
A Recurrent Neural Network approach
for whole genome bacteria classification

Luis Eduardo Lugo Mart́ınez

National University of Colombia
Faculty of Engineering

Department of Systems and Industrial Engineering
Bogotá, Colombia

2018

A Recurrent Neural Network approach
for whole genome bacteria classification

Luis Eduardo Lugo Mart́ınez

A final project submitted in partial fulfillment of the requirements for the
degree of:

Master in Systems and Computer Engineering

Advisor:
Ph.D. Emiliano Barreto Hernández

Line of Research:
Bioinformatics and Health

Research Group:
Bioinformatics

National University of Colombia
Faculty of Engineering

Department of Systems and Industrial Engineering
Bogotá, Colombia

2018

To my family

Acknowledgements

I would like to thank the National University of Colombia for providing an
amazing learning environment that stimulates education, scientific research,
and cultural development.

I would also like to thank Professor Ph.D. Emiliano Barreto for his guid-
ance throughout a fascinating field of research. Also, his support and advice
were fundamental to the successful completion of the project.

Last but not least, I would like to thank my family for their unconditional
support, encouragement, and understanding during the whole process.

vi

Abstract

The classification of bacteria plays an essential role in multiple areas of
research. Those areas include experimental biology, food and water indus-
tries, pathology, microbiology, and evolutionary studies. Although there exist
methodologies for classification – such as mass spectrometry, single-nucleotide
polymorphisms, microscopic morphology, and neural network approaches –
a transition to a whole genome sequence based taxonomy is already under-
going. Next Generation Sequencing helps the transition by producing DNA
sequence data efficiently. However, the rate of DNA sequence data generation
and the high dimensionality of such data need faster computer methodologies.

Machine learning, an area of artificial intelligence, has the ability to ana-
lyze high dimensional data in a systematic, fast, and efficient way. Therefore,
we propose a sequential deep learning model for bacteria classification. The
proposed neural network exploits the vast amounts of information generated
by Next Generation Sequencing, in order to extract a classification model
for whole genome bacteria sequences. A distributed representation based on
k-mers of k = {3, 4, 5} provided an efficient encoding for the bacterial se-
quences. The classification model relies on a bidirectional recurrent neural
network architecture. It generates an accuracy of 0.99455 ± 0.00281 for 14
species, 0.95031 ± 0.00469 for 48 species, and 0.89107 ± 0.00392 for 111
species. After validating the classification model, the bidirectional recurrent
neural network outperformed other classification approaches, such as Naive
Bayes and Feedforward neural network. The proposed model provides an au-
tomated identification method. It infers species for bacterial whole genome
sequences and it does not require any manual feature extraction.

Keywords: whole genome sequence, recurrent neural network, deep
learning, bacteria classification

vii

Contents

1 Introduction . 1
1.1 Contribution and outline . 4

2 Bacteria Classification . 5
2.1 Mass spectrometry . 5
2.2 Whole genome sequencing for clinical samples 6
2.3 Genome wide average nucleotide identity 7
2.4 Microscopic morphology . 8
2.5 Deep neural networks . 9

2.5.1 Common deep learning architectures 12
2.5.2 Frameworks for implementation . 14
2.5.3 Bacteria related implementations 15
2.5.4 Other biological sequence implementations 17

3 Sequential Deep Learning System . 20
3.1 Recurrent Neural Networks . 22

3.1.1 Unit equations . 25
3.2 Sequence representations . 26
3.3 Neural network training and evaluation 29

3.3.1 Regularization . 32
3.3.2 Metrics . 33

3.4 Implementation . 34
3.4.1 Deep learning module . 36
3.4.2 User interface . 39

4 Experimental Results . 41
4.1 Classifiation model tests . 45
4.2 Species coverage increase . 51
4.3 Validation of results . 56

viii

Contents ix

5 Conclusions . 59
5.1 Future work . 61

A Species list . 63

References . 67

List of Figures

2.1 Classification of bacteria based on microscopic morphology
identification . 9

2.2 Some image processing steps in the microscopic morphology
identification pipeline. 10

2.3 A perceptron with sigmoid as the activation function 13

3.1 k-mers sequence representation . 27
3.2 Distributed representation based on k-mers 29
3.3 Stochastic Gradient Descent with varying learning rate 30
3.4 Symbolic cyclic graph for the BRNN . 37

4.1 Whole genome sequence lengths . 43
4.2 Speedup curves for distributed representation computations . . . 46
4.3 Training curves for the BRNN . 47
4.4 Confusion matrix heat map for the base model 50
4.5 Model behavior with sequence fragments 51
4.6 Mean values for the alignments in the attention mechanism . . . 53
4.7 Confusion matrix heat map for the final model 54
4.8 Validation of results with NB and MLP classifiers 56

x

List of Tables

2.1 Open source frameworks available for deep learning
implementations . 15

2.2 Bacteria classification system results for 16S rRNA data 16

3.1 Hyperparameters for training deep learning architectures 31
3.2 Confusion matrix for a binary classification model 34
3.3 Proportion for paritioning dataset . 36

4.1 WGS number of projects per bacteria species with at least a
thousand sequences . 42

4.2 WGS set partition into training, testing, and validation sets . . 44
4.3 Influence of k-mers representation on the accuracy 48
4.4 Variation of accuracy per sequences count 49
4.5 Model accuracy against minimum sequences per species 52
4.6 Balanced vs. Unbalanced dataset per minimum sequences count 52
4.7 Base vs. final model accuracies per minimum sequences count . 55
4.8 Results comparison with NB, MLP, and alternative RNN

configurations . 58

A.1 WGS number of projects per bacteria species with at least a
hundred sequences . 66

xi

Chapter 1

Introduction

A principle is merely a statement
of an impossibility

Alexandre Koyré
(Desolneux et al., 2007)

In biology research, it is fundamental to have classification methods to
properly identify all the organisms. Classifications methods based on pheno-
type have considerable flaws, including the need for cultured samples and the
lack of differentiation among certain groups (Olive and Bean, 1999; Mohamad
et al., 2014). Therefore, classification based on genotype or DNA sequence
analysis is a better approach for biological identification (Olive and Bean,
1999).

Along archaea and eukaryota, bacteria constitute one of the three major
branches in the evolutionary tree. Microbes are relatively simpler than other
organisms -although the simplicity is often deceptive. Because of this, they
help to answer very important questions in science. Among microbes, bacteria
are highly adaptable unicellular organisms. They can usually survive and
thrive in extreme environments. Moreover, bacteria are structurally simpler
and haploid. So, they serve as model organisms to study gene mutations
and their specific function. These factors make them a platform to study
complex eukaryotic organisms, thus, bacteria have been exploited to perform
vast amounts of genetic analysis (Srivastava, 2016; Lodish et al., 2004).

In particular, the identification of bacteria plays an important role in mul-
tiple areas of research. Experimental research in biology benefits from the
elegant mechanisms of gene activity control in bacteria, the rapid rate at
which they grow, and the powerful genetics they have (Lodish et al., 2004).
Pathology and microbiology also benefit from bacteria taxonomy as it serves
as the basis for understanding certain diseases (Mohamad et al., 2014). More-

1

2 1 Introduction

over, a fast identification of bacteria is critical to ensure the quality of water
and food products (Singhal et al., 2015). It is also important from the evolu-
tionary standpoint because it allows the documentation of changes in genes
and proteins (Lodish et al., 2004).

Starting from the taxonomy system in (Woese et al., 1990), a very com-
monly used method for bacteria classification is based on gene sequences com-
parisons of small ribosomal subunits. This method is known as 16S rRNA-
based taxonomy. However, recent advances in next-generation sequencing
(NGS) – and the availability of algorithms and heuristics for DNA sequence
analysis – are easing the transition to whole genome sequence (WGS) taxon-
omy.

Indeed, WGS methods are taking over bacteria taxonomy, which is defined
as the process of systematic classification of species and strains. But it is far
from being an official classification. Instead, it is a flexible classification that
can change according to new advancements in biology. Names and descrip-
tion do not constitute facts. They are susceptible to revisions and opinionated
changes. The importance of WGS methodologies is related to the speed of
processing and the increase of taxonomy resolution (Garrity, 2016). The lat-
ter is considered one of the most significant drawbacks of 16S mRNA-based
technologies. The increased resolution is quite relevant as classification meth-
ods should be able to differentiate an increasingly larger number of organisms

Recasting existing taxonomy to new classification data from WGS is al-
ready happening. However, 16S rRNA methodologies will continue to be
an important area because they are the benchmark used for comparison
of emerging methodologies. They enabled the creation of a base map for
taxonomy data – which has unparalleled importance in life science research
(Garrity, 2016).

The most common method for WGS classification is the average nu-
cleotide identity (ANI). New algorithms have been developed to implement
this method and they are now routinely used. ANI compares two sequences
with more than 70% similarity and generates a similarity index. Based on that
index, the relationship between sequences of the same species is considered in
the index range of 94% to 96%. Nonetheless, this kind of method is computa-
tionally expensive because sequences must be aligned beforehand. Also, the
comparison is conducted between pairs at a time, which takes considerable
resources when dealing with high-throughput sequence analysis (Varghese
et al., 2015; Garrity, 2016).

Thus, as advances in NGS generate high dimensional biological data at a
faster rate, and more curated databases of biological sequences are publicly
available, there exists the need to process considerable amounts of high di-
mensional data in a systematic and efficient way. The unprecedented amount
of genomic data generated by NGS platforms increases the demand for large-
scale data analysis (Pais et al., 2014). Extracting useful information from
those large datasets is challenging. Manual processing of such volumes of data
is slow, expensive, and impractical. It is also error prone and highly subjec-

1 Introduction 3

tive (Fayyad et al., 1996). Often, traditional software tools can not process
the large datasets or efficient processing algorithms can not be developed
beforehand (Dahl, 2015; Tan et al., 2018). In fact, available software systems
and algorithms for biological sequence processing should be improved. Com-
putational tasks pose some of the biggest challenges in processing efficiency
regarding WGS projects (Scholz et al., 2012).

In the traditional approach for software development, practitioners design
a set of steps and then program a computer to execute them. Depending
on the input data, the computer executes the set of steps and generates the
corresponding results. However, it is widely accepted that biological systems
start from a basic set of rules, for instance, random variation and natural
selection. Building on top of those simple rules, they allow the evolution and
adaptation of organisms to changing environmental conditions. Inspired by
such approach, computer scientists stopped focusing only on building systems
using a top-down method. Instead of programming complex rules to fully
specify a computing system, they started to take a bottom-up approach.
First, they program a basic set of rules and then, they let the system adapt
through multiple iterations and automatically infer their own complex sets
of rules (Dahl, 2015; Mitchell, 1995).

One of the methods that leverages the bottom-up approach is machine
learning. It provides what is known as a ”meta-algorithm”, which enables
practitioners to tell the computer what needs to be solved, instead of telling
it how to solve it (Dahl, 2015; Mitchell, 1995). Because of this, machine learn-
ing enables a set of methods to analyze high dimensional data and extract
patterns from it. The results might be used to predict future events through
models or make informed decisions when different possibilities create uncer-
tainty. Probability theory is the base for machine learning methodologies, as
that area of mathematics is the natural choice for dealing with uncertainty
(Murphy, 2012).

Deep neural networks are considered a turning point in machine learning,
setting records in some tasks that surpass human capabilities (Pastur-Romay
et al., 2016). They are particularly tailored to extract patterns from high-
dimensional data, which make them applicable to different areas of science,
business, and government. Such type of neural networks has been giving im-
pressive results as of lately, even surpassing other machine learning methods
in diverse areas such as speech recognition, visual object recognition, natu-
ral language understanding, particle accelerator data analysis, prediction of
potential drug molecules activity, and effects on gene expression and disease
caused by mutations in noncoding DNA (LeCun et al., 2015; Dahl, 2015).

In fact, there is an explosion of deep learning applications for research in
bioinformatics (Min et al., 2016; Nguyen et al., 2016). Both bioinformatics
and computational biology are taking the benefits of deep neural network
approaches to leverage very large datasets of high dimensional data. Biolog-
ical datasets are explored to extract hidden structure within them and to
make accurate predictions. Applications of deep neural networks are found

4 1 Introduction

in regulatory genomics, drug discovery, cellular imaging, medical imaging, ge-
nomic data mining, biomedical signal processing, and sequence classification
(Webb, 2018; Min et al., 2016; Nguyen et al., 2016; Angermueller et al., 2016;
Bosco and Di Gangi, 2016). In particular, sequence classification is challeng-
ing because sequences do not have explicit features. The feature extraction
methods require domain expert knowledge and are highly problem–specific.
These methods can be labor intensive as well, thus representing a bottleneck
for high-dimensional genomic manual data processing (Angermueller et al.,
2016).

1.1 Contribution and outline

The main contribution of the project is to understand how the application of
deep neural networks can improve existing DNA sequence analysis tools for
Whole Genome Sequence classification of bacteria. An improved identification
system has the potential to help the ongoing transition from 16s ribosomal
RNA taxonomy to a whole genome based bacteria taxonomy. Also, it takes
advantage of the increasing amount of data generated from Next Generation
Sequencing technologies. This is particularly important because other meth-
ods become computationally more expensive as more data is available. But
deep learning methods are data-intensive applications that benefit from an
increasing amount of data available.

To achieve that goal, we propose a sequential deep learning architecture –
a recurrent neural network – for bacteria classification, using next generation
sequencing data. There are four specific objectives: prepare the NGS bacterial
data from GenBank, find the genome sequence representation that best suits
a sequential deep neural network, implement the recurrent neural network
architecture that best processes whole genome sequences, and validate results
with an existing model for bacteria classification.

The remaining of the document is organized as follows: Chapter 2 includes
a review comprising bacteria classification methods and deep neural networks.
Chapter 3 focuses on the method used for bacteria classification with recur-
rent neural networks. Experimental setup, results, and validation appear in
chapter 4. Finally, concluding remarks and future research are discussed in
chapter 5.

Chapter 2

Bacteria Classification

Bacteria have several advantages
as experimental organisms: They
grow rapidly, possess elegant
mechanisms for controlling gene
activity, and have powerful
genetics

(Lodish et al., 2004)

There exists a number of criteria for the classification of bacteria and
archaea, including morphology, genome size, lifestyle, relevance to human
disease, molecular phylogeny using rRNA, and genomic sequence analysis
(Pevsner, 2015; Mohamad et al., 2014). We consider different bacteria iden-
tification methods: mass spectrometry (Singhal et al., 2015), whole genome
sequencing for clinical samples (Hasman et al., 2013), genome wide Average
Nucleotide Identity (Varghese et al., 2015; Garrity, 2016), pattern recogni-
tion in image processing (Mohamad et al., 2014), and deep neural network
architectures (Rizzo et al., 2015; Bosco and Di Gangi, 2016).

We discuss existing approaches for bacteria identification, having in mind
important aspects such as the methodology used by the alternative, the
dataset used for the classification system or the group of bacteria consid-
ered for the identification, the number of ordered taxonomic ranks, if any,
the results obtained and reported quantities – which could be accuracy, pre-
cision, recall, identity percentage, and so on – and the limitations of the
method.

5

6 2 Bacteria Classification

2.1 Mass spectrometry

Mass spectrometry is a powerful mechanism devised to measure the mass
of molecules. In biology, such molecules include proteins and peptides. The
technique ionizes the molecules using laser energy. Then, using electric fields,
the ions are accelerated towards a detector. The time of flight is proportional
to the charge of the ion. But it is inversely proportional to the mass of the
molecule, allowing detectors to discriminate them (Singhal et al., 2015; Lodish
et al., 2004).

Matrix-assisted laser desorption ionization-time of flight mass spectrome-
try (MALDI-TOF MS) is one of the approaches using the mass spectrometry
mechanism. It is a fast, sensitive, and cost-efficient methodology for micro-
bial identification. It has been used by microbiologists for identification of
diseases caused not only by bacteria, but fungi and viruses as well. Other ar-
eas leveraging this technology include the detection of food- and water-borne
pathogens, identification of biological warfare agents, epidemiology, microbial
identification, and strain typing (Singhal et al., 2015).

Advantages include the realization of tests with cells or extract of cells.
Also, the method is accurate and less expensive than other methods based
on molecular detection. Among mass spectrometry limitations, it is necessary
to have entries in the database containing the results of peptides related to
the type strain of the organism. This should happen to correctly perform
the identification at the genera, species, subspecies, and strain level. More-
over, mass spectrometry requires costly laboratory equipment (Singhal et al.,
2015).

2.2 Whole genome sequencing for clinical samples

In clinical microbiology, a rapid extraction of relevant information from clin-
ical samples helps the speed of diagnosis, positively impacting control and
treatment. Whole genome sequencing has promising applications in public
health. It improves the understanding of bacterial evolution, outbreaks, and
transmission. It also helps to understand and potentially limit the inter-
hospital proliferation of pathogens. By the same token, WGS applied over
the clinical samples has the potential to considerably improve the diagnostic
times. However, there is a need for fast and reliable bioinformatics tools for
the data analysis required when processing whole genome sequencing results
(Hasman et al., 2013).

Chainmapper.py is a bioinformatics tool developed to address this need.
To conduct the research, Hasman et al. (2013) randomly choose 35 urine sam-
ples from patients suspected to have urinary tract infections (UTIs). Urine
samples are less complex than other clinical examples because they have low

2.3 Genome wide average nucleotide identity 7

contamination from human DNA and high concentration of bacterial cells.
The samples are analyzed by using three methods: conventional microbiology
diagnostic methods, whole genome sequencing of bacterial isolated samples,
and direct sequencing of pellets. Conventional microbiology methods use agar
plates to cultivate the samples, then it performs susceptibility tests and fi-
nally, it characterizes each sample. This procedure can take several days.
Bacterial isolated samples require a few days for culturing and subsequent
identification. Direct sequencing is the fastest of the three methods, requiring
less than 24 hours.

