

S6[wi|w̄j]C6(w̄j, z)A6(wi)

= −i
2∑

i′,j′=1

∑
wa∈S′i

∑
w̄b∈S̄′j

S6[wi|w̄j]C6(w̄j, z)A6(wi)

≈ −i
2∑

i′j′=1

f 6
i′j′S5[w′i′ |w̄′j′ ]C5(w̄′j′)A5(w′i′)

(7.63)

where, in the last line, we have taken the approximate soft expression. The
coefficients are defined as in the general expression, Eq.(7.56),

f 6
i′j′ = −

∑
wa∈Si′

∑
w̄b∈Sj′

(
ŝ14 +

k−1∑
r=2

θw̄b(l
(a)
r , 4)ŝ

l
(a)
r 4

)
Z(l

(b)
p−1, 4, l

(b)
p+1)S(l

(a)
k−1, 4, l

(a)
k+1)

= −
∑
wa∈Si′

αaS(l
(a)
k−1, 4, l

(a)
k+1)

(7.64)
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where we define

αa =
∑
w̄b∈Sj′

Z(l
(b)
p−1, 4, l

(b)
p+1)

(
ŝ14 +

k−1∑
r=2

θW̄b
(l(a)
r , 4)ŝ

l
(a)
r 4

)

=
∑
w̄b∈Sj′

k−1∑
r=1

Z(l
(b)
p−1, 4, l

(b)
p+1)θw̄b(l

(a)
r , 4)ŝ

l
(a)
r 4

=
k−1∑
r=1

ŝ
l
(a)
r 4

∑
w̄b∈Sj′

Z(l
(b)
p−1, 4, l

(b)
p+1)θw̄b(l

(a)
r , 4)

(7.65)

Now, we will evaluate the sum over b in Eq.(7.65) by considering the explicit
forms of S̄ ′j, evaluating the sum over each set and showing that we obtain the same
result. On one hand, consider the set

S̄1 = {w̄1, w̄2, w̄3} (7.66)

where w̄1 = 123465, w̄2 = 124365, w̄3 = 142365. Then, if we denote by l
(b)
p the

letter 4 in the word w̄b, as before, we can see that

l(1)
p = l

(1)
4 → l

(1)
p−1 = 3, l

(1)
p+1 = 6

l(2)
p = l

(2)
3 → l

(2)
p−1 = 2, l

(2)
p+1 = 3

l(3)
p = l

(3)
2 → l

(3)
p−1 = 1, l

(3)
p+1 = 2

(7.67)

and we can expand

∑
w̄b∈S̄1

Z(l
(b)
p−1, 4, l

(b)
p+1)θw̄b(l

(a)
r , 4)

= Z(3, 4, 6)θw̄1(l
(a)
r , 4) + Z(2, 4, 3)θw̄2(l

(a)
r , 4) + Z(1, 4, 2)θw̄3(l

(a)
r , 4)

(7.68)

Now, for any value of a, the sum over r in Eq.(7.65) has as upper limit k − 1,
where k is the position of the letter associated to the soft gluon in the word wa;
then, the letter l

(a)
r can only take the values 1, 2, 3, because those are the only letters

that can appear before 4 in an arbitrary word w ∈ B6. Hence, if we substitute any
of the values l

(a)
r = 1, 2, 3 in 7.68, we find∑

w̄b∈Sj′

Z(l
(b)
p−1, 4, l

(b)
p+1)θw̄b(l

(a)
r , 4) = Z(l(a)

r , 4, 6) (7.69)

An equivalent argument follows if we choose the subset

S̄2 = {w̄4, w̄5, w̄6} (7.70)

with w̄4 = 132465, w̄5 = 134265 and w̄6 = 143265. In this case,

l(4)
p = l

(4)
4 → l

(4)
p−1 = 2, l

(4)
p+1 = 6

l(5)
p = l

(5)
3 → l

(5)
p−1 = 3, l

(5)
p+1 = 2

l(6)
p = l

(6)
2 → l

(6)
p−1 = 1, l

(6)
p+1 = 3

(7.71)
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this implies that

∑
w̄b∈S̄2

Z(l
(b)
p−1, 4, l

(b)
p+1)θw̄b(l

(a)
r , 4)

= Z(2, 4, 6)θw̄4(l
(a)
r , 4) + Z(3, 4, 2)θw̄5(l

(a)
r , 4) + Z(1, 4, 3)θw̄6(l

(a)
r , 4)

(7.72)

and, upon substitution of any of the values l
(a)
r = 1, 2, 3, we obtain Eq.(7.69)

again. This shows that the sum over b is indeed independent of the specific subset
S̄j′ . Hence,

αa =
k−1∑
r=1

ŝlar4Z(l(a)
r , 4, 6) (7.73)

Now, we evaluate

f 6
i′j′ = −

∑
wa∈Si′

αaS(l
(a)
k−1, 4, l

(a)
k+1)

= −
∑
wa∈Si′

k−1∑
r=1

ŝ
l
(a)
r 4
Z(l(a)

r , 4, 6)S(l
(a)
k−1, 4, l

(a)
k+1)

(7.74)

for a particular subset Si′ ⊂ B6. There are two possibilities,

S1 = {w1, w2, w3}, S2 = {w4, w5, w6} (7.75)

where, as in the case of the sum over b, w1 = 123456, w2 = 124356, w3 = 142356,
w4 = 132456, w5 = 134256, w6 = 143256. First, we consider the subset S1. In this
case,

l
(1)
k = l

(1)
4 → l

(1)
k−1 = 3, l

(1)
k+1 = 5

l
(2)
k = l

(2)
3 → l

(2)
k−1 = 2, l

(2)
k+1 = 3

l
(3)
k = l

(3)
2 → l

(3)
k−1 = 1, l

(3)
k+1 = 2

(7.76)

Hence, expanding the sum over wa with this subset, we find

f 6
i′j′ =

3∑
r=1

sl1r4Z(l(a)
r , 4, 6)S(3, 4, 5) +

2∑
r=1

ŝl2r4Z(l(a)
r , 4, 6)S(2, 4, 3)

+
1∑
r=1

ŝl3r4Z(l(a)
r , 4, 6)S(1, 4, 2)

= S(3, 4, 5) (ŝ14Z(1, 4, 6) + ŝ24Z(2, 4, 6) + ŝ34Z(3, 4, 6))

+ S(2, 4, 3) (ŝ14Z(1, 4, 6) + ŝ24Z(2, 4, 6)) + S(1, 4, 2)ŝ14Z(1, 4, 6)

= ŝ14Z(1, 4, 6) (S(1, 4, 2) + S(2, 4, 3) + S(3, 4, 5))

+ ŝ24Z(2, 4, 6) (S(2, 4, 3) + S(3, 4, 5)) + ŝ34Z(3, 4, 6)S(3, 4, 5)

=
3∑
i=1

ŝi4Z(i, 4, 6)S(i, 4, 5) =
∑
r 6=4

ŝi4Z(i, 4, 6)S(i, 4, 5)

(7.77)
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where we have used the eikonal identity and added the terms ŝ45Z(5, 4, 6)S(5, 4, 5),
ŝ46Z(6, 4, 6)S(6, 4, 5), both of which are equal to zero, in order to write f 6

i′j′ in a per-
mutation invariant form. Performing the sum over S2 goes along the same lines and
yields the same result, showing explicitly that the sum over wa is independent of
the subset Si′ .

7.2.4. Factorization of the integrand for nq ≤ 2

Now, we perform the sums over a and b in Eq.(7.56) for arbitrary n. As in the
six particle case, we first write

fni′j′ =
∑
wa∈Si′

αaS(l
(a)
k−1, n− 2, l

(a)
k+1) (7.78)

That is, we define the sum over b as a coefficient of the sum over a. Now, we
want to evaluate the sum

αa =
∑
w̄b∈Sj′

Z(l
(b)
p−1, n− 2, l

(b)
p+1)

(
ŝ1(n−2) +

k−1∑
r=2

θW̄b
(l(a)
r , n− 2)ŝ

l
(a)
r (n−2)

)

=
∑
w̄b∈Sj′

k−1∑
r=1

Z(l
(b)
p−1, n− 2, l

(b)
p+1)θw̄b(l

(a)
r , n− 2)ŝ

l
(a)
r (n−2)

=
k−1∑
r=1

ŝ
l
(a)
r (n−2)

∑
w̄b∈Sj′

Z(l
(b)
p−1, n− 2, l

(b)
p+1)θw̄b(l

(a)
r , n− 2)

(7.79)

where we have used the facts that l
(a)
1 = 1 for all values of a and that θw̄b(1, n−

2) = 1 for any word, since the letter 1 is fixed to be at the first position for an
arbitrary w ∈ Bn (this implies that it is also fixed to be in that position for a word
in any subset of Bn). Finally, we have exchanged the order of the sums over r and
b. With this, we are in position to perform the sum over b.

