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of the objective function value to stop if no significative change occurs. This model
can be applied for CBC as is described in algorithm 5, where data points are assigned

to certain cluster if its membership value is highest.

Algorithm 5 General iterative model for CBC

1. Initialization: set initial centers Q¥ = (q§0),...,q,£0))T

Niter- Do r = 0.

, maximum number of iterations

(r

2. Compute the membership value m(g; - | ;) and weight w(x;) for each data point

> mlgy ) | @w(@)@;
3. Update centers using: q(”) ==

J

Ci=1,... .k

n
=1
n
—1
> (! | @w (=)
i=1
4. r + r+ 1 and repeat the steps 2 and 3 until a number of iterations N;:., or convergence

5. Assign all data points so: x; € C’l(T) if | = arg maxm(q](-T),a:i)
j

The convergence of a GIM-based algorithm can be measured by comparing the
objective function value obtained from the current partition f(C)) and the value
obtained with the partition generated in immediately previous iteration f(C"~Y), via
a difference criterion | f(C")—f(C"=V)| < 4, a quotient criterion f(C™)/f(CT) =

1, among others.

Next are described some clustering methods from GIM.

7.2.4 H-means based on GIM

The objective function that the H-means algorithm optimizes is:

n

— ; .12
HM(X,Q) = zjgf}{{ksz a;l| (7.7)
where || - || represents the euclidian norm in case of MSSC.

H-means has a hard membership function and fixed weights, as is shown in the
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following expressions:

1 ifl = argmin ||x; — j||2
J

mHM(qj | wz) = (7~8)
0 otherwise

and

wip (i) =1 (7.9)

Note that the objective function of H-means is the same as MSSC. Furthermore, by
replacing the expressions (7.8) and (7.9) in (7.6), the same center updating function as

MSSC is obtained (see (7.2)). Therefore, the general iterative model is demonstrated.

7.2.5 Gaussian expectation maximization

The objective function of Gaussian expectation maximization (GEMC) is a linear com-
bination of gaussian distributions centered at each centroid gq;. The objective function

to be maximized can be written as [153].:

GEMC(X,Q) = Zlog (Z x; | q;)p (qj)) (7.10)

where p(x; | g;) is the probability of x; since it is generated by a Gaussian distribution
centered at g;, and p(g;) is the prior probability of the cluster associated to center
g;. The log function is used for simplicity, and the minus sign accounts for minimiza-
tion. This method employs soft membership and fixed weights, given by the following

expressions:

p(zi | q)p(g))
p(wl) (7.11)

mGEMo(Qj | wz) =

and
weemc(®i) =1 (7.12)

Given the nature of this method, Bayes rule is used to compute mggyc, where

term p(x;) is the evidence or total probability defined as follows:

pla;) = Y5, p(x; | 4;)p(q;)
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In the parametric case, term p(x; | g;) can be computed as a normal gaussian

centered at centroid g; and covariance X;, as follows:

1
det(X;)2

p(i | q;) = N(q;, %) (2m) P/ 2em 3B @) (7.13)
where 3; is the covariance matrix, which can be unique ¥; = 3 = cov(X). It could
also be computed for each cluster and updated for each iteration using ¥; = cov(C}),
being preferable because, in this way, change of clusters variance per iteration is taken
into account. Thus, the objective function of this method could converge to a better
value.

As variant of this method, Parzen’s method can be used to estimate the membership
function. Then, method becomes non-parametric density-based clustering (NPDBC).
Thereby, for NPDBC using Parzen’s estimation, the membership function is the same

as GEMC, except that the term p(z; | g;) is computed as follows:

ol ) = 5 3ok (257) (7.14)

where K is a Gaussian kernel which is given by:

(7.15)

7.3 Initialization Algorithms

One of the biggest problems of CBC algorithms is the convergence to a local opti-
mum distant from the global optimum. This can be attributed to the sensitive to
initialization that this kind of algorithms present. For this reason, there exist sev-
eral initialization algorithms that guarantee a proper initial partition. In this study,

J-means and max-min algorithms are explored.

7.3.1 Max-min algorithm

The aim of max-min algorithm is to find, into the set of data X, the k£ elements that
are further away from each other, improving the number of necessary groups to classify
the classes and the convergence value [130]. This algorithm starts with a random data

point of X as the first center and the rest of them are chosen following an strategy,
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in which selected element in the i-th iteration is the element that is the further one
among the ¢ — 1 chosen elements. Then, the first center q; is chosen randomly from
X, and the second center g, is the data point which presents the maximum distance
between g; and remaining points {X — g, }. Since these centers, the rest of them can

be obtained using the max-min criterion, as follows

. 2 .
T;) = max min ||x; — q; , J=1,...,k 7.16
=, max, fmigle - g1} (7.16)
where ||-|| represents the euclidian norm.

The max-min algorithm is described in Algorithm 6

Algorithm 6 Max-Min algorithm
function Q := maxmin(X,k) {X € R"*P, k is the number of clusters}

Require: 1 < k < n;
q1 := Random(X); x; := q1; {It is the first centroid}

I* := argmax ||z — :L'l||2; q2 = x;»; {Is the second centroid}
1<i<n

T£F
Q = {q1} U{q};
if £k > 2 then

for i =3 to k do
len := size(Q);
for j=1 to n do

distance; := min ||z, — »2;

ji= min @ - al
1<i<len;

end for

J* = arg max{distance; },

1<j<n
g =z Q= QU{q};
end for
end if

7.3.2 J-means algorithm

J-means algorithm consist of updating the centers trough local assessment of objective

function, i.e., only taking into consideration a certain region around the centers instead
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of all data space [151]. This algorithm works as follows. After a random initialization,
every point p; out of a sphere of radius € with center g; is considered as a centroid
candidate. Thus, p; replaces a current centroid q;. After updating, the objective
function value is calculated using only the new centroid. Then, the original objective
function (previous value f!) is compared with the new objective function value (f?).
Thereby, if f1 > f2, the process stops; otherwise the algorithm starts again using the
same initial partition and its updates.

Parameter ¢ is chosen in such way that no intersections among spheres occurs, for
that reason is a necessary condition that e < §min|q; — g;|| i # j. In conventional
J-means, MSSC conditions are employed; therefore spheres are defined from distances
based criteria.

In summary, the general J-means algorithm is described in algorithm 7.

Algorithm 7 J-means algorithm

1. Initialization: chose the initial partition C* = {C7 2?:1 associated to Q¥, C' « C°.

2. Find unoccupied points, i.e., entities which do not coincide with a cluster centroid: points

out of a sphere of radius ¢ (¢ < 1 min||q; — g;|| i # j) with center g;.

3. Find the best partition C,f and corresponding objective function value f? in the jump

neighborhood of the current solution C,i.
If /1> f2

4, The process stop with the solution Q'
otherwise

5. Move to the best neighboring solution C? (C} + C%, f' + f?) and return to step

End If

The J-means variants consist of changes in the sphere definition, for example, using
statistical measures instead of distances. For example, employing a covariance matrix
as is done in GEM-based methods. In this case, method could be called J-GEM.

7.4 Estimation of the Number of Groups

In the field of unsupervised analysis, there are no many studies about the automatic

estimation of the number of the groups, being established manually. Among the differ-
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ent techniques, spectral analysis has demonstrated remarkable results in the estimation
of the number of clases into the data set. In this work, different alternatives for this
task are described. First one is based on singular value decomposition (SVD) [154].
Secondly, it is analyzed the eigenvalues of the normalized affinity matrix. Thirdly, an
approach using the eigenvectors of affinity matrix [150]. Finally, it is introduced a new

approach that is based on a relevance analysis procedure [3].

7.4.1 Estimation using SVD

Many SVD properties are useful in a variety of pattern recognition problems and appli-
cations. For example, mapping a data set in a space where data are better represented
for posterior classification tasks, improving processing time and classifier performance.
Another application, that is not usual enough, is the estimation of the number of
groups, as described below. By letting X be a n x p data matrix, then its decomposi-

tion in singular values is

d
X=USV'=> ocuv' (7.17)

i=1
where d = min(n,p), U = [uy,...,u,] is an n X n orthonormal matrix, V. =
[v1,...,v,] is a p X p orthonormal matrix, S = diag(e) is a diagonal matrix and

o is a singular value vector. Matrix U corresponds to eigenvectors of X X' and ma-
trix V holds the eigenvectors of XTX, and they are called singular right and left

matrix, respectively.

The estimation of the number of groups is done under the principle of Frobenius,

which establishes if a matrix is normalized with respect to Frobenius norm, i.e.,

n d
1X(1% =23 2 =n,

i=1j=1

is evident that

p(X)
IX15 =D of (7.18)
=1

where p(-) represents the matrix rank.
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Given this, the number of groups is chosen as

k
k = arg min {asvdn < Z 012} (7.19)

=1

where ay,q is a parameter to be tuned.

In [154], it is widely explained and discussed this application and other interesting

properties of SVD.

7.4.2 Estimation analyzing eigenvalues

One possible approach to discover the number of groups is to analyze the eigenvalues
of the normalized affinity matrix given by: A= D '2AD Y2 where A = XX is
the trivial affinity matrix, D = diag(jln) is a diagonal matrix that represents the

degree of A and 1, is a vector of all 1’s, as described in [150].

