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Abstract

In this article a relativistic wave equation for the accelerated radiant electron, indepen-

dent of Dirac formalism, based on the concept of radiation of classical electrodynamics is

proposed. This work describes the solution for the free electron case, the electromagnetic

potentials, the invariance under Lorentz transformations, and an application to the atomic

model and the conductor media.

Keywords:

Relativistic Wave Equation, Radiant Electron, Accelerated Electron.

1 Introduction

Relativistic wave equations describe the movement of high energies particles that travel at
speeds close to light. The �rst relativistic wave equation that appeared on the scene was
formulated by Klein-Gordon (known also as Schoringer′s relativistic equation), which describes
the behaviour of zero spin particles [22]. The second equation in this sense, also known as
Dirac equation, describes the electron combining quantum mechanics and special relativity [4].
This equation predicts the existence of antielectrons (positrons) and its extension allows the
development of quantum electrodynamics (see [24]). However, it does not describe to electron
completely omitting some characteristics as the electron radius (denominated also Lorentz
radius) and the half-life, despite being concepts of the classical electrodynamics. From this
point of view, Larmor and Lienard Wiechert in [2, 3] shown that charged particles (in particular,
electrons) when they are accelerated emit radiation. Shortly after, Dirac postulated a quantum
theory of the radiation relating the interaction between the electron and the radiation from the
phenomenological perspective without taking into account the half-life and the electron radius
[6]. The main objective of this work is studying the following relativistic wave equation, taking
as starting point the classical theory of the electron [7], de�ned by

i~
∂ψ(x, t)

∂t
= cp ·ψ0 +

[
mec

2 − 2~ue
3re

fl · (S− β)

]
ψ0(x, t), (1.1)

where S is the associated vector to the spin angular momentum (see [13]), β := v

c
being

v the electron velocity and c the speed of light, fl stands for the Lorentz force de�ned as
fl = e(E+ v×B) (see [1]), ψ is a spinor associated with states of positive and negative energy
with positive and negative parity and a0 is a vector, which is de�ned in (2.5), and depends
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on the electron radius, half-life and Lorentz force (see [12, 20]). Here, ψ0 is a spinor obtained
by applying the density operator of associated current to energy and parity change ĵe, de�ned
in (2.6), on ψ. This operator, transforms the spinor componentes from ψ to ψ0 and describes
the transition from positive to negative energy, from negative to positive energy and its parity
change. Spinors ψ and ψ0 are de�ned by the following way:

ψ(x, t) =


ψ

(+)
+ (x, t)

ψ
(+)
− (x, t)

ψ
(−)
+ (x, t)

ψ
(−)
− (x, t)

 and ψ0(x, t) =


ψ

(−)
− (x, t)

−ψ(−)
+ (x, t)

−ψ(+)
− (x, t)

ψ
(+)
+ (x, t)

 ,
in which the sign of the superscript indicates the state of the energy and the sign of the subscript
indicates the parity change. Below we will brie�y comment on some results about relativistic
wave equations found in the literature during the last years. Walker et al. propose, that given
the solution of the Weyl equation for the neutrino, more solutions of this equation can be
generated by applying a di�erential linear operator. These operators are known as symmetry
operators and can be applied to all relativistic wave equations with spin s = 1/2 [17]. In
2001, Niederle and Nikitin [23], formulate new relativistic wave equations for massive particles
with arbitary spin, which interact with the external electromagnetic �eld, based on the wave
functions, which are irreducible tensors of the 2n(n = s− 1/2). In 2017, Marsch [16] proposes
a second-order relativistic wave equation for massive particles loaded with arbitrary spin. In
that same year, Simulik [21] proposes in his work, a relativistic wave equation of arbitrary spin
in quantum mechanics and �eld theory, taking as an example s = 2.

This work is organized as follows. In Section 2 the relativistic wave equation for the radiant
electron is building from radiation concept of the classical electrodynamics. In Section 3, it is
shown the solution for the free electron and its relation with the density operator ĵe, relativistic
wave equations in terms of Lienard-Wiechert retarded potentials are exhibited and Lorentz
invariance of the relativistic wave equation using the Lorentz transformation is proved (see
[2, 3]). In Section 4 the radiant electron in the atomic model and conductor medium is described.
Finally, in Section 5, a brief analysis on the obtained results is made, and a description of the
behavior of the electron in a conductor medium, coupling the electromagnetic �elds with the
Poynting vector.

