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Quı́mica” on November 26 of 2004, this day changed my way to see the world and my way to understand

Chemical Engineering, thanks to the organizers of this event and special thanks to Dr. Hernan Dario Alvarez for

his conference and for his exceptional labor as teacher, guide and mentor to many generations of students who are
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Resumen

El presente trabajo comprende el modelamiento análisis y simulación de dinámica de un pro-

ceso de reacción extracción auto inducida para la producción de biodiesel mediante el uso de

enzimas con el fin de de realizar una análisis previo del comportamiento tanto de arranque

como dinámico de operación del mismo. El desarrollo del el trabajo se hace en 6 capitulos con

el fin de abarcar los diferentes problemas tanto numérico como conceptuales que el problema

de modelamiento y simulación algebraico diferencial presenta.

Capı́tulo 1

Este capı́tulo es una investigación en el estado del arte sobre la producción de biodiesel donde

se exponen las diferentes tecnologı́as empleadas para la obtención de este, se exponen los pros

y los contras de cada una y se explora brevemente el uso de procesos intensificados como

solución a los diferentes problemas que presenta la producción tanto enzimática como conven-

cional.

Capı́tulo 2

Este capı́tulo contiene una breve introducción al modelamiento de sistemas heterogéneos tanto

por modelos de equilibrio como por modelos de transferencia de masa, donde finalmente se

selecciona y desarrolla el modelo algebraico diferencial de un reactor extractor para la pro-

ducción de biodiesel usando enzimas inmovilizadas, en donde se plantea un modelo tanto para

la fase de arranque como todas las simplificaciones y asunciones para el correcto desarrollo del

modelo algebraico diferencial para la fase de operación del biorreactor.
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Capı́tulo 3

El capitulo expone la teorı́a básica sobre ecuaciones algebraico diferenciales haciendo énfasis

en la teorı́a de estabilidad de los integradores numéricos y en los integradores del tipo Runge-

Kutta para la integración de ecuaciones algebraicos diferenciales, donde se trata el reciente-

mente aplicado concepto de orden efectivo para el desarrollo de métodos de Runge-Kutta sin-

gularmente implı́citos de orden efectivo, que poseen caracterı́sticas de estabilidad y precisión

superiores a los métodos convencionales para la integración de ecuaciones algebraico diferen-

ciales o DAEs; también se trata el aspecto de la implementación numérica de estos, ası́ como

el control del tamaño de paso y la estimación del error de truncamiento.

Capı́tulo 4

Este capı́tulo comprende la realización de experimentos numéricos tanto con diferentes sis-

temas de ecuaciones algebraico diferenciales comunes en la literatura como con el modelo del

biorreactor-extractor, mostrando las ventajas y desventajas de la integración numérica usando

los métodos de Runge-Kutta singularmente implı́citos de orden efectivo.

Capı́tulo 5

En el desarrollo de este capı́tulo se muestran tanto los análisis de bifurcación en un solo

parámetro como el análisis de la superficie operación del equipo demostrando la utilidad de

este tipo de análisis para moldear la respuesta del sistema a una respuesta deseada con el uso

de análisis simples.

Capı́tulo 6

Se presentan las conclusiones generales del trabajo y algunas observaciones del autor.



Abstract

In this work nonlinear dynamics and topology are combined to conceptually design a reactor-

extractor for the production of biodiesel. In this case a dynamic and differential algebraic

piecewise model based on globally stable equilibrium thermodynamics is developed, creating

a dynamical conceptual design strategy that can be generalized for the design and stability

analysis of combined extraction and reaction processes.

The nonlinear dynamics and the behavior of the bioreactor-extractor model in the starting pro-

cedure are analyzed in order to select the best starting conditions and strategy. Simulation and

nonlinear analysis techniques are numerically implemented and improved in order to attain

the most accurate and numerically stable results result. A rigorous search for multiplicity of

steady-states is done and bifurcation analysis search for undesired and desired behaviors in

codimension 1 is performed in order to shape the desired response of the reactor due to simple

analysis.
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Motivation

Petroleum is the largest single source of energy consumed by the world’s population, exceeding

coal, natural gas, nuclear, hydro and renewables [5], its increasing global demand, and concerns

about oil supply and energy security have motivated many countries to promote research and

production of alternative fuels.

Colombia itself has promoted the production of bio-ethanol by the law 693 of 2001, stimulating

its production from sugar cane and the addition of it to gasoline for vehicular use (5% Mixture).