In [155], it is demonstrated that the first eigenvalue (highest magnitude) of the
normalized affinity matrix A of magnitude 1 is repeated with multiplicity equal to
the number of groups. Then, the number of groups can be estimated by counting the
eigenvalues of A equaling 1. However, if the groups are not clearly separated, once
noise is introduced, the values can deviate from 1, thus the criterion cannot be used.
An alternative approach can be reached searching for a drop in the magnitude of the

eigenvalues, however, this approach lacks a theoretical justification [156].

7.4.3 Estimation using eigenvectors

A better approach can be obtained by analyzing the eigenvectors of normalized affinity
matrix. First, the matrix A must be divided into ¢ submatrices or blocks {jl, o AVC},
then, the nx ¢ blocks diagonal matrix is formed. The parameter ¢ (¢ < n) represents the
initial tentative number of groups with which the heuristic starts, it is fixed manually.
The blocks diagonal matrix V is formed, in that way the eigenvalues and eigenvectors

of its blocks are padded appropriately with zeros, as follows

vt 0, O,
V=10, - 0, (7.20)
0, 0, v°

nxc
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where v’ is a n-dimensional vector which represents the i-th eigenvector of block Avi,

0,, is a n-dimensional vector of all 0’s.

As was mentioned above, the eigenvalue equaling 1 has multiplicity equalling the
number of groups, thus, the eigensolution can be generated by any orthogonal vectors,
no only eigenvectors, spanning the same subspace of V. Therefore, V can be replaced
by V = VR, where R is any c¢ X ¢ orthonormal matrix. This implies that there exists

a rotation matrix R, such that each row in the matrix VR has a single non-zero entry.

Let Z = V R be a the matrix obtained after rotating the eigenvectors matrix and
denote f; = max; z;;. To find a new space where groups will be well represented in

terms of separability, the following cost function can be minimized:

J— Z S % (7.21)

Minimizing this cost function over all the possible rotations will provide the best
alignment with the canonical coordinate system, therefore the number of groups k
(1 < k < ¢) is chosen taken one providing the minimal. If several group numbers yield
the same minimal cost, the largest of those is selected. The optimization process is

carried out using a stochastic descent gradient scheme, as described in [156].

7.4.4 Estimation based on spectral relevance analysis

Spectral analysis has shown to be a powerful tool in many pattern recognition applica-
tions, such as data projection and weighting. For instance, as is described in chapter 6,
spectral analysis is useful to study the feature relevance. By combining the definitions
given by [155] and [156] with the relevance procedure described in Section 6.3, it can be
achieved a new approach to estimate the number of groups. By recalling Section 6.3,
the solution of the following optimization problem provides information to determine

the relevance of features:

q
max tr(QTA,A.Q) = > \?
o, =1

s.t. a'a=1, Q'Q=1I
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From previous equation, it can be written the rotated affinity matrix given by
Ag-a = QTA,A.Q, where A, is the affinity matrix weighted by vector a and Q is
an orthonormal rotation matrix. Since the trace of Ag_q represents the sum of squared
eigenvalues of A, and the affinity matrix holds the relation among observations, it can
be infer that its corresponding diagonal provides substantial information to determine
the number of groups into data matrix. Then, the number of groups can be estimated
from the values into the diagonal of Ag_o and an accumulated value criterion applied
over the trace of the same matrix. Mathematically, the number of groups can be chosen
as the amount of elements that satisfy that truncated-trace value is less than a certain

value 9, i.e.,

k = numel(| tr(Ag-o) <9)]) (7.22)

where numel(-) represents the number of elements of its argument and |[-| denotes the
elements that satisfy condition given by its argument. When values are normalized

with regard to amplitude, parameter J is chosen to be near to 1.

In other words, by defining a vector of accumulated value as
_ diag(Ag-_a)
- tr(Aga)

the value of k is chosen considering that the following is satisfied:

k
N
S~ 7.23

over N% criterion of accumulated value. Thus, § = N/100.

7.5 Segment Analysis

Further decreasing of computational load can be reached if sectioning the whole input
data into segments for localized processing (segment analysis). An intuitive way to
carry out this kind of analysis consist of dividing into N, subsets, called segments, and
later applying a clustering procedure for each segment. Segmented data set is denoted
by X ={Xj,..., Xy, }, where X is a n; X p matrix corresponding to the I-th segment,

n; = round(n/N,) and round(-) represents the entire nearest to its argument. Using
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directly resultant groups per each group does not represent a significant improvement
in data processing because it can yield a high number of groups. Therefore, a clus-
ter merger stage must be included into the segment procedure. There are two basic
approaches for clusters merger. First one consist of using the whole set of partitions
in order to merge all groups from each segment. In the second approach, clusters are
formed per segment into a sequential method, being preferable because it represents a
real-time oriented sequential scheme.

At the beginning, a proper length of segment to be clustered is estimated. Selection
of proper number of localized clustering segments is constrained by following restric-
tions: twice of number of features must exceed the amount of observations per segment
(n; > 2p), and the minimum of computational cost should be reached. Then, at the end
of grouping step, combination of clustered segments is considered, based on estimation
of the proximities between each considered cluster and the remaining clusters. By con-
sidering that P* = {C},...,C},} is the partition estimated for i-th iteration, where
k" is the number of assumed groups for the same partition and Q' = {q}, ..., qL } are

the centroids of i-th cluster, then, combination of clusters follows the next rule:

9, 7 = 0 (q] qj;ll) =d (qj q;;ﬁ) (7.24)

that is, if estimated measure ¥(j°, j*™) lies within assumed proximity interval 9(j, j*1) <
€, then both considered clusters are to be combined. Otherwise, following comparison
of cluster is accomplished. Nonetheless, if there is any cluster not fulfilling the prox-
imity measure during the actual ¢-th iteration, it is no discarded but considered later
during coming next iterations. Therefore, incorrect clustering of minority classes is

avoid as well as computational load is decreased.

Algorithm 8 explains the steps of the segment grouping of data.

7.6 Clustering Performance Measures

As cluster validity measure the following clustering index is suggested that is expressed
as the relationship f;/fs between the expected value of the objective function fi,
assessed if considering an ideal partition, and the actual value, fs, estimated for the

resultant partition. Objective function can be taken as any described in Section 7.2.
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Algorithm 8 Segment grouping

1. Divide the data set: X = {Xji,...,Xn,}, where X; is a n; X d matrix and n; =
round(n/Nj)

2. Gather the elements of each one of the segments into k! groups: P! = {C{,...,C’él}
associated to centers Q' = {¢!, ..., qlil}

For [ = 2 until N, do

3. Compare the centers of each one of the segments: 19( -1 = (q 1 q 0 1)
gt=1,... K, =1,..., k-
If 9(5%, 571 < e
4. The group C’;.l is jointed to the other group C;.l__ll
otherwise

The group Cél keeps as an independent group in order to analyze following one
End If
End For

This index measure the ratio of objective function change. Since fo > fi, it can be
infered that index is regarded to a proper clustering if its value lies some close to 1.
It must be quoted that the proposed above measure is no sensitive to the assumed

number of clusters.

On the other hand, as another cluster validity measure to be considered, clustering
quality is assessed that is based on spectral graph partitioning [150], when a good clus-
tering desires both tight connections within partitions and loose connections between

partitions. Thus, the cluster coherence is calcules as follows:

Tk Z MTDMl

where M is the matrix formed by the membership values of all elements to each cluster:
mi; = m(q;/xi), M, denotes a membership submatrix associated to the cluster [, A is
the affinity matrix and D is the degree of matrix A. The matrix M is binary, then,
when smooth clustering is implemented, the following conversion must be performed,
M;; = (maxargm(q;/x;)), j = 1,...,k,, where () is 1 if its argument is true and 0
otherwise. Due to normalization with respect to the affinity matrix, the maximum value
of ¢,, is 1, therefore, it indicates a good clustering if its value is near 1. Furthermore,

because of the nature of the function, a large set of groups is penalized.
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Nonetheless, this work takes advantage of the data set labels and therefore su-
pervised measures are accomplished. Thus, performance outcomes can be contrasted
with another similar works. In particular, each assembled cluster can be split into
two clases: one holding the majority elements regarding to the class of interest (IC'),
and another having the minority elements being of different classes (OC). In general,
heartbeats associated to IC' correspond to abnormal beats and can appear suddenly in
the recording, while OC' correspond to normal heartbeats.

Therefore, the following quantitative measures are defined:

— True Positive (Tp), the number of heartbeats IC classified correctly.

True negative (T ), the number of heartbeats OC, classified correctly.

— False positive (Fp), the number of heartbeats OC' classified as IC.

False negative (Fiv), the number of heartbeats IC classified as OC.

After computing the above described measures, the following values of sensitivity

(Se), specificity (Sp), and clustering performance (C'P) are estimated as:

T
L -
Tp + Fy
T
Sy=—"
T+ Fp
Tn+1Tp

O = I T o+ Ty + Fy

The sensibility and specificity quantify the proportion of elements from IC' and
theOC' that are correctly classified, respectively. Both indexes measure the partition
quality with respect to ideal case, when the quantity of clusters equates to the number
of classes, but each cluster holding just one class.

