UNIVERSIDAD NACIONAL DE COLOMBIA Facultad De Minas

Modelado de la combustión de mezclas gasolina-etanol en motores de combustión interna.

TESIS

Para obtener el título de Doctor en Ingeniería-Sistemas Energéticos

Autor Juan Miguel Mantilla Gonzalez, I.M, MSc

Director Diego Alexander Garzon Alvarado, I.M, MSc, PhD

2010, Medellín, Colombia

Tesis aprobada por la Facultad de Minas en cumplimiento de los requisitos exigidos para otorgar el título de: Doctor en Ingeniería-Sistemas Energéticos

> (Nombre del director(a)) Director(a) de la tesis

(Nombre del jurado 1) Jurado

(Nombre del jurado 2) Jurado

(Nombre del jurado 3) Jurado

Universidad Nacional de Colombia Medellín, 2010

Agradecimientos

El autor desea expresar sus agradecimientos a quienes de muchas formas colaboraron con el desarrollo de esta investigación. Inicialmente quiero expresar mi gratitud a las entidades que financiaron este trabajo, estas son: Departamento Administrativo de Ciencia, Tecnología e Innovación, Colciencias, por medio del Contrato No 472-2007 y la División de Investigación Sede Bogotá de la Universidad Nacional de Colombia a través de los proyectos No 20201009498 y 202010013830, sin su apoyo hubiera sido imposible realizar la investigación. Los profesores Chung Law de Princeton University y Elizabeth Fischer de Cornell University, quienes me ayudaron con el soporte teórico inicial; el Center for Diesel Research de University of Minnesota, por toda su disposición para la realización del trabajo experimental, en especial al Profesor Helmer Acevedo; al Ingeniero Andres Mauricio Rodriguez por el excelente trabajo realizado con el modelo de cinética química y a July Andrea García por todo su esfuerzo para agilizar y cumplir con los trámites para ejecutar los proyectos. Por último deseo reconocer el trabajo de los Profesores Carlos Galeano Urueña y Diego Alexander Garzón Alvarado por su guía académica, y algunas veces espiritual, durante todas las etapas de avance de este proyecto.

A mis padres y mi hermana por su constante apoyo y cariño. A mi hijo Miguel Andrés por ser el motor y la motivación permanente de mi vida.

RESUMEN

Este trabajo analiza el efecto que tiene el cambio de combustibles tradicionales por combustibles oxígenados (que contienen etanol) sobre la temperatura del proceso de combustión en motores de combustión interna encendidos por chispa. Además de esto se investiga el impacto de otras variables de funcionamiento como el tiempo de encendido, la relación de combustible-aire equivalente y la relación de compresión. Para llevar esto a cabo se realizó una labor de experimentación y simulación. Para el primero se ejecutan pruebas sobre un motor CFR utilizando diferentes mezclas de gasolina-etanol, registrando como mínimo los parámetros exigidos en la NTC 1930, más la señal de presión de la cámara de combustión. Para la simulación se desarrolló un modelo unidimensional basado en la teoría de propagación turbulenta de llama, planteada originalmente por Blizard y Keck [132]. A este modelo se le introdujeron modificaciones para poder utilizar mezclas de gasolina con etanol. Los principales cambios incluyen sub-modelos nuevos para la velocidad laminar de llama, para la velocidad promedio a través de la válvula y para la eficiencia de combustión. Los resultados indican que la temperatura de combustión aumenta con el cambio de combustible siempre y cuando la velocidad promedio a través de la válvula y la eficiencia de combustión sean mayores que las del caso con gasolina pura. Estos dos factores se pueden presentar cuando se utilizan mezclas gasolina-etanol, debido a la mayor densidad en la mezcla durante la admisión y al mejor quemado del combustible por una liberación más alta de radicales libres durante el proceso de combustión.

Palabras clave: Mezclas gasolina-etanol, modelo de propagación turbulenta de llama, temperatura en el cilindro, tasa de liberación de calor, eficiencia de combustión.

ABSTRACT

This work analyzes the effect on combustion temperature in spark-ignition internal combustion engines of changing gasoline by a mixture of gasoline and ethanol. Besides this, it investigates impact of other operating variables like spark timing, compression ratio and fuel-air equivalence ratio. An experimental and simulation effort has been done. Several tests on a CFR engine were conducted using gasoline-ethanol blends up to 30% of the latter. Variables like the ones mandatory in NTC 1930, plus pressure signal from the combustion chamber were recorded. For the simulation, a model were developed based on Blizard and Kecks's [132] turbulent flame propagation model. The main changes to it are new submodels for laminar flame speed, mean velocity through intake valve and combustion efficiency. Results show that combustion temperature increases only if the mean velocity through the intake valve and combustion efficiency are higher than the ones in gasoline combustion. These two factors could appear when using gasoline-ethanol mixtures, due to higher intake density and better burning of the fuel by the superior release of free radical in the combustion process.

Keywords: Gasoline-ethanol blends, turbulent flame propagation, cylinder temperature, heat release rate, combustion efficiency.

MODELADO DE LA COMBUSTIÓN DE MEZCLAS GASOLINA -ETANOL EN MOTORES DE COMBUSTIÓN INTERNA.

ABREVIATURAS

AFR:	Relación de aire-combustible, del inglés <i>air to fuel ratio</i> .
ANOVA:	Analisis de Varianza, del inglés Analysis of Variance.
ATDC:	Después del punto muerto superior, del inglés After Top Dead Center.
BTDC:	Antes del punto muerto superior, del inglés Before Top Dead Center.
CMC:	Modelo de encierro condicional momentáneo, del inglés Conditional Moment Closure.
CO:	Monóxido de carbono.
CO ₂ :	Bióxido de carbono.
CR:	Relación de compresión, del inglés <i>Compression Ratio</i> .
DNS:	Simulación numérica directa, del inglés Direct Numerical Simulation.
DPIK:	Núcleo de ignición de partícula discreta, del inglés Discrete Particle Ignition Kernel.
dQRTmaxR:	Máximo Calor liberado por los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC
dQRTpromR:	Promedio de Calor liberado por los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC.
dQRTmax20:	Máximo Calor liberado por los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 20 grados después del mismo.
dQRTprom20:	Promedio de Calor liberado por los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 20 grados después del mismo.
DVPE	Presión equivalente de vanor seco, del inglés Dry Vanour Pressure Equivalent
ERII:	Modelo de desintegración de remolino, del inglés Eddy Breakun Model
EDU. ECU:	Unidad de control del motor, del inglés Engine Control Unit
ECU.	Modele de disinación de remeline, del inglés Eddy Dissination Model
	Étar atil tart hutílica, dal inglés Ethyl Tart Putyl Ethan
	Eter etir-tett-buttileo, dei ingles <i>Einyi Tett-Dülyi Einet</i> .
	Etallol. Indiandor fluorescente de adsorción del inglés Elucrossent Indianter Adsorption
FIA.	Detector de ionización de lleme, del inglés Eleme Louization Detector
FID: EEM.	Madalada complete del fluio, del inglés Full Eigld Madalling
	Modelado completo del flujo, del fligles <i>Full Fleta Modelling</i> .
HC:	Hidrocarburos sin quemar.
IBP:	Punto inicial de edulición, del ingles <i>initial Bolling Point</i> .
Imep:	Presion media electiva indicada, del ingles <i>Indicated Media Ejective Pressure</i> .
LEM:	Modelo de vortice lineal, del ingles <i>Linear-Eday Model</i> .
LES:	Simulation de vortices de gran escala, del inglés Large-Eddy Simulation.
LHV:	Poder calorifico inferior, del inglés <i>Lower Heating Value</i> .
MBT:	Torque máximo al freno, del inglés Maximum Brake Torque.
MCI:	Motores de combustión interna.
MCI-EC:	Motores de combustión interna encendidos por chispa.
MeOH:	Metanol.
MON:	Número de octano de motor, del inglés <i>Motor Octane Number</i> .
MTBE:	Éter metil tert-butílico, del inglés Methyl Tertiaty Butyl Ether.
msnm:	Metros sobre el nivel del mar.
NMOG:	Gases orgánicos diferentes a metano, del inglés Non Methane Organic Gases.
NO _x :	Óxidos de nitrógeno que generalmente comprende las especies: NO, NO ₂ y N ₂ O.
ODT:	Modelo unidimensional de turbulencia, del inglés One-Dimensional Turbulence Model.
O ₂ :	Oxígeno.
P:	Potencia.
Patm:	Presión atmosférica.
PcilmaxR:	Presión máxima de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC
PcilpromR:	Presión promedio de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC
Pcilmax20:	Presión máxima de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 20 grados después del mismo.

Pcilprom20:	Presión promedio de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta
-	20 grados después del mismo.
PDF:	Función de densidad de probabilidad, del inglés Probability density function.
RANS:	Ecuaciones de Navier Stokes promediadas, del ingles Reynolds-Averaged Navier Stokes.
Rc:	Relación de compresión.
RON:	Número de octano de investigación, del inglés Research Octane Number.
RSM:	Modelo de esfuerzos de Reynolds, del inglés Reynolds Stress Model.
RVP:	Presión de vapor Reid, del inglés Reid Vapor Pressure.
ST:	Tiempo de encendido/Encendido de la bujía, del inglés Spark Timing.
T:	Torque.
TC:	Transferencia de calor.
TCI:	Modelos de interacción entre turbulencia y química, del inglés <i>Turbulence and turbulence/chemistry interactions</i> .
TcilmaxR:	Temperatura máxima de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC
TcilpromR:	Temperatura promedio de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC.
Tcilmax20:	Temperatura máxima de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 20 grados después del mismo.
Tcilprom20:	Temperatura promedio de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 20 grados después del mismo.
v/v:	Composición volumétrica de una mezcla.
VOC:	Compuestos orgánicos volátiles, del inglés Volatile Organic Compounds.
xb:	Fracción de masa quemada, del inglés Mass Fraction Burned.

CONTENIDO

LISTA DE T	ABLAS	9
LISTA DE F	IGURAS	10
LISTA DE F	IGURAS	10
LISTA DE A	₽ÉNDICES	15
1. INTR	ODUCCIÓN	16
2. PLAN	ITEAMIENTO DEL PROBLEMA	19
2.1.	Hipótesis	19
2.1.1.	Explicación inicial.	20
2.1.2.	Prueba de hipótesis	22
2.1.3	Objetivos	23
3. ESTA	DO DEL ARTE	24
3.1.	Propiedades fisico-químicas de mezclas gasolina-etanol	24
3.1.1	Número de octano:	24
3.1.2	Calor de vaponzacion:	24
3.1.3 2.1.4	Presion de vapor Reid (RVP):	24
3.1.4	Temperatura de autoencendudo.	24
3.1.3	Delisiudu	25
3.1.7	Temperatures de decileción T50 y T90:	25
310	Solubilidad en agus	25
3.1.9	Fmisiones	20
3.2	Monóxido de carbono (CO):	20
3.2.1	Hidrocarburos totales sin quemar (HC):	20
323	Áxidos de Nitrógeno (NO.):	20
324	Aldehídos (formaldehído v acetaldehído):	27
3.2.5	Benceno:	
3.2.6	Compuestos Orgánicos Volátiles (VOC) y Gases Orgánicos Diferentes a Metano (NMOG):	
3.2.7	Etanol sin quemar:	
3.3	Parámetros de operación	
3.3.1	Consumo de combustible:	28
3.3.2	Potencia:	29
3.4	Modelos para simular el proceso de combustión en motores de combustión interna	29
3.4.1	Modelos termodinámicos	30
3.4.2	Modelos de dinámica de fluidos	34
3.4.4	Modelos de inteligencia artificial [129].	
3.4.5	Modelos caóticos [73]	
4. MOD	ELO PROPUESTO PARA EL PROCESO DE COMBUSTIÓN EN MCI QUE UTILIZAN MEZCLAS GASOLINA-	
ETANOL		
5. RESU	LTADOS EXPERIMENTALES	50
5.1.	Pruebas a combustibles	50
5.1.1.	Pruebas en bomba de combustión.	50
5.1.2.	Pruebas de caracterización de mezclas gasolina-etanol.	
5.2.	Pruebas de combustion de mezclas gasolina-etanol en un motor.	
5.2.1.	Matriz de pruebas.	
5.2.2.	Motor y equipos utilizados Desultados Experimentales	
5.2.5.	Condiciones durante la prueba	30
5.2	2.2. Anólicio actudíctica	
5.2	2.2. Analisis estatistico.	63
5.2	2.5.5. Resultados para remperatura de escape	68
53	Discusión de resultados experimentales	84
6 RESU	Trapos DEI MODELO	86
61	Validación	86
6.2.	Temperatura y presión en cámara de combustión, y curva de liberación de calor	
6.3.	Análisis de los casos simulados (Tabla 14).	108
6.4.	Discusión de los resultados del modelo.	121
7. CONO	CLUSIONES	126
7.1.	Aportes del trabajo	128
7.2.	Trabajos Futuros	129
REFERENC	IAS BIBLIOGRÁFICAS	130

LISTA DE TABLAS

Tabla 1. Cuadro comparativo entre los modelos termodinámicos y de dinámica de fluidos	
Tabla 2. Coeficientes para calcular la velocidad laminar de llama. $P_0=1$ bar, $T_0=300$ K. X_F y X_G corresponden a las fracciones	molares de
gasolina y etanol en la mezcla. Tomado de [3]	45
Tabla 3. Niveles de las variables controlables	
Tabla 4. Cambio en la velocidad laminar de llama cuando se compara contra los valores de la prueba y del modelo para EO, T _a ;	= <i>300 K</i> y
$\phi = 0.8$	54
Table 5. Demutedes obtenidos emples de constanización de combustibles, en Laboratoria de Combustibles de la Recultad de In	anioría da
Tabla 5. Resultados obtenidos prueba de caracterización de combustibles en Laboratorio de Combustibles de la Facultad de m	igementa de
la Universidad Nacional de Colombia.	
Tabla 0. Niveles de las variables controlables.	
Tabla /, Diseno inal del experimento.	
Tabla 8. Motor de combustion interna utilizado para las pruebas	
Tabla 9. Nombre asignado a las diferentes pruebas.	
Tabla 10. Combinación entre variables independientes para ANOVA 2x2	
Tabla 11. valores de p para los diferentes ANOVA 2x2 realizados.	
Tabla 12. valores de MBT y tiempo de encendido por prueba realizada.	
Tabla 15. Tabla con simulaciones realizadas para validación. Patm es la presión atmosferica de entrada al modelo. Los ST sera	ilados con
asterisco (*) corresponden a los puntos de MB1	
Tabla 14. Casos de estudio.	
Tabla 15. Tabla con valores de probabilidad para las diferentes variables dependientes con respecto a las independientes	
Tabla 16. Diferencia porcentual en la eficiencia de combustión (η_c) para los combustibles oxigenados cuando son comparados	con E0. El
valor negativo indica que es mayor que el EO.	
Tabla 17. Valores para los diferentes parametros de comparación, caso 1a.	
Tabla 18. Valores para los diferentes parametros de comparación, caso 1b.	
Tabla 19. Valores para los diferentes parametros de comparación, caso 1c.	
Tabla 20. Valores para los diferentes parámetros de comparación, caso 1d.	
Tabla 21. Valores para los diferentes parámetros de comparación, caso 1e.	
Tabla 22. Valores para los diferentes parámetros de comparación, caso 11.	
Tabla 23. Valores para los diferentes parámetros de comparación, caso 2a.	
Tabla 24. Valores para los diferentes parámetros de comparación, caso 2b.	
Tabla 25. Valores para los diferentes parámetros de comparación, caso 3a.	
Tabla 26. Valores para los diferentes parámetros de comparación, caso 3b.	
Tabla 27. Valores para los diferentes parámetros de comparación, caso 3c.	
Tabla 28. Valores para los diferentes parámetros de comparación, caso 3d.	
Tabla 29. Valores para los diferentes parámetros de comparación, caso 3e.	
Tabla 30. Valores para los diferentes parámetros de comparación, caso 3f.	
Tabla 31. Valores para los diferentes parámetros de comparación, caso 4a.	230
Tabla 32. Valores para los diferentes parámetros de comparación, caso 4b.	
Tabla 33. Valores para los diferentes parámetros de comparación, caso 4c.	234
Tabla 34. Valores para los diferentes parámetros de comparación, caso 4d.	
Tabla 35. Valores para los diferentes parámetros de comparación, caso 4e.	
Tabla 36. Valores para los diferentes parámetros de comparación, caso 4f.	
Tabla 37. Valores para los diferentes parámetros de comparación, caso 5a.	
Tabla 38. Valores para los diferentes parámetros de comparación, caso 5b.	
Tabla 39. Valores para los diferentes parámetros de comparación, caso 5c.	
Tabla 40. Valores para los diferentes parámetros de comparación, caso 5d.	
Tabla 41. Valores para los diferentes parámetros de comparación, caso 5e.	250
Tabla 42. Valores para los diferentes parámetros de comparación, caso 5f.	252
Tabla 43. Valores para los diferentes parámetros de comparación, caso 6a.	254
Tabla 44. Valores para los diferentes parámetros de comparación, caso 6b.	256
Tabla 45. Valores para los diferentes parámetros de comparación, caso 6c.	258
Tabla 46. Valores para los diferentes parámetros de comparación, caso 6d.	
Tabla 47. Valores para los diferentes parámetros de comparación, caso 6e.	
Tabla 48. Valores para los diferentes parámetros de comparación, caso 6f	

LISTA DE FIGURAS

Figura 1. Temperatura de llama adiabática y temperatura final, como función de la composición de una mezcla ((v/v)) de Iso-octano (C_8H_{18}) y etano (C_1H_{18}) y etano (C_2H_{18}) y etano	ol 20
(C ₂ n ₅ On) Figura 2 Esquema para la explicación inicial de la hinótesis	20
Figura 3. Clasificación de modelos matemáticos para el proceso de combustión	
Figura 4. Esquema para los modelos termodinámicos cuasi-dimensionales. Tomado de [162].	31
Figura 5. Esquema para la comparación entre los modelos termodinámicos y de dinámica de fluidos. a. Una zona, b. dos zonas, c. multi-zona. Toma [162]	do de 37
Figura 6. Procesos de un MCI de cuatro tiempos, a) Admisión, b) compresión, c) combustión y compresión, d) combustión y expansión, e) abre vál	vula
Eigura 7 Diferentes procesos en el MCL Motor CER (Cooperative Fuels Research) a 900 rpm trabajando con gasolina AnglC: ángulo de Inicio de	39
combustión (salto de chispa) en -10 BTDC, AngAEs: ángulo apertura válvula de escape, AngAAd: ángulo apertura válvula de admisión, AngCAd:	ángulo
cierre válvula de admisión, AngCEs: ángulo cierre válvula de escape, xb: fracción de masa de combustible quemada	
Figura 8. Esquema del modelo de propagación turbulenta de llama. "El frente de llama turbulento de forma esférica (línea punteada) se difunde hac	a el
exterior a una velocidad laminar de llama S _L . La mezcla fresca también cruza este frente a una velocidad característica u' debida a convección turbu	lenta.
El esquema de la izquierda muestra en detalle la estructura de la llama: δ_c (dentificado como dl en la figura) es un espesor de la lámina de reacción,	$l_t es la$
escata característica de las arrugas en la tamina. Figura y texto tomados de [72]	43
Figura 7. Agonano estato no propasso.	
Figura 11. Velocidades de llama de la prueba y del modelo para combustible E10.	52
Figura 12. Velocidades de llama de la prueba y del modelo para combustible E20.	52
Figura 13. Velocidades de llama de la prueba y del modelo para combustible E30.	53
Figura 14. Curva de destilación para los combustibles utilizados.	55
Figura 15. Valor de densidad y LHV del combustible para cada prueba realizada.	59
Figura 10. valor de la tenación combustible-ane equivalente para cada prueba realizada.	60
Figura 18. Temperatura de escape como función del tiempo de encendido y el combustible.	
Figura 19. Temperatura de escape como función de la relación de compresión y el combustible	64
Figura 20. Temperatura de escape como función del tiempo de encendido y la relación de compresión	64
Figura 21. Temperatura de escape como función del combustible y de la relación combustible-aire equivalente	65
Figura 22. Temperatura de escape como función del tiempo de encendido y la relación combustible-aire equivalente	65
Figura 23. Temperatura de escape como funcion de la relacion de compresion y de la relacion combustible-aire equivalente.	66
Figura 24. Influencia del compositore en la temperatura de escape	60
Figura 26. Influencia del arelación de compresión en la temperatura de escape.	
Figura 27. Influencia de la relación combustible-aire equivalente en la temperatura de escape.	68
Figura 28. Oxígeno en el escape como función de la relación de compresión y el combustible	69
Figura 29. Oxígeno en el escape como función del combustible y de la relación combustible-aire equivalente.	69
Figura 30. Oxígeno en el escape como función de la relación de compresión y la relación combustible-aire equivalente	
Figura 31. Influencia de la combustible en la emisión de oxigeno.	70
Figura 52. Influencia de la relación compresión en la emisión de oxigeno.	
Figura 34. Hidrocarburos sin quemar en el escane como función de la relación de compresión y el combustible.	
Figura 35. Hidrocarburos sin quemar como función del combustible y la relación combustible-aire equivalente.	72
Figura 36. Hidrocarburos sin quemar como función de la relación de compresión y la relación combustible-aire equivalente.	
Figura 37. Influencia del combustible en la emisión de hidrocarburos sin quemar.	73
Figura 38. Influencia de la relación de compresión en la emisión de hidrocarburos sin quemar	
Figura 39. Initiancia de la relación combustible-arre equivalente en la emisión de nurocarburos sin quemar	
Figura 41. Óxidos de nitrógeno como función del combustible y de la relación combustible-aire equivalente	
Figura 42. Óxidos de nitrógeno como función de la relación de compresión y la relación combustible-aire equivalente.	
Figura 43. Influencia del combustible en la emisión de óxidos de nitrógeno.	76
Figura 44. Influencia de la relación de compresión en la emisión de óxidos de nitrógeno.	77
Figura 45. Influencia de la relación combustible-aire equivalente en la emisión de óxidos de nitrógeno	
Figura 46. Relación entre la temperatura de escape y la emisión de óxidos de nitrógeno para diferentes combustibles	
Figura 47. Dioxido de carbono como función de la relación de compresión y el combusible.	/8
Figura 49. Dióxido de carbono como función de la relación de compresión y la relación combustible-aire equivalente	
Figura 50. Influencia del combustible en la emisión de dióxido de carbono.	80
Figura 51. Influencia de la relación de compresión en la emisión de dióxido de carbono	80
Figura 52. Influencia de la relación combustible-aire equivalente en la emisión de dióxido de carbono.	81
Figura 53. Monóxido de carbono como función de la relación de compresión y el combustible.	81
Figura 54. Monoxido de carbono como funcion del combustible y la relación combustible-aire equivalente	82
Figura 55. Influencia del combustible en la emisión de monóxido de carbono.	82
Figura 50. Influencia del compresión en la emisión de monoxido de carbono.	83
Figura 58. Influencia de la relación combustible-aire equivalente en la emisión de monóxido de carbono	84
Figura 59. Influencia del combustible en la emisión de NOx. Rc=7.	85
Figura 60. Influencia del combustible en la emisión de NOx. Rc=7.7.	85
Figura 61. Comparación de fracción de masa quemada entre el trabajo original y este trabajo	87
Figura 62. Comparación entre curva de presión experimental (15) y simulada (SIM) para la condición 1	88
rigura 05. Comparación citic curva de presión experimental (10) y simulada (Silvi) para la condición 2	09

Figura 64. Comparación entre curva de presión experimental (15) y simulada (SIM) para la condición 3	89
Figura 65. Comparación entre curva de presión experimental (15) y simulada (SIM) para la condición 4	90
Figura 66. Diferencia porcentual en las variables generales consideradas, caso 1a	92
Figura 67. Diferencia porcentual en las variables generales consideradas, caso 1b	92
Figura 68. Diferencia porcentual en las variables generales consideradas, caso 1c	93
Figura 69. Diferencia porcentual en las variables generales consideradas, caso 1d	94
Figura 70. Diferencia porcentual en las variables generales consideradas, caso 1e	94
Figura 71. Diferencia porcentual en las variables generales consideradas, caso 1f.	95
Figura 72. Diferencia porcentual en las variables generales consideradas, caso 2a	95
Figura 73. Diferencia porcentual en las variables generales consideradas, caso 2b	96
Figura 74. Diferencia porcentual en las variables generales consideradas, caso 3a	96
Figura 75. Diferencia porcentual en las variables generales consideradas, caso 3b	97
Figura 76. Diferencia porcentual en las variables generales consideradas, caso 3c	97
Figura 77. Diferencia porcentual en las variables generales consideradas, caso 3d	98
Figura 78. Diferencia porcentual en las variables generales consideradas, caso 3e	98
Figura 79. Diferencia porcentual en las variables generales consideradas, caso 3f.	99
Figura 80. Diferencia porcentual en las variables generales consideradas, caso 4a	99
Figura 81. Diferencia porcentual en las variables generales consideradas, caso 4b	.100
Figura 82. Diferencia porcentual en las variables generales consideradas, caso 4c	.100
Figura 83. Diferencia porcentual en las variables generales consideradas, caso 4d	.101
Figura 84. Diferencia porcentual en las variables generales consideradas, caso 4e	.101
Figura 85. Diferencia porcentual en las variables generales consideradas, caso 4f.	.102
Figura 86. Diferencia porcentual en las variables generales consideradas, caso 5a	.102
Figura 87. Diferencia porcentual en las variables generales consideradas, caso 5b	.103
Figura 88. Diferencia porcentual en las variables generales consideradas, caso 5c	.103
Figura 89. Diferencia porcentual en las variables generales consideradas, caso 5d	.104
Figura 90. Diferencia porcentual en las variables generales consideradas, caso 5e	.104
Figura 91. Diferencia porcentual en las variables generales consideradas, caso 5f.	.105
Figura 92. Diferencia porcentual en las variables generales consideradas, caso 6a	.105
Figura 93. Diferencia porcentual en las variables generales consideradas, caso 6b	.106
Figura 94. Diferencia porcentual en las variables generales consideradas, caso 6c	.106
Figura 95. Diferencia porcentual en las variables generales consideradas, caso 6d	.107
Figura 96. Diferencia porcentual en las variables generales consideradas, caso 6e	.107
Figura 97. Diferencia porcentual en las variables generales consideradas, caso 6f.	.108
Figura 98. Influencia del tipo de combustible sobre la variable TcilpromR	.110
Figura 99. Influencia de la relación de compresión sobre la variable TcilpromR	.110
Figura 100. Influencia del tiempo de encendido sobre la variable TcilpromR.	.111
Figura 101. Influencia de la relación combustible-aire (phi) sobre la variable TcilpromR	.111
Figura 102. Influencia de la presión atmosférica sobre la variable TcilpromR.	.112
Figura 103. Influencia de la velocidad de giro del motor sobre la variable TcilpromR	.112
Figura 104. Influencia del tipo de combustible sobre la variable TcilmaxR	.113
Figura 105. Influencia de la relación de compresión sobre la variable TcilmaxR	.113
Figura 106. Influencia del tiempo de encendido sobre la variable TcilmaxR	.114
Figura 107. Influencia de la relación combustible-aire (phi) sobre la variable TcilmaxR.	.114
Figura 108. Influencia de la presión atmosférica sobre la variable TcilmaxR	.115
Figura 109. Influencia de la velocidad de giro del motor sobre la variable TcilmaxR.	.115
Figura 110. Influencia del tipo de combustible sobre la variable Tcilprom20	.116
Figura 111. Influencia de la relación de compresión sobre la variable Tcilprom20.	.116
Figura 112. Influencia del tiempo de encendido sobre la variable Tcilprom20	.117
Figura 113. Influencia de la relación combustible-aire (phi) sobre la variable Tcilprom20.	.117
Figura 114. Influencia de la presión atmosférica sobre la variable Tcilprom20.	.118
Figura 115. Influencia de la velocidad de giro del motor sobre la variable Tcilprom20	.118
Figura 116. Influencia del tipo de combustible sobre la variable dQRTpromR	.119
Figura 117. Influencia de la relación de compresión sobre la variable dQRTpromR.	.119
Figura 118. Influencia del tiempo de encendido sobre la variable dQRTpromR	.120
Figura 119. Influencia de la relación combustible-aire (phi) sobre la variable dQRTpromR.	.120
Figura 120. Influencia de la presión atmosférica sobre la variable dQRTpromR	.121
Figura 121. Influencia de la velocidad de giro del motor sobre la variable dQRTpromR	.121
Figura 122. Velocidad simulada promedio a través de la válvula de admisión. Rc=7	.123
Figura 123. Velocidad simulada promedio a través de la válvula de admisión. Rc=7.7	.123
Figura 124. Temperatura en el cilindro para una velocidad promedio por la válvula igual	.124
Figura 125. Eficiencia volumétrica medida. Rc=7	.125
Figura 126. Eficiencia volumétrica medida. Rc=7.7.	.125
Figura 127. Temperatura en el cilindro para el caso Rc=7.7 con todos los parámetros de combustión iguales excepto LHV	.127
Figura 128. Liberación de calor para el caso Rc=7.7 con todos los parámetros de combustión iguales, excepto LHV	.127
Figura 129. Presión en el cilindro para el caso Rc=7.7 con todos los parámetros de combustión iguales, excepto LHV	.128
Figura 130. Torque indicado como función del tiempo de encendido, prueba E0-7-1.	.153
Figura 131. Torque indicado como función del tiempo de encendido, prueba E0-7.7-1.	.153
Figura 132. Torque indicado como función del tiempo de encendido, prueba E10-7-1.	.154
Figura 133. Torque indicado como función del tiempo de encendido, prueba E10-7-0.9.	.154
Figura 134. Torque indicado como función del tiempo de encendido, prueba E10-7.7-1.	.155
Figura 135. Torque indicado como función del tiempo de encendido, prueba E10-7.7-0.9	.155
Figura 136. Torque indicado como función del tiempo de encendido, prueba E20-7-1.	.156
Figura 137. Torque indicado como función del tiempo de encendido, prueba E20-7-0.9.	.156

Figura 138. Torque indicado como función del tiempo de encendido, prueba E0-7.7-1.	
Figura 139. Torque indicado como función del tiempo de encendido, prueba E20-7,7-0.9	
Figura 140. Torque indicado como función del tiempo de encendido, prueba E20-8.4-1.	
Figura 141. Torque indicado como función del tiempo de encendido, prueba E20-8.4-0.9	
Figura 142. Torque indicado como función del tiempo de encendido, prueba E30-7-1.	
Figura 143. Torque indicado como función del tiempo de encendido, prueba E30-7-0.9.	
Figura 144. Torque indicado como función del tiempo de encendido, prueba E30-7.7-1.	
Figura 145. Torque indicado como función del tiempo de encendido, prueba E30-7.7-0.9	
Figura 146. Torque indicado como función del tiempo de encendido, prueba E30-8.4-1.	
Figura 147. Torque indicado como función del tiempo de encendido, prueba E30-8.4-0.9	
Figura 148. Torque indicado como función del tiempo de encendido, prueba E30-8.8-1.	
Figura 149. Torque indicado como función del tiempo de encendido, prueba E30-8.8-0.9	
Figura 150. Presión en cámara de combustión como función del tiempo de encendido, prueba E0-7-1,	
Figura 151. Presión en cámara de combustión como función del tiempo de encendido, prueba E0-7.7-1.	
Figura 152. Presión en cámara de combustión como función del tiempo de encendido, prueba E10-7-1,	
Figura 153. Presión en cámara de combustión como función del tiempo de encendido, prueba E10-7-0.9	
Figura 154. Presión en cámara de combustión como función del tiempo de encendido, prueba E10-7.7-1	
Figura 155. Presión en cámara de combustión como función del tiempo de encendido, prueba E10-7.7-1	
Figura 156. Presión en cámara de combustión como función del tiempo de encendido, prueba E20-7-1,	
Figura 157. Presión en cámara de combustión como función del tiempo de encendido, prueba E20-7-0.9	
Figura 158. Presión en cámara de combustión como función del tiempo de encendido, prueba E20-7.7-1	
Figura 159. Presión en cámara de combustión como función del tiempo de encendido, prueba E0-7.7-0.9	
Figura 160. Presión en cámara de combustión como función del tiempo de encendido, prueba E20-8.4-1	
Figura 161. Presión en cámara de combustión como función del tiempo de encendido, prueba E20-8.4-0.9	
Figura 162. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-7-1.	
Figura 163. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-7-0.9	
Figura 164. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-7.7-1	
Figura 165. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-7.7-0.9	
Figura 166. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-8.4-1	171
Figura 167. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-8.4-0.9	171
Figura 168. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-8.8-1	
Figura 169. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-8.8-0.9	
Figura 170. Torque máximo como función del tiempo de encendido y el combustible	
Figura 171. Torque máximo como función de la relación de compresión y el combustible	
Figura 172. Torque máximo como función del tiempo de encendido y la relación de compresión	
Figura 173. Torque máximo como función del combustible y de la relación combustible-aire equivalente	
Figura 174. Torque máximo como función del tiempo de encendido y la relación combustible-aire equivalente	
Figura 175. Torque máximo como función de la relación de compresión y de la relación combustible-aire equivalente.	
Figura 176. Influencia del combustible en el torque máximo	
Figura 177. Influencia del tiempo de encendido en el torque máximo.	
Figura 178. Influencia de la relación de compresión en el torque máximo.	
Figura 179. Influencia de la relación combustible-aire equivalente en el torque máximo.	
Figura 180. Presión media indicada como función del tiempo de encendido y el combustible.	
Figura 181. Presión media indicada como función de la relación de compresión y el combustible	178
Figura 182. Presión media indicada como función del tiempo de encendido y la relación de compresión	
Figura 183. Presión media indicada como función del combustible y de la relación combustible-aire equivalente.	179
Figura 184. Presión media indicada como función del tiempo de encendido y la relación combustible-aire equivalente.	
Figura 185. Presión media indicada como función de la relación de compresión y de la relación combustible-aire equivalente	
Figura 186. Influencia del combustible en la presion media indicada.	
Figura 18/. Influencia del tiempo de encendido en la presión media indicada.	
Figura 188. Influencia de la relación de compresión en la presión media indicada.	
Figura 189. Inituencia de la relación comousione-aire equivalente en la presión media indicada	
Figura 190. Presión máxima como función del tiempo de encendado y el combustible.	
Figura 191. Presión máxima como función de la relación de compusión y le comoustrole.	
Figura 192. Presión máxima como función del uempo de encendado y la felación de compresión	104
Figura 195. Presión máxima como función del combustible y de la relación combustible aire equivalente.	104
Figura 194. Presión máxima como función del uempo de encendado y la relación combustible-ane equivalente.	
Figura 195. Eleston maxima como funcion de la felación de complesion y de la felación comoditione-ane equivalence.	103
Figura 190. Influencia del combustore en la presión máxima.	100
Figura 197. Influencia de la calación de compresión an la presión máxima.	
Figura 150. Influencia de la relación de compresion en la presión maxima.	
Figura 1/2. Influencia de la relación combustión como de lorgo de encendido y el combustible	
Figura 200. Duración combustión como función de la relación de compreción y el combustible	
Figura 202. Duración combustión como función del tiempo de encendido y la relación de compresión	180
Figura 203. Duración combustión como función del combustible y de la relación combustible aire equivalente	180
Figura 204. Duración combustión como función del tiempo de encendido y la relación combustible-aire equivalente	
Figura 205. Duración combustión como función de la relación de compresión v de la relación combustible-aire equivalente	190
Figura 206. Influencia del combustible en la duración de la combustión.	
Figura 207. Influencia del tiempo de encendido en la duración de la combustión.	191
Figura 208. Influencia de la relación de compresión en la duración de la combustión	192
Figura 209. Influencia de la relación combustible-aire equivalente en la duración de la combustión.	
Figura 210. Eficiencia térmica como función del tiempo de encendido y el combustible.	
Figura 211. Eficiencia térmica como función de la relación de compresión y el combustible.	

Figura 212.	Eficiencia térmica como función del tiempo de encendido y la relación de compresión	194
Figura 213.	Eficiencia térmica como función del combustible y de la relación combustible-aire equivalente	194
Figura 214.	Eficiencia térmica como función del tiempo de encendido y la relación combustible-aire equivalente	195
Figura 215.	Eficiencia térmica como función de la relación de compresión y de la relación combustible-aire equivalente	195
Figura 216.	Influencia del combustible en la eficiencia térmica.	196
Figura 217.	Influencia del tiempo de encendido en la eficiencia térmica	196
Figura 218.	Influencia de la relación de compresión en la eficiencia térmica.	197
Figura 219.	Influencia de la relación combustible-aire equivalente en la eficiencia térmica.	197
Figura 220.	Curva de volumen de la câmara de combustión contra presión. $Rc=7$, E0, phi=1, ST=10. Se muestran los puntos donde ocurren los eventos c	le
apertura y c	terre de valvulas.	198
Figura 221.	i temperatura dei climoro para el caso la.	201
Figura 222.	Curva de invertación para al caso fa	201
Figura 223	Centra de presión para el caso tas el caso 1b	202
Figura 225	Curva de liberación de calor nara el caso 1h	203
Figura 226.	Presión en el cilindro para el caso 1b.	204
Figura 227.	Temperatura en el cilindro para el caso 1c	205
Figura 228.	Curva de liberación de calor para el caso 1c	205
Figura 229.	Presión en el cilindro para el caso 1c	206
Figura 230.	. Temperatura en el cilindro para el caso 1d	207
Figura 231.	Curva de liberación de calor para el caso 1d.	207
Figura 232.	Presión en el cilindro para el caso Id	208
Figura 233.	I emperatura en el clinidro para el caso le.	209
Figura 234.	Curva de interación de calor para el caso i e.	209
Figura 235.	Temperatura en el cilindro para el caso 16	211
Figura 237	Curva de liberación de calor nara el caso 1f	211
Figura 238.	Presión en el cilindro para el caso 1 f.	212
Figura 239.	Temperatura en el cilindro para el caso 2a	213
Figura 240.	Curva de liberación de calor para el caso 2a	213
Figura 241.	Presión en el cilindro para el caso 2a	214
Figura 242.	Temperatura en el cilindro para el caso 2b	215
Figura 243.	Curva de liberación de calor para el caso 2b	215
Figura 244.	Presión en el cilindro para el caso 2b.	216
Figura 245.	Temperatura en el clindro para el caso 3a.	217
Figura 240.	Urva de interación de calor para el caso 3a.	217
Figura 247.	Temperatura en el cilindro para el caso 3h	210
Figura 249	Curva de liberación de calor para el caso 3h	219
Figura 250.	Presión en el cilindro para el caso 3b.	220
Figura 251.	Temperatura en el cilindro para el caso 3c	221
Figura 252.	Curva de liberación de calor para el caso 3c	221
Figura 253.	Presión en el cilindro para el caso 3c.	222
Figura 254.	Temperatura en el clindro para el caso 3d	223
Figura 255.	Curva de liberación de calor para el caso 3d.	223
Figura 250.	Presion en el cumoro para el caso 3d.	224
Figura 257.	I emperatura en el cimino para el caso se	223
Figura 250	Presión en el cilindro para el caso 3e	225
Figura 260.	Temperatura en el cilindro para el caso 3f.	227
Figura 261.	Curva de liberación de calor para el caso 3f	227
Figura 262.	Presión en el cilindro para el caso 3f	228
Figura 263.	Temperatura en el cilindro para el caso 4a	229
Figura 264.	Curva de liberación de calor para el caso 4a.	229
Figura 265.	Presión en el cilindro para el caso 4a.	230
Figura 266.	Temperatura en el cilindro para el caso 4b	231
Figura 267.	Curva de liberación de calor para el caso 4b.	231
Figure 268.	Temperatura en el cilindro para el caso 40.	232 733
Figura 209.	Curva de liberación de calor para el caso 4c	233
Figura 271.	Curva de liberación de calor para el caso 4c.	234
Figura 272.	Temperatura en el cilindro para el caso 4d.	235
Figura 273.	. Curva de liberación de calor para el caso 4d	235
Figura 274.	Presión en el cilindro para el caso 4d.	236
Figura 275.	. Temperatura en el cilindro para el caso 4e	237
Figura 276.	Curva de liberación de calor para el caso 4e.	237
Figura 277.	Presión en el cilindro para el caso 4e.	238
Figura 278.	. remperatura en el cilindro para el caso 4f.	239
Figure 200	Dración en el cilindre para el caso 4f	239 240
Figure 280.	resion en el cilindro para el caso 5a	24U 2/11
Figura 287	Curva de liberación de calor para el caso 5a.	241
Figura 283.	Presión en el cilindro para el caso 5a.	242
Figura 284.	. Temperatura en el cilindro para el caso 5b	243

Figura 285. Curva de liberación de calor para el caso 5b.	
Figura 286. Presión en el cilindro para el caso 5b	
Figura 287. Temperatura en el cilindro para el caso 5c	245
Figura 288. Curva de liberación de calor para el caso 5c.	245
Figura 289. Presión en el cilindro para el caso 5c.	
Figura 290. Temperatura en el cilindro para el caso 5d	247
Figura 291. Curva de liberación de calor para el caso 5d.	247
Figura 292. Presión en el cilindro para el caso 5d	
Figura 293. Temperatura en el cilindro para el caso 5e	249
Figura 294. Curva de liberación de calor para el caso 5e.	249
Figura 295. Presión en el cilindro para el caso 5e.	250
Figura 296. Temperatura en el cilindro para el caso 5f.	251
Figura 297. Curva de liberación de calor para el caso 5f	251
Figura 298. Presión en el cilindro para el caso 5f	252
Figura 299. Temperatura en el cilindro para el caso 6a	253
Figura 300. Curva de liberación de calor para el caso 6a.	253
Figura 301. Presión en el cilindro para el caso 6a.	254
Figura 302. Temperatura en el cilindro para el caso 6b	255
Figura 303. Curva de liberación de calor para el caso 6b.	255
Figura 304. Presión en el cilindro para el caso 6b	256
Figura 305. Temperatura en el cilindro para el caso 6c	257
Figura 306. Curva de liberación de calor para el caso 6c.	257
Figura 307. Presión en el cilindro para el caso 6c	258
Figura 308. Temperatura en el cilindro para el caso 6d	259
Figura 309. Curva de liberación de calor para el caso 6d.	259
Figura 310. Presión en el cilindro para el caso 6d	
Figura 311. Temperatura en el cilindro para el caso 6e	
Figura 312. Curva de liberación de calor para el caso 6e.	
Figura 313. Presión en el cilindro para el caso 6e	
Figura 314. Temperatura en el cilindro para el caso 6f.	
Figura 315. Curva de liberación de calor para el caso 6f	
Figura 316. Presión en el cilindro para el caso 6f	

LISTA DE APÉNDICES

Apéndice 1. TABLAS DE COMPARACIÓN DE PROPIEDADES ENTRE GASOLINA, ETANOL Y SUS MEZCLAS	136
Apéndice 2. CONDICIONES DURANTE LAS PRUEBAS	150
Apéndice 3. RESULTADOS: TORQUE INDICADO.	
Apéndice 4. RESULTADOS: PRESIÓN EN CÁMARA DE COMBUSTIÓN	
Apéndice 5. RESULTADOS: TORQUE MÁXIMO	
Apéndice 6. RESULTADOS: PRESIÓN MEDIA INDICADA.	
Apéndice 7. RESULTADOS: PRESIÓN MÁXIMA	
Apéndice 8. RESULTADOS: DURACIÓN DE LA COMBUSTIÓN	
Apéndice 9. RESULTADOS: EFICIENCIA TÉRMICA.	
Apéndice 10. CÁLCULO DE LA FRACCIÓN DE MASA RESIDUAL.	
Apéndice 11. OBTENCIÓN DE LA VELOCIDAD COMO FUNCIÓN DEL AVANCE AL ENCENDIDO Y DE LAS DIFERI	ENTES
MEZCLAS DE COMBUSTIBLES.	
Apéndice 12. RESULTADOS DETALLADOS PARA LOS DIFERENTES CASOS SIMULADOS	

1. INTRODUCCIÓN

Los combustibles oxigenados, biocombustibles o combustibles reformulados, como son llamados con frecuencia [1], son mezclas de combustibles que poseen átomos de oxígeno dentro de su estructura química, con algún combustible fósil como base. El etanol es uno de los combustibles oxígenados más utilizados [1]. Se obtiene por medio de la destilación de la caña de azúcar, maíz y remolacha, entre otros [2, 3]. Este hidrocarburo en particular, el etanol, posee un hidrófilo o grupo OH, reemplazando un hidrógeno, y debe ser anhidro al 99,95 % para que pueda ser utilizado como combustible dentro de una mezcla con un combustible fósil [4, 5]. Sin embargo, en Brasil se ha utilizado el alcohol hidratado como combustible puro desde hace varios años con buenos resultados [6].

