Relativistic Wave Equation for Radiant Electron

Julio Cesar Jaramillo Quiceno?
Universidad Nacional de Colombia - Sede Bogotéa

November 7, 2018

Abstract

In this article a relativistic wave equation for the accelerated radiant electron, indepen-
dent of Dirac formalism, based on the concept of radiation of classical electrodynamics is
proposed. This work describes the solution for the free electron case, the electromagnetic
potentials, the invariance under Lorentz transformations, and an application to the atomic
model and the conductor media.
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1 Introduction

Relativistic wave equations describe the movement of high energies particles that travel at
speeds close to light. The first relativistic wave equation that appeared on the scene was
formulated by Klein-Gordon (known also as Schoringer’s relativistic equation), which describes
the behaviour of zero spin particles [22]. The second equation in this sense, also known as
Dirac equation, describes the electron combining quantum mechanics and special relativity [4].
This equation predicts the existence of antielectrons (positrons) and its extension allows the
development of quantum electrodynamics (see [24]|). However, it does not describe to electron
completely omitting some characteristics as the electron radius (denominated also Lorentz
radius) and the half-life, despite being concepts of the classical electrodynamics. From this
point of view, Larmor and Lienard Wiechert in |2, 3| shown that charged particles (in particular,
electrons) when they are accelerated emit radiation. Shortly after, Dirac postulated a quantum
theory of the radiation relating the interaction between the electron and the radiation from the
phenomenological perspective without taking into account the half-life and the electron radius
[6]. The main objective of this work is studying the following relativistic wave equation, taking
as starting point the classical theory of the electron [7], defined by

L O0Y(z,t 2k,

zh—( ) =cp- g+ |mec® — fi-(S—=0)| Yoz, 1), (1.1)
ot 3r,

where S is the associated vector to the spin angular momentum (see [13]), B := ? being

v the electron velocity and c the speed of light, f; stands for the Lorentz force defined as
Ji =e(E+ v x B) (see [1]), ¢ is a spinor associated with states of positive and negative energy
with positive and negative parity and ag is a vector, which is defined in (2.5), and depends
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on the electron radius, half-life and Lorentz force (see |12, 20]). Here, ) is a spinor obtained
by applying the density operator of associated current to energy and parity change Je, defined
in (2.6), on ¢. This operator, transforms the spinor componentes from 1 to 1)y and describes
the transition from positive to negative energy, from negative to positive energy and its parity
change. Spinors ¢ and vy are defined by the following way:
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in which the sign of the superscript indicates the state of the energy and the sign of the subscript
indicates the parity change. Below we will briefly comment on some results about relativistic
wave equations found in the literature during the last years. Walker et al. propose, that given
the solution of the Weyl equation for the neutrino, more solutions of this equation can be
generated by applying a differential linear operator. These operators are known as symmetry
operators and can be applied to all relativistic wave equations with spin s = 1/2 [17]. In
2001, Niederle and Nikitin [23], formulate new relativistic wave equations for massive particles
with arbitary spin, which interact with the external electromagnetic field, based on the wave
functions, which are irreducible tensors of the 2n(n = s — 1/2). In 2017, Marsch [16] proposes
a second-order relativistic wave equation for massive particles loaded with arbitrary spin. In
that same year, Simulik [21] proposes in his work, a relativistic wave equation of arbitrary spin
in quantum mechanics and field theory, taking as an example s = 2.

This work is organized as follows. In Section 2 the relativistic wave equation for the radiant
electron is building from radiation concept of the classical electrodynamics. In Section 3, it is
shown the solution for the free electron and its relation with the density operator j., relativistic
wave equations in terms of Lienard-Wiechert retarded potentials are exhibited and Lorentz
invariance of the relativistic wave equation using the Lorentz transformation is proved (see
[2, 3]). In Section 4 the radiant electron in the atomic model and conductor medium is described.
Finally, in Section 5, a brief analysis on the obtained results is made, and a description of the
behavior of the electron in a conductor medium, coupling the electromagnetic fields with the
Poynting vector.

