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Abstract

Synergetic effects connecting spatial and functional neuroimaging techniques

allows reduction of the weakness for single method analysis. Specifically,

Electroencephalographic (EEG) Source Imaging (ESI) relating structural head models

and distributed source localization techniques improves the time and spatial resolution

of single MRI or EEG analysis. The construction of more accurate forward models for

ESI solutions, holding better precision and less computational burden is an important

task for investigative purposes, but also for surgery planning and disorder treatments.

In this regard, we present a novel finite-difference EEG forward problem solution that we

called ghost-filling finite difference anisotropic reciprocity method (GFDARM). First,

we introduce a finite difference numerical solution for the conservative form of the

Poisson equation, using an asymmetric volumetric stencil, together with the transition

layer technique to formulate finite differences that properly deal with the considered

Newman and Dirichlet boundary conditions. Later, we formulate a solution for an

irregular free-form boundary domain, based on a second-order accuracy ghost-filling

approximation for the homogeneous Newman flux condition, allowing us to solve

the discretized finite differences volume only for the significant potential unknowns.

Then we analyze the linear equation system solution and the considerations for a

reciprocity solution over the electrodes space. Further, we test our method using a

multilayer spherical head model that can include anisotropy and can admit an analytical

solution of the Poisson equation. Finally, we analyze a noisy linear equation system to

study the numerical stability of the technique in the presence of perturbations. Our

results show stability and super-linear convergence. Moreover, validation against an

analytical solution shows high correspondence in the potential distribution for a wide

range of dipole positions and orientations. As a final stage, we introduce a realistic

patient-specific EEG forward modeling pipeline, including anisotropy in the skull and

the white matter; MRI segmentation; electrode co-register; voxelwise conductivity
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definitions; reciprocity space solution; and GFDARM numeric EEG forward solver. Our

results using Bayesian model selection for group studies in a random fixed effect analysis

show strong evidence in favor of more complex head models, including anisotropic skull

and white matter modeling.

Keywords: EEG forward problem, finite differences, ghost-filling, head

modeling, anisotropy, tissue conductivities, EEG source imaging (ESI),

Bayesian model selection for group studies, volumetric priors.



Resumen

Los efectos conjuntos conectando técnicas espaciales y funcionales de neuro-imágen

permiten el mejoramiento de las caracteŕısticas de un solo método. Espećıficamente, la

generación de imágenes de fuentes de activación (ESI) mediante electroencefalograf́ıa

(EEG) que relaciona modelos estructurales de conductividad y técnicas de localización

de fuentes distribuidas, permite un mejoramiento en la resolución espacial, conservando

la resolución temporal del EEG. La construcción de modelos de conductividad más

precisos, con una mayor precisión y menos carga computacional es una tarea importante

para soluciones que emplean ESI, aśı como para fines de investigación, planificación

de ciruǵıa y/o los tratamientos de trastornos neurológicos en general. En este trabajo

presentamos una nueva solución del problema directo empleando diferencias finitas, a la

que llamamos método de diferencias finitas empleando llenado-fantasma, reciprocidad

y anisotroṕıa (GFDARM). Primero, nosotros presentamos una solución numérica de

diferencias finitas para la forma conservativa de la ecuación de Poisson, utilizando

una plantilla volumétrica asimétrica, junto con la técnica de transición de capas, para

formular diferencias finitas que aborden adecuadamente las condiciones de contorno de

Newman y Dirichlet. Más adelante, formulamos la solución para una frontera irregular

y de forma libre basada en una aproximación de segundo orden de llenado-fantasma

que permite cumplir la condición de flujo homogéneo de Newman, lo que nos permite

resolver el volumen discretizado solo para las incógnitas de potencial diferentes de cero

(significativas). Posteriormente se analiza la solución del sistema de ecuaciones lineales y

las consideraciones para una solución de reciprocidad sobre el espacio de los electrodos.

Además, realizamos pruebas utilizando un modelo de cabeza esférico multicapa que

puede incluir anisotroṕıa y del cual se puede obtener una solución anaĺıtica. Finalmente,

se analiza la solución del sistema lineal de ecuaciones en presencia de ruido estudiando

la estabilidad numérica de la técnica. Nuestros resultados muestran estabilidad y

convergencia súper lineal y una alta correspondencia en la distribución de potenciales
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para una amplia gama de posiciones y orientaciones de dipolos comparando contra una

solución anaĺıtica esférica. Finalmente se una metodoloǵıa para el modelado directo de

EEG empleando modelos realistas y paciente-espećıficos, que incluye anisotroṕıa en el

cráneo y la materia blanca; segmentación de MRI; co-registro de electrodos; definiciones

de conductividad voxel a voxel; solución de espacio de reciprocidad; y solución numérica

del problema directo en EEG empleando GFDARM. El desempeño de la técnica y la

influencia de los modelos directos reaĺısticos son analizados empleando selección de

modelos para estudios de grupos en un marco Bayesiano, los cuales muestran fuerte

evidencia a favor de modelos de conductividad más complejos, que incluyan modelado

anisótropo del cráneo y la materia blanca.

Palabras clave: Problema directo en EEG, diferencias finitas, llenado

fantasma, modelado de la cabeza, anisotroṕıa, conductividad de tejidos,

imagenoloǵıa de fuentes EEG, selección de modelos Bayesiana para estudios

de grupo, priors de volúmen.
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Chapter 1

Preliminaries

1.1 Introduction

The human brain mapping is described today as the new frontier of knowledge for the

mankind [Brain Initiative Working Group, 2014]. There are several methodologies for

analyzing and monitoring the human brain structure and function at a higher level

of detail in every new generation of devices [Ramon et al., 2011, Lantz et al., 2011,

Wendel et al., 2009]. These details allow better results in medical treatment, surgery

planning or, more generally, brain research. The brain structural image techniques

improve from the energy invasive computed tomography (CT) to non-invasive analysis

like magnetic resonance imaging (MRI). Moreover, functional analysis techniques

such ElectroEncephaloGraphy (EEG), MagnetoEncephaloGraphy (MEG), Positron

Emission Tomography (PET), Single Photon Emission Tomography (SPECT), or

functional Magnetic Resonance Imaging (fMRI) provide information about the

activation zones of the brain in time sequences. Single structural-based analysis of brain

functionality (fMRI) has a good spatial resolution but poor time analysis windows.

The synergetic effects connecting spatial and functional analysis techniques allows

reduction of the weakness for single technique analysis [Grech et al., 2008]. Specifically,

EEG Source Imaging (ESI) connecting structural head models and distributed source

localization techniques improves the time and spatial resolution of single MRI or EEG

analysis [Michel et al., 2004]. ESI information is used for diagnosis and preoperative

stages of brain surgery being, in most cases, the only suitable analysis tools because

of the high risk of surgical interventions [Martinez et al., 2017, Voges et al., 2011,

Titto et al., 2004, Waberski et al., 2000].

1
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The electroencephalography (EEG) measures the electrode potentials at the scalp

of the human head over a period of time. Those potentials are generated by electrical

activity inside the brain. One neuron generates a small amount of electrical activity

in the order of femtom Ampere. This small amount of energy cannot be measured

by electrodes placed on the scalp surface, however, when a large group of neurons

(approximately 1e6) is simultaneously active, the electrical activity is large enough

to be picked up by the electrodes at the scalp generating a meaningful EEG signal

[Herculano, 2009]. The electrical activity of a group of neurons can be modeled as a

current dipole that is the precursor a potential field inside the volume conductor human

head [Hallez et al., 2007b].

The potentials over the scalp surface, the dipole sources, and the conductivity

volume involve the solution of two different problems: i) The forward problem

calculates the potential of the electrodes on the scalp for a given source configuration

[Hallez et al., 2007b]. ii) The inverse problem, estimates the source parameters

from the potential of the electrodes [Grech et al., 2008]. The solution of the inverse

problem or source localization of neuronal activity from EEG/MEG is a useful

tool in both pathology identification and brain surgery planning, providing crucial

information for patients who suffer neuronal disorders such as Parkinson’s or epilepsy

[Shackleton D et al., 2003]. Distributed source localization techniques require not only

the EEG data but also detailed information about geometry and physical properties

of the head tissues that are interposed between the sources and the sensors, namely,

the solution of the forward problem. There are several methodologies that solve the

forward problem, each one having its own advantages and weaknesses depending on the

necessities of the considered task. The most used methodologies are: spherical models

[De Munck et al., 1993], Boundary Finite Elements (BEM) [Hallez et al., 2007b], Finite

Elements Method (FEM) [Wolters, 2003], and Finite Difference Method (FDM)

[Hallez, 2009].

The solution of the forward problem in EEG source analysis involves the solution

of Poisson’s equation for a multilayer conductor volume, taking into account proper

boundary conditions [Haueisen et al., 1997, Lin et al., 2006]. The Neumann condition

(or flux condition) states that all charges leaving one compartment through a boundary

interface must enter the other compartment. In particular, no current can be injected

into the air outside the human head due to the very low conductivity of the air,

this meaning that the current flux outside the head is null (Neumann homogeneous

condition). The Dirichlet boundary condition states that the potential cannot have
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discontinuities when crossing a boundary. This condition only holds for interfaces not

connected with air [Hallez et al., 2007b].

The spherical head model is the simplest approach to solve the propagation Poisson

equation [De Munck et al., 1993]. For this model, the different tissues conforming

the head are modeled as concentric spheres, where every tissue (scalp, skull, gray

matter, white matter among others) has its own conductivity value, being the scalp

the outer sphere that contains the EEG electrodes. The high symmetry of this

type of models allows analytical solutions [De Munck et al., 1993], however, several

authors shows that the simplifying spherical head model induces source localization

errors bigger than 30mm due to the strong simplification of the realistic and irregular

shape of the human head [Hallez et al., 2008, Henson et al., 2009]. The spherical

head modeling is a useful tool for general analysis, but, when the accuracy is

an important factor (like in surgery planing) more realistic approaches are needed

[Pai et al., 2005, Wang et al., 2008, Palagan et al., 2011, Vorwerk et al., 2014].

The solution of the Poisson equation for realistic free-form head volumes is only

possible using numerical approximations [Irimia et al., 2013]. A realistic head volume

can be obtained from neuroimages such MRI or CT containing a large number of

slices in a series of two-dimensional images. Every slice must be registered in the

same coordinate system in order to obtain a coherent three-dimensional volume

[Vallagh et al., 2007]. After the registration stage, the volume contains the information

of the head with different tissues codified in intensity values [Whalen et al., 2008].

The tissues can be segmented from this kind of data. In particular, the scalp

(where the EEG electrodes are placed), the skull, the cerebrum spinal fluid, the gray

matter and the white matter, are the most commonly considered tissues in forward

modeling. However, several tissues like eyes, fat, muscle, hard bone and soft bone

(among others) can be considered for the segmentation stage in order to obtain more

realistic/accurate head models [Irimia et al., 2013]. Denoising and post-preprocessing

stages are commonly needed for good segmentation results. Nowadays there are

a set of open-use toolboxes that handle the image processing and segmentation

stages with very good results (SPM [Karl et al., 2007], FSL [Jenkinson et al., 2012],

FreeSurfer [Laboratory for Computational Neuroimaging and technology, 2013])

[Vorwerk et al., 2014].

After segmentation, the volume data contains labeled information about the

different tissues. This data is used to construct the realistic head model using knowing

conductivity parameters for each tissue [Michel et al., 2016]. The most simplify numeric
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solution from structural real data is the BEM method [Ferguson et al., 1997]. This

solution can be obtained calculating the potentials for self-contained tesselated surface

shells representing the interfaces between two different tissues, induced by a given

dipole source. BEM method is widely used because of its low computational needs,

however, most solutions only consider three surface boundaries (scalp, skull, and brain),

and is restricted only to isotropic conductivities. Nevertheless, several works analyze

the influence of neglecting the human head anisotropy tissues in the ESI solutions

[Cuartas et al., 2017b, Montes et al., 2016, Ziegler et al., 2014, Wendel et al., 2009,

Wolters et al., 2006]. Specific works like [Hallez et al., 2005] found dipole localization

errors larger than 20mm for spherical head models solved with numerical techniques

that neglects the anisotropy of white matter and skull conductivities. Also in

[Wolters et al., 2006] found that the influence of anisotropic skull is very strong even in

cortical sources for ESI solutions, showing also that anisotropic white matter influence

is very strong in deep source analysis. Other works conclude that the influence of

cerebrum spinal fluid (CSF) in the conduction of the potential from the pyramidal cells

to the scalp is crucial (due to the high conductivity factor of this fluid), and only the

realistic volumetric techniques can properly model the CSF tissue propagation influence

[Strobbe et al., 2014a, Lanfer et al., 2012, Dannhauer et al., 2011]. Particularly there

are two decisive factors that expose the need for volumetric and realistic forward

models, the first one is the strong anisotropic behaviour of the skull and white matter

(among others tissues like the thalamic areas) due to the direct impact on EEG source

localization accuracy, and, the patient-specific analysis with multiple tissues definition

that drastically reduce the errors of using spherical approximations or general atlas

[Vorwerk et al., 2014, Vallagh et al., 2007].

There are two main methodologies that can handle anisotropic conductivity

and realistic patient-specific analysis, the Finite Element Method (FEM)

[Wolters et al., 2002, Liu et al., 2005], and the Finite Difference Method (FDM)

[Vanrumste et al., 2001b, Hallez, 2009]. The main practical problem of FEM and

FDM in comparison with BEM is the computational burden. BEM solutions are

calculated on the boundaries between homogeneous isotropic compartments while in

FEM and FDM the solution of the forward problem is calculated in the entire volume

[Vanrumste et al., 1998]. With BEM technique, the solution leads to a linear system

that generally can be solved using direct matrix inversion without taking into account

a system excitation (source), due to this, only a matrix calculation is needed to obtain

the scalp potentials. In FEM and FDM the solution leads also to linear systems,
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but the coefficient matrix is typically sparse and has a large number of unknowns in

comparison with BEM. Thus, a direct matrix inversion is not the best way to solve the

problem using volumetric techniques, this due to the dimension of the coefficient matrix

[Petersen et al., 2012]. This large coefficient matrix systems can be resolved for a given

right-hand side term (source excitation) leading to linear equation systems (LES) that

can be solved using iterative solutions such as the successive over-relaxation method

(SOR), the conjugate gradient methods (CG), or algebraic multigrid methods (AMG)

[Wolters et al., 2006, Mohr et al., 2003].

Significant progress has been made in the EEG forward solution FEM-based

techniques in order to reduce the computational time and improve the accuracy of

the models. Such techniques are the subtraction, partial integration, or the Venant

approaches, being the last, one of the most computational efficient FEM methodologies

[Dannhauer et al., 2011]. This approach uses hexahedral deformable elements instead

of the commonly tetrahedral voxels. For the LES, they used the incomplete-Cholesky

preconditioned conjugate gradient in a reciprocity approach. This setup allows fast

forward calculations, but, in comparison with BEM, the computational time is still a

major issue.

The main difference between FDM and FEM techniques is that FEM uses an

adaptative grid with arbitrary/adjustable node positions, in this way, FEM solutions

are very versatile, and in theory, one can adjust their reconstruction accuracy

and computational demands by varying the mesh resolution locally. In contrast,

FDM’s partition the volume into a uniform voxel grid and this seems like a big

disadvantage, especially for complex boundaries morphologies, however, the developing

in neuroimaging techniques such MRI have reached a point where higher spatial

resolutions are possible. Thus, nowadays, 0.5mm3 or even more detailed voxel

resolutions are possible. In this sense, a fundamental advantage of FDM’s as compared

to FEM’s is its straightforward integration with structural imaging data (CT/MR),

which are always acquired in regular tri-dimensional grids [Huang et al., 2016]. This

makes FDM’s intrinsically suitable for modeling across voxels differences in conductivity

and anisotropy, without the need of defining tissue compartments with homogenous

physical properties. On the other hand, FEM commonly needs a tesselation stage

to build the nonregular grid, and also complex and more expensive numerical

approximations due to its non-regular grid nature. However, in comparison with FEM,

there is not a significant effort in the bibliography to improve the computational time

and accuracy of the EEG forward solution FDM-based techniques. [Mohr et al., 2003]
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analyses four different solvers (SOR, CG, AMG and a variation of CG) and conclude

that the best solution yields with the algebraic multigrid solver, nevertheless, most

solutions use the stationary SOR solver algorithm [Hallez, 2009], suggesting that fast

and stable FDM solutions are still an open issue [Salman et al., 2016].

Solving the EEG forward problem with volumetric solvers (FEM and FDM) involves

the calculation of the potentials for a high number of unknowns, as a consequence,

for a 1mm3 voxel resolution in a realistic head model, the squared coefficient matrix

can holds more than 8 million of rows. The coefficient matrix must be solved for

a single source position/orientation in a linear equation system (LES), however, for

an ESI solution, several source positions must be considered (typically, more than

1 thousand [Huang et al., 2016]). Thus, for the simplest ESI distributed estimation,

at least 1 thousand LES forward calculations are needed. Indeed, this is not a

practical scenario, because of the time spent to calculate a large number of forward

approximations. Nevertheless, considering that the distributed ESI solutions requires

only the potentials in the EEG scalp electrodes (not in the entire volume) produced by

every single dipole current source under consideration (lead-field matrix), and taking

into account that the number of electrodes is in general small compared with the

number of sources, a current to potentials transformation for the electrode space can be

applied, exchanging the number of forward calculations over the number of electrodes

instead of the number of sources. This is called, the reciprocity approach, where a

current/potential transformation is used allowing to induce a current dipole in one pair

of electrodes [Rush et al., 1969]. Thus, for an EEG with NE electrode positions over

the scalp, there is NE − 1 electrode pairs that can be found with linear independent

potential differences (lead-pairs). Therefore, onlyNE−1 forward calculations are needed

to find the potentials in the electrode-scalp positions for every given arbitrary source

position/orientation contained inside the volume conductor medium. Lastly, the NE−1

electrode pairs are transformed in NE average referenced potentials at the electrodes

positions [Vanrumste et al., 2001b]. The reciprocity has been widely used solving the

forward problem [Hallez et al., 2007b, Malmivuo et al., 1995]. The electrode pairs are

called lead-pairs and the relationship matrix between the electrodes and a set of given

source positions is called the lead-field matrix L ∈ RNE×ND , where ND is the number of

considered dipoles [Grech et al., 2008]. Furthermore, a pre-computed lead-pair space

allows the direct calculation of the EEG potentials produced for every current dipole

position/orientation speeding up the calculation of the lead-field matrix.

The reciprocal approaches have been widely used in BEM, FEM and FDM
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techniques [Ziegler et al., 2014, Vanrumste et al., 2001b, Duraiswami et al., 1998], but,

the complexity and the solution involving large sparse matrices in FEM and FDM

techniques in comparison with the direct solution of BEM is an important practical

issue, this due to the amount of computational time required for the complex volumetric

solvers.

The real advantage of the volumetric techniques (FEM and FDM) resides not only

in the accuracy of the model, but also that the holistic techniques nowadays commonly

include anisotropic conductivities [Hallez et al., 2009]. In an isotropic conductivity

medium, the measures are equal in every direction, but, for an anisotropic medium, this

is not the case. The isotropic conductivity values of the human head can be represented

as a positive scalar, but, for an anisotropic medium, a tensor definition is introduced.

One of the best ways to describe the anisotropic behavior of a conductivity medium is

using an ellipsoid. Thus, when the shape is a sphere, the medium has equal conductivity

in all directions (isotropic), but, when the semi-axial distances are different, the shape

differs from a sphere an becomes an ellipsoid where the conductivity measure depends

on the direction. The anisotropic behavior can be modeled using a 3D symmetric

tensor representing an eigenspace that holds a eigenvalues matrix representing the

deformation magnitude for the principal orthogonal axes, and the eigenvectors matrix

representing a local rotational transformation. Therefore, using conductivity tensors,

it is possible to include the anisotropic conductivity behavior of the head tissues, where

the largest eigenvalue represents the magnitude of the principal anisotropic direction of

the medium, given by its correspondence eigenvector [Hallez et al., 2007b].

There are two highly anisotropic tissues in the human head: the skull and the white

matter [Wolters et al., 2006]. The human skull is not a single layer compartment, there

are at least two types tissues in it, a hard bone tissue with low conductivity and a spongy

bone tissue with a larger conductivity factor [Montes et al., 2016, Marin et al., 1998,

Pohlmeier et al., 1997]. Recent works show that the skull is anisotropic when is

modeled as a single compartment, but, if the spongy and hard bone areas are

correctly segmented from neuroimages, the three-layered isotropic skull has a similar

potential propagation behavior compared against a single anisotropic layer skull

[Dannhauer et al., 2011, Cuartas et al., 2014b]. Nowadays, there are two main different

approaches for the realistic definition of the human skull and the influence in the source

localization problem, the three shells skull with hard and spongy bone defined as single

isotropic mediums [Vorwerk et al., 2014], and, the one layered skull representation

with strong anisotropic behavior [Bashar et al., 2008b]. The first approach requires
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high-quality segmentations or prior knowledge of the skull geometry in order to

successfully segment the two different skull tissues. The second approach requires

less effort in the segmentation stage, defining the skull as single layered anisotropic

tissue, being the tangential direction to the skull surface the principal eigenvector with

the largest eigenvalue of the conductivity tensor. The last works in the area show

that both approaches generate similar dipole localization errors, but, conclude that

the commonly used skull anisotropic tangential:radial ratio 1 : 10 [Marin et al., 1998]

is to big and propose lower ratios (1 : 1.82) [Lanfer et al., 2012, Montes et al., 2013].

The impact of the anisotropic skull variations with the FDM technique applied to ESI

solutions is still an open issue [Lanfer et al., 2012].

Furthermore, the white matter (WM) has a strong anisotropic behavior, but,

in contrast with the skull, the principal conductivity eigenvectors in the WM are

not oriented among the tissue morphology. The anisotropic distribution of the

WM is generated for the tract fibers composing the tissue. Early tests show that

the conductivity along the tract direction can be 9 times larger compared with a

perpendicular direction [Geddes et al., 1967, Nicholson, 1965]. Therefore, assuming

that the diffusion weighted imaging (DWI) that measures the mobility of the water

molecules in the soft tissues share eigenvectors with the anisotropic conductivity in the

WM [Basser et al., 1994], the WM anisotropy can be estimated from DWI registers

[Bashar et al., 2008a, Bashar et al., 2008c]. After denoising and registration stages,

the DWI data contains the direction of the nerve fibers in the brain, this data is used

to define constant ratios of anisotropy in the WM tissue. The variational ratio of

anisotropy in the white matter was studied in [Hallez et al., 2007a], but the impact in

the ESI solutions using FDM techniques is not clearly studied, thus, further analysis

are necessary to conclude about the best definition for the anisotropic conductivity in

the WM tissue [Vorwerk et al., 2014, Hallez et al., 2007a, Wolters et al., 2006].

Moreover, ESI influence of volumetric techniques with diverse tissue definition is an

open issue nowadays [Vallagh et al., 2007]. In [Irimia et al., 2012, Irimia et al., 2013]

they model a brain injury with 25 different tissue conductivities and analyze the

impact in the EEG source localization problem for a single patient study. Similarly, in

[Fiederer et al., 2016] analyze the role of blood vessels in the EEG volume conductor

head modeling.

The construction of more accurate forward models with better precision, and

less computational burden is an important task for investigative purposes, but also

for surgery planing and disorder treatments [Martinez et al., 2017, Huang et al., 2016,
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Salman et al., 2016, Vorwerk et al., 2014, Ramon et al., 2011].

This work is devoted to the development of an efficient and numerical stable FDM

volumetric framework to solve the EEG forward problem in realistic head data from

neuroimages that can handle voxelwise anisotropic definitions, aiming to improve the

ESI accuracy but also reducing the computational burden of the technique.

1.2 Objectives

1.2.1 General Objective

To develop an efficient and numerical stable FDM volumetric framework to solve

the EEG forward problem in realistic head data from neuroimages, that can handle

voxelwise anisotropic definitions, aiming to improve the EEG source localization

accuracy.

