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The Hurst Effect: The Scale of Fluctuation Approach

Oscar J. MESA AND GERMAN POVEDA

Programas de Postgrado en Aprovechamiento de Recursos Hidraulicos, Universidad Nacional de Colombia, Medellin

After more than 40 years the so-called Hurst effect remains an open problem in stochastic
hydrology. Historically, its existence has been explained either by preasymptotic behavior of the
rescaled adjusted range R*, certain classes of nonstationarity in time series, infinite memory, or
erroneous estimation of the Hurst exponent. Various statistical tests to determine whether an
observed time series exhibits the Hurst effect are presented. The tests are based on the fact that for
the family of processes in the Brownian domain of attraction, R%/((6n)) 12 converges in distribution
to a nondegenerate random variable with known distribution (functional central limit theorem). The
scale of fluctuation 8, defined as the sum of the correlation function, plays a key role. Application of
the tests to several geophysical time series seems to indicate that they do not exhibit the Hurst effect,
although those series have been used as examples of its existence, and furthermore the traditional pox
diagram method to estimate the Hurst exponent gives values larger than 0.5. It turned out that the
coefficient in the relation of R* versus #, which is directly proportional to the scale of fluctuation, was
more important than the exponent. The Hurst effect motivated the popularization of 1/f noises and
related ideas of fractals and scaling. This work illustrates how delicate the procedures to deal with

infinity must be.

1. INTRODUCTION

The Hurst effect is one of the most important unsolved
problems in stochastic hydrology. There is ample evidence
to support this statement. Ever since Hurst’s [1951] original
work, there has been a proliferation of papers about it. Some
of the most important awards of the hydrologic community
have gone to contribution toward its solution. Hydrologists
have been divided into two schools in the attempt to inter-
pret the alleged existence of this anomaly in geophysical
records. Some of the most famous personalities in probabil-
ity theory, like Feller [1951], have devoted time to this
problem. Mandelbrot [1982] has declared that his original
investigation into the Hurst effect was one of the sources of
inspiration for his, now in vogue, fractal theory, whose
importance in chaos theory is without doubt.

Despite the activity cited above, the problem in hydrology
is stagnant. There are no clear winners between the short-
and long-memory schools. Hurst’s original motivation was
the practical problem of reservoir design, but it was later
discovered that only in some particular cases did the so-
called Hurst effect have significant practical implications
[Klemés et al., 1981]. Nevertheless, economic implications
of the use of different hydrologic models are not insignifi-
cant, and the way the persistence is modeled is very impor-
tant from an economic point of view [Zapata, 1987; Mejia
and Milldn, 1982; Pereira et al., 1984].

We present various tests for the existence of the Hurst
effect. Applications of these tests to Hurst’s original data
shows that either there is no Hurst effect or the series is not
long enough to provide definite answers. Even in the latter
case, the Hurst effect is not a natural interpretation. In
addition to the importance of the study of Hurst’s geophys-
ical series, the proposed test may prove to be important in
other applications where infinite memory models (nonsum-
mable correlograms) have been proposed for physical prob-
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lems such as turbulence (see, for instance, Mandelbrot
[1974)).

2. ANTECEDENTS

Let X, X,, - -, X, be a sequence of random variables
representing, for instance, the inflows into an infinite reser-
voir. Denote the partial sum series (cumulative inflows) by

t
So=0  S,=> X, t=1,2,-,n (1)
m=1

The sample mean represents the ideal release from the
reservoir and therefore the adjusted partial sum sequence
S*, defined by

§*=8,—-(@n)S, t=0,1,2,---,n, (2

represents the fluctuations in the content of this ideal reser-
voir. In his studies for the Aswan Dam on the Nile River,
Hurst [1951] considered the ‘““adjusted range,”” defined by

R,=max $*—min §% for0=r=<n. (3)
He showed that the adjusted range is a measure of the
reservoir capacity required under idealized conditions and
therefore the study of its properties becomes very pertinent.
He was particularly interested in the dependence of R, on
the sample size n. Obviously, R, increases with n, but how
fast? The fact that the length of the existing streamflow
records is rarely of the order of 100 years motivated Hurst
[1951] to look at various series of different geophysical
phenomena. For that purpose, he defined the ‘‘rescaled
adjusted range”’

R%=R,/D, (4)

which is a dimensionless quantity; D, is the sample standard
deviation of the X;.