2 Deduction of the relativistic wave equation for the radi-
ant electron

In this part, it is considered an accelerated and radiant electron defined by means of the
relativistic energy in the following system of equations

wa) = [c|p| + mec® —ag - (S— B
Byt = — [c|p| + mec® — ag - (S
E) = — [e|p] + mec® — ao - (8

B = [elp| + mec® — ag- (S — B)] ¥,
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To follow will be defined the vector ay in terms of Lorentz force. For that, it is used the
following formula of the radiant electron power, relating the Lorentz force and the vector ag:

7’2

e
P = ag - fl?
mechu,
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where u, is a constant characteristic, whose value is obtained by calculating c¢*t./Fy ~ 2,9 x
10°° fm? /MeV -s and ., stands for the Lorentz radius, which was obtained at the non-relativistic
limit as can be seen in [12, 20]. Here, the energy of rest £y corresponds to 0.511 MeV and which
was introduced for dimensional reasons. Since it is considered an accelerated electron, the above
expression is equated to Larmor’s formula [3]

7‘3 2 re
mechueao = §mec'fl i
Therefore,
2hu,
ag — 37“6 -fl

and replace in the equations (2.1) - (2.4). The equations (2.1) - (2.4) show a transition from
positive and negative energy and of parity change. This transition can be represented by
defining an operator that acts on each component of the spinor ¢(x, t), denoted by Je, satisfying
the following properties:

1. det(j.) =1,
2. 5652 = I, where I is a identity matrix of size 4.

3. The operator j. associates each component of ¥(z,t) with each component of ¥ (z,1),
respectively.

Using the above properties, it follows that the matrix form of the operator J, is given by:

0 0 0 1
~ 10 0 =10
1 0 0 0
Thus, it is possible to rewrite (1.1) as
wiji 00 0 1 wiji
P ,  2hu. 0 0 -1 of [o"
E (_7) - C‘p| T MeC” — 3r, -fl ) (S_ ﬁ) 0 =1 0 0 w(_f)
wS—_) 1 0 0 0 ws_—)
(+)
—(:‘) 2
9 | 2 Ue -
zha 4O = {c|p\ + mec” — 3 1 (S—B)} Jet
(=)
+
0 2ha, .
zha—qf =cj,-pY+ {mec2 — 3;: fi-(S— B)] Je,
Similarly, it is possible to rewrite the term j.1i) as 1)9. Then, (1.1) becomes:
L O 2hu, 2hu, N
G = cp- o+ [ - 2 8) = 55| . (26)

The following bold notation will be used to define the following vectors with repeated compo-
nents, that is,



¢0 = (%;%ﬂﬂo) and jAe = (36756736) .
Applying (2.6) in the spinor v, it follows that

where x := (z,y, z). On the other hand, let p be the momentum of electron with components
(Pzs Dy, p2). Then, from (2.7), it holds that

(Pzs Pys P2) - o = Potho + pytho + p2tho
= prjetd + Dyjetd + pjet)
= JeDath + JePyt + Jep:tb
= Je * PV,
which implies
Je-pU(x,t) = p-aby.
One of the characteristics to take into account the electron in the atomic model are the

magnetic and electric dipole moments. From (2.6) two equations were obtained which describe
the radiant electron in terms of the electric and magnetic dipole moments p = %S and

d= LS defined in [13, 18],

a 4 ele Qh e ~
iha_f =cp- P+ [meCQ— gme:fec(fru) —3 Z (ﬂf,)} Jet,
a 2 e e 2h e ~
ihﬁ—lf =cp- Py + {mecz— ;Z;Z (fi-d) — 3 Z (ﬁ'fz)} Jet).