En Colombia el proceso de cambio hacia mezclas de gasolina y etanol inició con base en el modelo Brasilero, sin tener en cuenta las diferencias fundamentales entre el parque automotor de este país con respecto al de Brasil. Es así cómo se emite la ley 693, aprobada en Colombia en el año 2001, sobre el uso de combustibles oxigenados, la cual obliga a todos los usuarios a utilizar, a partir del mes de septiembre de 2005, una mezcla de gasolina con alcohol etílico anhidro (etanol) en proporción en volumen de este último de $10 \pm 0.5 \%$. El nombre dado a las mezclas de gasolina y etanol se designa con la letra "E" seguida de un número correspondiente al contenido de etanol en la mezcla. De esta manera la gasolina pura se conoce como E0 y la mezcla de gasolina con 10 % de etanol en volumen, se denomina E10.

Las mezclas de combustibles derivados del petróleo con aquellos derivados de fuentes alternativas de energía, como el etanol, han sido un problema de interés desde los años 70, cuando se presentó la gran crisis en el suministro de petróleo debido al embargo instaurado por la Organización de Países Exportadores de Petróleo (OPEP) [2]. En países como Brasil, las mezclas de gasolina con etanol producido a partir de caña de azúcar se implementaron desde mediados de los años 70 [7], principalmente como un medio para reforzar la agroindustria y disminuir las emisiones contaminantes urbanas. En Estados Unidos y Canadá el uso de mezclas de combustibles o combustibles puros (sin mezclar) ha tenido una implementación mucho más lenta, principalmente porque la producción de los mismos, sumado a toda la infraestructura de distribución y comercialización necesaria, requiere proyectos donde las inversiones son muy altas y en los cuales el cierre financiero del negocio no es favorable en la mayoría de los casos [1, 3]. Normalmente es necesario que el estado, a través de subsidios, como por ejemplo la reducción o exención de impuestos, ayude al propósito de implantar el uso de biocombustibles y que éste sea definido como una política de estado a largo plazo [1, 5].

Si bien el etanol como combustible tiene un desarrollo de casi 30 años en el mundo [1], existen aún puntos sin aclarar sobre las propiedades físico-químicas de las mezclas gasolina-etanol y su comportamiento cuando se utilizan en motores de combustión interna. No es clara la relación entre las propiedades, el desempeño y las emisiones finales del motor. Esto en gran parte puede deberse a la existencia de calidades variables de gasolina y a los diferentes tipos de motores empleados en el mundo. Sumado a los pocos estudios que se concentran en la combustión de mezclas gasolina-etanol, debido a que los cambios realizados en los motores en países como Brasil y Estados Unidos corresponden a un largo proceso de prueba y error [1]. A continuación se hace una breve reseña explicando diferentes resultados, a veces contradictorios, obtenidos cuando se operan motores con mezclas gasolina-etanol como combustible.

El proceso de combustión de los biocombustibles trae consigo relaciones de aire-combustible menores que aquellas presentes en los procesos de combustión con combustibles derivados del petróleo [4, 8, 9]. Esto se verifica cuando se hace un análisis de combustión completa, debido a que el oxígeno presente

en el combustible proporciona comburente adicional y la relación aire-combustible debe disminuir. Cuando se utilizan biocombustibles en motores de combustión interna, el consumo de combustible aumenta [1, 10]. Esto se debe a que para la misma velocidad de operación del motor, y el mismo nivel de carga y por tanto la misma masa de aire, para los dos casos (combustibles tradicionales y biocombustibles), si disminuye la relación de aire-combustible estequiométrica, la masa de combustible que se necesita debe ser mayor.

Las pruebas documentadas en [1, 4], muestran que la potencia (*P*) y el torque (*T*) no disminuyen a pesar de que el LHV del etanol es menor que el de los combustibles fósiles ($LHV_{E0} < LHV_{E\#}$). En algunos casos *P* y *T* aumentan junto con la eficiencia térmica para las mismas condiciones de operación como se reporta en [10, 11]. Una explicación para este fenómeno puede ser que la temperatura para el autoencendido del etanol es mayor que la de la gasolina y el diesel, así como su calor de vaporización [1, 4, 5, 9] y el número de octano. Esto revela entonces la posibilidad de tener una temperatura más alta de combustión, dependiendo de varios factores de operación del motor, a medida que el contenido de combustible oxigenado aumenta. Lo anterior es un indicio claro de una fuente para el aumento proporcional en las emisiones de óxidos de nitrógeno (NO_x) [1, 3, 5, 12], y en el posible deterioro prematuro de los motores al tener condiciones de funcionamiento diferentes para las que fue diseñado, p.e. daños principalmente en las partes lubricadas [13].

Respecto a las emisiones producidas por la combustión de biocombustibles en motores de combustión interna, se puede decir que gracias al combustible oxigenado, es evidente la reducción en la emisión de monóxido de carbono (CO) [8, 10, 11], por lo tanto ocasiona el aumento del dióxido de carbono (CO₂) emitido al ambiente, el cual es proporcional a la disminución en CO. Este CO₂ adicional que se produce no tendrá un efecto directo como gas invernadero, ya que proviene del proceso de combustión de un combustible cuya materia prima es una fuente renovable de energía a partir de biomasa [14].

En relación a emisiones tal como el NO_x, se reportan resultados contradictorios en la literatura. Mientras algunos indican su disminución [8, 11, 15, 16, 17, 18], otros [4, 5], mencionan la dificultad de predecir una tendencia para esta emisión debido principalmente a que no se ha encontrado una relación entre el combustible utilizado y los parámetros principales de operación del motor. Esto complica el proceso de comparación entre dos tecnologías de sistema de alimentación distintas. Dichos autores también sugieren que la comparación es difícil porque la producción de NO_x puede estar ligada directamente a la condición de operación del motor. El mismo comportamiento variable se presenta para las emisiones de hidrocarburos sin quemar (HC) [5, 9, 10, 16, 19], ya que estas últimas dependen en gran medida del hidrocarburo ó grupo de hidrocarburos específicos que se están midiendo. En algunos casos se registra únicamente la aparición de hidrocarburos pesados, procedentes de aceites lubricantes y combustibles derivados del petróleo [8], y en otros casos se incluyen además, las emisiones de hidrocarburos livianos como gases [20]. En las referencias [19, 20] se muestran cifras de emisión de etanol sin quemar, el cual aumenta a medida que la proporción del mismo en la mezcla se incrementa. Esto refleja un problema intrínseco en el proceso de combustión de biocombustibles que puede estar generándose en la forma misma en la cual el proceso es llevado a cabo., p.e. tiempos de combustión, tiempos de distribución y proceso de admisión en motores de combustión interna.

Otro resultado interesante tiene que ver con la emisión de material particulado. En motores con ciclo de presión constante y ciclo de volumen constante, se ha observado que disminuye a medida que aumenta la proporción de etanol en la mezcla [4, 5, 15, 16, 19, 21].

Por otro lado se encuentran las emisiones no reguladas, como los aldehídos, que pueden aumentar en relación a la combustión del combustible fósil [4, 19, 20]. Es importante anotar que por lo menos dos

de estás emisiones tienen asociados estudios que confirman la alta probabilidad de desarrollar cáncer y enfermedades relacionadas en seres humanos [1, 12].

Como puede observarse, la falta de investigación sobre las condiciones bajo las cuales se lleva a cabo el proceso de combustión con estos nuevos combustibles, tiene como resultado el desconocimiento de las consecuencias a corto y largo plazo sobre los motores que funcionan en un país, que como Colombia, posee ciudades capitales en los más variados pisos térmicos. Como un ejemplo, la ciudad de Bogotá, ubicada a 2.600 msnm., cuenta con más de un millón de vehículos, de los cuales el 91 % corresponden a transporte particular y el restante a transporte público [22]. El promedio de edad de los vehículos particulares es de 15 años y de los vehículos públicos de 25 años [22]. Estas cifras son muy similares para el resto del país, donde la mezcla E10 se ha venido implementando desde el año 2007 [22]. Lo anterior significa que los automotores que circulan por las carreteras colombianas no cuentan con un sistema de control de emisiones apto, por lo que las condiciones de operación no son las adecuadas en la mayor parte de los casos, debido a que utilizan tecnologías de dosificación de combustible y control de emisiones obsoletas o carecen de ellas. Lo anterior, si bien es una situación que se viene presentando con el uso de combustibles fósiles, existe evidencia de que el proceso de combustión cambia con la introducción de los biocombustibles [13, 23]. Uno de los cambios fundamentales está relacionado con el aumento en el consumo de combustible y el incremento asociado de la temperatura promedio dentro de la cámara de combustión [4, 8, 10, 13, 21, 23]. Como ya se mencionó esto puede causar problemas de mantenimiento a largo plazo en motores sin modificar, es decir motores que utilizan mezclas E10.

El objetivo de este trabajo es llevar a cabo una formulación teórica que permita explicar el fenómeno de aumento de temperatura en la cámara de combustión de MCI que utilizan diferentes concentraciones de gasolina y etanol. Para llevar a cabo esta tarea, se inicia en el capítulo 2, con el planteamiento del problema y la hipótesis, que considera a la energía de activación como la principal causa para el aumento de temperatura en la combustión de mezclas gasolina-etanol. En el capítulo 3 se hace una revisión bibliográfica enfocada principalmente a las propiedades físico-químicas de las mezclas, las emisiones y parámetros de operación de los MCI, y los modelos matemáticos más utilizados para simular su funcionamiento. El capítulo 4 plantea la formulación de un modelo matemático que permita describir y explicar el proceso de combustión de mezclas gasolina-etanol para las condiciones atmosféricas presentes en el país. Este modelo incluye nuevos términos para el cálculo de la eficiencia de combustión y de la velocidad promedio a través de la válvula, como función del tipo de combustible utilizado. Se realizaron pruebas sobre un motor CFR utilizando mezclas de gasolina-etanol, cuyos resultados se exhiben en el capítulo 5, junto con un análisis de las propiedades físico químicas de las mezclas probadas. Los resultados del modelo, presentados en el capítulo 6, se comparan en un principio con las pruebas realizadas al motor CFR, y se simulan 32 casos de estudio con el fin de encontrar una explicación al problema planteado. Como parte final, en el capítulo 7, se presentan las conclusiones del trabajo, los aportes del mismo y algunos temas que permitan darle continuidad y profundidad al mismo.

2. PLANTEAMIENTO DEL PROBLEMA

Las mezclas de gasolina-etanol se empiezan a utilizar en la ciudad de Bogotá durante los primeros meses de 2006. Durante la etapa de implementación [13], y en otras investigaciones [20, 24, 25, 26, 27, 28, 29, 30, 31] en motores con diferentes sistemas de alimentación de combustible, se han detectado, entre otros, dos problemas cuando se operan motores de combustión interna con este combustible. El primero de ellos consiste en la aparición de residuos de etanol sin quemar (posible separación de componentes), en los múltiples de admisión y de escape [13, 20, 24, 25]. El segundo problema es que la temperatura promedio del motor tiende a aumentar por encima de los valores de operación con combustible sin mezclar [26, 27, 28, 29, 30], principalmente en los puntos de máximo torque y máxima potencia.

La mayor temperatura de funcionamiento del motor produce mayores emisiones de NO_x debido a la disociación del nitrógeno en la cámara de combustión por alta temperatura y su posterior combinación con átomos de oxígeno para formar NO, NO_2 y N_2O [4]. Esto sucede en rangos de trabajo del motor de alta presión media efectiva y/o alto torque o potencia [9]. Lo anterior tiene como consecuencia un menor tiempo esperado de vida de los componentes móviles principales del motor, debido a la degradación más rápida del aceite lubricante (la tasa de oxidación del lubricante aumenta el doble por cada 10 C de aumento de temperatura del motor en promedio [166]).

Este problema está relacionado directamente con la forma en que se desarrolla el proceso de combustión de mezclas gasolina-etanol en los MCI encendidos por chispa. Dicho problema práctico requiere para su solución el soporte explicativo teórico correspondiente. En particular, en este trabajo se plantea un enfoque dado por la búsqueda de una explicación física al fenómeno de **la mayor temperatura del proceso de combustión cuando se utilizan mezclas de gasolina-etanol en un MCI encendido por chispa**. Esta búsqueda, además de contribuir con la explicación teórica del fenómeno, puede ayudar a sugerir cambios o soluciones para aumentar la eficiencia de aprovechamiento del combustible y disminuir las emisiones contaminantes en un país, que como Colombia, tiene en promedio un parque automotor con 15 años de antigüedad [22].

2.1. Hipótesis.

Como parte del desarrollo del presente trabajo, a continuación se plantean las hipótesis sobre los posibles mecanismos por los cuales puede estarse presentando este fenómeno:

Alta temperatura promedio de combustión: Algunos resultados indican que un motor sin modificar que quema una mezcla de gasolina-etanol, la cual tiene un LHV y una temperatura de llama adiabática menor que las de la gasolina, puede desarrollar durante su funcionamiento una temperatura de operación mayor (Figura 1). Además de esto se puede obtener una emisión de CO y HC menor [13, 26, 27, 28]. La hipótesis aquí planteada para la explicación de este problema, se relaciona con las propiedades fisicoquímicas del etanol. La mayor temperatura de autoencendido¹ y el aporte a nivel molecular de un oxígeno adicional desde el combustible, pueden ocasionar una velocidad de llama mayor que cuando el motor funciona con gasolina [3, 32]. Como consecuencia se genera una temperatura de funcionamiento más alta, que permite a la vez mejorar parcialmente el proceso de combustión, por medio del quemado de reactantes a una velocidad mayor, disminuyendo de esta forma la producción de CO y HC.

¹ Temperatura en la cual inicia el proceso de combustión y que está directamente relacionada con la energía de activación de la reacción.

Figura 1. Temperatura de llama adiabática y temperatura final, como función de la composición de una mezcla (%v/v) de Iso-octano (C₈H₁₈) y etanol (C₂H₅OH).

2.1.1. Explicación inicial.

Para explicar esta hipótesis, supóngase que se tiene una mezcla de un combustible con aire, en estado gaseoso, a una temperatura inicial T_0 , dentro de un recipiente rígido (Figura 2). El gas se considera como ideal. El recipiente recibe energía en forma de calor desde una fuente externa, y toda la energía se transfiere a su contenido. Se desea saber entonces la temperatura en la cual el combustible dentro del recipiente inicia su proceso de oxidación. A esta temperatura se le conoce como temperatura de autoencendido (T_{ai}).

Figura 2. Esquema para la explicación inicial de la hipótesis

Considerese la ecuación de Fourier dada por 2.1 [33]:

$$\frac{\delta Q}{dt} = kA\nabla T \tag{2.1}$$

21

Q representa el calor transferido desde la fuente externa hacia la mezcla, k es la conductividad térmica de la mezcla, *A* el área transversal del recipiente y ∇T el gradiente de temperatura dentro del recipiente. Si para esta última se considera una dimensión física entonces:

$$\frac{\delta Q}{dt} = kA \frac{dT}{dx} \tag{2.2}$$

La energía que se agrega como calor se hace igual a la energía necesaria para que se pueda alcanzar el estado de complejo activado, y de esta forma iniciar una reacción [33], entonces:

$$\dot{E}_a = kA \frac{dT}{dx}$$
(2.3)

 E_a es la energía de activación para la reacción.

Como se observa en esta ecuación, a mayor temperatura de autoencendido, mayor será la energía de activación necesaria para que la reacción se lleve a cabo y mayor será el tiempo necesario para alcanzarla.

Utilizando otro enfoque, se analiza este caso utilizando primera ley de la termodinámica, entonces:

$$\frac{\delta Q}{dt} = \frac{dU_i}{dt}$$
(2.4)

 U_i es el cambio de energía interna para el sistema y Q es calor total transferido para que la temperatura del sistema cambie desde T_o a T_{ai} . Haciendo un proceso similar al anterior, se reemplaza Q por E_a :

$$E_{a} = dU_{i} = mC_{v}dT = mC_{v}(T_{ai} - T_{0})$$
(2.5)

m corresponde a la masa dentro del tanque, C_v el calor específico a volumen constante de la mezcla dentro del tanque. Cuando se alcanza la temperatura de autoencendido, la mezcla inicia la formación de especies químicas y la liberación de calor. A partir de este punto, la ecuación para la primera ley cambia debido a que la reacción inicia y se suspende el suministro de energía desde el exterior:

$$\frac{\delta Q_f}{dt} = \frac{dU_f}{dt} + \frac{\delta Q_a}{dt}$$
(2.6)

 Q_f es la energía liberada desde el combustible, Q_a la energía transferida desde el gas en el interior hacia los alrededores, y U_f la energía interna del gas dentro del recipiente. Reemplazando dU_f :

$$dU_f = mC_{v2}(T_f - T_{ai}) = \partial Q_f - \partial Q_a = dE$$
(2.7)

 T_f es la temperatura al final del proceso de liberación de energía, dE es el cambio neto de energía con los alrededores, el cual es igual al cambio de energía interna del gas dentro del contenedor, C_{v2} el calor específico a volumen constante para la mezcla de gases que se forma dentro del recipiente y *m* es la masa de gas dentro del recipiente.

Si se reemplaza T_{ai} de la ecuación 2.5 en la ecuación 2.7, entonces:

$$mC_{\nu 2} \left(T_f - \left(\frac{E_a}{mC_{\nu}} + T_0 \right) \right) = dE$$
(2.8)

Despejando T_f :

$$T_{f} = \left(\frac{dE}{mC_{v2}}\right) + \left(\frac{E_{a}}{mC_{v}} + T_{0}\right)$$
(2.9)

Como se observa en la ecuación 2.9, si es mayor la energía de activación, la temperatura al final del proceso aumenta. Lo mismo sucede si se considera la temperatura de autoencendido. Sin embargo, es importante tener en cuenta que la hipótesis planteada supone un paso de tiempo (dt) igual cuando se compara T_f para diferentes tipos de combustible. Esta es la restricción más importante de la ecuación 2.9, ya que relaciona implícitamente a la velocidad de avance de llama con la energía de activación y la temperatura final. Es decir que si se tiene un combustible con una energía de activación mayor que la de la gasolina, necesariamente este debe tener una velocidad de avance de llama mayor o igual, para que la temperatura al final del proceso sea mayor en un tiempo determinado. Si lo último no se cumple pues la temperatura al final del proceso puede ser igual o menor.

2.1.2. Prueba de hipótesis

La hipótesis planteada está relacionada con la explicación del proceso de combustión. Esta hipótesis se presenta como una guía inicial para encontrar soluciones al problema planteado. Dichas soluciones requieren un componente de explicación teórico, que se aborda a través del modelado matemático del proceso de combustión, en los capítulos 4 y 6, y un componente experimental (capítulo 5), haciendo pruebas en motores, que se enfoca en la evaluación de estas hipótesis y en la verificación del modelo propuesto.

A continuación se describen con un mayor nivel de detalle el alcance de las soluciones mencionadas.

Para la verificación teórica de la hipótesis se plantea la formulación de un modelo de combustión como herramienta principal de trabajo. En la sección 3.4 se describen con más detalle los términos utilizados enseguida, junto con las referencias correspondientes. El modelo debe considerar aspectos como fracción de masa quemada, volúmenes de mezcla quemada y no quemada, tiempo característico de quemado, formación de especies químicas (utilizando equilibrio químico), y la influencia del tiempo de salto de chispa [72]. Lo que más se ajusta a esto es el desarrollo de modelos unidimensionales extendidos, teniendo como parámetros principales de selección: el tiempo de cálculo requerido y un error no mayor al 10% para el rango de combustión, en comparación con los datos experimentales [73]. Se plantea entonces un modelo unidimensional, termodinámico en su naturaleza, que considere un modelo específico para la velocidad de masa quemada y el avance de llama, más no la forma del frente de llama de la misma, la cual se supone esférica [72]. Además el modelo debe incluir la formación de especies, utilizando equilibrio químico (reacciones en equilibrio para las condiciones de presión y temperatura de la cámara de combustión). Estos modelos a su vez se incluyen dentro de un modelo de dos zonas, el cual permite observar para cada instante de tiempo considerado, dos zonas independientes (una con productos de combustión y la otra con reactantes) y las propiedades (presión, volumen, temperatura y composición química) de cada una de ellas [73]. No es de importancia tener en cuenta el

campo de flujo (y por lo tanto la forma de la llama que depende del mismo), ni las reacciones a nivel molecular, debido a que los problemas propuestos, y las soluciones, son de carácter netamente energético [72].

Para la verificación experimental de la hipótesis y del modelo se va a utilizar un motor de combustión interna de cuatro tiempos encendido por chispa de carga homogénea. Este motor tiene un sistema de alimentación con inyección. Los motores se instrumentan siguiendo la norma NTC1930 (equivalente ISO1585), para medir principalmente parámetros de operación como: tiempo de salto de chispa (osciloscopio), presión en cámara de combustión (sensor piezoeléctrico), temperaturas de pared del cilindro y de líquido refrigerante (termocuplas tipo K y J respectivamente), velocidad de giro del motor (encoder junto con oscilocopio), temperatura y composición de gases de escape (analizador de gases para medir CO, CO₂, HC, O2, NO_x), torque (celda de carga en dinamómetro), masa de aire en admisión (orificio calibrado o anemómetro) y masa de combustible (báscula). Los motores se someten a pruebas variando la relación de aire-combustible, la relación de compresión y la presión media efectiva para cada combustible considerado (desde 0 % v/v hasta 30 % v/v de etanol en incrementos de 5 % v/v de etanol).

Con los datos recopilados se puede obtener información que interesa al estudio como: temperatura en la cámara de combustión, curva de liberación de calor, presión en la cámara de combustión, velocidad de llama, y balance de energía (teniendo en cuenta el poder calorífico inferior de combustible, transferencia de calor al ambiente y desde el motor y los gases de escape). Los anteriores parámetros ayudan a identificar un posible aumento de temperatura para el proceso de combustión y su relación con otras variables. Todas las variables mencionadas requieren que se conozcan las propiedades fisicoquímicas de los combustibles a utilizar.

2.1.3 Objetivos

a. Objetivo general

Explicar las causas del fenómeno de aumento de temperatura en la cámara de combustión en motores de combustión interna encendidos por chispa que utilizan mezclas de gasolina-etanol como combustible.

b. Objetivos específicos

Plantear un modelo de combustión unidimensional termodinámico que considere el avance de la llama teniendo en cuenta el fenómeno turbulento que domina la combustión.

Investigar los valores de las propiedades fisicoquímicas para los combustibles a utilizar.

Estudiar el aumento de temperatura en el motor, para los diferentes combustibles y las diferentes condiciones de operación del motor, utilizando un modelo computacional termodinámico que muestre el cambio de este parámetro en el tiempo.

Explicar el aumento de temperatura en el motor a partir del análisis de los resultados experimentales del proceso de combustión y del balance energético de operación del motor.

3. ESTADO DEL ARTE

El proceso de combustión en MCI involucra el conocimiento de las propiedades del combustible, las características de los flujos (combustible y aire) y de las variables termodinámicas del ambiente en donde se desarrolle [33]. Además de esto a través de parámetros de salida del MCI, como la potencia, el consumo de combustible y las emisiones gaseosas, se puede conocer la forma en que el proceso de combustión se está llevando a cabo. Por esta razón se presenta en este capítulo una revisión crítica del estado del arte, en donde se incluyen los factores que influencian el desarrollo del proceso de combustión, relacionándolos directamente con el problema de estudio y planteando a la vez nuevas inquietudes, que en algunos casos salen del alcance de este estudio. Se inicia entonces con una presentación de las propiedades físico-químicas más importantes, para continuar con los parámetros de operación divididos en: emisiones gaseosas, consumo de combustible y potencia al freno. En el Apéndice 1 se encuentran algunas de las propiedades más importantes tomadas de diferentes referencias. Finaliza el capítulo con una revisión de los modelos matemáticos de combustión de MCI más utilizados

3.1. Propiedades físico-químicas de mezclas gasolina-etanol

3.1.1 Número de octano:

Es la medida de la resistencia de un combustible a autoencenderse. Para esta propiedad existe acuerdo total en que aumenta, entre 1 % y 1,5 % por cada 10 % v/v de aumento en el contenido de etanol en la mezcla, tanto el número de octano de investigación (RON) como el número de octano de motor (MON), con respecto a la gasolina. Esto ocurre debido a que el etanol tiene mayores valores que la gasolina para estos dos indicadores, luego al realizar la mezcla el nuevo combustible incrementa un poco el valor en el número de octano, el cual se calcula como el promedio aritmético de RON y MON. Referencias consultadas: [21, 24, 25, 26, 27, 28, 34, 35, 36, 37, 38].

3.1.2 Calor de vaporización:

Es la energía necesaria para cambiar a estado gaseoso una cierta cantidad de combustible. Al igual que con el número de octano, todos los trabajos consultados coinciden en que el calor de vaporización de la mezcla es mayor entre 15 % y 18 %. Esto quiere decir que se necesita más energía para pasar a fase de vapor un kilogramo de mezcla que la misma cantidad de gasolina pura. Referencias consultadas: [1, 4, 5, 9, 24, 27, 28, 35, 36].

3.1.3 Presión de vapor Reid (RVP):

Es una medida de la volatilidad que tiene un combustible. Esto quiere decir que a mayor RVP mayor es la capacidad del combustible para evaporarse dentro de una cantidad de aire determinada. Los datos consultados en las referencias coinciden en que para E10 la RVP es mayor en 14 % que para gasolina. El valor de la diferencia depende en gran medida de la calidad de la gasolina base para la mezcla. A medida que se ajustan las curvas de destilación y se disminuye el butano en la gasolina se pueden obtener valores similares de RVP para la mezcla [26, 27, 28, 34, 35, 36, 39,40, 41, 42]. Varios autores reportan que aún sin hacerse el "ajuste" en la calidad de la gasolina y a medida que aumenta el etanol en la mezcla, el valor de RVP se hace similar al de la gasolina pura. Se puede hacer igual para composiciones entre 17 % v/v y 30 % v/v. A partir de estos puntos y al aumentar la cantidad de etanol el valor de RVP disminuye con respecto a la gasolina [27, 28, 36, 39, 43].

3.1.4 Temperatura de autoencendido:

Es la temperatura más baja en la cual el combustible se enciende espontáneamente sin la influencia de una llama o una chispa. Esta temperatura es mayor en 60 % para el etanol puro con respecto a la gasolina. Es bastante difícil encontrar este dato para mezclas gasolina-etanol. Lo anterior simplemente hace suponer que como la temperatura de autoencendido de uno de los componentes de la mezcla es mayor, entonces la temperatura de autoencendido de la mezcla va a ser ligeramente más alta. Referencias consultadas: [24, 25, 26, 27, 28, 29, 30, 36, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52].

3.1.5 Densidad:

La densidad de las mezclas gasolina-etanol aumenta con respecto a gasolina pura. En esto coinciden todos los autores consultados [24, 25, 26, 27, 28, 29, 30, 36, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. El efecto principal que tiene el aumento de la densidad es que la corriente de aire "arrastra" una mayor cantidad de combustible cuando pasa por el carburador debido a que en este la cabeza de presión estática es mayor. El mismo efecto ocurre en los sistemas de inyección donde para una misma diferencia de presión entre el inyector y la cámara de combustión, se va a introducir más combustible a esta última. Es importante señalar acá que esta es una de las razones, pero no la única, por la cual el consumo de combustible aumenta cuando se utilizan mezclas en motores no modificados. Una pregunta para contestar con respecto a esta propiedad es: ¿como se puede compensar el efecto de la mayor densidad?. La respuesta puede ser simplemente empobreciendo la mezcla, esto es disminuyendo la cantidad de combustible que entra al motor con la corriente de aire. Lo anterior es fácilmente realizable en un motor con sistema de alimentación con carburador, pero casi imposible en un motor con control electrónico. Ahora bien, si esto se realiza se debe tener en cuenta que la potencia de salida puede disminuir.

3.1.7 Poder Calorífico Inferior (LHV):

Es la magnitud del calor de reacción a presión o volumen constante, para la combustión completa de una unidad de masa del combustible, cuando el H₂O como producto se encuentra en estado gaseoso. Esta propiedad disminuye para las mezclas gasolina-etanol entre 2 y 4 %, con mayor tendencia en el intervalo de 3 a 3,4 %. Referencias consultadas: [24, 25, 26, 27, 28, 29, 30, 36, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. La propiedad LHV es importante porque presenta una medida indirecta del potencial máximo que tiene el combustible de entregar energía cuando los productos de la reacción son los estequiométricos y el agua se encuentra en estado de vapor. Sin embargo lo que se reporta en la bibliografía consultada es que no debe ser visto como la única propiedad que puede reflejar la potencia de salida. Lo anterior se explica con la siguiente situación: si el LHV disminuye en 3 %, el consumo de combustible aumenta en 1,5 % y la potencia se mantiene constante [13], debe existir alguna mejora adicional en el proceso de admisión y combustión que se esté compensando por ese LHV perdido. La primera tiene que ver con el aumento en la densidad del aire gracias a la mayor volatilidad de la mezcla (mayor RVP). La segunda tiene que ver con la mayor temperatura de autoencendido (mayor calor de vaporización) que causa que la velocidad de llama sea mayor quemando de mejor forma los reactantes.

3.1.8 Temperaturas de destilación T50 y T90:

Estas propiedades se refieren respectivamente a las temperaturas de destilación cuando se ha evaporado el 50 % y el 90 % del combustible líquido. En general se encuentra que estas temperaturas disminuyen cuando se utilizan mezclas de gasolina-etanol. Otro efecto asociado a la mayor volatilidad del combustible. Referencias consultadas: [25, 26, 28, 35, 36,]. Como se muestra más adelante, estas temperaturas están relacionadas también con la producción de emisiones. Un punto de discusión siempre ha sido hacía donde se deben llevar las temperaturas T50 y T90 de las mezclas. La experiencia de Brasil muestra que al ubicar estos puntos en valores muy cercanos a los de la gasolina pura se puede bajar la volatilidad del combustible afectando sin embargo otras emisiones reguladas.

3.1.9 Solubilidad en agua:

El etanol es polar por naturaleza, por lo que tiene alta tendencia a ser higroscópico. Las referencias consultadas reportan solubilidad de etanol en agua y viceversa de 100 %. Referencias consultadas: [24, 25, 26, 27, 28, 29, 30, 36, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. Debido a la alta solubilidad del etanol en agua, se puede presentar algo que se conoce como separación de fase de combustible líquido. La separación de fase puede ocurrir para las mezclas cuando reciben una cantidad de agua suficiente que causa que el agua, el etanol y la gasolina formen dos fases diferentes perfectamente identificables. Posterior a esta separación es imposible remezclar la gasolina con el etanol. Los autores consultados difieren en la forma en que ven la separación de fases, es así como varios autores coinciden en que la separación de fases puede ocurrir en el tanque de almacenamiento de combustible, o en cualquier otra parte del sistema de alimentación o distribución, si se logra un efecto combinado entre la cantidad de agua absorbida y la temperatura de la mezcla [3, 4, 5, 9, 34, 26, 27, 28, 37, 38, 43, 53, 54, 55]. Los valores reportados se encuentran entre 0,15 y 0,5 % v/v para la cantidad máxima de agua permitida y entre -1,11 C y 15,55 C para la temperatura de la mezcla. Por otro lado las referencias [36, 39] mencionan que es imposible que la mezcla se separe dentro del sistema de alimentación debido a que los mismos poseen dispositivos especiales de recirculación de combustible y a que la cantidad de agua señalada nunca puede alcanzarse en el tanque.

3.2 Emisiones

3.2.1 Monóxido de carbono (CO):

La mayoría de autores consultados coinciden en que la emisión de CO disminuye en un porcentaje variable, dependiendo del combustible y del tipo de motor. Es así como, en general para motores con sistema de control de flujo de combustible en lazo abierto es menor la emisión de CO que para motores modernos con control en lazo cerrado [8, 9, 10, 11, 12, 13, 16, 18, 21, 24, 25, 26, 27, 29, 30, 36, 37, 38, 39, 40, 41, 47, 48, 55, 56, 57, 58, 59, 60, 61, 62, 63]. La formación de CO está directamente ligada a la eficiencia de la combustión, es decir, a que la mayor o menor cantidad de carbono procedente del combustible se queme completamente o no. Esta reducción se encuentra entre el 10 y el 40 %. Dentro de los puntos más importantes que se esbozan se encuentra el hecho de que se produce esta disminución por efectos de dilución y presencia de oxígeno que aumenta la velocidad de la llama. También muestran algunos autores que a medida que la T90 de las mezclas aumenta disminuyen las emisión para vehículos que poseen motores con control de lazo abierto, porque el control en lazo cerrado aumenta mucho más el consumo de combustible enriqueciendo demasiado la mezcla y afectando directamente el proceso de combustión.

Durbin y otros [47] menciona que la emisión de CO permanece igual cuando los niveles de etanol se encuentran entre 5,7 y 10 % v/v y la T50 entre 90,55 C y 101,67 C. También recalca en que la emisión puede aumentar si la concentración de etanol es la mencionada pero la T50 está por encima de 112,78 C.

Lo que se observa en este punto es que la emisión de CO depende de la calidad del combustible, de la relación aire-combustible real (más o menos átomos de oxígeno) y del tipo de control de sistema de alimentación que posea el vehículo. Esto hace particularmente complicada la comparación de resultados obtenidos en diferentes países, donde las tecnologías de producción de combustibles y los motores son diferentes.

3.2.2 Hidrocarburos totales sin quemar (HC):

Al igual que la emisión de CO, todos los autores coinciden en que los HC disminuyen cuando se utilizan mezclas de gasolina-etanol [24, 25, 26, 27, 29, 30, 37, 39, 40, 41, 47, 55, 56, 57, 58, 59, 61, 63, 64, 65]. La disminución está entre el 5 y el 20 %. Se debe hacer una anotación en esta parte para mencionar que normalmente la disminución depende mucho del grupo de hidrocarburos que se están midiendo. Es así como la gran parte de los autores mencionados miden hidrocarburos pesados, normalmente compuestos orgánicos con más de 3 o 4 carbonos en fase gaseosa. Esto es algo para analizar ya que como se muestra más adelante, la emisión de otros hidrocarburos más livianos, y en algunos casos igual de peligrosos para el medio ambiente y la salud humana, se están produciendo, pero no se miden porque no son regulados.

Nuevamente Durbin y otros [47] mencionan que la emisión de HC puede aumentar para niveles medios y altos de T90 entre 165,55 C y 179,44 C. Además aumenta si la T50 aumenta.

De la misma forma que para la emisión de CO, la emisión de HC parece depender de los mismos parámetros, teniendo siempre en cuenta que la disminución es relativa ya que se generan otros hidrocarburos más livianos que no se miden generalmente.

3.2.3 Óxidos de Nitrógeno (NO_x):

Los óxidos de nitrógeno que se miden comprenden principalmente las especies NO, NO₂ y N₂O. Como se menciona en la introducción los efectos son variados, con tendencia a aumentar entre 1% y 18% [26, 27, 29, 30, 36, 37, 41, 42, 47, 48, 55, 56, 57, 58, 61, 65]. Los NO_x se forman como consecuencia de una disociación directa del nitrógeno atmosférico por la alta temperatura en la cámara de combustión, lo cual es predecible por el mayor calor de vaporización y temperatura de autoencendido de las mezclas gasolina-etanol.

Otra situación que describe [26] es que para valores de T50 iguales a los de la gasolina pura la emisión de NO_x permanece invariable hasta un contenido de etanol de 5,7 % v/v. Si el contenido de etanol aumenta a partir de este punto la emisión crece considerablemente. Por su parte se menciona que para niveles bajos de T50 (90,55 C) a medida que aumenta el contenido de etanol en la mezcla aumentan los NO_x [47]. Nuevamente se observa una influencia directa de la calidad del combustible sobre las emisiones.

De la misma forma se menciona que las emisiones de NO_x para los diferentes estudios analizados presentan incrementos y decrementos marginales que no tienen relevancia [63]. Mientras que otros estudios reportan disminuciones entre 1 y 13% en la emisión de NO_x [8, 11, 15, 16, 17, 18, 25, 38, 39, 57, 58, 59]. Algunos de estos autores indican que la disminución se puede presentar cuando se utilizan mezclas con etanol entre el 15 y 24 % v/v en motores sin modificar.

La discusión para esta emisión se torna difícil. Sin embargo en lo que coinciden muchos de estos autores con los estudios de Hsieh y otros, y Poulopoulos y otros [4, 5], es que para varios tipos de motores, si bien se observa una tendencia de los NO_x a aumentar esto no es estadísticamente significativo. Esto quiere decir que la producción de NO_x está ligada a las condiciones propias de operación del motor (carga y velocidad), el tipo de control del motor (lazo cerrado o abierto), la calidad del combustible y sobretodo a la concentración de etanol en la mezcla. Nuevamente la comparación de resultados con tecnologías de refinación y de motores de otros países resulta en un proceso casi imposible.

3.2.4 Aldehídos (formaldehído y acetaldehído):

Siempre que se utilizan mezclas de gasolina-etanol la formación de aldehídos puede aumentar entre 5 % y 200 % según varios autores [4, 9, 12, 19, 20, 21, 25, 26, 27, 36, 37, 38, 41, 47, 48, 55, 63, 64, 66]. La formación de una mayor concentración de aldehídos está ligada a la combustión incompleta de alcoholes y depende directamente de la concentración de etanol en la mezcla. Los aldehídos son una emisión no regulada que tiene efectos graves sobre la salud humana.

3.2.5 Benceno:

La emisión de este hidrocarburo aromático bastante peligroso para los seres humanos y el medio ambiente disminuye entre 11 % y 30 % cuando se utilizan mezclas de gasolina-etanol de acuerdo con los autores [26, 27, 37, 41, 55, 60, 63, 66].

3.2.6 Compuestos Orgánicos Volátiles (VOC) y Gases Orgánicos Diferentes a Metano (NMOG): Estas emisiones son evaporativas y se miden tanto para los gases de escape como para el sistema de alimentación o la permeabilidad del mismo a estos compuestos. En general se encuentran que pueden aumentar hasta en 40 % de acuerdo con los autores [26, 37, 30, 40, 42, 46, 47, 55]. Esta emisión es una consecuencia directa de la mayor volatilidad de la mezcla. Si bien estas emisiones aumentan, las emisiones de hidrocarburos aromáticos disminuyen con respecto a la gasolina pura, lo cual es bueno para el medio ambiente. Según los autores consultados el aumento en estas emisiones da un potencial de formación de ozono en la atmósfera que varía entre 16 % y 19 %.

3.2.7 Etanol sin quemar:

En las referencias [19, 20, 24, 25, 31, 37, 38, 41] se muestra que a medida que aumenta el contenido de etanol en la mezcla aumenta la emisión de etanol sin quemar. Esto no sólo es un indicio claro de que hay un problema durante el proceso de combustión, también crea un problema ambiental de grandes proporciones debido a que se libera al ambiente el hidrocarburo puro. Para explicar la aparición del etanol sin quemar en el escape, la mejor definición de lo que sucede la da Zervas y otros [31]: "El etanol sin quemar en el escape es precisamente eso, etanol sin quemar. No se puede formar a partir de los radicales libres que se crean durante el proceso de combustión. Sólo se presenta cuando hay mezclas con alcoholes. La concentración en el escape depende de la relación aire-combustible actual, para mezclas ricas aumenta el etanol en el escape mientras que para mezclas pobres disminuye pero siempre es mayor que con gasolina pura". El etanol sin quemar no es un subproducto de la combustión, es el resultado de un combustible que entra a la cámara de combustión como una mezcla y sale sin quemar de ella. Este punto es el mayor indicio de que puede existir separación de mezcla en la cámara de combustión, porque como lo revelan las referencias consultadas, no importa el tipo de sistema de alimentación que posea el motor, ni la carga, únicamente que se estén quemando mezclas de combustibles que contienen alcohol. A esta discusión se suma el hecho de que nunca se queman completamente los combustibles que entran a un motor.

3.3 Parámetros de operación.

3.3.1 Consumo de combustible:

El consumo de combustible aumenta según los autores [1, 5, 8, 10, 13, 16, 21, 24, 25, 26, 27, 28, 29, 35, 37, 43, 47, 48, 53, 55, 67, 68] en motores sin modificar que utilizan mezclas de gasolina y etanol. El porcentaje de aumento varía entre 1 % y 6 % dependiendo principalmente del tipo de control que posea el motor (lazo cerrado o lazo abierto). El mayor consumo se registra en motores con control en lazo cerrado debido a que el sensor de oxígeno en el escape detecta una mezcla pobre (mucho oxígeno en el escape) y ordena inyectar más combustible [25].

El consumo de combustible aumenta proporcionalmente al incremento en la concentración de etanol en la mezcla. El aumento se produce por un efecto combinado provocado por la mayor densidad de la mezcla y por el aumento en la relación aire-combustible real por la más alta volatilidad del combustible (sólo en motores con carburador) [53].

En la referencia [47] se asegura que el consumo de combustible puede disminuir entre 0,6 y 1,2 % si se aumentan T50 y T90 respectivamente. Además Horta [36] menciona que el aumento en el consumo de combustible es irrelevante si se tienen en cuenta los beneficios asociados con el uso de mezclas gasolina-etanol.

3.3.2 Potencia:

De acuerdo con las referencias [4, 5, 8, 9, 10, 11, 13, 15, 16, 27] la potencia permanece constante cuando se utilizan mezclas de gasolina etanol. Teniendo presente que la mezcla tiene un LHV menor que el de la gasolina pura, se compensan las pérdidas de potencia con el mayor consumo de combustible sumado a la mayor temperatura del proceso de combustión que puede producir una presión más alta sobre el pistón [3, 5, 13, 24, 25, 28, 35, 53, 69, 70, 71].

La eficiencia térmica que relaciona la potencia de salida con el producto de la masa de combustible por el LHV, se mantiene constante al igual que la potencia. El numerador permanece constante como se ha explicado en este punto. El denominador que es el producto del consumo de combustible (el cual aumenta) con el LHV (el cual disminuye) crea un efecto de compensación, ya que la proporción en que aumenta uno disminuye el otro.

Algunos autores reportan aumento en la potencia de salida [24, 43], sin embargo el consumo de combustible sobrepasa el 6 % mencionado previamente y se trata de motores diseñados para manejar mezclas de gasolina-etanol o motores modificados.

3.4 Modelos para simular el proceso de combustión en motores de combustión interna

Para simular el proceso de combustión cuando este ocurre en un MCI existen numerosas técnicas y procedimientos. Las más importantes son aquellas que plantean modelos como los de fracción de masa quemada o calor liberado, modelos unidimensionales de una y dos zonas, modelos unidimensionales de velocidad de propagación de llama, y procedimientos más complejos de modelado multidimensional, los cuales requieren programas de computador especialmente diseñados para ello [72, 73]. Todos los modelos mencionados, siendo el modelo unidimensional de dos zonas el más utilizado, son suficientes para simular un proceso de combustión específico, sin embargo, cada uno de ellos tiene restricciones propias que deben ser analizadas en mayor detalle para evitar la introducción de errores conceptuales durante el desarrollo del mismo.

Estos modelos y sus restricciones pueden agruparse en forma general así: (a) el tipo de motor que se está simulando, i.e. flujo de gas a través del mismo, (b) la cinética de la reacción de combustión para el combustible utilizado, (c) el planteamiento del modelo de formación de especies químicas (emisiones), (d) el modelo de turbulencia a aplicar y si es necesario hacerlo, y (e) el grado de participación de los datos experimentales dentro del desarrollo del modelo. Para respetar estas restricciones, usualmente es necesario recopilar información de diversas fuentes, para hacer submodelos que se incluyen dentro del modelo principal y que marcan la diferencia entre planteamientos disímiles sobre un mismo caso estudiado [4, 72, 75, 76, 77, 78, 79, 80, 81, 82, 83].

Los modelos desarrollados para los Motores de Combustión Interna Encendidos por Chispa (MCI-EC) se pueden clasificar en (Figura 3):

- 1. Modelos Termodinámicos
- 2. Modelos de Dinámica de Fluidos
- 3. Modelos de Inteligencia Artificial
- 4. Modelos Caóticos.

Figura 3. Clasificación de modelos matemáticos para el proceso de combustión.

Todos estos modelos tienen siempre una dimensión de tiempo implícita, debido a la naturaleza pulsante de los MCI-EC.

A continuación se hace una descripción más detallada del modelo y su clasificación:

3.4.1 Modelos termodinámicos

Basados en las ecuaciones para la conservación de energía. Actualmente se siguen utilizando principalmente para observar los efectos de las reacciones químicas presentes, ya que pueden manejar un gran número de reacciones y especies químicas.

Los modelos termodinámicos se clasifican en fenomenológicos o cero-dimensionales y cuasidimensionales [72, 84] (Figura 4).

Cuasi-dimensionales

En estos modelos termodinámicos se adicionan algunas características espaciales específicas. Se conocen también como modelos unidimensionales ya que incorporan una dimensión física adicional a la dimensión de tiempo. Existen dos tipos principales de modelos unidimensionales:

Figura 4. Esquema para los modelos termodinámicos cuasi-dimensionales. Tomado de [162].

Modelos de una zona

Se considera un sistema termodinámico sencillo que representa todo el contenido de la cámara de combustión. La tasa de liberación de energía es definida por funciones empíricas especificadas como una entrada para el modelo, por ejemplo: modelos de tasa de combustión. Generalmente se usa en combinación con modelos globales para TC. [72, 73, 85, 86].