Hurst [1951] used 690 different time series of 75 geophys-
ical variables such as temperature, rainfall, solar spot num-
bers, mud varves, tree rings, etc. His empirical findings were
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that, in general, R* grows like n to a power of the order of
0.72 with some variations for the different records, but in all
the cases the exponent was larger than 0.5. This result was in
contradiction with his own theoretical analysis which indi-
cated that the exponent should be asymptotically 0.5. Feller
[1951] was quick to provide firm theoretical computations for
the case of independent identically distributed (IID) random
variables with finite second moments. He computed the limit
mean and variance of the rescaled adjusted range, and
suggested that Hurst’s [1951] empirical findings might be
explained by some kind of Markovian dependence. The
discrepancy between the empirical observation showing the
increase of the rescaled adjusted range like a power of 0.7 or
so, and the theoretical expectation that for a wide class of
processes the exponent is asymptotically 0.5 has become to
be known as the Hurst effect. The exponent H in the
empirical relation

R* ~nH (5)

is called the Hurst exponent.

To appreciate the different arguments that have been put
forward as possible explanations of the Hurst effect, it is
necessary to use a more precise definition. Such precision is
important also for the proper understanding of the estimation
problem of the next section. To that end, we will use the
definition of Bhattacharya et al. [1983, p. 651]: ‘*A sequence
of random variables is said to exhibit the Hurst effect with
exponent H > 0.5 if (1/n* YR* converges in distribution, as
n goes to infinity, to a non-zero random variable.”’ This is in
contrast with a very general result, known as the invariance
principle or the functional central limit theorem [Ibragimov,
1962; Billingsley, 1968}, which implies that under conditions
of stationarity and weak dependence R*/n®> converges in
distribution to a random variable R%/n%> with mean

E(n %°R%) = (67/2)1? (6)
and variance
Var (n 7%°R%) = 0 (7%6 — w/2) 0

where 6 is a positive constant, the so-called scale of fluctu-
ation, or correlation length scale, a parameter first intro-
duced by Taylor [1921]. It can be shown that 6 is the sum of
the correlation function

©

> plm) (®)

m=—w

0 =

where p(m) denotes the correlation coefficient between X,
and X, ,,.

Equations (6) and (7) correspond to Feller’s [1951] previ-
ous result, for in that case #is one. Besides the mean and the
variance, the whole asymptotic distribution of the rescaled
adjusted range are ready available from known results in the
Brownian motion case [Bhattacharya et al., 1983]. The
condition of weak dependence implies a correlation function
decreasing fast enough to ensure convergence of the series in
(8). This explains the use of terms such as strong depen-
dence, infinite memory (infinite 6), and short memory (finite
0). Normally, existence of finite second moments for the
sequence of X; is assumed. Then the ergodic theorem
applied to X ,2 implies that D, converges in probability to the
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standard deviation of the X;, say, o. In that case, R% is
scaled by o because it is the limit of R* which is scaled by
D,.
A consequence of the above definition and of the invari-
ance principle is that for a sequence to exhibit the Hurst
effect, it is necessary that at least one of the conditions of the
functional central limit theorem be violated. Because of the
generality of these hypotheses something quite dramatic
must be happening from the physical point of view and a
search for the cause of the violation is very much in order.
The discovery of anomalies such as a nonstationarity or a
strong dependence in that large a class of geophysical
records will have profound physical implications.

As may be expected, from a retrospective viewpoint, the
explanations proposed by different authors were related to
the violation of the hypotheses of the invariance principle.
There have been some theories essentially related to the
dependence structure of the process, to its stationarity, to
the existence of an infinite second moment, and to the
preasymptotic behavior of the limiting process.