Nonetheless, there is no ideal partition, i.e., either, the number of clusters is lower
than the number of classes, because the variables considered do not discriminate dis-
tinct classes or it should be expected more clusters than classes. Besides, some clusters
may contain majority and minority elements from another classes. Therefore, the par-
tition might be penalized when holding a relatively large number of groups regarding

number of classes, for instance, by means of a factor as

¢ Tkr/ke (7.25)
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where k, is the number of groups resulting from the clustering, k,, is the admissibility
value of groups, and n, 0 < n < 1, is an adjusting value. In this way, the measure m

that can be S, S, or Cp is weighted as follows:

me Hr/ka ko> k,

m, k, <k,

m =

The value of n must be greater than 0, and it can be less than 1 for a less rigorous

penalization (0 <n < 1).

Table 7.1 shows the compilation of clustering performance measures considered in
this study.

Table 7.1: Clustering performance measures

Measure Notation Math expression
TN
Sensitivity Se m x 100
TP
ificit ——— x1
Specificity Sp TP+ FN x 100
TN+ TP
Clustering performance CcP a 100

TN+TP+FN+FP

I

Objective function ratio fi/fa 7
2

k. MTAM,

1
Cluster coherence € z MTDM.
=1 -Ml .Ml
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Chapter 8

Experimental Set—Up
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Figure 8.1: Block diagram of proposed unsupervised methodology for Holter monitoring of

cardiac arrhythmias.

Figure 8.1 depicts the methodology proposed for Holter arrhythmia analysis that

includes the next stages: a) Preprocessing, b) Feature estimation, ¢) Analysis of rele-

vance, and c¢) Clustering. As input data, Holter recordings initially are preprocessed

to reduce the influence of interferences and artifacts. Next, recordings are segmented

based on calculation of QRS complex. Heartbeat features, which are estimated us-

117
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ing variability, prematurity, morphology and representation measurements of the QRS
complex and heart rate variability, are extracted by weighted linear projection. Lastly,
projected data is grouped by a clustering algorithm. Because of restrictions for re-
ducing computational load, the proposed methodology is carried out by framing along
the time axis the input data into Ny successive divisions of Holter recordings, where
each frame is separately processed. Therefore, according to the assumed criterion of
homogeneity between two given consecutive frame divisions, resulting clusters can be
either merged or split. In the next sections, the stages of the procedure are described

in detail.

8.1 Data Set

8.1.1 ECG Validation Database

The experiments are carried out over the whole set of recordings from the ECG MIT-
BIH database, which holds different types of arrhythmia as discussed in Chapter 2. In
accordance to the AAMI standard (ANSI/AAMI EC57:1998/(R)2003) [4], the following
groups shown in Table 2.2 are of interest to be examined: normal-labeled heartbeat
recordings (termed N), Supraventricular ectopic beat (Sv), Ventricular ectopic beat
(V), Fusion beat (F'), as well as unknown beat class (@) is taken into consideration.
All classes listed are assumed to be present during holter analysis.

The used specific recordings are shown in Table 9.4. Name and total number of
beats per arrythmia group are included in the first six columns. As can be seen,
some recordings exhibit strong unbalanced number of observation per class. Namely,
recording #215 holds just one heartbeat of class F, and 2 of S, whereas its number of

normal heartbeats is 3194.

8.2 Preprocessing Procedures

Attained heartbeat set from the ECG signal, s(¢), that is subject to discrete time
transformation, s = {s;}; where s, £ s[kT,], being k € N, and T, the sampling period,
has to be preprocessed. In the beginning, recordings are normalized geometrically [11]
to prevent biasing, i.e., s = (s — E {s})/(|max{s}|), where the notation E {-} stands
for the expectance operator. Then, unbiased vector s° is filtered to reduce signal

disturbances and artifacts.
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Table 8.1: Set of recordings of the MIT/BIH database used in the experiments.

Group N (#) S (#) V#) | F@#) | Q@)
rec./Arr. N L R e j A a J S vV E| F £ P
MIT label 1 2 3 34 11 8 4 7 9 5 10 6 38 12 13

100 2237 33 1

101 1858 3 2

102 99 4 56 | 2026

103 2080 2

104 163 2 666 | 1378 18

105 2524 41 5

106 1506 520

107 59 2076

108 1738 1 4 16 2

109 2490 38 2

111 2121 1

112 2535 2

113 1787 6

114 1818 10 2 43 4

115 1951

116 2300 1 109

117 1532 1

118 2164 96 16

119 1541 444

121 1859 1 1

122 2474

123 1513 3

124 1529 5 2 29 47 5

200 1742 30 825 2

201 1623 10 30 97 1 198 2

202 2059 36 19 19 1

203 2528 2 444 1 4

205 2569 3 71 11

207 1457 85 106 105 105

208 1585 2 | 992 372 2

209 2619 382 1

210 2421 22 194 1] 10

212 922 1824

213 2639 25 3 220 362

214 2000 256 1 2

215 3194 2 164 1

217 244 162 260 | 1540

219 2080 7 64 1

220 1953 94

221 2029 396

222 2060 212 | 208 1

223 2027 16 72 1 473 14

228 1686 3 362

230 2253 1

231 314 1252 1 2

232 396 1] 1381

233 2229 7 830 11

234 2698 50 3

Total | 74989 8068 7250 16 229 | 2542 150 83 2 | 7127 106 | 802 982 | 7020 33
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Table 8.2: Different wavelet functions to ECG denoising

wavelet(order) level

daubechies(1-10) 3-8

coiflet (2-5) 3-8

biorthogonal(1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4) 3-8
symlet(2-9) 3-8

Table 8.3: Working value set of QRS detector

Parameter L1 Lo I; l,, m n Refractory period
Value 5 4 40 20 8 8 200 ms

Specifically, power line interference is reduced using adaptive sinusoidal interference
multiple canceller that is assumed to provide significant signal-to—noise ratio improve-
ment [157]. The parameters f,, = 14, = 0.12 of (5.15) that control the convergence
rate in the ASIMC algorithm, were obtained in a experimental way for optimal local-
ization of interferences.

In order to remove the high-frequency noise such as EMG, some wavelet functions
at different levels of decomposition were analyzed. Table 8.2 depicts the families used.

Also, the baseline wandering is canceled out by the method described in [139] taking
into account the DWT approximation coefficients a;(l) of the expression (5.11).

Although the signal is also partially filtered, this preprocessing is assumed not to
affect the separability of among the underlying heartbeat groups.

Since the analysis of arrhythmias under consideration is supported on fixed changes
of both QRS complex as well as the heart rate variability (HRV'), R—peak locations are
previously estimated accordingly to the procedure given in Section 5.3 including the
following sequential procedures: band—pass filtering, R peak enhancement and adaptive
thresholding. Parameters of the proposed algorithm were experimentally adjusted to
improve the enhancement of R peak detection getting the better performance over
considered database, as shown in Table 8.3.

The performance of detector was evaluated using the standard measures of the sen-
sitivity (Seg.s = TP/(TP + FN)) and positive predictivity (P,.s = TP/(TP + F'P)),
where true positive (T'P) is the total number of QRS correctly located by the detector.
False negative (F'N) occurs when the algorithm fails to detect a true beat quoted in
the corresponding annotation file of the recording and a false positive (F'P) represents
a false beat detection.

Furthermore, to avoid analysis over QRS complexes of different length, their seg-



8.3. Feature Estimation 121

Table 8.4: Feature set considered for Holter monitoring of cardiac arrhythmias.

Index Type Description
x1 HRV and Prematurity [10] e RR interval
T3 e pre-RR interval
T3 e post-RR interval
T4 e Difference between RR and pre—RR intervals, 4 = x1 — x2
5 e Difference between post—RR and RR intervals, x5 = z3 — x1
T6 e Continuous APB* heartbeat type, (eq. 8.2)
T7 Morphology and representation e QRS matching by Dynamic time warping
xs [8], [10], [9], [136] e Polarity of QRS complex
Zg e Energy of QRS complex
T10,.--,T19 e First 10 Hermite—based coefficients
L20, - -, 290 e Db2 (Ad: 20 — 25, D4: 26 — 31, D3: 32 — 41, D2: 43 — 58, D1: 59 — 90)
T91,...,T100 e var{A4,D4,D3,D2,D1}, max {A4, D4, D3, D2, D1}

* The notation APB stands for Atrial Premature Beat, being a sort of S heartbeats.

mentation is carried out for a fixed window length, that is, each j—th complex d; is

accomplished as follows,

d; = {sp};Vk € [l; — aFy,l; + bF,], (8.1)

where [; is the R—peak time location of the j-th heartbeat and F; = 1/7} is the sampling
frequency. Nonetheless, it must be quoted that some morphologies might exhibit S—
waves lasting exceptionally more than usual, and therefore they can be missed if using
such a short processing window, then, as usually recommend, QRS width is fixed to
be of 200 ms length, i.e., a = b= 0.1.