The Ion Torrent PGM system provides the sequencing for the bacterial
isolates. Once the sequencing results are obtained, a 16-mers based method
provides identification against complete bacterial genomes from NCBI. MG-
RAST1, a metagenomics analysis server (Meyer et al., 2008), enables the cal-
culation of host contamination and the proportion of bacterial species present
in the sequencing results. Chainmapper.py is the primary tool for the anal-
ysis. It performs species identification. But it also calculates an abundance
estimation graph and a microbial community profile. The profile is computed
by aligning the sequencing reads to a number of genomes, covering a hu-
man genome, complete and draft bacterial genomes, complete and draft fun-
gal genomes, and complete and draft protozoan and viral genomes (Hasman
et al., 2013).

An online database with almost 2000 variants provides information about
resistant genes in the samples (Zankari et al., 2012). Multilocus sequence
typing information is also included. The snpTree2 web server (Leekitcharoen-
phon et al., 2012) computes the phylogenetic maps with the most common
bacterial species.

Results from direct sequencing of samples - the fastest of the three meth-
ods - are highly reliable when compared to isolated bacterial samples, giving
the same results in less time. Also, result analysis enabled the identification
of bacterial species that were not identified by conventional microbiology di-
agnostic methods (Hasman et al., 2013). On the other hand, disadvantages
of the k-mers based identification method include the need to perform a
database search for every sample, which can be time-consuming depending
on the number of sequences. Also, Chainmapper.py is computationally expen-
sive, requiring a high-performance computing setup to provide fast results.

2.3 Genome wide average nucleotide identity

The polyphasic approach is a traditional method for asexual organism classifi-
cation. It relies on genotypic, phenotypic, and chemotaxonomic data in order

1 http://metagenomics.anl.gov
2 https://cge.cbs.dtu.dk/services/snpTree/

http://metagenomics.anl.gov
https://cge.cbs.dtu.dk/services/snpTree/

8 2 Bacteria Classification

to identify organisms. The species delineation is then performed on a con-
sensus of existing information. However, the whole-genome information of an
organism is its ultimate genetic signature. Also, sequencing whole genomes is
fast, accurate, and affordable nowadays. Thus, a better approach is to com-
pute genomic distance on whole genomes for identifying microbial species
(Varghese et al., 2015). To implement this approach, (Varghese et al., 2015)
propose the Microbial Species Identifier (MiSI). They also propose its use
to correct inconsistencies in existing taxonomic data and as a guide for new
species assignments –supplementing it with the polyphasic approach when
the need arises.

MiSI is a method to define prokaryotic species based on a combination
of two metrics: alignment fraction (AF) and genome-wide average nucleotide
identity (gANI). AF is the fraction of orthologous genes between a pair of
sequences. The code for AF and gANI computation is freely available at
https://ani.jgi-psf.org/html/download.php. It uses the MSimScan 3

tool for comparing pairs of genomes. After computing the AF and gANI
values for the pairs of genomes, a clustering process creates an undirected
graph relating whole genomes. Vertices of the graph are genomes while edges
connect genomes with AF greater than 0.6, and gANI greater than 96.5.

Genomic data for this study was part of the Integrated Microbial Genomes
(IMG) database4 (Markowitz et al., 2011), a publicly available dataset which
also has tools and viewers for analysis of genomic information in a compar-
ative context. Using the MiSI method, an inconsistency of around 18% was
found in taxonomic species definitions. The testing phase comprised 13151
prokaryotic genomes, 85.5M pairs of genomes, and 3052 species.

As far as advantages of the MiSI method are concerned, the graph con-
struction is independent of taxonomic data because it relies only on genomic
information. Also, Varghese et al. (2015) found that a genome reduction of
up to 25% had no effect on the results, making it reliable when draft genomes
are present. On the other hand, pairwise comparisons take more computing
resources than other automatic approaches. Also, as the number of sequences
grows, the number of pairs increases exponentially, generating a larger graph.
The approach also neglects physiological changes generated by variations in
single genes or small subsets of genes.

2.4 Microscopic morphology

An approach that incorporates machine learning techniques as part of the
processing pipeline is the microscopic morphology identification. It is an im-
age based methodology that helps to identify bacteria in an automated way.

3 http://www.scidm.org/
4 https://img.jgi.doe.gov/

https://ani.jgi-psf.org/html/download.php
http://www.scidm.org/
https://img.jgi.doe.gov/

2.4 Microscopic morphology 9

Image
processing

Feature
extraction

Classification
system

Color
Transformation

Microscopic
Image files

Image Filtering

Thresholding

Image
Segmentation

Edge
Detection

SIFT, SURF
Descriptors

Color
Histograms

Support
Vector Machine Resize

PCA for
Dimensionality

Bacterial
identification

K-Nearest
Neighbor

Neural
Network

Fig. 2.1: Classification of bacteria based on microscopic morphology identi-
fication. The diagram depicts three phases for identification: image process-
ing, feature extraction, and classification (Hassaballah et al., 2016; Mohamad
et al., 2014).

It also facilitates the construction of predictive models that take advantage
of morphology features and cell arrangements. The application of image pro-
cessing algorithms to bacterial microscopic images enables the identification
of organisms in high throughput analyses, which can process hundreds of
images at a time (Mohamad et al., 2014).

The processing includes three phases: image processing, features extrac-
tion, and classification (Figures ??). Image processing comprises resizing,
segmentation, color transformations, filtering, or thresholding. Once the mi-
croscopic image is preprocessed, a second stage extract features using color
histograms, edge detectors, or image descriptors (Mohamad et al., 2014).
Popular descriptors include Speeded-up Robust Features (SURF), Scale In-
variant Feature Transform (SIFT), and Fast Retina Keypoint (Hassaballah
et al., 2016; Alahi et al., 2012). If the features suffer from high dimensional-
ity, techniques such as principal component analysis (PCA) could be used for
dimensionality reduction. After extracting features per image, a classification
system identifies organisms using a number of methods such as support vec-
tor machines (SVMs), K-Nearest Neighbors, or neural networks (Mohamad
et al., 2014; Murphy, 2012).

Advantages of morphological identification systems are their simplicity,
fast processing, automatic classification, and low amount of human interven-
tion. Disadvantages include the need to have curated datasets for training in

10 2 Bacteria Classification

the classifier stage. Also, the reliance on phenotypical information for identi-
fication has been criticized for the need of cultured samples and the lack of
differentiation among certain groups (Olive and Bean, 1999; Mohamad et al.,
2014).

Fig. 2.2: Some image processing steps in the microscopic morphology iden-
tification pipeline. (a) Original microscopic image. (b) I2 component of the
OHTA color space. (c) Mask from filtering and thresholding the I2 compo-
nent. (d) Image segmenation. (e) Keypoints for FREAK descriptor. (f) Key-
points for SIFT descriptor. Original image from http://atlas.sund.ku.dk

http://atlas.sund.ku.dk

2.5 Deep neural networks 11

2.5 Deep neural networks

Based on neuroscience research, artificial neural networks emulate the pro-
cessing power of the large interconnected network of neurons inside our brain.
Their purpose is to understand the computational theory behind the brain
and the way it abstractly represents human intelligence. Artificial neural net-
works were originally created as mathematical models of the brain processing
tasks. Although nowadays it is known that neurons in the brain work in a
different manner, neural networks continue to provide popular pattern clas-
sifier models. The neural network comprises nodes – processing units – with
activation functions interconnected in layers through weights. Nodes mimic
the neurons, while the weight connections try to simulate synapses in the
brain. To train the neural networks, existing data sets provide an input –
output relationship that the network discovers through the learning process
(Alpaydin, 2014; Graves, 2012).

Research in this area not only helps us approach problem solving using
computing resources. It also contributes to the understanding of how the
brain works, and how humans and animals learn. Similarly, brain research
provides machine learning researchers with guidance to improve neural net-
work architectures (Dahl, 2015). For instance, Glorot et al. (2011) take ideas
from computational neuroscience to improve neural network models. They
focus their analysis on deep neural networks with rectified linear units (Re-
LUs), achieving considerable improvements by proving the way ReLU based
hidden layers make training much faster. Indeed, ReLUS are the most com-
mon implementation to model brain neuron activation. Neuroscience inspired
the fact that simple units can give excellent results when they work in a hi-
erarchical interconnected arrangement (Goodfellow et al., 2016).

Neural networks also allow for an efficient computation in parallel archi-
tectures, which are particularly difficult to program. Instead of manually
programming parallel processors, neural networks can be trained to compute
their own parameters. To train them, existing data sets provide an input-
output relationship that the network discovers through the learning process
(Alpaydin, 2014). This is known as supervised learning, where a set of inputs
is mapped to a certain output, and the parameters of the system are changed
to improve the matching of the model. Other learning methods include unsu-
pervised learning and reinforcement learning. In unsupervised learning, there
is a set of inputs but no expected output, thus, the model should extract
patterns from the inputs to create valid parameters. Reinforcement learning
is based on a system of punishments or rewards for the outputs generated,
which tailor the system for appropriate modeling (Murphy, 2012).

Neural networks can be classified as shallow or deep. The main differ-
ence between shallow and deep neural networks is the length of the possibly
learnable causal chains established throughout the processing layers (Schmid-
huber, 2015). Therefore, deep neural networks receive their name from the

12 2 Bacteria Classification

number of layers between input and output stages. More precisely, the term
deep refers to the path between input and output stages when considering
the neural network as a direct path. It also refers to the ability to compose
simpler units or representations to express complex concepts. The composi-
tion of simple mathematical units into networks can solve complex problems
requiring intelligence (Goodfellow et al., 2016; Rizzo et al., 2015).

Traditional machine learning algorithms depend heavily on the way in-
put data is represented. Each attribute of the proposed representation is
known as a feature. It usually requires considerable time and effort to find
the correct way to represent input data in order to get a good performance
in the machine learning method. The process also needs high domain specific
knowledge to extract the most important attributes of the input dataset. But
automatically learned representations usually have a better performance than
handcrafted feature extraction. When methods learn to represent input data
by themselves, we are talking about representation learning. Deep learning
models are a kind of representation learning. They learn not only the map-
ping between features and results, but the representation of input data itself
(Goodfellow et al., 2016).

Therefore, deep neural networks provide a way to infer models from the
raw data by extracting hidden structures from the information. They also
automatically extract the set of attributes that best represents the input
dataset – improving the learning process by encoding representations as a
nested hierarchy of simpler or less abstract representations (Rampasek and
Goldenberg, 2016; Goodfellow et al., 2016). For example, the Merck Molec-
ular Activity Challenge 2012 was won by machine learning experts with no
background in chemistry. The team led by George Dahl (Dahl, 2015) outper-
formed other techniques using only minimal preprocessing and no previous
feature extraction.

Very similar deep neural network architectures have worked for various
case studies in not related domains, which proves the suitability of deep
learning models to adapt to various problem domains. At the same time, it
proves the capacity of deep neural models to automatically extract features
from data in spite of dataset domain origin. It also showcases the ability
of deep neural networks to learn non–linear transformations in their hidden
structures and to generate distributed representations of input datasets. The
suitability of deep learning models for both supervised and unsupervised
approaches are also clearly seen from the multiple domains in which this
machine learning architecture is increasingly finding more applications (Dahl,
2015).

Disadvantages of deep learning architectures include the black box nature
of their processing layers and the inability to correct their wrong answers.
Currently, it is not possible to understand the inner processing performed
by such architectures. Therefore, good models can not be reused or repli-
cated. Moreover, when there are errors in input data processing, researchers
are unable to repair the inner structure to get correct answers (Rizzo et al.,

2.5 Deep neural networks 13

2015). Another disadvantage of deep neural networks is the training process,
as some architectures are difficult to properly train (Srivastava et al., 2014).
By the same token, the results from these architectures depend on the qual-
ity of input data. Thus, they require well annotated and large datasets for
successfully training the models (Webb, 2018).

2.5.1 Common deep learning architectures

Nowadays, popular deep learning architectures comprise Multilayer Per-
ceptrons, Convolutional Neural Networks, and Recurrent Neural Networks
(Jouppi et al., 2017).

Multilayer perceptrons (MLPs) represent models of artificial neural net-
works that are useful for classification and regression tasks. The perceptron
is the basic processing unit of the MLP (Figure 2.3). It comprises a series of
weights that transform the input nodes through a mathematical operation.
Then, an output node computes the result by combining such transformations
into a single value. If a system uses only one perceptron, it can only approxi-
mate linear functions of input data. Thus, it only performs linear regression.
But real applications usually require nonlinear regressions. MLPs implement
hidden layers of perceptrons between input and output nodes. Those hidden
layers enable the approximation of nonlinear functions for the input data.
An MLP with a single hidden layer and enough nonlinear nodes – process-
ing units – can approximate any continuous function in a compact domain.
Therefore, they are considered universal function approximators. (Alpaydin,
2014; Graves, 2012).

Fig. 2.3: A perceptron with sigmoid as the activation function. From (Lipton
et al., 2015)

14 2 Bacteria Classification

Both hidden layers and output nodes in MLPs have nonlinear activation
functions. Once one or more input nodes are activated, the information prop-
agates through the whole set of interconnected nodes in the subsequent layers,
up to the output layer. Such propagation is known as a forward pass. The
MLP response does not depend on the past or future inputs, it only depends
on the current input. Because of this, they are a good alternative for pattern
classification tasks (Graves, 2012).

Convolutional neural networks (CNNs) are models inspired by biological
visual systems. Specifically, they are inspired by the visual cortex of the brain,
where a combination of simple and complex neurons interact to build the
powerful natural visual system. CNNs comprise convolution layers, nonlinear
layers, and pooling layers. These models are quite successful nowadays for
their ability to process spatial and multidimensional information (Min et al.,
2016). Most of the record-breaking applications of these neural networks are
part of the machine vision area. But they have also found applications in
biological sequence analysis and speech recognition.

Most of the actual applications in semantic segmentation, object recogni-
tion, image classification, and image retrieval use CNNs. In biomedical image
segmentation, they have found applications at the pixel level in embryo image
processing, detection of mitosis in breast histology images, neuronal structure
segmentation in electron microscopy images, and tissue segmentation in MRI
scans. Segmentation applications at the image level include classification of
colon histopathology images into cancerous and noncancerous, segmenting
and classifying yeast microscopy images, counting bacterial colonies on agar
plates, and brain structure segmentation in MRI scans (Dolz et al., 2016;
Angermueller et al., 2016).

Current advances in parallel computing, optimization techniques, and net-
work architectures have enabled recurrent neural network (RNN) applica-
tions in large-scale deep learning problems (Lipton et al., 2015). They are
inspired by the cyclical connection of the neurons inside our brain. Neu-
ral networks with cyclical connections also include recursive and feedback
networks (Graves, 2012). Novel applications for recurrent networks include
unsupervised video encoding, video captioning, biological sequence analysis,
and program execution. Moreover, most of the advances in recurrent neural
networks come from new architectures rather than new algorithms.

2.5.2 Frameworks for implementation

There exist various frameworks available to implement neural networks. Some
of those tools include TensorFlow, Theano, Torch, Caffe, Neon, Deeplearn-
ing4j5 (DL4j), and the Computational Network Toolkit Abadi et al. (2016).

5 https://deeplearning4j.org/index.html

https://deeplearning4j.org/index.html

2.5 Deep neural networks 15

Framework Core Features

DL4j Java
Import neural networks from
other frameworks

OpenCV C++
Complete library with com-
puter vision capabilities

TensorFlow C++
Heterogeneous distributed
computing, flexible multi-
GPU support

Theano Python
Custom models, RNNs, Ease
of use with wrappers

Torch Lua
Functional extensionality,
RNNs, Reuse of existing
models

Caffe C++
CNNs, Computer vision, Sup-
port for pre-trained models

Neon Python
Good speed, No multi-
threaded CPU support

Table 2.1: Open source frameworks available for deep learning implementa-
tions. (Min et al., 2016; Angermueller et al., 2016; Bahrampour et al., 2015)

The image processing library OpenCV Bradski and Kaehler (2008) also has a
machine learning library as one of its five main components (See Table 2.1).

Given the amount of data processed by modern deep learning applications,
it is important to have distributed data processing platforms for deep neural
network implementations. Functional programming provides inspiration for
dataflow distributed platforms, where state transitions represent the process-
ing of data. Standard dataflow systems – such as Spark and MapReduce –
use directed acyclic graphs to model computations. However, those standard
systems fail to scale because mutable states and iterations are crucial for deep
neural network tasks, especially training operations. Because of this, param-
eter server systems – including DistBeleif and PMLS (Parallel ML System)
– were proposed for deep neural network models (Zhang et al., 2017).

Advanced dataflow platforms – such as TensorFlow and MXNet – describe
data processing as cyclic graphs with mutable states. They can also mimic
parameter-server systems functionality. Once graphs are specified, advanced
dataflow platforms translate them to executable models for subsequent ex-
ecution. Those cyclic graphs represent symbolic computational models that
can be partitioned, rewritten, and placed on distributed nodes for optimized
performance. The symbolic nature of the graphs makes them slower than

16 2 Bacteria Classification

other dataflow systems like Spark or PMLS. This happens because of the
high level of abstraction involved in the symbolic graph models. However,
they are more flexible, allowing execution of deep learning models in multi-
ple platforms. Also, they enable executions on different types of processors,
including CPUs, Graphics Processing Units (GPUs), and Tensor Processing
Units (TPUs) (Jouppi et al., 2017; Zhang et al., 2017).

2.5.3 Bacteria related implementations

Bosco and Di Gangi (2016) compared two different types of deep learning
models for automatic classification of bacteria species. Classification is per-
formed without a previous feature extraction process. They propose convo-
lutional neural networks and recurrent neural networks. For recurrent neural
networks, authors use the long-short-term memory (LTSM) model. For test-
ing purposes, the deep learning architecture was fed with a dataset encoded
according to the IUPAC nucleotide representation. The dataset is downloaded
from the Ribosomal Database Project (RDP) (Cole et al., 2013).