The strong dependence explanation was initiated by Hurst
[1951] himself, and by Feller’s [1951] suggestion about the
Markovian character of the series being responsible for the
Hurst effect. However, soon Barnard [1956] showed the
existence of a 0.5 convergence for that case. Nevertheless,
Matalas and Huzzen [1967] presented reports of estimates of
H between 0.58 and 0.87 for simulation of first-order autore-
gressive Markovian models with different correlation coeffi-
cients. At that time the Markovian explanation seemed
adequate, and the autoregressive models were becoming
fashionable. However, Mandelbrot and Van Ness [1968] put
things back in proper perspective by recalling that for
processes in the domain of attraction of the Brownian
motion, the rescaled adjusted range grows like n to the 0.5
power (notice that Barnard’s result goes back to 1956, and
that the invariance principle dates back to Ibragimov [1962]).
Mandelbrot and Wallis [1968, 1969] and Mandelbrot and
Van Ness [1968] proposed an explanation of the Hurst effect
by the strong dependence of the geophysical series and
introduced the so-called fractional Brownian motion and the
fractional Brownian noise (1/f noise), which are processes
with infinite memory, as models that may be used to simulate
the Hurst effect. These important theoretical contributions
were not accompanied by either a physical explanation nor
an investigation of the structure of dependence of the
different geophysical series. The lack of physical justification
of this theory was pointed out by authors such as Scheideger
[1970] and Klemés [1974]. There has not been appreciation
for this kind of question as the following quote shows: ‘‘I am
prepared to argue that a lack of serious motivation in a model
that fits and works well is much preferable to lack of fit in a
model that seems well motivated”’ [Mandelbrot, 1982, p.
253].

On the estimation side, the contribution of Mandelbrot
and Wallis [1968] was also important. They pointed out that
the way Hurst [1951] estimated the exponent H was not
adequate. Hurst [1951] used the equation

H, =log (R*)log (n/2) 9)

which presupposes that the relation (R%) versus n in loga-
rithmic paper passes through the point n = 2, R% = 1. This
was motivated by weak empirical arguments, because it is
easy to see that using the biased estimator for o,, one
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obtains R* = 1 when n = 2. Mandelbrot and Wallis [1968]
introduced the so-called ‘“‘pox’’ diagram. This and other
ways of estimating H will be discussed in the next section.

Attempts to explain the Hurst effect as a consequence of
an infinite second moment were proposed by Moran [1964]
and Boes and Salas [1973]. However, Mandelbrot and
Taqqu [1979] demonstrated that an asymptotic relation with
H = 0.5 holds for a sequence of IID random variables with
stable distribution and characteristic exponent strictly less
than 2 (see Feller [1971, p. 169] for a discussion of stable
distributions).

Hurst [1951] recognized the nonstationarities in his origi-
nal geophysical series. He even designed an experiment with
“‘probability cards’ which produced sudden changes in the
mean of the process, and obtained empirical estimations of
the exponent H near 0.71. Klemés [1974] and Potter [1975]
developed simulations with nonstationary models that pro-
duced empirical series exhibiting the Hurst effect. Some-
thing similar was obtained by Boes and Salas [1978] with the
shifting levels model. It is worth noting that all of these
nonstationary models belong to the Brownian domain of
attraction.

Bhattacharya et al. [1983] provided clear mathematical
demonstration of the existence of the Hurst effect for weakly
dependent processes perturbed by small monotonic trends.
As an example, let Y, be a sequence of weakly dependent
random variables, say IID normal variables with zero mean
and unit variance, then

X,=Y,+c(m+n)P (10)

will exhibit the Hurst effect with exponent H dependent on
the value of the parameter 8 as follows: for —1/2 < <0, H
is equal to 1 + B, for 8 > 0, the exponent H is 1, and for
B = —1/2, and for B = 0, the Hurst exponent is 1/2 [see
Bhattacharya et al., 1983]; notice the discontinuity at 8 = 0.
In all the cases, m and ¢ are arbitrary parameters (¢ > 0 and
m = 0). The significance of this demonstration is twofold.
First, the class of processes with infinite memory is no
longer the only theoretically proved class of processes
exhibiting the Hurst effect. Second, the estimation problem
becomes very important, for it is possible that very small
trends may be responsible for the appearance of the Hurst
effect.