The key observation in performing this sum is that, for fixed values of r and a,
there is some q ∈ {2, 3, ..., p− 1, p+ 1, ..., n− 2} such that l

(a)
r = l

(b)
q for every value

of b. Now, recalling that the value of b fixes the value of p (that is, by choosing
a value of b, we are taking a particular element w̄b ∈ S̄j′ , and we can identify the
value of p for this element by looking at the position of the label (n− 2) in w̄b) and
noting that in an analogous fashion, the value of b determines the value of q, only
the terms with q < p are non-vanishing. Furthermore, the sum over r has the label
(k − 1), the position of the last letter before (n − 2) in the word wa, as its upper

limit. Therefore, l
(a)
r 6= (n− 1), n, because of the way we have constructed the basis

set Bn. This implies

∑
b∈S̄j′

θw̄b(l
(a)
r , n− 2)Z(l

(b)
p−1, n− 2.l

(b)
p+1) =

n−2∑
p=q+1

Z(l
(b)
p−1, n− 2, l

(b)
p+1) (7.80)



136

The new sum can be easily performed by using the eikonal identity for Z(a, b, c).
Hence, the sum collapses to a single term,

n−2∑
p=q+1

Z(l
(b)
p−1, n− 2, l

(b)
p+1) = Z(l(b)q , n− 2, l

(b)
n−1)

= Z(l(a)
r , n− 2, n)

(7.81)

where we have used the fact that l
(b)
n−1 = n for every word w̄b ∈ S̄j′ and our

definition of l
(b)
q . We have obtained, then, the partial result

αa =
k−1∑
r=1

Z(l(a)
r , n− 2, n)ŝ

l
(a)
r (n−2)

(7.82)

One important feature of this sum is that it is independent of the particular
subset S̄j′ . This is exactly what we need in order to obtain a soft factorization
theorem for the generalized polarization function. Inserting this result into fni′j′ ,

fni′j′ = −
∑
wa∈Si′

k−1∑
r=1

Z(l(a)
r , n− 2, n)ŝ

l
(a)
r (n−2)

S(l
(a)
k−1, n− 2, l

(a)
k+1) (7.83)

To perform these final sums, it is helpful to order the elements wa ∈ Si′ by the
position of the letter (n− 2) in wa. That is,

Si′ = {w1, w2, w3, ..., wn−3} (7.84)

where

w1 = 1(n− 2)l
(1)
3 l

(1)
4 ...l

(1)
n−2(n− 1)n

w2 = 1l
(2)
2 (n− 2)l

(2)
4 l

(2)
5 ...l

(2)
n−2(n− 1)n

w3 = 1l
(3)
2 l

(3)
3 (n− 2)l

(3)
5 ...l

(3)
n−2(n− 1)n

·
·
·

wn−3 = 1l
(n−3)
2 l

(n−3)
3 ...l

(n−3)
n−3 (n− 2)(n− 1)n

(7.85)

This particular enumeration of the elements of Si′ has the advantage that, for
any given value of a, we can immediately determine the value of k (which gives the
position of (n− 2) in the word wa) as k = a+ 1. Now, let

T (Si‘) = {w′i′} = {1`(i′)
2 `

(i′)
3 ...`

(i′)
n−3(n− 1)n} (7.86)

be the image of Si′ under T , which as we have discussed, is a single element.
For an arbitrary wa ∈ Si′ , we can identify the letters l

(a)
m , m = 2, ..., n− 2 with the

letters l
(i′)
t , t = 2, ..., n− 3 in the following manner: first, we identify the position of

(n− 2) which, as we have mentioned, will be at position a+ 1 in the word wa with
this particular ordering of the elements in Si′ . Then, for m < a+ 1,

l(a)
m = l(i

′)
m (7.87)
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and, for m > a+ 1,

l(a)
m = l

(i′)
m−1 (7.88)

Using this, we can replace all letters l
(a)
r 6= (n− 2) with the letters of w′i′ . Then,

we can explicitly expand the double sum in Eq.(A.7) as

−fni′j′ = ŝ
l
(i′)
1 (n−2)

Z(l
(i′)
1 , n− 2, n)

n−3∑
i=1

S(l
(i′)
i , n− 2, l

(i′)
i+1)

+ ŝ
l
(i′)
2 (n−2)

Z(l
(i′)
2 , n− 2, n)

n−3∑
i=2

S(l
(i′)
i , n− 2, l

(i′)
i+1)

...+ ŝ
l
(i′)
n−3(n−2)

Z(l
(i′)
n−3, n− 2, n)

n−3∑
i=n−3

S(l
(i′)
i , n− 2, l

(i′)
i+1)

(7.89)

The number of times each eikonal factor appears is a consequence of the fact
that, in the double sum Eq.(7.83), each element wa determines the value of k and
this, in turn, defines how many terms appear on the second sum. We choose to
factor out the kinematic invariants and the z dependent terms. Using the eikonal

identity for the Weinberg soft factors and the fact that l
(i′)
n−2 = n−1, allows for direct

evaluation of each of the sums appearing in Eq.(7.89), giving the result

fni′j′ = −
n−3∑
i=1

ŝ
l
(i′)
i (n−2)

Z(l
(i′)
i , n− 2, n)S(`

(i′)
i , n− 2, n− 1) (7.90)

Moreover, since the string of letters `
(i′)
2 `

(i′)
3 ...`

(i′)
n−3 is just a permutation of the

the string 23...(n− 3), we can see that

{l(i
′)

2 , l
(i′)
3 , ..., l

(i′)
n−3} = {2, 3, ..., n− 3} (7.91)

independent of the particular value of i′ (which amounts to the election of a
particular permutation of 2, 3, ..., (n− 3)). This implies

fni′j′ = −
n−3∑
i=1

ŝi(n−2)Z(i, n− 2, n)S(i, n− 2, n− 1)

= −
∑
i 6=n−2

ŝi(n−2)Z(i, n− 2, n)S(i, n− 2, n− 1)

(7.92)

where we have used the fact that Z(n, n−2, n) = 0 and S(n−1, n−2, n−1) = 0
to add the two terms needed to write the soft factor in a permutation invariant form.
We have found that the coefficients fi′j′ are independent of i′, j′; then, we can assert
that the generalized polarization function factorizes, in the soft limit pn−2 → 0, as

Ên ≈ FnÊn−1 (7.93)

where Fn is given by

Fn = −
∑
i 6=n−2

ŝi(n−2)Z(i, n− 2, n)S(i, n− 2, n− 1) (7.94)
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We would like to emphasize that this is a result still missing in the literature.
Not only we have shown that the QCD integrand for nq ≤ 2 shows similar soft
factorization properties to that of the pure Yang-Mills case, but we also provide an
operational technique to relate primitive amplitude basis with different number of
particles, and a way to characterize this relation in terms of partitions.

7.2.5. Integration of the soft factor

Finally, as a consistency check of the calculation, we perform the integral over
the soft puncture and see if we recover the eikonal factor associated with the ex-
ternal ordering specified by the word w. For simplicity, we take w ∈ Bn, since we
can use cyclic invariance, the KK and BCJ relations in order to obtain the case of
an arbitrary ordering by computing suitable linear combinations of basis amplitudes.

Concretely, consider a primitive amplitude An(w, p, ε) with some external orde-
ring w = l1l2...ln, and assume that, for some m ∈ {1, n}, m = n− 2 (note that the
external ordering has no restriction on the position of the soft leg). Furthermore, let
w′ = T (w). Also, for simplicity of notation, we let lm−1 = q and lm+1 = t for some
q, t ∈ {1, 2, ..., n}/n− 2. Then, we can write

Cn(w, z) = Cn−1(w′, z)Z(q, n− 2, t) (7.95)

Then, using the soft limit of the scattering equations, we can rewrite the CHY
integral for the primitive amplitude An(w) as

An(w) = An(w, p, ε)

≈ i(−1)n−1

(2πi)n−4

∮
C

dn−1z

dω

∏
a6=n−2

′ 1

fa(z, p)
Ĉn−1(w′, z)Ên−1(z, p, ε)an(z)

(7.96)

where we define the integral

an(z) = − 1

2πi

∮
C

dzn−2

fn−2

Z(q, n− 2, t)Fn

=
1

2πi

∑
j 6=n−2

ŝj(n−2)S(j, n− 2, n− 1)

∮
C

dzn−2

fn−2

Z(q, n− 2, t)Z(j, n− 2, n)

(7.97)
which, in terms of the integral Inijkm defined in Eq. (7.12), we can formally eva-

luate

an(z) =
∑
j 6=n−2

sj(n−2)S(j, n− 2, n− 1)In−2
qtin (7.98)

Therefore, upon substitution of the general result for Iaijkl into an(z), we can see
that it is independent of the punctures za, a 6= n− 2. Moreover, the appearance of
the Kronecker deltas pick the terms in the sum such that the invariants ŝij appearing
in the numerator and denominator cancel out, and yields the result

an(z) = S(q, n− 2, t) (7.99)
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by use of the eikonal identity. This is the soft factor associated to the external
ordering given by the word w. Hence, we have shown not only that the polariza-
tion function factorizes in the soft limit at leading order in the soft momenta, but
also that it is consistent with the factorization properties of the primitive amplitudes.

Now, let us give a few closing remarks on the factorization of the generalized
polarization function. For the general scenario of a primitive amplitude with nq ≥
2, the main difference with regards to the nq ≤ 2 case is the BCJ matrix Fww′
because, in order to find a soft factorization theorem, we need to understand the soft
behaviour of all the factors that enter the expansion of Ên. However, besides from
the fact that there are no explicit expressions for the elements of the pseudoinverse
Gw′w

2, it is also not clear how the matrix F itself behaves in soft limits. Since each of
its elements are rational functions of the momenta with equal power of the kinematic
invariants in both the numerator and denominator, one has three possibilities for
the value that a particular element Fww′ takes on the soft limit pn → 0,

Fww′ ∝
sna
snb
∼ 1

Fww′ ∝
sna
sij
∼ 0

Fww′ ∝
sij
snb
∼ ∞

(7.100)

for some momenta pa, pb, pi and pj different from pn, and in the first line, we
understand ∼ 1 as meaning that the element Fww′ becomes independent of the soft
momentum, but may depend on some of the hard momenta. There is also a fourth
possibility, which is that the element Fww′ is independent of pn. Although we have
a explicit definition, there is no simple way to determine which of these cases is sa-
tisfied given arbitrary words w and w′ such that Fww′ is non-trivial. Understanding
this behaviour would give hints at the soft limit of the elements of the pseudoin-
verse Gw′w, and may allow for the derivation of a soft factorization theorem for the
generalized polarization function for an arbitrary QCD primitive amplitude.