It is expected that a new law regulating and promoting the use of biodiesel will be approved

and implemented in the future years.

Colombia as a mainly agricultural country and having excellent perspective for the production

of biodiesel, should be prepared to make a change from agricultural country to agroindustrial

country, in order to take advantage of the big opportunities the new born bio-fuels markets is

bringing. This is the reason why, many investigation groups in the world and specifically in

colombia, started to work on biodiesel and bioethanol production from different sources and

using different technologies. All of this with the purpose of finding the best way of production

and the best way to take advantage of natural resources in a clean way. Many of this stud-

ies locally and worldwide have been done experimentaly, leaving behind theoretical research,

specially all concerning to biodiesel and reactive-extraction. For this reason it is important to

continue working in the creation of shortcut methods based on scientific principles to conceptu-

ally design complex reaction-separation equipment and previously assess the potential benefits

this kind of process could bring.
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Chapter 1

Biodiesel

Biodiesel can be produced from several sources and by several processes each one with its own

advantages and disadvantages. The scarcity of conventional fossil fuels, growing emissions of

combustion generated pollutants, and their increasing cost, will make biomass sources more

attractive [8]. Original Dr. Rudolph Diesel’s engine was meant to run on Vegetable Oils but

economic factors associated with the production of gasoline for ”spark-ignition engines” made

petroleum diesel or petrodiesel more available at the time, but since the early 1980’s, the use of

vegetable oils as an alternative renewable fuel competing with petroleum was proposed. The

main advantages of vegetable oils are portability, availability, renewability, high heat content,

low sulfur content, lower aromatic content and biodegradability, all of them environmentally

friendly characteristics.

In order to understand Biodiesel production advantages and disadvantages, is necessary to first

understand what biodiesel is, where does it come from, the different ways of producing it and

its proccess flowcharts, also understand the possibilities and opportunities of the intensified

process application to improve biodiesel production in a continuous and very competitive way.

This chapter addresses this topics as an state of the art review to contextualize the nonexpert

reader with the complexity issues of biodiesel production.

1.1 Biodiesel Definition

Biodiesel refers to a diesel-equivalent, processed fuel derived from biological sources. Biodiesel

is the name for a variety of ester-based oxygenated fuels form renewable biological source.

It can be made from processed organic oils and fats. Chemically Biodiesel is defined as

monoalkyl esters of long chain fatty acids derived from renewable bio-lipids. Biodiesel is
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Chapter 1. Biodiesel

typically produced through the reaction of vegetal oil or animal fats with methanol or ethanol

in presence of a catalyst to yield methyl or ethyl esters (Biodiesel) and glycerine.

In general terms, biodiesel may be defined as a domestic renewable fuel for diesel engines

derived from natural oils like soybean, sunflower,castor, palm ...etc. In technical terms (ASTM

D 6751) biodiesel is a diesel engine fuel comprised of monoalkyl esters of long chain fatty acids

derived from vegetable oils or animal fats, designated B100 and meeting the requirements of

ASTM D 6751.

Table 1.1: Biodiesel ASTM D 6751 Standard Properties from [5]

Common name Biodiesel (Biodiesel)

Common Chemical name Fatty acid (m)ethyl ester

Chemical formula Range C14 − C24 methyl esters or C15−25H28−48O2

Kinematic viscosity Range (mm2/s at 313 K) 3.3-5.2

Density range (Kg/m3 at 288 K) 860-894

Boiling point range (K) >475

Flash point range 430-455

Distillation range 470-600

Vapor pressure (mm Hg, at 295 K) <5

Solubility in water Insoluble in water

Physical appearance light to dark yellow clear liquid

Odor light musty/Soapy odor

Biodegradability more than Petrodiesel

Reactivity Stable, but avoid strong oxidizing agents

1.2 Oil/Fat Sources for Biodiesel

Oils and fats are mainly formed by triglycerides, triglycerides are formed from a single molecule

of glycerol, combined with three fatty acids replacing each of the OH groups. The use of a tri-

glyceride feedstock for biodiesel production depends on regional availability and economics.