The dataset uses the 16S ribosomal RNA to identify five ordered taxo-
nomic ranks (Phylum, Class, Order, Family, and Genus). One architecture
implements a separate neural network for each taxonomic rank, while the
other architecture uses multitask learning by adding separate layers for each
taxonomic rank on the top of the processing layers. Their research allowed
to conclude that, overall, LSTMs have a better classification output than
CNNs. Another conclusion states that multitask learning improves the per-
formance of LSTM architectures, but it harms CNN models. They way the
system transforms the one-hot vector representation into a fixed length vec-
tor neglects important information in the nucleotide sequence. Moreover, the
ability of RNNs to handle sequences of varying sizes is not exploited because
a max pooling operation is conducted on the input sequence. Because of this,
each sequence in the dataset ends up with the exact same length (Bosco and
Di Gangi, 2016).

Rizzo et al. (2015) proposed a machine learning architecture for DNA se-
quence classification. Its implementation uses Theano, a python library for
artificial intelligence models. The system proposed is a convolutional neural
network for processing RNA sequences. The representation of RNA sequences
is performed using k-mers occurrences. The goal is to take advantage of con-
volutional neural networks ability to extract hidden features. Thus, the model
can extract features represented by k-mers from input sequences.

As far as testing is concerned, Rizzo et al. (2015) chose 16S rRNA se-
quences. They compare the proposed architecture with four existing machine
learning models, including Naive Bayes (NB), Random Forest (RF), Support
Vector Machine (SVM), and a previous model developed by the team. The
previous model by the same team is a classifier based on a General Regression

2.5 Deep neural networks 17

Rank Accuracy RNN Accuracy CNN

Phylum 0,992 ± 0.007 0.981 ± 0.007

Class 0,990 ± 0.008 0,978 ± 0.008

Order 0,941 ± 0.029 0,908 ± 0.021

Family 0,897 ± 0.023 0,851 ± 0.024

Genus 0,733 ± 0.030 0,692 ± 0.024

Table 2.2: Bosco and Di Gangi (2016) bacteria classification system results for
16S rRNA data, considering means and standard deviations for the multitask
learning tests.

Neural Network (GRNN) model. The research concludes that CNN models
get very good results at the different taxonomic levels. CNNs outperformed
NB, RF, and SVM classifiers when processing full-length 16S rRNA sequences
or 500bp fragments. Nonetheless, results obtained by the CNN are very simi-
lar to those obtained by the GRNN model. This happens when the models are
processing full-length 16S rRNA sequences. When the models process 500bp
16S rRNA sequence fragments, the CNN architecture manages to outper-
form all the other models. That is quite important because in metagenomics,
researchers usually have access only to fragments of DNA sequences.

2.5.4 Other biological sequence implementations

Proteins are essential for life. They perform cellular tasks and give cells their
structure. Twenty amino acids represent the building blocks that cells use
to construct proteins. Hence, predicting protein function from amino acid se-
quences is an active area of research. Proteins that share similar functions are
grouped into families (Lee and Nguyen, 2016; Lodish et al., 2004). The pro-
tein family classification system in (Lee and Nguyen, 2016) retrieves protein
information from the Universal Protein Resource (UniProt) database. Global
Vectors for Word Representation (GloVe) is a distributed representation that
provides the encoding for amino acid sequences. The reference classifier is a
support vector machine (SVM) with a radial basis kernel. An RNN architec-
ture forms the base for the protein family classification system. Similar to
the approach in (Park et al., 2017), the classification model includes interme-
diate results from the RNN into the final classification layer. The RNN with
100 hidden units outperforms both the reference classifier and a CNN-based
architecture.

The bidirectional architecture suggested by (Bosco and Di Gangi, 2016)
can be found in (Liu, 2017) implementation. His research work considers a
bidirectional recurrent neural network to take advantage of context informa-

18 2 Bacteria Classification

tion. The neural network represents a sequence processing application that
predicts four protein functions: iron sequestering proteins, cytochrome P450
proteins, serine and cysteine proteases, and G-protein coupled receptors. The
system does not perform any feature extraction on the amino acid sequences.
Instead, it downloads raw sequences from UniProt and then, the prediction
system feeds them to a bidirectional LSTM. SwissProt or Uniprot annotated
data – or laboratory experiments when no annotation is available – are used
for validation purposes. There is only one bidirectional layer to take advan-
tage of context information in the input amino acid sequences, which are
divided 80% for training and 20% for testing. Liu (2017) represents each se-
quence using one-hot encoding and pads every sequence to a fixed length.
Therefore, the bidirectional RNN does not process variable input sequences.
Also, sequences are 333, 500, or 800 residues long, which is similar to the
sequence lengths found in (Bosco and Di Gangi, 2016) when processing the
16S rRNA dataset used for bacteria classification.

Plasmids are circular, double-stranded DNA sequences. They are not part
of the chromosomal DNA. However, they are replicated in the reproduction
of the cell. Plasmids have a parasitic or symbiotic relationship with bacte-
rial cells and some lower eukaryotic cells (Lodish et al., 2004). These circular
DNA sequences constitute mobile genetic elements that have an active role in
bacteria adaptation to environmental conditions. PlasFlow (Krawczyk et al.,
2018) is a system to identify if sequences from metagenomic samples pertain
to plasmids or chromosomal DNA. Regarding sequence representation, Plas-
Flow encodes the genomic information using k-mers of 3-7 bases. Sequences
with less than 1000 bases were discarded. The neural network has an MLP
architecture with one or two hidden layers. To train the MLP, data from a
number of sources, including the NCBI database, was split into training and
testing sets. The classification system is implemented in TensorFlow. Also,
an AdaGrad optimizer minimized the loss function. PlasFlow yields more ac-
curacy and a lower false positive rate than existing software tools like cBar
(Krawczyk et al., 2018).

Micro RNAs (miRNAs) are one of the post-transcriptional control mech-
anisms that cells use to control gene expression. They regulate the transla-
tion of specific target messenger RNAs (mRNAs) (Lodish et al., 2004). Park
et al. (2017) use one hot encoding to compute the representation for pre-
cursor micro RNAs. The encoding takes into account both the nucleotide
information and the secondary structure for the sequence. Two LSTM layers
and a dense module comprise the classification model. Three fully connected
layers constitute the dense module. The dense module processes the output
from the LSTM layers and feeds the binary classification layer. For further
performance, the classification model adds an attention mechanism, which
complements the last LSTM output with intermediate LSTM results. Be-
cause of the high imbalance in the dataset, balanced class weights are the
mechanism that helps to calculate the loss while training the system. Results

2.5 Deep neural networks 19

show that the neural network architecture has better prediction results than
other alternatives. Also, it does not require hand-crafted feature extraction.

DeepTarget (Lee et al., 2016) represents a novel approach for miRNAs tar-
get prediction. It does not use any of the more than 151 features of miRNA
available in the literature. Yet, the system manages to get a 25% increase
in performance when compared to existing miRNA processing architectures.
miRNAs represent short sequences of ribonucleic acids that control the ex-
pression of target messenger RNAs (mRNAs). The proposed architecture is
trained to reject false positives in miRNA-mRNA pairs prediction. It does
not depend on sequence alignment operations, which make it less susceptible
to changes in parameters.

Cheng et al. (2016) proposed a new system for miRNAs target prediction:
miRTDL. It uses convolutional neural networks to explore miRNA regulatory
mechanism and identify its real targets. This analysis is very important be-
cause miRNAs regulate genes that are associated with different diseases. The
convolutional network at the core of the proposed architecture has six layers.
One input layer, two convolutional layers, two subsampling layers, and an out-
put layer. It also includes a loss function to properly analyze the significance
of each type of feature. Because of this, the system can better understand
miRNA-mRNA interactions. To assess the efficiency of the system, research
included comparisons to other machine learning methods. Cheng et al. (2016)
claimed that they outperformed existing target prediction algorithms.

Giang Nguyen et al. (2016) proposed a deep learning model based on con-
volutional neural networks to perform DNA sequence classification. DNA se-
quences are modeled as text and minimum preprocessing is needed to feed the
neural networks. Instead of using a feature extraction process, they encoded
the DNA sequences using the one-hot vector representation. Such encoding
converts genomic sequences into a two-dimensional numerical matrix. Be-
cause of this, authors preserved essential information of nucleotide position
in the sequence. The numerical matrix then feeds the convolutional neural
network for conducting the classification. The proposed model got perfor-
mance improvements in all twelve DNA sequence validation datasets used
for testing and comparison.

To deal with the black box nature of deep learning models, Lanchantin
et al. (2016) created DeMo dashboard, a Deep Motif dashboard aim at vi-
sualizing motifs – genomic sequence patterns – from deep neural network
models. The proposed system supports three different kinds of neural network
architectures: convolutional, recurrent, and convolutional-recurrent networks.
Deep learning models under consideration are designed to classify transcrip-
tion factor binding site (TBFS). Authors found that convolutional-recurrent
neural networks have the best performance in TBFS classification. Such per-
formance boost happens because the hybrid architecture models both motifs
and dependencies between them.

Cancer is one of the most deadly diseases affecting humanity. It represents
14.6% of deaths each year. Therefore, Yuan et al. (2016) created DeepGene, a

20 2 Bacteria Classification

deep learning based classifier for somatic point mutation cancer classification
(SMCC). DeepGene has two preprocessing stages and one deep learning stage.
As DNA sequences have large amounts of genes, the first stage filters input
data and chooses a small discriminatory subset. Yet, the resulting subset is
quite sparse. Thus, the second stage processes the discriminatory subset and
generates a list of indexes containing only the informative point mutations.
The list of indexes then feeds the deep neural network in the third stage for
cancer classification. DeepGene has an increase of at least 24% in accuracy
when compared to other SMCC systems.

Alipanahi et al. (2015) designed DeepBind, a deep convolutional neural
network-based system to predict binding affinity of a protein to a DNA or
RNA sequence. This system uses two stages: a convolutional neural net-
work for learning representation and a prediction stage for high-level fea-
ture inference. DeepBind was tested with almost a thousand publicly avail-
able datasets. Results obtained by DeepBind indicate a nearly perfect accu-
racy. The model manages to consistently outperform existing methods, even
though some of them are based on extensive biological knowledge. Such ac-
curacy proves the architecture ability to learn higher level features because
the authors only give low-level features explicitly.

Chapter 3

Sequential Deep Learning System

Adaptive systems create, update,
and use internal models of their
environment to make predictions;
successful models create valid
homomorphisms of their
environment

(Forrest and Mitchell, 2016)

The classification of bacteria using their whole genome sequences is a part
of a broader set of tasks in machine learning: sequence labeling (Graves,
2012). The remaining of this section is based on Graves (2012).

In sequence labeling, an input sequence of data points is transcribed with
a discrete set of output labels. Examples of real applications include speech
recognition, gesture recognition, and protein secondary structure prediction.
It is common to have sequence labeling tasks in time series data, where each
data point in the input sequence is a time step. Nonetheless, the same ap-
proach works for non-temporal tasks such as protein secondary structure
prediction and DNA sequence classification. When considering biological se-
quences, each time step represents a residue or a nucleotide.

In sequence labeling applications, the input sequence vector is considered
to have a higher dimension than the output label vector. For some problems,
it is important to infer the exact time step of the label. Thus, the learning
algorithm should discover the exact alignment between input sequences and
output labels. However, the classification of DNA sequences only takes into
account the output set of labels.

If the input sequences are independently and identically distributed, we
have a classical pattern classification problem where sequences are the pat-
terns in the model. Although you can make the same assumption in problems

21

22 3 Sequential Deep Learning System

when sequences do not have such distributions, as long as you set appropriate
boundaries to each sequence. In any case, data points inside each sequence
are never assumed to be independent.

Considering applications were the exact alignment between input se-
quences and discrete labels should not be learned by the model, we have
three different types of sequence labeling problems: sequence classification,
segment classification, and temporal classification.

Sequence classification is the most restrictive case of sequence labeling
applications. The input sequence should be matched to a label sequence of
unitary length. But this case has an advantage over the other cases because
the algorithm can process the whole sequence before generating the label.
This kind of classification is what we perform with the bacterial whole genome
sequences. Other examples include a word in speech recognition or a person
who wrote a letter. If the input sequence can be padded to a predefined length,
the problem becomes a classical pattern classification application, and any
type of discriminant or probabilistic method can be applied to the input data
set. Even in this case, sequential processing by RNNs can offer the advantage
of a better response to distortions and shiftings in input sequences. Sequential
models not only have the advantage of robustness against distortions and
shifting in the input sequence, but also have the ability to discover what
context information is essential for a correct output, as they can acquire a
better knowledge of the overall sequence structure.

The classical error rate in pattern classification – the classification error
rate – enables the computation of a loss function for the models. The error
rate is the relationship between correct input-target outputs and the testing
set size:

E =
1

|S′|
∑

(x,z)∈S′

{
0 if h(x) = z
1 otherwise

(3.1)

where S′ is the test set, x is the input, z the expected output, and h is the
learning algorithm.

Segment labeling is the set of problems where the algorithm should gen-
erate a label for a set of data points in the input sequence. The alignment
between the input sequence and target labels needs to be exact. These type of
applications appear in natural language processing and bioinformatics, where
input sequences are discrete, thus, they are easily segmented. Other types in-
clude audio and image processing. In this case, the segmentation is not trivial
and a manually segmented training set should feed the learning algorithm to
get correct results. Segment error rate measures the relationship between the
hamming distance of generated and expected label sequences and the total
count of training label sequences

Temporal labeling is the most general case where the label sequence can
vary in length - it could have a zero length - and its alignment to the input
sequence is not important. The only restriction is that the label sequence

3.1 Recurrent Neural Networks 23

length should be less than or equal to the input sequence length. For this kind
of problems, hybrids of hidden Markov models - RNNs are usually a good
alternative. There also exists an approach that uses only RNNs. The label
error rate provides error measurements for this type of learning algorithms.
It is the relationship between edit distance of output and expected label
sequences and the total count of training samples. Edit distance refers to
the number of insertions, deletions, and substitutions necessary to transform
one sequence into the other. If the label sequence in a temporal classification
task should be exact, the label error rate does not work. Instead, the sequence
error rate should be used for such applications.

3.1 Recurrent Neural Networks

Sequences found in biology naturally fit the processing power of recurrent
neural networks (RNNs). That happens because of the temporal modeling
capabilities of RNNs. RNNs are inspired by the cyclical connection of the
neurons inside our brain. They store information from input sequences by
using iterative function loops. RNNs are an ideal architecture for sequence
labelling tasks because they store context information in a flexible manner.
By learning what to store and what to ignore, they accept input data in
different types and representations. Also, They can understand sequential
patterns in the presence of sequential noise (Graves, 2012).

A time window approach used by other nonsequential networks suffers
from lack of robustness against sequential distortions and the need to man-
ually determine the window length. It also increases the number of weights
in the network. Another alternative is to introduce a delay from input pro-
cessing to output generation. This alternative is robust against sequential
distortions but the delay sequence should be manually determined. Also,
the network should remember original inputs throughout the delay (Graves,
2012).

A useful approach to better understand RNN architectures is to unfold
the cyclical connections into a graph, where each time step forms a node and
shares the same weights as other nodes (Graves, 2012). Indeed, RNNs are
powerful architectures. Hyötyniemi (1996) claims that any computable func-
tion can be implemented by a recurrent neural network. As Turing machines
can also implement this type of functions, the author proves their equivalence
by comparing an RNN based on perceptrons with a program implementing a
computable function. The equivalence is found in terms of the network inter-
nal state to the program state and the transitions of states to the program
flow.

24 3 Sequential Deep Learning System

Recurrences (Lehman et al., 2010)

In math, recurrences are sequences of numbers where the first terms
are defined as constants, while the subsequent terms are expressed as a
function of the first ones. For instance, the Fibonacci numbers 0, 1, 1,
2, 3, 5, 8, 13, 21 ... can be described by the following recurrence:

f0 = 0

f1 = 1

fn = fn−1 + fn−2 for n ≥ 2

(3.2)

Recurrences are examples of a common pattern in computer science:
the divide and conquer approach. This approach helps to solve problems
by decomposing them into smaller ones until reaching easy base cases.
Examples include the analysis of recursive algorithms, enumeration of
structures, and analysis of random processes.

There exist a number of architectures used by RNNs. When the alignment
between input data and discrete labels is necessary, Graves (2012) proposed
the connectionist temporal classification (CTC) to label input sequences with
unknown alignments. For input data that has more than one dimension, such
as 2D images, 3D images, videos, and Magnetic Resonance Image (MRI)
scans, conventional RNNs are extended to include more dimensions. The ex-
tended networks receive the name of Multidimensional RNNs (MD-RNNs).
They have been used in applications including image captioning, video cap-
tioning, and image segmentation (Stollenga et al., 2015).

In some applications regarding sequence analysis, the current output de-
pends on both past inputs and future inputs. RNNs process input data in one
direction, thus, context information is available from one side of the sequence.
For instance, in time series data, context is available from the past but there
is no way data after the current point in time can alter the context. Therefore,
bidirectional RNNs (BRNNs) were created to cope with those sequence anal-
ysis requirements. In this kind of networks, we assemble two hidden layers,
one processes the sequence from the first input while the other processes the
sequence from the last input. The output layer is connected to both backward
and forward hidden layers and it only generates the output after processing
the whole sequence (Lipton et al., 2015; Graves, 2012).