2which would be of course equivalent to proving the conjecture on the rank of Fww′



Conclusions and outlooks

In this thesis, we have shown that, by focusing on the physical and mathematical
properties of scattering amplitudes, it is possible to calculate them without resorting
to a Lagrangian formulation nor the Feynman diagram expansion. Through the use
of spinor-helicity variables and BCFW recursion, we have seen that it is possible to
obtain compact formulas for amplitudes with arbitrary number of external particles,
which is outright impossible from the point of view of Feynman diagrams.

We have also seen that extending the idea of studying the singularity structure of
amplitudes to arbitrary dimensions provides us with the scattering equations, which
have allowed us to write closed formulas for the tree amplitudes of Yang-Mills theo-
ries and gravity in terms of localized integrals over a set of complex variables. The
fact that this is possible is by itself remarkable, since it provides complete solutions
to classical Yang-Mills theories and general relativity.

Another interesting conclusion is that the procedure of color decomposition and
the existence of a minimal amplitude basis provides the backbone for the existence
of a CHY representation for QCD amplitudes. This has allowed us to prove that the
CHY integrands has factorization properties parallel to those of scattering amplitu-
des. Now, let us give a few comments on our results and some directions in which
one could extend them.

Even though we have proved that there exists a CHY representation for primitive
QCD amplitudes in arbitrary dimension with up to two quark-antiquark pairs, the
integrand obtained has the obvious shortcoming of depending on the amplitudes.
Therefore, it cannot be used for either an explicit calculation or to derive properties
of the amplitudes, since the desired property would be needed as an input. However,
it is possible to obtain properties of the integrand itself by using different properties
of the scattering amplitudes. These properties, like the factorization on soft limits,
put further constraints on the integrand beyond those of SL(2,C) covariance and
the independence on the external ordering. Deriving further constraints, such as
factorization on collinear limits, could allow to determine the explicit expression for
the integrand Ên explicitly without an expansion in terms of amplitudes, if not for
general n, for a particular number of external particles. This is a direction which we
consider requires further exploration.

Also, as we mentioned at the end of Chapter 7, it should be possible to derive
a soft theorem for the generalized polarization function for an arbitrary number
of quarks, provided the soft behaviour of the BCJ matrix Fww′ is understood. We
expect that studying the soft behaviour of the BCJ matrix not only allows to deter-
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mine a soft theorem for the multiquark generalized polarization function, but also
that it sheds some light on the existence of its pseudoinverse.

Another interesting perspective is provided by the results in [93], where it is
shown that the Pfaffian of Yang-Mills can be written as an expansion over KK
independent Parke-Taylor factors,

Pf ′Ψn =
∑
w∈W2

C(1wn)n1wn (7.101)

where n1wn are numerators that satisfy color-kinematics duality. Our derivation
of the generalized polarization function for QCD primitive amplitudes involved an
expansion over the BCJ independent Parke-Taylor factors, which is of course a sma-
ller basis than the one provided above. However, one cannot help but see their
similarity, and it would be interesting to see if both results are connected and if the
kinematic, color-dual numerators of QCD provide valid CHY integrands for QCD
primitive amplitudes.

Finally, we would like to remark that there are many other open problems within
the CHY formalism. For example, the generalization to loop amplitudes has been
studied, at one-loop order, in [94] and [95] from an ambitwistor string theory pers-
pective, and rules for their integration presented in [65]; in [96], loop amplitudes are
obtained from the forward limit of higher dimensional tree amplitudes. More recently
in [97] a generalization of the scattering equations to elliptic curves is considered and
this so-called elliptic scattering equations are applied in [98], by the same authors,
to construct one-loop integrands in scalar φ3 theory. This approach was generalized
to the two-loop order in [99]. One-loop propagators from the scattering equations
are studied [100],[101], also in scalar φ3 theory. A CHY representation of Yang-Mills
one-loop amplitudes which manifestly satisfies the BCJ relations has been worked
out in [102]. The two-loop case has been considered in [103], again from the ambit-
wistor string formalism, but no field theory argument has been provided.

Also, recent work by Weinzierl et al [104] and Arkani-Hamed et al [105] has
shown that the different CHY half-integrands of Yang-Mills theory can be written
as differential forms -given the name of scattering forms- which only have logarith-
mic singularities, and whose residues factorize into products of lower-point scattering
forms. Moreover, as proved by Mizera [106], the scattering equations themselves de-
fine a one-form η, and the scattering amplitudes can be calculated as the intersection
numbers of the scattering forms associated to each half-integrand, twisted by the
one-form η. This provides a nice geometrical interpretation of scattering amplitudes
and the CHY representation, and it may be a fruitful research line, both in the di-
rection of extending this picture to different theories as well as loop level extensions
to Yang-Mills, scalar φ3 theory and gravity.

Furthermore, given that the tree-level case is not completely understood, it is
obvious that the loop case for amplitudes with fermions is a problem still not worked
out in the literature. Along with the other topics we have discussed, we can see that
there is still much to be understood about the CHY formalism and its deeper con-
nections to quantum field theory that, perhaps, will reveal hidden structures beyond
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the usual Lagrangian formalism that allow us to obtain more profound information
about the fundamental interactions of nature.



Proof of SU(N) completeness rela-
tion

We want to show that the SU(N) hermitean generators T a satisfy the identity

(T a)
j1
i1

(T a)
j2
i2

= δ
j2
i1
δ
j1
i2
− 1

N
δ
j1
i1
δ
j2
i2

(A.1)

In order to do this, consider an N × N matrix M . Since the matrices T a, for
a = 1, 2, ..., N2 − 1 are the generators of the Lie algebra of SU(N), we can expand
any N ×N matrix in terms of these generators plus the identity matrix, which we
shall note as I. Thus, we can write

M = c1I + cbT
b (A.2)

Now, since the generators are traceless and Tr(I) = N , we immediately find that

c1 =
1

N
Tr(M) (A.3)

Furthermore, left-multiplying A.2 by T a and using Tr(T aT b) = δab, we find the
coefficient ca

ca = Tr(MT a) (A.4)

Therefore, inserting the coefficients in A.2 and writting the equation in terms of
the matrix elements of M , (a sum over all repeated indices is understood) we obtain

M j̄1
i1

= Tr(MT a)(T a)j̄1i1 +
1

N
Tr(M)δj̄1i1

= M i2
j̄2

(T a)j̄2i2 (T a)j̄1i1 +
1

N
δj̄1i1 δ

j̄2
i2
M i2

j̄2

(A.5)

Where we also wrote down the traces in terms of matrix elements. Now, rewrit-
ting the right-hand side as

M j̄1
i1

= δj̄1i2 δ
j̄2
i1
M i2

j̄2
(A.6)

we find that
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M i2
j̄2

(T a)j̄2i2 (T a)j̄1i1 = δj̄1i2 δ
j̄2
i1
M i2

j̄2
− 1

N
δj̄1i1 δ

j̄2
i2
M i2

j̄2

=

(
δj̄1i2 δ

j̄2
i1
− 1

N
δj̄1i1 δ

j̄2
i2

)
M i2

j̄2

(A.7)

Equating the coefficients in the sum of both sides of A.7 we obtain A.1.



Spinor-helicity conventions and iden-
tities

In this Appendix, we list our conventions for spinor indices and prove some
identities useful for manipulating expressions involving spinor products. Our metric
convention in 4-dimensional Minkowski spacetime is gµν = diag(1,−1,−1,−1). The

antisymmetric tensors εαβ and εα̇β̇ are take the values

ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = 1

ε21 = ε2̇1̇ = ε12 = ε1̇2̇ = −1
(B.1)

Spinor indices are raised and lowered using the Levi-Civita tensors as

ηα = εαβηβ, η̃α̇ = εα̇β̇ η̃β̇ (B.2)

With the usual definitions of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(B.3)

and denoting the three-dimensional vector of Pauli matrices by σ, we define the
four-dimensional Sigma matrices

(σ̄µ)α̇α = (I,−σ), (σµ)αα̇ = εαβεα̇β̇(σ̄µ)β̇β = (I, σ)

(σ̄µ)α̇α = (I, σ), (σµ)αα̇ = (I,−σ)
(B.4)

The generators of the Lorentz group in the spinor representation can be written
in terms of Sigma matrices as

(σµν) β
α =

1

4

(
(σµ)αα̇(σ̄ν)α̇β − (σν)αα̇(σ̄µ)α̇β

)
(σ̄µν)α̇

β̇
=

1

4

(
(σ̄µ)α̇α(σν)αβ̇ − (σ̄ν)α̇α(σµ)αβ̇

) (B.5)

An arbitrary four-momentum pµ can be projected into the bispinor representa-
tion as

pαα̇ = pµ(σµ)αα̇

pαα̇ = pµ(σ̄µ)α̇α
(B.6)
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Since the Sigma matrices and the Levi-Civita tensors are related through

σ̄µα̇ασ̄νβ̇βgµν = 2εα̇β̇εαβ (B.7)

and various other relations can be obtained by lowering the various spinor indices.
In particular, this allows to obtain the four-momentum from its bispinor represen-
tation as

pµ = λασµαα̇λ̃
α̇ =

1

2
〈p|γµ|p] (B.8)

due to the various forms of contracting the spinors with the different Sigma ma-
trices, this representation is not unique. The bispinor representation, in the massless
case, is realized in terms of two-component spinors

pαα̇ = λαλ̃α̇ (B.9)

where, for real momenta in (1,−1,−1,−1) signature, (λα)∗ = λ̃α̇. The helicity
spinors can be identified with the solutions to the massless Dirac equation in four
dimensions as

u+(p) = v−(p) =

(
λα
0

)
= |p〉, u−(p) = v+(p) =

(
0

λ̃α̇

)
= |p]