1.2.2 Specific Objectives

• To develop a suitable EEG forward solution framework, taking into account

stability, and convergence, of the sparse linear system applied in a reciprocal

solution aiming towards computational time reduction, while preserving model

accuracy.

• To develop a conductivity head model framework extracted from neuroimages,

taking into account the anisotropic behaviour of concrete tissues (namely, skull

and white matter) employing finite difference volumetric techniques.

• To develop a framework to analyze the influence of the forward modelling in the

EEG source localization task, taking into account the anisotropic behaviour of

concrete tissues (namely, skull and white matter).

1.3 Outline

The present work can be read as follows: In Chapter 2 an overview of the EEG forward

problem is presented, including the most widely used forward solution techniques.

Chapter 3 is devoted to the formulation, and testing of the proposed GFDARM to

solve the EEG forward problem. Chapter 4 show the forward volumetric modeling
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considerations for realistic head data. Finally, in Chapter 5, a framework to analyze

the influence of the forward modelling in the EEG source localization task is presented,

considering anisotropy and patient dependent structural data.

In Chapter 2, we discuss the precursors of the EEG, from the brain function to

the cellular potential generators level, showing the pyramidal cells activation, and

its regular oriented distribution respect to the cortex surface, generating significant

potentials when present synchronous activations. From the physiological overview, we

pass to the mathematical Poisson formulation of the forward problem including the

important boundary conditions. Then, we analyze the macroscopic dipole current and

its mathematical formulation. Later, we explained the anisotropic behaviour defining

the conductivity tensor. Next, we introduce the generalized inhomogeneous anisotropic

medium Poisson equation in the conservative form, moving to the available forward

solutions. namely, the analytical spherical multi-layer solution, and the numerical

solutions for realistic head models, including the boundary element method (BEM),

and the finite element method (FEM). Additionally, we perform a comparison between

the proposed GFDARM numerical solution and the available BEM and FEM solutions,

against analytical spherical multilayer head models, including similarity metrics and

computational considerations.

In Chapter 3, we present a novel finite difference EEG forward problem solution

that we called ghost-filling finite difference anisotropic reciprocity method (GFDARM).

First, we present the finite difference numerical solution for the conservative form

of the Poisson equation, using an asymmetric volumetric stencil, together with the

transition layer technique to formulate finite differences that properly deal with the

considered Newman and Dirichlet boundary conditions. Later, we introduce the

FDM discrete mathematical current dipole and formulate the solution for an irregular

free-form boundary based on a second-order accuracy ghost-filling approximation for the

homogeneous Newman flux condition, allowing us to solve the discretized volume only

for the significant potential unknowns. Then we discuss the linear equation system

solution and the considerations for a reciprocity solution over the electrodes space.

Further, we test our method using a multilayer spherical head model that can include

anisotropy. Finally, we analyze a noisy linear equation system to study the numerical

stability of the technique in presence of perturbations. Our results show stability and

superlinear convergence, moreover, validation against an analytical solution show high

correspondence in the potential distribution for a wide range of dipole positions and

orientations.
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In Chapter 4, we present a framework to perform forward volumetric modeling

using the GFDARM technique, in realistic patient-specific head data from neuroimages,

including anisotropy for the skull and white matter. First, we describe how to obtain

realistic forward head models from neuroimages, considering tissue conductivities, MRI

and DWI acquisition and registration, and interpolation to 1mm3 cubic voxels space.

Then, we describe the considered segmentation using existing tools. Further, we

detailed describe the anisotropic modeling for the skull, based in the normals estimation

form the skull compartment meshing, and a following iterative propagation process to

obtain eigenvectors in every single voxel for the skull tissue. Also, we describe the WM

anisotropy modeling based in DWI to DTI registers, where we use a tensor scaling,

taking into account both, the eigenvectors and eigenvalues from the DTI local tensors.

Later, we briefly explain the electrodes space registration based on fiducial markers

and introduce the parametric inverse solution to compared two forward model in the

source space. We also illustrate the realistic patient-specific EEG Forward modeling

pipeline, including anisotropy in the skull and the white matter; MRI segmentation;

electrode coregister; voxelwise conductivity definitions; reciprocity space solution; and

GFDARM numeric EEG forward solver. Our results show a significant impact on the

potentials propagation and dipole source estimation using parametric inverse solution

for anisotropic realistic head models.

Chapter 5 is devoted to introducing a Bayesian framework to measure the forward

modeling influence in the EEG source imaging (ESI)task. First, we present an overview

of the ESI approach, and the benefits of the improved spatial resolution using structural

head data, and high temporal resolution of the EEG signals. We also show an overview

of event-related potentials (ERP) and the importance of the source space in the ESI

task. Furthermore, we introduce our own volumetric source space and priors, based in

the techniques reported in the literature. For our solution, we used normals from GM

and Wm meshes to estimate the normal cortex directions in the GM, that are needed to

estimate the dipole moments in the source priors, in addition, we calculate the spatial

relation of the considered source space for a volumetric regular grid. This information

can be used to estimate volumetric source priors spaces, that are needed to distributed

ESI solutions. Later, we present the three used ESI techniques in the Bayesian approach

and introduce the verisimilitude free energy cost function, that can be used to perform

Bayesian model selection for group studies and random effect analysis, allowing us to

estimate the best forward model for a specific group of signals/patients. Our results

show solid evidence in favor of more complex head models, including anisotropic skull
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and white matter modeling. As a final test, we analyze the influence of the forward

models in a demographic group, using generic data, population-dependent atlas, and

patient-specific structural head data. Results show substantial evidence in favor of

patient-specific head data, and population dependent atlas. As a final remark, we show

volumetric activation maps for specific ERP’s experiments. This maps are possible

due to the volumetric priors approach, and can directly compare against functional

neuroimage technique such as fMRI.

Finally, general conclusions and main contributions of this research work are

presented in Chapter 6.



Chapter 2

The EEG forward problem

Forward modelling is an essential task for source localization techniques employing

electro-encephalography (EEG) [Phillips et al., 2002]. The goal of the forward

modelling is to build conductivity volumes of the human head that can be used

to estimate the propagation of electric neural activity from the brain cortex.

General brain study, disorder diagnosis and treatment, and especially surgery

planning in disorders such as Epilepsy or Parkinson, expose the necessity of highly

accurate source localization techniques that employ patient specific forward models

[Martinez et al., 2017, Cuartas et al., 2017a, Vorwerk et al., 2014].

2.1 The human brain

The human brain is contained inside the human head within several tissue layers as an

encapsulated medium. In general, the scalp is the outmost region of the head, and we

can usually find fat, muscle, and the skull (among others minor tissues) surrounding

the brain. Inside the skull, we find the dura matter, the cerebrospinal fluid (CSF) and

the main tissues conforming the brain. Furthermore, the human brain can be divided

into three differentiable tissues: grey matter (GM), white matter (WM), and ventricles.

Figure 2.1 show the different layers conforming the human head, where the outmost

layer of the brain is the cerebral cortex (grey matter). Particularly, this tissue has a

folded structure increasing the surface area and allowing complex connections. Likewise,

the white matter that is contained and surrounded by gray matter mainly consists of

tract fibers allowing the information transfer between separated areas in the brain.

An example connection contained in the white matter is the corpus callosum which

13
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Figure 2.1: Distribution of layered-tissues conforming the human head.

connects both hemispheres of the brain. Cerebral cortex or grey matter represents

over 80% of brain mass, containing 1010 neurons and 10 times more glial cells (1011)

[Herculano, 2009].

The main brain function is the information processing and transfer between different

parts of the human body or between regions of the same brain. This communication

mechanism takes place mainly in the gray matter tissue that contains neurons or nerve

cells biological designed to process and transmit signals from other neurons or tissues

(muscles or organs) generating small amounts of electro-chemical activity in the process

[Baillet et al., 2001].

The brain can be divided into specific zones that are specialized to process

information or cause responses for a specific function. Furthermore, there are large

clusters of neurons working closely together to control particular functions of the

human body. Figure 2.2 show a sagittal view with the main regions of the human

brain highlighted in colors, these areas are the frontal lobe, temporal lobe, parietal

lobe, occipital lobe, and the cerebellum, that is in charge of the coordination function.

Figure 2.2 also show functional areas where the brain process the smells, sounds,

touch, taste, and vision, with other zones specialized to process functions associated

to face recognition, spatial awareness, motor control, speech, and planning or solving

problems [Stevenson et al., 2014]. However, nowadays we know that in case losing the

functionality of an area (due to a cerebrovascular accident, or some other incident), the

brain is capable of changing or adopting separate zones for different functions. This
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Figure 2.2: Brain structures and function areas. Figure adapted from

[Henry et al., 1918] public licensee.

process is known as plasticity and is not fully understood today [Liu et al., 2017].

2.1.1 From neural activity to electrical potentials on the scalp

Neuronal intracellular environment is polarized with a resting potential around -70 mV

compared with the extracellular region. From this rest state, a neuron can receive

two types of signals: excitatory or inhibitory. Excitatory post-synaptic potentials

(EPSP) depolarize the neuron decreasing the potential difference needed to activate

the neuron. In a similar way, a neuron can receive inhibitory postsynaptic potentials

(IPSP) hyperpolarizing the neuron and increasing the potential difference needed for

activation. Several EPSP or IPSP signals come together to a receptor neuron at

the same time (temporal summation) or in the same region (spatial summation),

generating a proportional potential difference that can trigger the activation of the

neuron. Neurons excited by an activation potential will secrete a chemical substance

called a neurotransmitter, at the synaptic side. Furthermore, the transmission of

information signals is generated by those chemical reactions producing an electrical

response.

Figure 2.3 shows a typical pyramidal neuron activation, including cell’s parts where
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Figure 2.3: The neuron. Synapse electro-quimical signals are sent through the dendrites

towards the cell body causing an activation potential that is transmitted through the

axons to other neurons or to muscles.

the cell nucleus side of the neuron has positive charges, while the post axion side of the

cell including the synaptic terminals has negative charges. This potential difference acts

as a tiny current dipole, with a source (positive side) and a sink (negative side) current

generators, thus, a current dipole oriented from the cell nucleus towards the post axion

part of the cell generate an electric potential field with equipotential lines surrounding

the dipole current. One neuron generates a small amount of current activity with

magnitudes in the order of Femtoamperes (10−15Amp). However, this small amount of

energy cannot be picked up by electrodes placed on the scalp surface. Nevertheless,

when a large group of neurons (around 106) is simultaneously active, the electrical field

generated by this significant number of synchronous neuron activations is large enough

to be picked up by the electrodes at the head scalp surface, thus generating a significant

electric signal [Hallez et al., 2007b, Michel et al., 2004].

Brain function electrical signals origins in the brain cortex, where large clusters
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(a) (b)

Figure 2.4: Pyramidal cells array. Figure 2.4(a) ilustrate a macroscopic dipole current

with normal orientation respect to the cortex surface. Current dipole direction is shown

with a green arrow, and equipotential lines are shown with blue lines. Figure 2.4(b)

show a mouse pyramidal neurons cluster in the hippocampal area CA1 acquired using

large volume array tomography. Figure adapted from [Bloss et al., 2016] public licensee

(CC −BY − 2.5).

of pyramidal neuron cells are regularly oriented in the normal direction of the gray

matter surface producing an additive effect of the extracellular potential fields. The

electric field generated by a large cluster of pyramidal neurons can be represented as the

potential induced by an equivalent macroscopic current dipole. Figure, 2.4(a) show a

macroscopic dipole current with equipotential lines propagating from the dipole through

the different tissues of the head, reaching the scalp where the EEG electrodes are placed.

In this figure, we represent the equipotential lines deformations due to the conductivity

medium, thus, the energy propagation from the dipole to the scalp generating the EEG

signal is greatly influenced by the properties of the tissue conductivities in the human

head. Moreover, we also show a cut-off of the potential field in the scalp-air boundary

representing the very low conductivity of the air. Figure 2.4(b) show a hippocampus

CA1 zone image of a mouse brain acquired using large volume array tomography and a

transmission electron microscopy with a quenched native fluorescence preparation. The

figure shows a cluster of parallel pyramidal neuron cells oriented perpendicular to the
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cortical surface.

Electroencephalography (EEG)

First findings of electrical phenomena of exposed cerebral hemispheres of rabbits and

monkeys were presented in 1875, and first human EEG recording was obtained by Hans

Berger back in 1924 [Malmivuo et al., 1995, Berger, 1934]. EEG technology evolves

from this primary findings until becoming in one of the most used neuro-analysis

techniques in both, clinical and research scenarios. A typical EEG montage is shown in

Figure 2.5 using the so-called 10−20 system use from 21 to 32 electrodes placed as single

units over the scalp surface (Figure 2.5(a)). However, nowadays, hdEEG can contain

more than 250 electrodes commonly distributed in a silicon helmet that can be adapted

to most of the human heads (Figure 2.5(b)) [Liu et al., 2017, Marino et al., 2016].

(a) 10− 20 EEG system (b) hdEEG cap

Figure 2.5: EEG arrays. Figure 2.5(a) show a typical 10 − 20 EEG system

electrode distribution, adapted from [Trans Cranial Technologies Ltd., 2012] public

license. Figure 2.5(b) show a hdEEG helmet with 128 electrodes, the image was

adquired in the Laboratory of Movement Control and Neuroplasticity, Department of

Movement Sciences, KU Leuven, Belgium.

Advanced signal processing methods for denoising, filtering, and bad channel

correction or interpolation allows the use of hdEEG improving not only the signal

to noise ratio but the discrimination of information from a large number of electrodes
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[Storti et al., 2012]. However, single EEG analysis cannot find specific activation zones

in the brain cortex, thus, multi-modal analysis including structural information of the

human head can allow improving the spatial capabilities of EEG [Michel et al., 2012].

2.2 The forward problem

Most of the MRI or CT based brain function technologies (fMRI, PET, SPECT) have a

good spatial resolution, but poor temporal analysis windows (more than 2s) (see section

5.1, Figure 5.1). Moreover, CT based imaging techniques are considered energy invasive

due to the amount of energy used to impulse the X-ray particles (from 12 − 50keV)

[Juan et al., 2015]. In contrast, EEG has a good temporal resolution (around 1ms)

but lacks spatial discrimination. Nevertheless, the synergetic effects connecting spatial

MRI and functional EEG analysis techniques allows reduction of the weakness for single

technique analysis [Grech et al., 2008]. Thus, EEG Source Imaging (ESI) connecting

structural head models and distributed source localization techniques improves the

time and spatial resolution of single MRI or EEG analysis [Michel et al., 2004]

(see section 5.1). ESI information is used for diagnosis and preoperative stages

of brain surgery being, in most cases, the only suitable analysis tools because

of the high risk of surgical interventions [Martinez et al., 2017, Voges et al., 2011,

Titto et al., 2004, Waberski et al., 2000]. In most of these applications, the goal is

to reconstruct the active electrical sources in the brain, which underlie the measured

EEG signal [Michel et al., 2012]. This source localization step requires not only the

EEG data themselves, but also detailed information about geometry and physical

properties of the head tissues that are interposed between the sources and the

sensors. In particular, a lead-field matrix relating current sources in the brain

to the electric potentials measured on the scalp is required by any distributed

source localization algorithm [Sarvas, 1987, Tadel et al., 2011, Baillet et al., 2001,

Vatta et al., 2010, Akalin Acar et al., 2016, Vorwerk et al., 2014] (see section 5.3). The

lead-field matrix can be obtained by solving the quasi-static approximation of Maxwell’s

equations for any given current density distribution [Clark et al., 1968, Sarvas, 1987].

2.2.1 Poisson equation and boundary conditions

The EEG forward problem entails the calculation of potentials φ(r) induced

by a primary current density J(r) in a head volume Ω∈R3 with ∂Ω∈R2
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boundary, holding inhomogeneous and anisotropic conductivity Σ(r). In most of

practicals task, the relevant frequencies of EEG spectra are considered between

0.1 and 100 Hz [Hallez et al., 2007b]. Therefore, a quasi-static approximation of

Maxwell’s equations can be formulated, leading to the Poisson’s equation as

follows [Rahmouni et al., 2017]:

∇·(Σ(r)∇φ(r)) = −∇·J(r), ∀r ∈ Ω (2.1)

φ(r)|+Γl
= φ(r)|−Γl

on Γl, ∀l = 1, . . . , N (2.2)

(Σ(r)∇φ(r))·n̂(r)|+Γl
= (Σ(r)∇φ(r))·n̂(r)|−Γl

, on Γl (2.3)

(Σ(r)∇φ(r))·n̂(r)|∂Ω = 0, on boundary ∂Ω (2.4)

where Σ(r)∈R3×3 is a conductivity tensor spatially varying through r, N is the

number of interfaces Γl (i.e., head layers), n̂(r)∈R3 is a unit vector normal to Γl at r,

and g(r)|±Γl
stands for the trace of function g(r) from both sides of the l-th interface Γl.

Furthermore, the solution of 2.1 requires setting propper boundary conditions between

each pair of neighboring compartments. Thus 2.2, and 2.3 stands for the Dirichlet and

Neumann flux conditions respectively, while 2.4 (or non-flux homogeneous Neumann

condition) implies that no current can flow out through the human head interface ∂Ω

into the air [Stenroos et al., 2012, Sarvas, 1987].

Figure 2.6 shows an irregular head domain Ω enclosed in a rectangular box Ω̃

including the surrounding air (left). We also show the tissue conductivities Σl

and the interfaces between tissue compartments Γl, including the Ω boundary ∂Ω,

that is the limit with the air where the homogeneous Newman flux condition (Eq

2.4) must be achieved. Furthermore, the additional region Ω̃ (known as fictitious

domain) is commonly introduced to fulfill the Eq 2.4 in finite difference numerical

solutions [Turovets et al., 2014, Ramière et al., 2007]. Additionally, we include a

graphic description (right) of the boundary conditions between different compartments,

where n̂ is a normal vector to the interface surfaces Γl.

2.2.2 The current dipole

The current source density in Eq 2.1 can be defined as a function ι(r)=−∇·J(r),

representing a current dipole that can be defined as two single monopoles inducing
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Figure 2.6: Head volume domain Ω and boundary conditions for a multiple layer

conductor.

a current source Im and a current sink −Im, and separated by a distance d as follows:

ι(r)=lim
d→0

Im
[
δ(r − r+)− δ(r − r−)

]
(2.5)

Where r+ and r− represent the current source and sink positions respectively, d is

the distance between r+ and r−, Im is the current magnitude, and r is the relative

dipole position. Additionally, δ(·) stands for the Dirac function [Li and Yan, 2009].

Figure 2.7 show the equipotential lines in a realistic head model volume with

5-layers isotropic conductivity compartments. A single dipole was placed in the grey

matter compartment, with r+ source and r− sink, separated for a d distance and a Im
magnitude. The electrical source and sink generates the dipole current vector

−→
d =

−−−→
r−r+

with a position r estimated in the middle point between r+ and r−. Further, we can

define the dipole moment in the r position as:

d(r) = Im
−→
d (2.6)

The current dipole moment at position r represents an active pyramidal cell’s cluster

at macroscopic level.
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Figure 2.7: Equipotential lines for a single current dipole oriented in the X direction

(Sagittal plane).

2.2.3 Anisotropic conductivity tensor

The conductivity measures the ability to propagate an electric current for a considered

material, depending entirely on the nature of the material, the state of aggregation of

its parts and its temperature. [Maxwell, 1873]. Moreover, some materials can have

anisotropic conductivity behaviors. Thus, in an isotropic medium, the conductivity

measures are equal in every direction, but, in an anisotropic medium, this is not the case.

Isotropic conductivity quantities can be represented as a positive scalar, but, for an

anisotropic medium, a tensor definition is introduced. One of the best ways to describe

the anisotropic behavior of a conductivity medium is using an ellipsoid. Thus, when the

ellipsoid shape is a sphere, the medium conductivity represented by the sphere radius

has an equal magnitude in all directions (isotropic), but, when the principal semi-axial

distances are different, the shape differs from a sphere and becomes an irregular

ellipsoid where the conductivity measure represented by the distance between the center

of the ellipsoid and its surface depends on the direction. The anisotropic behavior

can be modeled using a 3D symmetric eigenspace tensor that holds a eigenvalues

matrix expressing the deformation magnitude for the principal orthogonal axes, and

the eigenvectors matrix describing a local rotational transformation. Therefore, using

conductivity tensors, it is possible to include the anisotropic conductivity behavior of

the head tissues, where the largest eigenvalue signifies the magnitude of the principal
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anisotropic direction of the medium, given by its correspondence direction (eigenvector)

[Wolters et al., 2006].

Anisotropy is important in conductivity head modeling and even more in

ESI solutions, in this regard, several works deal with anisotropic of the skull

[Montes et al., 2016, Lanfer et al., 2012, Cuartas et al., 2014b] and the white matter

[Wolters et al., 2006, Cuartas et al., 2014a, Hallez et al., 2008], being the most known

anisotropic behavior tissues in the human head. Anisotropic conductivity symmetric

tensor can be defined as:

Σ(r) = T (r)D(r)T (r)T , Σ =

 σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 (2.7)

where Σ(r)∈R3×3 is the eigenspace tensor symmetric matrix for the r position,

T (r)∈R3×3 is a rotation local transfer matrix to the global coordinate system

(eigenvectors), D(r)∈R3×3, D(r)=diag(σ
(r)
lon, σ

(r)
trv , σ

(r)
trv) is a diagonal matrix holding

the local conductivity values in the transversal σ
(r)
trv∈R+, and longitudinal σ

(r)
lon∈R+

directions (eigenvalues), respectively.

Figure 2.8: Anisotropic eigenspace conductivity tensor.

Figure 2.8 shows a conductivity tensor Σ including the eigenvectors matrix T and

the eigenvalues matrix D. The T matrix holds the column vector directions for the



24 The EEG forward problem

rotated universe (u, v, w), also, the D diagonal matrix contains the eigenvalues λuvw
that acts as scaling factors for the eigenvector axis (û, v̂, ŵ). The figure shows an

isotropic sphere (in red) and an anisotropic ellipsoid (in blue) with ŵ as the principal

eigenvector, corresponding to the mayor eigenvalue, thus λw > λu, λv.

2.3 Solving the forward problem

The solution of the forward problem in EEG source analysis involves the solution

of Poisson’s equation (Eq 2.1) for a multilayer conductor volume, taking into

account proper boundary conditions (Eq 2.2, 2.3 and 2.4) [Haueisen et al., 1997,

Ramière et al., 2007]. The Dirichlet condition Eq 2.2, only holds for interfaces not

connected with air, and states that the potential cannot have discontinuities crossing

a boundary [Hallez et al., 2007b]. Similarly, Neumann condition (or flux condition) Eq

2.3 states that all charges leaving one compartment through a boundary interface Γ

must enter the other compartment. Besides, as a particular case, no current can be

injected outside the human head volume due to the very low conductivity of the air, this

meaning that the current flux outside the head is null, this is known as the Neumann

homogeneous condition represented by Eq 2.4 [Wolters et al., 2007b].

2.3.1 Generalized inhomogeneous anisotropic medium Poisson

equation

For the ι(r) current source (Eq 2.5) and the symmetric conductivity tensor Σ (Eq 2.7),

we can define the conservative form of Eq 2.1 as follows:

∂
∂x

(
σ11

∂φ
∂x

+ σ12
∂φ
∂y

+ σ13
∂φ
∂z

)
+ ∂

∂y

(
σ12

∂φ
∂x

+ σ22
∂φ
∂y

+ σ23
∂φ
∂z

)
+ ∂

∂z

(
σ13

∂φ
∂x

+ σ23
∂φ
∂y

+ σ33
∂φ
∂z

)
= ι(r) (2.8)

where σij∈R are the entries of the conductivity matrix tensor Σ 2.7.