8.3 Feature Estimation

Heartbeat characterization is achieved by taking into consideration the wide set of fea-
tures that had been proposed early for arrhythmia analysis over Holter ECG record-
ings [8-10, 136]. Usually, the whole set of studied features can be divided into the

following groups, as shown in Table 8.4:

8.3.1 Prematurity and Variability based Features.

When considering S labeled arrhythmias, their morphology looks highly similar to
the normal heartbeat shape, and therefore, the following set of features, which are

extracted from variability of cardiac rhythm, is mainly considered [10]:

— HRV—derived features (x1, z2, x3): Interval parameters providing information about
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sequences of heartbeats with unusual timing, namely [4]:

ry =1;—1j_1, (RR interval)
ry =1lj_1 —1lj_5, (pre— RR interval)
rs =111 —1;, (post — RR interval)

It should be remarked that atrial (S) and ventricular (V') ectopic beats manifest
abrupt changes on fiducial point intervals, which in turn, affect the respective

values of heartbeat interval features.

— Prematurity features (x4, xs5,x¢): Defined parameters, x4y = x; — 25 and x5 =
r3 — x1, are assumed to be relevant since they make possible the identification
of S arrhythmia type, when reflecting the increase or decrease of the heart rate.
Besides, if any heart beat occurring after another S—labeled event is regarded as
normal, the above couple of features will change of sign. Feature xg accounts for
the number of consecutive S that is also sensitive to an increase of the heart rate,

exceeding the normal range set for x4. The parameter z¢ is expressed as follows:

6 = (E—T)Q + (%)2 - (% gxglog(xif) . (8.2)

Besides, the first and second squared terms in (8.2) are sensitive to abrupt changes
of heart rate, whereas, the last addend is inferred as unnormalized Shannon

entropy, which increases the value of x4 whenever heart rate is steadily increasing.

8.3.2 Morphological and Representation Features (z7,...,z10).

Since most of analyzed arrhythmias change the shape of QRS complex, their charac-
terization can be attained by commonly used time and spectral-based techniques [130].
Therefore, regarding the former techniques, the following features are worth to be con-
sidered: A couple of features that are sensitive to abnormal QRS complexes: z7, which
computes a morphological dissimilarity by means of Dynamic Time Warping (DTW)
approach between current QRS complex, and a linearly averaged QRS complex of the
last n heartbeats [130]. Next, a parameter, which is sensitive to ventricular arrhythmias
exhibiting abnormal QRS complexes such as ventricular extrasystoles (V') or branch
blocks (N) [9], is defined as xg = |max{d;}/min{d;}|, being d; the current QRS com-

plex. In addition, since the morphological notoriety of branch block heartbeats, the
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QRS energy, which is a straightforward feature to detect previously described type of
heartbeats, is estimated as xg = ZZL:‘il d;[i]?, where L, is the processing length of the
j-th QRS complex.

On the other hand, spectral-based representation features that have been used in
the field of signal compression are also taken into account, because only few coefficients
are needed to reconstruct the signal [8]. In this line of analysis, the Hermite coefficient
are used and can be computed as described in section 5.4.2. The elements of Hermite
base are ranged in the interval (—t¢,%y) with ¢y = 100 ms, in order to set the length of
window to be 200 ms.

As discussed in the Section 5.4.1, wavelet decomposition coefficients are also con-
sidered. Specifically, 4-level coefficients of Daubechies—2 class (dB2) are computed,
which had been proved to describe properly different heartbeat morphologies, as dis-
cussed in [136]. The following statistical descriptors of decomposition coefficients are
calculated: mean value, variance, and maximum values are estimated.

As a result, given an i-th observation heartbeat, the respective feature vector {x; €
RP : 4 =1,...,n}, where p = 100, is assumed to be the input training space toward

arrhythmia classification purpose.

8.4 Analysis of Relevance Procedures

In Section 6.3, an iterative algorithm to calculate the relevance matrix from feature
space, which converges before a certain number of iterations is reached. In [3] is sug-
gested as proper number of iteration as r < 5 (see algorithm 1) and is also demonstrated
that algorithm converges to an optimal value of objective function (6.16). Experimen-
tally, the fact of value of r was assessed over artificial data reaching the convergence
in 4 iterations [148].

Algorithm 1, in step 2, requires to calculate the elements g;; of matrix G € RP*P.
This calculation can signify a high computational cost when a great number of features
p is considered, besides matrix G is computed per iteration. In order to improve this
procedure, here it is proposed an element-to-element matricial operation, avoiding the

calculation per matrix element, following the next expression,

G = times(A, B), (8.3)

where times(-, -) is an array-wise multiplication, it is to say, element-by-element product
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Algorithm 9 Fast Power-embedded ) — a method

1. Initializez M = X7, chose at random k x n matrix Q) (QOTQO = I,), m; «
(m — p(my))/|[mll.

2. Make G") = times(MMT), MQU-VQU-VTMT))

3. Compute a(") as the eigenvector associated with the major eigenvalue of G(.

4. Compute matrix: AY) = MTdiag(a") M

Compute the orthonormal transformation: Z(™ = AT Q-1

6. Compute QR decomposition: [Q("), R] = qr (Z("))

7. Make r < r 4+ 1 and return to the step 2

o

of the arrays A and B. By letting A= MM '™ and B= MQQ " M.

By replacing, previous calculation in algorithm 1, it can be re-written as shown in
algorithm 9.

Relevance analysis methods are assessed carrying out the procedure described in
Sections 6.2 and 6.3. Variants of the same methods are also considered, namely, taking
into consideration only the first eigenvector (i.e., p = 1) in case of method described
in 6.2 and a free parameter scheme of method described in Section 6.6.

Relevance analysis results can be used to project data employing the procedure

described in algorithm 6.7.

8.5 Clustering Procedures

8.5.1 Estimation of number of groups

Estimation of number of groups methods are evaluated in two schemes. First scheme
consists of analyzing the whole data set, denoted as X € R™*P, where n is the number
of heartbeats into recording and p is the number of features (p = 100). Second one,
consist of estimating the number of groups of selected data using ) — « algorithm. In
this case, selected data matrix, that is weighted by relevance value of each feature, is
X e R"*4 where q is the number of relevant features.

For each scheme, the number of groups is computed varying the number of segments,
first Ny =1 (i.e, analyzing the whole recording) and secondly Ny = 6 (i.e., by dividing
the recording into 6 parts and estimating per each one of them).

By dividing the recording can be achieved a better local estimation of number of
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groups and also computational cost can be decreased, being advantageous, in particular,
in case of algorithms that use iterative procedures.

Used methods are described in Section 7.4, specifically, those explained in Section
7.4.1, 7.4.2 and 7.4.4. Method given by Section 7.4.3 is not considered, because ap-
plies the same principle as algorithm 7.4.2 providing similar results, but it spent more
processing time because of the computation of eigenvectors.

In the case of the SVD estimation method, it is considered that oy, from equation
(7.19) is directly proportional to the number of groups, i.e., when decreasing ay,q the
estimated value could be 1 and vice versa, that is when increasing its value the number
of groups can be considerably increased. Experimentally, it was proved that a proper
value of parameter oy, is 0.6.

For eigenvalues based estimation (Section 7.4.2), in order to avoid the fact of strong
changes in the data matrix that can affect the normalization of the trivial affinity

matrix, is introduced a soft affinity matrix A type exponential of the form:

—d?(x;,x4)/(0i0; _
alj:e (Z ])/('LJ)’ a“_l’

where o; = d(x;,x,) is the N-th nearest neighbor. This affinity measure is widely
described in [156].

Finally, in the case of () — « algorithm based estimation, the only parameter to be
set is the number of iterations r from algorithm 1, which is advisable to be r < 5, as

explained in the relevance analysis scheme from Section 8.4.

8.5.2 Segment analysis

According to the described in Section 7.5, data space is divided into N, equal segments,
which are clustered using techniques discussed in Chapter 7. Then, it must estimated
the proper number of segments taking into account that a good trade-off between
quality of partition and computational cost can be reached. Carrying out this process,
some tests are performed to assess the partitions by varying the parameter N, =
1,..., N, and measuring, in each case, the partition quality and the computation
time. The reference unit T'U for the time used to analyze whole recording without any
division.

By following the general scheme for cluster union described in algorithm 8§, it is
proposed a method for 2-contiguous segment union as shown in Figure 8. To that

end, segments correspond to partitions denoted as P4 = {C{,...C4} and P? =
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{CB,...CB}, where the first one (A) is the accumulated grouping from first segment
until current, and partition B is the corresponding to segment to be merged. Term C’l-j
is the i-th cluster from j-th partition and qf is its corresponding center. This method

is described in algorithm 10.