In addition to the infinite memory and the nonstationarity
explanations, there have been theories that present the
Hurst effect only as a preasymptotic behavior. This means
the convergence to the theoretical 0.5 exponent is slow, and
therefore the empirical observations for finite sample sizes
may give Hurst exponents larger than 0.5 [Lloyd, 1967].
Salas and Boes [1974] considered the equation for the
expected value of R, for finite n and the case of IID
variables showing the preasymptotic behavior of the ad-
justed range, and proposed a different way of estimation of
the exponent H. Gomide [1975, 1978] considered the case of
Markovian processes and showed how the preasymptotic
region is expanded with values of p(1) near one, and pro-
posed a new way of estimation of the exponent H. Salas et
al. [197%9a, b], using autoregressive moving average
(ARMA)(1, 1) models, showed that the preasymptotic region
is expanded because of either asymmetric marginal distribu-
tion, large but finite memory (large 6) and nonstationarity.

It is worth noting that parallel to the preasymptotic
explanation of the Hurst effect, various short-memory mod-
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els were used in hydrology to model Hurst’s exponents
larger than 0.5. The broken line model [Rodriguez-Iturbe et
al., 1972; Mejia et al., 1972] and the ARMA(1, 1) model
[O’Connell, 1974] are the standard practice. Indeed, Hipel
and McLeod [1978] demonstrated that ARMA(p, q) models
statistically preserve the rescaled adjusted range or equiva-
lently the Hurst exponent estimated as (9). One can interpret
the philosophy of these models as an attempt to increase the
correlation length scale 6 so as to obtain preasymptotic
estimates of the Hurst coefficient similar to the observed in
empirical records. The conclusions of the chapter on the
Hurst effect in the textbook by Bras and Rodriguez-Iturbe
[1984, p. 265] are very illustrative of the standard practice in
engineering hydrology. This is most noteworthy if one
considers that the physical problem is unsolved.

In fact, there is no physical explanation yet for the
occurrence of infinite memory in geophysical series. There is
no systematic (physical or empirical) study of the correlation
structure of these processes. Even though the nonstationar-
ity of some geophysical processes may be argued on some
physical grounds [Leopold et al., 1964, p. 61], it is only in
very general terms and it remains to be explained why the
trends produce the same Hurst exponent in various geophys-
ical series. Moreover, the issues of estimation raised by the
preasymptotic explanations are very relevant and have no
definite answers. The importance of the estimation problem
is reinforced if one considers the claims about the robustness
of the range analysis in current literature on fractals [Man-
delbrot, 1982, p. 382; Feder, 1988, p. 194].

3. TESTS FOR THE EXISTENCE OF THE HURST EFFECT

Notice that the whole puzzle rests on the empirical evi-
dence of the exponent H being larger than 0.5. Also, recall
that the question is not related to minor things: n%7 is almost
4 times n%3 for n = 1000, and the factor keeps increasing
with n. With all the history behind but the perspective of
huge unsolved questions present, the least that can be done
is to look further into the empirical evidence.

3.1. Estimators of H

As was pointed out before, Hurst [1951] originally esti-
mated H by means of (9), but this practice was shortly
abandoned and substituted by the least squares slope in the
linear relation of log (n) versus log R%, along with some
other variations. How good are those estimators? Very little
theoretical work has been done along these lines. As an
alternative for the complex theoretical issues involved,
extensive computer experiments were performed by Poveda
[19871 using Bhattacharya et al.’s [1983] nonstationary
model (equation (10)), given its capacity to produce values of
H, at will, by fixing B. This analysis considered most of the
estimators reported in the literature [see also Poveda and
Mesa, 1993]; Table 1 presents Poveda's [1987] results for
one case and some of the estimators. The performance of all
estimators in all cases was poor. Slightly better results were
obtained with a new estimator proposed by Poveda [1987],
which consists of the slope s, of the regression of sample
values of R%, versus m taking only values of m larger than ,
but some degree of arbitrariness remains regarding the
choice of n.