ū+(p) = v̄−(p) = (0, λ̃α̇) = [p|, ū−(p) = v̄+(p) = (λα, 0) = 〈p|
(B.10)

and the spinor products are given by

〈ij〉 = λαi λjα, [ij] = λ̃iα̇λ̃
α̇
i (B.11)

From their definition and the relation λ̃α̇ = λ†α, we can see that

〈pq〉 = [qp]∗ (B.12)

Moreover, the spinor products can be related to the Lorentz-invariant product
of their momenta through

〈ij〉[ji] = εαβλ
α
i λ

β
j (−εα̇β̇λ̃

α̇
j λ̃

β̇
i )

= εαβεβ̇α̇λ
α
i λ̃

β̇
i λ

β
j λ̃

α̇
j

= εαβεβ̇α̇p
αβ̇
i pβα̇j

= pαiα̇p
α̇
jα

= 2pi · pj

(B.13)

Using both of the above equations, we can see that |〈ij〉|2 = |[ij]|2 = 2pi · pj.
Thus, we can think of spinor products as (complex) square roots of the kinematic
invariants sij = (pi + pj)

2 = 2pi · pj (the last equality is valid only for massless
particles.) Furthermore, another consequence of the antisymmetry of the Levi-Civita
tensor is that

〈ij〉 = −〈ji〉, [ij] = −[ji] (B.14)

and, using the properties of the Gamma matrices,
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〈i|γµ|j] = [j|γµ|i〉 (B.15)

Furthermore, using the relation σ̄µαα̇σ̄νββ̇gµν = 2εαβεα̇β̇ we can prove the so-called
Fierz identity

[i|γµ|j〉[k|γµ|l〉 = λ̃iα̇λjαλ̃kβ̇λlβσ̄
µαα̇σ̄νββ̇gµν

= 2λ̃iα̇λjαλ̃kβ̇λlβε
αβεα̇β̇

= 2εαβλjαλlβε
α̇β̇λ̃iα̇λ̃kβ̇

= 2〈jl〉[ki]
= 2[ik]〈lj〉

(B.16)

One final property of spinors is a simple consequence of the fact that each spinor
only has two independent components. Consider, for example, the spinors |i〉, |j〉, |k〉.
Since these are two-component objects embedded in four dimensional vectors, only
two of them are linearly independent. Then, we can write

|k〉 = a |i〉+ b |j〉 (B.17)

where a, b are complex numbers. Using 〈ii〉 = 0 and the equivalent relation for
j, it can be seen that

a =
〈jk〉
〈ji〉

, b =
〈ik〉
〈ij〉

(B.18)

thus, if we dot the expression with another spinor with momentum l, we obtain

〈lk〉 =
〈jk〉
〈ji〉
〈li〉+

〈ik〉
〈ij〉
〈lj〉

=
〈jk〉
〈ji〉
〈li〉 − 〈ik〉

〈ji〉
〈lj〉

(B.19)

which, upon multiplying both sides by 〈ji〉, yields

〈lk〉〈ji〉+ 〈ik〉〈lj〉+ 〈kj〉〈li〉 = 0 (B.20)

which is known the Schouten identity. An equivalent expression is obtained if
one replaces all angle brackets with square brackets.



Conformal symmetry of MHV am-
plitudes

We will review the basic properties of conformal transformations. Our first aim
is then to show that the trace of the energy-momentum tensor in Yang-Mills theory
vanishes. Afterwards, we will see how the conformal symmetry of Yang-Mills mani-
fests itself in the MHV amplitudes, and how the action of the conformal generators
on the amplitudes is more naturally realized in twistor space. We partially follow
[107] in the discussion of the conformal group.

Consider a flat, d-dimensional spacetime with metric gµν = diag(1,−1, ...,−1).
A local transformation of the coordinates x→ x′ is said to be a conformal transfor-
mation if it preserves the angles between two given lines in spacetime. In terms of
the metric, this condition can be stated as

gρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)gµν (C.1)

where Λ(x) is a scalar function, assumed to be positive for every value of x,
and is known as the scale factor. It is worthwhile to note that, when Λ = 1, the
conformality condition becomes the usual definition of a Lorentz transformation.
Moreover, since the conformal transformations are themselves a group (obviously
called the conformal group), this implies that the Lorentz group is a subgroup of
the conformal group. In fact, the complete Poincaré group is a subgroup of the con-
formal group, since translations by constant vectors also preserve the angle between
any two given lines.

In addition to the usual translations, rotations and boosts, the conformal group
introduces two additional kind of transformations: dilatations and the so-called spe-
cial conformal transformations (SCT), which are given by

x′µ = αxµ (Dilatations)

x′µ = xµ−x2aµ
1−2a·x+a2x2

(SCT )
(C.2)

where α is a constant and aµ an arbitrary, constant vector. These transformations
are generated, in configuration space, by the operators

D = −ixµ∂µ (C.3)
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for dilatations, and

Kµ = −i(2xµxν∂ν − x2∂µ) (C.4)

for special conformal transformations. Along with the usual generators of the
Poincaré group

Pµ = −i∂µ, Mµν = i(xµ∂ν − xν∂µ) (C.5)

the set of 15 generators {Mµν , Pµ, Kµ, D} satisfy the conformal algebra

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i(gµνD −Mµν)

[Kρ,Mµν ] = i(gρµKν − gρνKµ)

[Pρ,Mµν ] = i(gρµPν − gρνPµ)

[Mµν ,Mρσ] = i(gνρMµσ + gµσMνρ − gµρMνσ − gνσMµρ)

(C.6)

in a general spacetime dimension d ≥ 3 with Lorentzian metric gµν = diag(1,−1, ...,−1),
the conformal group is identified with SO(1, d + 1). The case d = 2 is very special,
because there the number of conformal generators is infinite. However, we will be
concerned with the finite case; in particular, with d = 4. As we have mentioned,
a particular feature of a conformal field theory is that the trace of the energy-
momentum tensor vanishes, T µµ = 0. Let us check this condition for Yang-Mills
theory.

Recall that the Yang-Mills Lagrangian is given by

LYM = −1

4

(
F a
µν

)2
(C.7)

where

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν (C.8)

is the gauge field strength, g is the gauge coupling and fabc are the structure
constants of the gauge group. To compute the energy-momentum tensor, we will
assume that the metric gµν is a dynamical variable, and use the definition

δgS[Aµ, gµν ] =
1

2

∫
d4x
√
−gδgµνT µν (C.9)

and then set back gµν to be the Minkowski metric. Unlike the energy-momentum
tensor obtained from Noether’s theorem, this procedure yields a symmetric, gauge-
invariant tensor, which is usually obtained by applying the Belifante prescription for
symmetrizing the Noether energy-momentum tensor. First, we write the action as

SYM = −1

4

∫
d4x
√
−ggαρgβσF a

αβFρσ (C.10)

and then, using the relations δ
√
−g = 1

2

√
−ggµνδgµν , δgµν = −gµρgνσδgρσ, a

short calculation shows that
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δgSYM = −1

4

∫
d4xF a

αβF
a
ρσ

(
1
2

√
−ggαρgβσgµνδgµν −

√
−ggαρgβµgσνδgµν −

√
−ggβσgαµgρνδgµν

)
= −1

4

∫
d4x
√
−gδgµν

(
1

2
gµνF aαβF a

αβ − gαρgβµgσνF a
αβF

a
ρσ − gβσgαµgρνF a

αβF
a
ρσ

)
=

1

2

∫
d4x
√
−gδgµν

(
F aµσF aν

σ −
1

4
gµνF aαβF a

αβ

)
(C.11)

where, to obtain the term that is not proportional to the metric, we use the
antisymmetry of the field-strength, F a

νµ = −F a
µν . We can immediately identify

T µνYM = F aµσF aν
σ −

1

4
gµνF aαβF a

αβ (C.12)

Now, taking gµν to be the Minkowski metric, we know that gµνg
µν = 4. This

implies that T µµ = gµνT
µν = 0. This is enough to show that Yang-Mills theory is

conformally invariant as a classical field theory, which implies the conformal inva-
riance of gauge theory tree-level amplitudes. Quantum effects induce the so-called
trace anomaly, which imply that the trace of the energy-momentum tensor becomes
proportional to the Beta function of the running coupling constant g. The fact that
the Beta function of Yang-Mills theory is non-vanishing starting at one-loop breaks
the conformal symmetry of the theory.

Our next goal is to see how the global symmetries of Yang-Mills theory manifest
themselves on the MHV amplitudes, and try to interpret them. We have already seen
from the Lagrangian point of view that the theory is, at least classically, conformal
invariant. Now, let us see how these statement is translated to the tree amplitudes
of the theory.