P4 is the partition of segment A P35 is the partition of segment B
ct ai'
[ ]
[ ] [ ]

Figure 8.2: Two contiguous segments and their corresponding clusters

8.6 General Methodology

Following results are obtained by employing the full general methodology. It is the
whole feature set. Feature selection stage is carried out using () — a algorithm (Section
6.3) and MSE-based approach (Section 6.2). Clustering is applied over projection of
weighted data as is described in Section 6.7. As clustering method, NPDBC with
Parzen estimation is applied. Performance indices are those described in Section 7.6,
besides the number of resultant groups k.,; and the number of relevance features p.
Value of €,, is computed by employing resultant matrix from feature selection stage, in
case of () — «, and it is used the trivial affinity measure in case of MSE-based feature
selection. Measures Sp and Se are penalized by applying equation (7.25), with n = 0.05
and k, = 12.
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Algorithm 10 Segment grouping algorithm

Objective {To achieve the union between two contiguous segments that contain a set of
clusters}

Inputs P4 = {C{,...,C}}, PB={CPF,...,CP}, q7, m and n. {P* and P® correspond
to the couple of input partitions, g corresponds to the center associated with i-th cluster
from segment x, m and n correspond to the number of clusters in the segments B and A.
respectively. }

Output P, {Output partition}

Variables u, g, ¢ { u represents the indices of centroid of P? that fulfil some conditions, g
is the vector of distances among centroid of P4 and PB, € represents a decision threshold to
merge two clusters. }

Method:
k = 1; {counter for new clusters in P4}
¢ + min{min(d(q;", ¢7')), min(d(q{’, 7))}, Vi, j and i # j
while j <n do
while 7 <m do
gli] « d(q}, qf}) {calculates the distance between two centroids. }
i+ +
end while
if min(g) < € then
Crﬁin(g) — Cfﬁin(g) U CJB { Clusters are merged. }
qé‘lin(g) — F{qrﬁin(g),q]B} { The new centroid is recalculated taking into account the
centroid qJB.}
else
ulk] « j
k+ +
end if
j++
11
end while
P, < PAU{Vu,CE} { The clusters of segment B that do not satisfy the condition are added
to the partition P4, }







Chapter 9
Results and Discussion

In this chapter, results of the proposed methodology are presented and discussed. They
are obtained following the scheme shown in Figure 8.1, that encompass filtering, R-peak

estimation, feature extraction, relevance analysis and clustering stages.

9.1 Preprocessing and Feature Estimation

9.1.1 ECG filtering

Adaptive filtering

Figures 9.1 and 9.2 exhibit the ability of the ASIMC adaptive filter to remove inter-
ferences. The test signal is contaminated with artificial noise that has the following

characteristics:
— SNR: -6dB(i.e. approximately 3 times the value of signal amplitude).
— Interference frequencies: 60, 120 y 180 Hz. (interference and 2 harmonics)
— Frequency offset: +=60mHz.
— Phase offset: Normal distribution N(0,1).

In Figure 9.1 the original signal (a), noisy signal (b) and filtered signal (c), are
shown. Likewise, in subfigures (a), (b) and (c) from Figure 9.2, amplitude spectra for
original, noisy and filtered signal respectively are presented.

Quantitatively, it is observed that the filter performance does not affect the funda-

mental components of signal, by considering that the signal from Figure 9.1 presents

129
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Figure 9.1: Original, noisy and filtered signal, corresponding to recording 207 in the interval
between 60 and 77 s. (Channel 0).

three kind of arrhythmias (Left bundle branch block (L), right bundle branch block (R)
and ventricular ectopic beat (V)). The same fact can also be observed in Figure 9.2,
where the amplitude spectrum is similar to the original signal, except at the beginning
while algorithm is adapting.

To quantify the filter effectiveness, some distortion measures well-known in litera-
ture, are employed [56]. They measure the signal-to-noise ratio between the original

and filtered signals and correspond to:

e, 0
MSE = — 2; |2(i) — Z(3)| (9.1)

N . .
PRD = \/Zi=1 (@0 Z 26" 109 (9.2)
>z 23(n)

The MSE measure (9.1) is employed as a weighting factor for signal approximation
that is represented by orthogonal expansions. As value of MSE is lower, adjustment
between signals is better.

Meanwhile, PRD (9.2) is a distortion measure commonly used in data compression.

This measure represents a relation between error energy and original signal energy.
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(¢) reconstructed spectrum

Figure 9.2: Amplitude spectrum of the original, noisy and filtered signals.

Then, as value of PRD is lower, there exist a lower distortion.

Table 9.1 shows the quantitative difference between original and filtered signal
according to standard error measures, such as MSE or PRD [56], by analyzing the
channel 0 of the whole MIT/BIH database described in Section 8.1.
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Table 9.1: Performance of the powerline filtering algorithm with respect to other algorithms

Measure ASIMC IE [56] Digital Filter [56]
MSE (p — o) 2.85E-40 — 2-7T4E-4 5.61E-4 — 4.26E-4 0.022 - 0.008
PRD (u — o) 11.26 — 3.42 15.58-3.89 105 -10.94

In the Table 9.1, it can be noted that the adaptive algorithm presents good perfor-
mance regarding other reference algorithms from literature [56]. Because of its easiness
for calculation, each algorithm sampling interval requires 3M additions, 5M multipli-
cations and 2M look-up operations to update the parameters estimates, where M is
the number of harmonics of interference (See Eq. 5.13).

The proposed filter has the advantage of estimating interference signal harmonics,
as well as, slight variations of frequency and phase values, making it a good choice to
filter powerline interferences.

Moreover, an adaptation phase approximately equal to 1 s. is required by the
algorithm, which is determined by the parameters j,, = py, = 0.12 of (5.15) that
control the convergence rate in the ASIMC algorithm.

It should also be noted that Holter recordings are less likely to be affected by
power line, because the most time Holter recorders are powered by batteries; however

interference from near electrical apparatus can significantly affect the signal quality.

Wavelet filtering

The mother wavelet selection is a fundamental stage in denoising approach, then, to
carry out the EMG filtering process, wavelet functions depicted in Table 8.2 were
evaluated. After experiments, it was proved that wavelet coiflet 2 at third level of
decomposition with rigorous thresholding, presented better performance results.

For baseline wandering, the method proposed in [139] (see Section 5.2.2) was fol-
lowed. In that method, the wavelet mother Daubechies for levels between 8 and 11,
was used.

The Figure 9.3 shows an example of baseline wandering and EMG noise filtering
in an ECG signal contaminated with artificial noise taking into account the following

constraints:

— SNR of EMG noise: 18dB

— SNR of baseline wandering: 0dB
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— Baseline frequency: 0.3 Hz

— Baseline phase and EMG noise: Normal distribution with zero mean and unit
variance N (0, 1).

Since the signals from database have inherent both baseline wandering and EMG
noise, resultant filtered signal might present slight differences with respect to the orig-
inal signal. Therefore, with the aim to assess quantitative and qualitatively the filter
performance, synthetic signals are employed from a model described in [158]. This
dynamic model consists of a three dimensional state equation which parameters are

tuned in order to get an undisturbed signal.
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noisy signal (s.)
2 \ \ \ \ \ \ \ \ \
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) | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

filtered signal (s.)

Figure 9.3: Original, noisy and filtered signal, corresponding to a synthetic ECG signal.

Nevertheless, to indicate the filter effectiveness over real signals, Figure 9.4 shows
an example of applying the filter on a segment of recording 217 from the database.

Table 9.2 depicts values of the distortion measures ((9.1) and (9.2)) between the
synthetic and original signal, employing wavelet filtering and other reference methods
[11].
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Figure 9.4: Original, noisy and filtered signal, corresponding to recording 217 in the interval
between 153 and 172 s.

Table 9.2: Wavelet filtering performance with respect to other works

Measure WT-based Adaptive filter [11] Digital Filter [11]
ECM 3.68E-5 6.84E-4 0.002
PRD 4.53 8.24 20.12

The Table 9.2 demonstrates that wavelet-based method presents better performance
than other reference algorithms published in literature.

The adaptive wavelet denoising based on Donoho’s estimator at different levels and
types, gives better performance than classical techniques, and permits to estimate a
wide range of baseline wander fundamental frequency as well as EMG noise. However
the disadvantage of the approach is the computational cost if the ECG is analyzed in

realtime.

9.1.2 R-peak detection

Figures 9.5 and 9.6 show the result obtained after ECG signal processing to the R
fiducial point estimation, as described in Section 5.3. Figures corresponding to the

original ECG signal (a), bandpass filtered signal (b), Shannon energy envelope with
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square window (c¢) and Shannon energy (d), over two segments from recording 217.
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Figure 9.5: Original (a) and filtered (b) signal, Shannon energy envelope with rectangular
window (c) and Shannon energy (d). The signal corresponds to recording 217 in the interval
between 210 and 222 s.

In Figures 9.5 and 9.6, it can be observed the importance of using an analysis win-
dow (see Eq. 5.33) to estimate the search region of R-peak in the nonlinear transforma-
tion (9.5(c)) regarding calculating the Shannon energy without using window analysis
(9.5(d)). The last one can be affected by noise and high frequency components present
in the signal.

Figures 9.7 and 9.8 show an example where it is remarkable the advantage of using
the Shannon energy envelope with square window (see 9.7 (c¢)) regarding common
transformations as signal energy (9.8 (d)). Test signals correspond to two segments
from recording 217. It can be seen the effect of non-linear transformation on R-peaks,
which gives greater weighting to peaks with lower amplitude and viceversa (see 9.7(d),
between 211 and 213 s and 9.8(d), between 845 and 848 s).

Performance of the detector was evaluated using Se,s and P, (Section 8.2) stan-
dard measures, giving as general results Se,,s = 99.71% and P,,.s = 99.49%.