The BRNN is an elegant solution when compared to other approaches.
It has successful applications in protein secondary structure prediction and
speech recognition, outperforming standard RNNs. For causal tasks, we could
think that BRNNs violate the principles of causality. This is true in some
temporal applications such as robotics or financial time series, where there
is no sense in expecting future inputs for a model. Spatial sequences do not
have such restriction because usually, we have the whole input sequence be-

3.1 Recurrent Neural Networks 25

fore starting the processing. For instance, in biological sequence processing
or image segmentation, you have all the data beforehand. Nonetheless, some
temporal sequence processing tasks could also take advantage of the BRNNs
robustness. Those temporal applications include tasks where the output is ex-
pected at the end of some input segments, like words in natural language pro-
cessing or speech recognition. Also, realtime temporal applications could also
be considered as long as they have natural breaks in the input sequence and
the output can wait for such breaks to process the input segment. (Graves,
2012).

Long Short-Term Memory (LSTM) systems were proposed back in 1997
by Hochreiter et al. (Hochreiter and Schmidhuber, 1997). It is a useful ap-
proach for information storage in machine learning models. The system is
based on gradients to efficiently learn in recurrent backpropagation neural
networks. Its computational complexity in big-O notation is constant. LTSM
architectures achieve a faster learning rate than existing models such as El-
man nets. LSTMs are a redesign of RNNs around a memory cell. The redesign
improves their ability to store context information on very long sequences.
In fact, they solve complex long-time-lag tasks that have never been solved
by existing models (Graves, 2012).

Gated Recurrent Units (GRUs) represent another type of gated RNNs
(Goodfellow et al., 2016). They are motivated by LSTMs but are simpler to
compute and implement. Also, they can dynamically control the time scale
and forgetting behavior of the units in the network. Units comprise update
and reset gates. Update gates select if the hidden state will be updated with
a new hidden state. On the other hand, reset gates determine if the previous
hidden state will be ignored (Cho et al., 2014b; Goodfellow et al., 2016). Both
LSTM and GRU networks share the ability to better model and learn long-
term dependencies. Therefore, GRUs could replace LSTMs without affecting
network performance (Bahdanau et al., 2015).

Even though the addition of memory cells in the LSTM neural networks
give them the ability to process very long sequences of input data, they usu-
ally struggle when dealing with such long sequences. The processing time
usually increases as well as the memory consumption. Therefore, Graves
(2012) proposed an improved architecture for such very long sequences of
input data: Hierarchical subsampling RNNs. These hierarchical neural net-
works have a stack of recurrent layers, each one with a smaller size than the
previous layer. The increasingly smaller size helps to diminish the amount of
memory consumption and improve the neural network processing time.

Another variation of RNNs is the Neural Turing Machine (NTM) (Graves
et al., 2014). It uses concepts from biological memory inner workings and
known digital computer architectures. The NTM is an extension of the RNN
that includes addressable external memory (Lipton et al., 2015). The pro-
posed model is able to learn algorithms from example data. Then, the model
can generalize algorithm application when exposed to natural data. Gradi-
ent descent can properly train the proposed architecture. To test the pro-

26 3 Sequential Deep Learning System

posed model, experiments for copying and sorting data sequences were im-
plemented.

3.1.1 Unit equations

Given an input sequence x1, x2, . . . xT , equations for a standard RNN are
defined as follows (Martens and Sutskever, 2011):

ti = Whxxi +Whhhi−1 + bh

hi = e(ti)

si = Wyhhi + by

yi = g(si)

(3.3)

where Whx,Whh,Wyh are learnable weight matrices, bh, by are biases, hi
are the hidden states, yi are the outputs, e and g represent activation func-
tions. Common activation functions for RNNs are the hyperbolic tangent
(Equation 3.4) and the logistic sigmoid (Equation 3.5). Both functions are
vector valued functions which are differentiable and non-linear. A differen-
tiable activation function allows the use of gradient descent for neural net-
work training. On the other hand, non-linearity makes neural networks more
powerful than their linear equivalents (Graves, 2012; Martens and Sutskever,
2011).

tanh(x) =
e2x − 1

e2x + 1
(3.4)

σ(x) =
1

1 + e−x
(3.5)

For the network outputs in classification systems with more than two
classes, a softmax function (Equation 3.6) provides normalized output ac-
tivations that represent the class probabilities (Graves, 2012).

yj =
eyj∑K
k=1 e

yj

where j = 1, 2, . . . ,K (3.6)

True class probabilities are obtained by representing the true labels with
a 1-of-K coding scheme (Cho et al., 2014a), a binary vector with one-hot en-
coding (Section 3.2). The cross entropy loss function (Equation 3.7) provides
the target function that we minimize in order to train the network. By doing
so, we minimize the classification error rate in Equation 3.1.

L = −
K∑

k=1

zkln(yk) (3.7)

3.2 Sequence representations 27

where z represents the true class probabilities and y represents the network
output probabilities.

The following equations represent an LSTM unit (Graves, 2013):

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ottanh(ct)

(3.8)

where i is the input gate, f is the forget gate, o is the output gate, and c
is the unit cell. b are biases and W are learnable weight matrices. The hidden
state of the LSTM is the concatenation of h and c.

GRUs are similar to LSTM units. However, they are simpler and can
outperform LSTMs on various tasks. GRU equations are defined as follows
(Jozefowicz et al., 2015; Cho et al., 2014a):

rt = σ(Wxrxt +Whrht−1 + br)

zt = σ(Wxzxt +Whzht−1 + bz)

h̃t = tanh(Wxhxt +Whh(rtht−1) + bh)

ht = ztht−1 + (1− zt)h̃t

(3.9)

where rt is the reset gate, zt is the update gate, b are biases and W are
learnable weight matrices.

3.2 Sequence representations

A one-hot vector (Giang Nguyen et al., 2016) representation of DNA or pro-
tein sequences is used as the input to machine learning systems. The one-hot
vector encoding converts genomic or protein sequences into a two-dimensional
numerical matrix. Because of this, the encoding preserves essential informa-
tion of nucleotide or residue positions in the biological sequence. But it is
important to have in mind the sparsity that one-hot vector encoding adds to
the sequence representation. Depending on the length of the sequence, this
representation can also suffer from high dimensionality (Ng, 2017).

Another digital encoding, the k-mers representation (Rizzo et al., 2015),
allows researchers to achieve a fixed length representation of biological se-
quences using occurrences of overlapping subsequences with a length of k.
The mapping achieved by k-mers is similar to the feature extraction that
happens in image processing. K-mers are small DNA or protein sequences
of k length. Based on the occurrence of those small sequences, the system
computes and spectral representation of input data. The spectral represen-

28 3 Sequential Deep Learning System

tation then feeds the neural network architecture for a number of purposes.
In fact, k-mers represents a powerful approach and they are currently used
in multiple metagenomics and taxonomic methodologies. They are an excel-
lent alternative to represent input sequences for the subsequent processing
by deep neural networks.

Hasman et al. (2013) employ k-mers to perform bacteria identification.
Sequences come from isolated bacterial samples found in urine samples. The
identification method uses k-mers, more specifically 16-mers, which are ex-
tracted from 1647 complete bacterial genomes. All the genomes come from
the NCBI database. A database is created to store the 16-mers information.
In order to decrease the database size, only 16-mers starting with ATGA
are considered. By doing so, the 16-mers database has a roughly 256-fold
reduction in size. This is important because 16-mers account for 416 possible
words. Once the input file of the target bacterial sequence is generated, the
method extracts unique 16-mers from the file. Then, it scans the database
and computes the number of exact matches of 16-mers per entries. The result
depends on the species that yields the highest amount of hits in the database
search.

An important aspect of sequence labeling problems is the use of context
in the input sequence. Context is fundamental to generate the correct label
sequence. For non-sequential learning algorithms, which processes one input
at a time, the input sequence could be sampled in time windows, an each
time window becomes an input to the model. But this approach has a serious
flaw: we can not know beforehand what the extent of the important context
information is, and the extension can vary between different input sequences.
Thus, it is impossible to determine beforehand the appropriate length of the
time window (Graves, 2012).

Based on results from Natural Language Processing (NLP), where the
use of context information improves the performance of neural network ap-
plications, the seq2vec (Kimothi et al., 2016) extends the use of a single k
length in a k-mers representation, to create a distributed representation of
the sequences in a Euclidean space. The distributed representation, which
considers different k’s, has the potential to capture contextual information
in the original sequence. The dna2vec system (Ng, 2017) uses a distributed
representation as well, considering k = {3, 4, 5, 6, 7, 8} to generate vectors in
a 100-dimensional space. The cosine similarity of those vectors is correlated
to the Needleman-Wunsch similarity score.

Even though the distributed representation does not have the positional
information that provides the one-hot vector encoding, it provides contextual
information and helps to deal with high dimensionality in the sequences – an
important aspect considering that neural networks benefit from reasonably
compact continuous vector inputs (Ng, 2017; Graves, 2012). An additional
benefit is the invariance of the distributed representation to the order of the
nodes in the FASTA file. Although scaffolds are ordered in the FASTA file,
contigs are not necessarily ordered.

3.2 Sequence representations 29

0 10 20 30 40 50 60
3-mers

0

25000

50000

75000

100000

125000

Co
un

t

k-mers representation

0 50 100 150 200 250
4-mers

0

10000

20000

30000

40000

50000

Co
un

t

0 200 400 600 800 1000
5-mers

0

5000

10000

15000

20000

Co
un

t

Fig. 3.1: k-mers example representation for a sequence pertaining to species
Campylobacter Jejuni. The representation considers histograms for k =
{3, 4, 5}

Thus, we use a distributed representation for encoding the bacterial whole
genome sequences. Our representation takes the idea of multiple k-mers from
dna2seq, but we consider a group of three k’s, namely k = {3, 4, 5} (Fig-

30 3 Sequential Deep Learning System

Fig. 3.2: Distributed representation based on k-mers, with k = {3, 4, 5}. First,
histograms are concatenated into a 1x1344 vector to perform standardization.
Mean subtraction and division by sttandard deviation comprise the standard-
ization process. Then, k-mers histograms are zero padded and stacked to form
a 3x1024 matrix representation.

ure 3.1). Using the original set of k’s in dna2seq would have generated a
concatenated vector with 87360 dimensions. But our set of k’s generates a
concatenated vector of only 1344 positions. Once the concatenated vector
of histograms is calculated, we proceed to the standardization of the data,
which is also known as scaling (Graves, 2012; Angermueller et al., 2016).
The standardization sets the mean to zero and the standard deviation to one
for every dimension in the input vectors. Means and standard deviations are
calculated on the training set. Then, those values are used for standardizing
training, validation, and testing vectors. After standardizing input vectors,
histograms for each k-mer are padded with zero to the length of the largest
histogram and stacked into a matrix of 3x1024 (Figure 3.2).

3.3 Neural network training and evaluation 31

3.3 Neural network training and evaluation

The deep learning model training takes into account the following aspects:
optimization methods to minimize the error, parameter initialization and
optimization, learning rate and batch size, learning rate decay, momentum,
per-parameter adaptive learning rate methods, batch normalization, analysis
of the learning curve, and monitoring training and validation performance
(Angermueller et al., 2016). Table 3.1 presents the hyperparameters that are
usually considered for deep learning architectures. It also contains default
values for each hyperparameter that we will take into account for training
our model.

Fig. 3.3: Stochastic Gradient Descent with varying learning rate η. From
(Angermueller et al., 2016)

∂f(x, y)

∂x
=
∂f(x, y)

∂y

∂y

∂x
(3.10)

Stochastic gradient descent (SGD) is a very successful method for training
deep neural models (Figure 3.3). It is a popular approach in the optimiza-
tion field. The gradient provides the direction of maximum change of the loss
function. As we are minimizing the loss, we move in the opposite direction of
the gradient. Small variations of the gradient are added to the function pa-
rameters every iteration. By doing so, the function moves towards the global
minimum – ideally. We compute the outputs of the neural network from the
training set. However, the loss is expressed in terms of the neural network
weights. To compute the gradient of the loss function, the chain rule (Equa-
tion 3.10) provides an effective tool to perform the computation by using the
calculated outputs. This procedure is also known as a backpropagation.

32 3 Sequential Deep Learning System

Parameter Range Default value

Learning rate
0.1, 0.01, 0.001,
0.0001

0.01

Batch size 64, 128, 256 128

Momentum rate 0.8, 0.9, 0.95 0.9

Weight initialization
Normal, Uniform,
Glorot uniform

Glorot uniform

Per-parameter adaptive
learning rate methods

RMSprop, Ada-
grad, Adadelta,
Adam

Adam

Batch normalization Yes, no Yes

Learning rate decay
None, linear, ex-
ponential

Linear (rate 0.5)

Activation function
Sigmoid, Tanh,
ReLU, Softmax

ReLU

Dropout rate 0.1, 0.25, 0.5, 0.75 0.5

L1, L2 regularization 0, 0.01, 0.001 –

Table 3.1: Hyperparameters to have into account for training deep learning
architectures. Both ranges and default values are included for each hyperpa-
rameter. From (Angermueller et al., 2016)

Backpropagation through time (BPTT) enables the use of backpropaga-
tion in sequential architectures. Once we have determined the partial deriva-
tives of the loss function with respect to the neural network outputs, BPTT
allows the computation of partial derivatives with respect to the neural net-
work weights. Moreover, BPTT represents a good alternative from the stand-
point of computational complexity and execution time, although it consumes
more memory than real-time recurrent learning (RTRL), another option for
determining the neural network weights (Graves, 2012).

Variations of the SGD method include the addition of momentum to in-
crease the speed of convergence, and the use of a constant to multiply the
gradient every iteration. Such constant is known as the learning rate. Al-
ternatives to SGD include RMSProp, AdaGrad (Duchi et al., 2011), and
Adam (Kingma and Ba, 2014) optimization methods. Although all of the
three alternative methods use an adaptive learning rate, Adam combines the
advantages of RMSProp and AdaGrad optimizers. Adam stands for adap-

3.3 Neural network training and evaluation 33

tive moment estimation because it relies on the first and second moments
of the gradient. Based on those moments, this optimization method com-
putes adaptive learning rates for every trainable parameter. It is usually the
recommended optimizer for many applications (Angermueller et al., 2016).

3.3.1 Regularization

It is important to avoid model overfitting to training data in order to allow
the model to generalize its classification capabilities to future genomic se-
quence inputs. The calculation of parameters to minimize the loss function
uses the input training set. But we need a good inference performance when
the network process data that it has not seen before. The extrapolation of
performance from the training set is known as generalization and it’s a cru-
cial factor in the machine learning field. There exist a number of methods to
improve generalization of neural networks when training them with a fixed
size input set. Such methods are known as regularizers. Simple regularizers
include early stopping, weight noise, and input noise (Graves, 2012).

Early stopping occurs when evaluating the stop conditions for the training
steps or choosing the best weights for the neural network after steps are
completed. This approach uses a validation set alongside training and testing
sets. The validation set is usually 10% of the data available. When training
the network, the loss of training, testing, and validation sets fall sharply at
the first iterations. After that decrease in loss values, validation and test set
losses stabilize or start to slowly increase, while the loss on the training set
continues to decrease. This phenomenon is a clear sign of overfitting. Thus,
the best weights minimize the loss function on the validation set before it
starts to slowly increase. A disadvantage of this approach is the decrease in
the size of the available samples in the training set (Angermueller et al., 2016;
Graves, 2012).

Weight noise consists in altering the weights with Gaussian noise. A zero
mean is used and the noise addition happens in each sample from the training
set. This method does not depend on the input data. But it is less effective
than input noise and it can also affect the convergence of the training process.
Weight noise helps to simplify the network, and the simpler the network, the
better. Neither weight noise nor input noise should be added when evaluating
the network on the test set (Graves, 2012).

The size of the input dataset is important because neural networks are
data intensive architectures. Input noise consists in adding Gaussian noise to
inputs in order to artificially augment the number of training samples. It also
improves the robustness of the neural networks. The noise should be gener-
ated for every training sample and no noise should be reused. The variance
when adding Gaussian noise is difficult to determine beforehand – the mean
should be zero all the time. A plausible approach is to use the validation set

34 3 Sequential Deep Learning System

for estimating it. Also, the noise should ideally model variations observed in
real data. Unfortunately, such models usually do not exist (Graves, 2012).

Data augmentation is a common approach in image processing. Gaussian
noise would create a speckled version of the images. Instead, images are ro-
tated, scaled, or translated to increase the size of the dataset. For biological
sequence applications, rotations, scaling, or translations do not have much
sense because we are dealing with 1-dimensional sequences. We have to con-
sider perturbations that have sense from a biological point of view. Models
already exist for scoring variations in both amino acid and nucleotide se-
quences. Such models receive the name of similarity-scoring matrices (Pear-
son, 2013; Graves, 2012). They give us a clue of variations that we can perform
on training data. Therefore, a plausible alternative is the artificial mutation
of individual nucleotides using scoring matrices as a guide. The number of
nucleotides that can mutate per sequence is critical because we can not signif-
icantly alter the identity percentage. We should respect identity percentage
thresholds among sequences of the same species.

Another regularizer is the dropout technique (Srivastava et al., 2014). It is
a methodology to improve the training process of neural networks by reduc-
ing overfitting. The purpose of the method is to bypass the adaptations of
the deep learning model to the training dataset. Standard backpropagation
techniques generate this adaptation but the method uses random dropout
to break them. In spite of the improvements achieved with Dropout, it in-
creases the training time by two or three times. This training technique has
been tested with multiple datasets. The variety of testing datasets proves
the system suitability for deep neural networks in spite of the application
under study. A considerable amount of applications benefited from the use of
dropout in the training phase, including speech recognition, computational
chemistry, and natural language processing (Dahl, 2015).

3.3.2 Metrics

Accuracy could be a poor estimator of neural network performance in some
applications. Accuracy defines the relationship between the correct outputs
and the total number of outputs. A more robust approach include the cal-
culation of precision and recall. Precision defines the fraction of detections
reported by the network that are correct. On the other hand, recall defines
the fraction of true events in the testing set that were successfully detected
by the network (Goodfellow et al., 2016; Rizzo et al., 2015):

Accuracy =
TP + TN

TP + FP + TN + FN
(3.11)

3.3 Neural network training and evaluation 35

Precision =
TP

TP + FP
(3.12)

Recall =
TP

TP + FN
(3.13)

where TP are true positives, FP are false positives, TN are true negatives,
and FN are false negatives1. Table 3.2 has a graphical representation of TP ,
FP , TN , and FN for a binary classification model. Such graphical representa-
tion receives the name of confusion matrix (Tan et al., 2018). A heat map for
the confusion matrix provides a graphical representation that improves the
visualization of results in multi-class problems. Axes in the heat map denote
actual and predicted labels.