Rape seed oil is the most widely used feedstock in Europe; soybean mainly used in the United

States and palm oil is used in tropical regions. The main difference between this sources is

the fatty acid (replacing OH groups of the glycerol molecule) composition. The most abundant
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Chapter 1. Biodiesel

acids are palmitic, stearic, oleic and linoleic acids. The main properties of an oil/fat depend on

the chemical structures of its fatty acids. In this regard, a frequent problem with biodiesel is its

stability to oxidation. In linseed, sunflower and soybean oils the high content of linoleic acid

confers low stability to oxidation as result of the presence of two double bonds [9].

Table 1.2: Main fatty acids constituent of the most common oil/fat sources for biodiesel pro-

duction
Oil/fat Palmitic Acid Stearic Acid Oleic Acid Linoleic Acid Problems

source (C16:0) (C18:0) (C18:1) (C18:2)

Soybean Oil 8 4 28 53 Oxidation Stability

Palm Oil 42 5 41 10 Low Temperature

Rape Seed oil 4 1 60 20 –

Sunflower Oil 6 4 28 61 Oxidation Stability

Jatropha oil 13 7 45 34 Low Temperature

Figure 1.1: Chemical structure of the most common fatty acids occurring in oils and fats

The Oxidation of unsaturated compounds proceeds at different rates depending on the number

and position of the double bonds. The CH2 groups in allylic positions relative to the double

bonds in the fatty acid chain are those susceptible to oxidation. By comparison fat oil and
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Chapter 1. Biodiesel

animals fat contains high percentages of saturated fatty acids that are responsible of the poor

low temperature properties (i.e. high cloud point and pour point values). This constitutes a

problem in cold regions during winter. From these considerations and and data in the table 1.2

it can be concluded that the properties of fuels are likely to be dependent on the oil used in

its preparation, and that is not a perfect single source oil, in fact a mixture of biodiesels from

different sources seems to be the more appropriate to use.

1.3 Biodiesel Production

To transform fats and vegetable oils (mainly triglycerides) into long chain fatty acid esters

(biodiesel), they should react with an alcohol generally methanol or ethanol, in presence of

a catalyst to produce esters and glycerine, this process is known as transesterification and its

the base of industrial production of biodiesel. this process is normally a sequence of three

consecutive steps which are reversible reactions. In the first step from triglyceride diglyceride

is obtained, from this diglyceride monoglyceride is obtained in the second step, and as final

step glycerine is obtained from the monoglyceride:

Triglycerides(TG) + R′OH ⇌ Diglycerides(DG) + R′COOR1 (1.1)

Diglycerides(DG) + R′OH ⇌ Monoglycerides(MG) + R′COOHR2 (1.2)

Monoglycerides(MG) + R′OH ⇌ Glycerine(GL) + R′COOR3 (1.3)

Giving the overall reaction:

CH2 −OOC− R1 R1 − COO− R′ CH2 −OH

∣ Catalyst ∣

CH−OOC− R2 + 3R′OH ⇄ R2 − COO− R′ + CH−OH

∣ ∣

CH2 −OOC− R1 R3 − COO− R′ CH2 −OH

Glycerides Alcohol Esters Glycerine

(1.4)
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Chapter 1. Biodiesel

Figure 1.2: Biodiesel Production sequence by transesterification

The conventional flowchart for biodiesel production as any other chemical industrial process,

comprises 3 main stages with material and energy recycles between each of them: the pretreat-

ment stage, reaction stage, and the separation stage. In the first step raw materials are processed

(i.e. palm, rapeseed, sunflowers) to obtain vegetable oils, in the second step the transesterifi-

cation reaction in presence of a catalyst occurs to produce a mixture of biodiesel and glycerol,

which is separated in the third step. The most important step is the reaction, where the different

technologies and catalyst are used to obtain different kinds of biodiesel with different degrees

of efficiency. There are three different types of catalyst for biodiesel production: alkali, acid

and enzymatic(lipases). There is also supercritical alcohol transesterification which could be

carried on with any of the catalysts types listed above, or without catalyst.

1.3.1 Alkali Catalyst Transesterification

For a basic catalyst, either sodium hydroxide (NaOH) or Potassium hydroxide (KOH) should

be used with methanol or ethanol as well as any kind of oils, refine, crude or waste (i.e frying).