Results per recording are described in the last two columns of Table 9.4. The
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Figure 9.6: Original (a) and filtered (b) signal, Shannon energy envelope with rectangular
window (c) and Shannon energy (d). The signal corresponds to recording 217 in the interval
between 840 and 852 s.

performance of the detector is comparable regarding other works in the literature, as
shown in Table 9.3.

Table 9.3: Summary of the total performance of the designed QRS detector and some
reference QRS detectors on the MIT/BIH arrhythmia database.

852

Detector Seqrs(%)  Pyrs(%)
This work 99.71 99.49
Poli [159] 99.60  99.64
Paoletti [133] 99.65 99.48
Okada’s [48] 08.32  98.34
Engelese and Zeelemberg’s [160] 98.42 98.39

All paremeteres (Table 8.3) of the R-peak algorithm were fitted to obtain an optimal
performance taking into account the sensibility and predictivity measures (Section 8.2),
which do not vary linearly concerning the parameters.

The last stage based on interval-dependent threshold, takes into account, higher T-
wave amplitude and lower (QRS-complex amplitude, improving the efficiency of QRS
detector.

Non-linear transformation proposed in this work improves the R-peak detection
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Figure 9.7: Original (a) and filtered (b) signal, Shannon energy envelope with rectangular
window (c) and energy (d). The signal corresponds to recording 217 in the interval between
210 and 222 s.

in case of the low amplitude complexes could be detected as false negative (FN),

increasing in this way the sensitivity of algorithm Seg,.

9.1.3 Characterization results

Hermite based characterization results

Feature estimation does not require fitting of parameters excepting the Hermite coef-
. 219, Table 84)

value of scale-parameter o,,: (eq. 5.38), which is found through a dissimilarity measure

ficients (x1g .. For Hermite model should be calculated the optimal
between original and reconstructed signal. The dissimilarity measure corresponds to
dynamic time warping (DTW) analyzed in [9].

Experimentally, from optimization process described in 5.4.2, it was found that

=25+5ms and 6 < N < 12 are enough to represent the complexes. Figure
9.9 shows an example of original and reconstructed heartbeats extracted from the
recordings 100 and 207 with o = 25.

For all cases in this study, the difference between original spectrum of original signal

and spectrum of reconstructed signal with N > 6 and ¢ = 25 ms is reasonably small

222
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Table 9.4: Performance of the QRS detector using the recordings from the MIT/BIH
database.

Performance of detector R-peak detector
recording performance
measure Seqrs (%) Pgrs(%)

100 100.00 100.00
101 100.00 99.23
102 100.00 100.00
103 99.65 99.03
104 100.00 99.25
105 99.48 99.24
106 100.00 99.34
107 99.25 99.23
108 99.67 99.82
109 99.65 99.34
111 99.54 100.00
112 99.47 99.59
113 99.49 97.59
114 99.69 99.00
115 99.81 98.80
116 100.00 99.55
117 99.47 99.23
118 100.00 99.17
119 100.00 99.78
121 99.62 99.44
122 99.45 99.32
123 99.74 100.00
124 99.96 99.54
200 99.33 99.43
201 99.68 99.40
202 99.94 100.00
203 99.54 99.37
205 100.00 100.00
207 99.56 99.66
208 99.59 99.68
209 99.38 99.64
210 99.45 99.64
212 99.49 99.28
213 99.45 99.24
214 99.65 99.08
215 100.00 99.44
217 99.78 99.33
219 100.00 100.00
220 99.23 99.62
221 99.70 99.36
222 99.07 99.51
223 99.89 99.40
228 99.84 100.00
230 100.00 99.75
231 99.65 99.71
232 100.00 99.65
233 99.74 99.61
234 100.00 100.00

p(pert.). ‘ 99.71 99.49
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Figure 9.8: Original (a) and filtered (b) signal, Shannon energy envelope with rectangular
window (c) and energy (d). The signal corresponds to recording 217 in the interval between
840 and 852 s.
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Figure 9.9: Original and reconstructed heartbeats with 10 first Hermite coefficients and
o=25

(see Figure 9.11).

Figures 9.10 and 9.11 show, respectively, the spectrum of reconstructed signal using
N =11 and N =9 respectively.
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Figure 9.10: Spectrum of reconstructed signal employing first 11 elements of Hermite base
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Figure 9.11: Spectrum of reconstructed signal employing first 9 elements of Hermite base

Experimentally it was found that an admissible value of the spectral difference
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between original signal and its reconstruction (see section 5.4.2) is constrained by
max|diff,,| < 5.

In conclusion, Hermite model-based methodology for QRS characterization allows
to reduce the search space of the optimal scale parameter o,, by minimizing the
dissimilarity of spectra between reconstructed and original signal and, simultaneously,
decrease computational load with the minimum number of elements to generate a

proper reconstruction.

HRV features

As was described in Section 8.3, the supraventricular arrhythmias (S) and ventricular
extrasystoles (V) have a common temporal pattern that can be well characterized using
HRYV information that discriminates over different type of arrhythmias such as Normal
class (N).

The Figure 9.12 shows an example of separation between two classes for recording
232 from the database, using some HRV features (Table 8.4), such as, RR (z1), pre-RR
(x9) and post-RR (z3), described in Section 8.3.

e »
w >z

Figure 9.12: Separation between two classes (N and S) for recording 232 using some HRV
features

However, all types of arrhythmias studied in this work, does not have the time

variant pattern, such as the case of fusion (N), normal (F) or unknown (Q).
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This aspect is depicted in Figures 9.13 and 9.14 by using features x4 to xg. The
first one, presents separability between N and V classes, but, the second one, does not
present separability between V and S classes, which have the same pattern.

In this way, a feature selection stage is necessary in order to select a proper set of

features that discriminate the types of arrhythmias present into a Holter recording.

<o
<Rz

Figure 9.13: Separation between two classes for recording 213 using some HRV features

WT-based features

WT-based features have the capability to separate morphologies such as ventricular
extrasystoles (V), fusion heartbeats (F) and unknown beats (Q). Nevertheless, ar-
rhythmias characterized by time variant patterns, require HRV features.

Figure 9.15 shows a better separability between V and S type heartbeats from
recording 213, than Figure 9.14 using the wt-based features xg;, xgo and zq3 (See Table
8.4).

Figures 9.16 and 9.17 exhibit an example of good and bad separability among
features, which are related to N, V and S arrhythmia types. While the first figure gives
a good separation between N and V types, the second one does not, regarding N and
S types, mainly because of both arrhythmias are characterized by HRV features.

Finally, Figure 9.18 shows a case where 3 types of arrhythmias can be separated

using WT-based features. The classes correspond to N, V and Q types from recording
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Figure 9.14: Separation between two classes for recording 213 using some HRV features
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Figure 9.15: Separation between two classes for recording 213 using WT-based features

102.
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Figure 9.16: Separation between two classes for recording 207 using WT-based features
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Figure 9.17: Separation between two classes for recording 207 using WT-based features

9.2 Analysis of Relevance Results

Figure 9.19 shows an example for relevance analysis stage using the proposed scheme,
taking into account the last 5 minutes of record 217. It can be observed that occurs a

short separation of first 3 principal components.
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Figure 9.18: Separation among three classes for recording 102 using W'T-based features

Remaining subfigures show the transformed data employing the studied methods
where can be noted a better separability when using w = \/z\ and w = y/a. Partic-
ulary, in case of p, the ignored eigenvectors (see (6.9)) for computing the relevance,
generate a homogeneous weighting of the set of analyzed features, resulting in a lower
selectivity, i.e., w = /p, where its separability is similar to w = 1.

The variable weighting using the analyzed methods is shown in Figure 9.20, where
the last five minutes of recording 217 are assessed. All methods excepting w = /p,
give more relevance to some variables while leave without effect to others. Regarding
w = /a and w = \/7 , there exist a similarity among relevant feature groups, e.g.
some coefficients of WT-based features are relevant, mainly due to the arrhythmia
types present in the recording as is depicted in Figure 9.19. Analysis with w = |/p
gives equal relevance to almost all features, as was mentioned above.

Figure 9.21 shows the dynamic of calculated relevance of variables according to
morphology type of each recording. Three segments of recording 207 are analyzed.
The first segment corresponds to the first 5 minutes of recording, which contains beats
type L, R and V. The second one corresponds to a time period between 20 and 25
minutes, that only have beats type L and V. The last one contains beats type A and
E and corresponds to the last 5 minutes of recording.

It can be seen that in the first segment, the relevant variables correspond to some
groups of the WT-based features (Table 8.4), while in the second one, besides, the WT-
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40 20

0
=20 -20 0

Figure 9.19: First 3 principal components after weighting the data matrix for recording
217 with different w (Algorithm 2)

based features, the Hermite coefficients have more weighting because these coefficients
characterize appropriately the morphology of beats type L and V.
Finally, in the last analyzed segment the weighting for the first 3 variables (HRV

features) is increased.

According to this, it can be concluded that segment analysis allows a local analysis
of relevance and achieves a better performance after the final division, as will be shown
in Section 9.3.

It should be highlighted that the variability features (HRV, Table 8.4) are essential

to discriminate between normal heartbeats and supraventricular ectopic beats, whose
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Figure 9.20: Relevance of the features (Table 8.4) for the last 5 minutes of recording 217
using all methods to estimate w (Algorithm 2)

morphology are similar. As to the relevant group of morphological features, the WT-
based features have the ability of discriminating among heartbeats of type V', ' and
Q.