2 Deduction of the relativistic wave equation for the radi-

ant electron

In this part, it is considered an accelerated and radiant electron de�ned by means of the
relativistic energy in the following system of equations

Eψ
(+)
+ =

[
c|p|+mec

2 − a0 · (S− β)
]
ψ

(−)
+ , (2.1)

Eψ
(+)
− = −

[
c|p|+mec

2 − a0 · (S− β)
]
ψ

(−)
− , (2.2)

Eψ
(−)
− = −

[
c|p|+mec

2 − a0 · (S− β)
]
ψ

(+)
− , (2.3)

Eψ
(−)
+ =

[
c|p|+mec

2 − a0 · (S− β)
]
ψ

(+)
+ , (2.4)

To follow will be de�ned the vector a0 in terms of Lorentz force. For that, it is used the
following formula of the radiant electron power, relating the Lorentz force and the vector a0:

P =
r2e

mec~ue
a0 · fl,
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where ue is a constant characteristic, whose value is obtained by calculating c2te/E0 ≈ 2, 9 ×
1050fm2/MeV ·s and re stands for the Lorentz radius, which was obtained at the non-relativistic
limit as can be seen in [12, 20]. Here, the energy of rest E0 corresponds to 0.511 MeV and which
was introduced for dimensional reasons. Since it is considered an accelerated electron, the above
expression is equated to Larmor's formula [3]

r2e
mec~ue

a0 · fl =
2

3

re
mec

fl · fl,

Therefore,

a0 =
2~ue
3re

fl.

and replace in the equations (2.1) - (2.4). The equations (2.1) - (2.4) show a transition from
positive and negative energy and of parity change. This transition can be represented by
de�ning an operator that acts on each component of the spinor ψ(x, t), denoted by ĵe, satisfying
the following properties:

1. det(ĵe) = 1,

2. ĵeĵ
†
e = I4, where I4 is a identity matrix of size 4.

3. The operator ĵe associates each component of ψ(x, t) with each component of ψ0(x, t),
respectively.

Using the above properties, it follows that the matrix form of the operator ĵe is given by:

ĵe ≡


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 . (2.5)

Thus, it is possible to rewrite (1.1) as

E


ψ

(+)
+

ψ
(+)
−

ψ
(−)
−

ψ
(−)
+

 =

[
c|p|+mec

2 − 2~ue
3re

fl · (S− β)

]
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



ψ

(+)
+

ψ
(+)
−

ψ
(−)
−

ψ
(−)
+



i~
∂

∂t


ψ

(+)
+

ψ
(+)
−

ψ
(−)
−

ψ
(−)
+

 =

[
c|p|+mec

2 − 2~ue
3re

fl · (S− β)

]
ĵeψ

i~
∂ψ

∂t
= ĉje · pψ +

[
mec2 − 2~ue

3re
fl · (S− β)

]
ĵeψ,

Similarly, it is possible to rewrite the term ĵeψ as ψ0. Then, (1.1) becomes:

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 2~ue
3re

(fl · S)− 2~ue
3re

(fl · β)

]
ĵeψ. (2.6)

The following bold notation will be used to de�ne the following vectors with repeated compo-
nents, that is,
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ψ0 := (ψ0, ψ0, ψ0) and ĵe :=
(
ĵe, ĵe, ĵe

)
.

Applying (2.6) in the spinor ψ, it follows that

ĵeψ(x, t) = ψ0(x, t), (2.7)

where x := (x, y, z). On the other hand, let p be the momentum of electron with components
(px, py, pz). Then, from (2.7), it holds that

(px, py, pz) ·ψ0 = pxψ0 + pyψ0 + pzψ0

= pxĵeψ + py ĵeψ + pz ĵeψ

= ĵepxψ + ĵepyψ + ĵepzψ

= je · pψ,

which implies
ĵe · pψ(x, t) = p ·ψ0.