In this process it is better to produce the Alcoxy before the reaction to obtain a better global

efficiency. The Alcoxy reaction is:

R− CH2OH + NaOH→ H2O + R− CH2ONa (1.5)

The alcohol oil molar ratio that should be used varies from 1:1 to 6:1. However 6:1 is the most

used ratio giving an important conversion for the alkali catalyst without using a great amount

of alcohol. The amount of catalyst that should be added to the reactor varies from 0.5% to 1%
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w/w. The last but not least important variable is the reaction temperature, depending on the

different type of catalyst optimal temperature varies from 25 to 120 C. [10]

Figure 1.3: Production of biodiesel by alkali process

In Figure 1.3 a conventional industrial alkali catalyzed batch process is described, this is the

only process that is carried out in an industrial scale. It is cost effective and highly efficient. But

problems arise in the downstream operations including separation of the catalyst and unreacted

methanol from biodiesel. The removal of catalyst involves many complications and biodiesel

requires repeated washing to attain the necessary purity [11]. It can be seen that saponification

as a secondary undesired reaction may contaminate the products, that is mainly because the

catalyst (NaOH or KOH) is not selective, and is one of the reactants of the saponification
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Figure 1.4: Conventional pilot scale plant for the production of biodiesel at Biotechnology

plant in the Universidad Nacional de Colombia sede Manizales

reaction:

CH2 −OOC− R1 R1 − COO−Na CH2 −OH

∣ ∣

CH−OOC− R2 + NaOH −→ R2 − COO−Na + CH−OH

∣ ∣

CH2 −OOC− R1 R3 − COO−Na CH2 −OH

Glycerides Base Soap Glycerine

(1.6)

An important aspect of the figure 1.3 is that the transesterification reaction products are immis-

cible, so two liquid phases are formed during the reaction stage and they should be separated

after, an upper phase (low density) containing mainly biodiesel and the lower phase (high den-

sity) containing mainly glycerol, both phases containing non-reacted ethanol which have to be

evaporated and then recycled, and also catalyst that have to be washed and recycled or disposed.

1.3.2 Acid Catalyst Transesterification

This way of producing is the second conventional way of making biodiesel. The main idea is

to use triglycerides and alcohol but instead of a base to use an acid, the most common used are

8



Chapter 1. Biodiesel

sulfuric and sulphonic acid [6, 9, 10]. This type of catalyst gives very high yield in esters but

the reaction is very slow taking almost one day to finish (batch Operation) [8].

As in the Alkali reaction an excess of alcohol is used, so better conversions of the triglycerides

are attained, but recovering glycerol becomes more difficult and that is why optimal relation

between alcohol and oil should be determined experimentally considering each process as a

new problem.

The possible operation condition is: usually molar ratio 30:1 (alcholol:oil). The type of alcohol

and the oils, is the same that can be used on an alkali catalyst reaction.

The typical amount of catalyst that is supposed to be added to the reactor varies from 0.5 to 1

mol%.

The temperature range varies from 55 to 80 C. This process is very effective specially when

the oil used has a high free fatty acids composition. [10]

In this process there are also two immiscible phases produced during the reaction and also

catalyst and alcohol should be separated from them, but due to the high ratio of alcohol to oil,

separation is even more difficult and expensive.

1.3.3 Supercritical Catalytic and Non-Catalytic Transesterification

Although this is a new topic, is becoming more relevant. The transesterification of triglyc-

erides by super critical alcohols (methanol, ethanol,propanol and butanol) has proved to be the

most promising process [6, 8, 10, 12]. The basic idea of supercritical treatment is a relation-

ship between pressure and temperature upon thermophysical properties of the solvent such as

viscosity, specific weight, and polarity.

Catalytic transesterification

The most important variables affecting methyl and ethyl ester yields during supercritical trans-

esterification are molar ratio of alcohol to vegetable oil and reaction temperature, typical values

for molar ratio are 1:6-1:40 (oil:alcohol) and critical temperatures of several alcohols can be

seen in Table 1.3, also a typical scheme for the production of biodiesel can be seen in Fig-

ure 1.5, where (1) is the Autoclave where the reaction takes place; (2) an electrical furnace

to heat the Autocalve; (3) a temperature control monitor to ensure the desired temperature;(4)

Pressure control monitor to ensure critical or supercritical pressure;(5) Product exit valve; (6)
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Chapter 1. Biodiesel

Table 1.3: Critical Temperatures and pressures of various alcohols relevant to biodiesel pro-

duction
Alcohol Critical Temperature Critical pressure

(K) (MPa)

Methanol 512.2 8.1

Ethanol 516.2 6.4

1-Propanol 537.2 5.1

1-Butanol 560.2 4.9

Figure 1.5: Supercritical methanol transesterification system

Condenser; (7) Product collecting vessel.