The solution of the Poisson equation 2.1 (or the conservative form 2.8) for

realistic free-form head volumes is only possible using numerical approximations

[Irimia et al., 2013, Volkov et al., 2009]. However, symmetrical mediums can lead to

analytical solutions [De Munck et al., 1993].
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2.3.2 Spherical head model

The spherical head model is the simplest approach to solve the propagation Poisson

equation [De Munck et al., 1993]. For this model, the different tissues conforming

the head are modeled as concentric spheres, where every tissue (scalp, skull, gray

matter, white matter among others) has its own conductivity value, being the scalp

the outer sphere that contains the EEG electrodes. The high symmetry of this type

of models allows analytical solutions [De Munck et al., 1993], however, several authors

shows that the simplifying spherical head model induces source localization errors bigger

than 30mm due to the strong simplification of the realistic and irregular shape of

the human head [Hallez et al., 2008, Henson et al., 2009]. Nonetheless, the spherical

head model provides an analytical solution allowing comparisons against numerical

approximations, being in most cases, the only way to validate a numerical solution

[Vanrumste et al., 2001b, Vanrumste et al., 2001a].

DeMunk analytical solution

There are several analytical solutions for spherical head volumes, in this work we use the

analytical solution in a layered anisotropic spheroidal volume according to De Munck

[De Munck, 1988]. The solution is formulated for concentric spheres with radii r1 <

r2 < . . . < rN , including anisotropic layers Si for i = 1, . . . , N as the regions between

the boundaries.

Figure 2.9 show the generalized concentric multi-sphere layered for anisotropic

mediums [De Munck et al., 1993]. where re is a point in the outermost surface ∂Ω

(corresponding to layer radii rN), rdip is a dipole position contained in a layer Si for

i = 1, . . . , N − 1, holding moment d. Thus, Eq 2.9 allows the analytical calculation of

the potential V (rdip,d, re) for an arbitrary position in the ∂Ω boundary re ∈ ∂Ω,

generated by a current dipole with rdip position and d moment. Moreover, each

layer Si contains radial ξi and tangential ηi conductivities that can be adjusted

to set up an anisotropy medium in an arbitrary layer Si. Eq 2.9 depends on

the Legendre Pn and the associated Legendre polynomials P 1
n , functions fη and gη

depending on the ξi and ηi conductivities, and other constants that can be deeply

analyzed in [De Munck, 1988, De Munck et al., 1993]. DeMunck formulation allows the

calculation of scalp potentials for a spherical configuration, including also anisotropic

behaviors. Although the solution is not realistic, the analytical formulation becomes

an important way to validate numerical solutions of the EEG forward problem
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V (rdip,d, re) =
d

4πξNr2
e

N∑
n=1

2n+ 1

n

(
rdip
re

)n−1

(
fηn cosαPn (cos γ) + gη cos β sinαP 1

n (cos γ)
)

(2.9)

Figure 2.9: Layered anisotropic spherical volume conductor

[Volkov et al., 2009, Turovets et al., 2014, Wolters, 2003, Hallez, 2009].

2.3.3 Realistic head models: Numerical solutions

The spherical head modeling is a useful tool for general analysis, but, when the accuracy

is an important factor (like in surgery planing) more realistic approaches are needed

[Pai et al., 2005, Wang et al., 2008, Palagan et al., 2011, Vorwerk et al., 2014]. The

solution of the Poisson equation for realistic free-form head volumes is only possible

using numerical approximations [Irimia et al., 2013]. A realistic head volume can be

obtained from neuroimages such MRI or CT that contains a large number of slices in

a series of two-dimensional images.

The most simplistic numerical solution from neuroimaging structural real data is

the boundary element method (BEM) [Ferguson et al., 1997]. BEM is widely used

because of its low computational needs, however, most solutions only consider three

surface boundaries (scalp, skull, and brain), and is restricted to isotropic conductivities.

There are two main methodologies that can handle anisotropic conductivity and

realistic multi-layered patient-specific forward solutions, Finite Element Method

(FEM) [Wolters et al., 2002, Liu et al., 2005], and the Finite Difference Method (FDM)

[Vanrumste et al., 2001b, Hallez, 2009].
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In this section, we briefly introduce the BEM and FEM numerical solutions, while

chapter 3 is devoted to the proposed FDM solution (GFDARM).

2.3.4 The Boundary element method - BEM

The BEM numerical technique is restricted only to isotropic conductivity mediums,

nonetheless, it is still widely used because of its low computational needs. BEM

method provides a forward solution by calculating the potential at the volumetric

boundary interfaces for a given dipole current source. Thus, a head model is built

from encapsulated surfaces representing the boundary between two considered tissues.

Most BEM solutions consider only 3 interfaces: brain-skull, skull-scalp and scalp-air

where EEG electrodes are placed. The regions between the interfaces are assumed to

have isotropic conductivity. To calculate a numerical solution, each interface surface is

tessellated in small boundary elements.

The electrical potential V (r), over a surface Sk at position r ∈ Sk can be calculated

for a conductivity medium conformed with closed surfaces Si (i = 1 . . . ns) for ns
compartments each having isotropic conductivity σinj as follows:

Figure 2.10 show a typical 3-layered BEM model with tesselated brain, skull, and

scalp surfaces, where r′dip is a current dipole inducing the potential V0(r) over the scalp

surface S3 at position r. The self contained surfaces (S1 ∈ S2 ∈ S3) holds isotropic

conductivities σi.

Eq 2.10 formulated by [Geselowitz, 1967] and [Sarvas, 1987] can be calculated

for a potential V0 induced for a current dipole immersed in a medium with σ0

isotropic conductivity. Additionally, conductivity σk = (σink + σoutk ) /2 is the mean

conductivity value for two different mediums with interface surface Sk, and ∆σi =

σink − σoutk is the difference. Furthermore Eq 2.10 integrals can be solved for piecewise

approximated closed surfaces consisting of differential surface elements dS ′i with surface

normal orientations n′ at positions r′. The boundary surfaces Si are commonly

approximated by tesselated triangulations, replacing the integral by summations over

the triangle planes dS ′i differential elements [Fuchs et al., 2002, Van’t Ent et al., 2001,

De Munck et al., 2000, De Munck, 1992].

2.3.5 The Finite Element Method - FEM

FEM technique is the most used volumetric technique for the solution of the forward

problem in realistic head models. The Galerkin approach is used to solve Eq 2.1 with
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σkV (r) = σ0V0 (r) +
1

4π

nS∑
i=1

∆σi∫∫
©
Si

V (r′)n (r′)
r′ − r
‖r′ − r‖3dSi (2.10)

Figure 2.10: BEM realistic head model with 3 layers

boundary conditions 2.2, 2.3, 2.4. Thus, Eq 2.1 is multiplied with a ψ function, and

then integrated over the Ω head volume as follows:

In FEM, 3D volume is discretized in small elements, typically tetrahedrons or

hexahedrons. Due to this, FEM techniques require a tesselating stage in order to

obtain a discretized volumetric mesh. The Venant approach from [Wolters et al., 2007a]

use deformable hexahedrons with a shift parameter between 0 and 0.45 to adapt the

hexahedrons vertex to the irregular morphology of a realistic head model interfaces

Γl and boundary ∂Ω. Figure 2.11 show a hexahedral meshing for a realistic 5-layers

head volume. We show a plane-axial projection of two different shifting deformation

meshes with shift = 0 producing regular cuboids (top), and shift = 0.45 producing

a node-shifting mesh with irregular hexahedrons (button). Figure was obtained using

the FEM Simbio routine for the fieldtrip toolbox [Vorwerk et al., 2018]. Furthermore,

Eq 2.11 is called weak or integral forward problem formulation and can be solved for

discrete computational points ϕi, with i = 1 . . . N corresponding to the N vertices
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−
∫
G

ψ∇·(Σ∇φ) dG =∫
G

ψImdG (2.11)

Figure 2.11: FEM hexahedric mesh for a 5 layered realistic head model

of the discretized irregular grid. Thus, unknown potentials φ (r) can be obtaining as

follows:

φ (r) =
N∑
i=1

ϕiψi (r) (2.12)

Where ψi (r) denotes a set of test functions, also called basis functions, having local

support and producing a span of piecewise polynomial functions. Further, due to the

local support of the basis, each equation in Eq 2.12 consists only of a linear combination

of ϕi including the analyzed point and its adjacent points producing a linear equation

system Aφ = I, where φ ∈ RN are potential unknowns, I ∈ RN is a given current

source vector, and A ∈ RN×N is the system or stiffness matrix. In general, the stiffness

matrix A is very big (commonly N > 5 × 106), making the estimation of potentials

φ very computationally expensive. Thus, iterative solvers for large sparse systems

are used to reduce the computational burden and increase efficiency EEG FEM-based

forward solvers [Engwer et al., 2017, Wolters et al., 2002].
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2.4 Experiments and results

Methods used in this Chapter experiments and results are described in Chapters 3 and

4. In specific, ghost-filling finite difference anisotropic reciprocity method (GFDARM)

is introduced in Chapter 3. Additionally the 6−layer spherical head model is described

in section 3.2.1, and realistic head model (RHM) in sections 4.1 and 4.2.

2.4.1 GFDARM vs available numerical solutions

We use the 6−layers spherical head model describe in section 3.2.1 to analyze the

differences between the BEM, FEM, and GFDARM numerical techniques to solve the

Poison Eq 2.1. Thus, with the purpose of simulate a neuroimage data head model, we

build a 3D discretized sphere with 1mm3 voxel resolution. We illustrate the 6-layer

discretized spherical head model in the Figure 2.12, where the skull and WM areas can

be configurated to include anisotropic conductivity. Additionally, we use a set of 112

electrodes evenly distributed over the scalp surface in 6 geodesic circles, as suggested

by [Stenroos et al., 2012].

Figure 2.12: Spherical head model, including anisotropic skull and WM.

Moreover, we use the Simbio FieldTrip to calculate an isotropic FEM solution

with a hexahedral meshing, and deformation grid shifth = 0.3 (default value for
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the FEM routine) [Vorwerk et al., 2018]. Also, we calculate a BEM solution for a

3-layers spherical head model including only the scalp, skull, and brain interfaces.

Tesselation and forward calculations were done using the Fieldtrip BEM routines

[Oostenveld et al., 2011], including mesh surfaces holding 6000 vertex, for a total of

18000 discrete points solution. Besides, we also perform forward calculations in a

reciprocity setup using the GFDARM algorithm, building two different head models, a

fully isotropic medium, and an anisotropic and skull head model. For the anisotropic

case, we set the WM radial/tangential ratio to 9:1, and for the skull to 1:10 as we

explained in section 3.2.1.

In the first test, we analyze the electrode potentials for the considered numeric

techniques, namely, BEM, FEM, and anisotropic GFDARM, including also the

anisotropic analytical solution. To this end, we induce a single dipole in the positive Z

orthogonal direction, placed in the GM compartment.

(a) Electrode potentials (b) Normalized potentials

Figure 2.13: Numerical BEM, FEM and GFDARM potentials. Also including analytical

solution potentials.

Figure 2.13 shows the potentials for the considered 112 electrodes. We plot the

potentials in the original space Figure 2.13(a), including also a normalization plot, where

we divide the potential magnitudes by the dynamic range of the entire signal 2.13(b).

Results show that numerical GFDARM anisotropic solution has a high correspondence

with the analytical distribution, whereas, the FEM solution present not only an

increased potential magnitude in the original potential space Figure 2.13(a) but also

significant differences in the normalized Figure 2.13(b), showing an energy distribution

that does not correspond to the anisotropic modelling. Finally, BEM solution shows

an unusual potential distribution compared against the analytical reference, suggesting
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that BEM approximations are not the best way to calculate forward potentials.

Furthermore, we build a 3mm3 regularly spaced source grid including 20955 dipoles

in the GM and thalamic areas. Subsequently, we calculate analytical solutions using

the DeMunck algorithm, for a fully isotropic medium and a WM and skull anisotropic

medium as reference potential spaces. Then, we performed tests comparing the isotropic

analytical solution against isotropic GFDARM and FEM. Finally, we compared the

anisotropic analytical solution against the isotropic FEM and an anisotropic skull and

WM A-GFDARM.

Figure 2.14: log Magnitude ln(MAG) and relative difference measures (RDM).

Figure 2.14 shows the log(MAG) and RDM results, showing the total span data as

black lines, and the 50% of the data as blue boxes, including the medium value as a

red line. We also include mean and standard deviation (std) values for every test, and

a horizontal dashed red line separating the isotropic (top) and the anisotropic (button)

tests. For the isotropic cases we can appreciate a slightly better performance for the

GFDARM technique with lower mean values. However, FEM technique report very low

std rates indicating a high consistency for every source considered positions. Besides,

for the anisotropic case, the results show an appreciable increase in the mean errors for

the A-GFDARM test. Accordingly, for the A-FEM test, mean errors present a high

increment, indicating important differences between the isotropic FEM solution and

the anisotropic analytical DeMunck solution.
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2.4.2 Computational performance

We performed a computational analysis to investigate the time spent and memory

allocation needed for the numeric BEM, FEM, and GFDARM solutions. Moreover,

is important to notice that BEM and FEM methods need meshing calculation and

allocation to yields a solution. However, we don’t include the time spend to generate

the irregular FEM and BEM meshes, due to the fast tessellation algorithms routines

from FiledTrip [Oostenveld et al., 2011]. Additionally, FEM Simbio solution needs an

octahedral grid mesh, a precalculated lead-field potentials matrix, and the system or

stiff matrix to perform forward calculation. On the other hand, BEM requires a 3-layers

self-contained mesh and a stiff system matrix. Likewise, GFDARM needs also a stiff

system matrix, and a precalculated lead-field potentials matrix, where the mesh grid

does not have to be stored, due to its regular nature, corresponding to the already

regularly voxel information data from neuroimages [Cuartas et al., 2015].

Parameters GFDARM FEM BEM

Stiff Matrix size [3342701×3342701] [3342701×3342701] [6000×18000]

Stiff Isotropic Memory (Mb) 380.0716 728.5138 823.9746

Stiff Anisotropic Memory (Mb) 628.3062 - -

Mesh size - [8×3262312] [3×6000]

Mesh Memory (Mb) - 300.5338717 1.2374

Leadfield size [111×3342701] [112×3342701] -

Leadfield Memory (Mb) 2830.8090 2856.3119 -

Total Memory (Mb) 2030.4002 3885.3595 825.2120

Isotropic Total time (sec) 12091 27555 258.17

Anisotropic Total time (sec) 23841 - -

Table 2.1: Computational performance for GFDARM, Simbio FEM, and FieldTrip

BEM techniques, using the synthetic spherical head model.

Table 2.1 shows the computational performance results including memory allocation

in Mega bytes (Mb), size of numerical arrays, and total calculation time in seconds

(sec). We use the spherical discrete head model (Figure 2.12), with a volume Ω holding

3262312 voxels. Results show that the proposed GFDARM technique outperforms

FEM in both, time spent and memory allocation, showing a very reliable computational

performance. By contrast, BEM solution is fast, and present low memory requirements,

but the numerical approximation is not as accurate as the FEM or FDM solutions.
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Realistic head model

As a final test, we analyze the computational performance of the GDFARM algorithm

and the Simbio FEM solution defining three diferent head models, namely, Isotropic

GFDARM, Anisotropic GFDARM, and FEM. We use the realistic head model (RHM)

defined in section 4.1.2, holding 4910171 voxels in the segmentation volume. Moreover,

we employed a full isotropic RHM for the FEM and Isotropic GFDARM cases, and,

we include anisotropic skull and white matter for the anisotropic GDFARM model, as

explained in section 4.2.

Parameters Isotropic GFDARM Anisotropic GFDARM Simbio FEM

Stiff Matrix size [5059556×5059556] [5059556×5059557] [5068594×5068594]

Stiff Memory (Mb) 574.2584 863.2035 1099.767921

Leadfield size [69×5059556] [69×5059556] [70×5068594]

Leadfield Memory (Mb) 1572.4690 1572.4690 2706.9212

Mesh grid size - - [8×4910171]

Mesh grid Memory (Mb) - - 453.1859

Total Memory (Mb) 2146.7274 2435.6725 4259.8751

Total time (sec) 18251 29386 46976

Table 2.2: Computational performance for GFDARM and FEM in the Realistic head

model.

Table 2.2 shows the computational performance results. Regarding the GFDARM

algorithm is important to notice that the finite differences based solution doesn’t need to

store a mesh grid for the numerical analysis. Furthermore, considering isotropic models,

FEM solution is 2.57 times slower than the Isotropic GFDARM, needing almost the

double memory allocation space. By contrast, the Anisotropic GFDARM is 1.6 times

faster and needs 1.75 less memory allocation than the Isotropic FEM. Finally, times

and memory values reported in Tables 2.1 and 2.2 where estimated in a Intel Xeon

CPU E5-2687W computer with 64Gb RAM, using the Matlab software environment.

2.5 Discussion

We compared the most commonly used EEG forward modeling numeric techniques. To

this end, we introduce a synthetic spherical discrete volume holding cubic voxels with

discretization step h = 1mm3, resembling a real neuroimage data. Numerical models
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were examined against the analytical DeMunck spherical solution [De Munck, 1988].

Further, we calculate two different head models for the analytical estimations, namely,

a full isotropic medium, and an anisotropic skull and WM models. Our results show

high correspondence between the analytical DeMunck solution and the proposed finite

differences forward modeling, that we called ghost-filling finite difference anisotropic

reciprocity method (GFDARM), and that is introduced and deeply analyze in the

Chapter 3.

2.5.1 Considerations concerning BEM

The comparison for the FielTrip BEM modeling show high discrepancies with the

analytical DeMunck solution. However, for general analysis, BEM continues as the most

used forward solver. This due to its fast computation and low memory requirements.

Moreover, most BEM available solvers consider only three surface boundaries,

neglecting important tissue compartments like the CSF [Strobbe et al., 2014a], and the

brain GM and WM [Vorwerk et al., 2014]. Nevertheless, strong BEM simplification

directly impacts in the accuracy of the technique, as we can appreciate in Figure 2.13,

where the potential distribution is very dissimilar in comparison with the analytical

solution and the volumetrics FEM and GFDARM techniques. Therefore, we suggest

using volumetric modeling for detailed analysis, considering that the memory allocation

and computing capacities nowadays are sufficient to deal with volumetric based forward

solutions.

2.5.2 Considerations concerning FEM

Simbio FEM forward solution presents a high correspondence with the analytical

DeMunk solution for the considered spherical head data a shown in Figure 2.13.

Moreover, FEM shows a very low standard deviation in the results reported in Figure

2.14 indicating a high consistency of the solution. Yet, the main restriction of FEM is

the computational time and memory needed to store the precalculated potentials, and

the non-regular solution mesh.

Although Simbio FEM is accurate, the FielTrip open pipeline is not clear about

the required tools or routines to include anisotropic information [Vorwerk et al., 2018].

However, despite the anisotropic inclusion difficulties, FEM is the most widely known

and used volumetric technique with anisotropic capabilities, that can handle across

voxel conductivity information. The technique evolves for tetrahedral irregular meshing
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to hexahedral quasi-regular grids, including a minor shifting parameter that adapts

the solution points to the irregular boundaries of realistic head models (Figure 2.11).

In this way, is interesting finding that the major advantage fo FEM techniques,

that is multi-resolution voxelizations, were changed for a quasi-regular cubic grid

that contains the same discrete potential unknowns that the available voxels in

a neuroimage data, resembling a GFDARM regular cubic voxelization very much

voxelization [Vorwerk et al., 2014, Wolters et al., 2006].

2.5.3 Considerations concerning GFDARM

Results show that GFDARM technique is very versatile, and we can include isotropic or

anisotropic compartments in a voxelwise distribution. Besides, GFDARM solution does

not need a meshing or tessellation stage, neither the allocation of the solution points

in a separated mesh structure. Moreover, a fundamental advantage of GFDARM as

compared to FEM’s is its straightforward integration with neuroimaging registers (MRI,

CT or DWI to DTI data), which are always acquired in regular tri-dimensional grids.

This makes GFDARM intrinsically suitable for modelling across voxel conductivity and

anisotropy, without the need of defining tissue compartments with homogenous physical

properties.

Also, our results show that the GFDARM technique has the best performance of

the three considered numerical solutions, presenting very similar potentials compared

against the analytical spherical Demunck solution as shown in Figure 2.13. In

addition, GFDARM present the best behaviour reported in Figure 2.14, showing a

high consistency for the wide range of considered source positions. Finally, the slight

error increment between the results for the isotropic GFDARM and the anisotropic

A-GFDARM in the Figure 2.14 is caused by the discrete voxelized approximation in

the local anisotropic tensors for the skull and WM, that is a fundamental discretization

error associated to every numerical approximation technique.

2.5.4 General computational considerations

The reported BEM solution results of Table 2.1, considering 18−thousand potential

unknowns for the estimated spherical head model, dist from the number of calculations

and memory requirements of the volumetric techniques. Thus, FEM and GFDARM

solution spaces hold more than 3.3 millions potential unknowns. For this reason, BEM

solution is the faster and memory inexpensive considered numerical technique, but
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its desirable computational performance is due to the substantial simplification of the

forward solution. On the other hand, FEM and FDM volumetric techniques require

more time and memory to perform forward calculations for high-resolution volumes.

Moreover, Table 2.1 shows significant differences for the stiff matrix memory demands,

where the isotropic GFDARM needs half of the memory compared against the FEM

solution. Besides, even the anisotropic GFDARM stiff matrix needs a less amount of

memory than the isotropic FEM model, this due to the GFDARM 18-points stencil

(section 3.1, Figure 3.1) that generates a sparse diagonal stiff matrix with only 19 non

zero values per row. Further, leadfield matrix allocation is very similar for GFDARM

and FEM, but, the irregular FEM grid adds not only complexity to the solution, but

also increase memory demands. Finally, analyzing total time and memory allocation

results, the GFDARM proposed technique outperforms the Simbio FEM solution, using

almost half of the time and memory requirements.

We also analyze the computational performance of the volumetric FEM and

GFDARM techniques for the RHM data set, showing concluding results in favor

of the proposed GFDARM. Thus, isotropic Simbio FEM, takes almost twice of the

time compared with anisotropic GFDARM, being also three times slower than the

isotropic GFDARM. Moreover, FEM total memory allocation is almost the double of

the GFDARM storage needs, as shown in Table 2.2.

Finally, based on our results, we are confident in indicating that the proposed

ghost-filling finite difference anisotropic reciprocity method (GFDARM) is a more

accurate and computational reliable technique compared against the available state

of the art Simbio FEM solution.
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Chapter 3

Finite difference EEG forward

problem solution

Significant progress has been made in the EEG forward solution FEM-based techniques

in order to reduce the computational requirements, improve the accuracy of the models,

and the source singularities [Vorwerk et al., 2018]. Such techniques are the subtraction

[Drechsler et al., 2009, Wolters et al., 2007b], partial integration [Schimpf et al., 2002],

or the Venant approaches [Wolters et al., 2007a], being the last, one of the most

computational efficient FEM methodologies [Vorwerk et al., 2014]. This approach

uses hexahedral deformable elements instead of the commonly tetrahedral voxels.

For the solution of the linear equation system they use the incomplete-Cholesky

preconditioned conjugate gradient in a reciprocity approach. This setup allows fast

forward calculations, but, in comparison with BEM, the computational time is still a

major issue.

The main difference between FDM and FEM techniques is that FEM uses an

adaptative grid with arbitrary/adjustable node positions, and, in this way, FEM

solutions are very versatile, thus in theory, one can adjust their reconstruction accuracy

and computational demands by varying the mesh resolution locally [Lee et al., 2007].

In contrast, FDM discretizes a volume into a uniform voxel grid and this seems like a big

disadvantage, especially for complex boundaries morphologies, however, the developing

in neuroimaging techniques have reached a point where higher spatial resolutions

are possible. Thus, nowadays, 0.5mm3 or even more detailed spatial resolutions are

possible. In this sense, a fundamental advantage of FDM as compared to FEM

is its straightforward integration with structural imaging data (CT/MR and DWI),

39
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which are always acquired in regular tri-dimensional grids [Huang et al., 2016]. This

makes FDM intrinsically suitable for modeling across voxels differences in conductivity

and anisotropy, without the need of defining tissue compartments with homogenous

physical properties [Li and Yan, 2009]. On the other hand, FEM commonly needs a

tesselation stage to build a nonregular grid, and also complex and more expensive

numerical approximations due to its non-regular grid nature [Haufe et al., 2015]. In

comparison with FEM, there is not a significant effort in the bibliography to improve the

computational time and accuracy of the EEG forward solution FDM-based techniques.