A conclusion of these computer experiments is that all the
estimators of the Hurst’s [1951] exponent H performed
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TABLE 1. Estimated Values of the Hurst Exponent H for a
Simulated Sequence of the Bhatthacharya et al.’s [1983]
Nonstationary Model, Equation (10), With
B=-03,c=1,and m = 1,000 and
20,000 Record Length

Wallis and

Hurst Matalas Gomide Poveda

n [1951] [1970] [1975] [1987]

5 0.7172 0.1343 0.5408

10 0.6901 0.6544 0.3773 0.5370

25 0.6571 0.6216 0.4137 0.5357
100 0.6195 0.5889 0.5487 0.5399
250 0.6049 0.5760 0.4788 0.5508
500 0.5939 0.5661 0.4660 0.5760
1,000 0.5753 0.5517 0.5020 0.6257
2,500 0.5563 0.5346 0.4966 0.7086
5,000 0.5474 0.5223 0.4710 0.7998
10,000 0.5637 0.5248 0.5037 0.7921
15,000 0.5855 0.5372 0.5198 0.4528

20,000 0.5812 0.5421 0.5177

poorly. This contradicts the alleged robustness of the range
analysis [Mandelbrot, 1982, p. 386].

3.2. Visual Tests

The behavior of R*/n® (H = 0.5 and H > 0.5) is the
most natural thing to examine to test for the Hurst effect in
a geophysical time series instead of the logarithmic regres-
sion of R% on n. A useful set of diagrams was designed for
that purpose, the so-called ‘‘GEOS’’ (geophysical record)
diagrams, with n on the abscissa and R",‘,/no'5 on the
ordinates. Recall that if there exists the Hurst effect R%/n -3
will eventually diverge to infinity, whereas if there is no
Hurst effect R%/ 193 will converge to a finite limit, with smali
random variation around it. Therefore sample points for a
time series which exhibits the Hurst effect will increase
indefinitely in the GEOS diagram. Instead, a time series will
not possess the Hurst effect when its GEOS diagram con-
verges to a finite limit.

In a similar way, it is possible to check the convergence of
R’;/nH, H > 0.5, by scaling the vertical axis by n”’. In this
case a geophysical time series which exhibits the Hurst
effect, with exponent H, will converge to a nonzero limit,
whereas a time series without the Hurst effect will converge
to zero.

GEOS diagrams are visual tests for the existence of the
Hurst effect in any time series with a long enough record.
These diagrams become more powerful tools than the so-
called pox diagrams. This superiority is due to the fact that
the diagram is scaled down properly, not only with respect to
the mean of R%, but also with respect to the variance and
other moments as well. Therefore deviations from the ex-
pected behavior have the proper significance through the
whole range of n values. Besides, no slope estimation is
involved and, as was pointed out, factors of the order of 4 or
more are involved providing a magnifying view that should
help discriminate the existence of the Hurst effect. In
applications, the main limitation of these visual tests is that
if the length of the record is not long enough it may not be
easy to draw definite conclusions. For instance a conver-
gence from below may be wrongly interpreted as a continu-
ous increase.
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3.3. Statistical Tests

The visual test in the GEOS diagram may be improved
substantially if an independent estimate of the limit of the
sequence {R*/n%3} is known. Under the hypotheses of the
functional central limit theorem this limit is a random vari-
able with known distribution; therefore sample values
should be around the mean, with deviations of the order of
the standard deviation. In fact, for short memory stationary
processes the mean and the variance are given by (6) and (7).
As a consequence, standard statistical techniques may be
employed to test the hypothesis of absence of the Hurst
effect. The only extra parameter needed is the scale of
fluctuation or correlation length scale 6. Clearly, because of
the emphasis on the exponent previous studies have over
looked the proportionality constant in the asymptotic ex-
pression (5).

3.3.1. Testl. GivenasequenceX,, X,, -- - of random
variables, with known scale of fluctuation 6, a sample
sequence x;, X,, -, and a level of confidence a, the
sequence does not exhibit the Hurst effect if the sample
values of R*,‘,/no‘5 remains in the interval (g, , q.) for large
enough n (where g, and g are the 1 — /2 and /2 quan-
tiles of the asymptotic distribution of R*/n%7, respectively).

In practical applications g, and g, can be approximated
by the mean asymptotic value (equation (6)) =2.3 times the
standard deviation (square root of (7)). The value 2.3 surely
exceeds the values corresponding to the confidence level of
0.95 in the asymptotic distribution. More precise values of
q; and g may be computed if desired.

Test 1 is an immediate consequence of the definition of the
Hurst effect. Obviously, a test with a not known value of #1is
needed. Various alternative ways for estimating 6 from
stationary random time series have been presented in the
literature [Vanmarcke, 1988, p. 327]. A short summary is
presented next.