One of the characteristics to take into account the electron in the atomic model are the
magnetic and electric dipole moments. From (2.6) two equations were obtained which describe
the radiant electron in terms of the electric and magnetic dipole moments µ = e~

2mec
S and

d = f ′e~
mec

S, de�ned in [13, 18],

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 4

3

meuec

ere
(fl · µ)− 2

3

~ue
re

(β · fl)
]
ĵeψ,

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 2

3

mecue
ef ′re

(fl · d)− 2

3

~ue
re

(β · fl)
]
ĵeψ.

By separately de�ning the Lorentz force for the electric �eld E and magnetic �eld B, the fol-
lowing four equations were obtained (with charge density de�ned as ρ = e

V
but when evaluating

at V = 1fm3, is obtained ρ = e):

1. Magnetic �eld - Magnetic moment :

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 4

3

mecue
ere

(j×B · µ)

]
ĵeψ. (2.8)

2. Electric Field - Electric dipole moment :

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 2

3

mecue
f ′re

(E · d)− 2

3

~ue
rec

(E · j)
]
ĵeψ. (2.9)

3. Magnetic �eld - Electric dipole moment :

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 2

3

mecue
ef ′re

(j×B · d)

]
ĵeψ. (2.10)

4. Electric �eld - Magnetic moment :

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 4

3

mecue
re

(E · µ)− 2

3

~ue
rec

(E · j)
]
ĵeψ. (2.11)

These are the relativistic wave equations that describe the radiant electron in the electric and
magnetic cases coupled with their respective electric dipole and magnetic moments, being f ′

the analogous factor to the Lande gyromagnetic factor g.
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3 Free electron, Electromagnetic Potentials and Invariance

under Lorentz Transformations

In this section, we analyse the solution for a free electron, taking the force of Lorentz f l =
0. Then, we de�ned the relativistic wave equations for an electron in the presence of the
Lienard - Wiechert retarded potentials, using the minimal substitutions for momentum cp −→
cp − eA, and energy E −→ E − eφ, and �nally we will show their invariance under Lorentz
transformations. For a free electron (that is, absence of electromagnetic �elds), the equation
(2.6) is de�ned as

i~
∂ψ

∂t
= cp ·ψ0 +mec

2ĵeψ (3.1)

d - Wiechertand, in a similar way as was stated in [11], it is proposed to consider solutions of
the following form:

ψ(x) =


ψ

(+)
+

ψ
(+)
−

ψ
(−)
−

ψ
(−)
+

 e±ip·x. (3.2)

Applying ĵe in (3.2), the following relations were obtained for each spinor component (the
complete derivation can be seen in Appendix A);

ĵeψ
(+)
+ = −ψ(−)†

+ , (3.3)

ĵeψ
(+)
− = ψ

(−)†
− , (3.4)

ĵeψ
(−)
− = −ψ(+)†

− , (3.5)

ĵeψ
(−)
+ = ψ

(+)†
+ . (3.6)

According to the above, we can say that equations (3.3) - (3.6) describe the transition from
positive to negative energy states and from negative to positive without parity change. In the
previous section, the motion equations for a radiant electron in the presence of electromagnetic
�elds were considered without coupling the of vectorial and scalar potentials, respectively. Let
A be a vector potential and φ a scalar potential in the same way as it was done [5, 13, 14].
Using the following modi�cations

cp −→ cp− eA and E −→ E − eφ,

and from (2.6), it holds(
i~
∂

∂t
− eφ

)
ψ =c

(
p− e

c
A
)
·ψ0

+

[
mec

2 − 2~ue
3re

(fl(A, φ) · S)− 2~ue
3reρc

(fl(A, φ) · J)

]
ĵeψ.