In [Mohr et al., 2003], authors analyses four different solvers (SOR, CG, AMG and

a variation of CG) concluding that the best solution yields with the AMG solver,

nevertheless, most solutions use the stationary SOR solver algorithm [Hallez, 2009],

or fictitious domain approaches [Turovets et al., 2014] suggesting that fast and stable

FDM solutions are still an open issue [Salman et al., 2016].

This chapter is devoted to the formulation of an efficient and numerical stable FDM

volumetric framework to solve the EEG forward problem in realistic head data that can

handle voxelwise anisotropic definitions, aiming to improve the ESI accuracy but also

reducing the computational burden of the technique.

3.1 Finite difference numerical solution

A finite difference formulation of a partial differential equation uses a regular cubic grid,

covering the domain Ω, and approximating the solution at the nodes of the grid by a

finite difference operator.

Figure 3.1 show the volumetric FDM stencil Sj arround the node j with asymmetric

discretization distances dxF and dxB for the X orthogonal direction where F stands

for frontal in the positive X cartesian direction, and B for back in the negative

X cartesian direction. Symilarly, for the Y direction we deffine dyE and dyW
with E being east (positive Y direction) and W west (negative Y direction), and

for Z distances dzN and dzS with N stands for north (positive Z direction) and

S for south (negative Z direction). We use central finite differences for the 3D

stencil of Figure 3.1 to approximate the conservative Poisson equation 2.8 for an

inhomogeneous anisotropic medium (see section 2.3.1) following the previous works

of [Saleheen et al., 1998, Asenco et al., 1991] where each vertex of the regular cubic

domain correspond to a voxel centroid in the Ω domain.
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Figure 3.1: FDM 3D stencil.

We can rewrite the conservative form of the Poisson equation 2.8 as follows:

(σ11φX)X + (σ22φY )Y + (σ33φZ)Z + 2 (σ12φX)Y + 2 (σ23φY )Z + 2 (σ13φZ)X = ι(r) (3.1)

Where (σijφA)B = ∂
∂B

(
σij

∂φ
∂A

)
.

Thus, we define second order Taylor series around the node 0 for its 18 neighbours

in the 3D stencil FIgure 3.1, around the Sj region, for σφi, where φi corresponds to a

potential unknown for the node i = 0, . . . , 18, and σ stands for the local conductivity

value. Furthermore, to approximate the partial derivates in Eq 3.1, we consider the

following Taylor expansions:

σ11(1)φ1

σ11(2)φ2

}
→ (σ11φX)X =

σ11(1)φ1 − (σ11(1) + σ11(2))φ0 + σ11(2)φ2

(dxF + dxB)2 (3.2)

Eq 3.2 show the finite difference approximation for the second order Taylor series

σ11(1)φ1 and σ11(2)φ2, where σmn(i) is the (m,n) positions of the conductivity tensor Σ

(defined in section 2.2.3) for the i− th node. Thus, from the Eq 3.2 one can obtain the

approximation for the first term of Eq 3.1 corresponding to the second order derivate

(σ11φX)X . Similarly, expansions for σmm(1,...,6)φ1,...,6 allows to obtain the second and
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third terms of Eq 3.1.

σ12(7)φ7

σ12(8)φ8

σ12(9)φ9

σ12(10)φ10

→ 2 (σ12φX)Y =
σ11(7)φ7 − σ11(8)φ8 + σ11(9)φ9 − σ11(10)φ10

(dxF + dxB) (dyE + dyW )
(3.3)

Moreover, Eq 3.3 show the approximation for the mixed derivate 2 (σ12φX)Y .

Furthermore, we calculate Taylor series for σmn(7,...,18)φ7,...,18, obtaining second-order

approximations for the mixed derivates terms (fourth, fifth and sixth terms) of Eq 3.1.

Figure 3.2: Transition layer stencil around node 0.

However, for in a generalized discrete inhomogeneous anisotropic media, the

neighbour elements around the node 0 for the 3D stencil Sj can have different

conductivity tensors, inducing singularities in the conductivity derivatives at the

boundaries interfaces Γl or between anisotropic elements. For boundaries with a

definite normal direction, these can be handled with proper boundary conditions, but
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this is not the case for the stencil Sj where the normal directions are not clearly

defined, causing that the Newman flux boundary condition (Eq 2.3) cannot be properly

formulated in the Γ interfaces. For this reason, a transition layer method introduced by

[Asenco et al., 1991, Panizo et al., 1977] is used in order to remove the singularities in

the spatial derivatives of the conductivity tensors and satisfy the Dirichlet and Newman

flux general boundary conditions (Eq’s 2.2 and 2.3).

In the transition layer technique, the node 0 from the stencil Sj (Figure 3.1) is

split into 8 nodes forming a cube with sizes of length t. The partition generates 8

different asymmetric domains around the node 0, having continuous conductivities and

derivates over the entire layer. Thus, the transition layer acts as a buffer creating a

smooth transition of the of the conductivities and their derivatives from one element

to another [Saleheen et al., 1998].

Figure 3.2 show the transition layer partition around node 0, including the cube

division that creates 8 new asymmetric stencils, each for every new node around node

0.

φ0 = lim
t→0

1

8

8∑
k=1

φtlk (3.4)

3.1.1 FDM formulation

Eq 3.4 can be solved to obtain the finite differences approximation for the Sj stencil,

around the node 0 for the φ0 unknown potential as a numerical approximation of

the Poisson Eq 2.1, in a inhomogeneous anisotropic medium, taking into account the

Dirichlet (Eq 2.2) and Newman flux (Eq 2.3) boundary conditions, where φtlk are the 8

central nodes in the transition layer. Furthermore, for the limit t→ 0, the nodes of the

cubic transition layer return to their original positions generating regular inter-node

distances, and resulting in a single formulation for the Sj region that can be expressed

as follows:

18∑
i∈Sj

αjiφ
j
i −

 18∑
i∈Sj

αji

φj0 = ιf (3.5)

Where j is a specific node position of the discretized head volume Ω, with φj0∈R the

potential unknown associated to node 0 for the Sj neighbor (see Figure 3.2) defining

the unknown potential neighbor unknowns φji∈R. Moreover, ιf is a discretized dipole
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current source. Additionally, αji∈R are the FDM coefficients form the discretized Eq

3.1 depending on the anisotropic conductivity tensor Σ (see section 2.2.3) and the

inter-node distances dx, dy and dz, that can be writed as follows:

α1 =
1

4dx2

(
σ11(9) + σ11(2) + σ11(0) + σ11(3)

)
, α2 =

1

4dx2

(
σ11(4) + σ11(0) + σ11(1) + σ11(7)

)
α3 =

1

4dy2

(
σ22(13) + σ22(4) + σ22(0) + σ22(5)

)
, α4 =

1

4dy2

(
σ22(6) + σ22(0) + σ22(3) + σ22(11)

)
α5 =

1

4dz2

(
σ33(16) + σ33(6) + σ33(0) + σ33(2)

)
, α6 =

1

4dz2

(
σ33(1) + σ33(0) + σ33(5) + σ33(18)

)
α7 =

1

2dxdy

(
σ12(1) + σ12(15)

)
, α8 = − 1

2dxdy

(
σ12(3) + σ12(14)

)
α9 =

1

2dxdy

(
σ12(2) + σ12(18)

)
, α10 = − 1

2dxdy

(
σ12(4) + σ12(13)

)
α11 =

1

2dydz

(
σ23(5) + σ23(15)

)
, α12 = − 1

2dydz

(
σ23(4) + σ23(9)

)
α13 =

1

2dydz

(
σ23(6) + σ23(16)

)
, α14 = − 1

2dydz

(
σ23(3) + σ23(8)

)
α15 =

1

2dzdx

(
σ13(1) + σ13(7)

)
, α16 = − 1

2dzdx

(
σ13(6) + σ13(13)

)
α17 =

1

2dzdx

(
σ13(2) + σ13(8)

)
, α18 = − 1

2dzdx

(
σ13(5) + σ13(12)

)
(3.6)

Eq 3.6 show the obtained FDM coefficients αi, with i = 1, . . . , 18 for the transition

layer Eq 3.4. Previous works consider the non-conservative form of the Poisson equation

2.1 [Saleheen et al., 1998, Hallez, 2009]. To our knoledge, this is the first time that the

FDM coefficients for the EEG forward problem are obtained using the conservative

form of the Poisson equation (Eq’s 2.8 and 3.1) for the transition layer setup.

3.1.2 Discrete FDM current dipole

The current dipole for the considered FDM solution can be defined across the stencil

Sj in the orthogonal directions x, y or z.

Figure 3.3 shows a discrete current dipole for the FDM cubic grid in the positive y

direction. The dipole is defined across nodes 4 and 3 of the stencil Sj, where the node 4

corresponds to the current source with position r− and magnitude Im, and the node 3

corresponds to the current sink with position r+ and magnitude−Im. Moreover, relative
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Figure 3.3: Transition layer stencil around node 0.

dipole position r lies in the middle distance between nodes 3 and 4 corresponding with

node 0. Furthermore, the discretized FDM current dipole of 3.5 can be defined as:

ιf (r) =


−Im/d, r = r−

Im/d, r = r+

0, ∀r 6= r±
(3.7)

Where d = ‖r+ − r−‖2, and Im is the current magnitude in Amperes.

For all cases under consideration, the Eq 3.5, including a discrete current dipole

in the form of Eq 3.5, and considering the coefficients Eq 3.6 leads to solving a large

linear equation system (LES) Aφ = ιf . Where φ∈RN is the solution vector holding N

potential unknowns for N nodes in the FDM considered grid, ιf∈RN is the right-hand

side vector representing a single discrete current dipole source, and A∈RN×N is the

so-called system or coefficient matrix.

3.1.3 Ghost-filling finite difference formulation (GFD)

The formulation of the coefficient matrix A depends on the FDM coefficients, the

tissue conductivity tensors, and the discretization steps dx, dy and dz. However, the

boundary conditions can considerably influence the matrix properties and the amount
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of the unknowns of the LES [Ramière et al., 2007]. There are different methods to

transform the 3D unknowns potentials from the volumetric FDM grid into a 1D vector

in a LES formulation.

In the fictitious domain (FD) method, the volume conductor Ω is surrounded

by an auxiliary domain Ω̃ generally larger (Ω ⊂ Ω̃, see Figure 3.4) and with a

simple/regular shape, containing low conductivity voxels representing the air, so, for

a regular Cartesian box Ω̃, the final three-dimensional space is always rectangular

regardless the irregular shape of the immersed volume Ω. Further, the coefficient matrix

formulation in FD becomes simple, due to the regular distribution of the potential

unknowns. FD methods derive into tri-diagonal matrices that can be solved with fast

circulant Fourier techniques [Ramière et al., 2007]. However, injecting low conductivity

voxels increase the heterogeneity of the system matrix, decreasing its numeric stability,

and implying additional unknowns in the final LES [Turovets et al., 2014].

In this work, we introduce a novel ghost-filling boundary solution for the proposed

FDM formulation (GFD), relying on the generalized second-order FD approximation

proposed by [Lin et al., 2017]. To this end, we add ghost-cells around the irregular

boundary ∂Ω, to fulfilling the non-flux homogeneous Neumann condition (Eq 2.4). The

difference between the classic FD methods and GFD techniques lies in the coefficient

matrix formulation. For the GFD case, we applied the natural row ordering method,

assigning a label to the potentials φji , indicating its row position j and column position

i for the system matrix, following the 18-neighbour stencil, Figure 3.1.

The Figure 3.4 shows an irregular head volume Ω with boundary ∂Ω separating

the volume from the surrounding air. Moreover, Ω region is enclosed by a cuboid

fictitious domain Ω̃, including low conductivity voxels, representing the air. We also

show a small zone of the Ω volume describing data segmented form neuroimages with

regular rectangular voxels, where the red line is the discrete ∂Ω boundary. Further, we

show the ghost-filling space (top) where the white dots represent the ghost-cells around

the ∂Ω discrete interface. Similarly, blue dots represent the potential unknowns along

the Ω domain. On the other hand, we show the fictitious domain (button) including

additional low conductivity points describing the air, for the domain Ω̃.

Taking into account that the current sources in Poisson Eq 2.1 must lie inside the

head volume, or ιf (r) /∈ ∂Ω, we can write that ιf |∂Ω = 0. Furthermore, for the Newman

homogeneous flux condition (Eq 2.4) we can apply the ghost-filling finite difference as
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Figure 3.4: Head volume domain showing ghost-filling and fictitious domain for a

discretized FDM grid.

follows:

∂φ

∂r

∣∣∣∣
∂Ω

=
1

2h
(φ∂Ω − φ−1) +O

(
h2
)

= 0 (3.8)

Where h is the discretization step, φ∂Ω is the unknown potential at the interface

∂Ω and φ−1 is the ghost-cell variable introduce to approximate the potential φ∂Ω with

second order accuracy truncation error O (h2).

Replacing Eq 3.8 in the FDM formulation Eq 3.5 we obtain:

αj1φ
j
1 − · · · − α

j
−1φ

j
−1 − · · ·α

j
18φ

j
18 −

(
αj1 − · · · − α

j
−1 − · · ·α

j
18

)
φj∂Ω = 0 (3.9)

Where αj−1 = 0 for null air conductivity outside the head volume Ω [IT’IS, 2016],

and φj−1 = 0 taking into account the non-flux homogeneous Newman condition 2.4.

Moreover, the ghost-filling Eq 3.9 allows the subtraction of ghost-cell potentials outside

the head volume Ω from the coefficient matrix.
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3.1.4 FDM Ghost filling coefficient matrix formulation

In general, the coefficient cr,i∈R are the entries of system matrix A, for the FDM

formulation of the discretized head volume Ω, holding NZ∈Z non-zero potentials

unknowns φri=φ(xri , y
r
i , z

r
i )∈R, with (xri , y

r
i , z

r
i )∈Ω the 3D FDM discretized spatial

positions for the volume domain Ω, where r, i=1, 2, · · · , NZ∈Z represent the row

and columns of the coefficient matrix A respectively. Moreover, we introduce

lri (x
r
i , y

r
i , z

r
i )∈R as a penalization function for the ghost-cell variables as follows:

lri (x
r
i , y

r
i , z

r
i ) =

{
1, φri 6= φr−1

0, φri = φr−1

(3.10)

where φr−1 in Eq 3.10 represents the ghost-cell potentials. Thus lr(x
r
i , y

r
i , z

r
i ) 6= 0 for

all non-ghost-cell unknowns in Ω. Further, we define the coefficients cr,i as follows:

cr,i =


−

18∑
i∈Sr

αri , ∀lri 6= 0,∀i = r

αri , ∀lri 6= 0 ∈ Sr,∀i 6= r

0, otherwise

(3.11)

Where each row r corresponds to a neighbor Sr, and each column corresponds to

the i position for the coefficient matrix A in the linear expansion of the spatial discrete

coordinates (xri , y
r
i , z

r
i ) .

As a result, the combination of the proposed finite differences for the conservative

Eq 3.1 with the ghost-filling solution Eq 3.9 results in a symmetric, predominant

soft-diagonal, sparse coefficient matrix formulated in Eq 3.11, with only 19 non-zero

entries per row.

The new system matrix AGFD∈R(N×N)Ω , (with N unknowns) holds not only a

smaller conditional number than the FD system matrix AFD∈R(M×M)Ω̃ , (with M

unknowns), but also, the conditional number remains stable (similar values) for different

model resolutions, showing stability. Additionally, N < M , implying that the ANZ
GFD matrix is smaller than the AFD FD matrix.

3.1.5 Linear equation system solution

Several iterative methods have been developing for solving large and sparse

linear systems similar to the proposed AGFD [Volkov et al., 2009, Mohr et al., 2003,
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Wolters et al., 2002, Wolters et al., 2000]. Yet, the choice of the solver depends mainly

on two considerations: the convergence speed to achieve a given relative minimum

residual, depending on the coefficient matrix properties, and the computational

complexity of each iteration. Notably, the numerical properties of the coefficient matrix

highly influence the convergence rate of any solver. Thus, the more ill-conditioned the

system matrix, the slower the convergence of the iterative solver method. The condition

number of A, define as C = ‖A‖‖A−1‖, generally measures the sensitivity of a linear

system solution to perturbations in the data. As such, it can be used to estimate the

convergence rate of an iterative solver: the larger the conditional number, the larger the

iterations needed to reach a desired minimal residual [Li et al., 2018]. In this regard,

we use the preconditioning technique to reduce the condition number C, by selecting

an adequate non-singular matrix M such that the condition number of the product

M−1A is improved. Therefore, we can indirectly solve the LES in the following form:

M−1Aφ = M−1ιf (3.12)

where M ∈ RN×N is the so-called preconditioner for the system matrix A ∈ RN×N ,

φ ∈ RN in the vector of unknown potentials, and ιf ∈ RN is the right hand side of the

LES (excitation).

3.1.6 Reciprocity in the ghost-filling finite difference

anisotropic method

EEG source imaging (ESI) distributed solutions require a lead-field matrix L ∈ RNE×ND

relating the scalp potentials in NE electrodes (sensors) due to ND dipole sources

generators in the brain compartment. Moreover, theoretically speaking, the forward

problem should be solved for each of those dipoles, implying around ND forward

calculations. However, this is a bad scenario for a volumetric technique solution like

FDM, this due to the size of the coefficient matrix and the computational burden to

solve the sparse linear equation system equations (section 3.1.5) [Hallez et al., 2007b].

Therefore, we use the reciprocity approach for a given distribution of NE electrodes

over the scalp ∂Ω allowing us to calculate forward solutions for the electrodes space

rather than for each dipole position.

Figure 3.5 illustrates the reciprocity theorem Eq 3.13, where a virtual dipole current

IAB is injected between the scalp electrodes A and B, generating the potential Vr.

Further, current dipole Ir induces a potential UAB. Thus, reciprocity Eq 3.13 states
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UABIAB = VrIr (3.13)

Figure 3.5: Reciprocity for the EEG forward problem

that there is an equality relating potentials UAB and Vr with current sources IAB and

Ix [Plonsey, 1963]. Moreover, causes and effects can be exchanged to calculate a single

unknown in Eq 3.13 if the other three parameters are known [Rush et al., 1969]. The

reciprocity theorem for a random orientation dipole states that:

UAB(r,d) =
dT · ∇V (r)

IAB
(3.14)

Where UAB(r,d) is called the lead-pair potential between two electrodes A and

B generated for a dipole moment d (see section 2.2.3, Eq 2.6) placed in the position

r with d̂ orientation. Moreover IAB is the current dipole between the same pair of

scalp electrodes [Ziegler et al., 2014]. Is important to notice that the dipole sources are

approximated from the current dipole IAB applied to an electrode pair A−B generating

the potential V (r) over a single r position in the head volume. In other words, using

reciprocity, we are able to approximate the electrodes scalp potentials for any dipole

moment d having position r and orientation d̂. Thus, for a given electrode configuration

and a single dipole position r we obtain:

UAB(r,d) =
(
I−1
AB

)
· Cxyz · d̂ (3.15)

With
(
I−1
AB

)
∈ R(NE×NE) an electrode source and sink matrix for the NE electrodes;

UAB ∈ R(NE×1) the lead-pair potentials and Cxyz (r) ∈ RNE×3 = ‖d‖∇V (r) is a finite

difference estimation for the partial derivates in ∇V (r) [Hallez et al., 2007b].
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Reciprocity in FDM

To apply the reciprocity theorem for a dipole moment d with arbitrary position

r = (rx, ry, rz) in FDM, we approximate the partial derivates in ∇V (r) using finite

differences as follows:

∇V (r) ' V (rx+dx)−V (rx−dx)
2dx

x̂+ V (ry+dy)−V (ry−dy)

2dy
ŷ + V (rz+dz)−V (rz−dz)

2dz
ẑ (3.16)

Where dx, dy and dz, are the discretization steps in the three orthogonal directions.

However, FDM only solve numerical potentials for the discrete grid points positions

[Vanrumste et al., 2001b]. Thus, to obtain the potentials differences in Eq 3.16 for any

arbitrary position r inside the head volume Ω, we use the trilinear interpolation method

that approximate the potential V (r) using the 8 surrounding FDM nodes that forms a

cube around the point r [Hallez et al., 2005].

Finally, the electrode potentials for any given dipole moment d with r position can

be calculated as:

VL = L(r) · d (3.17)

Where VL ∈ R(NE×1) is the electrode potentials for a single dipole with position

r ∈ R(3×1) and moment d ∈ R(3×1). Moreover, L(r) = [L(rx), L(ry), L(rz)], L(r) ∈
R(NE×3), is the so-called leadfield matrix relating dipole current sources in the brain to

the electric potentials measured on the scalp.

We apply the reciprocity theorem stated above for any given electrode distribution

generating NE−1 lead-pairs that can be precalculated to obtain the electrode potentials

for any given dipole moment d with r position using Eq 3.17. Moreover, using

reciprocity we reduce the number of forward calculations, considering that the number

of lead-pairs (around 100) is smaller than the number of sources (NE < ND). Since

our method also incorporates anisotropy information, we refer to it as Ghost-filling

finite difference anisotropic reciprocity method (GFDARM).

3.2 Experiments and results

3.2.1 Six layer spherical head model

We design a six layers anisotropic spherical head model, including CSF and two

brain areas, a cortical, and a deep thalamic area to test the proposed GFDARM
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numerical solution following [Hallez et al., 2005]. Figure 3.6 show the spherical head

model with the following radii center to the different conductivity tissue boundaries:

Scalp – 0.092 [mm], Skull – 0.087 , Cerebro Spinal Fluid (CSF) – 0.078, Grey matter

(GM) – 0.070, White Matter (WM) – 0.060, and thalamic inner sphere (TL) – 0.020.

Furthermore, our spherical model incorporates a deep grey matter area (Thalamic inner

sphere) to simulate deep brain tissue surround by anisotropic white matter medium.

Figure 3.6: Spherical head model.

We select the isotropic conductivity values following the Table 4.1, (see section

4.1.1). Moreover, we set an anisotropic 9:1 radial/tangential ratio for the white matter,

and a 1:10 radial/tangential ratio for the skull as suggested in [Wolters et al., 2006]. We

apply rotational transformations to the local coordinate system for the anisotropic skull

and white matter conductivity tensors, aiming to reorient the eigenvectors in a normal

direction from the concentric spheres as carried out in [Hallez et al., 2008]. Finally, we

use the GFDARM numerical technique to compare against the analytical anisotropic

spherical solution introduce by [De Munck, 1988] (section 2.3.2).

3.2.2 Solving the sparse linear equation system

We test 8 different numerical solver combinations (NSC) comparing the ghost-filling

finite difference (GFD) set up against the fictitious domain (FD). We consider two

LES solvers, namely the baseline successive overrelaxation (SOR), and the biconjugate

gradient stabilized (BiCG-Stab). First, we calculate solutions using SOR and
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BiCG-Stab without preconditioning for both, GFD and FD. Then, we applied LU and

iLU preconditioner for the GFD and also iLU and Fourier-Jacobi (FJ) preconditioners

for FD as proposed in [Turovets et al., 2014] and following [Cuartas et al., 2015] using

only the BiCG-Stab solver. Further we use the six layers spherical head model with

h = 3mm spatial resolution including anisotropic skull and white matter (Figure 3.6),

setting a low relative residual ε = 10−13 to analyze local minimum convergence with a

maximum iterations maxit = 800. Both solvers (SOR and BiCG-Stab) where configure

with 3 stop criterium, namely: reaching the desired relative residual within maxit cap;

iterate maxit times without reaching ε; and two consecutive equal iterations.

Figure 3.7: Relative residual convergence for the considered NSC’s. Dashed red line

stands for the selected minimal residual.