With the aim to quantify the capability of feature selection methods in cardiac
arrhythmias analysis, a clustering algorithm with fixed parameters was used (Section
7.3.2), which is assessed by means of a sensitivity measure (Se), proposed in Section
7.6. This measure quantifies the proportion of heartbeats belonging to an Interest
Class (IC) that are classified correctly. In this case, sensitivity measure is taken into
consideration because if some classes are significantly minority, i.e., have a very small
amount of heartbeats in a specific ECG recording, e.g., F or Q types, they might
present low values of Se (close to 0), representing a weakness of the system to detect
abnormal heartbeats, which can be mainly attributed to a lack in the performance of

feature selection.
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Figure 9.21: Results of the relevance of the features with Q-a method, for 3 segments of
the recording 207
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Detailed results are shown in Figures 9.22-9.26, where are depicted the measure Se
for recordings that containing the heartbeats of interest, i.e, 5 groups of arrhythmias,
as is described in Table 2.2. Recordings from the MIT/BIH database that do not

appear in Figures 9.22-9.26 achieve a performance of 100 %.
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Figure 9.22: Sensitivity for Normal (N) heartbeats from the MIT/BIH database
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Figure 9.23: Sensitivity for Supraventricular (S) heartbeats from the MIT/BIH database

Figures 9.22-9.26 show a similar performance except for some recordings, e.g. 217,
201, 210, 230, among others; in which the Q-a method shows better performance.
There exist cases when the sensitivity is Se = 0, which corresponds to clusters

where their heartbeats of the class of interest are mixed in other clusters. From a
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Figure 9.24: Sensitivity for Ventricular (V) heartbeats from the MIT/BIH database
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Figure 9.25: Sensitivity for Fusion (F) heartbeats from the MIT/BIH database

medical perspective, this represents a problem because high-risk heartbeats can be
mixed in other clusters with normal classes. Thus, it is necessary that the sensibility
measure should be greater than zero, i.e. Se > 0.

In conclusion, the weighting obtained from iterative ) — a algorithm (1 and 2),
stands out mainly due to both the quadratic nature of the objective function to be
maximized that employs M-inner product as distance measure, and the capability to
select features in a unsupervised fashion that provides better separability between
classes present in the recordings, as is discussed throughout this chapter. For these

reasons, most of tests in the following section 9.3, were performed using the @ — «
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Figure 9.26: Sensitivity for Unknown (Q) heartbeats from the MIT/BIH database

algorithm.

9.3 Clustering Results

In this section, clustering results are presented. Clustering performance is assessed
taking into account the automatic estimation of number of groups as is described
in Section 7.4. It is also taken into consideration the effect of center initialization in
comparison with random initialization, as discussed in 7.3. Furthermore, soft clustering
performance is studied in order to analyze its behavior in connection with K-means
based traditional grouping, using the algorithms described in 7.2. Finally some results
for clustering performance are presented by varying the number of segments used to
divide the recording. Clustering is quantified by performance measures (described in

Section 7.6) and processing time.

9.3.1 Estimation of the number of groups

Estimation without relevance analysis

In Figure 9.27 are shown the estimated values of the number of groups (k) for all
recordings from data base MIT/BIH, where heartbeats from each whole recording are
analyzed without divisions, i.e. Ny = 1. Figure 9.28 shows the time spent per each

considered methods for automatic estimation of the number of groups by using whole
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recording.
In Figure 9.29 can be seen the estimated values for the number of groups over all
recordings, by dividing each recording into 6 parts (/V; = 6) and estimating k per each

one. Finally, Figure 9.30 shows its the corresponding processing times with N, = 6.

1 ‘ Q-a
12 : — eig.val|

svd

1= ideal

50
0 5 10 15 2 % % ® 0

Recordings

Figure 9.27: Estimation of number of groups without relevance analysis for all recordings
from MIT/BIH database. Ns = 1.

Estimation using relevance analysis

As is depicted in Figure 9.28, time employed by the methods for estimation of number
of groups when N, = 1 is very high, including reaching up to about 2000 s. Meanwhile,
in case of segment analysis processing time is decreased, as can be illustrated in Figure
9.30.

Because of the above discussed, the case of estimation using relevance analysis with
N, = 6, is analyzed, as can be seen in Figure 9.31. Processing time to estimate the

number of groups for each method is shown in Figures 9.32 and 9.33.



9.3. Clustering Results 153

2000

- Q-«
1800 — eig.vall]

svd

1600 —

1400 — i

1200

—

+ 1
S 000

800 — *

600 — -

400 *

200— -

0 1 \ — e~~~

0 5 10 15 20 35 40 45 50

25 )
Recordings

Figure 9.28: Time used in estimating the number of groups without relevance analysis
using Ny = 1 segment, for all recordings from MIT/BIH database

As depicted in Figure 9.27, there exist a correspondence relation between the ideal

number of groups and the estimated by the proposed methods.

In case of SVD-based estimation method, the parameter oy, (See eq. 7.19) is ex-
perimentally tuned between the interval 0 < ay,q < 1, obtaining an estimated number
between 3 and 10 with ay,q = 0.6. Nonetheless, in most cases, the estimated is greater
than the ideal value. From point of view of computational cost, this method have
better performance because requires less amount of operations in comparison with the
remaining methods. In this way, to analyze high-dimensional data set as those accom-
plished for ECG recordings, SVD-based approach provides a processing time less than

others in case of Ny = 1, as shown in figure 9.28.

Eigenvalues-based approach, although improved by using a soft scaled affinity ma-
trix, is one with highest dispersion as can be observed in Figure 9.27. Also, computation
of affinity matrix implies a high computational cost, including reaching up towards 2000

s. in the estimation process.

Method based on () — o showed that can give substantial information to estimate
the ideal number of groups as can be illustrated in Figure 9.27. Also, it spends a

reasonable time regarding other methods. Performance of this method is related to the
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Figure 9.29: Estimation of number of groups without relevance analysis for all recordings
from MIT/BIH database, with Ng = 6 segments.

optimization problem given by equation (6.16), which is solved with optimal values for

vector & and matrix Q, which are tuned in an iterative fashion described in Algorithm
1.

However, it is important to highlight that SVD-based estimation is the method
that best works when it is analyzed the whole data set without divisions in a high

dimensional space, where the parameter ay,q, due to its dependence on analyzed data
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Figure 9.30: Time used in estimating the number of groups without relevance analysis
using Ny = 6 segments, for all recordings of the MIT /BIH database

type, is tuned per each experiment.

When recording is divided into various segments, all methods present similar be-
havior. In the case of SVD approach, parameter ag,q is set to a fixed value in order
to study the sensitivity of this method. Then, in Figure 9.29 can be seen that the
estimated number of groups by using SVD was 1 for several recordings. In connection
with processing time, the Figure 9.30 shows a considerable time decrease, reducing
the estimation process from 2000 to around 60 s, as to eigenvalues method (recording
36). However, from all methods, SVD-based approach presents least computation cost,
although also presents dependence with value of parameter a,q4.

Because proposed methodology includes a relevance analysis stage and considering
that () — o method has shown the best performance, it can be used to compute the
number of groups. Then, ) — a algorithm, in addition to provide useful information to
determine the feature relevance, obtains an estimate to the number of clusters without
applying further procedures. Thereby, it becomes in the best method in terms of
both correspondence with number of groups estimation (see Figure 9.31) as well as
computational cost that is slightly less than SVD approach, as can be seen in Figure
9.33. Again, in case of SVD method, because of sensitivity to data matrix, it can be

observed that the estimated number of groups for some recordings is 0. By other hand,
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Recordings

Figure 9.31: Estimation of number of groups with relevance analysis for all recordings the
MIT/BIH database, with Ng = 6.

() — « is absolutely unsupervised and therefore does not require of parameter tuning.
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Figure 9.32: Time used in estimating the number of groups with relevance analysis using
Ny = 6 segments, for all recordings from MIT/BIH database
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MIT/BIH database. The analysis is carried out using Ny = 6.
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Figure 9.34: MSSC results by applying the initialization criteria with different methods,
on the Fisher Iris data set with k£ = 6.

9.3.2 Initialization criteria

In this work, it is proposed a methodology for center initialization that performs better
than the well-know random standard initialization. The problem with random initial-
ization is that it can converge to a local minimum which corresponding partition could
be unsuitable for the desired results, for instance, it could generate a clustering of
different classes in a single cluster and hiding important elements to achieve a proper
resultant partition. Thus, the max-min algorithm was explored that has shown good
results in related works [64]. The disadvantage of this method is the sensitivity to
outliers. Therefore, in this work is proposed, as an alternative to initialization stage,
the clustering algorithm called J-means, whose initial parameters correspond to output
of max-min algorithm. The advantage of J-means algorithm is that despite a bad ini-
tialization may converge to an objective function value near the global optimum value.
The processing time that J-means algorithm spends is linear (O(n)), and it is therefore
easy to implement into the proposed methodology with low computational cost.

To test the effectiveness of proposed procedure, Fisher Iris data set is employed that
is a standard database commonly used for assessing pattern recognition algorithms.