This last implies that the electromagnetic �elds in the Lorentz force must be expressed in terms
of potentials A and φ (see [14]). As an accelerated electron is being described, Barut in [13]
considered from the point of view of relativistic kinematics an electron that moves in a proper
time τ in a world line. This consideration created a delayed electromagnetic �eld produced at
a time τ1 from Lienard - Wiechert potentials. Therefore, the wave equations in the Lienard -
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Wiechert delayed potentials are(
i~

∂

∂tret
− e2

4πR

1

(1− n̂ · β)
|τ=τ0

)
ψ = c

(
pR −

e2

4πcR

β

(1− n̂ · β)
|τ=τ0

)
·ψ0

+

[
mec

2 − 4mecue
ere

{
e2

4πR2

1

(1− n̂ · β)3
[(1− β2)(n̂− β)− R

c
× [(n̂− β)× β̇]] · µ

}]
ĵeψ

− 2~ue
re

{
e2

4πR2

1

(1− n̂ · β)3
[(1− β2)(n̂− β)− R

c
× [(n̂− β)× β̇]] · β

}
ĵeψ, (3.7)

(
i~

∂

∂tret
− e2

4πR

1

(1− n̂ · β)
|τ=τ1

)
ψ = c

(
pR −

e2

4πcR

β

(1− n · β)
|τ=τ1

)
·ψ0

+

[
mec

2 +
4mecue
ere

{
jret ×

e

4πRc

1

(1− n̂ · β)2
β̇ · µ

}]
ĵeψ, (3.8)

where tret = t − |x
0 − y0(τ0)|

c
,R = x − y(τ0), n̂ =

R

|R|
, R := |R| = ct − ctret and jret the

retarded current density. The function ψ = ψ(R, tret) satisfying (3.7) and (3.8) is called the
retarded wave function.

On the other hand, it will be show that (2.6) is invariant under Lorentz transformations.
For that, it is used that ~ = c = 1 and

i∂µψ
µ +

(
2ue
3re

fµS
µ −me +

2ue
3re

fµv
µ

)
ψ0 = 0, (3.9)

where ψµ = (ψ,ψ0). Initially, it is considered an electron within a reference system Σ′ with x′ -
coordinates and described by the wave function ψ′. Then, moving from Σ′ to another reference
system Σ with x -coordinates, the following transformations take place:

ψµ′ = Λµ
αψ

α, ∂′µ = Λβ
µ∂β, v′µ = Λµ

βv
β, (3.10)

f ′µ = Λα
µfα, S ′µ = Λµ

βS
β, ψ′0(x

′) = ψ0(Λx). (3.11)

Replacing the transformations (3.10)-(3.11) in (3.9), it is obtained

i∂′µψ
′µ +

(
2ue
3re

f ′µS
′µ −me +

2ue
3re

f ′µv
′µ
)
ψ0(Λx) = 0,

iΛµ
αΛβ

µ∂βψ
α +

(
2ue
3re

Λα
µfαΛβ

µS
β −me +

2ue
3re

Λα
µfαΛµ

βv
β

)
ψ0(Λx) = 0,

iΛµ
αΛβ

µ∂βψ
α +

(
2ue
3re

Λα
µΛµ

βfαS
β −me +

2ue
3re

Λα
µΛµ

βfαv
β

)
ψ0(Λx) = 0.

Taking into account the product property of Lorentz matrices Λα
µΛµ

β = δαβ ,Λ
β
µΛµ

α = δβα, the
invariance under Lorentz transformations was actually demonstrated by using the following
formalism:

iδβα∂βψ
α +

(
2ue
3re

δαβfαS
β −me +

2ue
3re

δαβfαv
β

)
ψ0(Λx) = 0,

i∂αψ
α +

(
2ue
3re

fβS
β −me +

2ue
3re

fβv
β

)
ψ0(Λx) = 0.
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4 Energy levels of the accelerated electron in the atomic

model

In this section the extension to the atomic model and an application to the conductor media was
considered. The coupling of the electric �eld with the magnetic moment in terms of the quantum
number associated with the angular orbital momentum l and the Bohr magnetron µB, was
de�ned. The eigenvalues for the operator ĵe were calculated using the coupling with the operator
associated with the orbital angular moment L, with the objective to obtain the energy of the
electron for the degenerated states, denoted by Enlm;j. The case of a relativistic accelerated
electron in an atom rotating around the nucleus was considered, de�ning the coupling of the
electric �eld E and its magnetic momentum µ of (2.11), de�ned by

E · µ = −4mecueZkCe

3rer2
µB
√
l(l + 1).

Here, µB is the Bohr magneton de�ned in [13, 18], kC is Coulomb constant and Z is atomic
number. The coupling of the electric �eld and current density E · j (for electrons travelling at
a velocity v ≈ c), is de�ned as

E · j =
2~ueZkCe2

3r2re
.