The Figure 3.7 shows the 8 proposed solver combinations performance, including

a red dashed line for the ε = 10−13 minimum residual cap. The Figure shows that

the stationary SOR have a very smooth convergence rate, but it gets stanged after

700 iterations with two consecutive equal iterations without reaching ε, where we can

appreciate a better convergence behavior for the GFD space with a lower final relative

residual of 2.93×10−9 compared against the FD space reaching 1.87×10−6. Additionally,

the proposed preconditioners highly improve the convergence rate of the BiCG-Stab

solver, however, FD-FJ reaches a minimum relative residual around 10−9 that is far

from the imposed ε. In particular, only 3 NSCs reach the desired ε namely, GFD-LU,

GFD-iLU y FD-iLU.
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Iterations Min residual Iteration time Solver time Precond time Total time

GFD-SOR 750 3.07x10-9 0.0049 3.6622 - 3.6622

FD-SOR 740 1.87x10-6 0.0111 8.2405 - 8.2405

GFD-NP 797 3.89x10-13 0.0062 4.9626 - 4.9626

FD-NP 800 5.51x10-10 0.0131 10.4476 - 10.4476

GFD-LU 2 5.82x10-14 6.2081 12.4162 1460.8 1473.21

GFD-iLU 158 9.53x10-14 0.0189 2.9917 0.0428 3.0345

FD-iLU 257 9.2x10-14 0.0355 9.1287 0.0561 9.1848

FD-FJ 78 1.19x10-10 0.0414 3.2314 0.2978 3.5292

Table 3.1: Computational performance for different solver implementations.

In addition, we analyze the number of iterations, minimum residual reached,

iteration time, total solver time, preconditioner computation time and the total time

spend for the 8 proposed NSC’s. Table 3.1 shows the test results, where we highlight

the GFD-iLU as the best NCS for both, convergence and time. We can notice that the

LU preconditioner using BiCG-Stab reach the desired minimum residual in only two

iterations, however, the time spend to calculate LU is very high in comparison with FJ

and iLU. Moreover, the computation time of LU factorization depends on the LES size,

thus, for a lower spatial resolution, the estimation of the complete LU factorization

is not affordable. Times reported in Table 3.1 where obtained in a Intel Xeon CPU

E5-2687W computer with 64Gb RAM, using the Matlab software environment.

It is important to notice that the data variables for GFD include 129936 unknowns

with a 1543212 non-zero values in the sparse coefficient matrix, and regarding FD, we

have 238328 unknowns with 2297372 non-zero values coefficient matrix. This for the

consider spherical head model and 3mm regular discretization resolution. In fact, the

amount of data and unknowns for the FD is almost the double compared with GFD,

this because FD includes not only the significant potential unknowns placed inside the

volume conductor but also the potential unknowns for the air surrounding the volume.

Unknowns Coef mat (Mb) Prec iLU (Mb) Prec FJ (Mb) lead-pair (Mb) Total Average (Mb)

GFD 129936 25,128 28,173 - 1,015 54,316

FD 238328 37,758 43,344 33,155 1,862 82,965

Table 3.2: Memory allocation and number of unknowns.

Table 3.2 show the number of unknowns and the amount of memory use for 8−bytes
double precision variables. Moreover, it is important to highlight that the lead-pair
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memory allocation is crucial in a reciprocity solution, thus, the GFD shows a reduction

of almost half of the memory needed to store a lead-pair compared to the FD.

3.2.3 Convergence analysis for GFDARM

We use the grid refinement method described in [Li et al., 2018], to analyze the

convergence of the GFDARM numerical solution compared against the analytical

spherical solution described in section 2.3.2. First, we set 112 electrodes in 6

geodesic rings evenly distributed over the spherical scalp surface as suggested in

[Turovets et al., 2014] (see Figure 3.11(b)), obtaining the analytic solution u (see

section 2.3.2) and the numerical solution U using the GFDARM method. Then we

define the global error as the difference between the numerical and the analytical

solution as E = U −u. Thus, defining a ratio of error between two numerical solutions

with different grid resolution approximations, we can estimate the convergence order

as:

ratio =
‖Eh‖∥∥Eh/2

∥∥ ≈ Chp

C (h/2)p
≈ 2p (3.18)

Where Eh is the error vector for a numerical solution Uh with a spatial resolution h,

‖·‖ is a norm distance, C(h)p is the global truncation error for h, and p is the estimated

convergence order. From Eq 3.18, we can write:

p ≈
log
(
‖Eh‖ /

∥∥Eh/2

∥∥)
log 2

≈ log (ratio)

log 2
(3.19)

Where p is an estimation of the convergence order, thus, to estimate p with Eq

3.19 we use two different norms for the vector E, namely E∞ = ‖E‖∞ = max {ei},
and E2 = ‖E‖2 =

(∑
i hi |ei|

2)1/2
. Therefore, if 1 < p < 2, the numerical solution is

super-linear in the analyzed h space [Li et al., 2018].

In our experiment, we select five different spatial resolutions in potents of 2 (h =

[0.001, 0.002, 0.004, 0.008, 0.016]mts) to analyse both, a fully isotropic medium and an

anisotropic skull and WM medium using two different norms, namely E2 and E∞.

Additionally, we set two different source positions, one in the GM and another in the

TL area. Both source positions where select having surrounding voxels of the same

tissue to avoid crossing a boundary Γl as suggested in [Hallez et al., 2008].
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In the Figure 3.8 we show the results for the isotropic (top) and the anisotropic

(button) mediums, using two different norms, namely E2 (left) and E∞ (right) in a

logarithmic scale for both axes, including the numerical p estimation on the right.

Each chart shows the global error for the GM and TL sources in the analyzed h space,

showing always a superlinear approximation with 1 < p < 2. Finally, the convergence

analysis against an analytical solution shows second-order accuracy for all considered

scenarios.

3.2.4 Stability analysis for the GFDARM linear system

Te so-called system matrixA is considered stable if ‖A−1‖ 6 ε, for all 0 < h < h0, where

ε and h0 are two constants that are independent of h [Li et al., 2018]. Due to the sparse

nature of the FDM system matrix we calculate the conditional number C = ‖A‖ ‖A−1‖,
where A is the coefficient matrix of the linear system for both, FD and GFD to analyze

stability following [Lin et al., 2017]. Furthermore, we consider 13 different spatial

resolution, using the six layers anisotropic spherical head model (section 3.2.1) (h =

[0.003, 0.004, 0.005, 0.006, 0.008, 0.01, 0.012, 0.014, 0.016, 0.018, 0.02, 0.025, 0.03]mts).

Figure 3.9: Conditional number.

Figure 3.9 shows the conditional number for the GFD and FD numerical spaces.

The results show an exponential increase in the FD (red line) for smaller h values. In
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comparison, the conditional number remains stable even for the minor considered h

grid sizes for the GFD system matrix, showing stability in all considered resolutions.

We also investigate the stability of the GFDARM numerical solution adding random

noise with uniform distribution (ξ = [ - 1,1]) to the excitation vector and the coefficient

matrix of the LES. Thus, we analyze the sensitivity of the technique in a Montecarlo

approach with 100 trials for every test using an anisotropic spherical head model with

h = 0.002mts. Moreover, for the LES Aφ=ι we define the following test scenarios:

• Test A: Additive noise in the excitation vector

Aφ = ιf + ηξ, where ιf (f) =


0, ∀f 6= {f+, f−}

1 + ηξ f+

−1− ηξ f−

• Test B: Additive noise in the conductivity tensor eigenvalues

A (σnoise)φ = ιf , where σnoise = R (λ+ ηξ)RT

• Test C: Additive noise in the conductivity tensor eigenvectors and normalization

of the eigenvector matrix

A (σnoise)φ = ιf , where σnoise = Rξ (λ)R
T

ξ , and Rξ =
(
R + ηξ

)
, being Rξ

the normalized eigenvector matrix.

• Test D: Additive noise in the conductivity tensor eigenvectors and eigenvalues

A (σnoise)φ = ιf , where σnoise = Rξ (λ+ ηξ)RT
ξ , and Rξ = (R + ηξ)

We select 4 different values of noise power η for the normalized signal to noise ratios

of S/N = 10, 5, 3, 0 obtaining a total of 1600 forward solutions for the 4 proposed

tests, and the 4 different S/N . Furthermore, we used two different measures: the

log Magnitude (log(MAG)) and Relative Difference Measure (RDM), to quantify

the differences between a reference potential vector LR without noise, and a tested

potential vector LT as in [Strobbe et al., 2014a, Schimpf et al., 2002, Meijs et al., 1989].

Moreover, log(MAG) and RDM measures are defined as follows:

log(MAG) = ln

(
‖LT‖2

‖LR‖2

)
(3.20)

RDM(LR, LT ) =

∥∥∥∥ LR
‖LR‖2

− LT
‖LT‖2

∥∥∥∥
2

(3.21)
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The closer to 0 the log(MAG) in Eq 3.20, or to 0 the RDM in Eq 3.21, the closer

the test model LT to the reference LR model. Further, a large log(MAG) measure,

indicates very large values (unbounded) in the test potentials vector, similarly, a large

RDM measure indicates a non-significant (close to zero) test potential vector norm.

(a) ln(MAG) (b) RDM

Figure 3.10: Sensitivity analysis.

The Figure 3.10 includes the stability analysis results, showing in 3.10(a) the

log(MAG) and in 3.10(b) the RDM measures including the four proposed tests, and

the considered S/N scenarios. The Figure shows blue bars for the 25% to the 75%

percentile of the data total distribution (in dashed lines), including a red line for

the mean value. The LES stability analysis results show a stable behaviour for the

numerical proposed technique, even in the presence of high S/N definitions. Moreover,

the numerical solution remains stable in all cases under consideration.

3.2.5 Validation: Analytical Vs Numerical spherical

For validation purposes, we use the six layers spherical head model with h = 1mm

grid size, setting a fully isotropic and an anisotropic skull and white matter mediums

(section 3.2.1). We calculate the potentials over 112 electrodes to compare the proposed

GFDARM and the analytical spherical solution placing a single source in the GM area

with normal orientation to the GM surface boundary.
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(a) Electrode potentials (b) Scalp potetial distribution

Figure 3.11: Numerical and analytical potentials for spherical head model.

Figure 3.11 shows the electrode potentials for the numeric and analytic solution

using isotropic and anisotropic mediums illustrating a high correspondence between

the numerical GFDARM potentials and the analytical solution for the Figure 3.11(a).

We also illustrate the potentia distribution for the scalp surface in the anisotropic case

Figure 3.11(b). Additionally, we select 300 random directions from the sphere volume

center to the scalp surface, placing sources along each direction considering the voxel

positions contained in the GM and TL areas following [Stenroos et al., 2012]. As a

result, a total 8640 dipole sources were analyzed, considering the three orthogonal (X,

Y , and Z) orientations for a total of 51840 forward calculations. Finally, we obtained

the analytical and numerical potentials for the considered electrodes and dipole sources.

Figure 3.12: logaritmic Magnitude (log(MAG)) and relative difference measures

(RDM ).
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The Figure 3.12 shows a box-plot graphic of the log(MAG) and RDM measures for

the 8640 comparisons in the three orthogonal directions. The blue box extends between

the 25% and the 75% percentile of the data represented along the dashed black line,

and the red line represent the median value. The results exhibit a very low standard

deviation of the compared measures with mean values near to zero presenting a very

high correspondence between the numerical and the analytical solutions for almost every

source position or orientation.

Figure 3.13: Source depth error behavior for the log(MAG) and RDM measures.

Additionally, Figure 3.13 shows the log(MAG) and RDM measures against the

source depth for all the considered sources comparisons in the three orthogonal

directions (X, Y and Z). In the Figure, we highlight the depth boundaries for the

GM and TL where the sources were placed, with the WM in the middle area. Results

show lower differences between the analytic and the numeric GFDARM technique for

depth sources (in the TL area).

3.3 Discussion

We introduced a novel finite difference solution for the EEG forward problem

applying the ghost-filling boundary approximation for the homogeneous Newman flux
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condition, that we called ghost-filling finite difference anisotropic reciprocity

method (GFDARM). Our method shows a coefficient matrix with improved stability

and a linear equation system with fewer unknowns compared with the commune

fictitious domain solution. Moreover, our finite difference solution based on the

conservative form of the inhomogeneous anisotropic medium Poisson equation generates

a symmetric, soft-diagonal sparse matrix that is stable for the considered discretization

spaces, presenting superlinear convergence approximation with second-order accuracy.

Furthermore, the introduced GFDARM allows the incorporation of voxel-wise

conductivity information providing a direct adaptation of the technique to the available

structural MR imaging without using previous head compartment tessellations like in

FEM. Furthermore, our method is intrinsically built to consider conductivity anisotropy,

which is essential to ensure correct modelling of current flow in the head.

3.3.1 GFDARM Linear Solver

The selection of the iLU preconditioner and BiCG-Stabilized solver takes advantage

of the coefficient matrix properties for the proposed GFDARM solution, generating

a fast, stable, convergent, and reliable numerical solution that can include voxel-wise

anisotropic tensors, where results in section 3.2.2 show an improved convergence for

the GFD-iLU compared to the previously used stationary SOR, and the FD-FJ solvers

[Hallez et al., 2005, Turovets et al., 2014]. Moreover, GFD compared to FD solutions

shows a better numerical behavior for all considered solver combinations, including the

FJ circulant preconditioner used in [Turovets et al., 2014]. Furthermore, our results

show a strong reduction of computational times for the proposed technique with fewer

iterations (Table 3.1), considering also the reduction of the coefficient matrix size and

the number of unknowns that directly reduce the storage memory requirements of the

proposed GFD technique lead-pairs by half, compared with the commonly used FD

(Table 3.2).

3.3.2 Numerical solution

The convergence grid refinement analysis show very consistent results with a superlinear

approximation for two different norms applied to the global error vector obtained

from the analytical solution [De Munck, 1988] and the proposed GFDARM numerical

approximation for isotropic and anisotropic mediums (Figure 3.8). The results show

superlinear approximation under all considered spatial resolutions for both considered
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mediums. Thus, for the isotropic case, the results show an appreciably improved

behavior for the deep TL source compared to the GM cortical source, however, this

tendency is inverted for the anisotropic case, showing that when a source is surrounded

by anisotropic tissue (from the WM) the numerical approximation have more error

compared against a cortical source. Furthermore, we analyze the stability of the

technique, estimating the conditional number for the coefficient matrix, thus, Figure

3.9 shows that the conditional number remains stable for a very wide range of grid

resolutions, and tends to stabilize for the lower grid sizes values. Finally, we analyze

the sensitivity of the linear equation system with four different tests considering different

additive noise S/N factors, showing that the proposed numerical solution is stable and

convergent for all tests under consideration.

3.3.3 Validation

The validation using a six layer spherical model including two different brain zones,

namely GM and TL allow us to analyze deep sources surrounded by anisotropic

WM and skull tissues. In comparison, other works consider simplistic spherical head

models without taking into account anisotropic information [Vanrumste et al., 2001b,

Lanfer et al., 2012, Turovets et al., 2014, Strobbe et al., 2014a]. Moreover, we set an

exhaustive numerical comparison considering 8650 sources covering the GM and TL

regions in the three orthogonal directions for a total of 51840 forward calculations. The

results show a high correspondence between the analytical and the proposed GFDARM

numerical solution (Figure 3.11), with a very low dispersion of the data for all the test

under consideration (Figure 3.12).

3.3.4 Constraints and limitations

The volumetric anisotropic methods like the proposed GFDARM have increased

complexity and computational burden compared against spherical approximations or

numerical isotropic BEM techniques. A single isotropic lead-field calculation can take

around 200s, and for the anisotropic case estimation can take more than 400s, this

for the considered shperical head model holding h = 1mm discretization step size.

Moreover, in a reciprocity solution space, the memory needed to store the precalculated

potential leads for the volumetric unknowns is very high, reching almost 3Gb as reported

in Table 2.1. Finally, the GFDARM its constrained to sufficiently smooth boundaries

between tissue compartments, and the computational time and memory allocation
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needed is very high in comparison with the most used BEM technique as reported

in Table 2.1.



Chapter 4

Forward volumetric modeling for

realistic head data

The solution of the Poisson equation 2.1 for realistic free-form head volumes is only

possible using numerical approximations [Irimia et al., 2013]. In particular, individual

magnetic resonance (MR) and computed tomography (CT) images can be segmented

into different tissue types, such as white and gray matter (WM/GM), cerebrospinal fluid

(CSF), compact and spongy bone, skin, among others. Recently, diffusion-weighted

imaging (DWI) has also been used to determine the anisotropy profile of brain structures

based on the movement of water molecules [Le Bihan et al., 2012]. DWI is particularly

important for modeling anisotropic properties in the WM. Moreover, anisotropic

conductivity in the skull has also a large impact on the current flow from sources

to sensors [Montes et al., 2013, Dannhauer et al., 2011].

The most simplistic numerical solution from neuroimaging real data is the

boundary element method (BEM) [Ferguson et al., 1997] (see section 2.3.4). BEM

method is widely used because of its low computational needs, however, most

solutions only consider three surface boundaries (scalp, skull, and brain), and is

restricted to isotropic conductivities. In this sense, several works analyze the

influence of neglecting the human head anisotropy tissues in the ESI techniques

[Cuartas et al., 2017b, Montes et al., 2016, Ziegler et al., 2014, Wendel et al., 2009,

Wolters et al., 2006]. Particularly there are two decisive factors that expose the need for

volumetric and realistic forward models, the first one is the strong anisotropic behaviour

of the skull and white matter (among others tissues like the thalamic areas) due to the

direct impact on ESI accuracy [Strobbe et al., 2014a], and, the patient-specific analysis

65
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with multiple tissues definition that drastically reduce the errors of using spherical

approximations or general atlas [Vorwerk et al., 2014, Vallagh et al., 2007].

There are two main methodologies that can handle anisotropic conductivities

and realistic patient-specific analysis, namely, Finite Element Method (FEM)

[Wolters et al., 2002, Liu et al., 2005], and Finite Difference Method (FDM)

[Vanrumste et al., 2001b, Hallez, 2009]. The main practical limitation of FEM and

FDM in comparison with BEM is the computational burden, where the solution leads

to linear systems, and the system matrix is typically sparse and has a large number of

unknowns in comparison with BEM. Nevertheless, significant advances in computing

capabilities have made it possible to calculate and use volumetric forward techniques like

FDM [Vorwerk et al., 2018, Turovets et al., 2014, Volkov et al., 2009]. In this chapter,

we will introduce a framework to build patient-specific high-resolution anisotropic head

models, using the GFDARM technique.

4.1 From neuroimaging to realistic forward head

models

Advances in magnetic resonance imaging (MRI) have made it possible to extract

detailed information about structural properties of the head, which can be used to

build more detailed and anatomically realistic head models. Moreover, conductivity

anisotropy in the WM can be estimated across voxels by combining information from

DWI and MRI images. Further, nowadays, it is common practice to assign conductivity

values extracted from the literature to each segmented tissue [Michel et al., 2012,

Liu et al., 2017]. Alternative solutions as the electrical impedance tomography have

been developed [Malony et al., 2011]. These solutions, however, are computationally

intensive and only estimates average conductivity values for pre-segmented tissues,

rather than providing a conductivity value for each location in the head. Preliminary

work using MRI has shown encouraging results for mapping low-frequency electrical

properties of head tissues [Michel et al., 2016]. If the necessary developments take

place, MR-based conductivity mapping may become a state-of-the-art technique for

the construction of realistic head models for EEG applications, opening the need of a

forward volumetric modeling technique that allows across-voxel conductivity definitions.

Figure 4.1 shows an example of MRI/CT neuroimage data segmented into a 5−layers

head compartment model. Included tissues are scalp, skull, CSF, WM and GM.
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Figure 4.1: MRI/CT 5−layers neuroimage segmentation.

The segmentation was made with FreeSurfer software (https://surfer.nmr.mgh.

harvard.edu/) providing interfaces Γl between different tissues, and boundary ∂Ω

separating the head volume domain Ω from the surrounding air. Segmentation methods

are commonly based on probabilistic atlas including information about the distribution

of most known tissues of the human head. Most free use neuroimaging software

have unsupervised routines to segment patient-specific MRI’s [Yazdani et al., 2015,

Balafar et al., 2010].

4.1.1 Head tissue conductivities

From the segmented neuroimages, each layer is assigned with known conductivity values

from the literature. In addition, for anisotropic tissues modeling, is necessary to define

the main direction of the conductivity tensor eigenvectors, and also its eigenvalues.

The most influence anisotropic tissues in the human head regarding the ESI task

are the skull and WM [Dannhauer et al., 2011, Marin et al., 1998, Bashar et al., 2008a,

Gullmar et al., 2010]. Furthermore, we refer to the specific methods for the anisotropy

modeling in section 4.2.

Table 4.1 show the considered isotropic conductivities for this work (last

column), taking into account multiple previous ESI studies [Wolters et al., 2006,

Montes et al., 2013, Vorwerk et al., 2014] and including also the IT’IS Foundation

database holding a large list of low frequency tissue conductivities [Gabriel, 1993,

IT’IS, 2016]. Magnitudes are given in Siemens per meter (S/m).

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
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Compartment [Wolters et al., 2006] [Montes et al., 2013] [Vorwerk et al., 2014] [Gabriel, 1993] Selected

Skin 0.3300 0.3279 0.4300 - 0.4300

Skull 0.0042 0.0105 0.0100 - 0.0105

CSF 1.7900 1.7857 1.7900 1.7800 1.7900

GM 0.3300 0.3300 0.3300 0.2390 0.3300

WM 0.1400 0.1428 0.1400 0.1280 0.1400

Muscle - - - 0.3550 0.3550

Fat - - - 0.0573 0.0573

Eyes - - - 1.5500 1.5500

Vessels - - - 0.2800 0.2800

Table 4.1: Considered head tissue isotropic conductivities (S/m).

4.1.2 Realistic patient-specific neuroimage head model

(RHM)

We build a realistic, high-resolution, patient-specific volume conductor model from

neuroimages, including anisotropic skull and white matter modeling. Further, we

use T1, IDEAL T2 and diffusion-weighted imaging (DWI) MR scans acquired from

a healthy 32-years-old male (me) in the Rey Juan Carlos University, Medicine Faculty,

Medical Image Analysis and Biometry Lab, Madrid, Spain.

Acquisition

MRI data were collected on a 3T MR scanner (General Electric Signa HDxt), using

the body coil for excitation and an 8-channel quadrature brain coil for reception.

Imaging was performed using an isotropic 3DT1w SPGR sequence under the following

parameters: TR=8, 7ms, TE=3.2ms, TI =400ms, NEX =1, acquisition FOV =260mm,

matrix=320 × 160, resolution 1 × 1 × 1mm, flip angle 12; an IDEAL T2 sequence

with TR=3000ms, TE=81.9ms, NEX =6, FOV=260mm, acquisition matrix 320×160,

flip angle 90; a Time of Flight (TOF) sequence consisting of 8 volumes with 6

slices overlap and TR=20ms, TE=2.1ms, NEX =1, acquisition FOV =224mm, matrix

224×224, resolution 1×1×1mm, flip angle 15; and a DWI sequence with TR=9200ms,

TE=83.8ms, TI =0ms, NEX =1, acquisition FOV =240mm, matrix 100×100, flip angle

90, directions 45, thickness 2mm.
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Segmentation

Image preprocessing was performed using 3D Slicer built-in modules

[Kikinis et al., 2014]. The preprocessing steps included: MRI bias correction

(N4 ITK MRI bias correction), and Registration (BRAINS) for movement correction.

Cortical Segmentation, including brain white matter (WM) gray matter (GM),

and cerebrospinal fluid (CSF), was performed in the T1-weighted volume using

FreeSurfer [Fischl et al., 2002]. The skull was estimated using a multi-atlas and label

fusion-based approach [Torrado et al., 2016]. To this end, we applied to a CT database

the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm

[Warfield et al., 2004]. The remaining CSF was computed as the residual of the skull

and the brain segmentation using a GNU Octave script. To segment the skin we use

the background noise variance and thresholds of the anisotropically filtered volume as

in [Torrado et al., 2014]. Then, Gaussian smoothing was applied to reduce aliasing

artefacts in the skin surface and to ensure a minimum of 2 voxels thickness for the

skin volume. The eyeballs were segmented by applying a threshold and edge detection

algorithm to the IDEAL in-phase head sequences. We also performed a smooth

approximation of the main arteries by using an expectation-maximization algorithm

to the median filtered TOF images. The remaining tissue was classified in muscle and

fat/cartilage, using the expectation-maximization algorithm on the IDEAL fat and

water images [Cuartas et al., 2017b].