The first procedure is by means of the sample correlation
function using (8). However, this estimator is inconsistent,
since its variance does not vanish when the record length
becomes very large; indeed, it exhibits a high coefficient of
variation [Vanmarcke, 1988, p. 325]. On the other hand,
consistent estimators of ¢ can be obtained by using the
variance function I'( ) and the known fact that under a
condition of weak dependence (finite first moment of p(m)
[Vanmarcke, 1988, p. 188]) the scale of fluctuation is also
given by

6 = lim TI(T).

T >

(11)

Recall that the variance function I'(T) is simply the variance
of the T average of the original process.

Nevertheless, the ordinary variance function estimator is
biased and a correction is required for the estimation of 6.
Following Vanmarcke 11988, p. 336], the expected value of
the estimator of the variance function for an n long zero
mean unit variance sample is

INVERSE NI

EINH (D) ~—

=n. (12)

This motivates a corrected estimate I'% as follows:

I"(T) = T(n) + TX(D[1 ~ T(n)]. (13)



MESA AND POVEDA: HURST EFFECT 3999
5 8
4_
6_
@ 3 5 g -
(=} - -
= F
T 2 o E g E - °© é o
. o 8o B o
B..g.28.02 2
8 g E g B a 21 o
11 = B8 o
. B S
a g o
Ha
0 g —— —— o= : . . . :
1 10 100 1000 0 20 40 60 80 100 120
n n
Fig. 1a. GEOS diagram for a time series of tree rings of a Fig. 1c. GEOS diagram for St. Lawrence river discharges.

Douglas fir (Snake River). Horizontal dashed lines correspond to the
asymptotic mean and +2 standard deviations.

Since T'(n) is not known, finding an estimate 6* of the
scale of fluctuation will require some iteration. Using an
approximate model for the variance function (I'(T) = 6/T,
for large T) provides the following expression [Vanmarcke,
1988, p. 337]:

I'*(T)Tn

T p—

T<n. (14)

Another possible way of estimating 6 is by means of the
one-side unit area spectral density function at zero. Also, if
a short memory theoretical model is adjusted to the data, 6
could be estimated from the model, according to the theo-
retical expressions for # in terms of the parameters of the
model.

3.3.2. Test 2 (Outline). Suppose the scale of fluctuation
@ is not given, estimate it by means of #* using any of the
methods discussed above, estimate also the size of the
variance of R*/(6*n)°> and perform a test in classical
terms. Even though some technical details need to be
worked out, the test is in the same spirit of test 1. For this
reason, formal substitution of 6* for the scale of fluctuation
in test 1 is proposed. The idea is that this will not affect the
power of the test significantly. Only small modifications in

w
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Fig. 1b. GEOS diagram for temperature in central England series.

the factors multiplying ¢, and g are affected by the new
situation of ¢* being an estimate. In a process exhibiting the
Hurst effect, the increase of R",‘,/no'5 with n will eventually
dominate. The hypothesis of the test is also weak depen-
dence and stationarity.

Notice that the estimation of 6 is by itself a test of the
existence of the Hurst effect for stationary processes. In
fact, because of the functional central limit theorem, if 8 is
finite the exponent h is 0.5 and there is no Hurst effect.
Otherwise, if 6 is infinite then there is Hurst effect and it is
not necessary to perform the tests. In fact, for long memory
time series the estimation of the scale of fluctuation in (14)
does not converge to a finite limit and therefore test 2 is not
suitable. For the nonstationary process of Bhattacharya et
al. {1983] the estimation of 6 by any of the means presented
above also show divergence to infinity, in concordance with
the theoretical result about the existence of the Hurst effect.
For those processes test 2 is not applicable either.

In view of the above, the recommendation to deal with an
observed time series is to proceed first to the estimation of 6
using for instance the variance function approach of (14) (see
Figure 3b). Stabilization of the estimator with » indicates
finite memory and test 2 may be performed. If there is no
stabilization there may be three possible causes: the series
comes from an infinite memory process, or it comes from a
nonstationary process or the length of the record is insuffi-
cient to estimate 6. As an easy cheek, if the value of n (the
length of the record) divided by the estimated 6 is less than,
say, 15, the record is short. In these cases, if possible, the
length of the record should be increased, and the estimation
of 0 repeated. On the other side, there are various ways of
testing and removing nonstationarities. If the problem re-
mains, no conclusion can be inferred from the data alone. In
fact, all extrapolations of the behavior of either the range or
the estimator of 9 are equally arbitrary from a statistical
point of view, and any decision should be based on physical
reasoning.