Non-Catalytic transesterification

A non-catalytic biodiesel production route has been developed in [13] that allows a simple

process and high yield because of simultaneous transesterification of triglycerides and methyl

esterification of fatty acids.

The parameters affecting the methyl esters formations are reaction temperature, pressure, molar

ratio, water content and free fatty acid content. It is evident that at subcritical state of alcohol,

reaction rate is very low and gradually increases as either pressure or temperature rise. It has

been observed that increasing the reaction temperature specially to supercritical conditions, has
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Table 1.4: Comparison between catalytic Methanol process and and supercritical methanol

(SCM) method for biodiesel vegetable oil tranesterification from [6]

Catalytic Methanol Process SCM method

Methylating agent Methanol Methanol

Catalyst Alkali None

Reaction temperature (K) 303-338 523-573

Reaction pressure (Mpa) .1 10-25

Reaction time (min) 60-360 7-15

Methyl ester yield (%w) 96 98

a favorable influence of the yield of ester conversion [13]. The yield of alkyl esters is increased

increasing the molar ratio of oil to alcohol.

Water content is an important factor in the conventional catalytic transesterification, free fatty

acids and water cause soap formation (alkali catalyst) that consumes catalyst and reduced its

effectiveness, however the presence of water affects positively the formation of methyl esters

in supercritical methanol non catalytic method [8].

1.3.4 Enzymatic Transesterification

Enzymatic production is possible using both extracellular and intracellular lipases, the main ad-

vantage of lipase use is their extreme specificity to an special reaction, i.e a lipase would only

catalyze reactions with lipids like transesterification and no other undesired reactions would

occur. The enzyme is immobilized and used which eliminates downstream operations like

separation and recycling. Hence in all works reported in literature either immobilized (extra-

cellular) enzymes or immobilized whole cells (intracellular enzymes) are used for catalysis.

Both the process are reported to be highly efficient compared to using free enzymes.

Most of the work realized about enzymatic transesterification is experimental and at a labora-

tory scale, there are few theoretical works but most of them are about free and immobilized

lipase kinetics [3, 14, 15] which also have an experimental component.

Biodiesel production using lipases was first described by Mittlebach [16], who showed that

the lipase from Pseudomonas fluorescences was superior to those from Candida sp and Mucor

miehi for sunflower oil alcoholysis. The alcoholysis was carried out both in presence of sol-
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vent (petroleum ether) and in solvent free conditions, using five homologous alcohols with or

without the addition of water. Since then subsequent studies have focused on different lipases,

different triglycerides feedstocks, different alcohols and different experimental conditions such

as temperature, water content, stoichiometric ratio between reagents, enzyme concentration,

solvent used etc.

Solvent Versus Solvent-Free Process

Miscibility between methanol and triglycerides is poor, thus the presence of a solvent helps

to form of a monophasic system. However, the use of solvent has some disadvantages such

as its storage before use and specially its removal and disposal after the process, both which

generate environmental problems. Several authors have treated the production of biodiesel by

the solvent and solvent-free approach [3,9,14–18] but the general conclusion is that in spite of

the benefits brought by the use of a solvent, the separation is difficult and expensive enough in

an industrial scale to make it a viable choice.

Water Content

Water content in biocatalysis in non-conventional media (non-aqueous) is a very important pa-

rameter since it strongly affects enzymatic activities. There are conflicting reports on the effect

of water content in the synthesis of biodiesel. Some authors state that ester yield increases if

high amounts of water are present in the system [19], whilst others claim the contrary [20].

This apparent contradiction might be explained by considering that the effect of water in these

systems depend on the enzyme, the support and the medium (solvent or solvent-free). As a

general consideration, high water content should decrease ester yield since undesirable triglyc-

erides hydrolysis occurs. Although water is involved in several enzyme denaturalization pro-

cesses, a certain ammount of water must be present to ’lubricate’ polypeptide chains and keep

an enzyme in its active conformation . In this regard, water content is better expressed in water

activity since only the use of this thermodynamic parameter allows a real comparison of the

effects of water among different enzymes in the same medium. Unfortunately the majority of

papers reporting studies on the effect of water cite water concentration instead of water activity.
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Lipase Inhibitions

Both reagents and products of alcoholysis reaction and some substances contained in the feed-

stock can inhibit lipases. Inhibition is one of the most important aspect in the production of

biodiesel and Enzyme transesterification reactor design, this is mainly because inhibition fac-

tors has to be taken into account in the formulation of a a correct kinetic expression [14].