The fact that an amplitude has a particular symmetry is realized as an operator
statement. That is, if O(p) is the generator of some particular symmetry transfor-
mation, the relation to be satisfied is

O(p)An = 0 (C.13)

where

An = δ4

(∑
i

pi

)
An({pi, εi}) (C.14)

is the amplitude with the momentum-conserving delta function restored. Since
in four dimensions we consider amplitude as functions of the spinor variables, we let

An = δ4

(∑
i

λiλ̃i

)
An({λi, λ̃i}) (C.15)

and, in order to study the action of the conformal generators, we write them in
terms of spinor variables. 1. This is realized in two steps: first, one performs a Fourier

1 We will use the conventions for spinor indices of Appendix B.
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transform from configuration to momentum space, in order to write the generators
(C.3)( C.4)(C.5) acting on momentum variables, and then one projects their Lorentz
components into spinor components using the appropriate combinations of Sigma
matrices. For example, consider the generators of the Lorentz group

Mµν = i(xµ∂ν − xν∂µ) (C.16)

In momentum space, this operator takes the form

M̂µν = i

(
pµ

∂

∂pν
− pν

∂

∂pµ

)
(C.17)

Now, there are two ways to project the Lorentz generator into spinor variables,
namely mαβ = M̂µν(σµν)αβ and m̄α̇β̇ = M̂µν(σ̄µν)α̇β̇, which correspond to the self-

dual and anti-self-dual part of the operator M̂µν . Here, σµν and σ̄µν are the generators
of the Lorentz group in the spinor representation, and are given by

(σµν)α
β =

1

4

(
(σµ)αα̇(σ̄ν)

α̇β − (σν)αα̇(σ̄µ)α̇β
)

(σ̄µν)
α̇
β̇ =

1

4

(
(σ̄µ)α̇α(σν)αβ̇ − (σ̄ν)

α̇α(σµ)αβ̇
) (C.18)

Moreover, the map from the vector to the bispinor representation can be inverted
to yield

pµ =
1

2
σµαα̇p

αα̇ (C.19)

which then allows to use the chain rule to write

∂α ≡
∂

∂λα
=

1

2
σµ
αβ̇
λ̃β̇

∂

∂pµ
(C.20)

hence, we can contract the vector indices of the Lorentz generators with those
of the sigma matrices to obtain, for example,

(σν)αα̇(σ̄µ)α̇βpµ
∂

∂pν
= 2λβ∂α (C.21)

Hence, an arbitrary operator which depends on momenta and its derivatives can
be transformed to spinor variables. In particular, the conformal generators for a
single particle take the form

pαα̇ = λαλ̃α̇, kαα̇ = ∂α∂α̇

mαβ = iλ(α∂β) :=
i

2
(λα∂β + λβ∂α) , m̄α̇β̇ = iλ̃(α̇∂β̇)

d =
1

2
λα∂α +

1

2
λ̃α̇∂α̇ + 1

(C.22)

With this representation of the conformal generators, we can readily show that
the MHV amplitudes are conformally invariant.

First, the fact that the momentum operator annihilates the amplitude is valid
in the distributional sense of
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xδ(x) = 0 (C.23)

due to the appearance of the momentum-conserving delta function in C.15. Also,
they are symmetric under Lorentz transformations generated by m and m̄ because,
for example,

mαβ〈jk〉 =
n∑
i=1

λi(α∂iβ)λ
γ
jλkγ

=
1

2

n∑
i=1

[
λiα
(
δijδβ

γλkγ + δikεβγλ
γ
j

)
+ (α↔ β)

]
=

1

2
[λjαλkβ − λkαλjβ + (α↔ β)] = 0

(C.24)

where we used the fact that the epsilon tensor is antisymmetric. Similarly, the
Lorentz generators annihilate all other spinor products. Hence, since the MHV ampli-
tudes are functions of the spinor products, we conclude that the Lorentz generators
also annihilate the full amplitudes.

We only need to show that the amplitudes are annihilated by the dilatation and
special conformal generators d and kαα̇. On one hand, it is easy to see that, if we
write d̃ = d− n, that is, the differential part of the dilatation operator, then

d̃λαi =
1

2
λαi

d̃〈ij〉 = 〈ij〉
(C.25)

then, the dilatation operator measures the mass dimension of the object it acts
upon, and sums a constant times the object. Hence,

dAn = ([An] + n) An (C.26)

Recalling that the delta function has units of the inverse of its argument, [δ4(p)] =
−4. Since the MHV amplitude has four spinor products in the numerator and n in
the denominator, its mass dimension (as it should be) is 4− n. Hence,

dAn = (−4 + 4− n+ n)An = 0 (C.27)

Finally, we study the action of the special conformal generator. Note that, since
the MHV amplitude only depends on spinor products formed with undotted spinors,
the only action of the derivative with respect to dotted spinors appearing on kαα̇ is
on the delta function. Thus, if we let P denote the total momentum of the scattering
process,
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kαα̇An =
n∑
i=1

∂iα∂iα̇
(
δ4(P )An

)
=

n∑
i=1

∂iα

(
∂P ββ̇

∂λ̃α̇i

(
∂

∂P ββ̇
δ4(P )

)
An

)

=
n∑
i=1

δ β̇
α̇ ∂iα

(
λβi

(
∂

∂P ββ̇
δ4(P )

)
An

)
=

[(
n

∂

∂Pαα̇
+ P ββ̇ ∂

∂P βα̇

∂

∂Pαβ̇

)
δ4(P )

]
An

+

(
∂

∂P βα̇
δ4(P )

) n∑
i=1

λβi ∂iαAn

(C.28)

Now, lowering the β index, we may split the operator on the last line into a
symmetric and an antisymmetric part

n∑
i=1

λiβ∂iα =
n∑
i=1

λi(β∂iα) + εαβ

n∑
i=1

λγi ∂iγ (C.29)

We recognize the symmetric part as the Lorentz generator,mβα, which we already
know that annihilates the amplitude. Then, recognizing that the part proportional
to the Levi-Civita tensor is just the non-vanishing part of the dilatation operator
acting on the MHV amplitude An, we find that, after rising again the β index,

n∑
i=1

λβi ∂αAn = δ β
α (4− n)An (C.30)

then, putting everything together,

kαα̇An =

[(
4

∂

∂Pαα̇
+ P ββ̇ ∂

∂P βα̇

∂

∂Pαβ̇

)
δ4(P )

]
An (C.31)

Now, let F (P ) be an arbitrary test function. Then, we can see that

∫
d4P F (P )P ββ̇ ∂

∂P βα̇

∂

∂Pαβ̇
δ4(P )

= −
∫
d4P

{
∂

∂P βα̇

[
F (P )P ββ̇ ∂

∂Pαβ̇
δ4(P )

]
− ∂

∂P βα̇

(
F (p)P ββ̇

) ∂

∂Pαβ̇
δ4(P )

}
= −

∫
d4P

[
2δ β̇
α̇ F (P ) + P ββ̇ ∂F

∂P βα̇

]
∂

∂Pαβ̇
δ4(P )

=

∫
d4P

[
2
∂F

∂Pαα̇
+

∂

∂Pαβ̇

(
P ββ̇ ∂

∂FP βα̇

)]
δ4(P )

=

∫
d4P

[
4
∂F

∂Pαα̇
+ P ββ̇ ∂2F

∂Pαβ̇P βα̇

]
δ4(P )

= −
∫
d4P F (P )

[
4

∂

∂Pαα̇
δ4(P )

]
(C.32)
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where, to obtain the last line, we used xδ(x) = 0 and integrate by parts to pass
the derivatives to the delta function. Hence, on a distributional sense, we have the
equality

P ββ̇ ∂

∂P βα̇

∂

∂Pαβ̇
δ4(P ) = −4

∂

∂Pαα̇
δ4(P ) (C.33)

which implies that kαα̇ annihilates the MHV amplitude. This completes the proof
that MHV amplitudes are conformal invariant at tree level.

The representation of the conformal group (C.22) in terms of spinor variables
is highly asymmetric. Momentum is realized as a multiplicative operator, while the
Lorentz generators are first-order differential operators and the special conformal
transformations are second-order differential operators. The natural thing would be
to look for a set of variables in which the generators are written in a more uniform
manner. In order to do this, consider the following transformation

λ̃α̇ → i
∂

∂µα̇

∂

∂λ̃α̇
→ iµα̇

(C.34)

In these variables, all the conformal generators become first-order differential
operators; their one particle action is given by

pαα̇ = iλα
∂

∂µα̇
, kαα̇ = iµα̇

∂

∂λα

mαβ =
i

2

(
λα

∂

∂λβ
+ λβ

∂

∂λα

)
m̄α̇β̇ =

i

2

(
µα̇

∂

∂µβ̇
+ µα̇

∂

∂µβ̇

)
d =

i

2

(
λα

∂

∂λα
− µα̇ ∂

∂µα̇

)
(C.35)

This is a particularly uniform representation of the conformal generators; in
particular, the dilatation operator has become homogeneous, which is a direct con-
sequence of commuting µα̇ with the derivative operator. In four dimensions, the
conformal group can be identified with SU(2, 2), the special unitary group of 2× 2
matrices acting on two-dimensional hermitian forms. Its complexification, SL(4,C),
has a four-dimensional representation acting on

ZI = (λα, µα̇) (C.36)

the objects ZI are known as twistors; they were first introduced by Penrose
[108] as an alternative geometric description of Minkowski spacetime that made
conformal symmetry manifest. Depending on the signature of spacetime, the twis-
tors are either real or complex. For example, in (+,+,−,−) signature, the conformal
group is SL(4,R) and it is consistent to take λ and µ as real, two-component spi-
nors. In particular, to obtain an amplitude in twistor space from the corresponding
momentum-space amplitude in this signature, one must simply perform a Fourier
transform
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Ã(λi, µi) =

∫ n∏
j=1

d2λ̃j exp
(
i[µjλ̃j]

)
A(λi, λ̃i) (C.37)

for Lorentzian signature (+,−,−,−), the spinors are complex and the Fourier
transform should be replaced by a contour integral. However, the definition of the
contour is not unique, and the formalism of ∂̄-cohomology is needed to define the
twistor transform. Nonetheless, we will perform manipulations of amplitudes from
momentum to twistor space as if they were in (+,+,−,−) signature.