From above and (2.11), it is getting the following relativistic wave equation for the accelerated
electron in the atomic model

i~
∂ψ

∂t
= ĉje · pψ +

[
mec

2 +
4

3

e2mecueZkC
r2re

µB
√
l(l + 1) +

2

3

ZkC~uee2

rer2

]
ĵeψ. (4.1)

Doing β as

β =
4

3

e2mecueZkC
re

µB
√
l(l + 1) +

2

3

ZkC~uee2

re
,

(4.1) is expressed by

i~
∂ψ

∂t
= ĉje · pψ +

[
mec

2 +
β

r2

]
ĵeψ. (4.2)

Factor ĵe ·p was analysed using the same procedure presented in [4] using the following equation

(̂je · p)(̂je · r) = r · p + îje · L. (4.3)

Replacing ĵe · r = rĵe in (4.3), it holds

ĵe · p =
ĵe
r

(r · p + îje · L). (4.4)

Since there exists an operator K de�ned by ~K = ĵe · L + ~ (see [5]), and denoting

pr :=
1

r
(r · p− i~) =

r · p
r
− i~

r
,

from (4.4), it follows that

ĵe · p = ĵepr +
i~Kĵe
r

.

Replacing the above equality in (4.2), it is obtained the relativistic wave equation for the radiant
electron in the atomic model

i~
∂ψ

∂t
= cjeprψ +

i~cKje
r

ψ +

[
mec

2 +
β

r2

]
ĵeψ, (4.5)
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Moreover, the eigen-values of operator K can be obtained from ~K = ĵe ·L+ ~ (see Appendix
C), which are de�ned by

k = ±

√√√√(
j +

1

2

)2

+
1

2
±

√(
l +

1

2

)2

− 1

4
.

Now, in order to determine the relativistic energy of the electron associated with the degenerated
states, the equation (4.5) is taken at each spinor component ψ

Eψ
(+)
+ =

(
−i~c ∂

∂r
+
i~ck
r

+mec
2 +

β

r2

)
ψ

(−)
− , (4.6)

Eψ
(+)
− = −

(
−i~c ∂

∂r
+
i~ck
r

+mec
2 +

β

r2

)
ψ

(−)
+ , (4.7)

Eψ
(−)
+ = −

(
−i~c ∂

∂r
+
i~ck
r

+mec
2 +

β

r2

)
ψ

(+)
− , (4.8)

Eψ
(−)
− =

(
−i~c ∂

∂r
+
i~ck
r

+mec
2 +

β

r2

)
ψ

(+)
+ . (4.9)

Thus, the following solutions are proposed for each component of the spinor:

ψ
(+)
+ = i

∞∑
m=0

am

(
r

r0

)m
e−r/r0 , (4.10)

ψ
(−)
− = −i

∞∑
m=0

bm

(
r

r0

)m
e−r/r0 , (4.11)

ψ
(−)
+ = i

∞∑
m=0

cm

(
r

r0

)m
e−r/r0 , (4.12)

ψ
(+)
− = −i

∞∑
m=0

dm

(
r

r0

)m
e−r/r0 , (4.13)

where r0 is Bohr radius [18], Then, the �nal energy expression is (see Appendix C)

E ≡ Enlm;j = ±
[
mec

2 +
(mec)

2α2

~2n4(m± k)2

(
4

3

e2mecueZkC
re

µB
√
l(l + 1) +

2

3

ZkC~uee2

re

)]
.

(4.14)
Considering the particular case of the initial state n = 1, l = 0,m = 0, k =

√
3/2, E is

approximately 1046 eV and it was obtained with respect to the energy of the initial state. For
the radiant electron case of an atom in a conductor medium with electrical conductivity σ , the
E and B �elds coupled with the magnetic momentum µ associated were given as

E(r) =
kCZe

r3
r̂, (4.15)

B(r) =
Ze

mec2r3
L, (4.16)

µ = −(µ)L
√
l(l + 1). (4.17)