By separately defining the Lorentz force for the electric field E and magnetic field B, the fol-
lowing four equations were obtained (with charge density defined as p = % but when evaluating
at V = 1fm?3, is obtained p = ¢):

1. Magnetic field - Magnetic moment :

0 4 mecu , . N
iha—zf =cp-Py+ [mec2 - gm ::L (1 x B- u,)] Jet. (2.8)
2. Electric Field - Electric dipole moment :
oY 2mecu 2 hu .
h—— =cp - =S (E-d) - Z—(E-j)| j. 2.
WGy =t [ = S - S| (20)
3. Magnetic field - Electric dipole moment :
L0y 9 2MeClUe . N
zha =cp-YP,+ {mec “ 3o (3x B- d)] Jet. (2.10)
4. Electric field - Magnetic moment :
oY 4dmecu 2 hu o
h—— =cp- = ——(E-p)— =—2(E-j)| jer. 2.11
iy oty et = B - S G 2

These are the relativistic wave equations that describe the radiant electron in the electric and
magnetic cases coupled with their respective electric dipole and magnetic moments, being f’
the analogous factor to the Lande gyromagnetic factor g.
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3 Free electron, Electromagnetic Potentials and Invariance
under Lorentz Transformations

In this section, we analyse the solution for a free electron, taking the force of Lorentz f, =
0. Then, we defined the relativistic wave equations for an electron in the presence of the
Lienard - Wiechert retarded potentials, using the minimal substitutions for momentum cp —
cp — eA, and energy E — E — e¢, and finally we will show their invariance under Lorentz
transformations. For a free electron (that is, absence of electromagnetic fields), the equation
(2.6) is defined as

oY

zha cp -+ m6025e1/1 (3.1)

d - Wiechertand, in a similar way as was stated in [11], it is proposed to consider solutions of

the following form:
<:>

U e
W(x) = 1/)(__) e, (3.2)
v

Applying Je in (3.2), the following relations were obtained for each spinor component (the
complete derivation can be seen in Appendix A);

el =—w+ , (3.3)
et = 1, (3.4)
G =~ (3.5)
el = ph, (3.6)

According to the above, we can say that equations (3.3) - (3.6) describe the transition from
positive to negative energy states and from negative to positive without parity change. In the
previous section, the motion equations for a radiant electron in the presence of electromagnetic
fields were considered without coupling the of vectorial and scalar potentials, respectively. Let
A be a vector potential and ¢ a scalar potential in the same way as it was done [5, 13, 14].
Using the following modifications

cp—cp—cA and F — E — eg,
and from (2.6), it holds
e
(zh— - ¢) v=c(p—S4) v,

B 2hu,
3repc

(ﬁ(Aa ¢) ' J) 3e¢

This last implies that the electromagnetic fields in the Lorentz force must be expressed in terms
of potentials A and ¢ (see [14]). As an accelerated electron is being described, Barut in [13]
considered from the point of view of relativistic kinematics an electron that moves in a proper
time 7 in a world line. This consideration created a delayed electromagnetic field produced at
a time 71 from Lienard - Wiechert potentials. Therefore, the wave equations in the Lienard -



Wiechert delayed potentials are

T ¢’ 1 - e? /€]
(matret AnR(1—n-f) ’T:“’) v (pR CarcR(1- - f) ’T:m) s

e 0= )0 8 = [l ) x B} v
- 27236 {4;}32 (1 — ;,113>3[(1 _52)<'ﬁ'_16) - ? X [(ﬁ_ﬁ> X 5]] ﬁ}jewa (3~7)

T N S P - |
ot dmR(1—7-8)™" _C“?4mR@—nﬁTﬁ

dmecu -
o — ] e 3.8
+ [m c + er. {Jret 47TRC( ,6) /6 }:| J 1% ( )
0_ ,0
where t,; = t — M,R =z— y(n),n = |§| R = |R| = ct — ctye; and j,., the

retarded current density. The function ¢ = (R, t,) satisfying (3.7) and (3.8) is called the
retarded wave function.