Predicted Class 0 Predicted Class 1

Actual Class 0 TP FP

Actual Class 1 FN TN

Table 3.2: Confusion matrix for a binary classification model

A common summarization of neural network performance combines preci-
sion p and recall r into the balanced F -score (Goodfellow et al., 2016):

F-score =
2pr

p+ r
(3.14)

Metrics performed over test sets allow to estimate the predictive accu-
racy of neural networks – their generalization performance. However, from
a statistical standpoint, one metric measurement does not provide a robust
characterization. Cross-validation provides a fully general and nonparametric
way to assess the prediction performance of neural network models. 10-fold
cross-validation is a typical configuration. It uses a training set size of 90%
and a testing set size of the remaining 10% of the data. A common approach
is to partition the dataset into ten groups randomly to ensure samples are
drawn from an independent and identical distribution (Efron and Hastie,
2016; Tan et al., 2018). Training and testing cycles are repeated ten times,
making sure neural network weights are initialized every cycle. Metrics are
then expressed in terms of means and standard deviations. Also, the number
of measurements for the same metric enables the use of methods for statistical
significance tests.

1 https://www.tensorflow.org/api_docs/python/tf/metrics

https://www.tensorflow.org/api_docs/python/tf/metrics

36 3 Sequential Deep Learning System

3.4 Implementation

The whole system is implemented in Python 3.62. Three main modules are
considered for the Python code: download module, dataset module, and clas-
sification system module.

The download module takes advantage of the urllib.request library to
download compressed FASTA files into the local disk, using the NCBI FTP
endpoint. On the other hand, the dataset module loads FASTA files from local
disk and extracts a string representing sequences of nucleotides per file. The
string is then processed to compute the distributed k-mers based represen-
tation (Section 3.2). It is important to note that extracting the distributed
representation per sequence is time consuming. Thus, parallelization is es-
sential for a faster processing. The threading higher-level Python interface
enables the creation of multi-threading applications. However, the Global In-
terpreter Lock (GIL) – a mutex that protects access to objects – prevents the
execution of multiple threads at once. Because of this limitation, it is not pos-
sible to take advantage of multi-core processor systems with threading.Thread
class3.

Therefore, the dataset module uses the multiprocessing interface. This in-
terface is based on processes, which can be executed in parallel by multi-core
processors. A subclass of the multiprocessing.Process class processes each
string of nucleotides and generates the distributed representation. For inter-
process communication, the multiprocessing.Queue class provides a process
safe channel. Once the distributed representation is completed, the subclass
sends the results back to the main process for memory storage. To avoid
spanning an indefinite number of processes, a pool of processes is created
and periodically executed once a threshold is surpassed.

For an even faster computation time, especially considering the number of
samples that should be preprocessed, a C++ implementation performs the
distributed representation computation and stores the results in a comma-
separated values (CSV) file.

The C++ implementation uses constant unordered maps4 of string-integer
pairs for storing the k-mers dictionaries. k-mer words are the keys while in-
dexes in the histograms are the values. Unordered maps in C++ provide an
average constant access time, an important aspect considering the number of
times that those dictionaries are accessed while generating the histograms for
a nucleotide sequence. For consistency between both Python and C++ im-
plementations, the k-mer dictionaries were printed from the Python dataset
module and then used for the constant unorder map declarations in the C++
code.

2 https://www.python.org/downloads/release/python-360/
3 https://docs.python.org/3/
4 http://en.cppreference.com/w/cpp/container/unordered_map

https://www.python.org/downloads/release/python-360/
https://docs.python.org/3/
http://en.cppreference.com/w/cpp/container/unordered_map

3.4 Implementation 37

The Portable Operating System Interface (POSIX) threads are the mecha-
nism for parallel execution in the C++ implementation. POSIX contains a set
of standard abstractions to provide portability on UNIX operating systems.
It has been around since the 1980s, when fragmentation in UNIX systems was
a serious concern. POSIX is an IEEE standard that comprises specifications
for Operating System (OS) aspects such as directory structure, command-
line utilities, environment variables, and functions at the system level. It
also has implementations in the C programming language for OS abstrac-
tions. Such abstractions include inter-process communication (IPC), signals,
streams, threads, and sockets (Atlidakis et al., 2016).

The Pthread library in C/C++ provides support for POSIX threads in ap-
plications. Threads constitute a lightweight mechanism for parallel or concur-
rent execution of code. They are set of instructions that can be independently
or simultaneously scheduled by the OS. They run inside a UNIX process with
an independent flow of control. Although threads maintain their own copy of
essential resources, they share most of the process resources while the pro-
cess exists in the OS. Thus, memory access should be synchronized to avoid
software malfunctions (Barney, 2017).

Results in the CSV file generated by the C++ implementation are then
accessed by the dataset Python module. Once the distributed representations
are loaded into memory, the Python dataset module integrates the informa-
tion into the classification system. The module partitions the data into train-
ing, testing, and validation sets. Proportions for training operations, tests,
and cross-validations appear in table 3.3.

Set Training Tests Cross-validations

Training 60 80 90

Validation 20 – –

Test 20 20 10

Table 3.3: Dataset proportion for partition into training, testing, and valida-
tion sets.

3.4.1 Deep learning module

The classification system module is implemented using the Tensorflow deep
learning framework – an advanced dataflow system that provides one of the
most efficient implementations for RNNs (Zhang et al., 2017; Angermueller
et al., 2016). Based on their previous experience with the parameter-server
system DistBelief, Google created TensorFlow, a system that expresses deep

38 3 Sequential Deep Learning System

learning models as directed cyclic graphs with mutable state. Nodes in the
graphs represent operations – some of them are control flow operations. On
the other hand, edges in the graphs are Tensors – a grid of numbers with ar-
bitrary dimensionality (Goodfellow et al., 2016). Other special edges without
data represent control dependencies (Zhang et al., 2017).

TensorFlow is a system that includes both an interface for expressing ma-
chine learning algorithms, and a reference implementation to train and run
those algorithms. While the core system was implemented in C++, client
APIs are available for a number of programming languages, including Python,
C++, Java, and Go. High level operations and optimizers are available in the
interfaces for easily expressing complex deep neural network models. Low
level operations are also available in the APIs. Google released the open
source TensorFlow interface and a reference implementation to the commu-
nity in November 2015. It was released as an open source project under the
Apache 2.0 license (Abadi et al., 2016; Zhang et al., 2017).

The runtime of TensorFlow has three components: clients, masters, and
workers. The client allows the specification of deep learning models and their
execution through sessions. Once the client starts the session, it communi-
cates to the master for graph execution. The master runs the graphs by
scheduling one or more workers in the different machines available for graph
execution. The workers execute the operations, which are implemented in
kernels. Execution of the graph run in parallel whenever it is possible. Each
round of graph execution is known as a step. For graph executions when
multiple processing devices are available, the runtime has a node placement
algorithm to decide which device is less costly for a specific operation. Also,
there are saving operations to store Tensors in the local disk. Saving oper-
ations create checkpoints on the local disk that can be restored if the need
arises. Checkpoints enable fault tolerant execution (Zhang et al., 2017).

The framework offers the possibility to execute machine learning models in
distributed architectures, allowing faster training and testing of the model to
be implemented. Moreover, it supports training of the recurrent neural net-
work model using GPUs. Deep neural networks training can take hours, days,
or even weeks depending on the neural architecture and the input dataset.
The use of GPUs can decrease the training time by tenfold or more, a crucial
factor to evaluate model variations efficiently (Angermueller et al., 2016).

NVIDIA is a popular vendor for GPUs. It also provides the Compute Uni-
fied Device Architecture (CUDA), which is a parallel computing platform
and a programming model (Harris, 2017). It supports programming using C,
C++, and Fortran. To execute the programs accessing the GPU, the CUDA
toolkit is freely available for Windows, Linux, and Mac OSX. The CUDA
toolkit5 is a development environment to develop, optimize, and deploy ap-
plications to GPU enabled computing platforms. It also has libraries for linear
algebra, image and video processing, deep learning, and graph analytics. In

5 https://developer.nvidia.com/cuda-toolkit

https://developer.nvidia.com/cuda-toolkit

3.4 Implementation 39

Fig. 3.4: Symbolic cyclic graph for the BRNN used in the bacteria classifica-
tion system.

particular, the NVIDIA CUDA Deep Neural Network library (cuDNN)6 al-
lows the acceleration of deep learning frameworks and faster execution times
for training the models.

Based on the recurrent neural network architecture in (Liu et al., 2016)
– that processes protein sequences of up to 800 residues – our classification
system has a bidirectional GRU hidden layer with 128 units. The forward
and backward final states are concatenated before applying a dropout of
0.5. The model uses only a fully connected layer that takes the dropout
result as input. Softmax generates the predicted labels in the fully connected
layer. To initialize the weights, we use a normal distribution with zero mean:
wi0 = N (0, 0.1). Figure 3.4 depicts the symbolic cyclic graph generated for
the base classification system using TensorFlow. In the graph, operations
represent nodes, while tensors denote edges that show the way information
flows through the system.

Results from Neural Machine Translation (NMT) prove that intermediate
output states from RNN units can significantly improve the performance of
the models (Luong et al., 2015; Bahdanau et al., 2015; Rocktäschel et al.,
2015). Such approach has been applied in protein family classification (Lee
and Nguyen, 2016) and precursor miRNA identification (Park et al., 2017).
The attention mechanism (Luong et al., 2015; Bahdanau et al., 2015) creates

6 https://developer.nvidia.com/cudnn

https://developer.nvidia.com/cudnn

40 3 Sequential Deep Learning System

a context vector ct from a weighted combination of intermediate output states
(Equation 3.18). We use the global attention with general content-based score
(Equation 3.16) in Luong et al. (2015). Weights are stored in an alignment
vector at:

at =
exp(score(ht, h̃s))∑
s′ exp(score(ht, h̃s′))

(3.15)

score(ht, h̃s′) = hT
t Wah̃s (3.16)

where h̃s are the intermediate output states, ht is the last output state and
Wa is a learnable weight matrix. The concatenation of the context vector and
the final output state into a dense layer generates the output of the attention
mechanism:

h̃t = tanh(Wc [ct,ht]) (3.17)

ct =
∑
s′

ath̃s′ (3.18)

The score in Bahdanau et al. (2015) is slightly different. Instead of multi-
plying hidden state vectors, it adds them before computing a tanh:

score(ht, h̃s′) = tanh(Waht + Wbh̃s) (3.19)

where Wa and Wb are learnable weight matrices.

3.4.2 User interface

Along with the three main modules described beforehand, two additional
modules provide a user interface to the classification model: a command line
interface (CLI) module and a web application implementation.

The CLI interface receives the path to the file as a command argument.
Then, it loads the means and the standard deviations for the subsequent
standardization of the distributed representation (Section 3.2). Means and
standard deviations are calculated from the training set. It also loads the
mapping between labels and taxonomic IDs. This mapping is essential be-
cause the CLI module must print the species scientific name when the neural
network generates its prediction.

As a first step, the CLI module ensures the file format extension matches
fsa nt.gz (the standard compressed FASTA file from GenBank). It then com-
putes the k-mers distributed representation for the sequence. Previously
loaded means and standard deviations provide the values for standardizing
the distributed representation. Once the distributed representation is nor-

3.4 Implementation 41

malized, the module loads the recurrent neural network to predict a label
for the sequence. Finally, the label is translated to the scientific name of the
species. A softmax function generates a probability for the predicted label,
which serves as the score of the prediction.

On the other hand, the backend of the web application serves the HTML
and JavaScript files for the browser interface. It also serves a compressed
version of the CLI for download. One endpoint – at /classify – listen to
POST requests from the front end side of the application. This endpoint
triggers the exact same steps as the CLI interface, generating a JSON output
with the scientific name of the species and the corresponding score. AJAX
requests provide an easy interface to access the endpoint from the frontend.

The Flask7 Python microframework and the React8 JavaScript library are
the main components supporting the web application. On top of that, Boot-
strap, a component library based on HTML, CSS, and JavaScript, provides
visual components for the frontend. Bootstrap also accounts for the flexibil-
ity of the web application for adapting to different screen sizes – making it
accessible and responsive in mobile and desktop devices.

Four views comprise the web application: a home view that welcomes the
user and provides a brief description of the classification system. A classify
view with the form to upload the FASTA files plus a component to display
results. A download view with a link to the compressed CLI file and the
installation instructions. And a species view containing a table with all the
scientific names of the species that the classification system supports, plus
taxonomic IDs.

All the interfaces and the model files are stored in a Docker9 container
for easy installation on servers or virtual machine instances. The container is
publicly available at Docker Hub10.

Docker containers provide an efficient packaging and deployment solution.
They enable the packaging of the application and its dependencies into a
self-contained image. For consistency, Dockerfiles offer a declarative defini-
tion to standardize the building of the image, a paradigm known as IaC
(Infrastructure-as-Code). In contrast to virtual machines, that virtualizes the
server and its OS, containers are lightweight packages that run on top of the
OS. Containers use the namespaces and cgroups mechanisms available in the
Linux Kernel to isolate the application from the host environment. They are
ideal for micro-services architectures and cloud environments (Cito et al.,
2017; Williams, 2016).

7 http://flask.pocoo.org
8 https://reactjs.org
9 https://hub.docker.com
10 https://hub.docker.com/r/lelugom/wgs_classifier

http://flask.pocoo.org
https://reactjs.org
https://hub.docker.com
https://hub.docker.com/r/lelugom/wgs_classifier

Chapter 4

Experimental Results

I can’t be as confident about
computer science as I can about
biology. Biology easily has 500
years of exciting problems to
work on. It’s at that level

Donald Knuth
(Apt et al., 2012)

Whole genome sequences of bacteria are currently accessible through pub-
licly available databases of biological sequences. GenBank is the selected
database to gather an annotated set of bacterial DNA sequences, as it is
part of the International Nucleotide Sequence Database Collaboration and
contains Whole Genome Sequence entries. Moreover, GenBank is synchro-
nized daily to the European Nucleotide Archive (ENA) and the DNA Data
Bank of Japan (DDBJ), allowing worldwide coverage of genomic sequence
information Benson et al. (2012). The database is hosted on the servers of
the National Institutes Of Health1, part of the U.S. Department of Health &
Human Services. Daily updates are available through the File Transfer Pro-
tocol (FTP) for easy download of the information. After getting the sequence
data from GenBank, the dataset is partitioned into training, validation, and
test sets for further processing by the recurrent neural network.

First we obtain a recordset for WGS projects – in CSV format – from the
NCBI website2. Then, the python module performs text processing in the
CSV file to extract the WGS project code, which is used to get the project
URL of the form https://www.ncbi.nlm.nih.gov/Traces/wgs/PROJECT_

CODE. Project codes starting with NZ do not have a valid HTML page,

1 www.ncbi.nlm.nih.gov
2 https://www.ncbi.nlm.nih.gov/Traces/wgs/?page=2&view=wgs&search=BCT

42

https://www.ncbi.nlm.nih.gov/Traces/wgs/PROJECT_CODE
https://www.ncbi.nlm.nih.gov/Traces/wgs/PROJECT_CODE
www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/Traces/wgs/?page=2&view=wgs&search=BCT

4 Experimental Results 43

thus, they are ignored. The python module downloads the project HTML
page from the URL and extracts the FTP address and the filename for the
compressed FASTA file.

Once the FTP address is extracted, the module proceeds with the down-
load of the compressed FASTA file to the local disk, under a directory with
the Taxonomic ID of the species. At most 2000 FASTA compressed files are
downloaded per Taxonomic ID. To get Taxonomic ID information, the mod-
ule downloads the NCBI taxonomy database3 to the local disk and loads the
tables to memory. We filter the information by considering only species with
at least 1000 WGS projects (Table 4.1), in order to have sufficient data per
class for further neural network training. A rule of thumb in 2016 set the
number of samples per class at 5000 for achieving acceptable performance in
supervised deep learning models (Goodfellow et al., 2016). However, advances
in deep learning architectures, optimization algorithms, and regularization
techniques help in the process of using training sets with a lower count of
samples per class.

Species Tax ID Projects

Escherichia coli 562 9505

Salmonella enterica 28901 7266

Neisseria meningitidis 487 1314

Listeria monocytogenes 1639 2160

Streptococcus pneumoniae 1313 8318

Mycobacterium tuberculosis 1773 5245

Acinetobacter baumannii 470 2383

Klebsiella pneumoniae 573 3326

Mycobacterium abscessus 36809 1566

Campylobacter jejuni 197 1088

Clostridioides difficile 1496 1199

Shigella sonnei 624 1041

Staphylococcus aureus 1280 8467

Pseudomonas aeruginosa 287 2565

Table 4.1: WGS number of projects per bacteria species with at least one
thousand valid entries in the recordset. Species taxonomic ID information
included.