About this data base, it is known the optimal value of objective function with respect
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to the number of clusters according to the minimum sum of squares (7.1), eg with
k = 2, the optimal value is 152.3470 and with k& = 7, the optimal value is 34.2982,
as is explained in [151]. By taking into account these values, the following tests are
performed.

Figure 9.34 shows a comparative of different methods to centroid initialization.
Fifteen experiment repetitions were developed, where, for each experiment the objective
function was evaluated.

Because the optimal value of objective function is 39.0399 for £ = 6 [151], it can
be noted that max-min algorithm presents the lowest performance, reaching values
between 80 and 125. K-means algorithm, when a bad initialization occurs, increases
the objective function value until 70. Therefore, although sometimes good performance
can be achieved, K-means algorithm is very sensitive to initialization. Meanwhile, J-
means and max-min-J-means present a similar performance that is not affected by
initialization. In addition, max-min-GEMC, which is an algorithm used as a clustering
stage in Section 9.3.3), presents even better performance that the other considered
approaches due to its soft nature of the element assignment function (see Section 7.10).

Another test is presented which is oriented to assess several initialization criteria
applied over a specific heartbeat (recording 207). This recording was chosen because it
has 4 of classes of interest (A, V, L and R), and therefore is a representative recording
from considered data base. In Table 9.5 is shown the performance of GEMC algorithm
before applying max-min, J-means and J-GEMC criteria. Table values correspond to
average and standard deviation of sensitivity (Se) and specificity (Sp) indices, com-
puted to evaluate whole data set in 10 clustering procedure iterations. First column
shows the name of used methods. Second column shows the corresponding results ob-
tained without using convergence control. Finally, in third column are shown results
by calculating the change of objective function. As can be seen, it was employed a
DBC algorithm, that is because soft algorithms present better performance and are
less sensitive to initialization, as it will be discussed in 9.3.3.

In general, it can be concluded that initialization algorithms improve the clustering
performance, providing a proper partition initial. J-means based algorithms present
better results in comparison with those obtained from max-min, this is because the
continuos and systematic assessment of the change of objective function carried out
by J-means procedures. In addition, such objective function can be adjusted to a spe-
cific grouping method (DBC or MSSC) in proper form. By the other hand, max-min

method uses a distance preestablished criterion and then does not take into consid-
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Table 9.5: Results for GEMC with different initialization criteria

Iterations Objective function
Method Iter. Se Sp 0 Iter. Resultantes Se Sp
uw—o uw—o round(p) — o u—o uw—o
10T 0.52-0.016  0.87 - 0.02 1071 10 - 0.707 0.56 - 0.022  0.88 - 0.027
max - min | 102 0.96 - 0.027  0.99 - 0.032 | 10~2 15 - 1.01 0.63 - 0.015 0.88 - 0.017
103 0.94-0.03 0.99-0.025 | 1073 25-1.13 0.95-0.032 0.99 - 0.015
10T 0.63-0.01 0.91-0.008 | 10~ T 5-0.48 0.72-0.014 0.85-0.01
J-means 102 0.95-0.012  0.99 - 0.009 | 10~2 11 - 0.53 0.95-0.018 0.99 - 0.01
10% | 0.95-0.013 0.99-0.008 | 103 14 - 0.39 0.95-0.016  0.99 - 0.01
107 0.64 - 0.009 0.91-0.004 | 10~ T 5-0.32 0.72 - 0.006  0.87 - 0.002
J-GEM 102 0.95 - 0.008 0.99 - 0.004 | 10~2 11-0.31 0.95-0.004 0.99 - 0.002
10% | 0.95-0.007 0.99-0.004 | 1073 12 - 0.31 0.95 - 0.004 0.99 - 0.002

eration the nature of objective function corresponding to clustering procedure. Also,
J-means algorithm reduces the computational cost by computing the objective function

locally (see section 7.3.2).

As was mentioned above, soft clustering methods, as DBC, are less sensitive to
initialization because the membership values have major probability to change than
those hard methods. Such change can signify an orientation towards a better partition.
In Figure 9.35 can be observed the low-sensitivity to center initialization of GEMC
method. Green points represent initial centers and black points are the resultant
centers. Feature space correspond to 3-class 4-dimensional artificial data set with
150 samples and balanced classes. Clustering performances achieved with this test
using hard and soft methods are, respectively, CP = 95.4% and CP = 40.3. These
values were calculated with Ny, = 20 and without convergence control (i.e., without

computing the change of objective function).

9.3.3 Grouping algorithm

This test is focused to grouping of ventricular arrhythmias (R, L and V') using as data
set representation and morphological features obtained from Hermite analysis, as can

be seen in 5.4.2. Considered feature set is:

e QRS energy .
e Optimal scale parameter op;.

e Hermite coefficient 6 (C? with n = 6).
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Figure 9.35: Sensitive to center initialization for hard and soft clustering

e Difference bettween current QRS complex and a QRS template and a QRS tem-
plate (see equation 5.45).

Clustering stage is carried out by means hard and soft clustering algorithms. Per-

formance indices correspond to those mentioned in Section 7.6.

Tables 9.6 and 9.7 show the clustering results. First 3 columns correspond to algo-
rithm performance with initial partition chosen at random and the remaining 3 columns
hold the performance clustering using max-min criterion for initialization. Procedure
iterated 10 times in both cases and the mean (u) and standard deviation (o) values
of performance indices were computed. Tests without using initialization criterion
are carried out without convergence control and Ny, is set to be 20. Remaining re-
sults max-min were obtained with N.. = 100 by assessing the algorithm convergence
through the objective function value.

In Figure 9.36 is shown an example of feature space corresponding to recording 207.
Beats type N from another recording (215) are added because recording 207 has not

normal beats.

QRS morphological and representation features provide a good separability of ven-
tricular arrhythmias considered in this study due to the physiological nature of this kind
of signals. Also, these arrhythmias are directly related with QRS wave. In this case,
energy, Hermite based features (C7, 0,,) and spectral differences with QRS templates

shown to be proper features for classification task.
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Table 9.6: Results for hard clustering

Rec. | Random initialization (u — o) max- min (u — o)
Sp(%) | Se(%) CP (%) Sp(%) | Se(%) | CP (%)
118 99.26— | 38.46— 98.75— 99.26— | 51.61— 98.85—
0 16.97 0.12 0 0 0
124 | 99.48— | 72.34— 95.77— 99.54— | 74.75— 95.94—
0.14 6.73 0.002 0 0.12 0.002
207 98.4— 99.1— 99.5— 98.9— 99— 99.5—
0.1 0.01 0.002 0.01 0.002 0.001
214 69.5— 77.94— 75.64— 70.12— | 79.35— 78.2—
0.0474 0.09 0.009 0.021 0.09 0.008
215 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
217 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
219 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
221 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
223 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
228 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
230 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
233 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
234 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0

Table 9.7: Results for soft clustering

Rec. | Random initialization (u — o) max - min (u — o)
Sp(%) | Se(%) CP (%) Sp(%) | Se(%) | CP (%)
118 99.26— | 63.19— 99.6— 99.26— 63,2— 99.72—
0 3.7 0.02 0 0.1 0.001
124 | 99.53— | 74.86— 95.94— 99.54— | 74.87— 95.94—
0.1 1.2 0.0009 0 0.08 0.001
207 98.9— 99— 99.5— 98.9— 99— 99.5—
0.1 1.2 0.0009 0 0.08 0.001
214 69.9— 80.94— 78.14— 70.2— 80.94— 78.2—
0.009 0.05 0.009 0.008 0.092 0.002
215 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
217 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
219 100— 100— 100 100 100 100
0 0 0 0 0 0
221 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
223 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
228 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
230 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
233 100— 100— 100— 100— 100— 100—
0— 0 0 0 0 0
234 100— 100— 100— 100— 100— 100—
0 0 0 0 0 0
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Figure 9.36: Features for recordings 207 (R, L, V) and 215 (N)

In general, two considered clustering methods generate similar results when is ap-
plied an initialization criterion, as can be seen in Tables 9.6 and 9.7. This is because
of the leading advantage of soft clustering is the low sensitive to initialization. As can
be easily noted, hard clustering performance without applying initialization criterion
is decreased, while soft clustering keep practically the same performance. Thereby,
it can be concluded that a good-tuned soft clustering could omit the initialization
stage. Nonetheless, it should be said that a proper initialization criterion makes that
clustering has a major probability to achieve a good convergence value.

Performance results are similar for almost all recordings (last 9 rows, recordings
from 215 to 234), but recordings 118, 124 and 214 present low values of Sp because
of considered features do not generate a proper separability in all cases. Also, in
recordings 118 and 124, value of Se is high in contrast to low value of Sp. This is
because of unbalanced number of observation per class, therefore only one beat wrongly

classified could considerably affect the value of Sp.

9.3.4 Segment analysis results

The results of clustering are accomplished by framing each recording into 6 divisions
and the resulting clusters are merged as described in Section 8.5.2. The number of
segments is achieved experimentally, improving the trade—off among the number of
segments, computational cost and quality of partition. Thus, the segment analysis en-

hances the performance if comparing to the whole data clustering. In fact, it reduces the