On the other hand, it will be show that (2.6) is invariant under Lorentz transformations.
For that, it is used that A =c =1 and

SH —

. 2u,
10,00 + ( o UM) o =0, (3.9)

where " = (¢, 1,). Initially, it is considered an electron within a reference system ¥’ with 2’ -
coordinates and described by the wave function ¢/’. Then, moving from ¥’ to another reference
system ¥ with x -coordinates, the following transformations take place:

YH = N, O = N, ot = A, (3.10)
fl=Aofu, ™= ALSS gh(a!) = do(Az). (3.11)

Replacing the transformations (3.10)-(3.11) in (3.9), it is obtained

. 2U, 2U,
zc‘)l'g//“ + (3—%]‘;’15/# — Me + 3r

e

“fh ’“) Yo(Ax) =0,

2u,
iNAN D)™ + <iAg JoliS” = me + = =A7 faAgvﬁ) Yo(Az) =0,

2U,

3re

2ue

AO‘A“ B
5faS” — 3

iNEAS O™ + ( —ANAE fov > Yo(Az) = 0.
Taking into account the product property of Lorentz matrices AO‘A” = 03, AﬁA“ = 67, the
invariance under Lorentz transformations was actually demonstrated by usmg the followmg

formalism:

: a 2u€ (] Ue o
168 0ph™ + (37’6 5ﬁfa55 —me + 5ﬁfavﬁ) Yo(Ax) =0,

2u, 2ue

3re

10" + ( fsSP —me + fgv ) Yo(Az) = 0.



4 FEnergy levels of the accelerated electron in the atomic
model

In this section the extension to the atomic model and an application to the conductor media was
considered. The coupling of the electric field with the magnetic moment in terms of the quantum
number associated with the angular orbital momentum [ and the Bohr magnetron up, was
defined. The eigenvalues for the operator j. were calculated using the coupling with the operator
associated with the orbital angular moment L, with the objective to obtain the energy of the
electron for the degenerated states, denoted by E,,.;. The case of a relativistic accelerated
electron in an atom rotating around the nucleus was considered, defining the coupling of the
electric field E and its magnetic momentum g of (2.11), defined by

dmecu.ZLkce
E-p= —370—7420/463\/ (1+1).
Here, up is the Bohr magneton defined in [13, 18|, k¢ is Coulomb constant and Z is atomic
number. The coupling of the electric field and current density E - j (for electrons travelling at

a velocity v = ¢), is defined as
. 2hu Zkee?
E.-j=——.
J 3r2r,
From above and (2.11), it is getting the following relativistic wave equation for the accelerated
electron in the atomic model

oY N 4 e’mecu ke 2 Zkohuee?] -
h— =c¢j, - Py (l+1)+ = ——"— ) 4.1
v at C]e p¢+ mec + 3 T2T6 MB ( + )+ 3 TeTZ ]677/} ( )
Doing (3 as
4e’mecu.Zke 2 Zkohuee?
= +1)+-——
p 3 Te pp UL+ 1) + 3 Te ’
(4.1) is expressed by
. 8¢ ~ B A
ZFLE =cj, - pY+ {mGCQ 4 ﬁ] Jetb. (4.2)

Factor 36- p was analysed using the same procedure presented in [4] using the following equation

(G.-p)(G. ) =r-p+ijg,- L (4.3)

Replacing j, - 7 = rj. in (4.3), it holds

A, _]
Je'p_

" (roptij T). (44)

Since there exists an operator K defined by iK = j, - L+ h (see |5]), and denoting

1 . r-p ih
pri==(r-p—ih)=———,
r r r

from (4.4), it follows that
N N ihK 7,
Je D= JeDr + L

Replacing the above equality in (4.2), it is obtained the relativistic wave equation for the radiant
electron in the atomic model

o+ [mec2 + g] e, (4.5)

hek
Zha_l/} = cjeprth + )
ot r



Moreover, the eigen-values of operator K can be obtained from hK = j. - L + h (see Appendix
C), which are defined by

1\ 1 1N\N? 1
k=4l (j+= (1) ==
(j+2) *3 \/(+2> 1

Now, in order to determine the relativistic energy of the electron associated with the degenerated
states, the equation (4.5) is taken at each spinor component 1)