Replacing (4.15) - (4.17) in the j×B · µ factor of (2.9), it is obtained

|j×B · µ| = |σE×B||µ| = σkCZ
2e2µLm~

r5mec2

√
l(l + 1).
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Here, it is used the Ohm's law j = σE de�ned by Jackson [14] for perpendicular �elds. There-
fore, (2.9) can be rewrite as

i~
∂ψ

∂t
= cjeprψ +

i~cKje
r

ψ +

[
mec

2 − 4

3

ue
ρre

eσkCZ
2~2αµLm
r5

√
l(l + 1)

]
ĵeψ,

where ρ is the charge density of the conductor medium y α is the �ne structure constant. Thus,
the relativistic energy of the radiant electron in a conductor medium is:

Enlm;j = ±
(
mec

2 +
4

3

ue
ρre

eσkCZ
2~2αµLm

(r0(m± k))5

√
l(l + 1)

)
. (4.18)

5 Final comments and possible applications

This work describes in detail an accelerated electron with the data found in classical electro-
dynamics, such as the Lorentz radius1, half life and energy at rest. In Section 2, a relativistic
wave equation for the radiant electron is formulated, in which a vector denoted by a0 is intro-
duced in function of Lorentz force f l, which will be referred as the quantum potential vector
for accelerated electrons. This vector was de�ned using Larmor's work [3] in order to describe
in detail the behavior of quantum accelerated electrons in the presence of electromagnetic �elds
by means of equations (2.8) - (2.11). Here it is used a new operator ĵe de�ned from the so-
lutions for a free electron whose physical interpretation corresponds to the Density of electric
current associated with the energy and the electron parity. On the other hand, from equations
(2.9) and (2.10) there is a constant f ′ with unknown value, which could be determined from
the electrical dipole moment (see [13]). In 2013, through the experiment with Torio monoxide
molecules ThO led by ACME collaboration, an approximate value of the electric dipole moment
was obtained, taking into account that the electrons of the experiment travel relativistically.
In the same section, the equations for a radiant electron with the electromagnetic potentials
were given. However, the potentials of Lienard-Wiechert were taken assuming that an electron
travels in a world line, in an advanced proper time τ1 and retarded τ0, to obtain the equations
(3.7) - (3.8). It is important to mention that electromagnetic �elds are not the advanced and
delayed �elds that Je�menko denoted in his work (see [9]). One application of equations (3.7)
- (3.8), especially (3.8), is the description of the experiment made in 2015 on the emission of
radio waves by an electron [10].

In Section 4, the case of a radiant electron is considered in the atomic model, taking equa-
tion (2.11) as a starting point. Modifying the coupling of E · µ in terms of Bohr magneton
gives an expression of the relativistic energy of the accelerated electron in the energetic levels
associated with degenerate states described in equation (4.14). Using this formula, the energy
was calculated for the ground level (i.e., for n = 1, l = 0 and m = 0) of a hydrogen atom, and it
was found that its value exceeds the energy of the ground state of the same by a factor of 1046

without to be obtained experimentally. Some parameters such as the �ne-structure constant in
second order, the constant ue, the electrostatic constant kC and the electron radius were taken
into consideration here. From the above, an interesting topic of research would be to obtain
the energy of the ground state experimentally.

A particular case of research of relevant importance are the equations below that describe

1although this was determined without taking into account quantum e�ects
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the behavior of accelerated electrons of an atom in a conductive medium

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 4

3

mecue
ρre

(σE×B · µ)

]
ĵeψ,

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 2

3

mecue
f ′re

(E · d)− 2

3

~ue
rec

(σ|E|2)
]
ĵeψ,

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 2

3

mecue
ρf ′re

(σE×B · d)

]
ĵeψ,

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 4

3

mecue
re

(E · µ)− 2

3

~ue
rec

(σ|E|2)
]
ĵeψ.

These equations were obtained using equations (2.8) - (2.11), Ohm's law for electromagnetic
conductors j = σE (see [14]), and assuming that �elds E and B are perpendicular.

For this case, the energy of an electron in terms of the electrical conductivity σ in the atomic
model is calculated using the coupling of the electromagnetic �elds E and B with the magnetic
moment µ and the angular orbital moment L. With this result, the energy for the ground state
n = 1 and for n = 2 (which corresponds to the helium atom) is obtained, predicting a possible
value of the electrical conductivity despite not having recorded data.