Note that choosing to transform λ̃ instead of λ is completely arbitrary, and one
could also perform a twistor transform which leaves the antiholomorphic spinors un-
touched, and transforms the holomorphic spinors. The consequence of making such
a change is that, for example, there is no longer a simple relation between the MHV
and anti-MHV amplitudes; in momentum space, one can obtain the anti-MHV am-
plitudes as parity conjugates of the MHV ones, which amounts to replacing all angle
brackets with square brackets, up to a phase 2. This symmetry is broken down by the
transformation to twistor space. As we will see in a moment, MHV amplitudes will
have a particularly simple structure, but this will not be the case for the anti-MHV
ones.

When the external states of an amplitude undergo a little group transformation,
they pick up a phase. This fact is realized, in spinor variables, as the relation(

λαi
∂

∂λαi
− λ̃α̇i

∂

∂λ̃α̇i

)
An(λi, λ̃i, hi) = −2hiAn(λi, λ̃i, hi) (C.38)

for an arbitrary leg i, and hi denotes its helicity. In terms of twistor variables,
one obtains(

λαi
∂

∂λαi
+ µα̇i

∂

∂µα̇i

)
Ãn(λi, λ̃i, hi) = −(2hi + 2)Ãn(λi, µi, hi) (C.39)

The operator on the left-hand side of the last relation can be seen to be equal to
ZI ∂

∂ZI
, which has an identical form to the dilatation operator of the conformal group

(although acting on rather different variables). Therefore, we can identify it as the
generator of the scalings ZI → tZI for some complex, non-zero constant t. This im-
plies that the amplitudes are homogeneous functions of the twistor variables of each
particle, ZI

i , of degree −(2hi + 2). We can identify sets of twistor variables differing
by overall scalings, ZI ∼ tZI and drop the single point ZI = 0. This identification
defines an equivalence relation, and the space where the twistors that amplitudes
depend on are defined is actually projective twistor space, CP3 or CR3, depending
on whether the twistors are real or complex.

Now, let us write the MHV amplitude with the momentum conserving delta
function as

AMHV
n = (2π)4δ4(

∑
i

λαi λ̃
α̇
i )f(λi) (C.40)

2Actually, a factor of (−1)n for an n-point amplitude.
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where f corresponds to the Parke-Taylor formula (2.62). The important fact
in the following argument is that it only depends on the holomorphic spinors λi.
We want to perform the twistor transform of the MHV amplitude. Since the only
dependence on the antiholomorphic spinors is through the delta function, we write

AMHV
n =

∫
d4x exp(ixββ̇

∑
i

λβi λ̃
β̇
i )f(λi) (C.41)

with this representation, the Fourier transform to twistor space can be easily
performed,

ÃMHV
n (λi, µi) =

∫ n∏
j=1

d2λ̃j exp
(
iµjα̇λ̃

α̇
j

)∫
d4x exp

(
ixαα̇

∑
i

λαi λ̃
α̇
i

)
f(λi)

=

∫
d4x

∫ n∏
j=1

d2λ̃j exp
[
iλ̃α̇j (µjα̇ + xαα̇λ

α
j )
]
f(λi)

=

∫
d4x

n∏
i=1

δ2(µiα̇ + xαα̇λ
α
i )f(λi)

(C.42)

How do we interpret this result? For every point xαα̇ in spacetime, the delta
functions enforce the equations

µiα̇ + xαα̇λ
α
i = 0, α̇ = 1, 2 (C.43)

which define a degree 1 algebraic curve in RP3 3. In (+,+,−,−) signature, this
curve is most easily described as straight line; if we take λ1 6= 0, it can be described
by the set of parametric equations

x =
λ2

λ1

, y =
µ1

λ1

, z =
µ2

λ1

(C.44)

hence, MHV amplitudes in twistor space are supported on points which are
collinear in R3. This observation motivated Witten [19] to conjecture that an n gluon
scattering amplitude in twistor space is nonzero only if the twistor coordinates ZI

i

of each external particle are supported on an algebraic curve of degree d, which
satisfies

d = q − 1 + l (C.45)

where q is the number of positive helicity gluons and l the number of loops.
Furthermore, this curve may have genus g ≥ 0, but must be bounded by

g ≤ l (C.46)

For example, at tree level, there can only be genus zero curves. Since lines are
defined as genus zero curves, our example indeed satisfies these assumptions. Further

3An algebraic curve, C in RP3 is a curve defined as the set of zeroes of a polynomial equation
with real coefficients in the twistor coordinates ZI . One way to define an algebraic curve is to set
two polynomials of degrees d1, d2 say P1(ZI) and P2(ZI), equal to zero. The degree of such an
intersection is then d = d1d2.
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exploration of this conjecture led to the connected formalism for tree-level super-
amplitudes in N = 4 Super Yang-Mills theory (SYM), which we discuss in Chapter
4.



A5(q1q̄1q2q̄2g) helicity amplitude

We will perform the calculation of the color-ordered amplitude A5(q1q̄1q2q̄2g), as
defined by the color decomposition of 2.30. Attaching all factors of −ig/

√
2 to the

primitive amplitudes instead of the color factors and using the notation U(pi) = U(i)
and εµ(pi) = εµ(i) , using the shorthand notations u(pi) = u(i), etc. We can write
A1 as

A1 = D1 +D4 +D5

= ū(3)

(
−i g√

2
γµ
)
v(4)

(
−igµν
s34

)
ū1

(
−i g√

2
γα
)
εα(5)

(
i(/p1

+ /p5
)

s15

)(
−i g√

2γν

)
v(2)

− ū1

(
−i g√

2
γµ
)
v(2)

(
−igµν
s12

)
ū3

(
−i g√

2
γν
)(

i(/k4 + /k5)

s45

)(
−i g√

2
γα
)
εα(5)v(4)

+ ū(1)

(
−i g√

2
γµ
)
v(2)

(
−igµρ
s12

)(
ig√

2

)
[gρα(p5 − p1 − p2)σ + gασ(p3 + p4 − p5)ρ

+ gσρ(p1 + p2 − p3 − p4)α]εα(5)

(
−igσν
s34

)
ū(3)

(
−i g√

2
γν
)
v(4)

= i

(
g√
2

)3{
1

s15s34

ū(3)γµv(4)ū(1)/ε(5)
(
/p1

+ /p5

)
γµv(2)

− 1

s12s45

ū(1)γµv(2)ū(3)γµ

(
/p4

+ /p5

)
/ε(5)v(4) +

2

s12s34

[
ū(1)/ε(5)v(2)ū(3)/p5

v(4)

−ū(1)/k5v(2)ū(3)/ε(5)v(4) + ū(1)γρv(2)ū(3)γρv(4) (p1 + p2) · ε(5)]}

= i

(
g√
2

)3

(T1 + T2 + T3)

(D.1)
where we have contracted all possible Lorentz indices and T1, T2, T3 denote each

term in the sum in brackets. Now, we will consider spinors of definite helicity. In
particular, let us consider A1(1+2−3+4−5+

g ). Then, in Dirac spinor notation,

ū(1) = [1|, v(2) = |2〉
ū(3) = [3|, v(4) = |4〉

(D.2)

and, for some reference momenta q,

εµ(5) =
1√
2

〈q|γµ|5]

〈q5〉
(D.3)
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which implies, due to the Fierz identity, that

/ε(5) =
1√
2

〈q|γµ|5]γµ
〈q5〉

=

√
2

〈q5〉
( |q〉[5|+ |5]〈q| )

(D.4)

Then, if we take the reference momentum to be q = p1 and using the anticom-
mutation relation of the Gamma matrices, we can see that

/ε(5)
(
/p1

+ /p5

)
=
(

2p1 · ε(5)− /p1
/ε(5)

)
+ /ε(5)/p5

= −/p1
/ε(5) + /ε(5)/p5

(D.5)

Furthermore, the Dirac equation implies ū(1)/p1
= 0. Then, the first term contri-

buting to the amplitude simplifies to

T1 =
1

s15s34

[3|γµ|4〉[1|

( √
2

〈15〉
( |1〉[5|+ |5]〈1|)

)
/p5
γµ|2〉

=
1

s15s34

√
2

〈15〉
[3|γµ|4〉

(
[15]〈1|/p5

γµ|2〉
)

=
1

s15s34

√
2

〈15〉
[15][3|γµ|4〉〈15〉[5|γµ|2〉

=

√
2

s15s34

[15]〈4|γµ|3]〈2|γµ|5]

=
2
√

2

〈15〉[51]〈34〉[43]
[15]〈42〉[53]

= 2
√

2
〈42〉[53]

〈51〉〈34〉[43]

(D.6)

Now, we consider the numerator of T2, that is

[1|γµ|2〉[3|γµ(/p4
+ /p5

)/ε(5)|4〉

= [1|γµ|2〉[3|γµ ( |4〉[4|+ |4]〈4|+ |5〉[5|+ |5]〈5| )
√

2

〈15〉
( |1〉[5|+ |5]〈1|) |4〉

=

√
2

〈15〉
[1|γµ|2〉 ([3|γµ|4〉[4|+ [3|γµ|5〉[5|) (|5]〈14〉)

=
√

2
〈14〉
〈15〉

[1|γµ|2〉[45][3|γµ|4〉

= 2
√

2
〈14〉
〈15〉

[45]〈24〉[31]

(D.7)

hence, after writing the propagators in terms of spinor products,

T2 = 2
√

2
〈14〉〈24〉[31]

〈12〉[21]〈54〉〈15〉
(D.8)

Finally, we have to calculate the third term, corresponding to the three-gluon
vertex, in terms of spinors products. First, we consider
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ū(1)/ε(5)v(2)ū(3)/p5
v(4) = [1|