Modelos de dos zonas

Consideran dos zonas: una zona de mezcla sin quemar y otra zona de mezcla quemada. Se utilizan normalmente con modelos zonales de TC. Trabajan muy bien con cualquier modelo de llama y en conjunto con modelos de tasa de combustión [72, 73, 85, 87, 88, 89]. También existen modelos multizona, donde se sigue distribuye la zona quemada en más de dos zonas.

<u>Modelos Fenomenológicos</u>

Son modelos empíricos para casos de estudio específicos que se basan en la primera ley de la termodinámica. Se conocen también como modelos cero-dimensionales debido a que todas las ecuaciones se plantean únicamente en función del tiempo. Generalmente se deben usar uno o varios modelos fenomenológicos en combinación con los modelos cuasi-dimensionales.

Los modelos más comunes son:

• <u>Geometría de cilindro y válvulas</u>: Debido a las formas complejas de algunas cámaras de combustión y pistones, se hace necesario aproximarlas a figuras geométricas conocidas que sirvan como entrada al modelo [72].

• <u>Propiedades termodinámicas del gas</u>: Se deben conocer las propiedades del gas dentro de la cámara de combustión en cualquier instante. La mezcla que se va consumiendo tiene propiedades

termodinámicas muy diferentes que las de la mezcla sin quemar, y siempre se asume que se comporta como gas ideal para cualquier caso. Por esto se encuentran relaciones para la entalpía, el calor específico y la energía interna, a partir de un ajuste de datos de tablas para vapor de combustible, aire y productos quemados [72, 84, 90]. Se pueden hacer combinaciones de estos modelos con otros modelos de equilibrio químico parcial o completo, para tener una mejor aproximación a los valores reales de las propiedades [72, 84].

• <u>Transferencia de calor (TC)</u>: La TC es un proceso esencial en un MCI-EC debido a que afecta directamente el estado termodinámico del gas que se encuentra dentro del cilindro y como resultado la potencia que el motor pueda entregar. Existen varios modelos para representar la TC, los cuales se pueden clasificar en dos categorías [72, 73, 91]: modelos globales y modelos zonales.

Los modelos globales comprenden el análisis de la transferencia de calor de forma general, sin tener en cuenta una diferenciación de la TC para las diferentes partes del motor que están cerca de la cámara de combustión, por ejemplo: cabeza del pistón y paredes. Consideran el gas dentro del cilindro como un único componente y plantean la solución de la TC en función del área de TC, de un coeficiente convectivo de TC y de la diferencia de temperatura entre el gas y la pared, es decir modelos con la forma de la ecuación de Fourier. Dado lo anterior, algunos modelos trabajan con correlaciones empíricas para encontrar el coeficiente convectivo de TC, y se suponen conocidas las otras cantidades. Otros modelos modifican la ecuación de Fourier y encuentran el flujo de calor incluyendo algunas constantes que dependen del tipo de motor y/o algunos números adimensionales como el número de Reynolds (Re) y el número de Prandtl (Pr) [73]. También se pueden resolver las ecuaciones de energía, modificadas con números adimensionales, a partir de relaciones empíricas entre dichos números. En otros modelos más complejos se puede incluir, para calcular el flujo de calor, una constante que represente la TC por radiación.

Los modelos zonales por su parte, consideran dividida en dos zonas la mezcla que se encuentra dentro de la cámara de combustión (zona quemada + zona no quemada). Tienen en cuenta la TC desde la mezcla quemada hacia la camisa y la culata. Se usan con los modelos de dos zonas [91]. Los modelos más sencillos calculan coeficientes convectivos para cada una de las zonas a partir de correlaciones empíricas. Otros modelos consideran TC entre la zona quemada y la no quemada a través de capas límite turbulentas (modelo de analogía de Reynolds). Mientras que los modelos de centro adiabático consideran a la zona no quemada y al centro de la zona quemada como adiabáticos y transfieren el calor desde la zona quemada hacia los componentes por medio de una capa límite laminar.

• <u>Tasa de combustión</u>: También se conocen como modelos de liberación de calor. Se obtienen a partir de datos experimentales de presión dentro del cilindro contra ángulo de cigüeñal. Buscan obtener una relación de masa de combustible quemada contra ángulo de cigüeñal. Los modelos más conocidos son la Ley del Coseno para la Combustión (del inglés *cosine burning law*) y la función Wiebe. [73, 84, 92, 93]. Cada uno de estos modelos son funciones que poseen constantes que cambian sus valores dependiendo del tipo de motor y del combustible utilizado.

• <u>Reacciones químicas</u>: Son modelos fundamentales para el proceso de combustión. Están directamente relacionados con la formación de especies químicas. Se componen principalmente de modelos para la conservación de especies a partir de las condiciones termodinámicas presentes, las cuales cambian en el tiempo. Normalmente existen tres tipos de modelos: cálculo global de especies (HC y NOx principalmente), reacciones en equilibrio químico, y reacciones considerando equilibrio químico y cinética (velocidad) de reacción. La complejidad de cada uno de estos modelos está dada por la restricción que pueda existir para el procesamiento de los datos.

En el modelo del cálculo global de especies se obtiene principalmente la concentración de una especie en particular en el gas de escape, utilizando correlaciones empíricas. Por lo tanto se deben conocer únicamente parámetros generales de funcionamiento del motor.

En los modelos de reacciones considerando equilibrio químico se definen inicialmente las especies químicas a considerar y las reacciones entre dichas especies. Como se mencionó anteriormente, las reacciones cambian dependiendo de las condiciones termodinámicas de los gases dentro del cilindro. Por lo que para cada paso de tiempo (o cambio de propiedades termodinámicas) se deben recalcular las reacciones buscando las constantes de equilibrio en datos tabulados [33, 90]. El mismo procedimiento se sigue para el último modelo mencionado. La diferencia fundamental radica en que se relaciona el avance de la llama y la producción de especies con la velocidad de la reacción, la cual se convierte en una variable nueva a incluir y que en algunos casos se encuentra tabulada [33, 79, 86, 94, 95].

• <u>Modelos de llama</u>: Tienen que ver principalmente con modelos que describen la forma en que la llama avanza dentro de la cámara de combustión. Los modelos más conocidos son: Geometría de llama, combustión en remolinos (del inglés *eddy burning*), láminas de vórtice (del inglés *vortex sheets*), modelos k-epsilon [93, 96, 97, 98, 99, 100, 101, 102]. Estos modelos pueden predecir el comportamiento de la combustión.

En los modelos de geometría de llama simplemente se supone que la llama avanza formando un círculo con centro en la punta de la bujía (para motores encendidos por chispa) [93]. Se deben encontrar la velocidad de avance de la llama y el radio de gas quemado (*burning gas radius*) a partir de datos experimentales. Con esta información se pueden calcular otros parámetros importantes como la velocidad media de expansión y la velocidad de quemado.

El modelo de combustión en remolinos se plantea en nivel más fundamental basado en resultados experimentales [96, 97, 98]. La base de este modelo es la ley de quemado (del inglés *burning law*), cuyo fundamento físico consiste en considerar al frente de llama turbulento con forma casi esférica, avanzando a una velocidad laminar mientras que la mezcla fresca que se encuentra delante del frente de llama, se consume a una velocidad característica dada principalmente por la convección turbulenta. Entonces el modelo considera la masa que se está quemando y la masa que no se quema todavía porque se encuentra ubicada entre los vórtices del frente de llama turbulento. Esta mezcla sin quemar se consume después de que ha pasado un tiempo característico de quemado calculado. Algunos parámetros en este modelo se deben calcular a partir de correlaciones experimentales.

El modelo de láminas de vórtice modifica un poco el modelo anterior [99]. Este modelo considera que la vorticidad en el flujo turbulento se concentra en forma de láminas, las cuales tienen un tamaño comparable al de la escala de Kolmogorov. Se asume también que entre cada una de estas láminas existe un espacio característico. Desde estas suposiciones se propone que la llama avanza a través de las láminas y que su avance se realiza de forma laminar. Al igual que el modelo anterior utiliza varias correlaciones para calcular parámetros importantes como la velocidad media turbulenta.

El último modelo representa el comportamiento dinámico de la turbulencia [100,101, 102]). En este grupo de modelos se pueden plantear varias ecuaciones para resolver dos parámetros fundamentales: la energía cinética turbulenta (k), y la tasa de disipación de k (epsilon). Las ecuaciones se resuelven integrándolas sobre la cámara de combustión para observar el gradiente de difusión y las predicciones sobre el campo turbulento (avance de llama). Utiliza también relaciones empíricas para calcular parámetros.

• <u>Vaporización de combustible</u>: Modelos que describen la tasa a la cual se vaporiza el combustible que se encuentra cerca al frente de llama. Se han propuesto muchos modelos para esto y todos se basan en la solución de las ecuaciones de energía junto con correlaciones empíricas que dependen del tipo de motor y del tipo de mezcla del combustible (estratificada, pobre, homogénea, premezclada) [73].

Antes de describir el siguiente grupo de modelos, es importante anotar que para generar un modelo de combustión completo es necesario combinar modelos cuasi-dimensionales con modelos fenomenológicos. Ninguno de ellos es capaz de explicar el proceso por si sólo.

3.4.2 Modelos de dinámica de fluidos

Estos modelos tienen en cuenta no sólo las ecuaciones de energía, sino que además están basados en un análisis completo del movimiento del fluido (ver Figura 3).

A estos modelos se les conoce normalmente como modelos multidimensionales porque trabajan en dos y tres dimensiones físicas. Como se mencionó anteriormente, son modelos que han tenido un grado de desarrollo muy grande, y sirven especialmente para observar el movimiento del fluido durante el proceso de combustión. A continuación se presentan los modelos para solucionar el campo de flujo y luego los que tienen que ver directamente con la combustión, que son similares a los modelos fenomenológicos descritos pero con una fundamentación teórica diferente.

Modelos para flujos reactivos turbulentos

Permiten resolver todas las ecuaciones que gobiernan el flujo turbulento durante la combustión. Los modelos más utilizados son:

<u>Modelado completo del flujo (FFM).</u>

Este modelo se basa en las soluciones de las ecuaciones de Reynolds (RANS). También se le conoce como modelo estadístico de flujo. Define la turbulencia como la desviación del flujo, del promedio, en cualquier instante en el mismo punto espacial y en la misma fase de oscilación. Un tipo de modelo es Modelo de esfuerzos de Reynolds (RSM) [103, 104, 105, 106, 107].

Simulación de vórtices de gran escala (LES).

Este modelo define la turbulencia como las variaciones del flujo sobre un promedio local. La idea con este modelo es capturar la dinámica de gran escala y resolver únicamente los procesos físicos de pequeña escala. En contraste con RANS que modela todas las fluctuaciones sobre un promedio local [103, 108, 109, 110]

Simulación numérica directa (DNS).

DNS soluciona las ecuaciones de conservación sin promediar, utilizando mallas computacionales y métodos numéricos que son suficientes para resolver todas las escalas relevantes del flujo. Debido a su alto requerimiento computacional está limitado a bajos números de Re y configuraciones geométricas simples, lo que en este momento no lo hace fácil de implementar en MCI-EC. [103, 111].

Modelos de transferencia de calor

Los modelos utilizados van desde la simple suposición de temperatura constante a lo largo de la pared, pasando por funciones de temperatura que varían con la longitud de la camisa, hasta los modelos turbulentos, principalmente del tipo k-epsilon. Para estos últimos existe una limitante importante que consiste en la aceleración del fluido a medida que se acerca al límite físico, esto es, la pared. Esta característica hace que el flujo de calor calculado falle con el uso del modelo mencionado, lo que ha obligado a complementarlo con otros modelos como: La ley de la pared (*Law of the wall*), que relaciona modelos empíricos los cuales buscan predecir la forma exponencial de la capa límite que se forma cerca de la pared; y la introducción de un nuevo coeficiente empírico al modelo k-epsilon que representa mucho mejor las interacciones entre la capa límite y la pared [91, 112, 113].

Modelos para las reacciones químicas

Como se ha mencionado, uno de los principales problemas a resolver en el modelado multidimensional consiste en el acople entre las ecuaciones para las reacciones químicas con las de conservación y las de flujo turbulento. Debido a la gran cantidad de cálculos requeridos para resolver las reacciones químicas a medida que se soluciona el flujo turbulento, a menudo es usual limitar el número de especies y reacciones químicas a considerar. Realizar "manualmente" la programación del código para resolver las ecuaciones multidimensionales puede convertirse en un trabajo que toma mucho tiempo, y el cual se puede volver casi imposible [94]. Debido a esto se ha venido trabajando desde inicios de la década de los 80, con códigos especialmente diseñados para hacer modelado multidimensional de motores de combustión interna. Ejemplo de este tipo de programas es el KIVA Code diseñado por Los Alamos National Laboratory, el cual ha sido utilizado en muchas aplicaciones para diseño y análisis de motores [103, 111, 113, 114, 115]. Tiene la ventaja de que puede ser modificado para incluir nuevos modelos o mejorar los existentes. Trabaja principalmente con LES y con modelos turbulentos de llama/pared para la TC. Otro código ampliamente utilizado es el CHEMKIN diseñado por Sandia National Laboratory [103]. Este programa trabaja únicamente con el modelado de las reacciones químicas en flujos turbulentos reactivos. Se pueden incorporar sus resultados dentro de un modelado de flujo turbulento, teniendo siempre presente que este acople puede significar un tiempo muy alto de procesamiento.

Modelos de tasa de combustión

Son modelos que buscan simular varios de los procesos presentes en la combustión. Los principales son:

Modelo de liberación de calor

Es el mismo modelo fenomenológico explicado anteriormente. No se utiliza un modelo de llama como tal. Se incluye la tasa de liberación de energía, obtenida de datos experimentales, junto con un modelo de TC. [73, 116]

Modelo de reacción con ecuación de Arrhenius

Es un modelo que predice el proceso de combustión, al tener en cuenta que la tasa de desaparición del combustible sin quemar sigue la forma de la ecuación de Arrhenius. Se debe ajustar con valores experimentales. No incluye reacciones químicas ni formación de especies [33, 117].

Modelo de llama aumentada (Thickened Flame Model).

Modifica el modelo de Arrhenius para formar una zona quemada que va aumentando en el tiempo. De la misma forma no incluye reacciones químicas [118]. Este modelo normalmente se utiliza con LES.

Modelo de mezcla controlada (Controled Mixing Model).

Supone que la mezcla turbulenta controla el proceso, por lo que la reacción química no se tiene en cuenta por ser lo suficientemente rápida con respecto al avance de la mezcla turbulenta. Agrupa los modelos turbulentos como: K-epsilon, desintegración de remolino (EBU) y disipación de remolino (EDM) [114, 119]. Estos modelos fallan cuando la cinética química es importante dentro de los resultados esperados. Para solucionar esto se plantean los modelos de regreso al equilibrio (*return to equilibrium*), que son una modificación de los modelos de Arrhenius y EBU. Estos modelos consideran que tanto la turbulencia como la cinética química son procesos controlados por la tasa de flujo, por lo que existe una escala de tiempo para la cual cada especie química se aproxima a su estado de equilibrio. Esta escala de tiempo es la suma de los tiempos característicos químicos y de turbulencia. Un resultado exitoso de este último modelo se puede ver en el trabajo de Haworth [111].

<u>Modelo de llama pequeña (Flamelet) [120]</u>

La reacción química ocurre en una capa muy delgada sobre el frente de llama (llama pequeña). El proceso de combustión se puede separar del flujo turbulento. Basado en este concepto se han planteado varios modelos entre los que se encuentran el Modelo Bray-Moss-Libby, Modelo de llama coherente y el Método de Ajuste de Nivel (*level-set*) (Ecuación G) [120, 121, 122].

Modelos de Interacción entre Turbulencia y química (TCI).

Es un modelo estadístico que trabaja con el método de volúmenes finitos a nivel de partícula de fluido. Utiliza una función de probabilidad, llamada función de probabilidad transportada (*transported probability function*), por lo que se conocen también como modelos PDF [123, 124, 125]. El énfasis en estos modelos cambia desde el modelado de la fuente química al modelado de los procesos de transporte molecular [111, 126].

Cierre condicional momentáneo (CMC)

Se condicionan las ecuaciones promediadas de transporte. Las variables se escogen sobre los términos de producción química que se esperan tengan una fuerte dependencia en el proceso. [127].

Modelo de vórtice lineal (LEM)

Conocido también como modelo Unidimensional de Turbulencia (ODT). Su principal fortaleza consiste en la habilidad para capturar los efectos moleculares en flujos reactivos turbulentos. Se trabaja utilizando modelos moleculares simples [128].

Núcleo de ignición de partícula discreta (DPIK).

Es un modelo para el encendido por chispa. Posee unos seguidores lagrangianos que le indican al modelo turbulento la dirección de propagación de la llama. [120, 122].
Al igual que en los modelos termodinámicos, cada uno de estos modelos no explica por si solo el proceso de combustión. En varios casos es necesario utilizar varios modelos del mismo tipo, por ejemplo: modelos de tasa de combustión, para resolver un único problema.

Las principales diferencias que existen entre los modelos termodinámicos y los modelos de dinámica de fluidos se pueden resumir en la Tabla 1. De la misma forma, en la Figura 5 se observa gráficamente.

Característica	Modelos termodinámicos	Modelos de dinámica de fluidos
Dimensiones	Tiempo, 1 dimensión física	Tiempo, 2 o 3 dimensiones físicas.
Discretización temporal	Si, en diferenciales de volumen.	Si, pasos temporales dependen del tipo
		de solución (implícita/explícita).
Discretización espacial	División en k zona(s)	Si. En elementos cuya forma depende
	unidimensional(es) que puede(n)	del motor y de las ecuaciones a
	cambiar su volumen en el tiempo.	resolver. No cambian su forma en el
		tiempo.
Ecuación de momento	No se resuelve	Se resuelve completa
Ecuación de masa (continuidad)	Se resuelve desacoplando los términos	Se resuelve completa
	de velocidad.	
Ecuación de energía	Se resuelve.	Se resuelve.
Transferencia de calor	Global o zonal considerando o no TC	Para cada elemento del dominio se
	entre zonas y siempre a las paredes del	considera conducción y transporte de
	motor y al pistón y culata. Se	energía con las especies y movimiento
	consideran los tres modos de TC	de fluido.
	utilizando relaciones empíricas.	
Tasa de combustión	Utiliza relaciones empíricas para la	Pueden utilizarse modelos empíricos o
	tasa de combustión o para obtenerla a	más elaborados que incluyan los
	partir de una velocidad turbulenta.	efectos del campo de flujo.
Equilibrio químico	Se resuelve.	Se resuelve incluyendo los efectos de
		las especies sobre los vectores de
		fuerza en la ecuación de momento y
		energía.
Cinética de reacción	Se resuelve. Puede utilizar modelos	No puede utilizar modelos complejos
	complejos de cinética de reacción.	de cinética de reacción.
Fenómeno turbulento	Si. Se puede incluir por medio de	Es necesario incluir la turbulencia
	relaciones empíricas que den como	dentro de la ecuación de momento.
	resultado una velocidad turbulenta	
	unidimensional.	

Tabla 1. Cuadro comparativo entre los modelos termodinámicos y de dinámica de fluidos.

Figura 5. Esquema para la comparación entre los modelos termodinámicos y de dinámica de fluidos. a. Una zona, b. dos zonas, c. multi-zona. Tomado de [162].

3.4.4 Modelos de inteligencia artificial [129].

Son modelos que se empiezan a implementar en MCI a finales de los años 90. Se han utilizado principalmente para actividades de control y predicción de desempeño y emisiones, basados siempre en experimentación previa. Las técnicas más utilizadas han sido:

- 1. Redes neuronales artificiales
- 2. Algoritmos genéticos
- 3. Lógica Fuzzy

Una de las restricciones más importantes para la implementación de estos modelos consiste en el gran número de variables involucradas dentro del proceso de combustión. Sin embargo es importante aclarar que gran parte de los controladores que se utilizan para manejar procesos individuales de los motores modernos utilizan estas técnicas.

3.4.5 Modelos caóticos [73]

Como se ha visto a lo largo de este trabajo, el proceso de combustión está directamente relacionado con el fenómeno de turbulencia, el cual es caótico por naturaleza. También se mostró que los modelos turbulentos que existen son de base experimental. Se desea entonces aplicar la teoría del caos a los procesos de combustión para tratar de obtener un entendimiento del mismo a un nivel más fundamental. Las aplicaciones que existen se han enfocado en trabajos para solucionar o explicar fenómenos particulares dentro del proceso de combustión.

4. MODELO PROPUESTO PARA EL PROCESO DE COMBUSTIÓN EN MCI QUE UTILIZAN MEZCLAS GASOLINA-ETANOL

El proceso de combustión en motores de combustión interna encendidos por chispa se modela desde el instante en que los puertos se cierran (Figura 6). Posterior a esto inicia el proceso de compresión, salta la chispa mientras se continua comprimiendo la mezcla aire combustible, e inicia el avance de llama aumentando la temperatura y la presión. El proceso termina cuando se abre la válvula de escape durante la expansión de los gases (ver Figura 7) [73].

Figura 6. Procesos de un MCI de cuatro tiempos, a) Admisión, b) compresión, c) combustión y compresión, d) combustión y expansión, e) abre válvula escape, f) escape. Tomado de [163]

Figura 7. Diferentes procesos en el MCI. Motor CFR (*Cooperative Fuels Research*) a 900 rpm trabajando con gasolina. AngIC: ángulo de Inicio de combustión (salto de chispa) en -10 BTDC, AngAEs: ángulo apertura válvula de escape, AngAAd: ángulo apertura válvula de admisión, AngCAd: ángulo cierre válvula de admisión, AngCEs: ángulo cierre válvula de escape, xb: fracción de masa de combustible quemada.

La simulación de este proceso requiere considerar un sistema termodinámico cerrado, con volumen de control variable, dado por el movimiento del pistón, el cual aumenta o disminuye el tamaño de la cámara de combustión. Esta variación entre procesos y movimientos del pistón se debe discretizar. Para hacer esto se escogen pasos de tiempo o ángulos de giro del cigüeñal fijos, tomando como parámetro principal para su selección la velocidad de giro del motor y/o relaciones geométricas del mecanismo del motor, para encontrar el volumen desplazado en un respectivo paso de tiempo/ángulo de giro del cigüeñal [73].

Este capítulo se presenta partiendo de las ecuaciones de conservación en su forma más general. Posteriormente se plantean una serie de suposiciones para convertir estas ecuaciones en un modelo unidimensional para flujo compresible que pasa por un proceso de combustión. A continuación se enseñan las nuevas ecuaciones incluyendo las suposiciones propuestas, explicando brevemente los términos que aparecen en cada una de ellas.

Las ecuaciones de conservación son [33, 130]:

Balance de masa: $\frac{\partial \rho}{\partial t} + \nabla .(\rho v) = 0$ (4.1)

 ρ representa la densidad , v el vector velocidad y V el volumen.

Conservación de especies:para i especies \rightarrow

$$\frac{\partial(\rho Y_i)}{\partial t} + \nabla [\rho(v + V_i)Y_i] = \omega_i$$
(4.2)

Donde $Y_i = \rho_i / \rho$, V_i es el vector de la velocidad de difusión y ω_i es la velocidad de reacción másica de la especie *i*.

Conservación de momento de flujo:

$$\frac{\partial(\rho v)}{\partial t} + \nabla .\rho vv = -\nabla P + \nabla .S + \rho \sum_{i=1}^{N} f_{i}$$
(4.3)

Donde P es la presión, S el tensor de esfuerzos viscosos y f es una fuerza volumétrica.

Conservación de energía:

$$\frac{\partial \rho \left(e + \frac{v^2}{2}\right)}{\partial t} + \nabla \rho v \left(e + \frac{v^2}{2}\right) = -\nabla q - \nabla (vP) + \nabla (vS) + \sum_{i=1}^{N} (v+V_i) (\rho_i f_i)$$
(4.4)

Donde e contiene las energías química y sensible, q es el flujo de energía (por unidad de volumen) desde/hacia el sistema en forma de calor [33].

Para completar las ecuaciones y poder definir totalmente un sistema reactivo, queda pendiente especificar las relaciones para el tensor *S*, la velocidad de difusión V_i , el flujo de calor *q*, y la tasa de reacción ω_i . Estas relaciones junto con las ecuaciones de conservación dependen del sistema físico específico a modelar.

Teniendo presente lo anterior se hace una lista de suposiciones o simplificaciones a tener en cuenta dentro del modelo que se va a desarrollar, para plantear el nuevo sistema de ecuaciones:

- 1. Se conoce la composición del gas dentro del cilindro en el instante en que las válvulas se cierran. Esto es, antes de iniciar el proceso de compresión. Se conoce la cantidad de masa fresca que ingresa (aire y combustible) y la cantidad de gases de escape que quedan dentro del cilindro [90].
- 2. El gas dentro del cilindro antes (compresión), durante y despues de la combustión (expansión) se considera como un gas ideal [73].
- 3. El proceso de compresión se considera isoentrópico (adiabático y reversible) [73].
- 4. Por ser un sistema cerrado la masa se considera constante [73]. No se tienen en cuenta pérdidas de masa por los anillos. Se propone un modelo de combustión de dos zonas que permita, con la masa del sistema fija, manejar dos zonas independientes de trabajo, una zona sin quemar y otra de productos de combustión. La masa de cada zona va cambiando dependiendo del avance del proceso y de las condiciones de carga y velocidad.
- 5. La conservación de especies se maneja a partir de un modelo de equilibrio químico con 10 productos seleccionados, dentro de los que se encuentra el radical OH.
- 6. Para incluir los fenómenos de fuerza sobre el pistón (momento de flujo), velocidad de difusión y energía suministrada desde el combustible, se utiliza un modelo empírico que incluye el fenómeno turbulento para calcular la fracción de masa quemada [84].
- 7. Se considera que la transferencia de calor ocurre unicamente desde la zona quemada hacia la zona no quemada (para vaporizar el combustible), las paredes y el pistón. Se utiliza un modelo empírico definido por Annand [131].
- 8. El trabajo es el realizado por el gas sobre el pistón. El gradiente de la presión es nulo [72].
- 9. Se incluyen los efectos en una sola dimensión física (para el modelo geométrico de llama) y en el tiempo.
- 10. La forma del frente de llama se puede predecir a partir de un modelo geométrico, teniendo como entrada el modelo de dos zonas [72]. Este modelo debe relacionar las velocidades de quemado de mezcla fresca con la velocidad de expansión del gas quemado. Con esta relación se puede encontrar la velocidad media del frente de llama [97,132].

Con estas suposiciones presentes, las ecuaciones a resolver quedan así:

Balance de masa:

$$\left(\frac{\partial \rho_{cy}}{\partial t}\right) A dx = 0 \tag{4.5}$$

Donde ρ_{cy} es la densidad de la mezcla, *A* es el área del cilindro y *dx* el diferencial longitudinal de cambio de volumen.

Conservación de energía:

$$\frac{\partial Q_R}{\partial t} - \frac{\partial W}{\partial t} = \frac{dU}{dt} + \frac{\partial Q_L}{\partial t} + \frac{\partial Q_{vap}}{\partial t}$$
(4.6)

Donde ∂Q_R es el calor liberado desde el combustible, ∂W el trabajo del sistema cerrado (*pdV*), *dU* la energía interna del volumen de control, ∂Q_L la energía transferida desde la zona quemada a la zona no

quemada y las paredes del cilindro, ∂Q_{vap} la energía que se necesita para vaporizar el combustible. Esta ecuación se utiliza en los procesos de compresión, combustión y expansión del ciclo cerrado. Se quita el término de calor liberado desde el combustible para los procesos de expansión y compresión, y adicionalmente el término de vaporización de combustible para el proceso de expansión.

El término ∂Q_L se calcula utilizando la teoría de Annand [131]. Esta teoría presenta la siguiente ecuación

$$\partial Q_L = (C_h (T_{cy} - T_{cw}) + C_r) A_{cw} dt$$

(4.7) C_h y C_r son coeficientes de transferencia de calor convectivo y de radiación respectivamente. El coeficiente C_r se puede considerar despreciable. T_{cy} y T_{cw} representan las temperaturas de la pared del cilindro y de la camára de combustión y la corona del pistón respectivamente. A_{cw} describe el área combinada de pared del cilindro, área de la cámara y de la corona del pistón [73, 131].

$$C_h = \frac{C_k N u}{d_{cv}} \tag{4.8}$$

 C_k es la conductividad térmica de la mezcla y Nu es el número de Nusselt definido como: $Nu = aRe^{0.7}$, donde a=0.49, Re representa el número de Reynolds [73, 131]:

$$\operatorname{Re} = \frac{\rho_{cy} c_p d_{cy}}{\mu_{cy}} \tag{4.9}$$

 c_p es la velocidad media del pistón, d_{cy} el diámetro del cilindro, μ_{cy} la viscosidad de la mezcla y ρ_{cy} es la densidad de la mezcla obtenida desde:

$$\rho_{cy} = \frac{p_{cy}}{R_{cy}T_{cy}} \tag{4.10}$$

 R_{cy} es la constante del gas (mezcla de combustible, aire, y productos de combustión), y T_{cy} es la temperatura del cilindro.

Los parámetros C_k , c_p y μ_{cy} se definen como [73, 90]:

$$C_{k} = 6.1944x10^{-3} + 7.3814x10^{-5}T_{cy} - 1.24491x10^{-8}T_{cy}^{2}$$
(4.11)

$$\mu_{cy} = 7.457 \times 10^{-6} + 4.1547 \times 10^{-8} T_{cy} - 7.4793 \times 10^{-12} T_{cy}^{2}$$
(4.12)

$$c_p = \frac{2L_{st}N}{60} \tag{4.13}$$

 L_{st} es la longitud de la carrera del pistón y N representa la velocidad de giro del cigüeñal en revoluciones por minuto (rpm).

La energía perdida por vaporización del combustible se representa por:

$$\partial Q_{vap} = m_{vap} h_{vap} dt \tag{4.14}$$

 m_{vap} es la masa evaporada en un intervalo de tiempo y h_{vap} el calor latente de vaporización del combustible. m_{vap} se obtiene dividiendo la masa de combustible atrapada m_{fat} , cuando las válvulas están cerradas, entre el intervalo de tiempo actual, es decir:

$$m_{vap} = m_{fat}/dt \tag{4.15}$$

con la masa de aire atrapada m_{ta} , definida como: $m_{ta}=m_t/SE$

 m_t es la masa total de aire que ingresa al cilindro y SE en la eficiencia de llenado definida en la ecuación (4.35).

(4.17)

La energía interna dU se calcula para los estados límites en un paso de tiempo como:

$$dU = C_{\nu} dT \tag{4.18}$$

dT es el cambio de temperatura.

Para el calor liberado desde el combustible ∂Q_R , se utiliza la siguiente ecuación:

$$\frac{\partial Q_R}{\partial t} = \eta_c m_f LHV \left(\frac{dm_b}{dt}\right) \tag{4.19}$$

donde η_c es una eficiencia de combustión empírica que depende principalmente de la relación aire combustible, m_f es el combustible introducido a la cámara de combustión, *LHV* el poder calorífico inferior y dm_b/dt es la velocidad de cambio de masa quemada.

Esta última expresión se obtiene a partir del modelo de propagación turbulenta de llama [93, 96, 97, 132, 133], el cual se explica a continuación. El primer término de la ecuación 4.20 representa la propagación de la llama. El siguiente término simboliza la cantidad de masa de combustible que se quema en las "arrugas" de ese frente turbulento que se mueve. Sólo se puede quemar combustible en esta zona. Para explicar mejor este fenómeno obsérvese la Figura 8.

Figura 8. Esquema del modelo de propagación turbulenta de llama. "El frente de llama turbulento de forma esférica (línea punteada) se difunde hacia el exterior a una velocidad laminar de llama S_L . La mezcla fresca también cruza este frente a una velocidad característica u' debida a convección turbulenta. El esquema de la izquierda muestra en detalle la estructura de la llama: δ_c (identificado como dl en la figura) es un espesor de la lámina de reacción, l_t es la escala característica de las arrugas en la lámina". Figura y texto tomados de [72].

En dicho modelo la propagación del frente de llama se analiza en dos pasos parciales. El primero describe la penetración de la llama debido al mecanismo turbulento de propagación sin liberación de calor hacia la mezcla aún sin quemar. El segundo paso por su parte describe la liberación de calor por combustión, ecuación 4.19. La ecuación de la penetración de llama es:

$$\frac{dm_b}{dt} = \rho_u A_{ff} \left(u' + S_L \right) - \frac{d\mu^*}{dt}$$
(4.20)

 μ^* es una masa paramétrica que diferencia entre la cantidad de masa que se quemó de toda la masa que entró en una zona del frente turbulento de llama con longitud l_t (llamada masa de entrada m_e), ρ_u la densidad de la mezcla sin quemar, A_{ff} el área del frente de llama, u' la velocidad de fluctuación turbulenta local, S_L la velocidad laminar de llama.

El cambio en la masa paramétrica se describe como:

$$\frac{d\mu'}{dt} = \rho_u A_{ff} u' - \frac{\mu'}{\tau_b}$$
(4.21)

donde τ_b es un tiempo característico definido como:

$$\tau_b = l_t / S_L \tag{4.22}$$

$$l_t = 0.8 L_{i\nu} (\rho_i / \rho_u)^{3/4}$$
(4.23)

siendo *L*_{iv} el máximo desplazamiento de la válvula de admisión.

El cálculo de la variable A_{ff} se explica más adelante en este capítulo, bajo el título modelo geométrico de llama.

Las integrales de las ecuaciones 4.20 y 4.21 se resuelven utilizando la regla de integración de Simpson [134].

Es importante mencionar acá, que cada una de las zonas consideradas se trabajan siguiendo la ley de gas ideal de la siguiente forma:

$$m_u = \frac{PV_u}{R_u T_u} \tag{4.24}$$

$$m_b = \frac{PV_b}{R_b T_b} \tag{4.25}$$

 $m_t = m_u + m_b$

Con los subíndices u y b indica la zona sin quemar y quemada respectivamente. P es la presión, V el volumen, R la constante del gas en la zona (calculada a partir de la fracción másica de cada componente de la zona), T la temperatura.

La velocidad laminar de llama se calcula siguiendo las correlaciones planteadas por Gülder [135]. Estas correlaciones fueron revisadas en una bomba de combustión con diferentes mezclas de combustibles,

debido a que la composición de los mismos pudo haber cambiado con los años y por ende la velocidad laminar de llama también. Esta parte experimental se explica un poco más en el capítulo de resultados. Las correlaciones presentadas por Gülder son:

$$S_L = S_{L0} \left(\frac{T_u}{T_0}\right)^{\alpha} \left(\frac{P}{P_0}\right)^{\beta} (1 - C * f)$$

$$(4.26)$$

$$S_{L0} = Z * W * \phi^{n} * \exp(-\zeta(\phi - 1.075)^{2})$$
(4.27)

 P_0 y T_0 son las condiciones de referencia de la correlación, C es una constante que vale 2.5 cuando la fracción de masa residual f se encuentra entre 0 y 0.3, ϕ es la relación combustible-aire (inverso de AFR) y los demás parámetros se definen en la Tabla 2.

Combustible	Z	W [m/s]	η	ζ	α	β	
						$\phi < 1$	$\phi \ge 1$
C ₈ H ₁₈	1	0.4658	-0.3026	4.48	1.56	-0.2	22
C ₂ H ₅ OH	1	0.4650	0.250	6.34	1.75	$-0.17 / \sqrt{\phi}$	$-0.17\sqrt{\phi}$
C ₈ H ₁₈ + C ₂ H ₅ OH	$1+0.07 X_{\rm E}^{-0.35}$	0.4658	-0.3026	4.48	$1.56+0.23X_{\rm E}^{-0.46}$	$X_G \beta_G +$	$X_E \beta_E$

Tabla 2. Coeficientes para calcular la velocidad laminar de llama. $P_0=1$ bar, $T_0=300$ K. X_E y X_G corresponden a las fracciones molares de gasolina y etanol en la mezcla. Tomado de [3].

La velocidad de fluctuación turbulenta local se calcula como:

 $u' = 0.08 U_i \sqrt{\rho_u / \rho_i}$

(4.28)

 $\rho_i \neq U_i$ corresponden a las condiciones de densidad y velocidad del aire en la entrada a la cámara de combustión. La velocidad de entrada a la cámara se calcula utilizando la teoría de flujo unidimensional de gas por medio de ondas de presión de ampitud finita, descrita con bastante detalle en [73] y en [136].

Este modelo de propagación de llama tiene cuatro caso límites a saber [96]:

- a. Avance de llama incipiente: u' tiende a cero, entonces $S_b=S_L$, donde S_b simboliza la velocidad de aumento (avance) de la zona quemada (subíndice b).
- b. Estado cuasi-estable: $d\mu/dt \approx 0$ entonces $S_b = \mu + S_L$
- c. Quemado inicial: $t > l_t/u$, con t como el tiempo de simulación actual, entonces

 $\frac{S_b}{S_L} = 1 + \frac{\rho_b u r_f}{3\rho_u S_l l_t}$, con r_f como el radio del frente de llama del cual se hablará más

adelante en la explicación del modelo geométrico de llama.

d. Quemado final: $A_{ff} \approx 0$ entonces $\frac{m_b}{dt} \approx e^{-(t-t_F)/\tau_b}$, donde el subíndice F denota las

condiciones al final de la propagación de la llama.

Balance de especies:

Se tiene una reacción:

$$\sum_{i=1}^{N} v_{i}^{'} M_{i} \leftrightarrow \sum_{i=1}^{N} v_{i}^{''} M_{i}$$

$$(4.29)$$

en donde el criterio para el equilibrio químico [33] está dado por:

$$\sum_{i=q}^{N} \left(\frac{\partial H}{\partial N_i} \right)_{S,P,N_{j\neq i}} (\boldsymbol{v}_i^{''} - \boldsymbol{v}_i^{'}) = 0$$

$$(4.30)$$

H es la entalpía (obtenida de tablas [137,138,139] junto con las otras propiedades termodinámicas y de transporte), N_i la concentración molar del componente *i*, y v el coeficiente estequiométrico de la reacción para productos y reactantes, respectivamente. En este criterio la entalpía varía con el cambio en las condiciones de presión y temperatura obtenidas desde la ecuación de conservación de energía. Se plantea entonces la siguiente reacción:

$$(1-X_E)C_nH_m + (X_E)C_2H_5OH + A^*(O_2+3.76N_2) \rightarrow B^*CO_2 + D^*H_2O + E^*N_2 + F^*O_2 + G^*CO + H^*H_2 + I^*H + J^*O + K^*OH + L^*NO$$
(4.31)

El superíndice * indica los coeficientes estequiométricos y X_E la proporción en volumen de etanol en la mezcla.

Con la información de la concentración de especies en el gas de escape se puede calcular la eficiencia de combustión η_c de la siguiente ecuación:

$$1 - \eta_c = \frac{\sum_i x_i LHV_i}{(\dot{m}_i / (\dot{m}_a + \dot{m}_f))LHV_i}$$
(4.32)

 x_i representa la fracción másica de los productos en el escape, LHV_i el poder calorífico inferior de estas especies y los subindices f y a combustible y aire respectivamente.

También se puede calcular la eficiencia de combustión como [73]:

$$\eta_c = C_{burn} \eta_{af} \eta_{se} \tag{4.33}$$

 C_{burn} representa un factor que introduce los efectos sobre la eficiencia de combustión producidos por el cambio de combustible. Estos efectos pueden ser: influencia de las velocidades locales, viaje incompleto de llama, quemado parcial y decaimiento de llama en la mayoría de las circunstancias. Se define como:

$$C_{burn} = 0.7974 + 0.354(X_E) + 0.5(X_E)^2$$
(4.33-1)

 C_{burn} es obtenido luego de analizar diferentes resultados experimentales y simulaciones, ver punto 6.4 y Tabla 16.

 η_{af} es la eficiencia de combustión relativa a la relación de equivalencia y η_{se} es la eficiencia de combustión relativa a la eficiencia de llenado del cilindro con masa de aire fresco.

La fracción de masa residual *f*, se define como:

$$f = m_{ex}/m_{af} \tag{4.34}$$

 m_{ex} es la masa de gases que queda dentro del cilindro después del escape y m_{af} es la masa de aire fresco que ingresó el ciclo anterior.

La eficiencia de llenado es $SE=1-f$	(4.35)

$$\eta_{se} = 1.0 \text{ si } SE > 0.9$$
 (4.36)

de lo contrario:

$$\eta_{se} = -12.558 + 70.1088SE - 135.67SE^2 + 114.77SE^3 - 35.542SE^4 \tag{4.37}$$

Si la relación de equivalencia:

$$\lambda = AFR_{est} / AFR_{actual} \tag{4.38}$$

se encuentra entre 0.8 y 1.2 entonces:

$$\eta_{af} = -1.6082 + 4.6509\lambda - 2.0746\lambda^2 \tag{4.39}$$

Como se menciona al principio de esta parte del trabajo, las ecuaciones se resuelven en forma simultánea, utilizando el método de Newton-Raphson [134], para cada paso de tiempo incluido dentro del rango de trabajo que va desde que se cierran las válvulas hasta un paso antes de que vuelvan a abrir.

Modelo geométrico de llama

Un modelo de llama debe ser acoplado al modelo descrito. Este modelo da información importante para conocer en cada instante el área que ocupa la llama que avanza. El modelo más sencillo considera que el volumen de la zona quemada (V_f) depende además de la presión, temperatura y angulo del cigüeñal, de parámetros geométricos que relacionan una llama que avanza con un frente esférico cuyo centro se encuentra en la bujía. Además se define una variable adicional llamada el radio de gas quemado (r_b), el cual es el radio de la superficie esférica dentro de la cámara de combustión que contiene todo el gas quemado detrás del frente de llama, el cual se calcula a partir de los datos de equilibrio, es decir, aplicando ecuación de gas ideal a los productos de combustión y obteniendo un volumen de masa quemada V_b .

El radio de avance de la llama se puede calcular utilizando la siguiente ecuación [96]:

$$r = r_b + u' \tau_b \left[1 - e^{(-(r_b / u' \tau_b))^2} \right]$$
(4.40)

A partir de esta información, y utilizando el modelo geométrico descrito en [132] y en [140], se pueden obtener los parámetros de área de frente de llama (A_{ff}) y volumen de frente de llama (V_f) . Éste último

también se puede expresar como: $V_f = V_b + \frac{\mu^*}{\rho_u}$. Con estos datos es posible calcular la masa quemada y

el calor liberado, con los que se computan las nuevas propiedades termodinámicas de los gases dentro del cilindro. Posterior a esto se avanza otro grado del cigüeñal y se repite todo el proceso. La combustión termina en el momento en el que la fracción de masa quemada llega a 1.

Modelado de los procesos de admisión y escape:

Los procesos de admisión y escape se simulan siguiendo la teoría descrita en [141]. Para la admisión se utiliza la siguiente ecuación:

$$P_a = P_{amb} \cdot \Delta P \tag{4.41}$$

 P_a es la presión en la admisión, P_{amb} la presión atmosférica y ΔP la caída de presión que se puede calcular desde la ecuación de Bernoulli.

La temperatura en la admisión T_a se puede calcular así:

$$T_{a} = \frac{T_{0} + \Delta T + f * T_{r}}{1 + f}$$
(4.42)

 T_r es la temperatura del gas de escape en el paso anterior.

La presión de escape P_r se obtiene de la siguiente expresión:

$$P_r = (1.05/1.25) * P_{amb} \tag{4.43}$$

Y la temperatura de escape T_r :

$$T_r = \frac{T_b}{\left(\frac{P_b}{P_r}\right)^{\frac{1}{3}}}$$
(4.44)

El algoritmo de solución de este modelo se encuentra descrito en la Figura 9.

Figura 9. Algoritmo de solución del modelo propuesto.

5. RESULTADOS EXPERIMENTALES

Después de presentar en detalle el modelo de combustión a trabajar, este capítulo muestra los resultados, iniciando con los obtenidos desde la experimentación, para continuar en un capítulo posterior, con los conseguidos desde el modelo de combustión planteado. El capítulo se divide entonces en una primera parte donde se describen las pruebas realizadas a los diferentes combustibles utilizados en este trabajo. Prosigue con el desarrollo del trabajo experimental, en donde se detallan los equipos utilizados, la matriz del experimento, el análisis estadístico correspondiente, y la presentación de los resultados experimentales relacionados con el problema planteado en este trabajo. Finaliza con una discusión sobre los resultados alcanzados.

El nombre dado a las mezclas de gasolina y etanol se designa con la letra "E" seguida de un número correspondiente al contenido de etanol en la mezcla. De esta manera la gasolina pura se conoce como E0 y la mezcla de gasolina con 10 % de etanol en volumen, se denomina E10.