Byt = (—ihc% + @ + mec® + :%) ), (4.6)
Eypt = — (—z’hc% + ih:k + mec® + :%) v, (4.7)
By = — (—z’hc% + Zh:k + mec® + r‘%) ), (4.8)

By = (—ihc% + mrck + mec® + g) ), (4.9)

o =iy an (1) e/, (4.10)

m=0 "o
S —— Z b (L) er/ro. (4.11)
To
m=0
W =i e, (1) e/, (1.12)
To
m=0

W= iY (L e/ (4.13)

where 7 is Bohr radius [18], Then, the final energy expression is (see Appendix C)

202 4 e*mycu.Zk 2 Zkcohuge?
E=E . =+ |m.c? (mec)’a il el S 1) L 22O
il M EAm ek \37 M Uity Te

(4.14)
Considering the particular case of the initial state n = 1,1 = 0,m = 0,k = \/%, E is
approximately 10%® eV and it was obtained with respect to the energy of the initial state. For
the radiant electron case of an atom in a conductor medium with electrical conductivity o , the
FE and B fields coupled with the magnetic momentum g associated were given as

k’cZ@A

E(T) = T—Sr’ (415)
Ze
B(T) = WL, (416)

= —()V/II+1). (4.17)

Replacing (4.15) - (4.17) in the j x B - p factor of (2.9), it is obtained

Z2 2
jx Bl = 0B x Bl|u| = ZCZ IR STy,

romec?




Here, it is used the Ohm’s law j = o F defined by Jackson [14] for perpendicular fields. There-
fore, (2.9) can be rewrite as

4 u, eckcZ*h2opurm

0 heK g,
Zh_¢ = Cjepr¢ + ) -3 5
3 pre r

ot r

b+ {me& 11+ 1)] Jetb,

where p is the charge density of the conductor medium y « is the fine structure constant. Thus,
the relativistic energy of the radiant electron in a conductor medium is:

4 u, eckcZ?R2aurm
Eoim:i = £ [ mec® + =—= I(1+1)). 4.18
g = (4 5 e SRR ) (4.8

5 Final comments and possible applications

This work describes in detail an accelerated electron with the data found in classical electro-
dynamics, such as the Lorentz radius!, half life and energy at rest. In Section 2, a relativistic
wave equation for the radiant electron is formulated, in which a vector denoted by ay is intro-
duced in function of Lorentz force f;, which will be referred as the quantum potential vector
for accelerated electrons. This vector was defined using Larmor’s work [3] in order to describe
in detail the behavior of quantum accelerated electrons in the presence of electromagnetic fields
by means of equations (2.8) - (2.11). Here it is used a new operator j, defined from the so-
lutions for a free electron whose physical interpretation corresponds to the Density of electric
current associated with the energy and the electron parity. On the other hand, from equations
(2.9) and (2.10) there is a constant f" with unknown value, which could be determined from
the electrical dipole moment (see [13]). In 2013, through the experiment with Torio monoxide
molecules ThO led by ACME collaboration, an approximate value of the electric dipole moment
was obtained, taking into account that the electrons of the experiment travel relativistically.
In the same section, the equations for a radiant electron with the electromagnetic potentials
were given. However, the potentials of Lienard-Wiechert were taken assuming that an electron
travels in a world line, in an advanced proper time 7; and retarded 7y, to obtain the equations
(3.7) - (3.8). It is important to mention that electromagnetic fields are not the advanced and
delayed fields that Jefimenko denoted in his work (see [9]). One application of equations (3.7)
- (3.8), especially (3.8), is the description of the experiment made in 2015 on the emission of
radio waves by an electron [10].

In Section 4, the case of a radiant electron is considered in the atomic model, taking equa-
tion (2.11) as a starting point. Modifying the coupling of E - p in terms of Bohr magneton
gives an expression of the relativistic energy of the accelerated electron in the energetic levels
associated with degenerate states described in equation (4.14). Using this formula, the energy
was calculated for the ground level (i.e., for n = 1,1 = 0 and m = 0) of a hydrogen atom, and it
was found that its value exceeds the energy of the ground state of the same by a factor of 104
without to be obtained experimentally. Some parameters such as the fine-structure constant in
second order, the constant u., the electrostatic constant ko and the electron radius were taken
into consideration here. From the above, an interesting topic of research would be to obtain
the energy of the ground state experimentally.