From the point of view of classical electrodynamics, when a charged particle accelerates, it
emits an energy �ux of the radiation described with the Poynting vector, denoted by S0 (see
[19]). With this principle the following equations are given

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 1

6

mec
2ue

πρf ′re
(σS0 · d)

]
ĵeψ, (5.1)

i~
∂ψ

∂t
= cp ·ψ0 +

[
mec

2 − 1

3

mec
2ue

πρre
(σS0 · µ)

]
ĵeψ. (5.2)

The equations (5.1) and (5.2) describe the behavior of an electron in a conductor medium
coupling the magnetic and electrical moments with the Poynting vector, despite the absence of
experimental results on the behavior of the electrical dipole momentum in the atom. Theoret-
ically, models of conductors can be built with potentials that depend on Poynting vector, the
electric dipole moment d and the magnetic moment µ, together with the delayed and advanced
�elds E and B. A quasi-classical electrodynamics for radiant electron can be formulated from
Maxwell equations (in the quantum case) for the moments µ and d as a function of �elds E and
B. With respect to the description of the experiment of the electron that emits radio waves,
the advanced case can be considered replacing the potentials of Lienard-Whiechert with the
magnetic �eld and the current density using (2.8) (see [9]).
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7 Appendix A: Solution for Free Electron II

In this section we show the solution of the equation (3.1). For that it will be found each
component of the matricial form (3.1)
E 0 0 0
0 E 0 0
0 0 E 0
0 0 0 E



ψ

(+)
+

ψ
(+)
−

ψ
(−)
−

ψ
(−)
+

 =


0 0 0 c|p|+mec

2

0 0 −c|p| −mec
2 0

0 −c|p| −mec
2 0 0

c|p|+mec
2 0 0 0



ψ

(+)
+

ψ
(+)
−

ψ
(−)
−

ψ
(−)
+

 .
Then, the following system of equations for the energy appears

Eψ
(+)
+ = (c|p|+mec

2)ψ
(−)
+ ,

Eψ
(+)
− = −(c|p|+mec

2)ψ
(−)
− ,

Eψ
(−)
− = −(c|p|+mec

2)ψ
(+)
− ,

Eψ
(−)
+ = (c|p|+mec

2)ψ
(+)
+ .

Proposing for each component its respective solution in a similar way as shown in Schi�'s work
[11], it is obtained

ψ
(+)
+ =

E

(c|p|+mec2)
ψ

(−)
+ ,

ψ
(+)
− =

E

−(c|p|+mec2)
ψ

(−)
− ,

ψ
(−)
− =

E

−(c|p|+mec2)
ψ

(+)
− ,

ψ
(−)
+ =

E

(c|p|+mec2)
ψ

(+)
+ .

Now replacing in (3.2), four linearly independent spinors were found

ψ(x) := ψ(x, t) =
{
u
(+)
+ (p)eip·x, u

(−)
− (p)e−ip·x, u

(−)
+ (p)e−ip·x, u

(+)
− (p)eip·x

}

=




ψ
(+)
+

0
0

E
c|p|+mec2ψ

(+)
+

 eip·x,


0
−E

c|p|+mec2ψ
(−)
−

ψ
(−)
−
0

 e−ip·x,


E
c|p|+mec2ψ

(−)
+

0
0

ψ
(−)
+

 e−ip·x,


0

ψ
(+)
−

−E
c|p|+mec2ψ

(+)
−

0

 eip·x
 .
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p · x = p · x− ωt. Applying the operator ĵe on each spinor, it is arrived at
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0




1
0
0
E

c|p|+mec2

ψ(+)
+ eip·x =


E

c|p|+mec2

0
0
1

ψ(−)†
+ eip·x,


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0




0
1
E

c|p|+mec2

0

ψ(+)
− eip·x =


0
−E

c|p|+mec2

1
0

ψ(−)†
− eip·x,


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0




0
−E

c|p|+mec2

1
0

ψ(−)
− e−ip·x =


0
−1
E

c|p|+mec2

0

ψ(+)†
− e−ip·x,


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0




−E
c|p|+mec2

0
0
1

ψ(−)
+ e−ip·x =


1
0
0
E

c|p|+mec2

ψ(+)†
+ e−ip·x.