In a related problem, Burg [1967] observed that the
problem with conventional Fourier spectral analysis of finite
time series is that only a finite number of correlation lags are
estimable and that the truncation in lag space results in a
smoothing of the true spectral function in frequency space.
Burg [1967] argued that the criterion for extrapolation should
be to obtain the spectral density estimate that corresponds to
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TABLE 2. Estimation of H According to Siddiqui [1976]
Hipel and

Series Code n 7] Poveda [1987] McLeod [1978]
Mstouis 96 1.6 0.451 0.591
Neumunas 132 1.4 0.499 0.591
Danubio 120 1.0 0.495 0.495
Rhin 150 1.0 0.4984 0.484
Odgen 97 12.1 0.436 0.929
Gota 150 1.6 0.504 0.636
Espaifiola 350 44.8 0.455 0.927
Temp 255 1.6 0.521 0.640
Precip 100 1.0 0.473 0.473
Minimum 848 24.6 0.462 0.746
Snake 669 3.9 0.475 0.663
Exshaw 506 3.9 0.420 0.580
Naramata 515 2.1 0.435 0.543
Dell 655 3.8 0.475 0.667
Lakeview 544 5.9 0.499 0.706
Ninemile 771 7.4 0.466 0.642
Eaglecol 858 9.3 0.485 0.701
Navajo 700 2.9 0.468 0.584
Brice 625 4.0 0.513 0.727
Tioga 661 3.5 0.498 0.691
Bigcone 509 3.6 0.404 0.691
Whitment 1164 2.5 0.53 0.627

the most random or unpredictable stochastic process whose
correlation function is consistent with the given information.
Using the maximum entropy method he derived a widely
used procedure for the estimation of the spectral density.
The technique is based on obtaining a data model that is least
informative with respect to data that are not available. This
maximum entropy method for estimation of the spectral
density is equivalent to the linear prediction method that
assume that the underlying data model is an autoregressive
(finite memory) model [Roy et al., 1991].

4. EwMmpiricaL EVIDENCE

At this point an obvious question arises, Do the classical
time series which have been used to illustrate the existence
of the Hurst effect really possess it? To elucidate the
question GEOS diagrams were plotted for several geophys-
ical time series. Basically, the formal version of test 2 was
performed using GEOS diagrams with @ estimators based on
the parameters of short memory models fitted to the obser-
vations. Indeed, for ARMAC( p, ¢) models in the sense of Box
and Jenkins [1970], the scale of fluctuation is given by
[Siddiqui, 1976]

(15)

where v, is the ratio of the variance of the process to the
variance of the noise, and ¢ and a are the ARMA(p, q)
parameters. This procedure to estimate 6 was used because
the original series were not available. Vatues of R versus
for various geophysical series were taken from the extensive
work by Hurst et al. [1965]. Additionally, results by Hipel

MESA AND POVEDA: HURST EFFECT

and McLeod [1978] on ARMA(p, g) models fitted to some
of those series allowed estimation of 8 using (15). In Figures
la, 1b, and 1c¢ three of those GEOS diagrams are shown.
For the majority of the cases, sample values of R",‘,/no'5 seem
to indicate convergence to the asymptotic theoretical distri-
bution of the fitted ARMA(p, q) model. Moreover, estima-
tion of the Hurst exponent H in the way suggested by
Siddiqui [1976] also shows the lack of existence of the Hurst
effect in the set of geophysical time series analyzed by Hipel
and McLeod [1978] (see Table 2). According to the estimated
scale of fluctuation all the series but Odgen and Espaiiola
have ratios of n over 0 larger than 30, indicating adequate
length of the records.

Nevertheless, time series corresponding to mud varves
exhibit GEOS diagrams that always increase with the value
of n (see for instance Figure 2), although the asymptotic
value given by (6) for the fitted short memory model is
unknown in these cases. Two facts could explain this situa-
tion: the time series is not long enough to reach the asymp-
totic mean of R*/n% or those time series actually exhibit
the Hurst effect either because of nonstationarity or long
dependence.