Finally, all available data (T1, T2, and DWI) was aligned with a voxel

similarity-based affine registration procedure to correct subject orientation and

geometrical distortions. Then, all registered DWI data were re-sampled to have a

unique size 1×1×1mm by using the FSL toolbox [Jenkinson et al., 2012]. The final

head model is shown in Figure 4.2 holding 9 different tissues namelly: skin, skull, CSF,

GM, WM, muscle, fat, eyeballs and vessels, including also a 1mm3 DWI. Furthermore,

we refer to this dataset as realistic head model (RHM). Figure 4.2, shows a 5-layer, and

a 9-layer segmentation for the RHM model.

4.2 Modeling tissue conductivity anisotropy

Anisotropic behavior is important in conductivity head modeling and even more

in ESI solutions. First anisotropic measures for EEG current propagations in

head volumes was found by [Rush et al., 1968]. In this regard, several works
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Figure 4.2: RHM segmentation.

study the anisotropic behaviour of specific tissues in the human head as the skull

[Montes et al., 2016, Lanfer et al., 2012, Cuartas et al., 2014b] and the white matter

[Wolters et al., 2006, Cuartas et al., 2014a, Hallez et al., 2008]. In a realistic head

model, tissue conductivities must be modelled both isotropically and anisotropically

depending on the tissue. In the first case, the conductivity tensor is defined as

Σ = σisoI3, where I3 is the 3×3 identity matrix, and σiso is the isotropic conductivity

value from 4.1 for a specific tissue. For the anisotropic case, we must adequately define

eigenvectors and eigenvalues to assemble voxel-wise anisotropic tensors for specific

tissue/regions in the head volume. Anisotropic mathematical tensor is introduced in

section 2.2.3.

Figure 4.3 illustrate the morphology of the WM and skull tissues anisotropy. In the

skull case 4.3(b), the tissue region is shaped by two different types of bone (hard and

spongy) in a 3-layered distribution. Hard bone has very low conductivity (0.0064S/m),

in comparison with the spongy bone (0.02865S/m). Skull tissue is formed by a spongy

area enclosed between two hard bone sections generating a local anisotropic behaviour

in the skull compartment, having low conductivity in the normal direction of the skull

surface and larger conductivity in the tangential plane as shown in 4.3(b).
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(a) WM anisotropy (b) Skull anisotropy

Figure 4.3: Skull and WM tissue anisotropy morphology.

Similarly, WM is formed by nerve bundles (groups of axons) connecting cortical

grey matter in distant areas 4.3(a). Moreover, nerve bundles in WM are often aligned

parallel to each other. Water and ionized particles can move more easily along the nerve

bundle than in perpendicular direction. Therefore, the conductivity along the nerve

bundle is measured to be nine times higher than in the perpendicular to it. Further,

water diffusion (mobility) can be estimated using DWI, and, in particular, WM local

anisotropy conductivity share eigenvectors with diffusion tensor imaging (DTI) that

can be obtained form DWI registers [Basser et al., 1994]. Figure 4.3(b) shows a WM

tract axon containing microtubule and microfilament formations restricting the water

mobility to the longitudinal/radial direction of the tracts bundles.

4.2.1 Modeling the skull conductivity anisotropy

Anisotropy on the skull depends on its morphology, thus, the conductivity is knowing

to be larger in the tangential direction and smaller in the normal direction of the skull

surface [Montes et al., 2013, Lanfer et al., 2012, Pohlmeier et al., 1997], therefore, we

calculate the anisotropic skull conductivity estimating the local voxel eigenvectors from

a smooth mesh that holds an adequate approximation of the local normal directions to

the skull surface following [Wolters et al., 2006, Marin et al., 1998].

Estimating the tensor eigenvectors: We estimated a skull surface mesh using

the 3D Slicer built-in model-maker module including the marching cubes and spatial
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smooth filtering routines [Kikinis et al., 2014]. Additionally, we use the MeshLab to

eliminate redundant vertex and closed faces, applying a local hole filling algorithm to

close holes in the final mesh [Janaszewski et al., 2010]. Then, we performed an affine

transformation between the mesh and the head volume, ensuring that all the vertex

normals in the mesh have a corresponding single voxel in the skull volume. After this,

we guarantee that all directions are pointing outside the head. To this end, we create

radial vectors between the middle point of the grey matter and every single skull voxel.

Then, we compute the dot product between such radial vector and the mesh normal

associated with a voxel, and, if the result is negative, the normal direction is inverted.

This procedure is repeated for all the skull voxels comprising normal vectors from

the skull mesh. Finally, we iteratively propagate the available normal vectors using

interpolation to obtain the eigenvectors of the skull voxels that not have an associated

normal. The Fig 4.4 show the considered steps to estimate the volume normals from the

skull mesh. The figure also shows the iterative propagation process where the normal

vectors are interpolated to the entire skull volume.

Figure 4.4: Skull anisotropy eigenvectors estimation, illustrating the mesh normal

propagation in the head volume after six iterations.

Defining the tensor eigenvalues: Finally, to establish the skull conductivity

eigenvalues, we use the spherical volume constraint defined as follows

[Wolters et al., 2006]: σrad(σtan)2=σ3
iso, where σrad∈R+ and σtan∈R+ are the

conductivity values of the radial and tangential directions, respectively. σiso∈R+
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is the isotropic conductivity value from Table 4.1. We used a small radial to tangential

anisotropic ratio as suggested in [Montes et al., 2016], fixing the isotropic skull

conductivity as σiso=0.0105 S/m and skull ratio to 1:1.82 (radial:tangential) obtaining

σtan=0.0123S/m and σrad=0.007S/m.

4.2.2 Modeling white matter conductivity anisotropy

Contrary to the skull, anisotropy in the white matter cannot be estimated from the

tissue morphology. Thus, we use diffusion tensor imaging (DTI) data to determine the

conductivity tensors in the WM compartment.

From DWI to DTI: DWI data are re-sampled to have the same 1mm3 resolution

of the T1 and T2 segmented sequences. Afterwards, motion, eddy currents, and

field inhomogeneities are removed. Later, the diffusion tensor images (DTI) are

estimated using the Diffusion-Toolkit from the 45 gradient directions of the DWI

[Le Bihan et al., 2001, Westin et al., 1999]. Finally, the DTI data are co-registered to

the anatomical T1 image space. All procedures are carried out using the FSL tool

[Jenkinson et al., 2012].

From DTI to local conductivity tensors: Early works assume a strong 9 : 1 radial

to tangential anisotropic constant ratio [Wolters et al., 2006, Hallez et al., 2007a].

However, recent studies show that the eigenvalues from the DTI better describe

the anisotropic behavior of the WM [Vorwerk et al., 2014]. Thus, we estimate

the conductivity tensors Σ
(j)
WM from the diffusion tensors D(j)∈R3×3 using a

local linear relationship Σ
(j)
WM=sjD

(j), as suggested in [Tuch et al., 2001] and

[Vorwerk et al., 2014]. Furthermore, the scalar factor sj can be obtained as follows:

sj =
σisoWM

(λ1λ2λ3)1/3
, (4.1)

where σisoWM = 0.14S/m is the isotropic conductivity value for the white matter, and

λ1, λ2, and λ3 are the eigenvalues of the local tensor D(j).

The Figure 4.5 illustrates the procedure to obtain the local anisotropy conductivity

tensors Σ
(j)
WM in the WM, showing the volume constrain depending on the DTI

eigenvalues.
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Figure 4.5: White matter anisotropy estimation process in two stages: First, we

performed the transformation from DWI to DTI, and then, we estimate the local scaling

factor sj using a volume constraint to transform the DTI to the conductivity tensor.

4.2.3 From EEG to volume electrode positions

The placement fo the EEG electrodes in the volumetric forward model is also crucial

for ESI solutions. A one to one relationship between the dipole localization errors and

the average displacement of the electrode positions in the head conductor volume using

ESI techniques is reported by [Van Hoey et al., 2000]. Thus, accurate modeling of the

electrode positions on the scalp surface is essential in forward modeling and positions

directly related to the field propagation of the brain sources [Strobbe, 2015].

Recent works introduce automatic labeling, detection and positioning of hdEEG

arrays [Liu et al., 2018, Marino et al., 2016].Moreover, most of the EEG databases

include three-dimensional maps of the electrodes used for the study. Thus, we performed

fiducial-based similarity transformations to align the EEG electrodes to the head

volume. Finally, we project each electrode position towards the center direction of the

head volume to ensure that the electrode is surrounded by scalp voxels, guaranteeing

that the electrode voxel is not surrounded by air as suggested in [Hallez et al., 2009]

and following our own constrain for ghost-filling stating that sources must lie inside the

head volume (ιf |∂Ω = 0) (section 3.1.3) when applying reciprocity.
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4.2.4 EEG Forward Problem

After segmentation labeling, and local anisotropic conductivity tensors estimation, we

proceed to solve the EEG forward problem in a reciprocity setup for a given electrode

configuration using the GFDARM technique.

Figure 4.6: Forward anisotropy modeling: The Figure illustrates from left to right the

anisotropy in the skull and withe matter estimation that are included in the volumetric

segmentation. The solution is carried out in a voxelwise conductivity framework for

a lead-field reciprocity space of a corregistered electrode data set. Finally, forward

calculations are carrier out using the GFDARM algorithm.

Figure 4.6 shows the proposed realistic head modelling methodology pipeline. Thus,

from left to right, we illustrates the anisotropic skull (see section 4.2.1) and WM (see

section 4.2.2) procedures, assembled into the neuroimage tissue-labelled segmentation

(see section 4.1.2), allowing a voxelwise anisotropic conductivity distribution that can be

isotropic or anisotropic taking known conductivity parameters from the literature (see

section 4.1.1). Moreover, from the conductivity model, we define a reciprocity solution

space for a given three-dimensional electrodes map that is co-registered to the scalp

(skin) segmentation volume (see section 4.2.3). Finally, we perform forward calculations

using the proposed GFDARM solution (see section 3.1) in a reciprocity space (see

section 3.1.6) to obtain the potential propagation for any given source moment or

positioning inside the head volume.
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4.3 Parametric inverse solution

In a reciprocity space with NE electrodes, we can calculate the electrode potentials

VE for a given dipole moment d and position r using Eq 3.17 (see section 3.1.6).

Furthermore, a parametric inverse solution can be estimated for a reference head model

with electrode potentials VR, compared against a tested head model with electrode

potentials VT , using the same electrode reciprocal space [Vanrumste et al., 2000]. Thus,

we can estimate the pairwise dipole parameters (r̃, d̃) that best fit the reference

potentials VR(r,d) by calculating the potentials, VT (r̃, d̃) in a minimization parametric

relative residual energy (RRE) function as follows:

RRE = min
(r̃,d̃)


∥∥∥VR − VT (r̃, d̃)∥∥∥2

‖VR‖2 + C (r̃)

 (4.2)

Where VR ∈ RNE×1 are the electrode potentials of the reference model, usually

the most realistic or complex head model. VT

(
r̃, d̃

)
∈ RNE×1 are the electrode

potential of a tested model, that must be iteratively recalculated to minimize the

Eq 4.2. Additionally, the term C (r̃) ∈ R+ is a penalization parameter that is

set to zero for r positions inside the gray matter, and it’s very large otherwise.

Moreover, notation ‖ · ‖ stands for the Euclidean norm. Thus, Eq 4.2 can be

solved using the nonlinear unconstrained optimization Nelder-Mead simplex method

[Nelder et al., 1965, Lagarias et al., 1998].

Solving the Eq 4.2 for a single dipole from the reference model (r,d), we obtain

a single dipole from the test model (r̃, d̃) that can be compared to obtain the dipole

localization error (DLE ) using positions r and r̃ as follows:

DLE = ‖r̂ − r‖2 (4.3)

And the dipole orientation error (DOE ) for the dipole moments d and d̃ as follows:

DOE = cos−1

 d

‖d‖
· d̃∥∥∥d̃∥∥∥

 (4.4)

Furthermore, we use Eq’s 4.3 and 4.4 to compare numerical head models in the

reciprocity space.
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4.4 Experiments and results

4.4.1 Influence of the anisotropic modeling in the potential

fields propagation

We used the 5-layer RHM (see section 4.1.2, Figure 4.2), placing a single dipole in the

GM area oriented along the negative Y orthogonal axis. Then, we calculate reciprocity

forward solutions using GFDARM and a 128 biosemi electrode distribution, considering

two head models, a fully isotropic medium and an anisotropic skull and white matter

medium.

Figure 4.7: Scalp potentials for a single dipole placed in the central motor area of the

GM oriented horizontaly (negative Y direction).

The Figure 4.7 shows the scalp potential distribution for both, the isotropic (top-left)

and the anisotropic medium (top-right), and also the electrode potentials (button)
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for the reciprocity solution. Results show significant differences not only in the scalp

potentials intensity but also in the potential distribution along the scalp surface, where

the maximum value appears in a translated position towards the frontal area of the

head for the anisotropic medium. Moreover, we show the electrode potentials for

the isotropic (blue line) and the anisotropic (red line) mediums. The Figure 4.7

shows significant differences in the amplitude between both considered models, with

a substantial attenuation for the electrode potentials in the anisotropic case.

Additionally, we analyze the differences in the equipotential propagation lines in

a non-reciprocal setup, to study the electric field propagation for the considered head

models.

Figure 4.8: Sagittal, coronal and tridimensional views of the equipotential lines

propagation from a single dipole in the GM, for both, a full isotropic model (top)

and an anisotropic skull and WM model (button).
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Coronal and sagittal views are included in Figure 4.8 to illustrate the potentials

propagation of a single dipole with normal orientation concerning the GM cortical-motor

area (positive Z orthogonal direction). Moreover, we show a three-dimensional render

of orthogonal planes containing the equipotential distribution for the considered source

represented in the Figure 4.8 as a black dot. The results show essential differences in

the equipotential lines between isotropic and anisotropic mediums. Further, for the

isotropic case, the lines are smooth, and the electric fields easily reach the scalp surface

due to the homogeneity in the skull compartment conductivity. In comparison, for the

anisotropic medium, the equipotential lines tend to align with the local anisotropy

eigenvectors, showing irregular patterns in the WM area, and tangential to radial

restrictions in the skull compartment.

4.4.2 Influence of the skull anisotropy

We used a simulated spherical head model with a modified skull compartment to analyze

a single layer anisotropic skull against a 3−layer isotropic compartment following our

previous work [Cuartas et al., 2014b].

Figure 4.9: Spherical 3−layer skull model.

Figure 4.9 shows the spherical head model (defined in section 3.2.1, Figure 3.6) with

a modification of the skull dividing the tissue compartment into three different isotropic

layers. We performed a parametric inverse comparison taking the anisotropic 1−layer
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model as the reference model, and the isotropic 3−layer as the test model, for a 10−20

electrode distribution with 30 sensors.

Figure 4.10: Parametric inverse comparison for the 3−layer isotropic skull and the

1−layer anisotropic skull.

We show the DLE (top) and DOE (button) for the parametric inverse comparison

in the Figure 4.10. The results show low dispersion in the DLE, with differences of

0.88± 0.70, indicating a high correspondence between the models. Moreover, the DOE

illustrates a similar result with 1.45 ± 0.68 error. The results are consistent with the

reported in the literature, showing equivalence between the isotropic 3−layer and the

anisotropic 1−layer skull models [Montes et al., 2013, Dannhauer et al., 2011].

Finally, we perform a parametric inverse comparison using the RHM data set. We

calculate reciprocity solutions using the GFDARM algorithm for a 128 electrode setup.

First, we estimate a reference anisotropic skull model following the setup presented in

section 4.2.1, and later we calculate a full isotropic model used as the test model.

Figure 4.11 shows the DLE due to neglect the skull anisotropy in RHM. The results

show a significant impact in the source localization where DLE’s can be larger than

20mm, especially in zones of the brain near to the skull (grey matter outer cortex).

Following this results, one can expect an important influence in the distributed source

localization algorithms in ESI solutions due to neglect the skull anisotropy. Similarly,

the DOE ’s can be larger than 115 degrees, and this must be considered because the
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Figure 4.11: DLE due to neglect the skull anisotropy.

dipole orientation directly influences the estimation of the source spatial direction

(normal to the GM tissue) in ESI solutions.

4.4.3 Influence of the WM anisotropy

Following our previous work [Cuartas et al., 2014a], we analyze the dipole estimation

errors in a parametric inverse solution setup for three different anisotropic eigenvalues

estimations for the WM compartment. The anisotropic models were set as reference

models and compared against a full isotropic head model. We used Structural MRI

and DWI data from IDA-LONI database publicly available (https://ida.loni.usc.

edu/login.jsp). The MRI was a T1 sequence of a healthy 24-years male subject. The

data were acquired on a SIEMENS Trio Tim 3T MRI Scanner with a 1mm3 resolution.

A DWI sequence with 72 slices was acquired with an echo spin sequence having the

following parameters: 64 directions, repetition time was 890.0 ms, echo time was 88.0

ms, thickness of 2.0 mm, and voxel size - 1.98×1.98×1.98 mm. To correct subject

orientation and geometrical distortions, the T1 and DWI data were aligned with a voxel

similarity-based affine registration procedure. The registered DWI data were re-sampled

to 1mm3 and transformed into DTI using the FSL toolbox [Jenkinson et al., 2012].

Head model was segmented with the LBF method [Cardenas et al., 2013], setting a

Gaussian kernel with scale σ=3 considering five different tissues, namely skin, skull,

CSF, WM and GM. We used the GFDARM algorithm to perform forward calculations

taking the isotropic conductivities from Table 4.1. Further, we used the registered

DTI data to approximate the anisotropic conductivity tensors D in the white matter,

considering four head models, particularly, a simple full isotropic model that we used a

test model, and three different anisotropic ratio modeling with the following eigenvalues

https://ida.loni.usc.edu/login.jsp
https://ida.loni.usc.edu/login.jsp
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Model DLE [mm] DOE [deg ]

A 2.33± 1.32 ↑ 8.400 11.06± 7.48 ↑ 45.74

B 2.64± 1.53 ↑ 12.23 12.73± 9.47 ↑ 63.44

C 2.58± 1.48 ↑ 11.47 11.92± 7.98 ↑ 59.44

Table 4.2: Dipole estimation error due to neglect the anisotropic WM.

estimation for the anisotropic WM:

Model A We set the anisotropic white matter conductivity using a constant 1 : 0.11

(radial:tangential) ratio with a volume constrain as assumed in [Wolters et al., 2006].

Model B We set the anisotropic white matter conductivity eigenvalues using the

fractional anisotropy (FA) local measure as a variable ratio considering a spherical

volume constrain, following [Gullmar et al., 2010]:

FA =

√
1

2

(
3− 1

tr(R2)

)
(4.5)

Where R = D/tr(D) is the normalized diffusion tensor D, and tr(·) stands for the

trace operator.

Model C We used of the anisotropy ratio (AR) measure given in [Hallez et al., 2008]

and formulated as:

AR =
λmax

0.5(λa + λb)
(4.6)

Where λmax = max(λi) is the major eigenvalue, and λa, λb are the secondary

eigenvalues in the diffusion tensor D.

Figure 4.12 shows the dipole estimation errors using the isotropic model as test

model, and the three anisotropic WM models A, B and C as reference models. We show

Axial, Coronal and Sagittal views of the DLE for the three anisotropic WM considered

models. In case of the model A, the results measure the errors when neglecting the

anisotropic nature of WM, while in the simulations B and C results reflect the source

localization performance when neglecting the variable ratio of the anisotropic WM.

Table 4.2 shows the dipole estimation errors due to neglect the anisotropic WM.

We illustrate the DLE and DOE mean, standard deviation (std) and maximum (max )
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Figure 4.12: Dipole estimation errors due to different anisotropic WM modeling

values (mean ± std ↑ max) for the three considered anisotropic WM models. Results

show the lowest values of DLE and DOE for the model A.This can be explained since the

model considers only constant anisotropy ratio and does not assume highly anisotropic

areas of the WM. In turn, simulation B provides larger DLE and DOE values due to the

inclusion of information varialbe eigenvalues extracted from the DTI data, emphasising

the highly anisotropic areas in the white matter. Finally, the simulation C performs a

bit lower error values since the used variable anisotropic ratio (that is, AR Eq 4.5) is

smoother than the FA measure.

Achieved DLE and DOE values are highly correlated in all three simulations.

Nonetheless, the maximun DLE values slightly differ between model A and models

B and C. The same situation remains for the DOE but in a lower rate. The significant

separation between the estimated mean and maximum values is due to the presence of

white matter areas having very dissimilar anisotropic values, especially in the deeper

areas of the brain with strong anisotropic behaviour as the corpus callosum. Obtained

results show significant influence of the anisotropic variable ratios of deep brain sources

reaching values of 12 mm and 60 deg for DLE and DOE, respectively.

Finally, we perform a parametric inverse comparison using the RHM data set.
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We calculate reciprocity solutions using the GFDARM algorithm and a 128 BioSemi

electrode array, estimating a reference anisotropic WM model following the setup

presented in section 4.2.2, and comparing against full isotropic test model.

Figure 4.13: DLE due to neglect the WM anisotropy.

Figure 4.13 shows the DLE due to not include anisotropy in the WM tissue,

exposing a significant impact in the source localization, where the DLE errors can

be larger than 8mm, especially in deep brain areas. Similarly, the DOE can be larger

than 48 degrees, also in deep brain areas. Furthermore, the results are consistent

with other works reported in the literature [Vorwerk et al., 2014, Wolters et al., 2006,

Hallez et al., 2007a, Bashar et al., 2008c].

4.4.4 Multiple tissues influence in the forward modeling

As a final test, we analyze the dipole estimation errors due to not include multiple tissue

compartments with varying conductivities in the realistic forward modeling. Further,

we calculate forward reciprocity models using GFDARM with isotropic conductivities

taken from Table REF. We employed the 9-layer RHM segmentation (Figure 4.2) as

the reference model, including the additional tissues representing eyes, fat, muscle and

blood vessels. Additionally, we used the 5-tissues segmentation for the RHM model as

the test model in a parametric inverse setup following [Cuartas et al., 2017b].

Figure 4.14 shows Axial, Coronal and Sagittal planes for the DLE comparing

the 9-layer reference model against the simplistic 5-layer test model using the RHM

data. Results show DLE larger than 20 mm in the deep brain and inter-cortical GM

areas. This result is also consistent with the literature, where the complexity of the

realistic head model often increase the accuracy of ESI techniques [Vorwerk et al., 2014,

Strobbe et al., 2014a, Irimia et al., 2013, Irimia et al., 2011].
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Figure 4.14: Dipole localization errors for a 9-tissues segmentation against a simplify

5-tissues head model.

We also analyze the influence of anisotropic blood vessels modeling, based on

our previous work [Cuartas et al., 2017b], considering the analysis of low-frequency

anisotropic behaviour of blood vessels in the human body [Wtorek et al., 2005].

To perform the arteries segmentation, we apply a mask that is extracted from a

T2-angiogram and enables estimation of the blood flow direction for the RHM data

set. Then, a kernel with six directions is convolved with the mask to produce a

normalized vector map that describes the eigenvectors inside the segmented arteries.

Further, we model the anisotropic blood vessel setting local eigenvectors R that points

towards the local eigenvector of the blood vessels gradient. The anisotropic blood vessels

conductivity eigenvalues at the maximum movement are defined as λ=diag(σb, σa, σb),

where a σa=0.21S/m, and σb=0.49S/m, following [Wtorek et al., 2005].