( √
2

〈15〉
( |1〉[5|+ |5]〈1| )

)
|2〉[3|/p5

|4〉

=

√
2

〈15〉
[15]〈12〉[35]〈54〉 ≡ T3;1

(D.9)

and

ū(1)/k5v(2)ū(3)/ε(5)v(4) = [1|/p5
|2〉[3|

( √
2

〈15〉
( |1〉[5|+ |5]〈1| )

)
|4〉

=

√
2

〈15〉
[15]〈52〉[35]〈14〉 ≡ T3;2

(D.10)

We can calculate the difference between these two terms and use the Schouten
identity to obtain

T3;1 − T3;2 =
√

2
[15]

〈15〉
[35] (〈23〉〈54〉 − 〈52〉〈14〉)

=
√

2
[15]

〈15〉
[35] (−〈15〉〈42〉)

=
√

2[15][35]〈24〉

(D.11)

The final term we have to simplify is

ū(1)γρv(2)ū(3)γρv(4) (p1 + p2) · ε(5) = [1|γρ|2〉[3|γρ|4〉
1√
2

〈1|/p2
|5]

〈15〉

=
1√
2
〈2|γρ|1]〈4|γρ|3]

〈12〉[25]

〈15〉

=
√

2
[31][25]〈24〉〈12〉

〈15〉
≡ T3;3

(D.12)

With this, the third term in the amplitude can be written in terms of spinor
products as

T3 = T3;1 − T3;2 + T3;3

=
2
√

2

〈15〉
1

〈12〉[21]

1

〈34〉[43]
(〈24〉〈15〉[15][35] + 〈24〉〈12〉[25][31])

(D.13)

Therefore, the partial amplitude is given by

A1(1+2−3+4−5+
g ) = ig3 〈24〉

〈15〉〈54〉〈12〉[21]〈34〉[43]
{[53]〈12〉[21]〈54〉+ [35]〈34〉[43]〈54〉

+〈15〉[51][53]〈54〉+ 〈24〉[32]〈34〉[43] + [31]〈12〉[25]〈54〉}

= ig3 〈14〉〈24〉2

〈12〉〈34〉〈15〉〈54〉
(D.14)
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where the last equality follows after using momentum conservation to elimina-
te the momentum p5 from the spinor products. Other helicity configurations may
be calculated in the same fashion, starting from (D.1), replacing the corresponding
spinors for the helicities under consideration and simplifying their products. The
remarkable simplicity of the result shows the utility of spinor products. The calcula-
tion of the complete set of helicity amplitudes associated to this process using string
theory methods was performed by Kosower in [109].



Derivation of the Parke-Taylor for-
mula

In this appendix, we provide a proof of the MHV formula for gluon amplitudes
using the BCFW recursion relations. We will proceed by induction on the number of
external legs. Since we have already proven the case n = 3 using little group scaling,
we will take it as the starting step, and as inductive hypothesis assume that the
formula is valid for all j < n for some n ∈ N, and prove that it holds for this value
of n. Without loss of generality, we choose to perform the following BCFW shift

|n〉 → |n〉 − z|1〉
|1]→ |1] + z|n]

(E.1)

With this shift, the BCFW recursion can be expanded to take the form

An(1−, 2+, ..., i−, ..., n+) =
∑
s=±

n−2∑
k=2

Ak+1(1̂, 2, ...,−P̂−s1k )
i

P 2
1k

An−k+1(P̂ s
1k, k + 1, ..., n̂)

=
∑
s=±

[A3(1̂−, 2+,−P̂−s12 )
1

P 2
12

An−1(P̂ s
12, 3

+, ..., i−, ..., n̂+) + ...+

+ An−1(1̂−, 2+, ..., î−, ...,−P̂−s1(n−2))
i

P 2
1(n−2)

A3(P̂ s
1(n−2), (n− 1)+, n̂+)]

= A3(1̂−, 2+,−P̂+
12)

1

P 2
12

An−1(P̂−12, 3
+, ..., i−, ..., n̂+)+

+ +An−1(1̂−, 2+, ..., î−, ...,−P̂+
1(n−2))

i

P 2
1(n−2)

A3(P̂−1(n−2), (n− 1)+, n̂+)

(E.2)
where, in going from the second to the third line, we see that all other contri-

butions vanish because they are either all-plus gluon amplitudes or have only one
negative helicity gluon. Choosing complex kinematics to satisfy

[12] = 0, 〈12〉 6= 0 (E.3)

we see that the three point amplitude A3(1̂−, 2+,−P̂+
12) vanishes, and we only

have to compute one contribution. Using the three-point anti-MHV formula and the
inductive hypothesis, we can write
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An(1−, 2+, ..., i−, ..., n+) =

=

(
−i 〈1̂i〉4

〈1̂2〉...〈(n− 2)P̂1(n−2)〉〈P̂1(n−2)1̂〉

)
i

P 2
1(n−2)

×

×

(
−i [(n− 1)n̂]4

[P̂1(n−2)(n− 1)][(n− 1)n̂][n̂P̂1(n−2)

)

=
−i

P 2
1(n−2)

〈1̂i〉4[(n− 1)n̂]4

〈1̂2〉...〈(n− 2)|P̂1(n−2)|n̂][(n− 1)n̂]〈1̂|P̂1(n−2)|(n− 1)]

= i
〈1i〉4

〈12〉〈23〉...〈n1〉

(E.4)

where we used momentum conservation in the last step and replaced the explicit
expression of P 2

1(n−2) = (p1 + ...+pn−2)2 = (pn−1 +pn)2 = s(n−1)n = 〈(n−1)n〉[n(n−
1)]. This completes the induction step, thus proving the Parke-Taylor formula for
the MHV amplitudes.



5-point φ3 amplitude from the CHY
representation

In this appendix, we will use the method of local residues to calculate the 5-point
amplitude in φ3 theory. Similarly to the 4-point case, we compute the amplitude for
two equal external orderings σ = σ̄ = 12345. To avoid clutter, we will not include
this as an argument of the amplitude, with the understanding that we have chosen
such an ordering.

In order to use 4.22, we need to determine the two polynomials h2 and h3 in the
denominator of the integrand. Hence, we must find the number of distinct subsets
with two and three elements of the set {1, 2, 3, 4, 5}. Simple combinatorics show that
there are 10 of each kind of subsets. The two-element subsets are

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3}
{2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

(F.1)

while the subsets with three elements are given by

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5}
{1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

(F.2)

Then, using the definition 3.40, we can write

h2 =s12z1z2 + s13z1z3 + s14z1z4 + s15z1z5 + s23z2z3

+s24z2z4 + s25z2z5 + s34z3z4 + s35z3z5 + s45z4z5

(F.3)

For h3, we would find terms of the form s123z1z2z3, involving three-particle inva-
riants. However, using momentum conservation we can see that, for example,

s123 = (p1 + p2 + p3)2

= (p4 + p5)2

= s45

(F.4)

which yields a term z1z2z3s45. Then, h3 is a polynomial with terms of the form
zizjzkslm, where, if we think of the labels as a set, {i, j, k, l,m} = {1, 2, 3, 4, 5}.
Then,
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h3 =s12z3z4z5 + s13z2z4z5 + s14z2z3z5 + s15z2z3z4 + s23z1z4z5

+s24z1z3z5 + s25z1z3z4 + s34z1z2z5 + s35z1z2z4 + s45z1z2z3

(F.5)

Now, using 4.22, the integral we want to calculate is

m5 = −i
∮
C

1

(2πi)2

d5z

dω

∏5
i<j zij

h2h3

1

(z12z23z34z45z51)2
(F.6)

For this calculation, we choose to gauge fix z1, z2 and z3. Hence

dω =
dz1dz2dz3

z12z23z31

(F.7)

and the product in the numerator is

5∏
i<j

zij = z12z13z14z15z23z24z25z34z35z45 (F.8)

Substituting into the integral and cancelling terms, we obtain

m5 = −i
∮
C

dz4dz5

(2πi)2

1

h2h3

z2
31z14z24z25z35

z34z45z51

(F.9)

We set z1 = 1, z2 = 0, z3 =∞. Then, e isolate the terms with z3 and calculate

ĺım
z3→∞

z2
31z35

z34h2h3

=
1

h′2h
′
3

(F.10)

where a prime denotes differentiation with respect to z3. After setting z1 = 1
and z2 = 0, we obtain

h′2 = s13 + s34z4 + s35z5 (F.11)

and

h′3 = s25z4 + s24z5 + s12z4z5 (F.12)

On one hand. On the other, we need the part of the integrand which does not
involve z3. This is

z14z24z25

z45z51

= − z4z5(1− z4)

(z4 − z5)(1− z5)
(F.13)

Therefore, renaming z4 = x and z5 = y, we obtain the integral

m5 = i

∮
C

dxdy

(2πi)2

xy(1− x)

(x− y)(1− y)

1

s13 + s34x+ s35y

1

s12xy + s25x+ s24y
(F.14)

The above integral is a simple example of a multidimensional contour integral;
in this case, the contour C (a curve on C2) encloses the simultaneous solutions to
h′2 = h′3 = 0. To perform the integral, we first solve the equations h′2 = h′3 = 0
explicitly. For example, we can eliminate y in h′3 = 0 by using h′2 = 0, obtaining
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y = −s13 + s34x

s35

(F.15)

then, substituting y into h′3 = 0 results in the quadratic equation

s12s34x
2 + (s12s13 + s24s34 − s25s35)x+ s13s24 = 0 (F.16)

which yields two solutions x1, x2 for x, which are related to a pair of solutions
y1, y2 for y. This is analogous to our discussion in Chapter 2. Then, the two solutions
(x1, y1) and (x2, y2) are the ones we need to calculate our integral. Then, if we identify

f(x, y) =
xy(1− x)

(x− y)(1− y)
(F.17)

the Jacobian we are after is given by changing variables to x′ = h′2(x, y), y′ =
h′3(x, y). Since h′2 is linear in x, y and h′3 is quadratic, the Jacobian is easily calcula-
ted, and yields

J(x, y) = s34(s24 + s12x)− s35(s25 + s12y) (F.18)

With this, the amplitude is simply given by

m5 = i

(
f(x1, y1)

J(x1, y1)
+
f(x2, y2)

J(x2, y2)

)
= i

s24 + s25

s12((s34 + s35)(s24 + s25)− s12s13)

+ i
s24

(s12 + s25)((s12 + s25)(s13 + s35)− s24s34)

− i s25

s2
12s34 + s12s25s34

= i

(
1

s12s34

+
1

s12s45

+
1

s23s51

+
1

s23s45

+
1

s34s51

)
(F.19)

where the last line is obtained by rewritting the Mandelstam invariants in the
numerators using the various kinematic identities obtained from momentum conser-
vation.