The World Health Organization published a priority list for antibiotic-
resistant bacteria, taking into account ten criteria: ”all-cause mortality,
healthcare and community burden, prevalence of resistance, 10-year trend
of resistance, transmissibility, preventability in hospital and community set-

3 ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz

ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz

44 4 Experimental Results

2 4 6 8 10 12
Length (Mbps)

0

500

1000

1500

2000

2500

Fig. 4.1: Histogram of sequence lengths for the bacterial whole genome se-
quences considered in the classification system.

tings, treatability and current pipeline” (Tacconelli and Magrini, 2017). The
threshold of a thousand samples per species allows us to cover Mycobac-
terium tuberculosis – a globally established priority because it is the cause
of human tuberculosis, Acinetobacter baumannii, Pseudomonas aeruginosa,
and two species from the Enterobacteriaceae group, namely, Klebsiella pneu-
moniae and Escherichia coli. All of the aforementioned species are part of
the critical priority group. We also cover Staphylococcus aureus, Salmonella
enterica, and Campylobacter jejuni, which represent half the group of species
in the high priority group. From the medium priority group, we cover two of
the three species: Streptococcus pneumoniae and Shigella sonnei.

bin size =
2 ∗ IQR

3
√
n

(4.1)

Using the Freedman and Diaconis rule (Freedman and Diaconis, 1981) in
equation 4.1 – where IQR stands for Interquartile Range – we calculate the
histogram of the bacterial whole genome sequence lengths (Figure 4.1). The
histogram does not include the following abnormal samples, that were also
ignored prior to the distributed representation computation:

• Salmonella enterica: 153722611 bps
• Campylobacter jejuni: 118623 bps
• Streptococcus pneumoniae: 270 bps, 340 bps, 666 bps

4 Experimental Results 45

• Escherichia coli: 127123 bps
• Clostridioides difficile: 38855 bps
• Mycobacterium tuberculosis: 1007 bps, 1547 bps, 73427 bps, 4768 bps

Important metrics for sequence lengths after discarding abnormal samples:

• Minimum: 630582 bps
• Maximum: 12852310 bps
• Mean: 4131930 bps
• Median: 4348813 bps
• Standard deviation: 1435578 bps
• IQR: 2227954 bps

Metrics for sequence lengths facilitate the implementation of the dis-
tributed representation computation in C++, where fixed-length arrays are
faster than dynamic data structures.

Set Percentage (%) No. of sequences

Training 60 14523

Validation 20 4841

Test 20 4842

Table 4.2: Whole genome sequence set partition into training, testing, and
validation sets. The set includes fourteen species.

All the training and evaluation tests were performed using a computer with
8GB of RAM, an Intel Core i7-7700HQ CPU, and a GPU NVidia GeForce
GTX 1050 with 2GB of dedicated RAM. The CPU has 4 physical cores and
8 threads through hyperthreading. Its base frequency is 2.8GHz, while the
Max Turbo frequency is 3.8GHz. It also has a 6 MB cache with 64-byte cache
line length. On the other hand, the GPU is part of the Pascal architecture. It
has 640 CUDA cores arranged in 5 streaming multiprocessors. Its clock runs
at 1354 MHz, with a boost of 1.3x. Its memory interface width is 128-bits.

Comparisons of tests in computational intelligence need statistical meth-
ods to ensure differences are statistically significant. Usually, results from
tests are not random samples from a normal distribution. Thus, the assump-
tions of independence, normality, and homogeneity of variance can not be sat-
isfied. Because of this, it is instrumental to consider nonparametric methods
for statistical significance tests. Nonparametric methods are distribution free:
their probability distribution function does not change in spite of changes in
the sampled population. A number of nonparametric methods have been pro-
posed for pairwise comparisons, including sign test, Wilcoxon test, multiple
sign test, and Friedman test (Larsen et al., 2012; Derrac et al., 2011).

46 4 Experimental Results

The Wilcoxon signed rank test4 is a well-known nonparametric method.
It is less affected by outliers and can be adapted to multiple data structures.
This method tests if two samples represent different populations. Thus, it
let us know if means from two samples have a significant difference. First,
differences between the two samples are calculated. Then, they are ranked
by their absolute value. The comparison between the sum of ranks for the
positive differences and the sum of ranks for the negative differences gives
a T value, which represents the minimum of the two sums. The T value let
us know if the null hypothesis – Equation 4.2 from (Larsen et al., 2012) – is
rejected and the associated level of significance (p-value) (Larsen et al., 2012;
Derrac et al., 2011). We use 5% as the minimum level of significance for the
tests throughout this chapter.

H0 : µD = 0

µD = µX − µY

(4.2)

4.1 Classifiation model tests

The computation of distributed representations is a time consuming process.
In order to assess the parallel performance of our implementation, we use the
observed speedup, which is calculated as follows:

Speedup =
Ts
Tp

(4.3)

where Ts is the wall clock time of serial execution, and Tp is the wall clock
time of parallel execution (Barney, 2017). Figure 4.2 depicts the speedup
when considering both Python processes and POSIX threads in C++. The
sequential time (Ts) considered as a reference is the time that one Python
process takes to perform the distributed representation computation. Sixteen
samples of the species Verrucomicrobia bacterium were considered for the
experiment. Computed distributed representations comprised k-mers with
k = {3, 4, 5}.

Speedup results show that the C++ implementation represents a con-
siderable improvement over the Python code. The execution time with 16
threads is 12 times faster than the reference execution time. It is also 3
times faster than the Python implementation with 16 processes. Most of the
speedup comes from the optimizations that the C++ compiler performs and
the expected improvement that a compiled executable has over an interpreted
script. Another factor helping the speedup is the use of constant unordered

4 https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.

wilcoxon.html

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.wilcoxon.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.wilcoxon.html

4.1 Classifiation model tests 47

maps for representing k-mer dictionaries, which are faster than the equivalent
dictionary data type in Python.

Once distributed representation computations are finished, we proceed
with the training process for the neural network. After dividing the sequences
into training, testing, and validation sets (Table 4.2), the softmax cross en-
tropy loss is minimized during the training process. Learning rate was set to
1e-3 and batch size to 128. The Adam optimizer minimized the loss function,
with default parameters β1 = 0.9, β2 = 0.999, and ε = 1e−08. Validation
set results (Figure 4.3) include an accuracy of 99.0% at 950 steps. Precision
was 99.8%, recall 99.93%, and F-score 99.86% at the same step. After fin-
ishing training at 3600 steps, results over the test set yielded an accuracy of
99.13%, precision 99.97%, recall 99.91%, and F-score 99.93%. No over-fitting
was observed as can be seen when comparing training and validation loss
curves.

After analyzing the results of the training process with the validation
set, we can realize that losses decrease the first 2800 steps and no further
improvement is achieved after 3600 steps. Thus, early stopping (Section 3.3)

2 4 6 8 10 12 14 16
No. of threads / processes

2

4

6

8

10

12

Sp
ee

du
p

C++
Python

Fig. 4.2: Speedup curves for the distributed representation computations
against the number of processes for the Python implementation and the
number of threads for the C++ code. The reference time comes from the
computation using one Python process.

48 4 Experimental Results

gives us a range between 2800 and 3600 steps for training the neural network.
Our subsequent experiments use a step count in that range.

k-mers Accuracy p-value

k = {3} 0.97341 ± 0.02960 0.507

k = {4} 0.98694 ± 0.00751 0.114
k = {5} 0.93938 ± 0.07192 0.332

k = {6} 0.92662 ± 0.14023 0.600

k = {3, 4} 0.98919 ± 0.00512 0.059

k = {4, 5} 0.97258 ± 0.01852 0.444

k = {5, 6} 0.97958 ± 0.01337 0.600

k = {3, 4, 5} 0.97752 ± 0.01594 –

k = {4, 5, 6} 0.98030 ± 0.01568 0.463

Table 4.3: Influence of k-mers representation on the accuracy of the model.
The dataset has fourteen species. k={3,4,5} provides reference accuracy re-
sults.

The BRNN is robust to changes in the number of spectral k-mers rep-
resentations and the number of sequences per species in the dataset. Such
results are generated when the dataset has the fourteen classes in table 4.1.
Testing with different k-mer configurations yielded no change in the model
accuracies calculated over the test set (see table 4.3). The exact same pat-
tern is observed when decreasing the number of sequences per class in the
dataset (see table 4.4). No difference has statistical significance according to
the p-values obtained.

Because of the robustness against the decrease in sequences per class, it
is possible to extend the species coverage of the classification system. Also,
results in table 4.4 let us know how to deal with situations in which we
have a small number of sequences per class: when we have few sequences per
species, we can train the classification system with a small number of classes
– fourteen classes in the tests – without impacting the accuracy of the model.

However, in terms of computing resources usage, the distributed represen-
tation based on k-mers of k = {3, 4, 5} needed around 12GB of RAM, and
roughly 30 hours to perform ten training cycles of 3600 steps – without a
validation set. When using a validation set, this computing time increases
depending on the number of times we stop the training process to validate.
Once we change the distributed representation to any combination that in-
cludes 6-mers, the memory consumption increases to around 48GB of RAM.
The memory increase forces the system to use a lot of swap space, thus, one
training cycle with 2800 steps takes about 18 hours to complete.

Regarding hyperparameter search, we performed tests with varying val-
ues of learning rates and a different optimizer. Increasing the learning rate

4.1 Classifiation model tests 49

0 200 400 600 800 1000
Steps

0.0

0.5

1.0

1.5

2.0

2.5

Softmax cross entropy loss
Train
Validation

0 200 400 600 800 1000
Steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Validation set results

Accuracy

Fig. 4.3: Training curves for the bidirectional recurrent neural network, con-
sidering the first one thousand iterations. Image at the top has the loss curves
for both training and validation sets. Image at the bottom depicts accuracy
evolution over the validation set during the training of the classification sys-
tem.

50 4 Experimental Results

Sequences per class Accuracy p-value

1000 0.97792 ± 0.01038 –

750 0.98218 ± 0.00848 0.168

500 0.97484 ± 0.01567 0.507

250 0.97486 ± 0.02368 0.798

100 0.96714 ± 0.01955 0.074

Table 4.4: Variation of accuracy per number of sequences in each class. The
dataset has fourteen species.

from 1e−3 to 1e−2 generates an accuracy of 0.97958 ± 0.01053 (p-value =
0.345). Although the difference is not statistically significant, a number of
divergence errors while training the neural network indicate that this setting
is unstable. Thus, we discard this learning rate value. Decreasing the learn-
ing rate from 1e−3 to 1e−4, without any other change, yields an accuracy of
0.96384 ± 0.03574 (p = 0.172). This change has no significance. On the other
hand, changing the Adam optimizer to a Proximal Adagrad Optimizer – with
learning rate at 1e−3 and L1, L2 regularization strengths of 1e−3 – severely
affects network metrics. Accuracy drops to 0.72889 ± 0.00851 (p-value =
0.0277). L1, L2 regularization strengths of 1e−1 are even worse: the accuracy
drops to 0.06518 ± 0.00175, which is similar to randomly choosing labels for
classifying the sequences. Hence, the Adam optimizer (learning rate of 1e−3)
provides the best setting for training the classification system.

Once the training curves let us know that no overfitting affects the model,
we set the training steps to 3600 and performed the cross-validation of the
model. The experiment comprised ten runs, with randomly selected samples
for the training and testing sets of each run. The training set had a proportion
of 90% and the testing set had the remaining 10% of the samples. All runs
finished at the same training step while each run had different training and
testing sets. A heat map with the normalized confusion matrix appears in
Figure 4.4. The cross-validation procedure yielded the following metrics: ac-
curacy at 0.98512 ± 0.00798, precision at 0.98542 ± 0.00783, recall at 0.98484
± 0.00817, and F-score at 0.98513 ± 0.00799. Regarding the accuracy, we got
a maximum of 99.586%, which is very similar to the accuracy obtained when
training the model with a validation set. However, lower values in other runs
decreased the mean accuracy to 98.542%.

Genomic studies might contain partial genomes and sequencing errors
could decrease the size of the genome sequences obtained. Therefore, it is
important to test the way the model reacts to fragments of whole genome se-
quences. To perform this test, we randomly choose ten samples for each of the
fourteen species. Once the sequences are loaded into memory, we select one
fragment per sequence with a random starting position. Then, we compute
the distributed representation and standardize each fragment. Percentages

4.1 Classifiation model tests 51

Predicted species

Ac
tu
al
 sp

ec
ie
s

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4.4: Confusion matrix for the BRNN with fourteen classes. The accuracy
of the model is 99.3%.

considered for fragment size include 20%, 40%, 60%, 80%, 90%, 95%, and
100% of the whole sequence. The results generated by the neural network for
ten tests appear on figure 4.5.

When considering fragments of 20%, the model failed to identify any
species. It generated an accuracy of 0.07143 ± 0.0, the same accuracy that
we would get if we randomly choose labels for the test set. The model started
to recognize some classes when processing fragments of 40% and 60%. Frag-
ments of 80% improved the results of the classification, yielding an accuracy
of 0.80429 ± 0.01895. Fragments of 90% further improved the model accu-
racy to 0.95571 ± 0.00948. All the differences where statistically significant
(p ≤ 0.005 in all cases). Tests with fragments of 95% yielded an accuracy of
0.98143 ± 0.01069. A p-value of 0.02 implies that the difference has statis-
tical significance against the result obtained without trimming the sequence
(0.99286 ± 0.00452). Therefore, the classification system is slightly affected
by fragments that represent at least 95% of the original sequence – around 1%
drop in accuracy. But smaller fragments have a larger impact on the model
accuracy.

52 4 Experimental Results

20% 40% 60% 80% 90% 95% 100%
Sequence fragment

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra
cy

Fig. 4.5: Accuracy generated by the recurrent neural network when classifying
fragments of whole genome sequences. The size of the fragment is represented
as a percentage of the sequence.

4.2 Species coverage increase

Results in table 4.4 represent tests with different values for the sequences per
class. However, all the tests use a fixed number of fourteen classes (Table
4.1). Given the robustness to variations in sequences per class, we extend
the coverage of the classification system by lowering the threshold for the
minimum samples per species. Because of this, we repeat the tests, changing
the thresholds and increasing the species counts. Every test is repeated ten
times, randomly selecting 80% of the samples for training the neural network,
and the remaining 20% of the samples for testing.

Model accuracies decrease as the number of sequences per class decreases
(see Table 4.5). Although the change from 1000 sequences per class to 750 se-
quences per class has no statistically significant difference (both unbalanced
and manually balanced tests yield p values above 0.05), the remaining de-
creases in minimum sequences per class do generate statistically significant
drops in accuracy results. It is important to highlight that unbalanced and
manually balanced datasets do not generate statistically significant differ-
ences when minimum sequences are set to 1000, 750, and 500. The robustness

4.2 Species coverage increase 53

Dataset Sequences Accuracy p-value Species

Unbalanced

1000 0.97752 ± 0.01594 – 14
750 0.94172 ± 0.05347 0.168 22
500 0.94255 ± 0.04499 0.036 27
250 0.86609 ± 0.03144 0.005 48
100 0.76981 ± 0.08550 0.005 111

Balanced

1000 0.97792 ± 0.01038 – 14
750 0.94438 ± 0.04427 0.092 22
500 0.92002 ± 0.04684 0.028 27
250 0.76266 ± 0.08721 0.005 48
100 0.68913 ± 0.08310 0.005 111

Table 4.5: Variation of accuracy against minimum sequences per species. Tests
were repeated ten times. Training set 80% and testing set 20%.

of neural networks to unbalanced datasets explains this results. However, min-
imum sequences of 250 and 100 per species represent statistically significant
differences between unbalanced and manually balanced datasets. Differences
in these two cases are explained by the reduction in the dataset size when
conducting the manual balancing.

Sequences Unbalanced Balanced p-value

1000 0.97752 ± 0.01594 0.97792 ± 0.01038 0.721

750 0.94172 ± 0.05347 0.94438 ± 0.04427 0.798

500 0.94255 ± 0.04499 0.92002 ± 0.04684 0.444

250 0.86609 ± 0.03144 0.76266 ± 0.08721 0.028

100 0.76981 ± 0.08550 0.68913 ± 0.08310 0.046

Table 4.6: Variation of accuracy against minimum sequences per species.
Comparison between the unbalanced dataset and a manually balanced
dataset.

We now set the dataset to a minimum of 250 sequences per class to test
subsequent changes in the model architecture. It is the first threshold that
makes the accuracy drop below 90% (Table 4.6), so we want to improve the
neural network architecture performance.

The first test assessed the addition of a dense module (Park et al., 2017) on
top of the bidirectional recurrent layer. The dense module takes the concate-
nation of the last bidirectional state vector and the last bidirectional output
vector. It then processes the concatenated output with two dense layers – also
known as fully connected layers – with tanh as an activation function. Re-
sults are then fed to the classification layer. The addition of the dense module

54 4 Experimental Results

has a positive impact on the model: the accuracy increases from 0.86609 ±
0.03144 to 0.91926 ± 0.03614, with a p-value of 0.028.

Then, we returned to the base model and added the attention mechanism
(Bahdanau et al., 2015) using the TensorFlow implementation5 (Section 3.4).
Results represent a considerable improvement over the base model. The ac-
curacy increases from 0.86609 ± 0.03144 to 0.95031 ± 0.00581 (p-value =
0.027). Hence, a context vector consolidating all intermediate results adds
valuable information to the last output vector. Weights for context vector
calculation allows the model to learn what are the most important interme-
diate vectors to improve the final classification result.

0 200 400 600 800 1000
Index

0.00

0.02

0.04

0.06

0.08

0.10

Fig. 4.6: Mean values for the alignment values generated by the attention
mechanism (Bahdanau et al., 2015). The highest mean values are related to
inputs in the first part of the distributed representation.

An analysis of the weights for context vector calculation – also known
as alignments – provides additional insight into the sequence representa-
tions. After computing the mean values for the alignments generated for
the sequences in the test set (Figure 4.6), we can observe that the four most
critical intermediate results are related to inputs in the first part of the se-
quence representation. The first part of the dataset entry contains values for
k = {3, 4, 5} and k = {4, 5}, a significant result that highlights the impor-
tance of the distributed representation for generating the final classification

5 https://github.com/tensorflow/tensorflow/blob/r1.7/tensorflow/contrib/

seq2seq/python/ops/attention_wrapper.py

https://github.com/tensorflow/tensorflow/blob/r1.7/tensorflow/contrib/seq2seq/python/ops/attention_wrapper.py
https://github.com/tensorflow/tensorflow/blob/r1.7/tensorflow/contrib/seq2seq/python/ops/attention_wrapper.py

4.2 Species coverage increase 55

output. Alignments mean values also help to explain the improvement that
the context vector represents when concatenating it to the last output vector.
They cover intermediate results for the whole dataset entry.