Figure 4.15: Dipole localization errors due to neglecting the anisotropic blood vessels.
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We set a 9-layer anisotropic blood vessel reference model and compared against

an 8-layer test model without blood vessels segmentation compartments. Remaining

tissues where considered isotropic with conductivity values taken from Table 4.1. Figure

4.15 shows three different views (frontal, posterior and bottom), for a DLE 3D map,

revealing that neglecting the anisotropic blood vessels induce DLE larger than 10 mm

in zones near to the Willis polygon (deep brain areas). Moreover, mean DLE was 4 mm

for the GM area, and potentials propagation differences can be larger than 30µV in

zones near the corpus callosum. Few works reported in the literature analyze the impact

of blood vessels in forward modeling [Fiederer et al., 2016], and to our knowledge, only

this work analyzes the influence of an anisotropic blood vessels in forward modeling.

4.5 Discussion

We present a flexible framework to calculate patient-specific forward models using the

GFDARM algorithm. The framework can include anisotropic tensor information in a

voxel-wise setup (section 4.2.4, Figure 4.6). Moreover, we introduce methodologies to

compute local eigenvectors and eigenvalues in the skull (section 4.2.1, Figure 4.4) and

white matter (section 4.2.2, Figure 4.5) tissue compartments. Additionally, we present

a novel anisotropic blood vessel modelling (section 4.4.4) for a 9-layer MRI based head

data (section 4.1.2). Further, our results show notable attenuation of the magnitude and

also a significant deviation of the equipotential lines over the scalp surface as a direct

effect of anisotropic modelling using the proposed GFDARM solution. This result

is similar to other works [Lanfer et al., 2012, Montes et al., 2013]. Also, we estimate

parametric inverse solutions to analyze the dipole estimation errors due to neglect

the skull anisotropy (Figure 4.11), registering DLE bigger than 20mm. Moreover,

analyzing WM anisotropy neglecting (Figure 4.13), we found DLE errors larger than

8mm, especially in deep brain areas. This result was also similar to the reported in

[Wolters et al., 2006, Hallez et al., 2008, Haueisen, 2007, Vorwerk et al., 2014].

4.5.1 Influence of the anisotropic forward modeling

The anisotropic behaviour of skull and white matter significantly affects the potentials

propagation in realistic head models. Anisotropic modeling induces determinant

potential scalp attenuations, inducing also notable deviations of the equipotential lines

as resported in section 4.4.1. Our results also show 50 to 70 percent electrode scalp
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potential attenuation (Figure 4.7). Moreover, equipotential lines tend to align with

local dominant eigenvectors of skull and white matter displacing the equipotential lines

(Figure 4.8) and producing deviated potential patterns in the WM, and tangential to

radial restrictions in the skull compartment (Figure 4.8). Results show that anisotropic

head modeling directly influences the potentials propagation in the human head, and

based on the results, we suggest using anisotropic estimation in forward modeling.

4.5.2 Influence of skull anisotropy modeling

We develop a skull anisotropic framework for patient-specific data adapted to the

GFDARM algorithm. Accordingly, we estimate a smooth skull mesh from the

RHM dataset segmentation (section 4.1.2). Skull mesh is aligned with the MRI

segmented data, and the mesh normals are used to determine local eigenvectors for

the volumetric skull compartment applying an iterative propagation methodology

(see section 4.2.1). Furthermore, to analyze the skull modeling, we defined a

spherical 3−layer isotropic skull model (Figure 4.9) finding a high correspondence

with the single layer anisotropic model (Figure 4.10) [Cuartas et al., 2014b]. This

result is consistent with similar studies reported in the literature [Montes et al., 2016].

Furthermore, we used the RHM data to analyze the influence of neglecting the

anisotropic skull in an inverse parametric solution, finding DLE ’s larger than 20mm

in cortical GM areas (Figure 4.11), and DOE up to 115deg. Our results show that

neglecting the anisotropic skull induces significant errors in the dipole estimations being

similar to the reported in the literature [Vorwerk et al., 2014, Dannhauer et al., 2011,

Marin et al., 1998, Pohlmeier et al., 1997]. Thus, one can select a 3−layers isotropic

skull compartment, but the segmentation of spongy bone from MRI is often a difficult

task, and some authors use probabilistic atlas segmentation based on the energy invasive

CT data [Torrado et al., 2016, Montes et al., 2016, Lanfer et al., 2012]. Due to this,

and based in our results, we strongly suggest modeling the skull as a single anisotropic

layer if the segmentation does not include hard and spongy bone tissue compartments.

4.5.3 Influence of white matter anisotropy modeling

Anisotropy in he white matter can be modeled using DWI data and DTI estimation.

We develop a WM anisotropic framework for the GFDARM algorithm using

DTI data and a tensor scaling transformation, using volume constraint to obtain

anisotropy conductivity WM maps following [Vorwerk et al., 2014]. Moreover, early
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anisotropic forward modeling consider constant radial to tangential eigenvalues

[Wolters et al., 2006, Basser et al., 1994, Hallez et al., 2008]. However, the anisotropic

distribution in the WM is not regular, and there are zones with highly anisotropic

behaviour as the corpus callosum, in contrast, there are other areas with near isotropic

behaviours, like the regions surrounding cortical brain areas [Basser et al., 1994]. On

the other hand, latter works also use the eigenvalue information from the DTI

[Vorwerk et al., 2014, Tuch et al., 2001]. We analyze three different WM anisotropy

models, namely, a constant radial to tangential eigenvalue ratio, and two variable

eigenvalue estimations based on the DTI data [Cuartas et al., 2014a]. Obtained results

show significant influence of the anisotropic variable ratios of deep brain sources

reaching values of 12 mm and 60 deg for DLE and DOE, respectively (Figure 4.12).

Finally, we test the WM anisotropy modeling for the RHM data with eigenvalues

obtained from the scaled DTI (Figure 4.5, Eq 4.1). Our results show that the anisotropic

modeling of the WM is especially important in deep brain areas, where we obtained

DLE larger than 8mm, and DOE larger than 48deg (Figure 4.13). Accordingly,

our suggestion based on the results is that the WM anisotropy eigenvalues must be

obtained/adapted from DTI data and not fixed with a constant radial to tangential

ratio.

4.5.4 Influence of multiple tissues in the forward modeling

Finally, we analyze the influence of multiple tissues definition for the 9−layer and

the commonly used 5−layer head data. Our parametric inverse solution results show

DLE larger than 20 mm in deep brain and inter-cortical GM areas. This result is also

consistent with the literature, where the complexity of the realistic head model often

increases the accuracy of ESI techniques [Vorwerk et al., 2014, Strobbe et al., 2014a,

Irimia et al., 2013]. Moreover, we introduce an anisotropic blood vessel modeling

based on gradients from the T2 angiomap of the RHM data. Our results show

mean DLE of 4mm, with a big impact in zones near to the Willis polygon (deep

brain areas) resulting in DLE larger than 10mm. To our knowledge, this is the first

analysis for the anisotropic blood vessel in forwarding modeling, and other works

analyze isotropic blood vessels influence [Fiederer et al., 2016]. Our suggestion is to

use more detailed head models for ESI solutions, including several tissues segmentation

with proper conductivity definitions. This suggestion is similar to the affirmed by

[Irimia et al., 2013, Irimia et al., 2011].



Chapter 5

Forward model influence in the ESI

task

The synergetic effects connecting spatial and functional techniques allows reduction of

the weakness for single method analysis [Grech et al., 2008]. Specifically, EEG Source

Imaging (ESI) relating structural head models and distributed source localization

techniques improves the time and spatial resolution of single MRI or EEG analysis

[Michel et al., 2004]. ESI information is used for diagnosis and preoperative stages

of brain surgery being, in most cases, the only suitable analysis tools because

of the high risk of surgical interventions [Martinez et al., 2017, Voges et al., 2011,

Titto et al., 2004, Waberski et al., 2000].

ESI techniques allow the estimation of neuronal activity from electrical potentials

measured over the scalp (EEG). In particular, ESI solution needs real EEG signals,

a method for mapping of the measured activity from electrodes to the sources

(EEG inverse problem solution), and a correct modeling of the potentials conduction

and morphology of the head, meaning, a forward solution. In this regard, the

accuracy of ESI solutions directly depends on the capabilities of the forward model

to adequately describe the information from sources to sensors [Grech et al., 2008,

Strobbe et al., 2014a, Vorwerk et al., 2014]. We use the GFDARM technique to

calculate patient-specific head models, analyzing model complexity (number of tissue

compartments) and anisotropic modeling in a Bayesian model selection framework

following [Rigoux et al., 2014].

89
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5.1 EEG source imaging (ESI)

Dipole current sources from large clusters of pyramidal cells are the precursors of the

EEG (see section 2.1.1). Current dipoles representing synchronous activation in the

brain cortex generate electric fields that propagates through the head volume, reaching

the scalp. A single current dipole can reach several electrodes over the scalp surface

(as shown in Figure 2.4(a)). Moreover, typical EEG protocols like the 10− 20 system

contain 20 to 35 electrodes, regularly distributed over the scalp surface. Further, recent

hdEEG arrays contain up to 256 sensors [Liu et al., 2018]. By contrast, distributed

source localization techniques consider several thousands dipole sources in the GM.

Thus, dipole source estimation or EEG inverse problem becomes an ill-posed problem,

because the unknown information (sources) is larger than the available information

(sensors) [Grech et al., 2008]. Due to this, EEG inverse solutions must rely on prior

knowledge of the propagated sources, in addition to the observed EEG measurements.

Therefore, Bayesian approaches establish the ESI as a linear problem formulated on

a distributed source modeling, allowing the inclusion of source priors information to

solve the EEG inverse problem. We use a Bayesian framework where a generalized

verisimilitude cost function known as free energy is optimized to find a unique solution

using Restricted Maximum Likelihood (ReML) methods [Martinez et al., 2017].

Figure 5.1: Brain imaging technologies.

Figure 5.1 show the spatial (log(mm)) and temporal (log(seg)) resolutions for

the most comonly used brain imaging technologies, including an energy invasiveness

color bar. Figure illustrates the positron emission tomography (PET), single photon
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emission computed tomography (SPECT), functional magnetic resonance (fMRI),

magneto-encephalography (MEG), invasive or intracranial EEG (IEEG), and EEG

source imaging (ESI). The Figure 5.1 points that ESI is the technique with more

desired properties including minimum invasiveness, high temporal resolution (100ms),

and good spatial resolution (reaching 2mm for hdEEG). Thus, ESI solutions transform

the EEG information into sources activations, allowing brain functional analysis with

higher spatial resolution compared with the simple EEG registers while preserving the

high temporal resolution. Moreover, Bayesian distributed solutions allow Bayesian

model selection (BMS) analysis [Stephan et al., 2009] and random effect analysis

[Rigoux et al., 2014] that we use to find the head models (forward solutions) that best

represents the EEG considered signals [Strobbe et al., 2014a].

5.1.1 Event related potentials

Particular EEG responses associated with specific sensory, cognitive or motor events

are known as Event-Related Potentials (ERPs). Further, the EEG contains several

simultaneously brain processes, consequently, the brain response to an event of

interest is usually unperceptible in a single EEG recording [Britton et al., 2000,

Lange et al., 1997]. Thus, to obtain recognizable brain response due to a specific event

is necessary to record various EEG trials for a specific stimulus, and then, making a

time average to emphasise the repetitive event response eliminating the background

noise [Castaño et al., 2015, Wakeman et al., 2015]. Ensemble averaging (EA) method

has been widely used to extract the ERPs from a noisy background. The method makes

two critical assumptions: i) Assumes that the on-going background EEG activity is a

statistically random process, and will, therefore, be canceled out by averaging over a

large number of trials, leaving the non-random ERPs signals. ii) Assumes that ERP’s

signals are similar for each trial included in the average [Jaskowski et al., 1999].

Figure 5.2 shows the ERP’s signals (Figure 5.2(a)), scalp potentials map (Figure

5.2(b)), and ESI maps using MSP algorithm (Figure 5.2(c)) for a visual stimulus

event. ERPs Figure 5.2(a) show variational dynamics across stimulus trials for a

single experiment. Such variations may be associated with fluctuating attention levels,

adaption to stimuli, fatigue, or other unknown factors [Haufe et al., 2016]. Thus EA

methods may fail to track trial-to-trial variations both in latency and amplitude. For

this reason, different models to extract the relevant information had been employed

during past years, including Wiener filter, Adaptive filter, Maximum-Likelihood Method
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(a) ERP’s (b) Scalp map

(c) EEG source imaging (ESI)

Figure 5.2: ESI solutions for a visual ERP stimulus.

and Autoregressive Process among others [Kilic et al., 2003].

5.2 The lead-field matrix

5.2.1 The source space

Forward modeling solution provides the potential for the whole conductivity volume

concerning a single dipole source placed in the GM compartment. However, ESI

solutions requires only the electrode potentials induced by a set of dipole sources, this

is known as a lead-field matrix L ∈ RNE×ND relating NE electrodes (sensors) due to

ND dipole sources placed in the brain (as explained in section 3.1.6). Furthermore,

distribute ESI solutions requires not only discrete source spaces for the GM, but also

source prior information about the relation of the sources with other neighbouring

dipoles. To fulfill this task, most ESI solutions nowadays use single bidimensional
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meshes as source spaces, providing not only a directly renderable GM shaped surface

but holding also connections between neighbour sources (source priors) and normal

dipole orientations respect to the GM surface (dipole moments). However, the human

head is volumetric, and GM is a volumetric compartment and not a single mesh interface

surface. Nonetheless, most volumetric techniques use surface meshes as source space,

losing volumetric interpretation about the head model.

5.2.2 Volumetric priors

We assumed a distributed volumetric source space for the GM compartment, taking a

regular spacing δE in the three orthogonal directions for dipole positioning (we use δE =

3mm in this work). Furthermore, for every single dipole, we estimate a 3D influence area

δγ with a specified distance from the dipole position, this area grants estimation of the

neighbouring information that we use to calculate the Green’s function adjacent matrix

as source priors for distributed solutions following [Strobbe et al., 2014b] (we use δγ =

5×5×5mm in this work). Moreover, we estimate the dipole moments (orientations)

using mesh surfaces from the GM and WM boundaries and propagating the mesh

normals to estimate the dipole moments having normal directions respect to the GM

cortex (as done in section 4.2.1, Figure 4.4). Finally we calculate lead-field matrices

Lm∈RNC×ND in a reciprocity approach using GFDARM for a given electrode disposition

with NC channels, and source space with ND sources (dipoles).

The figure 5.3 show a volumetric neighbor influence area of δγ = 5mm3 where the

analyzed dipole (green arrow) have 5 dipole neighbors (red arrows), for a δE = 3mm

regular source spacing. In the figure we can also appreciate the normal estimation from

both, WM, GM, and the directions of the estimated GM normals after the propagation

process (yellow arrows).

5.3 Distributed inverse solutions

For a EEG dataset Y ∈RNC×T of NC sensors, T time samples, and a given lead-field

matrix Lm ∈ RNC×ND , the magnitude of the neural activity J∈RND×T for ND

current dipoles distributed in the GM, is generally represented by the general linear

model [Dale et al., 1993]:

Y = LmJ +Ξ (5.1)
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Figure 5.3: Volumetric priors estimation. Showing from left to right the GM and WM

meshes used to estimate the cortex normal directions in the GM with an iterative

normal propagation. The figure also illustrates a planar view of the Green’s gaussian

volumetric neighbour around a single dipole.

Where Ξ∈RNC×T , is an additive white noise matrix with covariance cov(Ξ) =

exp(λ0)IC , where INC
∈RNC×NC is an identity matrix, and λ0∈R+ an hyperparameter

modulating the sensor noise variance. Under the previous premise, source estimation

can be expressed by the expected value of the posterior source activity distribution,

which can be computed from the input data using the Baye’s theorem, as follows:

P (J |Y ) =
P (Y |J)P (J)

P (Y )
(5.2)

We can solve Eq 5.2 assuming that J is a zero mean Gaussian process with prior

covariance cov(J) = Q∈RND×ND . Consequently, brain activity estimation is carried

out by solving the maximum-a-posteriori problem in the form:

J̃ = argmax
J

{P (J |Y )} ≈ argmax
J

{P (Y |J)P (J)} (5.3)

The optimization problem from Eq 5.3 yields the estimation of the following form:

J̃ = QL>m(QΞ +LmQL
>
m)−1Y (5.4)
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Requiring prior information about the source covariance matrix Q. Further,

we consider three different source prior covariance matrices, namelly Loreta-like

(LOR) priors [Harrison et al., 2007], Empirical Bayesian Beamformer (EBB) priors

[Belardinelli et al., 2012], and Multiple Sparse Priors (MSP) [Friston et al., 2008].

5.3.1 Loreta-like (LOR) priors

This formulation considers that sources vary smoothly over space. A smoothing

function with the desirable behavior is proposed in [Harrison et al., 2007], using a

Green’s function QG = exp(σGM), with QG∈RND×ND , where GM∈RND×ND is a graph

Laplacian that comprises inter-dipole connectivity information about all neighboring

dipoles, and σ∈R+ rules the spatial expansion of the activated areas. Consequently,

the source prior is computed as:

Q = exp(λ1)QG (5.5)

with λ1∈R+ and hyperparameter to be estimated.

5.3.2 Empirical Bayesian Beamformer (EBB) priors

EBB assumes one global prior for the source covariance main diagonal, where the

off-diagonal elements are zeros, i.e., no correlations assumed . Thus, the d−th position

of the source covariance matrix main diagonal is calculated as [Belardinelli et al., 2012]:

Q = diag
(
exp(λ1)(lm

>
dC

−1
Y lmd)

)
(5.6)

where lmd∈RND×1 is the d-th column of the lead field matrix, and CY∈RNC×NC is

the EEG data covariance matrix.

5.3.3 Multiple Sparse Priors (MSP)

MSP source covariance matrix is constructed as a sum of a set of P patches

{Qp, p=1, . . . , P} each one reflecting one potentially activated region of cortex, weighted

by the respective hyperparameter λp, as follows [Friston et al., 2008]:

Q=
P∑
p=1

exp(λp)Qp, (5.7)
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5.3.4 Free Energy as cost function

To estimate the hyperparameter set {λΞ, λP }, we use the verisimilitude function

known as free-energy [Wipf et al., 2010]. In this regard, for a given EEG

recording and a certain forward model m, the free energy can be expressed as

[Mart́ınez Vargas et al., 2016]:

F (m)=−Nt

2
Tr(∆−1C)− Nt

2
ln |∆| − NcNt

2
ln2π − 1

2
(µ− η)TΩ−1(µ− η) + 1

2
ln |ΥΩ−1| (5.8)

where ∆ ∈ RNC×NC is the estimated model covariance, computed as

∆=LQL>+QΞ ; C ∈ RNC×NC is the measured data covariance, µ,η ∈ <ND×1 are the

prior and posteriors means of the hyperparameters {λΞ , λp}. Likewise, Υ,Ω ∈ RND×ND

are the posterior and prior hyperparameter covariances. | · | represent the matrix

determinant operator.

Therefore, maximizing the free-energy cost function Eq 5.8 can be considered as

a trade-off between the accuracy and the complexity of the solution. The accuracy

penalizes the difference in variance between the measured EEG data Y and the

estimated solution Ŷ =LJ . The complexity provides a measure of the difficulty level

to optimize the hyperparameters for a given prior. Hence, the free-energy Eq (5.8) can

be divided as follows:

F (m)=accuracy(λ)− complexity(λ), (5.9)

Free Energy can be maximized using standard variational schemes

[Wipf et al., 2010]. To perform this optimization scheme, we use a greedy

search (GS) algorithm. Further, the set of GS hyperparameters were tuned

through the Restricted Maximum Likelihood (ReML) algorithm, following

[Belardinelli et al., 2012, Friston et al., 2008].

5.3.5 Bayesian model selection (BMS)

To compare different forward models using the Bayesian Framework, define the

dependency on a certain forward model m, Eq 5.2 as:

p(Jm|Y ,m)=
p(Y |Jm,m)p(Jm)

p(Y |m)
, (5.10)
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where p(Jm) represents the prior assumptions about the source activity and p(Y |m)

the model evidence [López et al., 2012]. Furthermore, the log evidence log p(Y, λ̂),

of the free-energy computed with the optimal set of estimated hyperparameters,

provides an approximation to the log model evidence log p(Y |m) [López et al., 2012,

López et al., 2014]. In consequence, the free-energy can be used for Bayesian model

selection. Hence, some metrics based on the free energy values are defined to test the

likelihood of obtaining a model in favor of another model, given the EEG data as follows

log(ψ(m1,m2))=
p(Y |m1)

p(Y |m2)
=F (m1)− F (m2) (5.11)

where F (m1) and F (m2) are the free energy corresponding with a model 1 and a

model 2, respectively. The log group Bayes factor (Ψ) is defined as the sum of the

individual log Bayes factors over N subjects as follows:

log(Ψ)=
N∑
n=1

log(ψn(mi,mj)) (5.12)

where, the subscripts i, j refer to the models being compared, and N is the number

of subjects. According to [Penny et al., 2004], a model can be chosen in favor of

another when there is a difference larger than three units for the Eq 5.12. This

criteria apply for both the log ψ and the log Ψ at group level. It is worth to note

that Ψ is a simple index for direct model comparison and it does not account for

group heterogeneity or outliers. Furthermore, we performed a random-effects analysis

to estimate the expected posterior model frequency that expresses the belief that a

model has the highest posterior probability, relative to the other models following

[Rigoux et al., 2014, Stephan et al., 2009]. Additionally, we calculate the Bayesian

omnibus risk (BOR) that quantifies the probability that the expected posterior model

frequencies are all equal to each other. Thus, if the BOR is smaller than 0.25, then

we can be confident in the model selection based on the exceedance probability results

[Strobbe et al., 2014a].
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5.4 Experiments and results

5.4.1 New York head model (NYM)

We selected an additional head model template to compared against the RHM (see

section 4.1.2). To this end, we use the New York segmentation template that combines

the ICBM152 v2009b data (0.5 mm3 resolution) with the ICBM152 v6 image template of

the non-brain area, having 1 mm3 resolution [Huang et al., 2016] including the extended

neck that uses an average of 26 subjects heads. The extended model is segmented

with a 0.5 mm3 resolution, admitting five tissues (scalp, skull, CSF, GM, and WM).

Additionally, we perform a downsampling process to a 1 mm3 resolution space, taking

into account a minimum thickness of two voxels to ensure that the scalp tissue surrounds

the electrode positions in the lead fields as suggested in [Hallez et al., 2009]. Likewise,

we fix to one voxel the minimum thickness for CSF to make sure that the GM tissue is

fully contained in the CSF and do not have connected voxels to the skull as suggested

by [Ramon et al., 2006, Wolters et al., 2006].

5.4.2 EEG Data set

We use the multi-subject, multi-modal human neuroimaging dataset including fMRI

and EEG (among other neuroimaging data) [Wakeman et al., 2015]. We selected 15

patients, 8 males, and 7 females, with an age range 23 − 37 years, all Caucasian with

European origins. An evoked potential visual experiment is carried out using face

images stimuli including two sets of 300 greyscale photographs, half from famous people

and the other half from nonfamous people (unknown to participants). In the data set,

half of the faces were male, half female, leaving 3 trial-types (conditions): Familiar Faces

(Famous), Unfamiliar Faces (Nonfamous) and Scrambled Faces. Stimuli were projected

onto a screen approximately 1.3mts in front of the participant, and visual markers were

projected to synchronize the stimuli apparition. A 70 channel Easycap EEG cap was

used to record the EEG data simultaneously, with electrode layout conforming to the

extended 10− 10 system. EEG data were acquired at an 1100 Hz sampling rate with a

lowpass filter at 350 Hz and no highpass filter, including processing stages for automatic

detection of bad channels throughout the run, notch-filtering of the 50 Hz line-noise

and its harmonics and a trial rejecting stage. Finally, an averaging the remaining trials

for each of the three conditions was made to calculate ERP’s for 1s time windows. For

more details about EEG data set see [Wakeman et al., 2015].
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Furthermore, we used the 3D electrode positions included in the database to

coregister the sensor positions to the head volumes (RHM and NYM) space using

a fiducial-based similarity transformation. Additionally, the electrode locations are

projected again towards the center direction of the head volume in order to find electrode

voxel positions not surrounded by air as suggested in [Hallez et al., 2009].