A particular case of research of relevant importance are the equations below that describe

Lalthough this was determined without taking into account quantum effects



the behavior of accelerated electrons of an atom in a conductive medium

zhaa—lf =cp- Py + [mec2 - %m;:fe (cEx B- M)_ e,
zh%—lf =cp- P+ [m c gﬂ}ize(E d) - gZ?G(U!E\ )- Jetb,
2% —cp i+ [ = 2 o ) o
WG = cp -+ [ = 3B ) - 2 o8P

These equations were obtained using equations (2.8) - (2.11), Ohm’s law for electromagnetic
conductors j = o E (see [14]), and assuming that fields E and B are perpendicular.

For this case, the energy of an electron in terms of the electrical conductivity ¢ in the atomic
model is calculated using the coupling of the electromagnetic fields £ and B with the magnetic
moment g and the angular orbital moment L. With this result, the energy for the ground state
n = 1 and for n = 2 (which corresponds to the helium atom) is obtained, predicting a possible
value of the electrical conductivity despite not having recorded data.

From the point of view of classical electrodynamics, when a charged particle accelerates, it
emits an energy flux of the radiation described with the Poynting vector, denoted by Sq (see
[19]). With this principle the following equations are given

o , 1m C2Ug 5

gy = et | ofr 7 a) jov .
o 5 1 MeCUe

hor =P Yot {m T3, 0 “>] e o2

The equations (5.1) and (5.2) describe the behavior of an electron in a conductor medium
coupling the magnetic and electrical moments with the Poynting vector, despite the absence of
experimental results on the behavior of the electrical dipole momentum in the atom. Theoret-
ically, models of conductors can be built with potentials that depend on Poynting vector, the
electric dipole moment d and the magnetic moment p, together with the delayed and advanced
fields E and B. A quasi-classical electrodynamics for radiant electron can be formulated from
Maxwell equations (in the quantum case) for the moments g and d as a function of fields E and
B. With respect to the description of the experiment of the electron that emits radio waves,
the advanced case can be considered replacing the potentials of Lienard-Whiechert with the
magnetic field and the current density using (2.8) (see [9]).
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7 Appendix A: Solution for Free Electron II

In this section we show the solution of the equation (3.1). For that it will be found each
component of the matricial form (3.1)

E o0 o o] [+ 0 0 0 clp| +mec] [
0o E 0 of P 0 0 —c|p| — mec? 0 T
00 E 0f |99 0 —c|p| — mec? 0 0 )
00 0 EJ [y c|p| + mec? 0 0 0 e

Then, the following system of equations for the energy appears

= (clp| + mee®)u,
= —(c|p| +m 02)1/1(_
—(c|p| +m 02)1#(_

= (c|p| + mec?)pit.

Proposing for each component its respective solution in a similar way as shown in Schiff’s work
[11], it is obtained

(+) _ K ()
V= Wl )
+) _ E =)
VS T )
) _ E (+)
VS T )
) _ E__ o),

T (e]p| +mec?) T

Now replacing in (3.2), four linearly independent spinors were found

——

V() = Y(x,t) = {usr+)(p)eip'x,u(:)(p)e*ip'x, u (p)e WP (p)et

vy 0 Vs .
— O elp I’ C|p|+m562w eiip'x, O efip'x’ 77#7 eip'l"
0 ) 0 c|p\+f@ P )
Tyt 0 ) 0
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p-x=7p-x—wt. Applying the operator Je on each spinor, it is arrived at