Methanol inhibition: Methanol is poorly miscible with oil/fat and tend to inactive enzymes.

Glycerol inhibition: Glycerol has negative effect on FAME (Fatty Acid Methyl Esters) by

some enzymes.

Phospholipids inhibition: The gum present in crude soybean oil inhibits some lipases since

this negative effect was not observed with degummed oil. The main components of gum

are phospholipids1, the inhibition observed may be due to phospholipid bound to the

immobilized preparation that interfere with the enzyme substrate interaction.

Inhibition during continuous operation: Glycerol is formed during the alcoholysis of tryglicerides

as seen in equation (1.4) on page 5. If this reaction is performed in a packed-bed reactor

glycerol tends to adsorb onto the hydrophilic support instead of being withdrawn by the

flow. this adsorption inhibits enzyme activity [9].

1Phospholipids are a class of lipids and are a major component of all biological membranes. All phospholipids

contain a diglyceride, a phosphate group, and a simple organic molecule such as choline.
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Chapter 1. Biodiesel

Figure 1.6: Flow diagram of biodiesel production by lipases

1.4 Intensification of Biodiesel Production

The standards make sure that the following important factors in biodiesel fuel production pro-

cess by transesterification are satisfied:

1. Complete transesterification reaction

2. Removal of catalyst

3. removal of alcohol

4. removal of glycerol

5. complete esterifications of free fatty acids

As seen in figures 1.3,1.2 and 1.6 a successful transesterification produces two liquid phases:

ester and crude glycerol. The entire mixture settles and glycerol is left on the bottom and

biodiesel is left on top. Crude glycerol, the heavier liquid will collect at the bottom after several

hours of settling. Phase separation can be observed within 10 min and can be complete within

2 hours after stirring has stopped. complete settling can be taken as long as 18 h. After settling

is complete the glycerol is drained and the ester layer remains [6]. This kind of separation

process is performed after the reaction takes place and is a discontinuous(batch) operation, for

this reason it requires intermediate storage and very long settling times. After the two phases

are separated specialized washing processes to remove the catalyst (if alkali or acid where
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used) and to evaporate and recover the non-reacted methanol should be performed. In this

sense immobilized lipase and solid catalyst approach are better because no catalyst removal

should be done, although solid catalysts and immobilized lipase are susceptible to deactivation

by the adsorption of the glycerol onto the catalyst support.

To overcome problems like inhibition in enzymatic reactors and solid catalyst deactivation,

to avoid unnecessary long downstream separation procedures and to improve the reaction ef-

ficiency even over equilibrium’s conversion, some authors have intensified biodiesel produc-

tion by combining the reaction and separation in the same equipment (process Integration) by

means of membrane reactors [1, 30–34] or by reactor extractors [2, 35, 36], the effect of both

procedures are basically the same, a concentration field redistribution is achieved by the reac-

tion and separation processes taking place simultaneously in the same vessel, this is specially

useful for equilibrium reactions like transesterification, as it has been observed in reactive dis-

tillation [2,36–40] where the equilibrium conversion barrier is widely surpassed, which means

more rentability due to less time and energy is used and also a reduction of the necessary

equipment to accomplish the same task [39].

1.4.1 Membrane Reactor

It is known that methanol is only slightly miscible in oil and that temperature has only a slight

effect on this miscibility. For all practical purposes, it could be said that the two phases are

immiscible. On the other hand, FAME is entirely miscible in methanol over a broad range of

temperatures. At normal reaction temperatures (e.g. 60 C), FAME and methanol are miscible.

The immiscibility of oil and methanol is at the root of the mass transfer issues for biodiesel

production. However, in the operation of a membrane reactor, the formation of a two-phase

(emulsified) system is exactly what is necessary. Thus, the transesterification of Triglicerides

to FAME is ideally suited to operation in a membrane reactor.

The principle of membrane reactor operation is depicted in Figure 1.7. due to the immiscibility

of oil and methanol,and due to various surface forces, the oil will exist in the form of an

emulsion; i.e. droplets suspended in methanol. One can thus envisage the transesterification

occurring at the surface of the oil droplets. In the presence of a permeable membrane, the

oil droplets are too large to pass through the pores of the membrane. On the other hand, the

FAME is soluble in the methanol and, due to its small molecular size, will pass through the
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Figure 1.7: Separation of oil and FAME by a separative membrane adapted from [1]

membrane pores along with the methanol, glycerol and catalyst [1]. This in situ withdrawn of

products accelerates the direct transesterification reaction improving reaction efficiency, also if

a immobilized lipase is used, the withdrawn of glycerol prevents the inhibition by glycerol and

by continuous reactor operation.