5.1. Pruebas a combustibles.

5.1.1. Pruebas en bomba de combustión.

Para verificar las correlaciones presentadas por Gülder [135], se realizó un experimento en una bomba de combustión ubicada en el Laboratorio de Combustión de la Universidad de Princeton. La bomba de combustión utilizada permite alcanzar presiones de trabajo de hasta 30 atm, en [142] se encuentra descrito de forma completa su diseño, construcción y operación.

Se realizaron experimentos utilizando isooctano y etanol anhidro como combustibles. Se selecciona un diseño de experimentos factorial. Las variables de entrada controlables fueron: los combustibles, la presión en la bomba de combustión, la relación combustible-aire equivalente (ϕ), y la temperatura inicial de la mezcla (T_u). Los niveles de estas variables se muestran en la Tabla 3.

Variable	Niveles					
Combustible	E0	E10	E20	E30		
Presión bomba [atm]	1 atm					
ϕ	0.8	1.0	1.2			
T_u [K]	300	400	500			

Tabla 3. Niveles de las variables controlables.

Las variables de salida fueron: el radio de mezcla quemada (r_u) y su variación en el tiempo (que representa lo que se conoce como velocidad de llama extendida (*stretched flame velocity*, S_n), el área del frente de llama, las cuales se miden a partir de las imágenes Schlieren tomadas para la mezcla que se consume formando un frente de llama esférico. No se plantea una hipótesis nula debido a que el propósito del experimento es la comparación con un modelo previamente planteado.

Se realiza un procesamiento de datos en el cual se calcula la velocidad para las diferentes condiciones de la siguiente forma [143]:

$$S_n = dr_u/dt \tag{5.1}$$

Para llamas que se expanden en un frente esférico hacía afuera, se define la extensión de llama α_n como:

 $\alpha_n = (2/r_u)S_n$

(5.2)

De acuerdo con Markstein [144] existe una relación lineal entre S_n y α_n dada por:

$$S_L - S_n = L_b * \alpha_n \tag{5.3}$$

Con S_L como la velocidad laminar de llama y L_b como la longitud de Markstein. De la ecuación 6.3 se deduce que S_L se obtiene cuando $\alpha_n = 0$ en la gráfica de S_L contra α_n .

Se realizaron 108 pruebas, 36 por diseño con tres réplicas, más el procesamiento de información descrito. Los valores de velocidad de avance de llama reportados son los promedios de las tres mediciones. El máximo intervalo de confianza de estas mediciones se ubicó entre -0.0021 y 0.0112 m/s.

Los resultados de velocidad laminar de llama se presentan en la Figura 10 a la Figura 13 para cada combustible, comparados con los datos de velocidad laminar de llama de las ecuaciones 4.26 y 4.27 (línea continua). En dichas figuras el eje denominado como "Phi" representa la relación combustibleaire equivalente ϕ .

Figura 10. Velocidades de llama de la prueba y del modelo para combustible E0.

Figura 11. Velocidades de llama de la prueba y del modelo para combustible E10.

Figura 12. Velocidades de llama de la prueba y del modelo para combustible E20.

Figura 13. Velocidades de llama de la prueba y del modelo para combustible E30.

En la Tabla 4 se resumen estos resultados mostrando el cambio en el valor de la velocidad de llama cuando se compara con el obtenido para EO a 300 K y con ϕ de 0.8, tanto para los valores de las pruebas como los del modelo.

T_u [K]	Combustible	ø	Resultados pruebas contra E0 [%]	Resultados modelo contra E0 [%]
300	E0	0.8	0	0
300	E0	1.0	17.9124245	27.8997747
300	E0	1.2	3.73568245	15.7319156
400	E0	0.8	37.2404329	56.6406329
400	E0	1.0	86.4134705	100.343017
400	E0	1.2	64.5341601	81.2832051
500	E0	0.8	96.9557479	121.862575
500	E0	1.0	150.139298	183.761734
500	E0	1.2	133.186991	156.765808
300	E10	0.8	-6.0638812	3.12678515
300	E10	1.0	24.5139841	31.8989259
300	E10	1.2	10.938728	19.350604
400	E10	0.8	57.0545926	65.2873844
400	E10	1.0	84.6422421	111.402192
400	E10	1.2	81.0498685	91.2902562
500	E10	0.8	116.692498	138.313064
500	E10	1.0	181.917127	204.801872
500	E10	1.2	161.424395	175.804274
300	E20	0.8	-7.83786046	3.98527724
300	E20	1.0	23.9393254	32.9969353
300	E20	1.2	10.954536	20.3441533
400	E20	0.8	46.1820169	68.1054931
400	E20	1.0	101.084261	115.006547
400	E20	1.2	75.4287921	94.5517075
500	E20	0.8	123.637066	144.001464
500	E20	1.0	174.035662	212.077322
500	E20	1.2	170.129959	182.387568

T_u [K]	Combustible	ø	Resultados pruebas contra E0 [%]	Resultados modelo contra E0 [%]
300	E30	0.8	-2.71677558	4.5929369
300	E30	1.0	20.5363609	33.7741307
300	E30	1.2	7.6486794	21.0474095
400	E30	0.8	59.2745464	70.1855291
400	E30	1.0	88.6567903	117.666908
400	E30	1.2	73.56818	96.9589729
500	E30	0.8	116.841874	148.263533
500	E30	1.0	186.74859	217.5285
500	E30	1.2	149.713123	187.320143

Tabla 4. Cambio en la velocidad laminar de llama cuando se compara contra los valores de la prueba y del modelo para E0, $T_{\mu}=300 \text{ K y } \phi =0.8.$

Los resultados muestran las siguientes tendencias:

- a. Para $\phi = 0.8$ y $T_u = 300$ K disminuye la velocidad laminar de llama a medida que aumenta el etanol en la mezcla, excepto para E30 que disminuye con respecto a E0 y aumenta con respecto a E10 y E20 en los resultados experimentales. Los resultados del modelo muestran por su parte un aumento pequeño a medida que se incrementa la concentración de etanol.
- b. Para $\phi = 1$ y $\phi = 1.2$ la tendencia es de aumento de la velocidad laminar de llama a medida que aumenta el etanol en la mezcla para todas las temperaturas.
- c. En la relación estequiométrica de combustible-aire se obtiene la velocidad laminar de llama máxima para cualquier condición de temperatura y composición de combustible.
- d. La velocidad laminar de llama aumenta con la mayor temperatura inicial de la mezcla.

5.1.2. Pruebas de caracterización de mezclas gasolina-etanol.

Los combustibles utilizados para las pruebas fueron caracterizados en el laboratorio de combustibles de la Facultad de Ingeniería en la Universidad Nacional, y en el *Center for Diesel Research* de la Universidad de Minnesota. En la Tabla 5 se muestran los resultados promediados. La Figura 14 y la Figura 15 presentan los resultados de la curva de destilación de los combustibles.

Prueba	Norma ASTM			Resultado		
		EO	E10	E20	E30	E100
Densidad (kg/m ³ @ 15.6 C)	D-287	739	743	748.2	755.5	794.6
Poder calorífico (MJ/kg)	D-240	42.6	39.82	39	36.34	ND^2
Punto de inflamación (C @101.325 kPa)	D-92	Nota 1	Nota 1	Nota 1	Nota 1	Nota 1
Punto de combustión (C @101.325 kPa)	D-92	Nota 1	Nota 1	Nota 1	Nota 1	Nota 1
Curva de destilación	D-86 (C @ 101.325					
	kPa)					
Punto inicial		45	45	49	48	78
10% recuperado		65	65	61	62	79
20% recuperado		78	78	71	67	79
30% recuperado		89	89	75	72	79
40% recuperado		100	100	76	76	79
50% recuperado (P.E. Medio)		119	119	78	77	79
60% recuperado		132	132	111	78	79
70% recuperado		148	148	133	124	79
80% recuperado		168	168	155	151	79
90% recuperado		212	212	190	187	79
Punto final residuo (# ml)		212 (1.4)	212(1.4)	217(1.0)	211(1.2)	79^{3}

 Tabla 5. Resultados obtenidos prueba de caracterización de combustibles en Laboratorio de Combustibles de la Facultad de Ingeniería de la Universidad Nacional de Colombia.

Figura 14. Curva de destilación para los combustibles utilizados.

² Dato no disponible.

Nota 1: El punto de inflamación es inferior a 18 C, menor que le mínimo de medición establecido en la norma ASTM D-92 05^a, que es 79 C. ³ No se observó.

5.2. Pruebas de combustión de mezclas gasolina-etanol en un motor.

5.2.1. Matriz de pruebas.

Se seleccionó un diseño de experimentos factorial [161]. Las variables controlables de entrada fueron: los combustibles, la relación de compresión (*CR*), el tiempo de salto de la chispa (*ST*), la relación combustible-aire equivalente (ϕ) y la velocidad de giro del motor (*rpm*). Los niveles de estas variables se muestran en la Tabla 6. Otras variables de entrada comprenden las condiciones atmosféricas de presión y temperatura del lugar, las cuales durante el desarrollo de las pruebas se mantuvieron relativamente constantes.

Variable	Niveles					
Combustible	E0	E10	E20	E30		
CR	7	7.7	8.4	8.8		
ϕ	0.9	1.0				
ST	Desde 0 a 20 BTDC dependiendo del					
	combustible					
rpm			900			

Tabla 6. Niveles de las variables controlables.

Las variables de salida fueron: temperatura de escape, traza de presión de la cámara de combustión, emisiones (CO, CO₂, HC, NO_x y O₂) y torque al freno. Con esta información el diseño del experimento queda como se muestra en la Tabla 7.

	Combustible						
	E0 E10 E20		20	E30			
Relacion de compresion	ϕ						
	1.00	1.00	0.96	1.00	0.94	1.00	0.89
7							
7.7							
8.4				\checkmark			
8.8							
Rango ST [BTDC] (cada grado)	0 a 14 5 a 15 5 a 15				7 a	20	

 Tabla 7. Diseño final del experimento.

Como se observa en la Tabla 7 se realizaron 68 pruebas sin réplicas, que están compuestas por 20 pruebas principales (Tabla 9) dentro de las cuales se realizan cambios en el tiempo de salto de chispa. Es importante anotar que en cada corrida se verificaba que el motor estuviera estable en la condición seleccionada observando que la dispersión de todos los parámetros de entrada controlables no fuera mayor al 10%.

Se decide realizar la experimentación de la forma expuesta en la Tabla 7 debido a que se desea ver el comportamiento de las variables de salida cuando el motor utiliza diferentes mezclas gasolina-etanol en su AFR estequiométrica y en la AFR estequiométrica para el E0. Lo anterior porque al reemplazar la gasolina por la mezcla de gasolina-etanol normalmente no se modifica ningún parámetro de funcionamiento del motor, y en los motores encendidos por chispa se trabaja por lo general con AFR cercanas a la estequiométrica para E0, indiferentemente si su sistema de alimentación posee carburador o inyección.

5.2.2. Motor y equipos utilizados.

Todas las pruebas experimentales en motor de combustión interna se realizaron en el *Center for Diesel Research* de la Universidad de Minnesota.

Motor	Cooperative Fuels Research (CFR) octane engine.
Diámetro x carrera	88.22 x 114.3 [mm]
Desplazamiento	0.611 [L]
Relación de compresión	Ajustable 4:1 a 18:1
Velocidad de giro	900 – 600 [r.pm.]. El motor está acoplado a un motor síncrono
	que mantiene la velocidad constante.
Longitud de la biela	200 [mm]
Apertura válvula de admisión	10° ATDC
Cierre válvula admisión	34° ABDC
Apertura válvula de escape	40° BBDC
Cierre válvula de escape	15° ATDC

En la Tabla 8 se relacionan las principales características del motor utilizado.

Tabla 8. Motor de combustión interna utilizado para las pruebas.

El motor utilizado para los experimentos es un motor monocilíndrico. La Unidad de Control del Motor (*Engine Control Unit-ECU*) es un controlador de motor marca MoTeC 3.41G2 el cual se utilizó para manejar el inyector de combustible y el encendido. La configuración inicial del encendido adquirió los valores de 240 BTDC para el tiempo de inyección con un *dwell* de 0.33 ms. La *ECU* permite ajustes al ancho de pulso de la inyección y al tiempo de encendido mientras el motor se encontraba en funcionamiento. La presión en la cámara de combustión fue medida utilizando un transductor piezoeléctrico marca Kistler 6125B. La señal de corriente desde este equipo se convierte a señal de voltaje utilizando el equipo amplificador de carga Kistler 5010. Esta señal de voltaje se toma a una tasa aproximada de 1/10 de grado de giro del cigüeñal utilizando una tarjeta de adquisición de datos marca Measurement Computing 1608FS activada por un reloj interno. Se escribió un programa en lenguaje LabView de National Instruments, el cual permite la grabación de la señal del transductor de presión durante 100 ciclos de trabajo del motor. El flujo de combustible fue medido utilizando una balanza con una exactitud de +/- 0.4% de la lectura. Para el flujo de aire se utiliza un sensor LFE (*Laminar Flow Elements*) marca Meriam modelo 50MC2-2 de 2 pulgadas. La temperatura de los gases de escape se mide con una termocupla tipo K marca Omega con +/- 0.01 C de exactitud.

El banco de emisión está compuesto por los siguientes equipos:

- Analizador de gas O₂ Rosemount Analytical Model 755R (±0.1%)
- Analizador de gas CO₂ Rosemount Analytical Model 880 (±0.05%)
- Analizador de gas CO Rosemount Analytical Model 880 (±0.01%)
- Analizador de gas NO_x Rosemount Analytical Model 955 (±1% Full Scale)
- Analizador Heated FID J.U.M. Engineering (±10ppm)
- Beckman Industrial Model 400A Flame Ionization Detector (±1PPM)

Incertidumbre en la medición.

Las principales fuentes de incertidumbre de los equipos de medición descritos son:

• Inexactitud.

• Resolución finita.

Siguiendo el procedimiento de cálculo descrito en [164] y [165] se obtienen las siguientes incertidumbres expandidas, por equipo, dando un intervalo de confianza de 95%.

Sensor de presión Kistler 6125B :	±0.009 bar.
Tarjeta Measurement Computing 1608FS :	±8.85E-6 Volt.
Balanza:	±0.29 g.
Sensor LFE:	±2.61 l/min.
Termocupla:	±0.0029 C.
Analizador de gas O ₂ :	±0.007 %.
Analizador de gas CO ₂ :	±2.88E-5 %.
Analizador de gas CO:	±14.44 ppm
Analizador de gas NO _x :	±2.89 ppm
Analizador Heated FID:	±0.29 ppm
Beckman Industrial:	±0.029 ppm
	Sensor de presión Kistler 6125B : Tarjeta Measurement Computing 1608FS : Balanza: Sensor LFE: Termocupla: Analizador de gas O ₂ : Analizador de gas CO ₂ : Analizador de gas CO: Analizador de gas NO _x : Analizador Heated FID: Beckman Industrial:

Cómo se puede observar, los valores de incertidumbre de los instrumentos se encuentran dentro de intervalos que se ubican entre el margen de confianza de los resultados.

5.2.3. Resultados Experimentales.

A continuación se presentan los resultados del trabajo experimental, siguiendo un esquema en donde se muestran inicialmente las condiciones de prueba, seguido por el análisis estadístico realizado a los resultados de la misma, y luego los resultados conseguidos para la temperatura de salida y emisiones, las cuales son las que tienen relación directa con la investigación. Las otras variables consideradas en el análisis se reportan respectivamente en el Apéndice 3, Apéndice 4, Apéndice 5, Apéndice 6, Apéndice 7, Apéndice 8 y Apéndice 9. En cada variable dependiente considerada se realiza un análisis de los resultados obtenidos por influencia de parejas de variables independientes sobre cada variable dependiente, para al final resumir estos resultados en un análisis de comportamiento de cada variable dependiente.

5.2.3.1.Condiciones durante la prueba.

El Apéndice 2 presenta las condiciones más relevantes de cada una de las pruebas realizadas, además muestra el nombre asignado a cada una de ellas, el cual se repite en la Tabla 9, con el cual será fácil identificar los resultados en las secciones posteriores.

Combustible	Relación de compresión	Relación de combustible-aire equivalente (Figura 16)	Nombre asignado a la prueba
E0	7	1	E0-7-1
E0	7.7	1	E0-7.7-1
E10	7	1	E10-7-1
E10	7	0.96	E10-7-0.9
E10	7.7	1	E10-7.7-1
E10	7.7	0.96	E10-7.7-0.9
E20	7	1	E20-7-1
E20	7	0.94	E20-7-0.9

E20	7.7	1	E20-7.7-1
E20	7.7	0.94	E20-7.7-0.9
E20	8.4	1	E20-8.4-1
E20	8.4	0.94	E20-8.4-0.9
E30	7	1	E30-7-1
E30	7	0.9	E30-7-0.9
E30	7.7	1	E30-7.7-1
E30	7.7	0.9	E30-7.7-0.9
E30	8.4	1	E30-8.4-1
E30	8.4	0.9	E30-8.4-0.9
E30	8.8	1	E30-8.8-1
E30	8.8	0.9	E30-8.8-0.9

Tabla 9. Nombre asignado a las diferentes pruebas.

Las otras variables relacionadas en el Apéndice B son:

- Densidad y poder calorífico inferior (LHV) del combustible.

- Temperatura y presión atmosférica (Figura 17).

- Temperatura del combustible. Esta se mantuvo constante en 55 C gracias a un dispositivo con control de temperatura instalado en el tanque de almacenamiento.

La información anterior se muestra resumida en las siguientes Figuras.

Figura 15. Valor de densidad y LHV del combustible para cada prueba realizada.

Figura 16. Valor de la relación combustible-aire equivalente para cada prueba realizada.

Figura 17. Valor de la temperatura y presión ambiente para cada prueba realizada.

5.2.3.2. Análisis estadístico.

Inicialmente se verifica la homocedasticidad de los datos. Para realizar esto se utiliza la función *archtest* de MatLab, la cual ejecuta la prueba de heterocedasticidad condicional autoregresiva de Engle (*Autoregresive Conditional Heteroscedasticity*). Esta prueba utiliza como parámetro de entrada los residuales de la regresión lineal para cada variable dependiente y como resultado entrega una variable booleana aceptando o rechazando la hipótesis nula de homocedasticidad en los datos. Los resultados indican que para todas las variables dependientes consideradas existe homocedasticidad.

Completado el paso anterior, se procede a realizar un ANOVA 2 x 2 utilizando la agrupación de variables mostrada en la Tabla 10.

|--|

Variable	Combustible-ST	ST-Ø	CR-ST	CR-Ø	φ-	CR-
dependiente					Combustible	Combustible
Imep [kPa]		\checkmark			\checkmark	\checkmark
Presión máxima [bar]						
Duración de						
combustión [grado]						
Temperatura de	\checkmark					
escape [C]						
CO ₂ [%]						
CO [%]						\checkmark
HC [ppm]						\checkmark
O ₂ [%]				\checkmark	\checkmark	\checkmark
NO _x [ppm]						

Tabla 10. Combinación entre variables independientes para ANOVA 2x2.

En la anterior Tabla se observan las variables dependientes consideradas, las cuales fueron obtenidas desde la experimentación.

El ANOVA se realiza utilizando la función de Microsoft Excel llamada Análisis de Varianza. Los resultados se muestran en la Tabla 11, en la que los valores reportados corresponden a la probabilidad p que permite aceptar o rechazar la hipótesis nula de que no existe una influencia de la (s) variable (s) independiente (s) sobre la variable dependiente considerada, es decir que las medias son estadísticamente iguales. Para llevar esto a cabo, se toma un intervalo de confianza de 95% y si p>0.05 se dice que se acepta la hipótesis nula, si por el contrario p<0.05 se rechaza la hipótesis nula y se acepta una hipótesis alterna donde se considera que las medias son estadísticamente diferentes (casillas sombreadas en Tabla 11). Así mismo se presenta una probabilidad conjunta que representa la influencia total de cada variable independiente sobre la variable dependiente considerada, su cálculo se muestra con detalle en la referencia [145].

Variable	ST	Rc	Phi	Combustible
	4.7092E-05			0.11523133
		0.03766494		0.19132038
Torque [N m]	0.02196418	0.24450521		
			0.38656502	0.4962285
	0.42682517		0.03251886	
		0.1195518	0.46531549	
Probabilidad				
conjunta	4.4148E-07	0.00110099	0.00584932	0.0109399
	4.7092E-05			0.11523133
		0.03766494		0.19132038
Imen [kPa]	0.02196418	0.24450521		
intep [Ki a]			0.38656502	0.4962285
	0.42682517		0.03251886	
		0.1195518	0.46531549	
Probabilidad				
conjunta	4.4148E-07	0.00110099	0.00584932	0.0109399
Presión máxima	0.00014895			0.08070151
[bar]		0.11105889		0.21006151
	0.01637074	0.77989653		
			0.42222455	0.42222455
	0.00228775		0.01724779	

Variable	ST	Rc	Phi	Combustible
		4.3161E-05	0.03381312	
Probabilidad				
conjunta	5.5785E-09	3.7384E-06	0.00024624	0.00715767
	4.4095E-05			0.13492292
		0.03871047		0.1365109
Eficiencia Térmica	0.01779957	0.34293704		
			0.5121755	0.46735401
	0.36547762		0.20202612	
		0.0142805	0.00183275	
Probabilidad	2 0 6 0 5 7 0 7	0.00010050	0.00010064	0.00000704
conjunta	2.8685E-07	0.00018958	0.00018964	0.00860794
	6./135E-05	0.0100705		0.126318/3
	0.00004060	0.0192795		0.14121455
Duración Combustion [grada]	0.02884063	0.09059824		
Combustion [grado]			0.44380029	0.50868304
	0.73741396		0.07826645	
D. 1. 1. 1. 1. 1.		0.05952606	0.05961877	
conjunta	1 4278E-06	0.00010397	0 00207084	0.00907391
conjunta	2.6154E-05	0.00010377	0.00207004	0.13128706
	2.0134L-03	0.0213237		0.19760446
Temperatura escane	0.01085457	0.0213237		0.17700440
[C]	0.01903437	0.08501705	0 30751730	0.40266152
[0]	0.60422101		0.05207247	0.49200132
	0.00455191	0.00404081	0.12156457	
Probabilidad		0.00494081	0.12130437	
conjunta	3.1381E-07	8.9571E-06	0.00255984	0.01278107
				1
		0.08429508		0.00377471
		1		
$O_2[\%v/v]$			0.1041666	0.53045905
			1	
		0.61163994	0.00035668	
Probabilidad				
conjunta	0	0.05155824	3.7154E-05	0.00200233
				1
HC [ppm]		0.02211372		0.36486557
		1		
			0.4218804	0.64619483
			1	
		0.00393348	0.7690691	
Probabilidad				
conjunta	0	8.6984E-05	0.32445518	0.23577425
				1
		0.02157438		0.0823513
NOx [ppm]		1		
-11 J			0.3175606	0.27832146
			1	
		0.12755996	0.35302055	
Probabilidad		0.00075000	0 11010540	0.00000010
conjunta	0	0.00275203	0.11210542	0.02292013

Variable	ST	Rc	Phi	Combustible
				1
CO ₂ [%v/v]		0.03121816		0.1514181
		1		
			0.43233552	0.44958057
			1	
		0.2474844	0.03885583	
Probabilidad				
conjunta	0	0.00772601	0.01679876	0.06807464
				1
CO [%v/v]		0.03972661		0.5357453
		1		
			0.14187984	0.77736212
			1	
		0.20646908	0.02373269	
Probabilidad				
conjunta	0	0.00820232	0.00336719	0.4164681

Tabla 11. Valores de *p* para los diferentes ANOVA 2x2 realizados.

5.2.3.3.Resultados para Temperatura de escape.

La Figura 18 muestra una tendencia descendente para la temperatura de escape a medida que aumenta el tiempo de encendido (en grados antes del punto muerto superior). Por su parte se observa un promedio de temperatura mayor para el E10, en 2.04% con respecto a E0, en todo el rango de tiempos de encendido. La máxima diferencia entre el E10 y el E0 se consigue en 13 grados BTDC con un valor de 2.79%. La mínima diferencia se presenta en 1 grado BTDC con 1.15%. El combustible E20 tiene una diferencia de temperatura en promedio 1.91% mayor que el E0, con un valor máximo de 3.28% por encima del E0 en 14 grados BTDC, y mínimo de 0.37% en 5 grados BTDC por debajo del E0. El E30 tiene temperaturas de escape muy similares al E0, registrando una diferencia de 0.06% por debajo de este combustible.

Figura 18. Temperatura de escape como función del tiempo de encendido y el combustible.

En la Figura 19 se observa una disminución de la temperatura de escape a medida que aumenta la relación de compresión. Además, siempre la temperatura de escape va a ser mayor cuando se utiliza etanol, excepto para E30 a relaciones de compresión mayores que 7.7. En promedio la temperatura de escape para el E10 va a ser mayor en 1.92%, y en 1.49% para el E20. Con el combustible E30 el promedio es 1.35% por debajo del E0, ya que con este combustible se alcanzan relaciones de compresión mayores.

Figura 19. Temperatura de escape como función de la relación de compresión y el combustible.

La Figura 20 muestra un escenario en donde la temperatura siempre es menor para todas las relaciones de compresión mayores que 7, para todos los tiempos de encendido. Las diferencias en promedio, con respecto a la Rc de 7, son de 1.54 % para 7.7, 3.25% para 8.4 y 6.97% para 8.8. La excepción se encuentra en la relación de compresión 7.7 para los ángulos entre 1 y 3 grados BTDC, donde la diferencia en promedio con respecto a Rc 7 es de 0.93%.

Figura 20. Temperatura de escape como función del tiempo de encendido y la relación de compresión.

Al comparar los resultados de la Figura 21 contra los obtenidos para el punto estequiométrico con el combustible E0, se observa un aumento de la temperatura para E10 y E20 bajo condición de alimentación pobre ($\phi = 0.9$), de 1.47% y 1.95% respectivamente. Para E30 bajo esta misma situación la diferencia es de 0.73% por debajo de la temperatura del E0. Cuando se confrontan las mezclas con etanol trabajando en su punto estequiométrico contra el E0 en la misma circunstancia, la tendencia observada es muy similar a la anterior, pero con diferencias mayores. Es así como para el E10 y el E20 se tienen discrepancias de 2.33% y 1.09% por encima, mientras que el E30 tiene una diferencia de 1.89% por debajo del valor para el E0 estequiométrico.

Figura 21. Temperatura de escape como función del combustible y de la relación combustible-aire equivalente.

La Figura 22 y Figura 23 muestran tendencias muy similares y diferencias en promedio no mayores a 0.5%.

Figura 22. Temperatura de escape como función del tiempo de encendido y la relación combustible-aire equivalente.

Figura 23. Temperatura de escape como función de la relación de compresión y de la relación combustible-aire equivalente.

En la Figura 24 se analiza el influjo de la composición del combustible sobre la temperatura de escape, utilizando la información de la Tabla 11. La información obtenida no es concluyente para el E10, E20 y el E30 cuando se comparan con el E0. Se ve un aumento en el E10 y el E20, pero los valores caen dentro del intervalo de confianza del E0. Se puede concluir que si existe influencia de la composición de combustible, cuando se analiza el caso del E30 contra el E10 o el E20.

Figura 24. Influencia del combustible en la temperatura de escape.

La Figura 25, Figura 26 y Figura 27 presentan resultados concluyentes con respecto a la influencia del tiempo de encendido, la relación de compresión y la relación de combustible-aire en la temperatura de escape del motor. Para todas estas variables independientes se encuentra que a medida que aumentan, disminuye la temperatura de salida.

Figura 25. Influencia del tiempo de encendido en la temperatura de escape.

Figura 26. Influencia de la relación de compresión en la temperatura de escape.

Figura 27. Influencia de la relación combustible-aire equivalente en la temperatura de escape.

5.2.3.4. Emisiones.

Las emisiones gaseosas desde el MCI se consideran parte importante de este trabajo, debido a que reflejan el desarrollo del proceso de combustión. Es importante anotar acá que estas pruebas sólo se hicieron para los puntos de MBT de cada combustible (Tabla 12).

Prueba	MBT [N-m]	ST@MBT
E00-7.0-1	40.4079	7
E10-7.0-1	39.8179	9
E10-7.0-0.9	40.0031	8
E20-7.0-1	40.2372	9
E20-7.0-0.9	40.2332	7
E30-7.0-1	40.6041	12
E30-7.0-0.9	40.2709	8
E00-7.7-1	41.4975	7
E10-7.7-1	40.5633	5
E10-7.7-0.9	40.7507	6
E20-7.7-1	41.3019	8
E20-7.7-0.9	41.1125	8
E30-7.7-1	41.2410	9
E30-7.7-0.9	41.2084	8
E20-8.4-1	42.4460	8
E20-8.4-0.9	42.2528	7
E30-8.4-1	42.7518	11
E30-8.4-0.9	43.3326	10
E30-8.8-1	43.1141	13
E30-8.8-0.9	41.4737	13

Tabla 12. Valores de MBT y tiempo de encendido por prueba realizada.

Oxígeno (O₂)

En la Figura 28 se observa que no existe cambio en la emisión de oxígeno cuando aumenta la relación de compresión. Sin embargo ocurre un aumento en esta emisión a medida que incrementa la cantidad de etanol en el combustible. Es así como para el E10 el aumento es de 212.5%, para E20 de 275% y para E30 de 337.5% cuando se compara con la emisión de O_2 para el E0.

Figura 28. Oxígeno en el escape como función de la relación de compresión y el combustible.

Como es de esperarse, a medida que la mezcla se empobrece la emisión de O_2 aumenta, tal y como se observa en la Figura 29 y Figura 30 para diferentes valores de etanol en el combustible y de relaciones de compresión.

Figura 29. Oxígeno en el escape como función del combustible y de la relación combustible-aire equivalente.

Figura 30. Oxígeno en el escape como función de la relación de compresión y la relación combustible-aire equivalente.

La Figura 31 refleja un comportamiento en el cual al aumentar la cantidad de etanol en el combustible se incrementa la cantidad de oxígeno en el escape. Al comparar la emisión de O_2 para los combustibles oxígenados con respecto al E0, se encuentran diferencias de más de 200%. Al comparar estas diferencias entre combustibles mezclados con etanol, dan entre 20% y 40%.

Figura 31. Influencia del combustible en la emisión de oxígeno.

La Figura 32 y Figura 33 ratifican que no hay diferencia en la emisión de O_2 para las relaciones de compresión hasta 7.7. Desde ese punto en adelante aumentan en cerca de 20% y 30% para las relaciones de 8.4 y 8.8, cubiertas principalmente por E20 y E30. La Figura 33 confirma que a medida que la mezcla es más pobre se tiene una emisión de O_2 mayor en 7.04% con respecto a la condición estequiométrica.

Figura 32. Influencia de la relación de compresión en la emisión de oxígeno.

Figura 33. Influencia de la relación combustible-aire equivalente en la emisión de oxígeno.

Hidrocarburos sin quemar (HC)

Esta emisión gaseosa se midió utilizando equipos que miden con FID. Esta técnica, si bien es muy precisa para reportar especies orgánicas como átomos de carbono individuales (en ppm) en el escape, presenta desviaciones de las concentraciones reales cuando se analizan compuestos oxígenados como alcoholes, aldehídos, cetonas, compuestos nitrogenados, entre otros [146]. Esto quiere decir que cualquier cantidad de oxígeno en el escape puede cambiar la medida. Para mínimizar este efecto, se deben calibrar los equipos utilizando gases de referencia con un contenido de O_2 similar al que se desea medir. Este procedimiento se realizó en los equipos utilizados para la prueba.

La Figura 34 presenta un panorama en el que siempre al utilizar mezclas gasolina-etanol, y entre mayor sea el contenido de etanol, la emisión de HC disminuye desde un 5% para el E10 en Rc=7, hasta un 18% para E30 en Rc=8.4. La Figura 35 muestra la misma tendencia para el cambio de combustibles, y

además exhibe que cuando disminuye la relación combustible-aire equivalente, la emisión de HC es mayor hasta en 14.4% para el E30. La Figura 36 corrobora lo explicado anteriormente.

Figura 34. Hidrocarburos sin quemar en el escape como función de la relación de compresión y el combustible.

Figura 35. Hidrocarburos sin quemar como función del combustible y la relación combustible-aire equivalente.

Figura 36. Hidrocarburos sin quemar como función de la relación de compresión y la relación combustible-aire equivalente.

Como se observa en la Figura 37, el cambio de combustible no tiene una influencia real en la emisión de HC al igual que la relación combustible-aire equivalente (Figura 39). Únicamente se reconoce a la relación de compresión como variable independiente que puede cambiar la emisión de HC de forma estadísticamente significativa (Figura 38).

Figura 37. Influencia del combustible en la emisión de hidrocarburos sin quemar.

Figura 38. Influencia de la relación de compresión en la emisión de hidrocarburos sin quemar.

Figura 39. Influencia de la relación combustible-aire equivalente en la emisión de hidrocarburos sin quemar.

Óxidos de Nitrógeno (NOx)

Los óxidos de nitrógeno, que comprenden NO y NO_{2} , son quizás la emisión más importante para analizar en esta investigación. Los NOx se forman cuando la temperatura en la cámara de combustión es lo suficientemente alta (mayor a 1600 C) cómo para permitir la disociación del N₂ presente en el aire atmosférico [72]. Además de esto, si el tiempo de residencia es suficiente y existe O₂ disponible en la cámara de combustión, el NO puede formar NO₂. Es entonces una medida indirecta de la temperatura en la cámara de combustión. La Figura 40 muestra que a medida que aumenta la concentración de etanol en la mezcla combustible, se incrementa la cantidad de NOx en el escape con respecto a E0. Es así como el E10 presenta un aumento de 15.78%, el E20 de 20.17% y el E30 de 21.05%.

Figura 40. Óxidos de nitrógeno como función de la relación de compresión y el combustible.

La Figura 41 y Figura 42 presentan un comportamiento esperado en el que los NOx aumentan a medida que la mezcla funciona más cerca del punto estequiométrico.

Figura 41. Óxidos de nitrógeno como función del combustible y de la relación combustible-aire equivalente.

Figura 42. Óxidos de nitrógeno como función de la relación de compresión y la relación combustible-aire equivalente.

La Figura 43 revela un comportamiento interesante, en donde la emisión de NOx aumenta con la cantidad de etanol en el combustible, con respecto a E0. Este incremento tiene valores similares a los reportados para la Figura 40. Esto quiere decir que la temperatura dentro de la cámara de combustión es mayor para los combustibles oxígenados cotejados contra el E0. Pueden parecer contradictorios estos resultados con los reportados para la temperatura de escape (Figura 24). Sin embargo se puede explicar teniendo presente que la temperatura es medida en el ducto de escape, reflejando fenómenos intrínsecos de transferencia de calor en un flujo multicomponente (ver Figura 46). Al medir los NOx en el escape se garantiza una medida fija de esa composición, ya que como menciona Heywood [72], la formación de NOx es determinada por un tiempo crítico delimitado hasta los 20 grados de cigüeñal después del salto de la chispa. Posterior a esto la composición continúa prácticamente invariable.

Figura 43. Influencia del combustible en la emisión de óxidos de nitrógeno.

La Figura 44 muestra que no existe influencia de la relación de compresión, hasta 7.7, sobre la emisión de NOx. Al comparar contra los NOx para la Rc de 7, se encuentra que para 8.4 hay una diferencia de

4.33% por encima, mientras que para 8.8 la diferencia es de 4.65% por debajo. La Figura 45 muestra que no se halla preponderancia de la relación combustible-aire equivalente sobre la emisión de NOx.

Figura 44. Influencia de la relación de compresión en la emisión de óxidos de nitrógeno.

Figura 45. Influencia de la relación combustible-aire equivalente en la emisión de óxidos de nitrógeno.

Figura 46. Relación entre la temperatura de escape y la emisión de óxidos de nitrógeno para diferentes combustibles.

Dióxido de carbono (CO₂)

El CO₂ es una medida indirecta de qué tan bien se han quemado los carbonos contenidos en el combustible. En la Figura 47 se puede observar que a medida que aumenta la relación de compresión y el contenido de etanol en el combustible, aumenta la emisión de CO₂, exceptuando el E10. Las diferencias van desde 3% para el E10 hasta 6.8% para el E30. Discrepancias bastante pequeñas si se consideran los valores de emisión de O₂ reportados para los combustibles oxígenados.

Figura 47. Dióxido de carbono como función de la relación de compresión y el combustible.

Las Figura 48 y Figura 49 reportan una tendencia a "quemar mejor" para las mezclas más pobres, que a pesar de tener una temperatura de combustión menor, produce hasta un 6.9% más de emisión de CO₂.

Figura 48. Dióxido de carbono como función del combustible y la relación combustible-aire equivalente.

Figura 49. Dióxido de carbono como función de la relación de compresión y la relación combustible-aire equivalente.

La Figura 50 evidencia la no dependencia de la emisión de CO_2 del tipo de combustible, al igual que de la relación de compresión hasta 7.7 (Figura 51). Para mayores relaciones de compresión la emisión aumenta, al igual que con el empobrecimiento de la mezcla aire-combustible (Figura 52).

Figura 50. Influencia del combustible en la emisión de dióxido de carbono.

Figura 51. Influencia de la relación de compresión en la emisión de dióxido de carbono.

Figura 52. Influencia de la relación combustible-aire equivalente en la emisión de dióxido de carbono.

Monóxido de carbono (CO)

El CO al igual que el CO₂, es un indicador de qué tan bueno ha sido el proceso de oxidación de carbonos en el combustible. Es decir, entre menor sea la emisión de CO, y junto con una menor emisión de HC, se puede afirmar que el proceso de combustión es más eficiente. La Figura 53 muestra precisamente esta tendencia. Al comparar los valores del combustible oxígenado contra el E0, resultan diferencias por debajo de 42% para el E10, 67% para el E20 y 62,5% para el E30. El cambio con la relación de compresión es de unos pocos puntos porcentuales hacia abajo a partir de Rc=7.7. La misma tendencia se observa en la Figura 54 y Figura 55, en donde adicionalmente es evidente que a medida que la mezcla aire-combustible se hace más pobre el CO en el escape va a ser menor entre 54% y 75%..

Figura 53. Monóxido de carbono como función de la relación de compresión y el combustible.

Figura 54. Monóxido de carbono como función del combustible y la relación combustible-aire equivalente.

Figura 55. Monóxido de carbono como función de la relación de compresión y de la relación combustible-aire equivalente.

La Figura 56 muestra que existe preponderancia de la composición de combustible sólo para E20 y E30 cuando se contrastan contra E0. La Figura 57 y Figura 58 revelan que la relación de combustible, después de 7.7, y la relación combustible-aire equivalente tienen una influencia estadísticamente significativa sobre la emisión de CO.

Figura 56. Influencia del combustible en la emisión de monóxido de carbono.

Figura 57. Influencia de la relación de compresión en la emisión de monóxido de carbono.

Figura 58. Influencia de la relación combustible-aire equivalente en la emisión de monóxido de carbono.

5.3. Discusión de resultados experimentales.

Del análisis de los resultados experimentales presentados en este capítulo, se puede decir que el cambio de combustible a uno que contenga etanol influye estadísticamente sobre la emisión de NOx y O₂, aumentándolas a medida que la concentración de etanol en el combustible crece. Es de gran interés el aumento en la emisión de NOx, ya que está directamente relacionada con un incremento en la temperatura de combustión durante los primeros 20 grados desde el inicio de ese proceso [72]. De la misma forma, se evidencia en la Figura 59 y Figura 60 el mismo comportamiento cuando se analizan los resultados considerando Rc=7 y Rc=7.7, respectivamente. Las diferencias se encuentran entre 15.78% para E0 y 25% para E30, con Rc=7. Cuando Rc=7.7 el rango se encuentra entre 15.79% para E0 y 18.48% para E30.

Otro parámetro de operación que ejerce gran influencia sobre las emisiones y la temperatura de escape es la relación de compresión.

Figura 59. Influencia del combustible en la emisión de NOx. Rc=7.

Figura 60. Influencia del combustible en la emisión de NOx. Rc=7.7.

6. RESULTADOS DEL MODELO

El modelo propuesto en el capítulo 4 se programa en MatLab®, realizando cálculos cada grado de giro del cigüeñal. Los parámetros de entrada son:

- Combustible: Permite utilizar isooctano o combustible con fórmula $C_n H_{1.7n}$ [132] como base. Se puede simular puro o mezclado con etanol ($C_2 H_5 OH$) en proporciones hasta 30% v/v de este último.
- Presión y temperatura atmosférica.
- Temperatura del líquido refrigerante.
- Temperatura del combustible.
- Fracción de masa residual: ver Apéndice 10.
- Los parámetros geométricos del motor, previamente cargados en una tabla. Todas las pruebas y simulación se realizan en el motor CFR descrito en la Tabla 8.
- El tiempo de salto de chispa en grados BTDC.
- La relación de compresión.
- La relación de combustible-aire equivalente.
- Velocidad de giro del motor, en revoluciones por minuto [rpm].

Inicia entonces esta sección presentado la validación del modelo. Se muestra una comparación entre las curvas de presión en cámara de combustión obtenidas desde la experimentación, contra las curvas de presión calculadas desde el modelo. Se simulan diferentes combustibles, tiempos de salto de chispa, relaciones de compresión y relaciones de combustible-aire equivalente. A continuación se muestran los resultados para la temperatura del cilindro, la tasa de liberación de calor y la presión en el cilindro, para 32 casos de estudio, incluido aquel coincidente con las condiciones de experimentación. En cada caso de estudio se presenta una figura comparativa de resultados para cada una de las variables mencionadas. Finaliza la sección con un análisis general de estos resultados

6.1.Validación.

Inicialmente se presenta en la Figura 61, el resultado del modelo programado contra el consignado en el trabajo original de Blizzard y Keck [132]. Como puede observarse la coincidencia es bastante alta

Figura 61. Comparación de fracción de masa quemada entre el trabajo original y este trabajo. Motor: diámetro=2.5 in, carrera= 3 in, altura CC=0.75 in, RC=5, N=2100 rpm, phi=1.0, ST=30 BTDC.

Como siguiente paso, se realizan las simulaciones descritas en la Tabla 13, con el único fin de validar los resultados del modelo contra los experimentales. Se calculan tres tipos de errores entre los resultados experimentales y los del modelo. El primero consiste en el error en el valor de la presión máxima. El segundo tiene que ver con el error en la predicción del ángulo en el cual ocurre la presión máxima. Mientras que el tercero radica en el error resultado de la comparación entre las áreas bajo la curva de presión. Cabe anotar que los dos primeros errores, para todas las corridas realizadas, tuvieron valores despreciables, por debajo de 0.0001%, razón por la cual en la Tabla 13 sólo se reporta el error 3.

Combustible	Rc	ST	ϕ	Patm	rpm	Error 3 [%]
	7	7*	1.00120785	100000	900	0.00793059
		10	1.00120785	100000	900	0.0346963
FO		15	1.00120785	99000	900	1.38742035
ĽU	7.7	7*	1.00216	97000	900	1.20953075
		10	1.00216	97000	900	1.04660738
		15	1.00216	98000	900	0.39053729
Total E0						0.54663115
		7	0.9538	98000	900	1.18671078
	7		1.00103699	99000	900	0.168028
		8*	1.00103699	99000	900	0.17517511
		9*	0.9538	99000	900	1.3587425
		10	0.9538	99000	900	0.63524686
			1.00103699	99000	900	0.79216974
		15	0.9538	98000	900	0.51162033
E10			1.00103699	99000	900	0.96740777
EIU		5*	0.95755755	97000	900	0.49930926
	7.7	6*	0.99980274	97000	900	0.24196513
		7	0.95755755	97000	900	0.38797073
			0.99980274	97000	900	0.31688814
		10	0.95755755	98000	900	1.70508903
			0.99980274	97000	900	1.62267059
		15	0.95755755	98000	900	0.7189502
			0.99980274	97000	900	0.3592056
Total E10						0.34854278
E20		7*	0.936	97000	900	0.92521056
	7		0.99063195	99000	900	0.05177482
		9*	0.936	97000	900	1.71033046
		10	0.936	97000	900	1.68796741
			0.99063195	99000	900	0.52362404
		15	0.936	97000	900	0.96091002
			0.99063195	101000	900	1.84568375
	7.7	7	0.93920251	96000	900	0.30778723
			1.00049187	97000	900	0.67682211
		8*	0.93920251	96000	900	0.25397765
			1.00049187	97000	900	0.11516399
		10	0.93920251	97000	900	1.15102812
			1.00049187	97000	900	0.05769144
		15	0.93920251	98000	900	1.06057717

Combustible	Rc	ST	ϕ	Patm	rpm	Error 3 [%]
			1.00049187	98000	900	0.03206113
Total E20						0.37225034
		7	0.889	97000	900	0.17601244
	7		0.99544319	99000	900	1.27175888
		8*	1.00103699	99000	900	0.0214461
		10	0.889	97000	900	3.98343573
			0.99544319	99000	900	0.28683285
		12*	0.889	97000	900	4.94035795
		15	0.889	97000	900	2.91138654
F30			0.99544319	102000	900	0.19205413
E30	7.7	7	0.8895468	97000	900	2.44929372
			0.99205849	97000	900	0.53440079
		8*	0.99205849	97000	900	0.46550269
		9*	0.8895468	97000	900	3.42127115
		10	0.8895468	98000	900	2.5540325
			0.99205849	97000	900	0.21058575
		15	0.8895468	98000	900	1.05240871
			0.99205849	98000	900	1.26440594
Total E30						1.33326829
Total general						0.46451227

Tabla 13. Tabla con simulaciones realizadas para validación. Patm es la presión atmosférica de entrada al modelo. Los STseñalados con asterisco (*) corresponden a los puntos de MBT.