Words and shuffle algebras

In his appendix, we introduce the notation of words and shuffle algebras, which
will allow us to organize amplitudes that possess an external cyclic ordering due to
some color decomposition. In particular, consider QCD amplitudes with n external
particles, such that

n = 2nq + ng (G.1)

where nq is the number of quark-antiquark pairs and ng the number of gluons.
We assume that the quarks have different flavours. The quark labels are q1, ..., qnq ,
the antiquark labels are q̄1, ..., q̄nq , and the gluon labels are g1, ..., gng . We define the
set

A = {q1, q2, ..., qnq ; q̄1, q̄2, ...q̄nq ; g1, g2, ..., gng} (G.2)

which we call an alphabet, and each of its element we call letters. We define a
word, w, as an ordered sequence of letters

w = l1l2....ln (G.3)

Words are a convenient way to group the particle labels on which amplitudes
depend on. In particular, we are interested in word made out of n letters, such that
no letter is repeated; those words correspond to all possible orderings of the particle
labels, which means, all possible orderings of the external particles in a primitive or
partial amplitude. We define the set of such words as

W0 = {w = l1l2...ln|li ∈ A, li 6= lj if i 6= j} (G.4)

We can define a product of words, called the shuffle product, under which the
words form an algebra. Let w1 = l1l2...lk, w2 = lk+1lk+2...lr. Then, the shuffle product
is defined as

w1� w2 =
∑

shuffles σ

lσ(1)...lσ(r) (G.5)

where the set of ”shuffles” is the set of permutations that preserve the relative
order of l1...lk and lk+1...lr. As an example, consider the words w1 = l1l2, w2 = l3l4.
The possible shuffles are {l1l2l3l4}, {l1l3l2l4}, {l3l1l2l4}, {l3l4l1l2}, {l1l3l4l2}, {l3l1l4l2},
and then
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w1� w2 = l1l2l3l4 + l1l3l2l4 + l3l1l2l4 + l3l4l1l2 + l1l3l4l2 + l3l1l4l2 (G.6)

The shuffle product is both associative and commutative. If we denote the empty
word by e, that is, the word with no letters, it will be an identity for the shuffle pro-
duct. Since words w ∈ W0 are simply a way to organize the ordering of the external
particle labels of a given primitive amplitude An, we can interpret amplitudes as
functions on the vector space of words,

An(l1...ln) = An(w) (G.7)

such that these are linear operators,

An(w1 + w2) = An(w1) + An(w2) (G.8)

We take G.8 as the definition of a sum of words; a sum of external particle
orderings is understood as the sum of primitive amplitudes with those orderings.
We will see that words also are a natural language in which to express the different
linear relations among primitive amplitudes with distinct orderings.



Rings, ideals and Gröbner bases

In this appendix, we introduce some notions of abstract algebra and algebraic
geometry that provide the basis for the calculation of the global residues needed in
the CHY formalism. We follow the review [110], where methods of computational
algebraic geometry are treated in the context of multiloop integrand reduction.

Let R be an Abelian group under the operation +. We say that the triple
(R,+,×) is a ring if × satisfies

(a× b)× c = a× (b× c), ∀a, b, c ∈ R,

There exists an element 1 ∈ R such that 1× a = a× 1 = a ∀a ∈ R,

a× (b+ c) = a× b+ a× c and (b+ c)× a = b× a+ c× a ∀a, b, c ∈ R.

Furthemore, a triple (F,+,×) is a field if it satisfies the ring axioms and is also
an Abelian group under ×.

One particular type of ring is the polynomial ring R = F[z1, ..., zn], which is the
collection of all polynomials in n variables with coefficients in the field F. Common
examples of fields where we one considers polynomial rings are the rational numbers
Q or the complex numbers C.

Now, we can define an ideal I as the subset of the polynomial ringR = F[z1, ..., zn]
that satifies

0 ∈ I, where 0 is the identity of the + operation on the field F ,

For any pair of polynomials f1, f2 ∈ I, (f1 + f2) ∈ I,

If f ∈ I then −f ∈ I,

∀f ∈ I and ∀h ∈ R, h× f = hf ∈ I

Another definition of an ideal can be given as follows: if we consider a set of
polynomials S = {f1, ..., fk} ⊂ R, the ideal generated by S is defined as

I = 〈f1, ..., fk〉 ≡ {f |f =
k∑
i=1

hifi, hi ∈ R} (H.1)
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In general terms, the generating set of an ideal is not unique, but can always be
chosen to be finite, a result which is known as the Lasker-Noether theorem.

Now, consider an ideal I ⊂ R. For two polynomials f, g ∈ R, define the equiva-
lence relation

f ∼ g iff f − g ∈ I (H.2)

Then, for each f ∈ R, we define the equivalence class [f ] as the set of all poly-
nomials g ∈ R such that g ∼ f . This allows us to define the quotient ring

R/I = {[f ]|f ∈ R} (H.3)

An standard result on ring theory is that the multiplication on the ring R/I is
given by [f1][f2] = [f1f2].

Let K be a field and suppose F ⊂ K. The n-dimensional K-affine space AnK is the
set of all n-tuples composed of elements of K. Given S ⊂ F[z1, ..., zn], we define its
algebraic set over K as

ZK(S) ≡ {p ∈ AnK|f(p) = 0 ∀f ∈ S} (H.4)

That is, the algebraic set of a subset S of the polynomial ring F[z1, ..., zn] over
a field K is the set of simultaneous zeroes of the elements of S over the field in
question. This definition allows us to formulate one of the most important theorems
in algebraic geometry, known as the weak nullstellensatz: if I ⊂ F[z1, ..., zn] is an
ideal and K is an algebraically closed field (which means that at least one root of the
polynomial equation P (x) = 0 for P ∈ K[x] is an element of K), such that F ⊂ K,
then ZK(I) = ∅ implies that I = 〈I〉 = F[z1, ..., zn].

The weak nulstellensatz is generalized to the so-called Hilbert nullstelensatz. Let
F is an algebraically closed field, R = F[z1, ..., zn] and let I ⊂ R be an ideal. Then,
if f ∈ R is a polynomial such that f(p) = 0 for every point p ∈ ZF(I), there exists
a positive integer k sucha that fk ∈ I. Put simply, the Hilbert nullstelensatz pro-
vides a way to characterize all polynomials vanishing on the algebraic set of I over F.

One special kind of generating set of an ideal is the so-called Gröbner basis. To
define them, we first need to introduce the concepts of monomial orderings.

For any polynomial f , define LT (f) to be the highest degree monomial in f
along with its corresponding coefficient. Now, let M be the set of all monomials
with coefficient 1 in the ring R = F[z1, ..., zn]. A monomial ordering ≺ in a ring R
is an ordering on M such that

≺ is a total ordering; that is, if m1,m2 ∈M , then either m1 ≺ m2 or m2 ≺ m1,
unless m1 = m2,

Given w ∈M , if u ≺ v then uw ≺ vw,

1 ≺ vu if u ∈M and u is not a constant.
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There is no unique way to construct a monomial ordering. One possible one is
to take 1 ≺ zn ≺ zn−1 ≺ ... ≺ z1. Then, given two monomials

g1 = zα1
1 ...zαnn , g2 = zβ11 ...z

βn
n (H.5)

we can define the following monomial orderings:

Lexicographic ordering: g1 ≺ g2 if αi < βi for some i ∈ {1, 2, ..., n} and αj = βj
for j ∈ {1, ..., i− 1},

Degree lexicographic: g1 ≺ g2 if
∑n

i=1 αi <
∑n

i=1 βi. In the case both sums are
equal, the ”tie” is decided by applying lexicographic ordering,

Degree reversed lexicographic: g1 ≺ g2 if
∑n

i=1 αi <
∑n

i=1 βi. If the sums are
equal, one compares αn and βn. If αn < βn then g2 ≺ g1. If αn = βn, repeat
the process with αn−1, βn−1, and so on.

Having defined the different monomial orderings, we can define a Gröbner ba-
sis of an ideal I ⊂ F[z1, ..., zn] with a given monomial ordering as the set G(I) =
{g1, ..., gm} such that I = 〈G〉 and with the property that, for each f ∈ I, there
exists gi ∈ G(I) such that the leading term of gi divides the leading term of f , i.e.
LT (gi)|LT (f). Gröbner bases allow to solve non-linear polynomial system of equa-
tions, and can be understood as a generalization of Gaussian elimination. Also, the
allow the computation of polynomial greatest common divisors in multiple variables,
which is the reason of their usefulness in the context of integrand reduction.
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