A comparison between scoring functions from attention mechanisms in
(Luong et al., 2015) and (Bahdanau et al., 2015) did not produce a statisti-
cally significant difference. The scoring function in (Luong et al., 2015) gen-
erated an accuracy of 0.94885 ± 0.00294, with a p-value of 0.027 against the
base model. But a p-value of 0.345 when comparing both scoring function
variants implies that they generate equivalent results for our classification
system.

Predicted species

Ac
tu
al
 sp

ec
ie
s

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4.7: Confusion matrix for the final classification model covering 111
species. The accuracy of the model is 89.632%.

Probabilities generated by the softmax layer let us know the confidence
of the resulting species labels. Those probabilities represent a score for each
neural network inference. Also, they can ease the identification of species
that were not part of the training set. To determine the score threshold, we
trained the system with a minimum of two hundred samples per species – 48
species. The resulting scores from the testing set had a mean of 0.95476 and a
variance of 0.01636. Then, we build a test set with a minimum of one hundred
samples per species – 111 species. For this dataset, the resulting scores had a

56 4 Experimental Results

mean of 0.91748 and a variance of 0.03031. Thus, we set the score threshold
to be 0.9384, the middle point between the two means. Probabilities under
this threshold express low confidence in the resulting species label.

Although the dense module and the attention mechanism improved the
classification system by their own, their combination ended up harming the
model. Accuracy yielded 0.93345 ± 0.00890 (p-value = 0.027), a result be-
tween dense module and attention mechanism accuracies. An explanation for
this behavior can be found in the difference between trainable parameters
count. When combining both mechanisms, there is an increase in neural net-
work weights. But there is no increase in the number of sequences per species.
Thus, model training becomes more difficult. However, the decrease in model
performance when we add more parameters is a good indicator. Usually, the
best models have the largest amount of trainable parameters that the avail-
able dataset size permits. Hence, our model is at the limit for the given set
of training examples.

Sequences Base model Final model p-value

1000 0.97752 ± 0.01594 0.99455 ± 0.00281 0.005

500 0.94255 ± 0.04499 0.98716 ± 0.01263 0.027

250 0.86609 ± 0.03144 0.95031 ± 0.00469 0.027

100 0.76981 ± 0.08550 0.89039 ± 0.00417 0.006

Table 4.7: Variation of accuracy against minimum sequences per species.
Comparison between the base model and the final model.

The following changes did not produce any positive effect on the archi-
tecture: weighted loss, Glorot uniform initialization, layer size decrease, and
dropout wrappers for the GRU cells. In the weighted loss test, inverse fre-
quency provided the weights to correct for species imbalance (Katevas et al.,
2017). Results showed a drop in accuracy to 0.92366 ± 0.00894. The Glorot
uniform initialization (Glorot and Bengio, 2010) for neural network weights
generated an accuracy of 0.94042 ± 0.008. A layer size decrease from 128
to 64 GRU cells made accuracy drop to 0.93769 ± 0.00581. The dropout
wrappers (Gal and Ghahramani, 2016) caused a considerable reduction in
performance: accuracy yielded 0.70061 ± 0.00524. All results were statisti-
cally significant against the model with the attention mechanism (accuracy
of 0.95031 ± 0.00469).

Therefore, our final model has a bidirectional GRU layer with 128 units
plus the attention mechanism (Bahdanau et al., 2015). A comparison between
the base model and the final model for different thresholds of minimum se-
quences appear in Table 4.7. All results are statistically significant. We can
observe a substantial improvement against the base model in all the scenar-
ios, although the lower the threshold, the higher the value of the final model

4.3 Validation of results 57

improvement. With a threshold of one hundred sequences per species, the
model achieves the broadest coverage. A confusion matrix with this thresh-
old (Figure 4.7) let us know the main limitation of the model: It is clear
from the matrix diagonal how the model struggles to classify a few species,
affecting the overall accuracy of the architecture.

4.3 Validation of results

Now that we have all the results from the experiments with the recurrent
neural network, we select alternative methods for results comparison. Naive
Bayes (NB) and Multilayer Perceptron (MLP) are two classification models
which provide a reference to compare our classification system results.

NB MLP BRNN
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Accuracy
F-score

Fig. 4.8: Validation of results comparing Naive Bayes (NB), Multilayer Per-
ceptron (MLP), and our classification model.

Naive Bayes is a simple yet powerful classifier. An important advantage of
this method is the lack of hyperparameters to adjust. The classifier is based
on the Bayes theorem (Alpaydin, 2014):

58 4 Experimental Results

P (C|x) =
P (C)p(x|C)

p(x)
(4.4)

where P (C) is the prior probability, p(x|C) is the class likelihood, and
p(x) is the evidence. Its basic assumption is that dimensions of input vectors
are independent. However, the Naive Bayes classifier yields good performance
even when the assumption is not satisfied. The method fits a Gaussian distri-
bution to represent each class in the training dataset. As dimensions in the
input vector are assumed to be independent, the covariance matrix is diago-
nal. The Naive Bayes classifier generates the result by selecting the class with
the highest posterior probability (Equation 4.5) for the given input sample
(Alpaydin, 2014; Christopher, 2006).

P (Ci|x) =
p(x|Ci)P (Ci)∑K

k=1 p(x|Ck)P (Ck)
(4.5)

For the MLP model (Section 2.5), we select the reference implementation of
a DNN classifier in TensorFlow6, with default parameters (ReLU activation,
Adagrad optimizer). A dropout rate of 0.5 provided regularization to the
model – the same dropout rate the recurrent neural network uses. The model
has three hidden layers with the following units: {1344, 512, 256}. We use 3600
iterations for training the model and a batch size of 128. Default parameters
yielded a very low accuracy (0.57181 ± 0.15597). Thus, we changed the MLP
model to use tanh activation and Adam optimizer. It’s important to note
that we can not use a matrix representation (3x1024) for Naive Bayes and
MLP models. Instead, we encode data with the concatenated representation
(1x1344) that holds k-mers of k = {3, 4, 5} (Section 3.2).

We performed cross-validation with 90% of the sequences for training and
10% for testing. Training cycles were repeated ten times. The dataset has a
threshold of at least one hundred sequences per species (See Appendix A for
a list of species). Such threshold provides the major coverage of all tested
scenarios. Results show that our classification model (BRNN GRU) outper-
forms other machine learning methods such as NP and MLP (Figure 4.8,
Table 4.8). There is a considerable increase in performance when considering
all the metrics used for model characterization. All the differences in NB and
MLP metrics against our classification model were statistically significant.

Other recurrent neural models provided additional means for validating
results. Cross-validation tests with a model based on LSTM units and a uni-
directional architecture allowed to compare the model performance against
common recurrent architectures. For the unidirectional architectures, we dou-
bled the number of units to perform a fair comparison to our classification
model. Results in Table 4.8 exhibited similar outputs for all the recurrent
neural network configurations.

6 https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier

https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier

4.3 Validation of results 59

Model Metric Value

NB

Accuracy 0.75313 ± 0.01675
Precision 0.83775 ± 0.00461
Recall 0.69128 ± 0.02774
F-score 0.75719 ± 0.01662

MLP

Accuracy 0.83713 ± 0.00829
Precision 0.79688 ± 0.01054
Recall 0.80402 ± 0.01308
F-score 0.80040 ± 0.01055

RNN GRU

Accuracy 0.88896 ± 0.00367
Precision 0.87889 ± 0.00293
Recall 0.87354 ± 0.00491
F-score 0.87620 ± 0.00354

BRNN LSTM

Accuracy 0.89690 ± 0.00153
Precision 0.89123 ± 0.00594
Recall 0.88329 ± 0.00192
F-score 0.88724 ± 0.00334

BRNN GRU

Accuracy 0.89107 ± 0.00392
Precision 0.88068 ± 0.00515
Recall 0.87767 ± 0.00486
F-score 0.87917 ± 0.00436

Table 4.8: Comparison between Naive Bayes (NB), Multilayer Perceptron
(MLP), alternative RNN configurations, and our classification model (BRNN
GRU).

Chapter 5

Conclusions

But as the term pure suggests,
many researchers value such
research more than they do
applied. They believe that the
pursuit of knowledge “for its own
sake” reflects humanity’s highest
calling — to know more, not for
the sake of money or power, but
for the transcendental good of
greater understanding and a
richer life of the mind

(Booth et al., 2008)

Although a number of methods are available for the essential task of bac-
teria identification – including mass spectrometry, pairwise sequence com-
parison, and microscopic morphology – recurrent neural networks represent
an automatic classification method which does not require any manual fea-
ture extraction. They are easily updated through the retraining of the model.
Our classification system exploits the vast amounts of genomic information
available in GenBank to infer the species of a given bacterial whole genome
sequence. GenBank provides the samples to train and test the prediction ca-
pabilities of our neural network architecture. The model has the potential to
benefit diverse areas, such as pathology, microbiology, experimental biology,
food and water industries, and evolutionary studies.

A distributed representation provides an excellent encoding for the bac-
terial genomic information in a low dimensional space. This is an important
aspect considering the high dimensionality and sparsity of one-hot encod-
ing sequence representations. The combination of two or more k-mer lengths
gives context to the distributed representation. Context takes advantage of

60

5 Conclusions 61

positional information, a crucial aspect in biological sequences. From appli-
cations in Natural Language Processing, the additional context proved to be
useful for our classification model efficiency. On top of that, the distributed
representation does not require the assumption that nodes in the FASTA files
are ordered.

Our base model has 128 GRU gates arranged in a bidirectional configu-
ration. The classification layer uses softmax directly over the concatenated
output state of the bidirectional recurrent layer. Dropout of 0.5 provides
regularization to the model before feeding the softmax layer. With a mini-
mum of one thousand sequences per species (14 species), the best accuracy is
99.586%. Cross-validation results generated an accuracy of 0.98512± 0.00798.
The threshold of one thousand sequences per species allows the coverage of
the four critical bacterial species according to the WHO.

Another important test was the response of the network to variations in
the size of fragments extracted from the sequence. We found that the model
can withstand fragments representing 95% of the original sequences. However,
smaller fragments do have a negative impact on the model, generating a drop
in accuracy from 0.99286 ± 0.00452 to 0.80429 ± 0.01895 when the fragment
size represents only 80% of the original sequence.

Increasing the species coverage made the base model accuracy drop to
0.76981 ± 0.08550 – with a minimum of one hundred sequences per species
(111 species). Hence, we iterated over the base model, testing architecture
and hyperparameter modifications. The final model includes a bidirectional
recurrent layer with 128 GRU cells, a global attention mechanism – with
a dense layer to concatenate the context vector to the final output state –
and a dense layer for classification. Dropout of 0.5 provides regularization for
the two dense layers. Also, the Adam optimizer with a learning rate of 1e-3
minimizes the softmax cross entropy loss function.

Starting from a base neural network model provides an efficient approach
for exploring existing proposed models and leveraging experimental results
from existing publications. Once the base model is tested, further experi-
ments can help to find correct hyperparameters and architecture variants for
the base model. Iterating over the base model allows the improvement of the
classification architecture because iterations target its deficiencies and limi-
tations. Such methodology enables a fast and practical search for an optimal
neural network model by directing experiments on model improvements.

The classification system leverages context in two different parts of the
model: the preprocessing for sequence representation computation and the
intermediate processing before the classification layer. The encoding that
represents the sequences embeds context in the form of a distributed repre-
sentation. Also, the attention mechanism – on top of the bidirectional recur-
rent layer – takes advantage of context from the intermediate outputs of the
GRUs. The additional context of the attention mechanism provides a signifi-
cant improvement over the base model metrics, creating a positive impact on

62 5 Conclusions

the model accuracy. Such improvement is more noticeable when the sequence
minimum count decreases.

Our bidirectional GRU model outperformed other machine learning meth-
ods in the classification of bacterial whole genome sequences. Results show
better numbers in all the metrics used to characterize the model (accuracy,
precision, recall, and balanced F-score). Alternative recurrent neural network
architectures – standard GRUs, bidirectional LSTMs – provided equivalent
results, with no statistically significant differences.

5.1 Future work

As more curated samples of whole genome sequences are available at Gen-
Bank, the classification system can improve in two aspects. First, the number
of species with at least one hundred sequences will increase, growing the cov-
erage of the recurrent neural network. Secondly, the accuracy of the system
has the potential to improve because most of the species that the model
struggles to identify have low sequence counts. Also, proper data augmenta-
tion techniques could increase the number of sequences for training. Those
augmentation techniques should avoid direct modifications of the nucleotides
in the whole genome sequences. Nucleotide changes insert mutations in the
sequences. Mutations in core parts of the sequence express alterations in vital
functions, which generate a sequence that can not represent a living organism.

Should more computing power is available, evolutionary computation ap-
proaches can help in the search for model hyperparameters and neural net-
work architectures. Indeed, evolutionary algorithms offer an interesting ap-
proach to automate the search for machine learning architectures (Lipton
et al., 2015). Evolutionary algorithms are more effective than grid or ran-
dom search methods. They can efficiently perform massive parallel searches
in high dimensional spaces. Because of this, the hyperparameters and the
architecture of the bacterial identification system can be further improved.

The use of Field Programmable Gate Array (FPGA) chips for high
throughput and large dimensional data processing could be an important con-
tribution for parallel architectures in deep neural networks. Although design
with these architectures moves the machine learning models to the hardware
front, FPGAs are particularly suited for those parallel systems. Arrays of
FPGAs can efficiently process lots of data in a distributed manner, and their
reconfiguration capabilities can enable fast design and prototyping. Com-
paring them with GPU and CPU implementations, they can represent an
improvement regarding performance and power consumption (Farabet et al.,
2011).

Application-specific integrated circuits (ASICs) represent another im-
provement in the hardware front, as gains in cost, energy, and performance
are believed to come from domain-specific hardware (Jouppi et al., 2017).

5.1 Future work 63

ASICs have been giving promising results regarding performance and power
consumption. By performing computations directly in the memory, new chip
designs have achieved considerable improvements regarding training times
and energy consumption (Hardesty, 2018). This enables the execution of
neural networks in embedded devices – usually limited in terms of processing
power and energy consumption – opening the possibility to integrate predic-
tion models in NGS hardware. Neural network training and inference in data
centers are fundamental as well. TPUs are custom chips designed for data
centers. They are faster and more power efficient than their contemporary
GPUs and CPUs. Also, cloud versions of TPUs are now accessible in beta for
users (Barrus, 2018; Jouppi et al., 2017).

Appendix A

Species list

Species Tax ID Projects

Lactobacillus rhamnosus 47715 114

Campylobacter jejuni 197 1088

Microbacterium sp. 51671 112

Streptococcus sp. 1306 151

Streptomyces sp. 1931 539

Enterobacter cloacae 550 645

Staphylococcus epidermidis 1282 498

Pseudomonas syringae 317 311

Mycobacterium tuberculosis 1773 5245

Salmonella enterica 28901 7266

Vibrio cholerae 666 765

Escherichia coli 562 9505

Klebsiella pneumoniae 573 3326

Mycobacterium abscessus 36809 1566

Acinetobacter baumannii 470 2383

Acinetobacter sp. 472 233

Brucella abortus 235 161

Bacillus cereus 1396 956

Enterococcus faecium 1352 796

Enterococcus faecalis 1351 541

Pseudomonas aeruginosa 287 2565

Serratia marcescens 615 343

Burkholderia pseudomallei 28450 657

Neisseria gonorrhoeae 485 438

Pseudomonas sp. 306 727

Staphylococcus aureus 1280 8467

Streptococcus agalactiae 1311 905

64

A Species list 65

Rhizobium sp. 391 121

Sphingomonas sp. 28214 124

Lachnospiraceae bacterium 1898203 298

Clostridiales bacterium 1898207 239

Yersinia pestis 632 289

Streptococcus pyogenes 1314 301

Burkholderia sp. 36773 126

Mesorhizobium sp. 1871066 104

Proteobacteria bacterium 1977087 154

Verrucomicrobia bacterium 2026799 129

Firmicutes bacterium 1879010 232

Mycobacterium sp. 1785 190

Prevotella sp. 59823 221

Xanthomonas oryzae 347 122

Bacillus subtilis 1423 102

Lactobacillus plantarum 1590 201

Helicobacter pylori 210 751

Bordetella pertussis 520 326

Vibrio parahaemolyticus 670 811

Bacillus thuringiensis 1428 437

Stenotrophomonas maltophilia 40324 325

Oenococcus oeni 1247 216

Gammaproteobacteria bac-
terium

1913989 446

Listeria monocytogenes 1639 2160

Staphylococcus sp. 29387 207

Shigella flexneri 623 171

Bacillus anthracis 1392 162

Lactococcus lactis 1358 108

Clostridium botulinum 1491 178

Clostridioides difficile 1496 1199

Clostridium sp. 1506 144

Bacteroides fragilis 817 115

Legionella pneumophila 446 490

Rhodococcus sp. 1831 119

Paenibacillus sp. 58172 129

Cronobacter sakazakii 28141 171

Vibrio sp. 678 115

Pseudomonas stutzeri 316 225

Acinetobacter pittii 48296 156

Acidobacteria bacterium 1978231 110

66 A Species list

Shigella sonnei 624 1041

Bacteroidetes bacterium 1898104 196

Streptococcus pneumoniae 1313 8318

Streptococcus equi 1336 246

Francisella tularensis 263 186

Corynebacterium diphtheriae 1717 183

Mycobacterium avium 1764 182

Neisseria meningitidis 487 1314

Bacteroidales bacterium 2030927 464

Actinobacteria bacterium 1883427 176

Vibrio vulnificus 672 104

Klebsiella oxytoca 571 106

Yersinia enterocolitica 630 162

Porphyromonadaceae bacterium 2049046 176

Streptococcus suis 1307 989

Streptococcus mutans 1309 180

Klebsiella aerogenes 548 133

Campylobacter coli 195 795

Klebsiella quasipneumoniae 1463165 136

Burkholderia cenocepacia 95486 239

Pasteurella multocida 747 116

Corynebacterium sp. 1720 128

Deltaproteobacteria bacterium 2026735 259

Euryarchaeota archaeon 2026739 487

Chloroflexi bacterium 2026724 256

Enterobacter hormaechei 158836 377

Bacillus pseudomycoides 64104 104

Haemophilus influenzae 727 130

Ruminococcaceae bacterium 1898205 195

Leptospira interrogans 173 286

Burkholderia ubonensis 101571 288

Campylobacter concisus 199 123

Flavobacteriaceae bacterium 1871037 254

Alphaproteobacteria bacterium 1913988 231

Flavobacteriales bacterium 2021391 270

Bacillales bacterium 1904864 137

Dehalococcoidia bacterium 2026734 112

Prochlorococcus sp. 1220 151

Staphylococcus haemolyticus 1283 175

Staphylococcus argenteus 985002 110

Elusimicrobia bacterium 2030800 101

A Species list 67

Rhodospirillaceae bacterium 1898112 104

Bacillus toyonensis 155322 201

Bacillus wiedmannii 1890302 131

Table A.1: WGS number of projects per bacteria species with at least one
hundred valid entries in the recordset. Species taxonomic ID information
included.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Cor-
rado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.,
Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur,
M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wat-
tenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2016). TensorFlow: Large-
Scale Machine Learning on Heterogeneous Distributed Systems. arXiv
preprint arXiv:1603.04467.