A continuación se plantean cuatro condiciones de funcionamiento, descritas también en la Tabla 13, para realizar la verificación gráfica así:

- Condición 1: combustible E0, Rc=7, ϕ =1, 900 rpm, ST=15. (Figura 62)
- Condición 2: combustible E10, Rc=7.7, $\phi = 1,900$ rpm, ST=10. (Figura 63)
- Condición 3: combustible E20, Rc=8.4, $\phi = 1,900$ rpm, ST=15. (Figura 64)
- Condición 4: combustible E30, Rc=8.8, ϕ =0.9, 900 rpm, ST=15. (Figura 65)

Figura 62. Comparación entre curva de presión experimental (15) y simulada (SIM) para la condición 1.

Figura 63. Comparación entre curva de presión experimental (10) y simulada (SIM) para la condición 2.

E20-8.4-1

Figura 64. Comparación entre curva de presión experimental (15) y simulada (SIM) para la condición 3.

Figura 65. Comparación entre curva de presión experimental (15) y simulada (SIM) para la condición 4.

Como puede observarse, los resultados del modelo muestran una concordancia alta con los obtenidos experimentalmente, con errores globales que no superan el 4% y errores puntuales menores siempre a 10%.

6.2. Temperatura y presión en cámara de combustión, y curva de liberación de calor.

Fueron realizadas otras simulaciones además de las descritas en la Tabla 13. Estas se clasifican en diferentes casos, de acuerdo con cambios en cualquiera de las variables de entrada del modelo. Los casos se muestran en la Tabla 14.

Caso	Nombre	ST [grado BTDC]	Rc	Patm [kPa]	Combustible	φ	rpm
1a		7	7	100	E0 a E30	0,9 a 1.	900
1b		10	7	100	E0 a E30	0,9 a 1.	900
1c	Condiciones del	15	7	100	E0 a E30	0,9 a 1.	900
1d	Eperimento	7	7,7	100	E0 a E30	0,9 a 1.	900
1e		10	7,7	100	E0 a E30	0,9 a 1.	900
1f		15	7,7	100	E0 a E30	0,9 a 1.	900
2a	Condiciones MBT	(Tabla 12)	7	100	E0 a E30	0,9 a 1.	900
2b	Condiciones will I	(Tabla 12)	7,7	100	E0 a E30	0,9 a 1.	900
3a		7	7	75	E0 a E30	0,9 a 1.	900
3b	Condiciones Bogotá 1.	10	7	75	E0 a E30	0,9 a 1.	900
3c		15	7	75	E0 a E30	0,9 a 1.	900
3d		7	7,7	75	E0 a E30	0,9 a 1.	900
3e		10	7,7	75	E0 a E30	0,9 a 1.	900
3f		15	7,7	75	E0 a E30	0,9 a 1.	900
4a		7	7	75	E0 a E30	0,9 a 1.	3000
4b		10	7	75	E0 a E30	0,9 a 1.	3000
4c	Condiciones Bogotá 2.	15	7	75	E0 a E30	0,9 a 1.	3000
4d		7	7,7	75	E0 a E30	0,9 a 1.	3000
4e		10	7,7	75	E0 a E30	0,9 a 1.	3000
4f		15	7,7	75	E0 a E30	0,9 a 1.	3000
5a	Condiciones igual imep	7	7	100	E0 a E30	0,9 a 1.	900
5b	que E0.	10	7	100	E0 a E30	0,9 a 1.	900

Caso	Nombre	ST [grado BTDC]	Rc	Patm [kPa]	Combustible	ϕ	rpm
5c		15	7	100	E0 a E30	0,9 a 1.	900
5d		7	7,7	100	E0 a E30	0,9 a 1.	900
5e		10	7,7	100	E0 a E30	0,9 a 1.	900
5f		15	7,7	100	E0 a E30	0,9 a 1.	900
6a		7	7	75	E0 a E30	0,9 a 1.	900
6b		10	7	75	E0 a E30	0,9 a 1.	900
6c	Condiciones igual imep	15	7	75	E0 a E30	0,9 a 1.	900
6d	que E0 - Bogotá.	7	7,7	75	E0 a E30	0,9 a 1.	900
6e		10	7,7	75	E0 a E30	0,9 a 1.	900
6f		15	7,7	75	E0 a E30	0,9 a 1.	900

Tabla 14. Casos de estudio.

A continuación se enseñan los resultados para cada uno de los casos descritos. Es importante anotar que todos estos se presentan únicamente para el rango de interés en la combustión, el cual comprende desde el instante en el que salta la chispa hasta 50 grados ATDC. Se sigue la misma convención de denominación de pruebas adoptada en la Tabla 9. La forma de presentación de la información para cada uno de los casos es la siguiente:

- Figura para la temperatura en el cilindro en el rango de interés (Apéndice 12).
- Figura para la liberación de calor en el rango de interés (Apéndice 12).
- Figura para la presión en el cilindro en el rango de interés (Apéndice 12).
- Tabla con valores de las siguientes variables generales de comparación (Apéndice 12):
 - dQRTmaxR: Máximo Calor liberado por los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC
 - dQRTpromR: Promedio de Calor liberado por los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC.
 - dQRTmax20: Máximo Calor liberado por los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 20 grados después del mismo.
 - dQRTprom20: Promedio de Calor liberado por los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 20 grados después del mismo.
 - PcilmaxR: Presión máxima de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC
 - PcilpromR: Presión promedio de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC.
 - Pcilmax20: Presión máxima de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 20 grados después del mismo.
 - Pcilprom20: Presión promedio de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 20 grados después del mismo.
 - TcilmaxR: Temperatura máxima de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC
 - TcilpromR: Temperatura promedio de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 50 grados ATDC.
 - Tcilmax20: Temperatura máxima de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 20 grados después del mismo.
 - Tcilprom20: Temperatura promedio de los gases en el cilindro para el rango de combustión desde el salto de la chispa hasta 20 grados después del mismo.
- Figura de diferencias porcentuales entre las variables descritas en la viñeta anterior frente a los valores para E0. Los valores positivos indican un valor por encima del valor de E0.

Caso 1a: ST=7, Rc=7, Patm=100, rpm=900

La Figura 66 muestra diferencias en TcilmaxR entre 0.38 % y 1.78 % para algunos combustibles oxígenados. Se nota un aumento en dQRTpromT para los mismos carburantes, de 0.72 % a 3.44 %, que indica un incremento en el tiempo en que se lleva a cabo la combustión.

Figura 66. Diferencia porcentual en las variables generales consideradas, caso 1a.

Caso 1b: ST=10, Rc=7, Patm=100, rpm=900

En la Figura 67 se observa una tendencia muy similar a la del caso 1a, con la diferencia de que la temperatura para E30-7-0.9 es más cercana al grupo de los otros combustibles.

Figura 67. Diferencia porcentual en las variables generales consideradas, caso 1b.

Caso 1c: ST=15, Rc=7, Patm=100, rpm=900

La diferencia más destacada con respecto a los casos anteriores tiene que ver con que sólo para el combustible E20 en su condición de funcionamiento con mezcla pobre, obtuvo valores mayores tanto para TcilpromR (0.12%) como para Tcilmax (0.58%) (Figura 68). Los otros combustibles siempre estuvieron por debajo de E0.

Figura 68. Diferencia porcentual en las variables generales consideradas, caso 1c.

Caso 1d: ST=7, Rc=7.7, Patm=100, rpm=900

El panorama general para este caso cambia radicalmente con respecto a los anteriores. En la Figura 69 se observa que el E10 es mayor que el E0, en todas las variables, tanto para la mezcla pobre como estequiometrica. Así mismo el E20 y E30 obtienen valores de TcilpromR mayores en 0.30% y 2.73% usando ϕ estequiométrico. Para dQRTpromR, estos combustibles aumentaron en 4.65% y 8.31% respectivamente.

Caso 1e: ST=10, Rc=7.7, Patm=100, rpm=900

Se presenta el mismo comportamiento que para el caso anterior, con una amplia variación en las diferencias porcentuales para el E10.

Figura 70. Diferencia porcentual en las variables generales consideradas, caso 1e.

Caso 1f: ST=15, Rc=7.7, Patm=100, rpm=900

Continua la tendencia mostrada para el caso anterior, con la inclusión del E30 para ϕ pobre con valores de TcilmaxR mayores en 3.91%.

Figura 71. Diferencia porcentual en las variables generales consideradas, caso 1f.

Caso 2a: ST=MBT, Rc=7, Patm=100, rpm=900

Se observan unas pequeñas diferencias en Tcilmax, no mayores a 1.41% por encima del E0, para E10 en todos los ϕ , y en E20 para mezcla pobre (Figura 72) Los valores de dQRTpromR son mayores en 3.4 % y 4.1 % para E20-7-1 y E30-7-1, con respecto a E0.

Figura 72. Diferencia porcentual en las variables generales consideradas, caso 2a.

Caso 2b: ST=MBT, Rc=7.7, Patm=100, rpm=900

A diferencia del caso 2a, todos los valores de la Figura 73 son mayores para E10-7-1 con respecto a E0. Así mismo los valores de TcilpromR son mayores entre 0.35% y 1.36% para todas las diferentes combinaciones, excluyendo E30-7-0.9. De la misma forma se evidencia un aumento en la liberación de

calor, entre 0.6% y 5% para las combinaciones de E10 a E30 en mezcla estequiométrica, y E10 en mezcla pobre.

Figura 73. Diferencia porcentual en las variables generales consideradas, caso 2b.

Caso 3a: ST=7, Rc=7, Patm=75, rpm=900

Se observa en la Figura 74 un incremento en el valor de dQRTpromR, entre 0.72% y 2.8%, para las combinaciones E20-7-1, E30-7-1, E10-7-0.9, E20-7-0.9.

Caso 3b: ST=10, Rc=7, Patm=75, rpm=900

En este caso la TcilmaxR es siempre mayor para las mezclas con etanol, los valores van desde 0.19% hasta 6.16% (Figura 75).

Figura 75. Diferencia porcentual en las variables generales consideradas, caso 3b.

Caso 3c: ST=15, Rc=7, Patm=75, rpm=900

Se presenta en Figura 76 la misma tendencia del caso anterior, excluyendo de la misma a las combinaciones E20-7-1 y E30-7-1.

Caso 3d: ST=7, Rc=7.7, Patm=75, rpm=900

La Figura 77 muestra un aumento consistente, entre 0.02% y 6.26%, en todas las variables para el E10-7-1 contra E0. La combinación E30-7-1 presenta el mismo comportamiento, con valores entre 1.23% y 8.31%, sin incluir en el mismo a las variables asociadas a los primeros 20 grados después del salto de chispa.

Caso 3e: ST=10, Rc=7.7, Patm=75, rpm=900

Se observa en la Figura 78 el mismo comportamiento del caso anterior, con diferencias mayores en dQRTmax20 para la combinación de E10-7-1.

Figura 78. Diferencia porcentual en las variables generales consideradas, caso 3e.

Caso 3f: ST=15, Rc=7.7, Patm=75, rpm=900

En la Figura 79 en todas las variables, entre 0.038% y 17.44%, para la combinación E10-7-0.9 con respecto a E0. El E10 con mezcla estequiométrica presenta valores mayores, hasta en 20% para dQRTmax20, para el rango de 20 grados después del salto de la chispa.

Caso 4a: ST=7, Rc=7, Patm=75, rpm=3000

De acuerdo con la Figura 80, las variables TcilmaxR y dQRTpromR son mayores que el E0 para las combinaciones E20-7-1, E30-7-1, E10-7-0.9 y E20-7-0.9 en proporciones desde 0.097% hasta 3.63%.

Figura 80. Diferencia porcentual en las variables generales consideradas, caso 4a.

Caso 4b: ST=10, Rc=7, Patm=75, rpm=3000

La Figura 81 muestra un aumento desde 3.34% hasta 8.74% en dQRTmaxR para las mezclas con etanol bajo relación combustible-aire estequiométrica. Asi mismo es evidente un incremento en el parámetro dQRTpromR, de hasta 2.5%, para las combinaciones E30-7-1, E10-7-0.9 y E20-7-0.9.

Figura 81. Diferencia porcentual en las variables generales consideradas, caso 4b.

Caso 4c: ST=15, Rc=7, Patm=75, rpm=3000

Este caso no presenta aumentos significativos en las variables consideradas en la Figura 82.

Figura 82. Diferencia porcentual en las variables generales consideradas, caso 4c.

Caso 4d: ST=7, Rc=7.7, Patm=75, rpm=3000

La Figura 83 presenta un aumento en todas las variables, hasta del 11%, para las combinaciones E10-7-1, E30-7-1 y E10-7-0.9.

Figura 83. Diferencia porcentual en las variables generales consideradas, caso 4d.

Caso 4e: ST=10, Rc=7.7, Patm=75, rpm=3000

Se observa en la Figura 84 un aumento en todas las variables para las combinaciones E10-7-1, entre 1.66% y 21.7%, E30-7-1, 1.88% y 8.02%, y E10-7-0.9 y E30-7-0.9 entre 1.5% y 3.85%.

Figura 84. Diferencia porcentual en las variables generales consideradas, caso 4e.

Caso 4f: ST=15, Rc=7.7, Patm=75, rpm=3000

La Figura 85 muestra aumento de las variables con respecto al E0, principalmente para el rango de 20 grados después del salto de la chispa.

Figura 85. Diferencia porcentual en las variables generales consideradas, caso 4f.

Caso 5a: ST=7, Rc=7, Patm=100, rpm=900, igual imep que E0

La Figura 86 muestra que para el caso de E10 se superan los valores de todas las variables consideradas, hasta en un 15%, con respecto a E0.

Figura 86. Diferencia porcentual en las variables generales consideradas, caso 5a.

Caso 5b: ST=10. Rc=7, Patm=100, rpm=900, igual imep que E0

Se observa en la Figura 87 una serie de comportamientos diferentes: el E10 presenta mayores valores para TcilmaxR (1.09%), dQRTpromR (0.24%) y dQRTmaxR (9.04%), mientra que en el E20 todas las variables aumentan hasta en 6% con excepción de TcilmaxR y Tcilprom20.

Figura 87. Diferencia porcentual en las variables generales consideradas, caso 5b.

Caso 5c: ST=15, Rc=7, Patm=100, rpm=100, igual imep que E0

La Figura 88 muestra que el E10 aumenta su valor de Tcilmax en 1.74%, mientras que todos los valores relacionados con la liberación de calor se incrementan entre 0.08% y 3.39%.

Figura 88. Diferencia porcentual en las variables generales consideradas, caso 5c.

Caso 5d: ST=7, Rc=7.7, Patm=100, rpm=900, igual imep que E0

De acuerdo con la Figura 89, únicamente el E30 tiene valores por encima de aquellos correspondientes al E0 para las variables TcilmaxR (0.75%), dQRTpromR (1.75%) y dQRTmaxR (4.55%).

Figura 89. Diferencia porcentual en las variables generales consideradas, caso 5d.

Caso 5e: ST=10, Rc=7.7, Patm=100, rpm=900, igual imep que E0

En este caso el E10 muestra un aumento de 0.3% para TcilpromR, de 4.44% y 10.04% para Tcilprom20 y Tcilmax20, respectivamente. De la misma forma dQRTmaxR crece en 0.81%, dQRTprom20 en 17.86% y dQRTmax20 en 22.82% (Figura 90).

Figura 90. Diferencia porcentual en las variables generales consideradas, caso 5e.

Caso 5f: ST=15, Rc=7.7, Patm=100, rpm=900, igual imep que E0

El E10 aumenta para todas las variables consideradas, entre 0.22% hasta 18.29% (Figura 91).

Figura 91. Diferencia porcentual en las variables generales consideradas, caso 5f.

Caso 6a: ST=7, Rc=7, Patm=75, rpm=900, igual imep que E0

La Figura 92 muestra un incremento entre 0.34% y 2.84% para todas las variables relacionadas con la liberación de calor, cuando se utiliza E10.

Figura 92. Diferencia porcentual en las variables generales consideradas, caso 6a.

Caso 6b: ST=10, Rc=7, Patm=75, rpm=900, igual imep que E0

La Figura 93 presenta un comportamiento en el que TcilmaxR, dQRTpromR y dQRTmaxR son mayores hasta en 9% para todos los combustibles oxígenados.

Figura 93. Diferencia porcentual en las variables generales consideradas, caso 6b.

Caso 6c: ST=15, Rc=7, Patm=75, rpm=900, igual imep que E0

En este caso la única variable que cambia para todos los combustibles es dQRTpromR, entre 0.49% para E10, hasta 2.07% para E30 (Figura 94).

Figura 94. Diferencia porcentual en las variables generales consideradas, caso 6c.

Caso 6d: ST=7, Rc=7.7, Patm=75, rpm=900, igual imep que E0

Se observa en la Figura 95 un cambio en la variable dQRTpromR de 1.05% para E30.

Figura 95. Diferencia porcentual en las variables generales consideradas, caso 6d.

Caso 6e: ST=10, Rc=7.7, Patm=75, rpm=900, igual imep que E0

El combustible E10 aumenta principalmente para los valores que están en los primeros 20 grados después del salto de la chispa. El E20 y E30 por su parte aumentan en 0.16% y 0.67% en la variable dQRTpromR.

Figura 96. Diferencia porcentual en las variables generales consideradas, caso 6e.

Caso 6f: ST=15, Rc=7.7, Patm=75, rpm=900, igual imep que E0

De acuerdo con la Figura 97 el E10 aumenta para todas las variables consideradas hasta en 26% para dQRTmax20, mientras que el E20 y E30 presentan un incremento de 1.08% y 0.016% en dQRTpromR únicamente.

Figura 97. Diferencia porcentual en las variables generales consideradas, caso 6f.

6.3.Análisis de los casos simulados (Tabla 14).

Esta sección resume los resultados de los 32 casos simulados y presentados anteriormente. Debido a la cantidad de información, se decide hacer un análisis de varianza, para relacionar las variables independientes combustible, relación de compresión (Rc), tiempo de encendido (ST), relación combustible-aire (ϕ), presión atmosférica (Patm) y velocidad de giro del motor (rpm), con las siguientes variables dependientes: TcilpromR, TcilmaxR, Tcilprom20 y dQRTprom20.

El análisis se realiza siguiendo la misma metodología descrita en 5.2.3.2. La Tabla 15 muestra los valores de la probabilidad obtenida, se identifican con letra cursiva aquellos donde la hipótesis nula se rechaza.

Variable	Combustible	Rc	ST	Phi	Patm	rpm
	0.09859717	0.28613422				
	0.05936902		0.00695612			
	0.00410892			0.99760409		
	0.00346868				0.00177925	
	0.05534074					0.00014995
		0.57422257	0.7059589			
TcilpromR		0.70591196		0.99999151		
		0.26910638			0.14355278	
		0.72105932				0.05298709
			2.4686E-13	0.00093661		
			0.47924548		0.00979483	
			0.54913738			0.02271033
				0.99996609	0.96247854	
				0.46921994		2.0692E-15
					0.54177131	0.58625705
Probabilidad	4.617E-09	0.02250586	3.1903E-16	0.00043841	1.3045E-06	2.189E-22
Variable	Combustible	Rc	ST	Phi	Patm	rpm
--------------------------	-------------	------------	------------	------------	------------	------------
conjunta						
	0.37097158	0.49993063				
	0.05898992		0.00950923			
	0.00409928			0.99750234		
	0.11651103				0.03579328	
	0.2279705					0.00089013
		0.56364663	0.73367414			
		0.6823951		0.99999114		
TcilmaxR		0.04067264			0.01349139	
		0.14303079				0.01072623
			3.6888E-13	0.00057674		
			0.53712586		0.00998495	
			0.59190669			0.01971354
				0.99995943	0.98846997	
				0.38360334		7.8842E-16
					0.53741009	0.57013457
Probabilidad conjunta	2.3827E-06	0.00111862	8.1822E-16	0.00022068	2.5614E-06	8.4606E-23
	0.11247048	0.33702731				
	0.05616227		0.00510801			
	0.00417535			0.99269244		
	0.08283956				0.39415288	
	0.00305425					3.8245E-06
		0.53062671	0.69376394			
		0.75822506		0.99992745		
Tcilprom20		0.31274709			0.3679287	
		0.84338454				0.04323778
			1.5858E-13	0.00017776		
			0.46146901		0.01223133	
			0.58151925			0.07460529
				0.99981849	0.82162133	
				0.46773777		1.1376E-12
					0.56823892	0.73243084
Probabilidad conjunta	6.673E-09	0.03576607	1.5081E-16	8.2518E-05	0.00082814	1.0279E-20
dQRTpromR	0.33644551	0.54968839				
	0.05703613		0.05252538			
	0.00433491			0.99690409		
	0.12925243				6.2478E-06	
	0.14382736					9.8237E-05
		0.53518314	0.83082924			
		0.60308162		0.99999849		
		0.54468211			0.01321035	
		0.89555767				0.03517856
			2.0836E-11	0.00113976		
			0.62497606		0.00156934	
			0.8693617			0.00505548
				0.99997	0.3879847	

Variable	Combustible	Rc	ST	Phi	Patm	rpm
				0.39758294		9.4693E-18
					0.70877511	0.50802752
Probabilidad conjunta	1.5464E-06	0.08654296	4.9403E-13	0.00045173	3.5619E-11	8.4047E-26

Tabla 15. Tabla con valores de probabilidad para las diferentes variables dependientes con respecto a las independientes.

La Figura 98 presenta un aumento en TcilpromR de 0.26% para el E10 con relación al E0. Así mismo una disminución en esta variable de 1.38% y 2.47% para E20 y E30 respectivamente.

Figura 98. Influencia del tipo de combustible sobre la variable TcilpromR.

El cambio en la relación de compresión en 10%, Figura 99, no tiene ninguna influencia sobre la variable TcilpromR.

Figura 99. Influencia de la relación de compresión sobre la variable TcilpromR.

Tanto el tiempo de encendido cómo la relación combustible-aire tienen preponderancia sobre TcilpromR, sin embargo no presentan una tendencia apreciable en la Figura 100 y Figura 101.

Figura 100. Influencia del tiempo de encendido sobre la variable TcilpromR.

Figura 101. Influencia de la relación combustible-aire (phi) sobre la variable TcilpromR.

Al aumentar la presión atmosférica se incrementa el valor la temperatura en 1.73% de acuerdo con la Figura 102. La Figura 103 presenta un tendencia similar con un aumento de 10.19% en TcilpromR cuando la velocidad de giro es mayor en 233%.

Figura 102. Influencia de la presión atmosférica sobre la variable TcilpromR.

Figura 103. Influencia de la velocidad de giro del motor sobre la variable TcilpromR.

Cuando se analiza la variable Tcilmax, se encuentra que aumenta en 0.43% para E10, y disminuye 1.27% y 1.90% para E20 y E30, de acuerdo con la Figura 104.

Figura 104. Influencia del tipo de combustible sobre la variable TcilmaxR.

Cuando la relación de compresión es mayor en 10%, la variable TcilmaxR aumenta 0.63%, como se muestra en la Figura 105.

Figura 105. Influencia de la relación de compresión sobre la variable TcilmaxR.

La Figura 106 presenta una tendencia al decrecimiento en TcilmaxR cuando el avance al encendido es mayor, esta diferencia puede ser hasta de 5.38% entre 15 y 5 grados BTDC.

Figura 106. Influencia del tiempo de encendido sobre la variable TcilmaxR.

Al igual que para el caso de TcilpromR, la relación combustible-aire influencia TcilmaxR sin una tendencia apreciable (Figura 107).

Figura 107. Influencia de la relación combustible-aire (phi) sobre la variable TcilmaxR.

La variable TcilmaxR aumenta 1.9% cuando Patm=1 (Figura 108).

Figura 108. Influencia de la presión atmosférica sobre la variable TcilmaxR.

Al incrementar la velocidad de giro a 3000 rpm TcilmaxR aumenta 7.96% (Figura 109).

Figura 109. Influencia de la velocidad de giro del motor sobre la variable TcilmaxR.

En la Figura 110 se observa que para el E10 Tcilprom20 aumenta 1.08% con respecto a E0, mientras que E20 y E30 disminuyen 3.29% y 4.13%. Por su parte la Figura 111 muestra que no existe influencia de la relación de compresión sobre esta variable.

Figura 110. Influencia del tipo de combustible sobre la variable Tcilprom20.

Figura 111. Influencia de la relación de compresión sobre la variable Tcilprom20.

Al igual que en los casos anteriores, en la Figura 112 y Figura 113 se aprecia la influencia que ejercen el tiempo de encendido y la relación combustible-aire sobre Tcilprom20.

Figura 112. Influencia del tiempo de encendido sobre la variable Tcilprom20.

Figura 113. Influencia de la relación combustible-aire (phi) sobre la variable Tcilprom20.

La Figura 114 muestra que cuando la presión aumenta, Tcilprom20 disminuye 1.42%.

Figura 114. Influencia de la presión atmosférica sobre la variable Tcilprom20.

Cuando la velocidad de giro es 3000 rpm, la variable Tcilprom20 se incrementa hasta 33% con respecto a 900 rpm.

Figura 115. Influencia de la velocidad de giro del motor sobre la variable Tcilprom20

Cuando se analiza la liberación de calor promedio para el rango de combustión de interés, Figura 116, se encuentra que la influencia del tipo de combustible es alta, con diferencias de 1.6%, 2.31% y 1.14% para E10, E20 y E30 respectivamente, con respecto a E0. La Figura 117 muestra que la relación de compresión no tiene injerencia sobre dQRTpromR.

Figura 116. Influencia del tipo de combustible sobre la variable dQRTpromR.

Figura 117. Influencia de la relación de compresión sobre la variable dQRTpromR.

La Figura 118 presenta una tendencia de disminución de la variable dQRTpromR a medida que se incrementa el avance al encendido, con una diferencia máxima de 32% entre 5 y 15 grados BTDC. En la Figura 119 se observa el mismo comportamiento de las variables anteriores, donde no existe una tendencia clara con el cambio de relación combustible-aire.

Figura 118. Influencia del tiempo de encendido sobre la variable dQRTpromR.

Figura 119. Influencia de la relación combustible-aire (phi) sobre la variable dQRTpromR.

Cuando la presión atmosférica aumenta a 1 bar, el incremento en dQRTpromR es proporcional e igual a 33%, Figura 120. Lo contrario sucede con el efecto de la velocidad de giro, la cual al crecer hasta 3000 rpm presenta una disminución hasta de 14.25% con respecto a 900 rpm.

Figura 120. Influencia de la presión atmosférica sobre la variable dQRTpromR.

Figura 121. Influencia de la velocidad de giro del motor sobre la variable dQRTpromR

6.4.Discusión de los resultados del modelo.

Del análisis de los resultados anteriores, se puede inferir lo siguiente:

- La temperatura en el cilindro aumenta cuando se utiliza E10 como reemplazo de E0. Este incremento puede ser hasta de 0.5%. La temperatura es menor para las mezclas E20 y E30 en 2.5% aproximadamente.
- La variable Tcilprom20, relacionada con las emisiones de NOx [72], se incrementa hasta 1.09% cuando se utiliza E10 con respecto a E0. Para E20 y E30 estas emisiones pueden reducirse en 4%.

- Tcilprom20 es mayor 1.4% cuando se trabaja a una presión atmosférica de 0.75 bar (caso Bogotá). Lo cual es bastante lógico si se tiene en cuenta que a mayor presión la velocidad de avance de la llama es menor [33].
- El cambio en la relación combustible-aire, entre 0.88 y 1.02, no produce un efecto significativo en ninguna de las variables consideradas.
- La relación de combustible-aire sólo influye sobre la temperatura máxima en el cilindro.
- La tasa de liberación de calor siempre es mayor cuando se utilizan combustibles oxígenados.

Cuando se estudian las razones por las cuales se obtuvieron estos resultados, se encuentra que la velocidad promedio en la válvula influye notoriamente en el comportamiento de la combustión hasta unos pocos grados antes del punto muerto superior [98, 99, 147]. Esta velocidad es la causante de la turbulencia dentro de la cámara de combustión. La velocidad a través de la válvula y la turbulencia tienen una relación directa. Cuando los puertos se cierran, lo único que genera turbulencia es el movimiento del pistón en una proporción menor que la generada por la velocidad a través de la válvula, lo que produce que la turbulencia inicial disminuya durante todo el proceso de compresión, en los instantes previos a la combustión [98, 99].

La Figura 122 y Figura 123 muestran la velocidad simulada promedio como función del tiempo de encendido, del tipo de combustible y de la relación combustible-aire. Se observa que la velocidad es mayor para el E10, con excepción del caso en ST=15 - ϕ =1 y ϕ =0.9. Para la Rc=7.7 siempre la velocidad fue más alta para E10. La razón para esto tiene que ver con la mayor RVP presente en los combustibles oxígenados. Lo anterior causa una cadena de eventos que se puede resumir así:

- La mayor volatilidad del E10 hace que retire energía disponible del aire en la admisión del motor. Cuando esto sucede, la temperatura de la mezcla aire-combustible disminuye.
- La densidad de la mezcla aumenta.
- Cuando la válvula se abre, el delta de presión a través de la misma es mayor para E10 que para el caso de E0, por lo que el coeficiente de descarga a través de la válvula es más alto [73], produciendo un flujo mayor de mezcla aire-combustible (mayor eficiencia volumétrica) junto con una velocidad mayor en la entrada a la cámara de combustión.
- Al tener una velocidad de entrada a la cámara de combustión más grande, la turbulencia generada por la misma es también mayor, produciendo una mejor mezcla y combustión de los comburentes.

Esta situación no ocurre para el E20 y E30 debido a que, como se mencionó en el punto 3.1.3, para mezclas de etanol mayores a 17% v/v la RVP puede igualar a la del E0.

Figura 122. Velocidad simulada promedio a través de la válvula de admisión. Rc=7.

Figura 123. Velocidad simulada promedio a través de la válvula de admisión. Rc=7.7.

Lo anterior indica que la velocidad promedio a través de la válvula y por ende la velocidad turbulenta, son los factores decisivos para el desarrollo de la combustión, por encima incluso de la velocidad laminar de llama. Otro punto a tener en cuenta es que la tasa de liberación de calor siempre es mayor para los combustibles oxígenados. De hecho, la eficiencia de combustión siempre es más alta con los combustibles que contienen etanol, y es mayor entre más concentración de etanol tenga la mezcla (Tabla 16). Esto produce que haya menos combustibles sin quemar, menos CO y más CO_2 en el escape.

Combustible	Diferencia en η _c contra E0 [%]
E10	-3.75
E20	-11.98
E30	-18.28

 Tabla 16. Diferencia porcentual en la eficiencia de combustión (η_c) para los combustibles oxígenados cuando son comparados con E0. El valor negativo indica que es mayor que el E0.

Para ver mejor la relación que existe entre la velocidad promedio por la válvula y la tasa de liberación de calor, tome como ejemplo la Figura 124, en la que se simulan todos los combustibles dejando fija la velocidad promedio a través de la válvula. Se observa que la temperatura máxima en el cilindro puede ser mayor para E30, ya que su eficiencia de combustión, y por ende la tasa de liberación de calor, son mayores que para el E0 y el E10. Esto presenta un gran potencial para el uso de combustibles oxígenados, ya que con cambios en el múltiple y válvulas de admisión, se podría lograr un comportamiento como el mostrado en la Figura 124.

Figura 124. Temperatura en el cilindro para una velocidad promedio por la válvula igual..

Regresando a la Figura 122 y Figura 123, es posible apreciar que la velocidad promedio a través de la válvula cambia de acuerdo con el tiempo de encendido. Esto en la realidad no es cierto, (Figura 125 y Figura 126), debido a que para una velocidad de giro del motor y una mezcla aire-combustible fija, a condiciones atmosféricas constantes, la velocidad promedio por la válvula es sólo una. Sin embargo, en el modelo desarrollado, capítulo 4, se especifica que esta velocidad debe conocerse para calcular la velocidad turbulenta. El hecho es que cómo esta es la única entrada para el cálculo de la variación turbulenta, y teniendo en cuenta que el modelo debe cubrir diferentes tiempos de encendido, se modifica la velocidad por la válvula, resultante del modelo de ondas de presión de amplitud finita para incluir estos efectos. Dicha modificación es:

$$U_{i} = U_{iop} (\rho_{u} / \rho_{b})^{2.99 - m}$$
(5.3)

Donde $m=3.00851-3.86568E-2(ST (\rho_u/\rho_b))$. La deducción se encuentra en el Apéndice 11.

Donde U_{iop} corresponde a la velocidad dada por el modelo, *ST* el tiempo de encendido (en grados BTDC), ρ_u es la densidad de la zona no quemada y ρ_b la densidad de la zona quemada.

Cuando no se quiere utilizar el modelo de ondas de presión de amplitud finita para determinar la velocidad promedio a traés de la válvula, una buena aproximación es la fórmula de Blizard y Keck [132], la cual al aplicar la modificación de la ecuación 5.3 queda:

$$U_{i} = \eta_{\nu} (A_{p}/A_{\nu}) N S (\rho_{u}/\rho_{b})^{2.99 \cdot m}$$
(5.4)

En la ecuación 5.4 η_v representa la eficiencia volumétrica, A_p el área del cilindro, A_v el área de máximo flujo de la válvula, N la velocidad de giro y S la carrera del pistón.

Figura 125. Eficiencia volumétrica medida. Rc=7.

Figura 126. Eficiencia volumétrica medida. Rc=7.7.

7. CONCLUSIONES

La hipótesis planteada depende de la energía de activación como causa primordial para el aumento de temperatura. Lo que se demuestra en el capítulo de resultados es que la mayor influencia sobre el proceso de combustión viene desde la turbulencia generada por el paso de mezcla aire-combustible a través de la válvula de admisión, junto con la mayor eficiencia de combustión de los combustibles oxígenados.

El fenómeno turbulento es el que controla el proceso de combustión, razón por la cual lo que produce la turbulencia es lo que se debe tomar como factor significativo. La mayor fuente de turbulencia en un motor encendido por chispa es el flujo por la válvula de admisión. Sin embargo, la turbulencia generada se va disipando luego de que las válvulas se cierran y durante el proceso de compresión. La intensidad de esta turbulencia cuando salta la chispa es lo que determina qué tan efectivo será el proceso de combustión. A mayor generación de turbulencia, hasta un cierto punto donde la tasa de disipación no crezca más que la de generación, mayor será este valor cuando inicie el proceso de combustión. La diferencia en las velocidades también es evidente en la duración de combustión, Apéndice 8, parámetro obtenido desde la experimentación, donde el comportamiento manifestado es un espejo del mostrado para la variación de temperaturas con relación al combustible utilizado.

El aumento de temperatura en los motores que utilizan mezclas de gasolina-etanol se evidencia principalmente para E10. Sin embargo, los valores de este aumento son cercanos a 0.5% y 1.2% con respecto a E0, lo que se puede considerar bastante normal, y seguro, dentro del rango de funcionamiento de un motor. El mismo caso se presenta si se trabaja bajo una condición atmosférica como la de Bogotá. Este aumento de temperatura fue evidente también en los resultados experimentales de la emisión de NOx.

Existe una diferencia en la temperatura promedio durante los primeros 20 grados después del salto de la chispa, para las presiones atmosféricas de 1 bar y 0.75 bar. Este valor está relacionado con la emisión de NOx. La diferencia mencionada indica entonces que para el caso de 0.75 bar se pueden presentar mayores emisiones de NOx debido principalmente al viaje más fácil de la llama a través de las moléculas que se encuentran a menor presión [90, 142].

En cuanto a la mayor eficiencia de combustión para combustibles que contienen etanol, se puede explicar cómo un efecto del oxígeno presente en el combustible. Este oxígeno se libera en los primeros pasos de la reacción, aumentando la velocidad laminar de llama (ver Tabla 4 y [167]) y permitiendo sobre todo la liberación más rápida de radicales H, OH y O [78, 168], los cuales permiten que el combustible se queme de forma más completa disminuyendo emisiones como CO y HC y aprovechándolo en mayor proporción para producir trabajo.

Lo que se observa tradicionalmente en las simulaciones de motores que utilizan mezclas de gasolina y etanol, es lo mostrado en la Figura 127, Figura 128 y Figura 129. Debido a la naturaleza de los modelos utilizados, donde lo único diferente durante la combustión es el LHV de los combustibles [3, 32], la respuesta es simplemente que los combustibles oxígenados no tienen más opción que correr en mezclas ricas para igualar los valores alcanzados con la gasolina. Es un efecto donde a mayor concentración de etanol en la mezcla menor será la potencia, la temperatura y la liberación de calor. Lo que se evidencia con el desarrollo de este trabajo, es que el comportamiento difiere de ese efecto. De hecho existe una combinación entre velocidad promedio de entrada a la cámara de combustión y concentración de la mezcla, que hace que el comportamiento no sea tan predecible como el mostrado. Lo anterior presenta

un nuevo escenario para el desarrollo de cámaras de combustión, múltiples y válvulas de admisión especialmente diseñados para utilizar combustibles oxígenados y de esta forma aprovechar el máximo potencial de los mismos.

Figura 127. Temperatura en el cilindro para el caso Rc=7.7 con todos los parámetros de combustión iguales excepto LHV.

Figura 128. Liberación de calor para el caso Rc=7.7 con todos los parámetros de combustión iguales, excepto LHV.

Figura 129. Presión en el cilindro para el caso Rc=7.7 con todos los parámetros de combustión iguales, excepto LHV.

Por las razones expuestas anteriormente, la hipótesis planteada no es válida.

7.1. Aportes del trabajo

El principal aporte de este trabajo consiste en la solución del problema de investigación, a través de una labor íntegra de exploración utilizando como herramientas la experimentación y la simulación del proceso de combustión.

El segundo aporte es el desarrollo de un modelo predictivo de combustión en motores de combustión interna encedidos por chispa, que presenta cambios importantes como:

- Inserción de un parámetro adicional para el cálculo de η_c , que involucra el cambio en la composición del combustible.
- Inclusión de un modelo de ondas de presión de amplitud finita para el cálculo de la velocidad en la admisión, incluyendo flujo multicomponente y propiedades del mismo.
- Se encuentra una relación para la velocidad promedio a través de la válvula de admisión, que utiliza como base la desarrollada por Blizard y Keck [134], y que incorpora un término nuevo que involucra los efectos del cambio de combustible.
- Permite realizar simulaciones para diferentes tiempos de encendido.

Se realizó un trabajo experimental exhaustivo, y enfocado a combustión, en donde se pueden corroborar los resultados obtenidos con aquellos del modelo, y además de eso obtener conclusiones importantes con respecto a otras variables no consideradas normalmente, como el tiempo de encendido.

7.2.Trabajos Futuros

A continuación se enumeran los trabajos que se consideran pueden ampliar la investigación presentada.

- Investigación de la causa de la mayor emisión de NOx, hasta 16%, con E10, cuando Tcilprom20 no aumenta más de 2%.
- Desarrollar un modelo de cinética química para acoplar directamente al modelo de combustión desarrollado.
- Realizar pruebas experimentales con motores diferentes al CFR para corroborar las correlaciones obtenidas en este trabajo.
- Utilizar los resultados obtenidos para desarrollar un modelo de optimización de múltiples y válvulas de admisión cuando se utilizan combustibles oxígenados.
- Desarrollar un modelo de combustión bidimensional que incluya los efectos turbulentos de generación y disipación durante el ciclo cerrado del motor de combustión interna.

REFERENCIAS BIBLIOGRÁFICAS

- 1. MacLean H. L., Lave L. B. Evaluating automobile fuel/propulsion system technologies. Progress in Energy and Combustion Science 29 1-69, 2003.
- Bastianoni S., Marchettini N. Ethanol production from biomass: analysis of process efficiency and sustainability. Biomass and Bioenergy 11 411-418, 1996.
- 3. Bayraktar H. Experimental and theoretical investigation of using gasoline-ethanol blends in spark-ignition engines. Renewable Energy 30, issue 11, 1733-1747, 2005.
- 4. Hsieh W., Chen R., Wu T., Lin T. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment 36 403-410, 2002.
- 5. Hansen A. C., Zhang Q., Lyne P. W. L. Ethanol-diesel fuel blends a review. Bioresource Technology 96 277-285, 2005.
- 6. Kojima M., Johnson T. Potential for biofuels for transport in developing countries. (2005). UNDP/World Bank Energy Sector Management Assistance Programme (ESMAP).
- 7. Hammond A. Alcohol: A Brazilian answer to the energy crisis. (1977). Science, New series, Vol. 195, No. 4278, 564-566.
- 8. Wu C., Chen R., Pu J., Lin T. The influence of air-fuel ratio on engine performance and pollutant emission of an SI engine using ethanol.gasoline blended fuels. Atmospheric Environment 38 7093-7100, 2004.
- 9. Yüksel F., Yüksel B. The use of ethanol-gasoline blend as a fuel in an SI engine. Renewable Energy 29 1181-1191, 2004.
- 10. Al-Hasan M. Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Conversion and Management 44 1547-1561, 2003.
- 11. Li X., Qiao X., Zhang L., Fang J., Huang Z., Xia H. Combustion and emission characteristics of a two-stroke diesel engine operating on alcohol. Renewable Energy xx 1-10, 2005.
- 12. Ocampo W. Es la biogasolina una alternatica ambiental en Colombia?. (2006). Revista Facultad de Ingeniería Universidad de Antioquia 38 7-19.
- Acevedo H., Duque C., Galeano C., Mantilla J. Evaluación funcional en banco de un motor y sus sistemas asociados durante mil horas, operando con una mezcla de gasolina y alcohol carburante al 10% (E10). Informe Final ANDI. 2005.
- 14. Boyle G., Everett B., Ramage J. Energy systems and sustainability, power for a sustainable future. Oxford University Press, 2003.
- 15. Asfar K. R., Hamed H. Combustion of fuel blends. Energy Conversion and Management 39 1081-1093, 1998.
- 16. Li D., Zhen H., Xingcai L., Wu-gao Z., Jian-guang Y. Physico-chemical properties of ethanol-diesel blend fuel and its effect on performance and emissions of diesel engines. Renewable Energy 30 967-976, 2005.
- 17. Al-Baghdadi M. A. S. The safe operation zone of the spark ignition engine working with dual renewable supplemented fuels (hydrogen+ethyl alcohol). Renewable Energy 22 579-583, 2001.
- 18. Al-Baghdadi M. A. S. Performance study of a four-stroke spark ignition engine working with both of hydrogen and ethyl alcohol as supplementary fuel. International Journal of Hydrogen Energy 25 1005-1009, 2000.
- 19. He B., Shuai S., Wang J., He H. The effect of ethanol blended diesel fuels on emissions from a diesel engine. Atmospheric environment 37 4965-4971, 2003.
- 20. Poulopoulos S. G., Samaras D. P., Philippopoulos C. J. Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels. Atmospheric Environment 35 4399-4406, 2001.
- 21. Behrentz E. Beneficios ambientales asociados con el uso de combustibles alternativos. (2006). XIII Conferencia Energética Colombiana. Agosto 24 y 25 Bogotá.
- 22. http://www.mintransporte.gov.co:8080/inflinea/InfAutomotores.aspx. Consultada el 12 de octubre de 2010.
- 23. Agudelo A., Agudelo J., Benjumea P. Diagnóstico de la combustion de biocombustibles en motores. (2007). Primera edición. Imprenta Universidad de Antioquia. ISBN:978-958-44-0738-2.
- 24. Yücesu H., Topgül T. Effect of ethanol-gasoline blends on engine performance and exhaust emissions in different compression ratios. Applied Thermal Engineering 26 2272-2278. 2006
- 25. He B., Wang J., Hao J., Yan X., Xiao J. A study on emissions characteristics of an EFI engine with ethanol blended gasoline fuels. Atmospheric Environment 37 949-957. 2003.
- 26. Backgrounder on low level gasoline blends containing ethanol (Blends containing ethanol at concentrations up to 10% by volume). <u>http://www.2006fuels.org/ethanol.htm</u>, Junio 7 de 2007.
- 27. Environment Australia. Setting the ethanol limits in petrol. Commonwealth of Australia. 2002.
- 28. Orbital Engine Company. A literature review based assessment on the impacts of a 10% and 20% ethanol gasoline fuel blend on non-automotive engines. Environment Australia. 2002.
- 29. Ragazzi R., Nelson K. The impacts of a 10% ethanol blended fuel on the exhaust emissions of Tier 0 and Tier 1 Light Duty Gasoline vehicles at 35 F. 1999. Air Pollution Control Division.
- 30. Crary B. Effects of ethanol on emissions of gasoline LDVs. 2000. Toyota Technical Center.