R
- +) jipw =T ip-x
0 -1 0 0 o |vert= 0 e,
E
1 0 0 0] gl 1]
0 0 o0 17[] 0 7 T0 ]
00 -10 1 () jipz _ c\plli c? ()T ip=
0 -1 0 0| |mpre Y- et = 1 Yo et
1 0 0 0| o0 | 0|
00 0 1 0 0
0 0 —-10 —E O -1 4
c|pl+mec? w(_ )eﬂp'ﬂﬁ — 5 w(_Jr)Tefzp-x’
0 -1 0 0 1 i
1 0 0 0 0 0
—F
e 3
- (=) —ipw _ )t —ipa
0 —1 0O 0 0 w‘*‘ et = 0 RN pT
E
1 0 0 0 1 s

Thus, the equations (3.3) - (3.6) are obtained

Jely (p) = —Uy (p), (7-1)
Jeu (p) = =T (p), (7.2)
jeu 7 (p) = —uP(p), (7.3)

Jeul” (p) = w7 (p). (7.4)

8 Appendix B: K - eigen-values

In this section, the eigen-values of the operator K are found by developing AK = 36 - L+ hin
terms of the eigen-values of the operator J. Then,

RK?=(j.-L)?*+2h(j, - L)+ 1
— L? +2h(j, - L) + K2

. h?2 K2
:L2+2h<j€'L>+h2+Z_Z

N N h?  3K2
:L2+h(je-L)+h(]e-L)+—4+—4

A\ N 3
:(L+§) +h(]6-L)+Zh2

A 3
= J* +h(j.- D) + 31,
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Thus, in terms of eigen-values, it follows that

- 3
Wk = j(j + DR + (g, - L) + h°
hQ

=j(j + DI + T

K2 2R? 1\* 1
—j(j+1)h+4+ 1 i\/(l+2> 4h,

where it is used the equality
. 1\* 1
- L) ==+ l+=) —-.
G- D \/ (1+3) -1

Therefore, the eigen-values of the operator K are given by

1\N? 1 1\N? 1
k= = (1= ) ==
(j+2) *3 \/<+2> 4

2 N
+ ZhQ + h(j, - L)

9 Appendix C: Formulation of Energy Levels in the Atomic

Model

In this section, the energy associated with the atomic levels of an accelerated electron will be

formulated. Replacing (4.10) and (4.11) in (4.6) and (4.9), respectively, it holds

00 m 00 m—1 m
T m(r 1 /r
Ei am [ — ) e/ =—he b | — (—) - — (—) e~/mo
Z (7’0) mz:() [7“0 To To \To

m=0
, , ihck B — '\
- e ) bm - 07
/) (m c” + . + 7’2) mE_O (7’0 e
o] m [e’e) m—1 m
T m(r 1 T
—Eq b [ — ) e =he Y ap, |— (—) - — (—) e "/mo
mzzo (7’0) n;) [7‘0 To To \To
2 Zhle ﬁ > L m —r/ro
+Z< C . —|—T2>m§:Oam <To) e

Taking the imaginary parts of (9.1) and (9.2), it is obtained
Ea,, = — (mec2 + %) b,
r
—FEb,, = (mec2 + %) -
r

From (9.3) and (9.4) is given that

r2

E:j:(m602+£>.

Now, taking the real parts of (9.1) and (9.2), it is true that

r=ro(m=+k).
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(9.1)

9.3)

(9.4)

(9.5)



Substituting the above equality in (9.5) and rewriting again /3, the energy levels of an accelerated
relativistic electron in a hydrogen atom associated with degenerated states are obtained

2 Zkohuee? )]

(l+1 -
3 Te HB (+)+3 Te

. 2.2 42 eeZk
E=Eypy =+ |me® + (mec)*a (_emu c

h2nt(m + k)?

Performing the same procedure when replacing (4.12) and (4.13) in (4.7) and (4.8), respectively,
the spinor can be rewritten as follows

_ m
; E :OO T —r/7o
L m=0 dm (ro) €
m
S e _ B r —r/ro
L2 im=0 |: am <T0) €

2
MeC =+
¢ r% (m+k)2

Unimij (1) =

To

Z.Zf::o ﬁcm (%)m e~ T/To

2
mec*+
€ r%(m—k)2

m
DI r —r/ro
i em (£) e
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