For further illustration of the ideas presented, a 18,000
long series of vertical wind velocity sampled every 0.1 s
collected with a very precise instrument was analyzed.
Figure 3a shows the pox diagram with the exponent H
estimated using traditional estimation indicating the pres-
ence of the Hurst effect (least squares slope of 0.773). Figure
3b shows the estimation of the scale of fluctuation; 6 can be
estimated to be of the order of 55 notwithstanding sampling
fluctuations and after observing stabilization. Figure 3¢
shows the GEOS diagram and the proposed test indicates
that there is no Hurst effect that can be inferred from this
record (asymptotic mean around 9.3). A straight line of slope
0.5 and intercept equal to ((87/2)) 12 was also drawn in
Figure 3a for further clarification of the test. The least
squares line in the pox diagram has both the slope and
intercept free and fits the preasymptotic domain. The 0.5
slope line has no fitting parameter and is supposed to predict
the asymptotic behavior of the rescaled adjusted range.
Nevertheless, some may extrapolate the 0.773 power law
increase and others may consider that the length of the series
does not permit definite conclusions yet. In any case, the test
may be repeated if a longer series is available.
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Fig. 2. GEOS diagram for Lake Saki mud varves.
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Fig. 3a. Pox diagram for a vertical wind velocity time series.
The dotted line is a least squares fit with slope of 0.773, and the solid
line is a 0.5 slope with ((76/2)) 2 intercept.

5. CONCLUSIONS

To determine if a finite time series exhibits the Hurst effect
is a delicate matter. Pox diagrams alone are not sufficient and
further tests are proposed in that respect. Various statistical
tests were developed to determine the existence of the Hurst
effect. They are formulated in precise mathematical terms.
Their basis is the so-called GEOS diagrams of R*/n®>
versus n that for a short memory stationary process will
converge to a known distribution, whereas for a series
exhibiting the Hurst effect will diverge to infinity.

The estimation of the scale of fluctuation is itself a way of
testing for short memory stationarity and for computing the
asymptotic value for the GEOS diagram. Additionally, the
scale of fluctuation provides a way of determining the length
of a time series.

The tests introduced in this work do not have adjustable
parameters. The scale of fluctuation needs to be estimated
by independent means, but even without it GEOS diagrams
may serve to indicate the presence of the Hurst effect. If the
estimation of the scale of fluctuation does not show conver-

30
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Fig. 3b. Scale of fluctuation estimation for a vertical wind
velocity time series. The solid curve is TT(T), and the dotted curve
is the estimator given by (14). Units of the scale of fluctuation are in
0.1s.
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Fig. 3c. GEOS diagram for a vertical wind velocity time series.

gence to a finite limit, the tests presented here are not
conclusive. In these cases any extrapolation of the asymp-
totic behavior of the rescaled adjusted range is not supported
by observations and should be based on physical evidence.

Application of the tests to data used by Hurst do not show
existence of the Hurst effect. Only in the case of mud varves
is there space for some speculation. However, even in that
case, long memory does not appear to be the natural
explanation of the evidence which might be related to
nonstationarity of the records.

The scale of fluctuation is, with the mean and the variance,
one of the most important parameters in hydrological sto-
chastic modeling, since they completely describe statistical
properties of a time series such as central tendency, fluctu-
ations around the mean, the whole correlation structure, the
““Hurst characteristics’® of the time series, the low- and
high-frequency components of the signal power spectrum,
the so-called Noah and Joseph effects [Mandelbrot and
Wallis, 1968], etc. Additional advantages of a better knowl-
edge of the scale of fluctuation of a stochastic process,
besides its role in the definition of the Hurst effect, lies on its
importance to study some characteristics of a time series
such as runs, run lengths, level crossings, passage times and,
in general, probability distribution of extreme values.

The so-called Hurst effect and other related anomalities in
geophysical time series are probably the result of a mixture
of scales more than infinite memory. Knowledge of those
scales is a more fundamental issue from a physical view-
point. Modeling that mixture of scales is more simple and
down to earth than infinite memory modeling.
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