- Zervas E., Montagne X., Lahaye J. Emission of alcohol and carbonyl compounds from a spark ignition engine. Influence of fuel and air/fuel equivalence ratio. Environmental Science and Technology Vol. 36, No. 11, 2414-2421.. 2002.
- 32. Bayraktar H. Theoretical investigation of flame propagation process in an SI Enghien running on gasoline-ethanol blends. Renewable Energy 32, pp. 758-771, 2007.
- 33. Law C. Combustion Physics. 2006. Cambridge University Press. ISBN: 978-0-521-87052-8.
- Torres J., Molina D., Pinto C., Rueda F. Estudio de la mezcla de gasolina con 10% de etanol anhidro. Evaluación de propiedades fisicoquímicas. (2002). Revista Ciencia, Tecnología y Futuro Vol. 2 Num. 3 71-82.
- 35. Shapiro E., Roundtable on ethanol fuel: automaker view. SCAQMD. 2006.
- 36. Horta L. Perspectivas de un programa de biocombustibles en America Central. Naciones Unidas-Comisión Económica para America Latina y el Caribe (CEPAL). 2004.
- 37. Niven R. Ethanol in gasoline: environmental impacts and sustainability review article. Renewable and sustainable energy Review 9 535-555. 2005.
- 38. Faiz A., Weaver C. Air pollution from motor vehicles: Standards and technology for controlling emissions. The World Bank. 1996.
- 39. Hammel-Smith C., Fang J., Powders M., Aabakken J. Issues associated with the use of higher ethanol blends. National Renewable Energy Laboratory. 2002
- 40. Morris D., Brondum J. Does ethanol result in more air pollution?. Institute for local self-reliance. 2000
- 41. Health Canada. Potential Health Effects of Ethanol-Blend gasoline. Health Canada Expert Panel Workshop. 2003
- 42. Stationary Sources Division-Legal Office. Proposed determination pursuant to health and safety code section 42830(g) of the ozone forming potential of elevated RVP gasoline containing 10 percent ethanol. Air Resources Board. 1998
- 43. DOE, NREL, NEVC. Handbook for handling, storing, and dispensing E85. Department of Energy. ND
- 44. Air resources Board. Industry low-sulfur test program. Disponible en http://www.arb.ca.gov/fuels/gasoline/carfg3/aam_prstn.pdf, Agosto 29 de 2007.
- 45. d'Avila L. A qualidade do combustíveis no Brasil. 2003. 2º Congresso Brasileiro de P & D em Petróleo & Gas.
- 46. Haskew H., Liberty T. Fuel permeation from automotive systems: E0, E6, E10 and E85. 2006. Interim Report CRC Project No. E-65-3. Coordinate Research Council, Inc.
- 47. Durbin T., Miller J., Younglove T., Huai T., Cocker K. Effects of ethanol and volatility parameters on exhaust emissions. Final Report CRC Project No. E-67. Coordinate Research Council.
- 48. Patzek T., CE24. Ethanol from corn: clean renewable fuel for the future, or drain our resources and pockets?. Submitted to Environment, Development and Sustainability. 2003
- 49. Comparison of fuel properties. Appendix A. Disponible en <u>www.2006fuels.org</u>. Junio 7 de 2007.
- 50. Wright L., Boundy B., Perlack B., Davis S., Saulsbury B. Biomass energy data book: Edition 1. 2006. Prepared for the office of Planning, Budget and Analysis-Energy Efficiency and Renewable Energy-U.S Department of Energy.
- Harley R., Kean A. Chemical composition of vehicle-related volatile organic compound emissions in Central California. 2004. Final Report Contract 00-14CCOS. San Joaquin Valleywide Air Pollution Study Agency and California Air Resources Board.
- 52. Propierties of fuels. Disponible en <u>www.electricsupercharger.com</u>, Junio 28 de 2007.
- 53. Kortum D., Haslett L., Beard L., Liechty K., Coryell M., Bruner C. Interagency Assessment on Oxygenated Fuels. Chapter 3: Fuel economy and engine performance issues. United States National Science and Technology Council Committee on Environment and Natural Resources . 1997.
- 54. Korotney D. Water phase separation in oxygenated gasoline-Corrected version of Kevin Krause memo. Memorandum to Susan Willis, Manager of Fuel Studies and Standards Group.. 1995.
- 55. Apace Research Ltd. Intensive field trial of ethanol/petrol blend in vehicles. ERDC Project No.2511. 1998.
- 56. Knepper J., Koehl W., Benson J., Burns V., Gorse Jr. R., Hochhauser A. Fuel effects in Auto/Oil High emiting vehicles. SAE technical paper #930137. 1993
- 57. Mayote S., Lindhjem C., Rao V., Sklar M. Reformulated gasoline effects on exhaust emissions: phase 1: initial investigation of oxygenate, volatility distillation and sulfur effect. SAE technical paper #941973. 1994
- Mayote S., Lindhjem C., Rao V., Sklar M. Reformulated gasoline effects on exhaust emissions: phase 2: Continued investigation of the effects of fuel oxygenate content, oxygenate type, sulfur, olefins and distillation parameters.. SAE technical paper #941974. 1994
- 59. AAM/AIAM. Industry low-sulfur test program. Presented to the Califormia Air Resources Board by the Alliance of Automobile Manufacturers (AAM) and the Association of International Automobile Manufacturers. 2001
- 60. Whitten G., Reyes S. Air quality and ethanol in gasoline. <u>http://www.ethanol-gec.org/pub.htm. 2004</u>
- Schifter I., Vera M., Díaz L., Guzman E., Ramos F., Lopez-Salinas E. Environmental implications on the oxygenation of gasoline with ethanol in the metropolitan area of Mexico city. Environmental Science and Technology Vol. 35, No. 10, 1893-1901. 2001.
- 62. Calvert J., Heywood J., Sawyer R., Seinfeld J. Achieving acceptable air quality: some reflections on controlling vehicle emissions. Science, New series Vol. 261, No. 5117, 37-45. 1993.

- 63. Karman D. Ethanol fuelled motor vehicle emissions: A literature review.. Air Health Effects Division-Health Canada.. 2003
- 64. Guerrieri D., Caffrey P., Rao V. Investigation into the vehicle exhaust emissions of high percentaje ethanol blends. SAE technical paper #950777. 1995
- 65. Reuter R., Hochhauser A., Benson J., Koehl W., Burns V., Painter L. Effects of oxygenated fuels on RVP on automotive emissions-Auto/Oil aire quality improvement program. SAE technical paper #920326. 1992
- 66. Leong S., Muttamara S., Laortanakul P. Applicability of gasoline containing ethanol as Tahiland's alternative fuel to curb toxic VOC pollutants from automobile emission. Atmospheric Environment 36 3495-3503. 2002.
- 67. American Coalition for Ethanol. Fuel economy study: comparing performance and costs of various ethanol blends and standard unleaded gasoline. American Coalition for Ethanol. 2005
- 68. Joseph Jr. H. Alcohol fueled vehicles & Flex fuel vehicles: the ethanol applications as vehicular fuel in brasil. Brazilian Automotive Industry Association (ANFAVEA), Energy & Environment Commission. 2005
- 69. Bresenham D., Reisel J. The effect of high ethanol blends on emissions from small utility engines. SAE Paper 1999-01-3345.
- 70. Davis G., Heil E. The development and performance of a high blend ethanol fueled vehicle. SAE Paper 2000-01-1602.
- 71. Giroldo M., Makant W., Werninghaus E., Coelho E. Development of 1.6 L flex fuel engine for Brasilian market. SAE Paper 2005-01-4130.
- 72. Heywood J. Internal combustion engine fundamentals. McGrawHill, 1998.
- 73. Blair G. Design and simulation of four-stroke internal combustion engines. SAE, 1999.
- 74. Eaton A. M., Smoot L. D., Hill S. C., Eatough C. N. Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Progress in Energy and Combustion Science 25 387-436, 1999.
- 75. Fischer E. M., Pitz W. J., Curran H. J., Westbrook C. K. Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels. Colloquium: Reaction Kinetics of Combustion.
- 76. Yozgatligil A., Choi M. Y., Kazakov A., Dryer F. L., Manzello S. L., Dobashi R. Ethanol droplet combustion at elevated pressures and enhanced oxygen concentrations. American Institute of Aeronautics and Astronautics.
- 77. Curran H. J., Pitz W. J., Wetbrook C. K., Callahan C. V., Dryer F. L. Oxidation of automotive primary reference fuels at elevated pressures. Twenty-Seventh International Conference on Combustion, 1998.
- 78. Marinov N. M. A detailed chemical kinetic model for high temperature ethanol oxidation. Department of Energy/Lawrence Livermore Natl. Lab. 1998.
- 79. Curran H., Gaffuri P., Pitz W., Westbrook C. (2002). A comprehensive modeling study of iso-octane oxidation. Combustion and flame 129 253-280.
- 80. Berg S. Combustion Modelling. 2003
- 81. Dussord J. L., Lohmann R. P., Unam E. M. Fluid Mechanics of combustion. Presented at Joint luids Engineering and CSME Conference. ASME, 1974.
- 82. Larrouturou B. Recent advances in combustion modeling. World scientific publishing Co. Pte. Ltd., 1991.
- 83. Sneeden J-B. Introduction to internal combustion engineering. Longmans, green and Co., 1944.
- 84. Blumberg P., Lavoie G., Tabaczinski R. (1979). Phenomenological models for reciprocating internal combustion engines. Prog. Energy Combust. Sci. 5 123-167.
- 85. Soylu S. (2002). Simple modeling of combustion for natural gas engines. SAE Paper 2002-01-2733.
- 86. Xu H., Fu H., Williams H., Shilling I. (2002). Modelling study of combustion and gas exchange in a HCCI (CAI) engine. SAE paper 2002-01-0114.
- 87. Foin C., Nishiwaki K., Yoshihara Y. (1999). A diagnostic bi-zonal combustion model for the study of knock in sparkignition engines. JSAE Review 20 401-406.
- Hountalas D., Kouremenos D., Mavropoulos G. (2004). Multi-zone combustion modeling as a tool for DI diesel engine development – Application for the effect of injection pressure. SAE Paper 2004-01-0115.
- 89. Ogink R., Golovitchev V. (2002). Gasoline HCCI modeling: An engine cycle simulation code with a multi-zone combustion model. SAE Paper 2002-01-1745.
- 90. Ferguson C. R. Internal combustion engines, applied thermosciences. Jhon Wiley & Sons, 1986.
- 91. Borman G., Nishiwaki K. (1987). Internal combustion engine heat transfer. Progress in Energy Combustion Science 13 1-46.
- 92. Lancaster D., Kreiger R., Lienesch J. Measurement and analysis of engine pressure data. 1975. SAE Paper 750026.
- 93. Hires S., Tabackzynski R., Novak J. The prediction of ignition delay and combustion intervals for a homogeneus charge spark ignition engine. 1978. SAE Paper 780232.
- 94. Battin-Leclerc F., Glaude P., Wart V., Fournet R., Scacchi G., Côme G. M. (2000). Computer tools for modeling the chemical phenomena related to combustion. Chemical engineering science 55 2883-2893.
- 95. Zervas E., Montagne X., Lahaye J. (2004). Influence of fuel and air/fuel equivalence ratio on the emission of hydrocarbons from a SI engine. 2. Formation pathways and modeling of combustion processes. Fuel 83 2313-2321.
- 96. Beretta G., Rashidi M., Keck J. Turbulent flame propagation and combustion in spark ignition engines. 1983. Combustion and Flame, Vol 52, 217-245.

- 97. Keck J., Heywood J., Noske G. Early flame development and burning rates in spark-ignition engines. 1987. SAE Paper 870164.
- Tabaczynski R., Ferguson C., Radhakrishnah K. A turbulent entrainment model for spark-ignition engine combustion. 1977. SAE Paper 770647.
- 99. Tabaczynski R., Trinker F., Shannon B. Further refinement and validation of a turbulent flame propagation model for spark-ignition engines. 1980. Combustion and Flame, Vol. 39, 111-121.
- 100.Borgnakke C., Arpaci V., Tabaczynski R. A model for the instantaneous heat transfer and turbulence in a spark ignition engine. 1980. SAE Paper 800287.
- 101.Borgnakke C., Davis G., Tabaczynski R. Predictions of in-cylinder swirl velocity and turbulence intensity for an open chamber cup in piston engine. 1982. SAE Paper 810224.
- 102.Davis G., Mikulec A., Kent J., Tabaczynski R. Modelling the effect of swirl on turbulence intensity and burnrate in S.I. engines. 1986. SAE Paper 860325.
- 103.Westbrook C., Mizobuchi Y., Poinsot T., Smith P., Warnatz J. (2005). Computational combustion. Proceedings of the combustion institute 30 125-157.
- 104.Reynolds W. Modeling of fluid motions in engines-An introductory overview. 1980. In Mattavi J. and Amann C. Combustion modeling in reciprocating engines. Pp 41-68.
- 105.El Tahry S. k-e equation for compressible reciprocating engine flows. 1983. Journal of Energy, Vol 7, No. 4, 345-353.
- 106. Morel T., Mansou N. Modeling of turbulence in internal combustion engines. 1982. SAE Paper 820040.
- 107.Gosman A. Multidimensional modeling of cold flows and turbulence in reciprocating engines. 1985. SAE Paper 850344.
- 108. Ferzieger J. Large eddy simulations of turbulent flows. 1976. AIAA Paper 76-347.
- 109. Amsden A., Butler T., O'Rourke P., Ramshaw J. KIVA- A comprehensive model for 2-D and 3-D engine simulations. 1985. SAE Paper 850554.
- 110.Butler T., Cloutman L., Dukowicz J., Ramshaw J. Multidimensional numerical simulation of reactive flow in internal combustion engines. 1981. Prog. Energy Combust. Sci., Vol. 7, 293-315.
- 111.Haworth D. (2005). A review of turbulent combustion modeling for multidimensional In-Cylinder CFD. SAE Paper 2005-01-0993.
- 112.Kojima T.,Nishiwaki K. (1997). Modeling of flame-wall interaction for combustion and heat transfer in S.I engines. JSAE Review 18 11-17.
- 113.Liu Y., Reitz R. (1998). Modeling of heat conduction within chamber walls for multidimensional internal combustion engine simulations. Int. J. Heat Mass Transfer 41 859-869.
- 114.Golovitchev V., Gustavsson J., Cantore G., Montorsi L., Corcione F. (2005). Large-scale CFD approach for spray combustion modeling in compression ignited engines. SAE Paper 2005-24-052.
- 115.Zeng Y., Strauss Y. (2003). Modeling of the scavenging and plugging in a twin-cylinder two-stroke engine using CFD. SAE Paper 2003-32-0020.
- 116.Fyhr C., Dahlberg O. Complete engine modeling using CFD. (2004). SAE Paper 2004-01-0109.
- 117. Ahmadi-Befrui B., Gosman A., Lockwood F., Watkins A. Multidimensional calculation of combustion in an idealized homogeneous charge engine. 1982. SAE Paper 810151.
- 118.Colin O., Ducros F., Veynante D., Poinsot T. A thickened flame model for large eddy simulations of turbulent premixed combustion. 2000. Phys. Fluids. 162, 338-371.
- 119.Basso A., Rinolfi R. Two-simensional computations of engine combustion: comparisons of measurements and predictions. 1982. SAE Paper 820519.
- 120.Tan Z., Kong S., Reitz R. (2003). Modeling premixed and DI SI engine combustion using the G-equation model. SAE paper 2003-01-1843.
- 121.Tan Z., Reitz R. (2006). An ignition an combustion model based on the level set method for Spark Ignition engine multidimensional modeling. Combustion and flame 145 1-15.
- 122.Tan Z., Reitz R. (2003). Modeling ignition and combustion in Spark-Ignition engines using a level set method. SAE paper 2003-01-0722.
- 123.Pope S. Pdf methods for turbulent reactive flows. 1985. Prog. Energy Combust. Sci. 11, 119-192.
- 124. Pope S. Computations of turbulent combustion: Progress and challenges. 1990. Proc. Combust. Institute. 23, 591-612.
- 125.Pope S. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. 1997. Combust. Theory & Modeling. Vol. 1, 41-63.
- 126.Zhang Y., Kung E., Haworth D. (2005). A PDF method for multidimensional modeling of HCCI engine combustion: effects of turbulence/chemistry interactions on ignition timing and emissions. Proceedings of the combustion institute 30 2763-2771.
- 127.Klimenko A. Bilger, R. Conditional moment closure for turbulent combustion. 1999. Prog. Energy Combust. Sci. Vol. 25, 595-687.
- 128.Kee R., Rupley F., Miller J. CHEMKINII: a FORTRAN chemical kinetics package for the analysis of gas phase chemical kinetics. 1989. Sandia National Laboratories Report No. SAND89-8009B, Livermore, CA.

- 129.Kalogirou S. (2003). Artificial intelligence for the modeling and control of combustion processes: a review. Progress in energy and combustion science 29 515-566.
- 130. Williams F. A. Combustion theory, the fundamental theory of chemically reacting systems. Addison-Wesley Publishing Company, 1985.
- 131. Annand W., Ha T. Heat transfer in the cilindres of reciprocating internal combustión engines. Proc. I. Mech. E., Vol. 17, 973. 1963.
- 132.Blizard, N, Keck, J. Experimental and theoretical investigation of turbulent burning model for internal combustion engines. SAE Paper 740191, 1974.
- 133.Keck, J. Turbulent flame structure and speed in spark-ignition engines. Nineteenth Symposium (International) on Combustion/The Combustion Institute, 1982, pp. 1451-1466.
- 134. Boas, M. Mathematical methods in the physical sciences. Jhon Wiley and Sons, second edition, 1983.
- 135.Gülder, Ö. Correlations of laminar combustion data for alternative SI engine fuels. SAE 1984. Paper No. 841000, pp. 1-23.
- 136.Mantilla, J., Falla, C., Gomez, J. Simulación del flujo de gas en ductos de escape de motores de combustión interna. Primera parte: aspectos teóricos. Revista Ingeniería e Investigación Vol. 29, No. 1, Abril de 2009, pp. 115-125.
- 137. Rossini F. Selected values of chemical thermodynamic properties. Circ. U.S. Bur. Stand. 500. 1952.
- 138.Burcat, A., Ruscic, B. Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Technical publication Argonne Laboratories, 2005.
- 139.Xiao, J. Thermodynamic properties for engine combustion simulations. Document of the Department of Mechanical Engineering and Applied Mechanics University of Michigan, Ann Arbor, 1989.
- 140. Annand, W. Geometry of spherical flame propagation in a disc-shaped combustion chamber. Journal of Mechanical Engineering Science, Vol. 12, No. 2, 1970.
- 141.Bayraktar, H., Durgun, O. Mathematical modeling of spark-ignition engine cycles. Energy Sources vol. 25, pp 439-455, 2003.
- 142.Qin, X., Ju, Y. Measurements of Burning Velocities of Dimethyl Ether and Air Premixed Flames at Elevated Pressures, Proc. Combust. Inst. 30 (2004).
- 143.Liao, S., Jiang, M., Huang, Z., Zeng, K. Characterization of laminar premixed methanol-air flames. Fuel 85, pp. 1346-1353, 2006.
- 144. Markstein G. Nonsteady flame propagation. New York: MacMillan; 1964.
- 145.Grinstead, C., Snell, J. Introduction to Probability, disponible en línea en http://www.math.dartmouth.edu/~prob/prob.pdf, consultada el 29 de Junio de 2010.
- 146.Aravelli, A. Real-time Measurement of Oxides of Nitrogen from Heavy-Duty Diesel Engines. MSc Thesis in Mechanical Engineering, submitted to: The College of Engineering and Mineral Resources at West Virginia University, 2003.
- 147.Bracco, F. Structure of flames in premixed-carge IC engines. Combustion Science and Technology, 58:1, 209-230. 1988.
- 148. Warth V., Glaude P. Computer-aided derivation of gas-phase oxidation mechanisms: application to the modeling of the oxidation of n-butane. Combustion and Flame, 114:81-102, 1998.
- 149.Sahetchian K., Champuossin J., Brun M., Levy N., Blin-Simiand N., Aligrot C., Socoliuc M., Heiss A., Guerassi N. Experimental study and modeling of dodecane ignition in a diesel engine. Combustion and Flame, 103:207-220, 1995.
- 150.Glaude P., Warth V., Battin-Leclerc F., Scacchi G., Come G. Modeling of the oxidation of n-octane and n-decane using a automatic generation of mechanisms. Inc. Int J Chem Kinet, 30:949-959, 1998.
- 151. Wang H., Frenklach M. Calculations of rate coefficients for the chemically activated reactions of acetylene whith vinilyc and aromatic radicals. The Journal of Physical Chemistry, 98:111465-111489, 1994.
- 152.Emdee J., Brezinsky K., Glassman I. A kinetic model or the oxidation of toluene near 1200 k. Physical Chemistry, 96:2151-2161, 1992.
- 153.Durán A., Carmona M., Monteagudo J.. Modelling soot and sof emissions from a diesel engine. Chemosphere, 56:209-225, 2004.
- 154. Kee R., Rupley F., Miller J. Report sand87-8215. Technical report, Sandia National Laboratories, 1987.
- 155.Skjoth-Rasmussen M., Glarborg P., Ostberg M., Johannessen J., Livbjerg H., Jensen A., Christensen T. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor. Combustion and Flame, 136:91-128, 2004.
- 156.Goldaniga A., Faravelli T., Ranzi E. The kinetic modeling of soot precursors in a butadiene flame. Combustion and Flame, 122:350-358, 2000.
- 157.Dean A. Detailed kinetic modelling of autocatalysis in methane pyrolysis. The Journal of Physical Chemistry, 94:1432-1439, 1990.
- 158.DÁnna, A., Violi, A., DAlessio, A. Modeling the rich combustion of aliphatic hydrocarbons. Combustion and Flame, 121:418-429, 2000.
- 159. Horn, C., Frank, P. High temperature pyrolysis of phenol. In 4th International Conference on Chemical Kinetics, 1997.

- 160.Kazakov, A.,, Wang, H., Frenklach, M.. Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar. Combustion and Flame, 100:111-120, 1995.
- 161. Montgomery, D., Runger, G., Hubele, N. Engineering Statistics. Wiley, 3th edition, 2003.
- 162.Ortiz, F. Modelamiento del efecto de la viscosidad en la combustión de la mezcla B20 de biodiesel de palma en motores de combustión interna encendidos por compresión. Tesis para optar al título de MSc en Ingeniería Mecánica, Universidad Nacional de Colombia, Bogotá, 2010.
- 163.Pulkrabek, W. Engineering fundamentals of the internal combustion engine. Pearson Prentice Hall, second edition, 2004.
- 164. Saez, S., Avila, L. Incertidumbre de la medición: teoría y práctica. Disponible en linea en <u>http://www.lysconsultores.com/Descargar/IMTP.pdf</u>, consultada el 17 de enero de 2011.
- 165.Bell, S. A beginner's guide to uncertainty of measurement. Disponible en línea en <u>http://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/UK NPL/mgpg11.pdf</u>, consultada el 17 de enero de 2011.
- 166.Lubrication Engineers Technical Department. Motor Oil Degradation. In Techni/tips Number 68. Disponible en línea en <u>http://www.le-international.com/uploads/documents/068_Motor%20Oil%20Degradation.pdf</u>, consultada el 18 de enero de 2011.
- 167.Costa, R., Sodré, J. Hydrous ethanol vs. gasoline-ethanol blend: Engine performance and emissions. Fuel 89 : 287–293, 2010.
- 168. Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Ranzi, E. A wide range kinetic modelling study of laminar flame speeds of reference fuels and their mixtures. Presented at Processes and Technologies for a Sustainable Energy ISBN:978-88-88104-11-9, Ischia (Italy), 2010.

Apéndice 1. TABLAS DE COMPARACIÓN DE PROPIEDADES ENTRE GASOLINA, ETANOL Y SUS MEZCLAS.

Referencia [38]- Table 5.9. Properties of convencional and alternative fuel (parcial).

Property	Gasoline	Ethanol
H/C ratio	1.9	3
Energy content (LHV) (MJ/kg)	44	26.9
Liquid density (kg/l)	0.72-0.78	0.785
Liquid energy density (MJ/l)	33	21.12
Boiling point (C)	37-205	79
Research Octane Numbers	92-98	107
Motor Octane Numbers	80-90	89
Cetane Numbers	0-5	5
Stoichiometric air-fuel ratio	14.7	9.0
Reid Vapor Pressure (psi)	8-15	2.3

Referencia [24]- Table 3. Properties of ethanol-unleaded gasoline blended fuels (parcial).

Property item	Test Fuels			
	EO	E10	E20	E40
Distillation (vol%)				
70 C	24	40.2	39.3	37.7
100 C	46.8	53.9	66	84.2
180 C	976	97.3	98	98.2
Density (kg/m ³ at 15 C)	764.9	768	771.5	780.6
RVP (kPa)	57.6	66.7	66.2	63
Lead content (g/L)	0.004	0.003	0002	0
Sulfur (wt%)	0.012	0.017	0.022	0.026
Stoichiometric air-fuel ratio (weight)	14.7	14.13	13.56	12.42
Lower heating value (kJ/kg)	43932	42185	40430	36870
RON	86.4	87.4	89.8	90.9
MON	98.8	99.9	101.6	101.7

Referencia [25]- Table 1. Properties of ethanol blended gasoline fuels

Property items	EO	E10	E30
Density (kg/l at 19 C)	0.736	0.741	0.751
RON	92.4	95	99.7
MON	81.2	82.3	86.6
Distillation temperature (C)			
IBP	36	37.5	40
10 vol%	55.2	49	527
50 vol%	92.5	732	72.5
90 vol%	153.7	1498	145.7
End point	184.5	181	1815

Referencia [61]- Table 2. Relevant properties of the gasolines (parcial).

	Ethanol (vol %)				
Property	3	6	10		
Gravity, 20/4 C	0.7436	0.7475	0.7478		
Reid vapor pressure (lb/in ²)	7.58	7.69	8.03		
Distillation ASTM D-86 (C)					

10% evaporated	62.7	58.1	57.1
50% evaporated	110	108.7	105.3
90% evaporated	171.1	168.5	1693
End point	213.3	210	209.7
Sulfur, ppm	640	640	580
Aromatics, (vol%)	25	24.8	27.1
Olefins, (vol%)	11.8	10.9	11.7
Benzene, (vol %)	1.2	1.1	1.1
(RON+MON/2)	87.8	87.2	88.3
Oxygen, (vol%)	1.0	2.0	

Referencia [43]-Table 2. Comparison of fuel properties (parcial).

Property	Ethanol	Gasoline (87 octane)	E85
Chemical formula	CH ₃ OH	C_4 to C_{12} chains	*
Main constituents (% by weight)	52 C, 13 H, 35 O	85-88 C,12-15 H	57 C, 13 H, 30 O
Octane (RON+MON)/2	98-100	86-94	96
Lower heating value (Btu/lb)	11500	18000-19000	12500
Gallon equivalent	1.5	1	1.4
Miles per gallon compared to gasoline	70%	-	72%
Relative tank size to yield (driving	Tank is 1.5 times larger	1	Tank is 1.4 times larger
range equivalent to gasoline			
Reid vapor pressure (psi)	2.3	8-15	6-12
Ignition point			
Fuel in air (%)	3-19	1-8	*
Temperature (approx.) (F)	850	495	*
Specific gravity (60/65 F)	0.794	0.72-0.78	0.78
Cold weather starting	Poor	Good	Good
Vehicle power	5% power increase	Standard	3 % - 5% power increase
Stoichiometric air/fuel relation (by	9	14.7	10
weight)			

* Depends on percentage and type of the hydrocarbon fraction

Referencia [30]-Test Fuels (Parcial).

		E10-A	E10-B
		E10 (Lower RVP)	E10 (Higher RVP)
RVP, Kpa		48.5	52.2
RON		101.3	97.2
FIA, vol. %			
	Aromatics	23.0	24.1
	Olefin	5.0	3.4
	T10	57.2	57.5
	T50	97.6	100.0
	T90	145.6	147.0
Oxygen, vol%			
	MTBE	0.0	0.0
	Ethanol	112	8.9
Sulfur, ppmw		29	30

Referencia [46]-Table 3. Test fuel inspections.

Inspection	Units	EO	E6	E6Hi	E10	E85
API gravity	API	61.4	58.8	52.3	58.3	48.6

Relative	60/60 F	0.7334	0.7434	0.7699	0.7455	0.7855
density						
DVPE	Psi	7.00	7.25	7.19	7.17	6.80
Oxygenates—						
D4815	Val Ø	0.01	0.00	0.00	0.00	0.00
MIBE	V01 %	0.01	0.00	0.00	0.00	0.00
EIBE	V01 %	0.00	0.00	0.00	0.00	0.00
EIOH M-OU	V01 %	0.00	0.02	0.28	10.29	84.09
MeOH	V 01 %	0.00	0.00	0.00	0.00	0.83
	vv 1%	0.00	2.23	2.23	5.61	29.15
Corrected						
D1319						
Aromatics	Vol %	22.57	26 79	41 47	2603	3.86
Olefins	Vol %	10.70	4 91	3 32	4 77	1 57
Saturates	Vol %	66.73	62.24	50.45	58.83	9.82
Oxygenates	Vol %	0.00	6.02	6 28	10.31	85.21
Aromatics		0.00	0.02	0.20	10.01	00.21
D5580						
Benzene	Vol %	0.41	0.55	0.43	0.51	0.17
Toluene	Vol %	5.26	6.84	5.25	6.50	0.67
Ethylbenzene	Vol %	1.08	1.46	1.13	1.39	0.15
p/m-Xylene	Vol %	4.67	5.38	4.21	5.13	0.59
o-Xvlene	Vol %	1.67	1.98	1.81	1.89	0.22
C9+	Vol %	8.86	10.01	25.71	9.52	2.02
Total	Vol %	21.96	26.22	38.55	24.93	3.82
D86						
distillation						
IBP	F	101.1	108.9	98.0	107.7	116.8
5% evaporated	F	123.2	125.8	124.8	127.2	153.5
10%	F	134.5	130.7	132.1	132.1	164.0
evaporated						
20%	F	148.5	136.8	142.4	138.2	168.7
evaporated						
30%	F	165.0	144.8	159.0	144.7	170.4
evaporated						
40%	F	186.2	175.8	206.3	150.8	171.2
evaporated						
50%	F	209.5	202.0	2419	182.6	171.5
evaporated		221.1	007.6	254.0		151.0
60%	F	231.1	225.6	274.0	221.8	171.8
evaporated	Б	251.2	240.2	202.9	246.0	172.0
/U%	Г	251.2	249.3	302.8	246.0	172.0
evaporated	Б	272 4	275 7	224.5	272.2	172.4
80%	Г	275.4	213.1	324.3	275.5	1/2.4
	Б	305.6	300.0	345.3	300 /	173.1
evaporated	1	505.0	509.9	545.5	509.4	175.1
05%	F	330.6	335.9	363.2	3357	174 1
evanorated	-	550.0	555.7	505.2	555.7	1/ 1.1
EP	F	389.9	380.4	411.4	3783	297.4
Recovery	Vol %	97.7	97.6	97.2	98.0	97.1
Residue	Vol %	1.0	1.0	1.2	1.1	1.9
Loss	Vol %	1.3	1.4	1.5	0.8	1.0
Karl Fischer	Wt %	-	-	-	-	0.42
Water						
Gum						

Unwashed	mg/100ml	20	16	18	17	9
Washed	mg/100ml	1	1	0	0	0
Peroxide	ppm	<1	<1	<1	1.0	4.4
Number						
Induction	Hr	24	24	24	24	24
period						
Potential Gum						
Unwashed	mg/100ml	22	22	24	20	7
Washed	mg/100ml	0	0	0	0	2
Research ON		90.5	92.1	96.2	94.5	105.8
(RON)						
Motor ON		83.2	84.2	86.2	86.4	89.2
(MON)						
(R+M)/2		86.9	88.2	91.2	90.5	97.5

E6Hi: E6 fuel with high aromatic content.

Referencia [47]-Appendix A. Properties of the test fuels.

Inspectio n	Units	Fuel	Fuel	Fuel	Fuel	Fuel							
		Α	В	С	D	Е	Fuel F	Fuel G	Fuel H	Fuel I	Fuel J	Fuel K	Fuel L
API Gravity	°API	62.1	59.9	57.6	61.4	56.7	60.1	57.1	60.6	57.2	56.6	59.3	54.4
Relative Density	60/60°F	0.7310	0.7393	0.7482	0.7337	0.7519	0.7387	0.7502	0.7366	0.7498	0.7525	0.7416	0.7611
DVPE	psi	7.74	7.84	7.70	7.65	7.80	7.62	7.78	7.85	7.68	7.57	7.71	7.69
Oxygenat		0.03	0.03	0.13	0.03	0.11	0.08	0.13	0.09	0.16	0.13	0.16	0.16
esD 4815 MTBE	vol %												
ETBE	vol %	0.02	0.02	0.01	0.01	0.01	0.08	0.04	0.01	0.01	0.01	0.02	0.01
FtOH	vol %	0.02	5.62	10.37	0.00	10.26	0.00	10.15	0.05	5.94	5.90	0.00	10.49
02	wt %	0.02	2.10	3.84	0.01	3.78	0.03	3.76	0.04	2.22	2.19	0.03	3.83
Sulfur		10.0		10.0					10.6				
Content	ppm	18.8	16.7	19.0	18.2	17.2	18.1	17.5	18.6	16.8	19.1	21.9	20.6
Distil	0E	94.2	107.6	104.3	88.8	106.3	94.2	103.7	94.2	100.7	102.6	93.9	106.1
lation IBP	F	126.3	127.2	124.6	123.2	124.3	121.6	125.3	122.7	124.0	126.0	117.0	120.4
5% Evaporated	°F	120.5	127.2	124.0	123.2	124.5	121.0	125.5	122.7	124.0	120.0	117.9	129.4
10% Evaporated	°F	136.0	133.2	130.5	133.3	130.5	135.0	133.2	134.0	130.2	134.4	129.7	140.0
20% Evaporated	°F	148.6	140.8	138.8	147.6	139.5	154.7	143.7	151.6	139.0	146.6	148.4	152.4
30% Evanorated	°F	163.6	154.1	146.6	164.1	147.2	177.0	152.9	173.3	150.8	175.5	174.4	158.8
		179.8	176.1	153.7	182.3	153.8	200.2	163.4	197.0	191.0	220.5	208.5	202.1
40% Evaporated	°F	194.7	190.9	192.7	199.5	197.7	216.8	212.2	216.3	215.9	236.6	236.1	232.7
50% Evaporated	°F	209.0	203.2	223.5	216.9	226.2	227.6	226.7	230.4	235.9	251.5	255.2	248 7
60% Evaporated	°F	205.0	203.2	223.5	210.9	220.2	227.0	223.7	230.1	200.0	251.5	255.2	270.7
70% Evaporated	°F	224.2	219.3	245.7	237.9	259.2	238.2	237.0	245.9	260.9	271.9	279.6	273.5
80% Evaporated	°F	243.4	240.9	281.5	274.3	299.7	254.7	251.7	273.7	311.3	305.2	319.1	307.7
00% Evanorated	°F	294.3	289.8	329.2	355.0	351.7	295.0	290.7	326.9	354.2	329.2	355.5	349.1
90% Evaporated	I.	327.4	325.9	343.4	367.3	364.9	324.0	327.8	343.7	366.6	338.7	368.6	367.4
95% Evaporated	°F	351.2	352.0	374.0	392.0	385.4	361.2	365.4	374.4	391.8	365.8	390.3	389.6
EP	°F												

			97.0	97.9	97.7	97.9	97.4	97.2	96.7	98.0	97.9	97.6	98.1	97.3
	Recovery	vol %												
			1.8	1.1	1.2	0.8	1.4	1.7	1.5	1.0	1.1	1.2	1.0	1.0
	Residue	vol %												
			1.2	1.0	1.1	1.3	1.2	1.1	1.8	1.0	1.0	1.3	0.9	1.7
Driveabili	Loss	vol %	1002 4	1075.0	1120.0	1152.2	1165.1	1140.0	1151.0	1176.0	1011.5	1054.0	1050.0	1000.0
ty Index			1082.4	10/5.8	1128.0	1153.3	1165.1	1148.0	1151.2	11/6.8	1211.5	1254.9	1258.2	1282.3
E200		vol %	53.6	57.6	52.1	50.6	50.6	40.0	47.4	41.7	43.1	35.2	37.6	39.4
E300		vol %	90.9	91.5	84	83.6	80.0	90.9	79.5	85.2	77.8	78.4	75.2	78.0
Aromatics		vol %	25.9	25.9	25.4	25.1	26.7	26.7	25.2	25.6	26.8	26.4	26.0	26.4
Olefins		vol %	5.3	5.5	5.3	5.4	5.3	5.5	5.2	5.1	5.2	5.4	5.5	5.5
Saturates		vol %	68.8	68.6	69.3	69.5	68.0	67.8	69.6	69.3	67.7	68.2	68.5	68.1
Benzene		vol %	0.9	0.9	1.0	1.0	0.9	1.0	1.0	1.0	0.9	0.9	1.0	0.9
Heating														
Value		BTU/gal	113,037	111,424	110,737	113,714	111,052	114,068	110,937	113,978	112,884	113,286	114,795	112,365
Research														
Octane														
Number			92.0	91.5	93.2	93.2	93.9	94.5	94.0	92.2	93.6	94.7	92.5	94.5
Motor														
Octane														
Number			84.0	83.2	84.0	84.6	84.4	84.8	85.1	84.8	85.5	85.8	84.2	85.2
(R+M)/2			88.0	87.4	88.6	88.9	89.2	89.7	89.6	88.5	89.6	90.3	88.4	89.9

Referencia [27]-Appendix A. Table of environmental standards for petrol and Diesel. Fuel quality standards petrol

Parameter	Proposed standard	Grade	Date of effect
0.10	500 ppm (max)		1.1. 2002
Sulfur	150 mm (max)	ULP/LRP	1 Jan 2002
	150 ppin (max)	PULP	
	150 ppm (max)		
	ico ppin (inmi)	All grades	1 Jan 2005
Research octane	91 RON (min)	ULP	1 Jan 2002
number (RON)	95 RON (min)	PULP	
	96 RON (min)	LRP	
Distillation	FBP 210 C (max)	All grades	1 Jan 2005
Olefins	18% pool average	All grades	1 Jan 2004
	over 6 months with a		
	Cap of 20%		
		All grades	1 Jan 2005
	18% max by vol		
Aromatics	45% pool average	All grades	1 Jan 2002
	over 6 months with a		
	Cap of 48%		
			1 Jan 2005
	42% pool average		
	over 6 months with a		
	Cap of 45%		
Benzene	1% max by vol	All grades	1 Jan 2006
Lead	0.005g/L (max)	All grades	1 Jan 2002
Oxygen content	2.7% m/m (max)	All grades (no	1 Jan 2002
		ethanol)	
Phosphorus	0.0013g/L (max)	ULP, PULP	1 Jan 2002

Ethanol	Standard (limit) to be set within 12 months.						
MTBE (Methyl	1% by volume (max)	All grades	1 Jan 2004				
tertiary-butyl							
ether)							
DIPE	1% by volume (max)	All grades	1 Jan 2002				
(Di-isopropropyl							
ether)							
TBA (Tertiary	0.5% by volume	All grades	1 Jan 2002				
butyl alcohol)	(max)						

Referencia [45]-ÁLCOOL HIDRATADO-AEHC

CARACTERÍSTICAS	UNIDADES	AEHC	Posto	Distrib.	Prod.
Aspecto		límp.e isento	Х	X	Х
		impur.			
Cor		incolor a lev.	Х	Х	Х
		amarelo			
Acidez total (ácido	mg/L	30		Х	Х
acético), máx					
Condutividade elétrica,	μS/m	500		Х	Х
máx.					
Íon Cloreto, máx.	mg/kg	1			Х
Íon Sulfato, máx.	mg/kg	4			Х
Massa específica a 20°C	kg/m³	807,6 a 811,0(1)	Х	Х	Х
Resíduo por evaporação,	mg/100mL	5			Х
máx.					
Metais: Ferro Sódio,	mg/kg	5, 2			Х
máx.					
Teor alcoólico	°INPM	92,6 a 93,8 (2)	Х	X	Х
Teor de hidrocarbonetos,	%vol.	3		X	
máx.					
pH		6,0 a 8,0		X	Х

(1) 805,0 a 811,0 na distribuição e importação(2) 92,6 a 94,7 na distribuição e importação (contaminação por hidrocarbonetos)

Referencia [45]-QUALIDADE GASOLINA

CARACTERÍSTICA	UNIDADE	TIPO C	Posto	Distr	Prod
Aspecto e Cor (sem corante)		Incolor a amarelada	X		Х
Teor de AEAC	% volume	25 ± 1	X	Х	

Destilação 10% evaporado, máx. 50% evaporado, máx. 90% evaporado, máx. PFE, máx. Resíduo, máx.	°C °C °C % v/v	65,0 80,0 190,0 220,0 2,0		X X X X	X X X X X X
MON, mín.	-	82,0			Х
IAD, mín.	-	87,0			X
Pressão de Vapor a 37,8 °C	kPa	69,0 máx.			X
Goma Atual Lavada, máx.	mg/100 mL	5			X
Período de Indução a 100°C, mín.	min	360			X
Enxofre, máx.	% massa	0,10			X
Benzeno, máx.	% volume	1,0			Х
Chumbo, máx.	g / L	0,005			Х
Massa específica a 20 °C	kg/m ³	Anotar	Х	X	Х
Aromáticos, máx.	% vol	45			X
Olefínicos, máx	% vol.	30			X

Referencia [29]-Table 2. Test fuel properties

Test Description	Non-oxygenated	Oxygenated
Specific Gravity	0.7347	0.7294
Reid vapor pressure (psi)	13.1	13.7
Distillation (\Box F)		
IBP	83	87
5%	95	99
10%	106	108
20%	128	122
30%	151	135
40%	178	145
50%	206	153
60%	235	202
70%	266	241
80%	299	278
90%	335	324
95%	370	360
EP	420	416

Hydrocarbon Type (L.V.%)		
Aromatics	32.3	30.1
Olefins	14.2	14.3
Saturates	53.6	55.7
Benzene	1.31	0.90
Oxygenates (V %)		
Ethanol	<0.1	10.2
All others	<0.1	<0.1
Oxygen content (Wt %)	<0.2	3.5
Lead (g/gal)	<0.002	<0.002
Sulfur, total by x-ray		
spectrometry (Wt %)	0.0186	0.0190
Octane		
Research Octane	92.3	92.4
Motor Octane	82.9	82.8
R+M/2	87.6	87.6

Referencia [28]-Table 2. Properties of Gasoline, Ethanol and Gasoline/Ethanol Blends.

Property	Gasoline	Ethanol	10% Ethanol / Gasoline	20% Ethanol / Gasoline
			Blend	Blend ²
Specific Gravity	0.72 -	0.79	0.73 – 0.76	0.735 - 0.765
@ 15.5 □C	0.75			
Heating Value				
(MJ/kg)	43.5	27.0	41.9	40.0
(BTU/lb)	18,700	11,600	18,000	17,200
Heating Value				
(MJ/litre)	32.0	21.3	30.9	29.9
(BTU/gal)	117,000	76,000	112,900	109,000
Approx Reid Vapour Pressure @ 37.8°C (kPa) ¹	59.5	17	64.0	63.4
Stoichiometric Air/Fuel Ratio	14.6	9	14	13.5
Oxygen Content (% by weight)	0.00	35	3.5	7.0

Referencia [52]-Properties of fuels (a).