5.4.3 Complexity considerations for the Head Models

We define six different forward model setups increasing the complexity (number of

tissues and anisotropy) of the models. First, we build three isotropic models, beginning

with the simplest model M1 including only three tissues, namely skin, skull, and brain,

then, for the model M2, we add the CSF, and for the model M3, we divide the brain area

into GM and WM. Further, form the 5 tissues model M3, we include skull anisotropy

for model M4, WM anisotropy for model M5, and both, skull and WM anisotropy for

the most complex M6 model. Finally, we calculate 10 different head models using the

AFDRM algorithm for the 70 electrodes of the EEG database using M1 to M6 for RHM

and M1 to M4 for NYM structural MRI data, as shown in Table 5.1.

Isotropic Anisotropic (M3)

M1 : skin, skull, brain M4 : skull anisotropy

M2 :M1 + CSF M5 : WM anisotropy

M3 : M3 + brain → GM,WM M6 : skull & WM anisotropy

Table 5.1: Proposed head models

5.4.4 Bayesian model selection for group studies

We used Bayesian model selection based onfree-energy in order to study the head model

influence in the studied group [Rigoux et al., 2014, Stephan et al., 2009] (see section

5.3.5). To this end, we calculate free-energy factors to the full ERP’s time window (1s)

using the LOR and EBB techniques for the 15 considered patients, the three different

visual stimuli and the 10 proposed head models for a total of 900 test. Then we group

the free-energy of the reconstructions over stimulus conditions for each ESI technique

to apply a random effects analysis at the group level, where the log group Bayes factor

can be obtained summing over the 15 subjects [Stephan et al., 2009].



100 Forward model influence in the ESI task

5.4.5 Model comparison based on free energy

The Figure 5.4 show the expected posterior model frequency for both ESI considered

techniques, EBB (right) and LOR (left) and the 10 considered head models. Both charts

include a vertical dashed line separating the RHM and the NYM structural head data.

Moreover, the Figure REF includes separate results for the different visual stimulus,

Famous (blue), Unfamiliar (green), and Scrambled (red), showing the BOR values in

the button part of the charts.

Figure 5.4: Random fixed analysis showing expected posterior model frequency, for

EBB and LOR inverse solution techniques.

The EBB results show strong evidence in favor of the most complex model M6, with

an appreciable increment of the exceedance probability between the simplest model M1

and the models M2 and M3. Moreover, models M4 and M6 including skull anisotropy

show the highest probability evidence for the three different experiments, indicating

that the skull modeling is a decisive factor in the ESI applications. Furthermore, the

M5 model including WM anisotropy has the best performance compared against the

isotropic models (M1, M2, and M3). NYM show the same behavior of RHM models,

but with lower probability differences. Similarly, the LOR results show an increasing

exceedance probability for the most complex models, but the best performance is for

the model M4 including only skull anisotropy. All test have low BOR values indicating

strong evidence in favor of the obtained results.
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5.4.6 ESI visual stimulus results

We analyzed the stimulus-response for the most complex model M6 using EBB and

LOR source estimations a single subject.

Figure 5.5: Stimulus response.

The figure 5.5 shows the maximum intensity projection maps for the three considered

stimuli namely, Famous, Unfamiliar and Scrambled. Concerned to the ESI techniques,

EBB shows a better energy distribution with more concentrated areas in the visual

cortex areas, in comparison, LOR shows a spread energy distribution making more

difficult the analysis of specific activation zones. Moreover, the figure shows appreciable

differences in the energy distribution for the different considered stimulus, with less

intensity in the Thalamus area for the Unfamiliar stimulus compared to the Famous

stimulus for the EBB technique that cannot be appreciated with LOR.
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5.4.7 Anisotropic modeling influence in the ESI task

We analyze the model complexity influence in the source localization using the EBB

technique for three models namely, M1, M3 and M6, considering two different subjects,

S8(top) and S9 (button) from the database. This test shows the effect of increasing the

number of tissues (M1 to M3) and also the effect of include anisotropy in both, WM

and skull areas (M3 to M6).

Figure 5.6: Model complexity.

Figure 5.6 shows a normalized maximum intensity projection for the considered

models, where it can be appreciated that the energy is more spread in model M1

compared to model M3. Moreover, the inclusion of anisotropic skull and WM for

the model M6 show not only a concentrated activation area but also possible spatial

separation for individual activations in the visual cortex that appears as a mixed and

single activation in the models M1 and M3. We used red squares to show the source

activation zone for the model M1, and green squares for the concentrated area of

activation in the model M6, additionally, we used blue squares to show the source

energy separation between two different sources that are very near one to each other.
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Moreover, the energy separation for more complex head models is consistent with similar

analysis results [Liu et al., 2018].

Neglecting Skull anisotropy

We analyzed the considered ESI techniques for a single subject and the Unfamiliar

stimulus ERP, taking into account the model M3 (5 isotropic layers) and M4 (5 layers

anisotropic skull) for the RHM structural MRI dataset.

Figure 5.7: Influence of anisotropic skull in the EBB and LOR ESI techniques.

Fig 5.7 shows the maximal intensity projection for EBB (top) and LOR (button).

We can appreciate a generalized energy reduction in the maximal intensity projection

maps for the anisotropic skull model M4 compared against the isotropic model M3

using the EBB ESI technique. Furthermore, we calculate a histogram equalization to

emphasize the contrast in the energy reduction effect for the specific zone indicated in
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the middle of the figure. The same effect can be appreciated in the button part of the

figure for the LOR technique. For both techniques, we select the area with larger brain

activity. This effect can be appreciated in every subject under consideration, showing

an average 15.06% reduction of the dipole magnitudes for EBB and 18.23% for the LOR

technique in presence of skull anisotropic skull. Additionally, as expected, the results

show a better energy distribution with concentrated activity using the EBB estimation.

5.4.8 Comparing with fMRI data

Finally, we compared the ESI results with fMRI registers for BOLD responses in a

single subject.

Figure 5.8: fMRI comparison.

We calculate maximum intensity projections for the three orthogonal directions
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considering the fMRI registers and the EBB and LOR ESI techniques, in a single

subject, for the three considered stimuli. We highlighted the most relevant zones of

activation for the fMRI face visual stimuli suggested by [Henson et al., 2003], using red

squares for the Famous stimuli, and blue squares for the Unfamiliar stimuli. Moreover,

we highlighted the zones with high intensity near the suggested fMRI areas for the EBB

results, showing a good correspondence between the fMRI data and the obtained results.

However, EBB show spread activation areas with high intensity in zones differing from

the fMRI data, with a visual energy cluster near the corpus callosum and in the posterior

visual cortex. Moreover, LOR results show general consistency in the activation virtual

cortex zone, but loosing discriminative spatial possibilities due to the spread energy

distribution.

5.4.9 Population dependent forward modeling influence in the

ESI task

We evaluate the patient-dependent head model influence in the ESI task for three

different structural data, namely, the standardized MRI template (NY) (see section

5.4.1), a demographic population atlas (AT), and a set of 25 patient-specific MRI scans

(PD).

MRI and EEG/ERP registers were acquired from 25 children within an age

range between 5 to 16 years old, having two socio-cultural levels (high–medium and

low–medium). All patients were randomly selected from the preschool, elementary,

and secondary courses at a few private and public schools of Manizales city. For legal

purposes, the children’s parents agreed to participate in the research through a written

permission. According to the children’s historical data, the exclusion criteria were

established for mental retardation, individuals with neurological antecedents (history

of head trauma, epilepsy, and related) or referring psychiatric disorders (psychiatric

hospitalization history, autism, and similar).

MRI strcutural data

Patient dependent/specific head model (PD): A set of T1-MRI scans were

acquired from the same 25 children under study, employing a 1.5 T General Electric

OPTIMA MR 360 scanner with the following parameters: 1mm3 voxel size, TR=6,

TE=1.8, TI=450, sagittal slices of 256×256. Three scans were performed for each child
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with a posterior averaged stage to improve the MRI quality, obtaining a single MRI for

each patient.

Atlas head model (AT): We built an anatomical head atlas from the 25

averaged MRI scans, employing the Diffeomorphic Anatomical Registration (DARTEL)

algorithm generating a population dependent template [Goto et al., 2013] using the

SPM Toolbox [Karl et al., 2007].

EEG/ERP

ERP’s Data were obtained following an oddball experimental paradigm for cognitive

evoked potentials with rare visual stimuli, where each evoked stimulus lasted 130 ms,

while the time delay between the onsets of two consecutive stimuli was 1 s. During

each stimulation, the subjects had to pay attention to the rare stimulus (termed target)

and count their occurrence, ignoring the presence of remaining stimuli (non–targets).

The non–target stimuli were displayed on 80% of the trials, whereas the target stimuli

–on 20% of remaining trials, resulting in approximately 160 non–target stimuli and 40

target stimuli. The EEG recordings were collected using 19 electrodes symmetrically

placed at the standard positions of the international 10-20 system, operating a single

(Cadwell) Easy III EEG amplifier. Data were subsampled at 250 Hz and segmented in

1-s epochs, which were averaged separately over each subject and stimulation condition.

As a result, two ERPs were obtained following the different stimulus conditions for each

subject, namely, visual target (V-T) and visual non-target (V-nT).

Forward modeling and priors estimation

We obtained 5-layer segmentations for the AT and PD MRI data using FreeSurfer

(https://surfer.nmr.mgh.harvard.edu/), considering skin, skull, CSF, GM and

WM tissue compartments. Moreover, we calculate isotropic head models using

conductivity isotropic values from Table 4.1. Further, we calculate forward solutions

using the GFDARM algorithm, in a reciprocity space for the 19 coregistered EEG

sensors. Additionally, we calculate GM mesh surfaces as priors holding 10.000 vertex,

and corresponding to dipole source positions. The mesh was obtained applying

morphological operators over the volumetric segmentation to obtain source spaces fully

contained in the GM tissue compartment.

https://surfer.nmr.mgh.harvard.edu/
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Bayesian model selection for group studies

We estimate free-energy values of the inverse solutions over subjects, corresponding

with the ERP’s of each stimulation condition namely, visual target (V-T), and visual

non-target (V-nT). Further, we use Bayesian model selection for group studies following

[Rigoux et al., 2014, Strobbe et al., 2014a] (see section 5.3.5), defining three different

model grups for the three considered MRI data, namely NY, AT, and PD . Then, the

log group Bayes factor, expected posterior probability and Bayesian omnibus (BOR)

are estimated.

Figure 5.9: MSP results for Bayesian model selection expected posterior probability

and Bayesian omnibus risk (BOR) for two different stimuli, namely visual target (V-T)

and visual non-target (V-nT).

Figure 5.9 shows that the best model is the PD data achieving the highest expected

posterior probability with high confidence results performing small BOR values for

both tests V-T, and V-nT. Results are similar for NY and AT data considering the V-T

stimulus, by contrast, AT outperforms NY data for the V-nT stimulus. Further, NY

data results are very similar, with a low expected posterior probability, showing the low

correlation with the considered population. Moreover, second best choice goes for the

AT data set, depending on the population.

Figure 5.10 shows the ESI solution for a single patient. The ERP waveform

shows a prominent temporo-occipital negative peak around 180 ms, which is mostly

associated with visual processing. Moreover, the reconstructed activity localizes some

components in the vicinity of the temporal lobe, covering the visual cortices for all the

tested models. However, NY model spreads the brain activity, which makes that some

activations appear in non-visual related areas. Besides, for the AT head model we can

apreciate an activation of the middle temporal gyrus, associated with visual-related

tasks [De Vos et al., 2012]. Additionally, for the PD head model, an activity patch
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Figure 5.10: ESI solution for a representative subject. Figure shows the EEG-ERP

(top-left), the scalp topographic map (top-right), and the ESI reconstructed activity.

Views: Outside right (Or), Outside left (Ol), Top (To), Bottom (Bo), Inside right (Ir)

and Inside left (Il).

appears over the posterior cingulate gyrus, which occurs when a high demand of

visual processing/discrimination is required, suggesting that this particular head model

enhances the reconstruction of neural activity.

5.5 Discussion

We present a Bayesian model selection framework, adapted to the GFDARM head

modelling, which allows group studies to analyse the influence of the forward modelling

in distributed ESI solutions, including anisotropy information for the skull and white

matter tissue compartments. The framework is based on the log evidence for the
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free-energy cost function, with an additional random effect analysis to estimate

expected posterior model evidence in a group level following [Rigoux et al., 2014]

(see section 5.3.5). Our solution includes volumetric priors for distributed inverse

solutions (see section 5.2.2), taking advantage of the proposed GFDARM volumetric

technique, and providing 3D activation maps that are comparable with functional

neuroimaging techniques like fMRI. Moreover, our results show evidence in favour of

more complex models including up to 5-tissue compartment, and anisotropy skull and

WM information. These results are similar to the reported in [Strobbe et al., 2014a,

Strobbe et al., 2014b]. To our knowledge, this is the first time that the anisotropic

behaviour is analysed for a FDM based forward modelling including anisotropy, and

using Bayesian model selection for group studies, or volumetric priors information.

Finally, we analyse patient dependent and population dependent forward modelling

in the ESI task using the BMS framework. Results show very favourable evidence for

patient-specific head models, compared to population dependent atlas and generic head

models.

5.5.1 Head models complexity and anisotropic modeling

influence in the ESI task

We analyze the forward modeling complexity influence in the ESI task using two MRI

based dataset, namely, RHM and the template NYM. We calculate GFDARM solutions

in a reciprocity setup for the 70 electrodes configuration given in the multi-modal,

multi-subject database [Wakeman et al., 2015]. Bayesian model selection for group

studies using random effect analysis results (section 5.4.5, Figure 5.4) show concluding

evidence in favor of most complex head models, showing an increasing posterior model

frequency probability for the EBB inverse solution on the RHM dataset, thus, from

M1 to M4 we can appreciate an ascending behaviour of the exceedance probability for

the three different stimulus conditions. This behaviour is also similar for the NYH

dataset, suggesting an across data tendency. Further, this behaviour remains for the

LOR inverse solution technique with a lower increasing rate. Results are similar to the

reported in [Strobbe et al., 2014a], where only analyze CSF inclusion for a template

model without anisotropy modeling. Moreover, skull modeling seems to be determinant

in the ESI solutions, as suggested also in [Montes et al., 2013, Vorwerk et al., 2014,

Lanfer et al., 2012]. Based on the results, we suggest the inclusion of anisotropic skull

modeling in forward calculations when using distributed ESI techniques for single layer
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skull compartments. Moreover, model complexity is also an essential factor, and, based

on our results, we suggest that at least 5-layer tissue compartments segmentation are

needed to use head models for distributed ESI techniques, this result is similar to the

suggested by [Strobbe et al., 2014a].

5.5.2 Volumetric priors in ESI solutions

Using volumetric priors information is possible to build 3D functional maps relating ESI

distributed approaches. Results show in Figure 5.5, present differentiable activation

patterns for the three different considered stimulus, namely, Familiar, Unfamiliar and

Scrambled faces. Further, EBB show a better distribution of activation zones compared

against LOR results, tending to concentrate in outer cortical zones of the brain, and

also spreading the activation zones across large regions, decreasing the discrimination

of specific brain areas [Harrison et al., 2007]. Furthermore, model complexity impact

in the volumetric ESI maps seems to be important in the detailed analysis of particular

activation zones in the brain. Initial results showing in Figure 5.6 suggest a separation

between near activation zones, but further analysis is needed to conclude about this

finding, despite the fact that results are similar to the reported in [Liu et al., 2018].

Additionally, we analyze the influence of neglecting the skull anisotropy in the ESI task,

in specific Figure 5.7,We show relevant attenuations in the ESI energy for anisotropic

skull, suggesting again that skull head modeling is crucial in the ESI task. Moreover,

we obtained similar results for parametric inverse analysis (section 4.4.2, Figure 4.11),

showing consistency in the results concerning the skull modeling. Finally, we compared

the results with a fMRI analysis (Figure 5.8), showing good correspondence between

EBB results and fMRI registers.

Based on our results, we presume that volumetric priors using more complex head

models, and including anisotropy can go one step further in the ESI analysis, providing

3D spatial activations maps that can be directly compared with the existent functional

neuroimaging analysis like fMRI.

5.5.3 Bayesian model selection for group studies

The Bayesian model comparison approach using free energy is a probabilistic framework

based on log evidence, and we don’t have direct information about how good

the models are. However, the random effects analysis results showing exceedance

probabilities estimates which model is more probable depending on the data. Advances
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and successful results in this field supports the used technique [Rigoux et al., 2014,

Penny, 2012, Stephan et al., 2009, Friston et al., 2007]. Additionally, results showing

that model complexity better represents the analyzed data, and the evidence in favor

of anisotropic modeling are consistent with findings in the forward modeling filed

over the last three decades [Liu et al., 2018, Strobbe et al., 2014a, Montes et al., 2013,

Wolters et al., 2006, Saleheen et al., 1997, De Munck, 1988]. By contrast, parametric

inverse solution only analyze two forward models in the reciprocity space, and one

must assume the most complex or better model. Results based on parametric inverse

solution suggesting only differences between two fordward solutions and do not include

specific EEG signals findings. In consequence, the Bayesian model selection for group

studies presented in this work and adapted to the proposed GFDARM solution using

volumetric priors is a relevant tool to analyse the influence of the structural head models

with realistic functional EEG data.

5.5.4 Population dependent forward modeling

As a final test, we use BMS to analyse the dependency of the structural head

modeling on the population, for a visual EEG/ERP’s stimuli study. Three

different structural isotropic data where analyzed, namely a generic NY (NYM),

a population-dependent atlas (AT), and patient-specific head models (PD). Head

modeling consider reciprocity GFDARM solutions for surface meshing priors (see

section 5.4.9). Results show in Figure 5.9 exhibit relevant evidence in favor of

patient-specific data for the two considered stimulus experiments. Moreover, results

show that the population-dependent AT head model has better correspondence with

the analyzed data compared against the generic head model NY. Moreover, Figure 5.9

illustrates good correspondence between the ERP’s experiments and the activations

zones. Furthermore, based in the results, we suggest using patient-specific head

modeling for ESI analysis, and, as a second choice, population-dependent atlases that

better represents the morphology of the analyzed subjects.
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Chapter 6

Final Remarks

6.1 General Conclusions and Main Contributions

Development of a suitable EEG forward solution framework

The EEG forward solution framework presented in Chapter 3 include finite differences

coefficients formulated for the conservative form of the generalized Poisson Eq 2.1,

and transition layer analysis to fulfill the Newman flux and Dirichlet conditions

(Eq 2.2 and Eq 2.3). Further, the proposed method include ghost-filling boundary

analysis to deal with the homogeneous Newman flux boundary condition Eq 2.4,

solving the forward problem only for the significant discrete potentials contained inside

the irregular-boundary volume. Besides, a reciprocity space solution is introduced

to solve the forward problem in the sensors domain. The presented method has

anisotropic capabilities and voxelwise conductivity modeling, with direct adaptation

to the available discrete neuroimage data. We refer to the proposed method as

ghost-filling finite difference anisotropic reciprocity method (GFDARM).

Moreover, results show high correspondence with the analytical spherical solution

formulated by [De Munck et al., 1993], and improved accuracy in comparison with the

state-of-the-art Simbio FEM solution [Vorwerk et al., 2018].

As a future work, we plan to analyze the proposed GFDARM technique against the

anisotropic Simbio FEM solution.

113
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Development of a conductivity head model framework

extracted from neuroimages

We develop a forward realistic head modeling framework, using neuroimages, and

including anisotropic estimation for the skull and white matter tissue compartments.

In Chapter 4 we detailed the proposed methodology. Furthermore, our results show

significant influence in the potential propagation from sources to sensors due to forward

anisotropic modeling. Results indicate that neglecting anisotropic head information

can induce considerable errors in the ESI task, where the impact of ignoring the

skull anisotropy yields dipole localization errors larger than 20mm. Similarly, we

analyzed the influence of neglecting the white matter anisotropy, finding that the

dipole localization errors can be larger than 8mm, with an increasing impact in deep

brain areas. Besides, we analyze the influence of multiple tissue definitions showing

that ignoring other relevant tissue compartments in the head, as fat, muscle or blood

vessels can induce dipole localization errors larger than 20mm. Finally, computational

performance results for Chapter 2 show considerable evidence on how the presented

realistic head modeling framework using the proposed GFDARM outperforms the

state-of-the-art Simbio FEM technique.

As a future work, we intend to analyze the influence of realistic three layer isotropic

skull head modeling to compare against the 1-layer anisotropic definitions.

Development of a framework to analyze the influence of the

forward modeling in the EEG source localization task

Finally, in Chapter 5 we present a framework to analyze the influence of the forward

modeling in the EEG source localization task, using Bayesian model selection for group

studies, and random-fixed analysis to quantify the forward model that better reproduce

the available EEG registers using ERP’s experiments. Our results show significant

evidence in favor of more complex forward head modeling, including skull and white

matter anisotropic estimations. Moreover, we analyze the influence of the forward

modeling in the ESI task related to the dependency of the structural neuroimage

based data to the group studied. Obtained results show evidence in favor of structural

patient-specific data, and, as the second option, population dependent atlas data. As a

final remark, is important to notice that we introduce a novel volumetric source priors

method, allowing ESI analysis in a volumetric space solution. Results can be directly
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compared against functional neuroimage based techniques like fMRI.

As a future work, we aim to study the patient-specific dependency including

anisotropic modeling. Besides, we plan to analyze the volumetric priors framework

with more complex ESI estimations like MSP.

6.2 Future work

Besides the method-specific analyses proposed above as future work, more general topics

should also be consider:

Parallel implementation: We intend to develop a GPU based parallel

implementation for the GFDARM technique to calculate lead-pairs in a single parallel

assignment. We presume that this kind of deployment will allow realistic froward model

calculation for hdEEG reciprocity configurations in a 10 minutes time space. However,

memory allocation and computational capabilities must be deeply analyzed to fulfill

the requirements of the proposed task.

Global sensitivity analyzis: We want to investigate the possibilities of a global

sensitivity analysis using the GFDARM technique. However, based on the results

provide by cite [Salman et al., 2013, Salman et al., 2016], a fast parallel implementation

is needed to perform a significant amount of forward calculations in an affordable time

window.

Patient-specific brain disorders head modeling: We also aspire to analyze the

impact of realistic head modelling in specific brain diseases like epilepsy, Parkinson or

brain tumors. In particular [Irimia et al., 2011] model a traumatic brain injury with

more than 20 tissue conductivity considerations. Also, in [Martinez et al., 2017], the

authors improve the epileptogenic zone estimation without including anisotropy. Thus,

we wanted to use the GFDARM technique to improve the forward modeling, analyzing

its impact in ESI estimation for general brain disorders.
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6.3 Academic Discussion

Cuartas, Morales, E., Cardenas, Pena, D., Castellanos, Dominguez, G., et al. 2014.

Influence of anisotropic white matter modeling on EEG source localization. 2014 36th

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society, EMBC 2014, 2014:4920–4923.

Cuartas, Morales, E., Hallez, H., Vanrumste, B., Castellanos, Dominguez, G.,

et al. 2014. Three-layer-isotropic skull conductivity representation in the EEG forward

problem using spherical head models. 2014 36th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society, EMBC 2014. 2014:4904–4907.

Cuartas, Morales, E., Martinez, Vargas, J., Cespedes, Villar, Y. C., Arteaga,

Daza, L., Castellanos, Dominguez, G., et al. 2017. Influence of population dependent

forward models on distributed EEG source reconstruction. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics). 10337 LNCS.

Cuartas, Morales, E., Torrado, Carvajal, A., Hernandez, Tamames, J. A., Malpica,

N., and Castellanos, Dominguez, G. 2017. Influence of Anisotropic Blood Vessels

Modeling on EEG Source Localization. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

10337 LNCS:384–393.

Cuartas, Moreales, E., Acosta-Medina, C., and Castellanos, Dominguez, G. 2015.

iLU Preconditioning of the Anisotropic-Finite-Difference Based Solution for the EEG

Forward Problem. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pages 408–418.
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