Thus, the equations (3.3) - (3.6) are obtained

ĵeu
(+)
+ (p) = −u(−)†+ (p), (7.1)

ĵeu
(+)
− (p) = −u(−)†− (p), (7.2)

ĵeu
(−)
− (p) = −u(+)†

− (p), (7.3)

ĵeu
(−)
+ (p) = u

(+)†
+ (p). (7.4)

.

8 Appendix B: K - eigen-values

In this section, the eigen-values of the operator K are found by developing ~K = ĵe · L + ~ in
terms of the eigen-values of the operator J. Then,

~2K2 = (̂je · L)2 + 2~(̂je · L) + ~2

= L2 + 2~(̂je · L) + ~2

= L2 + 2~(̂je · L) + ~2 +
~2

4
− ~2

4

= L2 + ~(̂je · L) + ~(̂je · L) +
~2

4
+

3~2

4

=

(
L +

~
2

)2

+ ~(̂je · L) +
3

4
~2

= J2 + ~(̂je · L) +
3

4
~2,
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Thus, in terms of eigen-values, it follows that

~2k2 = j(j + 1)~2 + ~(̂je · L) +
3

4
~2

= j(j + 1)~2 +
~2

4
+

2

4
~2 + ~(̂je · L)

= j(j + 1)~2 +
~2

4
+

2~2

4
±

√(
l +

1

2

)2

− 1

4
~2,

where it is used the equality

(̂je · L) = ±

√(
l +

1

2

)2

− 1

4
.

Therefore, the eigen-values of the operator K are given by

k =

√√√√(
j +

1

2

)2

+
1

2
±

√(
l +

1

2

)2

− 1

4
.

9 Appendix C: Formulation of Energy Levels in the Atomic

Model

In this section, the energy associated with the atomic levels of an accelerated electron will be
formulated. Replacing (4.10) and (4.11) in (4.6) and (4.9), respectively, it holds

Ei
∞∑
m=0

am

(
r

r0

)m
e−r/r0 =− ~c

∞∑
m=0

bm

[
m

r0

(
r

r0

)m−1
− 1

r0

(
r

r0

)m]
e−r/r0

− i
(
mec

2 +
i~ck
r

+
β

r2

) ∞∑
m=0

bm

(
r

r0

)m
e−r/r0 ,

(9.1)

−Ei
∞∑
m=0

bm

(
r

r0

)m
e−r/r0 =~c

∞∑
m=0

am

[
m

r0

(
r

r0

)m−1
− 1

r0

(
r

r0

)m]
e−r/r0

+ i

(
mec

2 +
i~ck
r

+
β

r2

) ∞∑
m=0

am

(
r

r0

)m
e−r/r0 .

(9.2)

Taking the imaginary parts of (9.1) and (9.2), it is obtained

Eam = −
(
mec

2 +
β

r2

)
bm, (9.3)

−Ebm =

(
mec

2 +
β

r2

)
am. (9.4)

From (9.3) and (9.4) is given that

E = ±
(
mec

2 +
β

r2

)
. (9.5)

Now, taking the real parts of (9.1) and (9.2), it is true that

r = r0(m± k).
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Substituting the above equality in (9.5) and rewriting again β, the energy levels of an accelerated
relativistic electron in a hydrogen atom associated with degenerated states are obtained

E ≡ Enlm;j = ±
[
mec

2 +
(mec)

2α2

~2n4(m± k)2

(
4

3

e2meueZkC
re

µB
√
l(l + 1) +

2

3

ZkC~uee2

re

)]
.

Performing the same procedure when replacing (4.12) and (4.13) in (4.7) and (4.8), respectively,
the spinor can be rewritten as follows

ψnlm;j(r) :=



i
∑∞

m=0 am

(
r
r0

)m
e−r/r0

i
∑∞

m=0
E[

mec2+
β

r20(m+k)2

]am
(
r
r0

)m
e−r/r0

i
∑∞

m=0 cm

(
r
r0

)m
e−r/r0

i
∑∞

m=0
E[

mec2+
β

r20(m−k)
2

]cm
(
r
r0

)m
e−r/r0


.
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