			Prop	erties of Fu	iels (a)				
		No.2					Compressed		
					М				
					Т				
					В				
Property	Gasoline	Diesel Fuel	Methanol	Ethanol	E	Propane	Natural Gas	Hydrogen	Biodiesel
							CH4 (83-99%),		C12-C22
					(CH3)3C				
Chemical Formula	C4 to C12	C8 to C25	CH3OH	C2H5OH	OCH3	C3H8	C2H6 (1-13%)	H2	FAME

Molecular Weight	100-105	~200	32.04	46.07	88.15	44.1	16.04	2.02	~292(q)
Composition, Weight %									
>Carbon	85-88(b)	87(g)	37.5	52.2	68.1	82	75	0	77(g)
>Hydrogen	12-15(b)	13(g)	12.6	13.1	13.7	18	25	100	12(g)
>Oxygen	0	0(g)	49.9	34.7	18.2	-	_	0	11(g)
Specific gravity, 60° F/60° F	0.72-0.78(b)	0.85(g)	0.796(h)	0.794(h)	0.744(k)	0.508(m)	0.424	0.07(o)	0.88(g)
Density, lb/gal @ 60° F	6.0-6.5(b)	7.079(g)	6.63(b)	6.61(b)	6.19(k)	4.22	1.07(n)	_	7.328(g)
Boiling temperature, °F	80-437(b)	356-644(g)	149(h)	172(h)	131(h)	-44(n	n) 3.2 to -126.4(m)	-423(m	n) 599-662(g)
Reid vapor pressure (100 $^\circ$									
F),									
psi	8–15(c)	< 0.2	4.6(i)	2.3(i)	7.8(l)	208	2400	-	<0.04(r)
Heating value (2)									
>Lower (liquid fuel-water									
vapor)	10 (7(1)	10.204(1)	0(27(1)	11.505(1)	15.001(1)	10,000(1)	20.2(2(1)	52 217(1)	16 121(1)
Btu/ID	18,676(d)	18,394(d)	8637(d)	11,585(0)	15,091(d)	19,900(d)	20,263(d)	52,217(d)	16,131(d)
vapor)									
Btu/gal @ 60° F	116.090(d)	~129.050(g)	57.250(d)	76.330(d)	93.540(d)	84500	19,800(6)	_	~118.170(g)
Octane no. (1)	110,090(u)	12),000(8)	07,200(u)	70,000(u)	70,010(u)	0.000	19,000(0)		110,170(8)
>Research octane no	88-98(c)	_	_	_	_	112	_	130+	_
>Motor octane no	80–88(c)	_	_	_	_	97	_	_	_
Cetane no.(1)	-	40-55(g)	_	0-54(f)	_	_	_	_	48-65(g)
Freezing point °F	-40(e)	-40-30(4)	-143 5	-173 2	-164(h)	-305 8(m)	-296	-435(n	$\frac{10000(g)}{26-66(g)(7)}$
Viscosity, mm/s	10(0)	10 50(1)	1 10.0	175.2	101(11)	505.0(11)	270	155(p) 20 00(5)(7)
>@104 °F	_	1.3-4.1(g)	_	_	-	_	_	_	4.0-6.0(g)
>@68 °F	0.5-0.6(f)	2.8-5.0(f)	0.74(f)	1.50(f)	0.47(f)	_	_	_	_
>@-4 °F	0.8-1.0(f)	9.0-24.0(f)	1.345(f)	3.435(f)	0.77(f)	_	_	_	_
Flash point, closed cup, °F	-45(b)	140-176(g)	52(i)	55(i)	-14(c)	-156(m)	-300	_	212-338(g)
Autoignition temperature	10(0)	110 170(8)	02(1)	00(1)	11(0)	100(111)	200		212 000(g)
°F	495(b)	~600	867(b)	793(b)	815	842(m)	900-1170(m)	932(m)	_
Water solubility, @ 70° F									_
>Fuel in water, volume %	Negligible	Negligible	100(h)	100(h)	4.8(f)	-	_	_	-
>Water in fuel, volume %	Negligible	Negligible	100(h)	100(h)	1.5(f)	_	_	_	_
Flammability limits,									
Volume %	1 4(h)	1.0	7 2(3)	1 2(1)	16(2.0)	<u> </u>	5 2	11(-)	
Higher	1.4(D)	1.0	26 0(i)	4.3(1) 10.0(3)	8 4(a c)	2.2	5.5	4.1(0)	-
> right	7.0(0)	0.0	30.0(1)	19.0(1)	0.4(C,C)	9.5	13	74(0)	-
Btu/gol @ 60° E	. 000/1-)	710	3 340/1-1	2 270/L)	862(5)	775			
	~900(0)	~/10	5,540(D)	2,376(0)	120(5)	102.1	- 210	-	_
	~150	~100	0.(0)	390(D)	138(5)	193.1	219	192.1(p)	-
Specific heat, Btu/lb Stoighigmotric sin/fuel	0.48(e)	0.43	0.60(j)	0.57(j)	0.50(j)	-	-	-	
weight	14.7	14.7	6.45	9.00	11.7	<u>1</u> 5.7	17.2	34.3(g)	13.8(g)
Volume % fuel in vaporizad stoichiometric mixture	2.0(b)	-	12.3(b)	6.5(b)	2.7(1)	_	-	-	-

Sources:

(a) The basis of this table and associated references was taken from: American Petroleum Institute (API), Alcohols and Ethers, Publication No. 4261,

3rd ed. (Washington, DC, June 2001), Table B-1.

(b) "Alcohols: A Technical Assessment of Their Application as Motor Fuels," API Publication No. 4261, July 1976.

(c) Petroleum Product Surveys, Motor Gasoline, Summer 1986, Winter 1986/1987, National Institute for Petroleum and Energy Research.

(d) Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model, Argonne National Laboratory, accessed 11-20-06

(e) "Status of Alcohol Fuels Utilization Technology for Highway Transportation: A 1981 Perspective," Vol. 1, Spark-Ignition Engine, May 1982, DOE/CE-56051-7.

(f) American Petroleum Institute (API), Alcohols and Ethers, Publication No. 4261, 3rd ed. (Washington, DC, June 2001), Table 2

(g) J. Tuttle and T. von Kuegelgen, Biodiesel Handling and Use Guidelines--Third Edition, National Renewable Energy Laboratory, 2004.

(h) Handbook of Chemistry and Physics, 62nd Edition, 1981, The Chemical Rubber Company Press, Inc.

(i) API Technical Data Book - Petroleum Refining, Volume I, Chapter I. Revised Chapter 1 to First, Second, Third and Fourth Editions, 1988.

(j) "Data Compilation Tables of Properties of Pure Compounds," Design Institute for Physical Property Data, American Institute of Chemical Engineers, New York, 1984.

(k) API Monograph Series, Publication 723, "Teri-Butyl Methyl Ether," 1984.

(1) ARCO Chemical Company, 1987.

(m) Praxair, Inc. Material Safety Data Sheets for Propane, CNG, and Hydrogen. September 2004. Danbury, CT USA.

(n) Value at 80 degrees F with respect to the water at 60 degrees F (Mueller & Associates).

(o) C. Borusbay and T. Nejat Veziroglu, "Hydrogen as a Fuel for Spark Ignition Engines," Alternative Energy Sources VIII, Volume 2, Research and Development (New York: Hemisphere Publishing Corporation, 1989), pp. 559-560.

(p) Technical Data Book, Prepared by Gulf Research and Development Company, Pittsburgh, PA, 1962.

(q) National Biodiesel Board, "Soybean Methyl Ester Formula and Molecular Weight". Accessed at www.biodiesel.org/pdf_files/fuelfactsheets/Weight&Formula.PDF on 11-20-06
(r) National Biodiesel Board, "Biodiesel Fact Sheet", accessed at www.biodiesel.org.au/biodieselfacts.htm on 11-20-06.

Notes

Octane values are for pure components. Laboratory engine Research and Motor octane rating procedures are not suitable for use with neat oxygenates.
Octane values obtained by these methods are not useful in determining knock-limited compression ratios for vehicles operating on neat oxygenates and do not represent octane performance of oxygenates when blended with hydrocarbons. Similar problems exist for cetane rating procedures.
Since no vehicles in use, or currently being developed for future use, have powerplants capable of condensing the moisture of combustion, the lower heating value should be used for practical comparisons between fuels.
Pour Point, ASTM D 97 from Reference (c).

(5) Based on cetane.

(6) For compressed gas at 2,400 psi.

(7) Cloud Point

Referencia [36]-Propiedades de la gasolina y el etanol. Los valores fueron tomados de: Alcohols and Ethers, a Technical Assessment of Their Application as Fuel and Fuel Components, API Publication 4261, 1998 y Goldemberg, J., Macedo, I., "The Brazilian Alcohol Program - An Overview", Energy for Sustainable Development, vol. 1, núm. 1, 1994.

Parámetro	Gasolina	Etanol
Poder Calorífico (kJ/kg)	43 000	26 700
Densidad (kg/litro)	0.72 - 0.78	0.792
Octanaje RON (Research Octane Number)	90 - 100	102 - 130
Octanaje MON (Motor Octane Number)	80 - 92	89-96
Calor latente de vaporización (kJ/kg)	330 - 400	842-930
Relación estequiométrica aire/combustible	14.5	9.0
Presión de vapor (kPa)	40 - 65	15-17
Temperatura de ignición (°C)	220	420
Solubilidad en agua (% en volumen)	~ 0	100

Referencia [51]-Table 1. Summary of San Francisco Bay area gasoline properties^a (mean= 1σ) during summer 1994-2001.

Fable 1. Summary of San Francisco Bay area gasoline properties ^a (mean \Box 1 σ) during summers 1994-2001.											
gasoline	1994	1995	1996	1997	1998	8	19	999	2	000	2001
property						~					
RVP ^b (kPa)	51 ± 1	51 ± 1	48 ± 1	49 ± 1	48 ±	1	49	± 1	49	±1	49 ± 1
(psi)	7.4 ± 0.1	7.4 ± 0.1	7.0 ± 0.1	7.1 ± 0.1	7.0	± 0.1	7.1	± 0.1	7.0	± 0.1	7.0 ± 0.1
sulfur (ppmw)	131 ± 41	81 ± 36	16 ± 9	12 ± 11	16 ±	8	10	± 8	9	± 2	10 ± 4
oxygen (wt%)	0.5 ± 0.3	0.2 ± 0.2	2.0 ± 0.3	1.6 ± 0.6	1.6	± 0.6	1.7	± 0.6	1.8	± 0.3	1.5 ±0.9
MTBE ^c (vol%)	2.7 ± 1.7	1.0 ± 0.9	10.7 ± 1.7	8.2 ± 3.7	7.4	± 4.3	8.0	± 4.0	7.8	± 4.3	5.9 ±5.6
TAME ^d (vol%)	N/A	N/A	N/A	N/A	0.5	± 0.8	0.1	± 0.1	0.1	± 0.8	0.2 ±0.5
ethanol (vol%)	N/A	N/A	N/A	N/A	0.5	± 1.6	0.7	± 2.1	0.0	± 0.0	0.5 ± 1.3
alkane (vol%)	57.4 ± 4.8	56.6 ± 5.1	62.6 ± 2.5	65.4 ± 3.7	64 ±	3	66	± 5	63	± 5	65 ± 4
alkene (vol%)	7.9 ± 4.4	8.8 ± 3.5	3.3 ± 0.9	3.4 ± 1.2	3.6	± 1.2	3.2	± 2.1	4.5	± 1.8	4.3 ±1.7

aromatic (vol%)	31.9 ± 2.1	33.7 ± 3.3	23.5 ± 1.4	22.7 ± 1.4	24 ± 2	22 ± 3	25 ± 3	24 ± 2
benzene (vol%)	1.6 ± 0.4	1.5 ± 0.4	0.4 ± 0.1	0.4 ± 0.1	$1 0.51 \pm 0.0$	080.52 ± 0.0	080.55 ± 0.00	.07 0.48 ±0.06
T ₅₀ (□C)	101 ± 4	103 ± 2	93.8 ± 2.2	93.3 ± 1.7	93.3 ± 1.7	93.3 ± 1.1	94.7 ± 2.7	94.4 ± 1.1
(□F)	214 ± 8	218 ± 4	199 ± 4	200 ± 3	200 ± 3	200 ± 2	202 ± 5	202 ± 2
$T_{90}(\Box C)$	168 ± 4	172 ± 4	149 ± 2	148 ± 3	151 ± 4	152 ± 6	151 ± 4	149 ± 2
(□F)	334 ± 8	341 ± 8	300 ± 4	299 ± 6	304 ± 8	306 ± 10	305 ± 7	301 ± 3
density (g L ⁻¹)	761 ± 8	760 ± 4	743 ± 2	741 ± 5	746 ± 5	742 ± 6	742 ± 6	743 ± 7

sacs-weighted average of regular, indegrade and premium gasonice. Set wee station samples concered during sury in Concord and August in san Francisco,

by Southwest Research Institute. ^bRVP is Reid Vapor Pressure. ^cMTBE is methyl tertiary butyl ether. ^dTAME is tert-amyl methyl ether.

Referencia [50]-Table 2.4. Fuel property comparison for ethanol, gasoline and No. 2 Diesel.

	Table 2.4					
Fuel Property Comparison for Ethanol, Gasoline and No. 2 Diesel						
Property	Ethanol	Gasoline	No. 2 Diesel			
	Linuitor	Gusonne				
Chemical Formula	C2H5OH	C4 to C12	C3 to C25			
Molecular Weight	46.07	100-105	≈200			
Carbon	52.2	85-88	84–87			
Hydrogen	13.1	12-15	33-16			
Oxygen	34.7	0	0			
Specific gravity, 60° F/60° F	0.796	0.72-0.78	0.81-0.89			
Density, lb/gal @ 60° F	6.61	6.0–6.5	6.7–7.4			
Boiling temperature, °F	172	80-437	370-650			
Reid vapor pressure, psi	2.3	8-15	0.2			
Research octane no.	108	90-100				
Motor octane no.	92	81–90				
(R + M)/2	100	86–94	N/A			
Cetane no.(1)		5-20	40–55			
Fuel in water, volume %	100	Negligible	Negligible			
Water in fuel, volume %	100	Negligible	Negligible			
Freezing point, °F	-173.2	-40	-40-30 ^b			
Centipoise @ 60° F	1.19	0.37–0.44 ^a	2.6-4.1			
Flash point, closed cup, °F	55	-45	165			
Autoignition temperature, °F	793	495	≈600			
Lower	4.3	1.4	1			
Higher	19	7.6	6			
Btu/gal @ 60° F	2,378	≈900	≈700			
Btu/lb @ 60° F	396	≈150	≈100			
Btu/lb air for stoichiometric mixture @ 60°						
F	44	≈10	≈8			
Higher (liquid fuel-liquid water) Btu/lb	12,800	18,800-20,400	19,200-20000			
Lower (liquid fuel-water vapor) Btu/lb	11,500	18,000-19,000	18,000-19,000			
Higher (liquid fuel-liquid water) Btu/gal	84,100	124,800	138,700			
Lower (liquid fuel-water vapor) Btu/gal @						
60° F	76,000 ^a	115,000	128,400			
Mixture in vapor state, Btu/cubic foot @						
68° F	92.9	95.2	96.9 ^c			
Fuel in liquid state, Btu/lb or air	1,280	1,290	-			
Specific heat, Btu/lb °F	0.57	0.48	0.43			

Stoichiometric air/fuel, weight	9	14.7 ^a	14.7
Volume % fuel in vaporized stoichiometric			
mixture	6.5	2	-

Source:

U.S. Department of Energy, Office of Energy Effiency and Renewable Energy, Alternative Fuels Data Center. http://www.eere.energy.gov/afdc/altfuel/fuel_properties.html.

^a Calculated.

^b Pour Point, ASTM D97. ^c Based on Cetane.

Referencia [26]-Appendix A. Comparison of fuel properties.

Property	Ethanol	Gasoline
Chemical Formula	C ₂ H ₅ OH	C_4 to C_{12} chains
Molecular weight	46.07	100-105
Composition, weight %		
Carbon	52.2	85-88
Hydrogen	13.1	12-15
Oxygen	34.7	0
Relative Density, 60/60°F	0.794	0.69-0.793
Density, lb/gal @ 60°F	6.61	5.8-6.63
Lower heating value		
Btu/lb	11,500	18,000-19,000
Btu/gal @ 60°F)	76,000	109,000-119,000
Boiling Temperature, °F	173	80-437
Freezing point, °F	-173.4	-40
Vapor Pressure, psi	2.3	7-15
Blending Reid Vapor Pressure, psi	18	7-15
Octane (R+M)/2	98-100	86-94
Water solubility, @70°F		
Fuel in Water, vol %	100	Negligible
Water in Fuel, vol %	100	Negligible
Flash point, closed cup, °F	55	-45
Autoignition temperature, °F	~793	~495
Flammability limits, vol %		
Lower	4.3	1.4
Higher	19.0	7.6
Latent heat of Vaporization		
Btu/lb @ 60°F	396	~150
Btu/gal @ 60°F	2,378	~900
Stoichiometric air/fuel ratio, weight	9.00	14.7

Source: American Petroleum Institute, Alcohols and Ethers: a Technical Assessment of Their Application as Fuels and Fuel Components, API Publication 4261, Third edition, June 2001

Referencia [48]-Table I. Key properties of gasoline, ethanol and MTBE

Property	Gasoline	Ethanol	MTBE
Chemical formula	C_4 to C_{12}	C ₂ H ₅ OH	(CH ₃) ₃ COCH ₃

Molecular weight (kg/kmol)		100-105	Τ	46.72		88.5	٦
Carbon wt. % Hydrogen wt. % Oxygen wt. %		85-88 12-15 0		52.2 13.1 34.7		66.1 13.7 18.2	
Specific gravity	l	0.72-0.78	I	0.796		0.744	
Boiling temperature ⁰ F		80-437	I	172		131	
Water solubility		negligible	I	complete	e	high	
Lower heating value ^{<i>a</i>} , BTU/lb liquid fuel - liquid water	1	8,000-19,00	0	11,500 ^d		15,100	
Lower heating value ^{<i>a</i>} , BTU/gal @60	⁰ F	116,000 ^b	I	76,000		93,500	
kg CO ₂ produced/kg fuel ^c		~ 3		1.9		1.5	
g CO ₂ produced/MJ in fuel ^c		66-70		71		70	

^a Since no vehicles in use, or currently being developed for future use, have pow-erplants capable of condensing the moisture of combustion, the lower heating value should be used for practical comparisons between fuels.
^b Calculated as the mean heating value times the mean density. Can be as high as 120,000 Btu/gal.
^c Calculated.
^d (CRC: 1972, *Handbook of Chemistry and Physics*. Cleveland, OH: Praeger.
; API: July 1976, 'Alcohols: A Technical Assessment of Their Application as Motor Fuels'. API Publication No. 4261, Washington, D.C.).

Referencia [66]- Table 2. Characteristics of test fuels.

Test items	Base	Unleaded	E10	E15
Physical properties				
				L.
Colour; Hue	L. Yellow	L. Yellow	L. Yellow	Yellow
Intensity (ASTM)	L1.0	L1.0	L1.0	L1.0
Appearance	B&C	B&C	B&C	B&C
Antiknock properties				
Octane number (RON)		95.3	96.4	97.7
Lead content, gPb/L	0.000	0.001	0.000	0.000
Volatility				
Distillation 10% vol.				
evap., 1C	53	54	52	54
50% vol. evap., 1C	78	79	84	71
90% vol. evap., 1C	143	144	160	165
FBP, 1C	172	173	185	189
Residue, %vol.	0.5	0.5	0.5	0.5
Vapour pressure at 371C, kPa	58	57	60	61

API gravity at 151C	56.5	58.8	55.5	55.3
Cleanliness				
Benzene content, %vol.	1.10	1.10	1.15	1.14
Aromatics content, %vol.	31.0	31.0	30.1	30.1
Sulphur content, %wt	0.01	0.01	0.01	0.01
Cu strip corrosion (3 h, 501C)	1a	1a	1a	1a
Existent gum, g/100 ml	0.0004	0.0004	0.0004	0.0004
Oxidation stability, min	>360	>360	>480	>480
Water (wt%)	0.04	0.04	0.04	0.07
Additive				
MTBE	_	9	—	_
Ethanol	_	_	10	15
Oxygen content, wt%	0.00	1.63 ^a	3.47 ^b	5.21 ^b

^aOxygen content of MTBE is 18.15 wt%. ^bOxygen content of ethanol is 34.73 wt%. Source: Bangchak Petroleum Public Company Limited, 2001.

Apéndice 2. CONDICIONES DURANTE LAS PRUEBAS.

A continuación se presentan las condiciones atmosféricas, propiedades de combustible y relación combustible-aire durante las pruebas desarrolladas y presentadas en la Tabla 9.

Combustible	E0	Combustible	E0
Relación de compresión	7	Relación de compresión	7.7
Nombre de la prueba	E0-7-1	Nombre de la prueba	E0-7.7-1
Velocidad del motor [rpm]	900	Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611	Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	739	Densidad de combustible [kg/m3]	739
LHV [MJ/kg]	42.6	LHV [MJ/kg]	42.6
ϕ	1.001208	ϕ	1.00216
Temperatura ambiente [C]	15	Temperatura ambiente [C]	14.65
Presión ambiente [kPa]	96.7	Presión ambiente [kPa]	96.7
Temperatura combustible [C]	55.00	Temperatura combustible [C]	55.00
Combustible	E10	Combustible	E10
Relación de compresión	7	Relación de compresión	7
Nombre de la prueba	E10-7-1	Nombre de la prueba	E10-7-0.9
Velocidad del motor [rpm]	900	Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611	Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	743.6	Densidad de combustible [kg/m3]	743.6
LHV [MJ/kg]	39.82	LHV [MJ/kg]	39.82
Phi	1.001037	ϕ	0.953845
Temperatura ambiente [C]	15	Temperatura ambiente [C]	15
Presión ambiente [kPa]	96.7	Presión ambiente [kPa]	96.7
Temperatura combustible [C]	55.00	Temperatura combustible [C]	55.00
Combustible	E10	Combustible	E10
Combustible Relación de compresión	E10 7.7	Combustible Relación de compresión	E10 7.7
Combustible Relación de compresión Nombre de la prueba	E10 7.7 E10-7.7-1	Combustible Relación de compresión Nombre de la prueba	E10 7.7 E10-7.7-0.9
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm]	E10 7.7 E10-7.7-1 900	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm]	E10 7.7 E10-7.7-0.9 900
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L]	E10 7.7 E10-7.7-1 900 0.611	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L]	E10 7.7 E10-7.7-0.9 900 0.611
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3]	E10 7.7 E10-7.7-1 900 0.611 743.6	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3]	E10 7.7 E10-7.7-0.9 900 0.611 743.6
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg]	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] Ø	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C]	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa]	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C]	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00 E20
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00 E20	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00 E20 7
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00 E20 7	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00 E20 7 E20-7-0.9
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00 E20 7 E20-7-1	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm]	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00 E20 7 E20-7-0.9 900
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00 E20 7 E20-7-1 900	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L]	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00 E20 7 E20-7-0.9 900 0.611
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00 E20 7 E20-7-1 900 0.611	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3]	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00 E20 7 E20-7-0.9 900 0.611 748.2
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00 E20 7 E20-7-1 900 0.611 748.2	CombustibleRelación de compresiónNombre de la pruebaVelocidad del motor [rpm]Desplazamiento [L]Densidad de combustible [kg/m3]LHV [MJ/kg] ϕ Temperatura ambiente [C]Presión ambiente [kPa]Temperatura combustible [C]CombustibleRelación de compresiónNombre de la pruebaVelocidad del motor [rpm]Desplazamiento [L]Densidad de combustible [kg/m3]LHV [MJ/kg]	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00 E20 7 E20-7-0.9 900 0.611 748.2 39
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00 E20 7 E20-7-1 900 0.611 748.2 39	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] Phi	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00 E20 7 E20-7-0.9 900 0.611 748.2 39 0.935971
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00 E20 7 E20-7-1 900 0.611 748.2 39 0.990632	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] Phi Temperatura ambiente [C]	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00 E20 7 E20-7-0.9 900 0.611 748.2 39 0.935971 15
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00 E20 7 E20-7-1 900 0.611 748.2 39 0.990632 15	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] Phi Temperatura ambiente [C] Presión ambiente [kPa]	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00 E20 7 E20-7-0.9 900 0.611 748.2 39 0.935971 15 96.7
Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [KPa]	E10 7.7 E10-7.7-1 900 0.611 743.6 39.82 0.999803 15 96.7 55.00 E20 7 E20-7-1 900 0.611 748.2 39 0.990632 15 96.7	Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] ϕ Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C] Combustible Relación de compresión Nombre de la prueba Velocidad del motor [rpm] Desplazamiento [L] Densidad de combustible [kg/m3] LHV [MJ/kg] Phi Temperatura ambiente [C] Presión ambiente [kPa] Temperatura combustible [C]	E10 7.7 E10-7.7-0.9 900 0.611 743.6 39.82 0.957558 15 96.7 55.00 E20 7 E20-7-0.9 900 0.611 748.2 39 0.935971 15 96.7 55.00

Combustible	E20
Relación de compresión	7.7
Nombre de la prueba	E20-7.7-1
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	748.2
LHV [MJ/kg]	39
ϕ	1.000492
Temperatura ambiente [C]	15
Presión ambiente [kPa]	96.7
Temperatura combustible [C]	55.00
Combustible	E20
Relación de compresión	8.4
Nombre de la prueba	E20-8.4-1
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	748.2
LHV [MJ/kg]	39
ϕ	1.000492
Temperatura ambiente [C]	15
Presión ambiente [kPa]	96.7
Temperatura combustible [C]	55.00
Combustible	E30
Relación de compresión	7
Nombre de la prueba	E30-7-1
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	752.5
LHV [MJ/kg]	36.34
ϕ	0.995443
Temperatura ambiente [C]	18
Presión ambiente [kPa]	99.1
Temperatura combustible [C]	55.00

Combustible	E20
Relación de compresión	7.7
Nombre de la prueba	E20-7.7-0.9
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	748.2
LHV [MJ/kg]	39
ϕ	0.939203
Temperatura ambiente [C]	15
Presión ambiente [kPa]	96.7
Temperatura combustible [C]	55.00
Combustible	E20
Relación de compresión	8.4
Nombre de la prueba	E20-8.4-0.9
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	748.2
LHV [MJ/kg]	39
ϕ	0.940594
Temperatura ambiente [C]	15
Presión ambiente [kPa]	96.7
Temperatura combustible [C]	55.00
Combustible	E30
Relación de compresión	7
Nombre de la prueba	E30-7-0.9
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	752.5
LHV [MJ/kg]	36.34
ϕ	0.88871
Temperatura ambiente [C]	15
Presión ambiente [kPa]	96.7
Temperatura combustible [C]	55.00

Combustible	E30
Relación de compresión	7.7
Nombre de la prueba	E30-7.7-1
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	752.5
LHV [MJ/kg]	36.34
ϕ	0.992058
Temperatura ambiente [C]	21.61
Presión ambiente [kPa]	98.92
Temperatura combustible [C]	55.00
Combustible	E30
Relación de compresión	8.4
Nombre de la prueba	E30-8.4-1
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	752.5
LHV [MJ/kg]	36.34
ϕ	1.003388
Temperatura ambiente [C]	22.94
Presión ambiente [kPa]	98.68
Temperatura combustible [C]	55.00
Combustible	E30
Relación de compresión	8.8
Nombre de la prueba	E30-8.8-1
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	752.5
LHV [MJ/kg]	36.34
ϕ	0.997022

22.94

98.68

55.00

Temperatura ambiente [C]

Temperatura combustible [C]

Presión ambiente [kPa]

Combustible	E30
Relación de compresión	7.7
Nombre de la prueba	E30-7.7-0.9
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	752.5
LHV [MJ/kg]	36.34
ϕ	0.889547
Temperatura ambiente [C]	22.96
Presión ambiente [kPa]	98.92
Temperatura combustible [C]	55.00
Combustible	E30
Relación de compresión	8.4
Nombre de la prueba	E30-8.4-0.9
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	752.5
LHV [MJ/kg]	36.34
ϕ	0.887743
Temperatura ambiente [C]	22.94
Presión ambiente [kPa]	98.68
Temperatura combustible [C]	55.00
Combustible	F30
Relación de compresión	88
Nombre de la prueba	E30-8 8-0 9
Velocidad del motor [rpm]	900
Desplazamiento [L]	0.611
Densidad de combustible [kg/m3]	752.5
LHV [MJ/kg]	36.34
ϕ	0 884315
' Temperatura ambiente [C]	22 94
Presión ambiente [kPa]	98.68
Temperatura combustible [C]	55.00
	55.00

Apéndice 3. RESULTADOS: TORQUE INDICADO.

En esta sección se presentan de forma gráfica los resultados para el torque indicado como función del tiempo de encendido, de las diferentes pruebas enumeradas en la Tabla 9.

Figura 130. Torque indicado como función del tiempo de encendido, prueba E0-7-1.

Figura 131. Torque indicado como función del tiempo de encendido, prueba E0-7.7-1.

Figura 132. Torque indicado como función del tiempo de encendido, prueba E10-7-1.

E10-7-0.9

Figura 133. Torque indicado como función del tiempo de encendido, prueba E10-7-0.9.

Figura 134. Torque indicado como función del tiempo de encendido, prueba E10-7.7-1.

E10-7.7-0.9

Figura 135. Torque indicado como función del tiempo de encendido, prueba E10-7.7-0.9.

Figura 136. Torque indicado como función del tiempo de encendido, prueba E20-7-1.

E20-7-0.9

Figura 137. Torque indicado como función del tiempo de encendido, prueba E20-7-0.9.

Figura 138. Torque indicado como función del tiempo de encendido, prueba E0-7.7-1.

E20-7.7-0.9

Figura 139. Torque indicado como función del tiempo de encendido, prueba E20-7.7-0.9.

Figura 140. Torque indicado como función del tiempo de encendido, prueba E20-8.4-1.

E20-8.4-0.9

Figura 141. Torque indicado como función del tiempo de encendido, prueba E20-8.4-0.9.

Figura 142. Torque indicado como función del tiempo de encendido, prueba E30-7-1.

E30-7-0.9

Figura 143. Torque indicado como función del tiempo de encendido, prueba E30-7-0.9.

Figura 144. Torque indicado como función del tiempo de encendido, prueba E30-7.7-1.

E30-7.7-0.9

Figura 145. Torque indicado como función del tiempo de encendido, prueba E30-7.7-0.9.

Figura 146. Torque indicado como función del tiempo de encendido, prueba E30-8.4-1.

E30-8.4-0.9

Figura 147. Torque indicado como función del tiempo de encendido, prueba E30-8.4-0.9.

Figura 148. Torque indicado como función del tiempo de encendido, prueba E30-8.8-1.

E30-8.8-0.9

Figura 149. Torque indicado como función del tiempo de encendido, prueba E30-8.8-0.9.

Apéndice 4. RESULTADOS: PRESIÓN EN CÁMARA DE COMBUSTIÓN.

En esta sección se presentan de forma gráfica los resultados para la presión en la cámara de combustión como función del ángulo de cigüeñal, de las diferentes pruebas enumeradas en la Tabla 9.

Presión cilindro Imep [kPa] ST Ángulo presión máxima [bar] máxima [grados] 36.09337 830.19 5 21.24 10 40.08118 15.84 827.24 15 44.06166 9.36 811.99

Figura 150. Presión en cámara de combustión como función del tiempo de encendido, prueba E0-7-1.

E0-7.7-1

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
5	37.78366	21.6	850.24
10	43.08189	15.48	848.79
15	47.21657	9.36	834.83

Figura 151. Presión en cámara de combustión como función del tiempo de encendido, prueba E0-7.7-1.

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
5	35.12421	21.96	817.22
10	39.7802	15.84	815.89
15	43.52112	9.72	801.93

Figura 152. Presión en cámara de combustión como función del tiempo de encendido, prueba E10-7-1.

E10-7-0.9

ST Presión cilindro Ángulo presión Imep [kPa] máxima [grados] máxima [bar] 5 33.73321 23.76 818.84 10 38.96019 16.92 821.44 15 43.041 10.44 811.00

Figura 153. Presión en cámara de combustión como función del tiempo de encendido, prueba E10-7-0.9.

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
5	38.51166	20.88	830.82
10	44.42444	13.68	830.96
15	48,3548	7.56	820.11

Figura 154. Presión en cámara de combustión como función del tiempo de encendido, prueba E10-7.7-1.

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
5	38.63998	21.24	838.12
10	44.00055	14.04	824.52
15	47.80151	8.28	819.32

Figura 155. Presión en cámara de combustión como función del tiempo de encendido, prueba E10-7.7-1.

E10-7.7-0.9

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
5	34.26598	22.68	814.14
10	38.76938	15.84	815.47
15	42.74223	10.44	817.59

Figura 156. Presión en cámara de combustión como función del tiempo de encendido, prueba E20-7-1.

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
5	33.16292	24.12	822.24
10	37.41203	18	826.72
15	41.72081	11.52	818.51

Figura 157. Presión en cámara de combustión como función del tiempo de encendido, prueba E20-7-0.9.

E20-7-0.9

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
5	36.34422	22.32	843.01
10	41.27891	16.56	847.43
15	45.70709	10.44	833.55

Figura 158. Presión en cámara de combustión como función del tiempo de encendido, prueba E20-7.7-1.

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
7	36.67854	21.24	844.75
10	39.91539	17.28	844.60
15	44.53453	11.52	835.29

Figura 159. Presión en cámara de combustión como función del tiempo de encendido, prueba E0-7.7-0.9.

E20-7.7-0.9

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
5	37.54654	20.52	776.05
10	45.4747	15.48	870.81
15	50.5249	9.36	851.57

Figura 160. Presión en cámara de combustión como función del tiempo de encendido, prueba E20-8.4-1.

Presión cilindro ST Ángulo presión Imep [kPa] máxima [bar] máxima [grados] 6 40.70846 19.8 866.38 44.84833 15.48 10 868.4 15 50.11108 9.00 844.53

Figura 161. Presión en cámara de combustión como función del tiempo de encendido, prueba E20-8.4-0.9.

E20-8.4-0.9

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
5	34.57443	22.68	831.32
10	38.7397	16.56	833.63
15	42.84126	10.44	822.38

Figura 162. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-7-1.

E30-7-0.9

Figura 163. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-7-0.9.

Figura 164. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-7.7-1.

E30-7.7-0.9

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
5	35.40314	23.4	832.06
10	40.37041	17.28	837.57
15	44.6318	11.52	833.88

Figura 165. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-7.7-0.9.

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
5	42.15858	17.64	840.21
10	44.49303	16.56	879.27
15	49.13231	10.08	833.31

Figura 166. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-8.4-1.

Presión cilindro STÁngulo presión Imep [kPa] máxima [bar] máxima [grados] 860.76 9 40.21255 19.44 10 41.51695 18.72 872.05 15 47.17293 12.24 855.60

Figura 167. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-8.4-0.9.

E30-8.4-0.9

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
10	46.68869	15.12	872.78
15	51.86272	10.08	878.85

Figura 168. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-8.8-1.

E30-8.8-0.9

ST	Presión cilindro	Ángulo presión	Imep [kPa]
	máxima [bar]	máxima [grados]	
12	46.81587	13.68	846.67
15	50.05989	10.44	844.90

Figura 169. Presión en cámara de combustión como función del tiempo de encendido, prueba E30-8.8-0.9.

Apéndice 5. RESULTADOS: TORQUE MÁXIMO.

Esta sección muestra de forma gráfica, los resultados para el torque máximo. Variable dependiente obtenida del análisis estadístico de los resultados de las diferentes pruebas enumeradas en la Tabla 9.

Figura 170. Torque máximo como función del tiempo de encendido y el combustible.

Figura 171. Torque máximo como función de la relación de compresión y el combustible.

Figura 172. Torque máximo como función del tiempo de encendido y la relación de compresión.

Figura 173. Torque máximo como función del combustible y de la relación combustible-aire equivalente.

Figura 174. Torque máximo como función del tiempo de encendido y la relación combustible-aire equivalente.

Figura 175. Torque máximo como función de la relación de compresión y de la relación combustible-aire equivalente.

Figura 176. Influencia del combustible en el torque máximo

Figura 177. Influencia del tiempo de encendido en el torque máximo.

Figura 178. Influencia de la relación de compresión en el torque máximo.

Figura 179. Influencia de la relación combustible-aire equivalente en el torque máximo.

Apéndice 6. RESULTADOS: PRESIÓN MEDIA INDICADA.

La presión media indicada se obtiene para cada tiempo de encendido desde los valores de presión en la cámara de combustión, calculando el trabajo indicado por ciclo y diviendo este valor en el volumen útil del cilindro (cilindrada). La tendencia de imep es idéntica a la de las variables torque y potencia.

Figura 180. Presión media indicada como función del tiempo de encendido y el combustible.

Figura 181. Presión media indicada como función de la relación de compresión y el combustible.

Figura 182. Presión media indicada como función del tiempo de encendido y la relación de compresión.

Figura 183. Presión media indicada como función del combustible y de la relación combustible-aire equivalente.

Figura 184. Presión media indicada como función del tiempo de encendido y la relación combustible-aire equivalente.

Figura 185. Presión media indicada como función de la relación de compresión y de la relación combustible-aire equivalente.

Figura 186. Influencia del combustible en la presión media indicada.

Figura 187. Influencia del tiempo de encendido en la presión media indicada.

Figura 188. Influencia de la relación de compresión en la presión media indicada.

Figura 189. Influencia de la relación combustible-aire equivalente en la presión media indicada.

Apéndice 7. RESULTADOS: PRESIÓN MÁXIMA.

La presión máxima constituye una variable dependiente que resulta del análisis de los resultados de las pruebas de la Tabla 9.

Figura 190. Presión máxima como función del tiempo de encendido y el combustible.

Figura 191. Presión máxima como función de la relación de compresión y el combustible.

Figura 192. Presión máxima como función del tiempo de encendido y la relación de compresión.

Figura 193. Presión máxima como función del combustible y de la relación combustible-aire equivalente.

Figura 194. Presión máxima como función del tiempo de encendido y la relación combustible-aire equivalente.

Figura 195. Presión máxima como función de la relación de compresión y de la relación combustible-aire equivalente.

Figura 196. Influencia del combustible en la presión máxima.

Figura 197. Influencia del tiempo de encendido en la presión máxima.

Figura 198. Influencia de la relación de compresión en la presión máxima.

Figura 199. Influencia de la relación combustible-aire equivalente en la presión máxima.

Apéndice 8. RESULTADOS: DURACIÓN DE LA COMBUSTIÓN.

La duración de la combustión constituye una variable dependiente que resulta del análisis de los resultados de las pruebas de la Tabla 9.

Figura 200. Duración combustión como función del tiempo de encendido y el combustible.

Figura 201. Duración combustión como función de la relación de compresión y el combustible.

Figura 202. Duración combustión como función del tiempo de encendido y la relación de compresión.

Figura 203. Duración combustión como función del combustible y de la relación combustible-aire equivalente.

Figura 204. Duración combustión como función del tiempo de encendido y la relación combustible-aire equivalente.

Figura 205. Duración combustión como función de la relación de compresión y de la relación combustible-aire equivalente.

Figura 206. Influencia del combustible en la duración de la combustión.

Figura 207. Influencia del tiempo de encendido en la duración de la combustión.

Figura 208. Influencia de la relación de compresión en la duración de la combustión.

Figura 209. Influencia de la relación combustible-aire equivalente en la duración de la combustión.

Apéndice 9. RESULTADOS: EFICIENCIA TÉRMICA.

La eficiencia térmica constituye una variable dependiente que resulta del análisis de los resultados de las pruebas de la Tabla 9.

Figura 210. Eficiencia térmica como función del tiempo de encendido y el combustible.

Figura 211. Eficiencia térmica como función de la relación de compresión y el combustible.

Figura 212. Eficiencia térmica como función del tiempo de encendido y la relación de compresión.

Figura 213. Eficiencia térmica como función del combustible y de la relación combustible-aire equivalente.

Figura 214. Eficiencia térmica como función del tiempo de encendido y la relación combustible-aire equivalente.

Figura 215. Eficiencia térmica como función de la relación de compresión y de la relación combustible-aire equivalente.

Figura 216. Influencia del combustible en la eficiencia térmica.

Figura 217. Influencia del tiempo de encendido en la eficiencia térmica.

Figura 218. Influencia de la relación de compresión en la eficiencia térmica.

Figura 219. Influencia de la relación combustible-aire equivalente en la eficiencia térmica.

Apéndice 10. CÁLCULO DE LA FRACCIÓN DE MASA RESIDUAL.

Esta sección presenta la forma en que se obtuvo la fracción de masa residual. De acuerdo con Ferguson [90], la fracción de masa residual se define como:

$$f = \frac{1}{Rc} \frac{v_4}{v_6}$$
(A10.1)

Donde *Rc* representa la relación de compresión, v_4 el volumen específico en el punto donde se abre la válvula de escape, y v_6 el volumen específico cuando se abre la válvula de admisión.

El cálculo de f se puede simplificar teniendo en cuenta que la masa total m_T es:

$$m_T = m_a \left(\frac{1}{1 + AFR}\right) \tag{A10.2}$$

Donde m_a es la masa de aire que ingresa al motor, entonces,

$$f = \frac{AFR}{Rc(AFR+1)} \tag{A10.3}$$

Figura 220. Curva de volumen de la cámara de combustión contra presión. Rc=7, E0, phi=1, ST=10. Se muestran los puntos donde ocurren los eventos de apertura y cierre de válvulas.

Apéndice 11. OBTENCIÓN DE LA VELOCIDAD COMO FUNCIÓN DEL AVANCE AL ENCENDIDO Y DE LAS DIFERENTES MEZCLAS DE COMBUSTIBLES.

Se inicia la deducción resolviendo las ecuaciones (4.20) y (4.21) utilizando la regla de integración de Simpson. En la ecuación A1.1 se muestra la solución para la ecuación 4.20.

$$\Delta m_b = \rho_u A_{ff} \left(S_L \Delta t + u \left(\Delta t + \frac{t_2 + 2\tau_b}{e^{\frac{t_2}{\tau_b}}} - \frac{t_1 + 2\tau_b}{e^{\frac{t_1}{\tau_b}}} \right) \right)$$
(A11.1)

Se sabe que la velocidad de fluctuación turbulenta es función de la velocidad del aire a la entrada U_i por la ecuación (4.28). Utilizando esta ecuación para reemplazar u' en (A11.1) se tiene una expresión para U_i :

$$U_{i} = \frac{\frac{\Delta m_{b}}{\rho_{u}A_{ff}} - S_{L}\Delta t}{\left(\Delta t + \frac{t_{2} + 2\tau_{b}}{e^{\frac{t_{2}}{\tau_{b}}}} - \frac{t_{1} + 2\tau_{b}}{e^{\frac{t_{1}}{\tau_{b}}}}\right)} * \left(\frac{1}{0.08\sqrt{\frac{\rho_{u}}{\rho_{i}}}}\right)$$
(A11.2)

De Heywood [72] se sabe que:

$$\frac{m_b}{m_{cil}} = \left[1 + \frac{\rho_u}{\rho b} \left(\frac{1}{y_b} - 1\right)\right]^{-1}$$
(A11.3)

En la cual y_b es la fracción de volumen ocupada por el gas quemado.

Reemplazando A11.3 en A11.2, se obtiene una ecuación para la velocidad U_i como función de la relación de densidades:

$$U_{i} = \frac{\left(\frac{1}{1 + \frac{\rho_{u}}{\rho_{b}}\left(\frac{1}{y_{b}} - 1\right)|_{0}^{a}}\right) \frac{m_{cil}}{\rho_{u}A_{ff}} - S_{L}\Delta t}}{\left(\Delta t + \frac{(t_{2} + 2\tau_{b})}{e^{\frac{t_{2}}{\tau_{b}}}} - \frac{(t_{1} + 2\tau_{b})}{e^{\frac{t_{2}}{\tau_{b}}}}\right)} * \left(\frac{1}{0.08\sqrt{\frac{\rho_{u}}{\rho_{i}}}}\right)$$
(A11.4)

Donde los subíndices 0 y a representan los valores para los tiempos t_1 y t_2 respectivamente.

La ecuación A11.4 relaciona la velocidad de entrada con los cambios en las densidades producto de la combustión de diferentes combustibles y cambios en la relación de compresión, luego $U_i=f(\rho_u/\rho_b)$. Sin embargo, se sabe que U_i también es función del instante en el que salta la chispa, *ST* [98, 147], ya que

la energía turbulenta se va disipando a medida que el pistón se acerca a TDC. Por esta razón y de acuerdo con la forma de las correlaciones mostradas en [96, 97, 101, 102] se supone entonces que:

$$U_i = U_{io} (\rho_u / \rho_b)^m, \tag{A11.5}$$

donde U_{io} puede ser la velocidad calculada desde un modelo de ondas de presión de amplitud finita o un modelo empírico como el de [96, 132], y *m* es función de la relación de densidades y *ST*.

Reemplazando A11.5 en A11.4 se tiene que:

$$U_{i0} \left(\frac{\rho_{u}}{\rho_{b}}\right)^{m} = \frac{\left(\frac{1}{1+\frac{\rho_{u}}{\rho_{b}}\left(\frac{1}{y_{b}}-1\right)I_{0}^{a}}\right)^{m} \frac{m_{cil}}{\rho_{u}A_{ff}} - S_{L}\Delta t}{\left(\Delta t + \frac{(t_{2}+2\tau_{b})}{e^{\frac{t_{2}}{\tau_{b}}}} - \frac{(t_{1}+2\tau_{b})}{e^{\frac{t_{1}}{\tau_{b}}}}\right)} * \left(\frac{1}{0.08\sqrt{\frac{\rho_{u}}{\rho_{i}}}}\right)$$
(A11.6)

El lado derecho de la ecuación A11.6 se hace igual a X_p entonces:

$$\left(\frac{\rho_u}{\rho_b}\right)^m = \frac{X_p}{U_{i0}} \tag{A11.7}$$

$$m = \log_{\left(\frac{\rho_u}{\rho_b}\right)} \frac{X_p}{U_{i0}}$$
(A11.8)

Al correr simulaciones para diferentes composiciones de combustibles, tiempos de encendido y relaciones de compresión, y haciendo una correlación entre los resultados, se encuentra que *m* es:

$$m = -0.01851 - 3.86568E - 2\left(ST\left(\frac{\rho_u}{\rho_b}\right)\right)$$
(A11.9)

Apéndice 12. RESULTADOS DETALLADOS PARA LOS DIFERENTES CASOS SIMULADOS

Caso 1a: ST=7, Rc=7, Patm=100, rpm=900

Figura 223. Curva de presión para el caso 1a.

Prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1751.41759	1727.82586	1725.31948	1720.58862	1739.49517	1722.96534	1552.01103
TcilmaxR	2372.4	2391.3	2370.3	2381.4	2395.6	2414.8	2058.9
Tcilprom20	983.181905	961.347619	914.044286	917.101905	944.69619	911.737619	871.61619
Tcilmax20	1748.7	1691.9	1508.5	1522.1	1596.6	1471.1	1342.4
dQRTpromR	27.0128534	26.9103103	27.9422828	27.9946741	27.2091714	27.7429621	23.7915672
dQRTmaxR	122.22	129.61	118.77	122.24	119.09	114.92	82.931
dQRTprom20	43.1473571	41.3088667	34.3947333	35.5213857	37.0608762	32.4422	27.5262143
dQRTmax20	110.54	105.91	82.334	84.444	90.114	74.769	61.025
PcilpromR	24.7324828	24.4369483	24.0927586	24.1051897	24.3790517	23.9834655	21.5865862
PcilmaxR	37.239	37.861	35.993	36.409	36.784	35.987	30.296
Pcilprom20	18.3968571	17.9882381	17.1012381	17.1636667	17.6706667	17.054619	16.3131429
Pcilmax20	31.197	30.171	26.81	27.077	28.39	26.103	23.808

Tabla 17. Valores para los diferentes parámetros de comparación, caso 1a.

Caso 1b: ST=10, Rc=7, Patm=100, rpm=900

Figura 224. Temperatura en el cilindro para el caso 1b.

Figura 226. Presión en el cilindro para el caso 1b.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1775.29115	1744.61803	1731.70836	1766.28475	1761.33557	1753.91902	1656.62098
TcilmaxR	2399.9	2407.4	2359.4	2354.9	2411.3	2392.6	2294.2
Tcilprom20	995.274286	968.114286	952.814762	957.927143	951.622381	944.250476	914.984762
Tcilmax20	1781.9	1712.9	1674.4	1680.8	1617.8	1602.7	1501.5
dQRTpromR	25.6842967	25.5869197	25.3873426	26.325582	25.8712082	25.845641	23.8120557
dQRTmaxR	125.28	131.89	128.42	128.43	121.4	120.8	112.37
dQRTprom20	44.1108381	41.7782429	40.7566762	41.6343333	37.5007714	37.284381	33.3774476
dQRTmax20	113.19	107.56	104.75	104.82	91.583	91.053	79.16
PcilpromR	25.7249672	25.3075246	25.063623	25.4797049	25.3128525	25.1851803	23.8365246
PcilmaxR	39.885	40.309	39.277	39.237	39.276	38.915	37.652
Pcilprom20	18.8428095	18.3228571	18.0338571	18.1362381	17.9961429	17.8571905	17.2999524
Pcilmax20	33.007	31.709	31	31.125	29.862	29.585	27.692

Tabla 18. Valores para los diferentes parámetros de comparación, caso 1b.

Caso 1c: ST=15, Rc=7, Patm=100, rpm=900

Figura 227. Temperatura en el cilindro para el caso 1c.

Figura 229. Presión en el cilindro para el caso 1c.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1789.24303	1766.59833	1726.51924	1759.71439	1785.78136	1791.49333	1710.82712
TcilmaxR	2356.6	2334.2	2275.2	2270.2	2351.9	2370.2	2335.4
Tcilprom20	1062.92571	1035.79476	987.631905	983.516667	1013.22714	985.998095	935.870952
Tcilmax20	2052.2	1992	1842.3	1840.4	1883.3	1776.2	1589.4
dQRTpromR	22.0823621	21.9985379	21.8270955	22.7090515	22.3848136	23.1487833	22.0081788
dQRTmaxR	139.91	137.64	129.11	131.18	127.88	125.6	117.72
dQRTprom20	54.962219	52.9700619	47.2412667	47.7940381	47.8410048	43.7742571	36.3039905
dQRTmax20	139.91	137.64	129.11	131.18	127.88	113.26	89.02
PcilpromR	27.2209091	26.8434697	26.0937424	26.4730758	26.8922424	26.8503333	25.5373788
PcilmaxR	44.444	44.058	42.226	42.06	43.429	43.102	42.162
Pcilprom20	20.1867143	19.6552381	18.7066667	18.6289524	19.1826667	18.6418571	17.655381
Pcilmax20	39.968	38.753	35.744	35.705	36.472	34.32	30.62

 Tabla 19. Valores para los diferentes parámetros de comparación, caso 1c.

Caso 1d: ST=7, Rc=7.7, Patm=100, rpm=900

Figura 230. Temperatura en el cilindro para el caso 1d.

Figura 232. Presión en el cilindro para el caso 1d.

prueba	E0-7.7-1	E10-7.7-1	E20-7.7-1	E30-7.7-1	E10-7.7-0.9	E20-7.7-0.9	E30-7.7-0.9
TcilpromR	1749.63897	1782.03828	1755.05259	1797.48638	1759.17534	1710.68741	1653.72241
TcilmaxR	2407.4	2445.4	2374.9	2432.8	2409.6	2337	2271.2
Tcilprom20	987.469524	998.74381	941.188095	964.01	997.827143	924.712857	922.480952
Tcilmax20	1711.3	1755.3	1547.3	1653.1	1736.5	1464.4	1478.9
dQRTpromR	26.8904345	27.7339731	28.1431478	29.1258966	26.8209086	27.0948741	25.222769
dQRTmaxR	124.06	132.57	119.49	133.15	126.07	106.86	103.56
dQRTprom20	40.7112952	42.9651619	35.1432286	39.998919	41.7976571	31.4035095	32.0950667
dQRTmax20	102.02	108.25	82.886	98.706	103.63	70.489	73.864
PcilpromR	26.4890862	26.9949655	26.2172241	26.989069	26.6175	25.4507759	24.7799138
PcilmaxR	40.833	41.881	39.283	41.198	41.235	37.507	36.904
Pcilprom20	20.2393333	20.4719524	19.2927619	19.76	20.4511905	18.9538095	18.9092857
Pcilmax20	33.188	34.069	29.933	32.043	33.678	28.271	28.577

Tabla 20. Valores para los diferentes parámetros de comparación, caso 1d.

Caso 1e: ST=10, Rc=7.7, Patm=100, rpm=900

Figura 233. Temperatura en el cilindro para el caso 1e.

Figura 235. Presión en el cilindro para el caso 1e.

prueba	E0-7.7-1	E10-7.7-1	E20-7.7-1	E30-7.7-1	E10-7.7-0.9	E20-7.7-0.9	E30-7.7-0.9
TcilpromR	1772.31459	1827.35197	1772.82508	1813.45197	1786.80148	1760.48049	1681.34197
TcilmaxR	2431.4	2420.8	2342.8	2427.3	2374.8	2332.8	2327.7
Tcilprom20	995.275714	1056.99857	958.80619	966.465238	1049.33762	945.048095	937.831429
Tcilmax20	1735.6	1986.6	1616	1659.8	1940.1	1535.4	1533.9
dQRTpromR	25.5678557	26.0704357	26.1646164	27.3986767	24.9474541	26.0308443	23.9823557
dQRTmaxR	126.62	140.04	120.96	133.02	130.85	110.33	112.91
dQRTprom20	41.2408	52.0436381	37.450681	39.8329619	49.6859286	33.7271714	33.8099048
dQRTmax20	103.88	140.04	90.808	98.497	130.85	77.712	79.426
PcilpromR	27.567377	28.581459	27.267377	27.9518033	27.9102787	26.8920984	25.9637541
PcilmaxR	43.778	45.434	41.875	43.628	44.069	40.595	41.103
Pcilprom20	20.6554286	21.9698571	19.8935714	20.056	21.803619	19.5940952	19.447381
Pcilmax20	35.082	40.348	32.62	33.528	39.36	30.915	30.909

Tabla 21. Valores para los diferentes parámetros de comparación, caso 1e.

Caso 1f: ST=15, Rc=7.7, Patm=100, rpm=900

Figura 236. Temperatura en el cilindro para el caso 1f.

Figura 237. Curva de liberación de calor para el caso 1f.

Figura 238. Presión en el cilindro para el caso 1f.

prueba	E0-7.7-1	E10-7.7-1	E20-7.7-1	E30-7.7-1	E10-7.7-0.9	E20-7.7-0.9	E30-7.7-0.9
TcilpromR	1794.41409	1800.36894	1818.02712	1850.42621	1792.80606	1786.58712	1754.04818
TcilmaxR	2324.5	2358.6	2249.2	2339.3	2317.5	2291.9	2415.4
Tcilprom20	1054.79667	1113.03095	1018.89	1002.23476	1088.69524	968.478571	968.565714
Tcilmax20	1980.7	2135.9	1865.8	1815.6	2073.3	1661.4	1663.7
dQRTpromR	22.2408212	21.8797258	23.7701742	24.6424545	21.7765318	23.066715	22.16545
dQRTmaxR	128.44	144.16	123.74	132.66	137.13	114.76	126.3
dQRTprom20	50.7034905	57.871781	46.9761048	45.5703667	54.7229429	38.0787667	38.3122429
dQRTmax20	128.44	144.16	123.74	118.94	137.13	94.451	94.631
PcilpromR	29.2417424	29.7140758	29.1143182	29.7296364	29.2978788	28.4879848	28.2623182
PcilmaxR	47.584	49.875	45.758	47.784	47.981	44.977	48.472
Pcilprom20	21.9296667	23.2506667	21.1506667	20.7935714	22.6786667	20.0410952	20.0464762
Pcilmax20	42.225	46.194	39.661	38.56	44.313	35.151	35.212

Tabla 22. Valores para los diferentes parámetros de comparación, caso 1f.

Caso 2a: ST=MBT, Rc=7, Patm=100, rpm=900

Figura 239. Temperatura en el cilindro para el caso 2a.

Figura 241. Presión en el cilindro para el caso 2a.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1751.41759	1740.32814	1725.31948	1750.29661	1753.06417	1745.51467	1671.14476
TcilmaxR	2372.4	2391.3	2370.3	2298.4	2406	2385.4	2303.9
Tcilprom20	983.181905	962.007619	914.044286	927.966667	949.583333	942.232381	918.705714
Tcilmax20	1748.7	1690	1508.5	1558.2	1611.1	1596.1	1514.4
dQRTpromR	27.0128534	26.6081542	27.9422828	28.1249322	26.302355	26.2765133	23.0562095
dQRTmaxR	122.22	128.52	118.77	117.49	120.67	120.07	113.82
dQRTprom20	43.1473571	41.0932286	34.3947333	36.8471524	37.3667286	37.1497905	33.6420429
dQRTmax20	110.54	105.06	82.334	88.504	91.125	90.592	79.962
PcilpromR	24.7324828	24.7898475	24.0927586	24.5734407	24.9957167	24.8675167	24.4039206
PcilmaxR	37.239	38.395	35.993	36.267	38.457	38.102	39.281
Pcilprom20	18.3968571	18.0862857	17.1012381	17.4462381	17.9101905	17.7722381	17.4037143
Pcilmax20	31.197	30.533	26.81	28.097	29.397	29.125	28.499

Tabla 23. Valores para los diferentes parámetros de comparación, caso 2a.

Caso 2b: ST=MBT, Rc=7.7, Patm=100, rpm=900

Figura 242. Temperatura en el cilindro para el caso 2b.

Figura 244. Presión en el cilindro para el caso 2b.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1749.63897	1773.59596	1750.45102	1758.42763	1756.30732	1755.86085	1677.89667
TcilmaxR	2407.4	2437.7	2449.4	2478.9	2422.8	2376.4	2335.9
Tcilprom20	987.469524	995.741429	974.68619	973.396667	996.552857	966.151905	943.77619
Tcilmax20	1711.3	1746.8	1681.5	1694.9	1736.9	1622.4	1559.8
dQRTpromR	26.8904345	28.2204789	27.0514458	27.7183898	28.0808429	26.6358339	24.381915
dQRTmaxR	124.06	131.61	135.26	141.98	127.14	118.46	119.17
dQRTprom20	40.7112952	42.7698952	40.3891143	41.567381	42.113119	37.479219	34.9824
dQRTmax20	102.02	107.54	100.36	104.45	104.47	89.649	83.24
PcilpromR	26.4890862	26.6109474	26.7832712	26.9408305	26.07	26.5920339	25.7612333
PcilmaxR	40.833	40.874	42.8	43.503	39.755	40.479	41.463
Pcilprom20	20.2393333	20.279619	20.0866667	20.0618571	20.1422857	19.9032381	19.5185238
Pcilmax20	33.188	33.376	33.099	33.382	32.622	31.87	31.051

Tabla 24. Valores para los diferentes parámetros de comparación, caso 2b.

Caso 3a: ST=7, Rc=7, Patm=75, rpm=900

Figura 245. Temperatura en el cilindro para el caso 3a.

Figura 247. Presión en el cilindro para el caso 3a.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1618.64	1615.58638	1561.76224	1543.74431	1590.00983	1579.87224	1395.98845
TcilmaxR	2242.8	2290.1	2196.5	2168.8	2230.6	2320.5	1920.9
Tcilprom20	837.367619	829.63381	809.019524	800.99381	823.403333	810.970952	794.287143
Tcilmax20	1248.5	1234.7	1152.3	1139.1	1187	1135.9	1079.9
dQRTpromR	20.2596534	20.1828138	20.8273155	20.6469655	20.40685	20.8073155	17.1710121
dQRTmaxR	69.614	74.234	65.669	65.74	65.534	65.757	46.064
dQRTprom20	17.5551476	17.4153952	15.3283905	15.2563333	15.8591905	14.6162381	13.101
dQRTmax20	40.625	39.99	32.71	32.605	34.657	30.041	25.765
PcilpromR	16.6254138	16.6227172	15.9258862	15.7532362	16.2305586	16.0358655	14.326069
PcilmaxR	23.498	23.983	22.214	22.006	22.626	22.334	18.871
Pcilprom20	11.746	11.6381238	11.3514476	11.2399381	11.5508286	11.3786286	11.1505714
Pcilmax20	16.558	16.377	15.263	15.09	15.721	15.032	14.293

Tabla 25. Valores para los diferentes parámetros de comparación, caso 3a.

Caso 3b: ST=10, Rc=7, Patm=75, rpm=900

Figura 248. Temperatura en el cilindro para el caso 3b.

Figura 250. Presión en el cilindro para el caso 3b.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1649.92967	1634.7218	1628.50443	1620.90623	1635.34803	1619.37	1559.89508
TcilmaxR	2193.9	2198.1	2258.6	2198.1	2260.2	2329	2218.7
Tcilprom20	856.162381	836.487143	825.67	818.775238	830.987143	819.422381	821
Tcilmax20	1295.2	1255	1231.5	1212.7	1208.9	1170.4	1172.5
dQRTpromR	19.2632695	19.190223	19.0405213	19.7440426	19.4032508	19.3843152	17.8590967
dQRTmaxR	68.076	70.574	74.541	72.147	67.661	68.974	63.276
dQRTprom20	18.592181	17.700581	17.3202905	17.1065762	16.1778714	15.2949571	15.4361857
dQRTmax20	42.605	40.785	39.863	38.775	35.432	32.425	32.398
PcilpromR	17.3650246	17.1833049	17.1557639	16.993959	17.0887705	16.8979164	16.3940967
PcilmaxR	24.925	24.905	25.33	24.7	24.543	24.531	23.707
Pcilprom20	12.1233571	11.8421238	11.6894571	11.5917857	11.7608571	11.5968524	11.6226143
Pcilmax20	17.839	17.279	16.958	16.694	16.62	16.084	16.123

Tabla 26. Valores para los diferentes parámetros de comparación, caso 3b.

Caso 3c: ST=15, Rc=7, Patm=75, rpm=900

Figura 251. Temperatura en el cilindro para el caso 3c.

Figura 253. Presión en el cilindro para el caso 3c.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1697.44333	1673.62364	1631.89864	1644.61894	1672.73364	1689.44061	1615.14333
TcilmaxR	2177.5	2212.6	2124.8	2121.8	2178	2294.5	2264.1
Tcilprom20	892.179048	863.464762	838.471905	835.335714	859.52	850.694286	833.274286
Tcilmax20	1499.1	1401.4	1312	1309.6	1340.6	1299.8	1225.8
dQRTpromR	16.5618	16.4989712	16.3702879	17.0317106	16.7885939	17.3616485	16.5061545
dQRTmaxR	78.645	80.059	73.297	74.824	71.734	75.481	68.803
dQRTprom20	24.1370429	21.5656667	19.2637524	19.554319	19.5331857	18.5820143	16.5302714
dQRTmax20	64.707	55.367	47.547	48.211	47.122	42.998	35.968
PcilpromR	18.7393409	18.4876864	17.9096227	17.9950894	18.3036394	18.4779879	17.6531591
PcilmaxR	28.402	28.644	27.233	27.274	27.629	28.495	27.379
Pcilprom20	12.5981667	12.1820619	11.8194333	11.7760429	12.1145333	11.9854857	11.7315
Pcilmax20	21.629	20.195	18.886	18.852	19.279	18.677	17.596

Tabla 27. Valores para los diferentes parámetros de comparación, caso 3c.

Caso 3d: ST=7, Rc=7.7, Patm=75, rpm=900

Figura 254. Temperatura en el cilindro para el caso 3d.

Figura 256. Presión en el cilindro para el caso 3d.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1634.84155	1658.11155	1571.75224	1663.57897	1625.82672	1553.08603	1529.08672
TcilmaxR	2286.7	2303.5	2188.5	2405.3	2250.4	2216	2194.9
Tcilprom20	857.538571	857.74619	830.65381	838.60381	852.930952	824.737619	822.420476
Tcilmax20	1264	1276.2	1179.6	1226.7	1253.2	1139.6	1145.7
dQRTpromR	20.1676741	20.800419	20.5358655	21.844319	20.1156276	20.3212209	18.9171207
dQRTmaxR	70.487	74.899	65.243	80.504	69.379	60.329	59.786
dQRTprom20	17.4704905	18.0836476	15.6186286	17.3099571	17.2202095	14.2327238	14.4811238
dQRTmax20	38.9	40.463	32.706	37.773	38.307	28.441	29.685
PcilpromR	17.9741517	18.207619	17.1610655	18.19535	17.8367862	16.8628862	16.7113534
PcilmaxR	25.581	26.148	23.865	26.456	25.263	22.892	22.966
Pcilprom20	13.181181	13.1830905	12.7713238	12.890919	13.1087905	12.6815905	12.6464048
Pcilmax20	18.24	18.42	17.003	17.697	18.076	16.408	16.505

Tabla 28. Valores para los diferentes parámetros de comparación, caso 3d.

Caso 3e: ST=10, Rc=7.7, Patm=75, rpm=900

Figura 257. Temperatura en el cilindro para el caso 3e.

Figura 259. Presión en el cilindro para el caso 3e.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1674.6582	1720.89295	1621.40016	1672.06885	1674.54164	1621.73311	1573.50115
TcilmaxR	2324.4	2361.1	2195.8	2286.3	2265.9	2252.5	2194.6
Tcilprom20	865.516667	885.350952	840.624286	843	874.106667	838.291429	833.312857
Tcilmax20	1287.5	1388.5	1218.8	1239.4	1344.6	1184.4	1182.4
dQRTpromR	19.1758246	19.5527115	19.6233492	20.5490443	18.7105934	19.523124	17.9867344
dQRTmaxR	72.857	84.134	67.991	75.28	75.843	64.4	61.796
dQRTprom20	17.7989476	20.9850619	16.4063762	17.3464238	19.4888571	15.1572095	15.1850143
dQRTmax20	39.801	50.12	35.362	37.946	46.218	31.038	31.748
PcilpromR	18.9043541	19.5864197	18.1774148	18.7246639	18.9992459	18.0666443	17.6622393
PcilmaxR	27.884	29.805	26.238	27.443	28.311	25.607	25.215
Pcilprom20	13.4389333	13.7513619	13.0514905	13.0894524	13.5723333	13.011919	12.9357905
Pcilmax20	19.364	20.923	18.319	18.635	20.241	17.778	17.757

Tabla 29. Valores para los diferentes parámetros de comparación, caso 3e.

Caso 3f: ST=15, Rc=7.7, Patm=75, rpm=900

Figura 260. Temperatura en el cilindro para el caso 3f.

Figura 262. Presión en el cilindro para el caso 3f.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1699.99394	1677.79727	1645.20985	1673.805	1700.64091	1622.09712	1651.36788
TcilmaxR	2195.3	2096.4	2093.1	2156	2223.2	2091.8	2247.6
Tcilprom20	890.133333	908.967619	868.164286	859.534762	903.428571	852.248095	859.684762
Tcilmax20	1421	1520	1343.5	1320	1499.5	1260.9	1277.4
dQRTpromR	16.6805788	16.4097545	17.1437227	18.0051712	16.3323758	17.1151485	16.624147
dQRTmaxR	74.597	76.717	69.812	73.585	82.057	62.79	68.565
dQRTprom20	21.1583619	24.3965238	19.5316476	19.2215762	23.5161524	16.8518714	17.406619
dQRTmax20	52.375	63.189	45.765	44.462	61.512	37.154	37.899
PcilpromR	20.0806561	19.8950621	19.3089788	19.587197	20.2527364	18.9075682	19.3889045
PcilmaxR	30.865	30.507	29.407	29.988	31.875	28.307	29.866
Pcilprom20	13.7640619	14.0790048	13.4155048	13.2798095	13.9813619	13.1519286	13.2722238
Pcilmax20	22.462	24.091	21.21	20.832	23.735	19.867	20.136

Tabla 30. Valores para los diferentes parámetros de comparación, caso 3f.

Caso 4a: ST=7, Rc=7, Patm=75, rpm=3000

Figura 263. Temperatura en el cilindro para el caso 4a.

Figura 264. Curva de liberación de calor para el caso 4a.

Figura 265. Presión en el cilindro para el caso 4a.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1875.09931	1848.83431	1855.83431	1839.76931	1874.43517	1868.52328	1701.33397
TcilmaxR	2468.8	2457.7	2485.7	2471.2	2479.1	2501	2209.6
Tcilprom20	1272.46476	1231.1519	1186.89	1170.39143	1230.75429	1199.43571	1131.24143
Tcilmax20	2141.9	2119.3	1967.6	1940	2056.6	1951	1759.1
dQRTpromR	20.7269828	20.6484879	21.4405	21.4808793	20.8772483	21.2870517	18.2548707
dQRTmaxR	73.27	81.466	72.629	72.313	72.56	71.797	50.904
dQRTprom20	44.946619	44.6295238	40.1811905	39.8460952	42.1968571	39.1612857	33.3274286
dQRTmax20	73.27	81.466	72.629	72.313	72.56	67.33	50.904
PcilpromR	20.4079672	20.1052138	20.0437672	19.8619534	20.2614345	20.1244655	18.3056879
PcilmaxR	30.939	31.492	30.04	29.636	30.651	30.376	25.581
Pcilprom20	17.979719	17.3854476	16.7515952	16.5213476	17.3696286	16.923	15.9686619
Pcilmax20	28.918	28.609	26.474	26.112	27.681	26.203	23.612

Tabla 31. Valores para los diferentes parámetros de comparación, caso 4a.

Caso 4b: ST=10, Rc=7, Patm=75, rpm=3000

Figura 266. Temperatura en el cilindro para el caso 4b.

Figura 268. Presión en el cilindro para el caso 4b.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1911.77131	1881.8518	1855.27295	1877.4082	1898.48738	1875.76885	1845.68148
TcilmaxR	2489.7	2468.5	2445.9	2484.2	2500.9	2480	2422.5
Tcilprom20	1283.80238	1239.95048	1216.32619	1209.8	1242.01095	1213.34286	1216.85571
Tcilmax20	2168.8	2117	2094.7	2077.1	2084.5	2007.6	2003.5
dQRTpromR	19.7075738	19.6329672	19.4800328	20.200082	19.8505082	19.8312295	18.6394426
dQRTmaxR	74.104	76.579	80.585	79.826	73.608	72.009	68.824
dQRTprom20	46.2677917	45.7427083	46.5340417	46.3660833	44.9294167	43.527625	42.271375
dQRTmax20	74.104	76.579	80.585	79.826	73.608	72.009	68.824
PcilpromR	21.3062197	20.9265033	20.6365459	20.8602279	21.0061016	20.7052377	20.3585328
PcilmaxR	33.308	32.917	32.91	32.954	32.767	32.074	31.689
Pcilprom20	20.06385	19.4287792	19.1384708	19.0182042	19.3878	18.9088958	18.9219375
Pcilmax20	32.581	32.076	32.272	31.926	31.614	30.788	30.635

Tabla 32. Valores para los diferentes parámetros de comparación, caso 4b.

Caso 4c: ST=15, Rc=7, Patm=75, rpm=3000

Este caso no presenta aumentos significativos en las variables consideradas en la Figura 82.

Figura 269. Temperatura en el cilindro para el caso 4c.

Figura 271. Curva de liberación de calor para el caso 4c.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1921.47818	1883.19485	1852.54091	1886.24455	1915.18045	1952.10061	1843.02424
TcilmaxR	2503.4	2452.7	2416.7	2470.5	2491.9	2555.4	2421.2
Tcilprom20	1302.31238	1261.5981	1220.67619	1227.66857	1269.38619	1259.31143	1171.05714
Tcilmax20	2263.1	2173.8	2102.1	2130.9	2176.4	2165.2	1951.7
dQRTpromR	16.9437894	16.8796515	16.7481388	17.4250606	17.1756364	17.7619697	16.8864545
dQRTmaxR	81.877	78.107	76.162	79.271	76.204	77.875	70.357
dQRTprom20	47.9072381	45.460381	43.6648095	45.1253333	45.0907619	45.045381	38.3210952
dQRTmax20	81.877	78.107	76.162	79.271	76.204	77.875	70.357
PcilpromR	22.2234682	21.7239212	21.326047	21.7418682	21.9926424	22.3944379	20.9592864
PcilmaxR	36.827	35.715	34.906	35.697	36.172	36.796	33.99
Pcilprom20	18.715519	18.0998952	17.482481	17.5930619	18.1711143	18.0050905	16.6913286
Pcilmax20	33.815	32.218	30.994	31.472	32.032	31.648	28.411

Tabla 33. Valores para los diferentes parámetros de comparación, caso 4c.

Caso 4d: ST=7, Rc=7.7, Patm=75, rpm=3000

La Figura 83 presenta un aumento en todas las variables, hasta del 11%, para las combinaciones E10-7-1, E30-7-1 y E10-7-0.9.

Figura 272. Temperatura en el cilindro para el caso 4d.

Figura 274. Presión en el cilindro para el caso 4d.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1833.07224	1866.42828	1838.88293	1875.09466	1853.46	1829.68845	1745.16862
TcilmaxR	2450.3	2499.4	2486.7	2546.1	2453.6	2427.3	2319.1
Tcilprom20	1206.56143	1252.32095	1172.11952	1202.75667	1252.16571	1184.84429	1134.58476
Tcilmax20	2021.8	2139.8	1903.6	2027	2115.2	1882.3	1802.5
dQRTpromR	20.167681	20.8004138	21.1074138	21.8443276	20.1156379	20.3212362	18.9171552
dQRTmaxR	72.681	80.452	72.208	85.947	76.721	64.6	62.679
dQRTprom20	40.2218571	44.3844286	37.3567143	41.7883333	43.2440476	36.252381	33.8808571
dQRTmax20	72.681	80.452	67.467	79.771	76.721	60.742	58.951
PcilpromR	21.280531	21.7878983	21.2509138	21.7928293	21.580069	21.0900724	20.1146345
PcilmaxR	32.679	34.204	32.038	34.439	33.707	31.087	30.04
Pcilprom20	18.6432762	19.3669571	18.1128571	18.5921952	19.3607143	18.3122952	17.5240381
Pcilmax20	29.614	31.415	27.826	29.701	31.021	27.485	26.302

Tabla 34. Valores para los diferentes parámetros de comparación, caso 4d.

Caso 4e: ST=10, Rc=7.7, Patm=75, rpm=3000

Figura 275. Temperatura en el cilindro para el caso 4e.

Figura 276. Curva de liberación de calor para el caso 4e.

Figura 277. Presión en el cilindro para el caso 4e.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1854.94541	1909.74902	1852.62361	1896.07721	1848.95328	1841.90377	1848.95328
TcilmaxR	2472.2	2513.3	2465.1	2537.3	2434.6	2456.1	2434.6
Tcilprom20	1213.55095	1301.14238	1187.46857	1204.82429	1232.44048	1152.88714	1232.44048
Tcilmax20	2042.1	2293.4	1965.1	2031.8	2117.2	1846.9	2117.2
dQRTpromR	19.1758689	19.5527377	19.623377	20.549082	18.7105738	19.5231148	18.7105738
dQRTmaxR	73.418	89.39	72.457	79.312	77.743	65.528	77.743
dQRTprom20	40.4131905	48.9379048	38.8670952	41.5071429	42.8986667	34.6915238	42.8986667
dQRTmax20	73.418	89.39	72.457	79.312	77.743	61.408	77.743
PcilpromR	22.0902459	22.9863967	22.002318	22.5770148	22.0305082	21.6540951	22.0305082
PcilmaxR	35.184	38.108	34.348	35.847	35.169	32.642	35.169
Pcilprom20	18.9988571	20.4227714	18.5921619	18.8716619	19.3036667	18.0213238	19.3036667
Pcilmax20	31.172	35.206	29.976	31.027	32.372	28.065	32.372

Tabla 35. Valores para los diferentes parámetros de comparación, caso 4e.

Caso 4f: ST=15, Rc=7.7, Patm=75, rpm=3000

Figura 278. Temperatura en el cilindro para el caso 4f.

Figura 279. Curva de liberación de calor para el caso 4f.

Figura 280. Presión en el cilindro para el caso 4f.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1	E10-7-0.9	E20-7-0.9	E30-7-0.9
TcilpromR	1888.67727	1861.74424	1925.03621	1943.84273	1865.56152	1883.79545	1839.45439
TcilmaxR	2487.5	2457.5	2543.9	2568.1	2436.9	2471.3	2433.1
Tcilprom20	1241.05238	1243.01524	1203.61857	1198.97238	1248.5981	1180.81429	1186.34238
Tcilmax20	2129.3	2200	2067.4	2062.9	2148.1	1963.8	1980.3
dQRTpromR	16.6805909	16.4097121	17.8275939	18.5088485	16.332303	17.2999833	16.6241364
dQRTmaxR	75.139	84.692	75.446	75.842	76.542	67.353	71.746
dQRTprom20	42.5805238	45.3605238	41.452619	41.8708095	43.2785714	37.6933333	38.3119048
dQRTmax20	75.139	84.692	75.446	75.842	76.542	67.353	71.746
PcilpromR	23.4239606	23.1557136	23.8049727	24.0343591	23.0759152	23.0754697	22.5699121
PcilmaxR	39.22	39.551	39.163	38.902	38.597	37.215	37.748
Pcilprom20	19.466019	19.5475286	18.8503429	18.7817952	19.5943524	18.4469524	18.5398667
Pcilmax20	34.46	35.913	33.288	33.207	34.734	31.369	31.646

Tabla 36. Valores para los diferentes parámetros de comparación, caso 4f.

Caso 5a: ST=7, Rc=7, Patm=100, rpm=900, igual imep que E0

Figura 281. Temperatura en el cilindro para el caso 5a.

Figura 282. Curva de liberación de calor para el caso 5a.

Figura 283. Presión en el cilindro para el caso 5a.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1751.41759	1751.63362	1692.94483	1684.93276
TcilmaxR	2372.4	2456.9	2302	2276.7
Tcilprom20	983.181905	969.745238	906.480952	897.704762
Tcilmax20	1748.7	1746.1	1476.5	1462.3
dQRTpromR	27.0128534	27.7372791	26.9595362	27.1420224
dQRTmaxR	122.22	141.36	110.76	111.6
dQRTprom20	43.1473571	43.7218048	32.9518286	32.9457762
dQRTmax20	110.54	114.42	77.733	78.001
PcilpromR	24.7324828	24.914431	23.6023966	23.4783621
PcilmaxR	37.239	39.663	34.818	34.567
Pcilprom20	18.3968571	18.1580952	16.9606667	16.798381
Pcilmax20	31.197	31.221	26.23	25.987

Tabla 37. Valores para los diferentes parámetros de comparación, caso 5a.

Caso 5b: ST=10. Rc=7, Patm=100, rpm=900, igual imep que E0

Figura 284. Temperatura en el cilindro para el caso 5b.

Figura 286. Presión en el cilindro para el caso 5b.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1775.29115	1754.33246	1788.96131	1714.70246
TcilmaxR	2399.9	2426	2368.7	2227.8
Tcilprom20	995.274286	969.189524	985.154286	930.392857
Tcilmax20	1781.9	1734.5	1793.1	1593.3
dQRTpromR	25.6842967	25.7473475	26.3349541	25.3182033
dQRTmaxR	125.28	136.61	133.03	114.93
dQRTprom20	44.1108381	42.7381048	45.8862905	37.8165
dQRTmax20	113.19	110.98	119.49	94.54
PcilpromR	25.7249672	25.5049016	25.9904426	24.5780984
PcilmaxR	39.885	41.289	40.181	36.848
Pcilprom20	18.8428095	18.348	18.6812381	17.603619
Pcilmax20	33.007	32.132	33.349	29.459

Tabla 38. Valores para los diferentes parámetros de comparación, caso 5b.

Caso 5c: ST=15, Rc=7, Patm=100, rpm=100, igual imep que E0

Figura 287. Temperatura en el cilindro para el caso 5c.

Figura 288. Curva de liberación de calor para el caso 5c.

Figura 289. Presión en el cilindro para el caso 5c.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1789.24303	1788.44333	1726.98773	1735.7453
TcilmaxR	2356.6	2397.7	2141.8	2230.5
Tcilprom20	1062.92571	1042.99333	987.004286	975.975714
Tcilmax20	2052.2	2036.7	1830	1805.7
dQRTpromR	22.0823621	22.3804636	21.8908652	22.1231738
dQRTmaxR	139.91	144.65	118.13	125.3
dQRTprom20	54.962219	55.006919	46.7788	46.1968048
dQRTmax20	139.91	144.65	118.13	125.3
PcilpromR	27.2209091	27.2763788	25.7859091	26.047
PcilmaxR	44.444	45.495	39.436	41.017
Pcilprom20	20.1867143	19.8162857	18.701619	18.4788571
Pcilmax20	39.968	39.713	35.525	35.011

Tabla 39. Valores para los diferentes parámetros de comparación, caso 5c.

Caso 5d: ST=7, Rc=7.7, Patm=100, rpm=900, igual imep que E0

Figura 290. Temperatura en el cilindro para el caso 5d.

Figura 291. Curva de liberación de calor para el caso 5d.

Figura 292. Presión en el cilindro para el caso 5d.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1749.63897	1737.96276	1691.4381	1725.47638
TcilmaxR	2407.4	2355.4	2259.9	2425.4
Tcilprom20	987.469524	985.254286	927.657619	948.820476
Tcilmax20	1711.3	1698.1	1490.9	1588.2
dQRTpromR	26.8904345	26.4070569	26.4374586	27.3622414
dQRTmaxR	124.06	120.95	105.81	129.7
dQRTprom20	40.7112952	40.4174429	32.6185143	37.0401429
dQRTmax20	102.02	99.666	74.974	88.968
PcilpromR	26.4890862	26.2631207	25.2423448	26.0133793
PcilmaxR	40.833	40.112	37.09	40.998
Pcilprom20	20.2393333	20.197	19.0174762	19.4504762
Pcilmax20	33.188	32.934	28.819	30.756

Tabla 40. Valores para los diferentes parámetros de comparación, caso 5d.

Caso 5e: ST=10, Rc=7.7, Patm=100, rpm=900, igual imep que E0

Figura 293. Temperatura en el cilindro para el caso 5e.

Figura 294. Curva de liberación de calor para el caso 5e.

Figura 295. Presión en el cilindro para el caso 5e.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1772.31459	1777.62459	1719.19738	1724.52082
TcilmaxR	2431.4	2331.3	2249.6	2271.4
Tcilprom20	995.275714	1039.48095	946.668571	945.898571
Tcilmax20	1735.6	1909.9	1564.8	1571.9
dQRTpromR	25.5678557	24.7400836	24.8304836	25.1146721
dQRTmaxR	126.62	127.65	109.53	112.58
dQRTprom20	41.2408	48.6053429	35.1455762	35.8328476
dQRTmax20	103.88	127.65	83.366	85.359
PcilpromR	27.567377	27.7184262	26.4129344	26.5162459
PcilmaxR	43.778	43.288	40.001	40.402
Pcilprom20	20.6554286	21.5992381	19.6382381	19.6235238
Pcilmax20	35.082	38.748	31.564	31.715

Tabla 41. Valores para los diferentes parámetros de comparación, caso 5e.

Caso 5f: ST=15, Rc=7.7, Patm=100, rpm=900, igual imep que E0

Figura 298. Presión en el cilindro para el caso 5f.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1794.41409	1829.72152	1745.53091	1709.96697
TcilmaxR	2324.5	2437.4	2232.7	2126.2
Tcilprom20	1054.79667	1122.89143	977.344762	957.14381
Tcilmax20	1980.7	2188.2	1718.9	1648.1
dQRTpromR	22.2408212	22.2910758	21.9816152	22.0955091
dQRTmaxR	128.44	151.94	115.38	105.65
dQRTprom20	50.7034905	60.2286619	40.5817762	38.1558762
dQRTmax20	128.44	151.94	104.23	95.75
PcilpromR	29.2417424	30.3304394	28.0020909	27.2086818
PcilmaxR	47.584	51.676	44.378	41.864
Pcilprom20	21.9296667	23.5085714	20.2479048	19.8142857
Pcilmax20	42.225	47.598	36.451	34.911

Tabla 42. Valores para los diferentes parámetros de comparación, caso 5f.

Caso 6a: ST=7, Rc=7, Patm=75, rpm=900, igual imep que E0

Figura 299. Temperatura en el cilindro para el caso 6a.

Figura 300. Curva de liberación de calor para el caso 6a.

Figura 301. Presión en el cilindro para el caso 6a.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1618.64	1612.52517	1540.08914	1532.31569
TcilmaxR	2242.8	2219.7	2159.9	2149.4
Tcilprom20	837.367619	827.050476	806.731905	799.824286
Tcilmax20	1248.5	1243.9	1142.6	1134
dQRTpromR	20.2596534	20.3299741	20.3198172	20.3751379
dQRTmaxR	69.614	71.594	62.977	64.28
dQRTprom20	17.5551476	17.7991333	14.9971714	15.0787476
dQRTmax20	40.625	41.173	31.792	32.112
PcilpromR	16.6254138	16.5680172	15.7146897	15.641731
PcilmaxR	23.498	23.578	21.778	21.774
Pcilprom20	11.746	11.602	11.3199048	11.223781
Pcilmax20	16.558	16.507	15.133	15.022

Tabla 43. Valores para los diferentes parámetros de comparación, caso 6a.

Caso 6b: ST=10, Rc=7, Patm=75, rpm=900, igual imep que E0

Figura 302. Temperatura en el cilindro para el caso 6b.

Figura 303. Curva de liberación de calor para el caso 6b.

Figura 304. Presión en el cilindro para el caso 6b.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1649.92967	1661.07623	1642.18574	1638.77967
TcilmaxR	2193.9	2257.6	2215.2	2238.6
Tcilprom20	856.162381	835.52619	826.196667	816.198095
Tcilmax20	1295.2	1269.3	1251.7	1219.4
dQRTpromR	19.2632695	19.4683803	19.5052557	19.8304164
dQRTmaxR	68.076	74.631	74.391	74.691
dQRTprom20	18.592181	18.2355429	18.0572143	17.4005143
dQRTmax20	42.605	42.426	42.101	39.672
PcilpromR	17.3650246	17.4883852	17.2941328	17.1854393
PcilmaxR	24.925	25.641	25.31	25.154
Pcilprom20	12.1233571	11.8316429	11.7017667	11.5565143
Pcilmax20	17.839	17.49	17.257	16.792

Tabla 44. Valores para los diferentes parámetros de comparación, caso 6b.

Caso 6c: ST=15, Rc=7, Patm=75, rpm=900, igual imep que E0

Figura 305. Temperatura en el cilindro para el caso 6c.

Figura 306. Curva de liberación de calor para el caso 6c.

Figura 307. Presión en el cilindro para el caso 6c.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1697.44333	1665.37424	1625.16061	1633.51879
TcilmaxR	2177.5	2115.2	2062.7	2104.1
Tcilprom20	892.179048	862.819048	840.071429	834.297143
Tcilmax20	1499.1	1415.5	1335.2	1304.8
dQRTpromR	16.5618	16.6431833	16.7698591	16.9041091
dQRTmaxR	78.645	75.687	71.866	73.768
dQRTprom20	24.1370429	22.0592429	20.0730381	19.3871571
dQRTmax20	64.707	57.073	50.192	47.674
PcilpromR	18.7393409	18.3034576	17.8235848	17.8774242
PcilmaxR	28.402	27.641	26.792	27.07
Pcilprom20	12.5981667	12.1782476	11.8514571	11.7608095
Pcilmax20	21.629	20.412	19.247	18.782

Tabla 45. Valores para los diferentes parámetros de comparación, caso 6c.

Caso 6d: ST=7, Rc=7.7, Patm=75, rpm=900, igual imep que E0

Figura 308. Temperatura en el cilindro para el caso 6d.

Figura 309. Curva de liberación de calor para el caso 6d.

Figura 310. Presión en el cilindro para el caso 6d.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1634.84155	1600.635	1534.5419	1595.08224
TcilmaxR	2286.7	2196	2124.9	2257.7
Tcilprom20	857.538571	846.10619	826.582381	829.84619
Tcilmax20	1264	1235.8	1162.5	1189.1
dQRTpromR	20.1676741	19.9042966	19.67825	20.3805655
dQRTmaxR	70.487	67.304	60.693	69.18
dQRTprom20	17.4704905	16.8121905	15.0387952	16.0261619
dQRTmax20	38.9	37.334	31.132	34.14
PcilpromR	17.9741517	17.5635483	16.7766552	17.4307724
PcilmaxR	25.581	24.735	23.066	24.58
Pcilprom20	13.181181	13.0055143	12.7094762	12.7585143
Pcilmax20	18.24	17.827	16.752	17.147

Tabla 46. Valores para los diferentes parámetros de comparación, caso 6d.

Caso 6e: ST=10, Rc=7.7, Patm=75, rpm=900, igual imep que E0

Figura 311. Temperatura en el cilindro para el caso 6e.

Figura 312. Curva de liberación de calor para el caso 6e.

Figura 313. Presión en el cilindro para el caso 6e.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1674.6582	1671.95426	1596.64967	1600.43918
TcilmaxR	2324.4	2245.7	2154	2163.6
Tcilprom20	865.516667	870.38619	837.93	835.070952
Tcilmax20	1287.5	1337.9	1207.4	1205.4
dQRTpromR	19.1758246	18.8028098	19.2070934	19.3049492
dQRTmaxR	72.857	75.968	65.023	65.987
dQRTprom20	17.7989476	19.4034	16.0175476	16.1792857
dQRTmax20	39.801	46.148	34.273	34.632
PcilpromR	18.9043541	18.9539705	17.9104574	17.9435492
PcilmaxR	27.884	28.18	25.687	25.781
Pcilprom20	13.4389333	13.5154857	13.009281	12.9652619
Pcilmax20	19.364	20.143	18.144	18.115

Tabla 47. Valores para los diferentes parámetros de comparación, caso 6e.

Caso 6f: ST=15, Rc=7.7, Patm=75, rpm=900, igual imep que E0

Figura 314. Temperatura en el cilindro para el caso 6f.

Figura 315. Curva de liberación de calor para el caso 6f.

Figura 316. Presión en el cilindro para el caso 6f.

prueba	E0-7-1	E10-7-1	E20-7-1	E30-7-1
TcilpromR	1699.99394	1705.74773	1630.15864	1596.02576
TcilmaxR	2195.3	2145.2	2092.2	2038.5
Tcilprom20	890.133333	910.697619	853.94619	849.457143
Tcilmax20	1421	1546	1292	1275.8
dQRTpromR	16.6805788	16.695	16.8616258	16.6832136
dQRTmaxR	74.597	80.904	66.978	63.925
dQRTprom20	21.1583619	25.2673619	17.877219	17.7106762
dQRTmax20	52.375	66.244	41.396	39.916
PcilpromR	20.0806561	20.2820106	19.0818106	18.6881545
PcilmaxR	30.865	31.437	28.892	28.154
Pcilprom20	13.7640619	14.1171762	13.1850714	13.1164857
Pcilmax20	22.462	24.535	20.38	20.123

Tabla 48. Valores para los diferentes parámetros de comparación, caso 6f.