Alahi, A., Ortiz, R., and Vandergheynst, P. (2012). FREAK: Fast retina
keypoint. In Computer vision and pattern recognition (CVPR), 2012 IEEE
conference on, pages 510–517. IEEE.

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015). Predicting
the sequence specificities of DNA -and RNA- binding proteins by deep
learning. Nature biotechnology, 33(8):831–838.

Alpaydin, E. (2014). Introduction to machine learning. MIT press, Cam-
bridge, MA, US.

Angermueller, C., Pärnamaa, T., Parts, L., and Stegle, O. (2016). Deep
learning for computational biology. Molecular systems biology, 12(7):878.

Apt, K. R., Marek, V. W., Truszczynski, M., and Warren, D. S. (2012). The
Logic Programming Paradigm: A 25-Year Perspective. Springer Science &
Business Media.

Atlidakis, V., Andrus, J., Geambasu, R., Mitropoulos, D., and Nieh, J. (2016).
POSIX abstractions in modern operating systems: The old, the new, and
the missing. In Proceedings of the Eleventh European Conference on Com-
puter Systems, page 19. ACM.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Bahrampour, S., Ramakrishnan, N., Schott, L., and Shah, M. (2015). Com-
parative study of deep learning software frameworks. arXiv preprint

69

70 References

arXiv:1511.06435.
Barney, B. (2017). High Performance Computing.

https://computing.llnl.gov/tutorials/.
Barrus, J. (2018). Cloud TPU machine learning accelerators now avail-

able in beta. https://cloudplatform.googleblog.com/2018/02/Cloud-TPU-
machine-learning-accelerators-now-available-in-beta.html.

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J.,
Ostell, J., and Sayers, E. W. (2012). Genbank. Nucleic acids research,
41(D1):D36–D42.

Booth, W. C., Colomb, G. G., and Williams, J. M. (2008). The craft of
research. University of Chicago press.

Bosco, G. L. and Di Gangi, M. A. (2016). Deep Learning Architectures for
DNA Sequence Classification. In International Workshop on Fuzzy Logic
and Applications, pages 162–171. Springer.

Bradski, G. and Kaehler, A. (2008). Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media, Inc.

Cheng, S., Guo, M., Wang, C., Liu, X., Liu, Y., and Wu, X. (2016). MiRTDL:
a deep learning approach for miRNA target prediction. IEEE/ACM trans-
actions on computational biology and bioinformatics, 13(6):1161–1169.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014a). Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014b). Learning phrase representations using RNN
encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, abs/1406.1078.

Christopher, M. B. (2006). Pattern recognition and machine learning.
Springer-Verlag New York.

Cito, J., Schermann, G., Wittern, J. E., Leitner, P., Zumberi, S., and Gall,
H. C. (2017). An empirical analysis of the Docker container ecosystem on
GitHub. In Proceedings of the 14th International Conference on Mining
Software Repositories, pages 323–333. IEEE Press.

Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown,
C. T., Porras-Alfaro, A., Kuske, C. R., and Tiedje, J. M. (2013). Ribosomal
database project: data and tools for high throughput rrna analysis. Nucleic
acids research, 42(D1):D633–D642.

Dahl, G. E. (2015). Deep learning approaches to problems in speech recogni-
tion, computational chemistry, and natural language text processing. PhD
thesis, University of Toronto.

Derrac, J., Garćıa, S., Molina, D., and Herrera, F. (2011). A practical tu-
torial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms. Swarm and
Evolutionary Computation, 1(1):3–18.

References 71

Desolneux, A., Moisan, L., and Morel, J.-M. (2007). From gestalt theory to
image analysis: a probabilistic approach, volume 34. Springer Science &
Business Media.

Dolz, J., Desrosiers, C., and Ayed, I. B. (2016). 3D fully convolutional net-
works for subcortical segmentation in MRI: A large-scale study. arXiv
preprint arXiv:1612.03925, abs/1612.03925.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159.

Efron, B. and Hastie, T. (2016). Computer age statistical inference. Algo-
rithms, Evidence, and Data Science. Cambridge University Press.

Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Ak-
selrod, P., and Talay, S. (2011). Large-scale fpga-based convolutional net-
works. Scaling up Machine Learning: Parallel and Distributed Approaches,
pages 399–419.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From data mining
to knowledge discovery in databases. AI magazine, 17(3):37.

Forrest, S. and Mitchell, M. (2016). Adaptive computation: the multidisci-
plinary legacy of john h. holland. Communications of the ACM, 59(8):58–
63.

Freedman, D. and Diaconis, P. (1981). On the histogram as a density estima-
tor: L 2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte
Gebiete, 57(4):453–476.

Gal, Y. and Ghahramani, Z. (2016). A theoretically grounded application of
dropout in recurrent neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Garrity, G. M. (2016). A New Genomics-Driven Taxonomy of Bacteria and
Archaea: Are We There Yet? Journal of clinical microbiology, 54(8):1956–
1963.

Giang Nguyen, N., Tran, V. A., Ngo, D. L., Phan, D., Lumbanraja, F. R.,
Faisal, M. R., Abapihi, B., Kubo, M., and Satou, K. (2016). DNA Sequence
Classification by Convolutional Neural Network. J. Biomedical Science and
Engineering, 9(9):280–286.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics, pages 249–256.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural
networks. In Aistats, volume 15, page 275.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT
Press, Cambridge, MA, US.

Graves, A. (2012). Supervised sequence labelling with recurrent neural net-
works. PhD thesis.

Graves, A. (2013). Generating sequences with recurrent neural networks.
arXiv preprint arXiv:1308.0850.

72 References

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines.
arXiv preprint arXiv:1410.5401.

Hardesty, L. (2018). Neural networks everywhere.
http://news.mit.edu/2018/chip-neural-networks-battery-powered-devices-
0214.

Harris, M. (2017). An Even Easier Introduction to CUDA.
https://devblogs.nvidia.com/parallelforall/even-easier-introduction-
cuda/.

Hasman, H., Saputra, D., Sicheritz-Ponten, T., Lund, O., Svendsen, C. A.,
Frimodt-Møller, N., and Aarestrup, F. M. (2013). Rapid whole genome se-
quencing for the detection and characterization of microorganisms directly
from clinical samples. Journal of clinical microbiology, 52(1).

Hassaballah, M., Abdelmgeid, A. A., and Alshazly, H. A. (2016). Image
features detection, description and matching. In Image Feature Detectors
and Descriptors, pages 11–45. Springer.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

Hyötyniemi, H. (1996). Turing machines are recurrent neural networks. pages
13–24. STeP ’96 - Genes, Nets and Symbols; Finnish Artificial Intelligence
Conference, Vaasa, Finland, 20-23 August 1996.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R.,
Bates, S., Bhatia, S., Boden, N., Borchers, A., et al. (2017). In-datacenter
performance analysis of a tensor processing unit. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, pages 1–12.
ACM.

Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015). An empirical explo-
ration of recurrent network architectures. In International Conference on
Machine Learning, pages 2342–2350.

Katevas, K., Leontiadis, I., Pielot, M., and Serrà, J. (2017). Practical pro-
cessing of mobile sensor data for continual deep learning predictions. arXiv
preprint arXiv:1705.06224.

Kimothi, D., Soni, A., Biyani, P., and Hogan, J. M. (2016). Dis-
tributed representations for biological sequence analysis. arXiv preprint
arXiv:1608.05949.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980.

Krawczyk, P. S., Lipinski, L., and Dziembowski, A. (2018). PlasFlow: pre-
dicting plasmid sequences in metagenomic data using genome signatures.
Nucleic acids research.

Lanchantin, J., Singh, R., Wang, B., and Qi, Y. (2016). Deep motif dash-
board: Visualizing and understanding genomic sequences using deep neural
networks. arXiv preprint arXiv:1608.03644.

Larsen, R. J., Marx, M. L., et al. (2012). An introduction to mathematical
statistics and its applications. Pearson, fifth edition.

References 73

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521(7553):436–444.

Lee, B., Baek, J., Park, S., and Yoon, S. (2016). deepTarget: end-to-end
learning framework for microRNA target prediction using deep recurrent
neural networks. arXiv preprint arXiv:1603.09123.

Lee, T. K. and Nguyen, T. (2016). Protein family classification with neural
networks. https://cs224d.stanford.edu/reports/LeeNguyen.pdf.

Leekitcharoenphon, P., Kaas, R. S., Thomsen, M. C. F., Friis, C., Rasmussen,
S., and Aarestrup, F. M. (2012). snpTree-a web-server to identify and
construct SNP trees from whole genome sequence data. In BMC genomics,
volume 13, page S6. BioMed Central.

Lehman, E., Leighton, F. T., and Meyer, A. R. (2010). Mathematics for
computer science. Technical report, Technical report. Lecture notes.

Lipton, Z. C., Berkowitz, J., and Elkan, C. (2015). A critical review
of recurrent neural networks for sequence learning. arXiv preprint
arXiv:1506.00019.

Liu, H., Wang, Z., Shen, B., and Alsaadi, F. E. (2016). State estimation for
discrete-time memristive recurrent neural networks with stochastic time-
delays. International Journal of General Systems, 45(5):633–647.

Liu, X. (2017). Deep recurrent neural network for protein function prediction
from sequence. arXiv preprint arXiv:1701.08318.

Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Krieger, M., Darnell,
J., et al. (2004). Molecular cell biology. W.H. Freeman and CO, New York,
US, fifth edition.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective ap-
proaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025.

Markowitz, V. M., Chen, I.-M. A., Palaniappan, K., Chu, K., Szeto, E.,
Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P., et al. (2011).
Img: the integrated microbial genomes database and comparative analysis
system. Nucleic acids research, 40(D1):D115–D122.

Martens, J. and Sutskever, I. (2011). Learning recurrent neural networks
with hessian-free optimization. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 1033–1040. Citeseer.

Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E. M., Kubal, M.,
Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., et al. (2008). The
metagenomics RAST server–a public resource for the automatic phylo-
genetic and functional analysis of metagenomes. BMC bioinformatics,
9(1):386.

Min, S., Lee, B., and Yoon, S. (2016). Deep learning in bioinformatics. arXiv
preprint arXiv:1603.06430, abs/1603.06430.

Mitchell, M. (1995). Genetic algorithms: An overview. Complexity, 1(1):31–
39.

Mohamad, N. A., Jusoh, N. A., Htike, Z. Z., and Win, S. L. (2014). Bacteria
identification from microscopic morphology: a survey. International Jour-

74 References

nal on Soft Computing, Artificial Intelligence and Applications (IJSCAI),
3(1):2319–1015.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. The MIT
Press, Cambridge, MA, US.

Ng, P. (2017). dna2vec: Consistent vector representations of variable-length
k-mers. arXiv preprint arXiv:1701.06279.

Nguyen, N. G., Tran, V. A., Ngo, D. L., Phan, D., Lumbanraja, F. R., Faisal,
M. R., Abapihi, B., Kubo, M., and Satou, K. (2016). DNA sequence clas-
sification by convolutional neural network. Journal of Biomedical Science
and Engineering, 9(05):280.

Olive, D. M. and Bean, P. (1999). Principles and applications of methods for
dna-based typing of microbial organisms. Journal of clinical microbiology,
37(6):1661–1669.

Pais, F. S.-M., de Cássia Ruy, P., Oliveira, G., and Coimbra, R. S. (2014). As-
sessing the efficiency of multiple sequence alignment programs. Algorithms
for Molecular Biology, 9(1):4.

Park, S., Min, S., Choi, H.-S., and Yoon, S. (2017). Deep Recurrent Neural
Network-Based Identification of Precursor microRNAs. In Advances in
Neural Information Processing Systems, pages 2895–2904.

Pastur-Romay, L. A., Cedrón, F., Pazos, A., and Porto-Pazos, A. B. (2016).
Deep artificial neural networks and neuromorphic chips for big data analy-
sis: pharmaceutical and bioinformatics applications. International Journal
of Molecular Sciences, 17(8):1313.

Pearson, W. R. (2013). Selecting the right similarity-scoring matrix. Current
protocols in bioinformatics, pages 3–5.

Pevsner, J. (2015). Bioinformatics and functional genomics. John Wiley &
Sons, Hoboken, NJ, USA.

Rampasek, L. and Goldenberg, A. (2016). TensorFlow: Biology’s Gateway to
Deep Learning? Cell systems, 2(1):12–14.

Rizzo, R., Fiannaca, A., La Rosa, M., and Urso, A. (2015). A Deep Learning
Approach to DNA Sequence Classification. In International Meeting on
Computational Intelligence Methods for Bioinformatics and Biostatistics,
pages 129–140. Springer.

Rocktäschel, T., Grefenstette, E., Hermann, K. M., Kočiskỳ, T., and Blun-
som, P. (2015). Reasoning about entailment with neural attention. arXiv
preprint arXiv:1509.06664.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview.
Neural networks, 61:85–117.

Scholz, M. B., Lo, C.-C., and Chain, P. S. (2012). Next generation sequenc-
ing and bioinformatic bottlenecks: the current state of metagenomic data
analysis. Current opinion in biotechnology, 23(1):9–15.

Singhal, N., Kumar, M., Kanaujia, P. K., and Virdi, J. S. (2015). [maldi-
tof mass spectrometry: an emerging technology for microbial identification
and diagnosis]. Frontiers in microbiology, 6.

References 75

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdi-
nov, R. (2014). Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929–1958.

Srivastava, S. (2016). Genetics of Bacteria. Springer.
Stollenga, M. F., Byeon, W., Liwicki, M., and Schmidhuber, J. (2015). Par-

allel Multi-Dimensional LSTM, With Application to Fast Biomedical Vol-
umetric Image Segmentation. CoRR, abs/1506.07452.

Tacconelli, E. and Magrini, N. (2017). Global priority list of antibiotic-
resistant bacteria to guide research, discovery, and development of
new antibiotics. http://www.who.int/medicines/publications/WHO-PPL-
Short Summary 25Feb-ET NM WHO.pdf.

Tan, P.-N., Steinbach, M., Karpatne, A., and Kumar, V. (2018). Introduction
to Data Mining. Pearson Education, London,UK, second edition.

Varghese, N. J., Mukherjee, S., Ivanova, N., Konstantinidis, K. T., Mavrom-
matis, K., Kyrpides, N. C., and Pati, A. (2015). Microbial species delin-
eation using whole genome sequences. Nucleic acids research, page gkv657.

Webb, S. (2018). Deep learning for biology. Nature Technology Features,
554:555–557.

Williams, A. (2016). The docker & container ecosystem, volume 1. The New
Stack.

Woese, C. R., Kandler, O., and Wheelis, M. L. (1990). Towards a natural sys-
tem of organisms: proposal for the domains archaea, bacteria, and eucarya.
Proceedings of the National Academy of Sciences, 87(12):4576–4579.

Yuan, Y., Shi, Y., Li, C., Kim, J., Cai, W., Han, Z., and Feng, D. D. (2016).
DeepGene: an advanced cancer type classifier based on deep learning and
somatic point mutations. BMC Bioinformatics, 17(17):243.

Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S.,
Lund, O., Aarestrup, F. M., and Larsen, M. V. (2012). Identification of ac-
quired antimicrobial resistance genes. Journal of antimicrobial chemother-
apy, 67(11).

Zhang, K., Alqahtani, S., and Demirbas, M. (2017). A comparison of dis-
tributed machine learning platforms. In Computer Communication and
Networks (ICCCN), 2017 26th International Conference on, pages 1–9.
IEEE.

	Introduction
	Contribution and outline

	Bacteria Classification
	Mass spectrometry
	Whole genome sequencing for clinical samples
	Genome wide average nucleotide identity
	Microscopic morphology
	Deep neural networks
	Common deep learning architectures
	Frameworks for implementation
	Bacteria related implementations
	Other biological sequence implementations

	Sequential Deep Learning System
	Recurrent Neural Networks
	Unit equations

	Sequence representations
	Neural network training and evaluation
	Regularization
	Metrics

	Implementation
	Deep learning module
	User interface

	Experimental Results
	Classifiation model tests
	Species coverage increase
	Validation of results

	Conclusions
	Future work

	Species list
	References