1.4.2 Reactor-Extractor

Reaction-extraction is a special case of the reaction and separation integration, combining a

chemical transformation (reaction) with a liquid-liquid extraction.

Liquid-Liquid extraction objective is to separate the components of a liquid mixture by using

an immiscible liquid that forms a two phase system. Separation is achieved because the de-

sired liquid mixture components are distributed between the two different phases, selectivity is

achieved due to the special chemical affinity of some of the mixture components with one of

the liquid phases formed.

Biodiesel reaction is a special case of reaction-extraction processes because there is no need to

add a solvent to form a second liquid phase, the second liquid phase is formed by the immisci-

bility of the reactants and the products and is called auto-inducted [2], this special type reactive

extraction can also be seen in butyl-acetate, amyl-acetate and ethyl-acetate production [35].
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Figure 1.8: Reactive liquid-liquid equilibrium of triolein (OOO), ethanol (EtOH), glycerol

(GL) and biodiesel (EO) from [2]

Figure 1.8 is a simultaneous chemical and physical equilibrium diagram, it clearly shows for

biodiesel transesterification reaction that two phases are formed, biodiesel rich phase (red) and

glycerol rich phase (magenta). As it can be seen methanol is miscible in both phases having

high concentration on glycerol rich phase and moderate concentration in biodiesel rich phase,

this prevents inhibition. It can be seen also that there are only traces of triolein in the glycerol

rich phase, this mean the reaction only takes place in biodiesel rich phase. In the reaction phase

two reactants are present but only one product is, this is called concentration field redistribution

and it is what makes this process much more effective than a conventional batch process.

Evident advantages of reaction-extraction technology over membrane technology are economic:

membrane technology is as expensive as effective and need constant maintenance of the mem-

brane as also periodic replacement of the used membrane, while reaction extraction technology

equipment is less expensive and doesn’t need any special maintenance.
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Figure 1.9: Reactive-extraction pilot scale equipment for the production of biodiesel at Biotech-

nology plant in the Universidad Nacional de Colombia sede Manizales, developed during PhD.

Thesis of Luis Fernando Gutierrez M. [2]
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1.5 Conclusions and Perspectives

Conventional biodiesel production is cost effective and efficient, alkali and acid catalyst are

industrially implementable and they have been widely studied by many authors, this makes

them the most immediately available options for industrial implementation, nevertheless they

are not the most promising options. Immobilized Enzyme catalyst, and supercritical transester-

ification are indeed most promising options, specially if applied to intensified process schemes

as membrane or reaction-extraction, this is mainly because of the high conversion rates at-

tained and their capability of continuous operation combined with the in situ separation can

widely reduce costs and operation times, also increase the productivity even over the chemical

equilibrium conversion.

Design principles widely used in distillation and reactive distillation [35, 37, 38, 41], like the

concentration field redistribution are applicable to different technologies like reaction-extraction

and membrane rectors, giving to the investigator more theoretical understanding of what is hap-

pening inside the process and what to do to make the process even better, a clear example of

this is Luis Fernando Gutierrez M. PhD. Thesis [2], which is an application of shortcut methods

with topologically aided design [37, 42–45] to improve well known processes.

Biodiesel production perspectives in colombia are a great opportunity to develop national in-

dustry and agriculture, situating colombia between the 5 countries with more biodiesel produc-

tion potential [5].

Even with today’s high oil prices biofuels cost more than conventional fuels. The biofuel

economy will grow rapidly during the XXI century, shaped by some of the same forces that

shaped hydrocarbon economy and its refineries over the past century [46].
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Dynamical Piecewise Differential-Algebraic

Bioreactor-Extractor Conceptual Design

Model

Mathematics may be defined as the subject

in which we never know what we are talking

about,nor whether what we are saying is true.

Bertrand Russell, Mysticism and Logic

As seen in the previous chapter enzymatic catalysis is extremely selective and the reported ester

yields are high. Enzyme catalysis for Biodiesel production is very promising but it has clear in-

conveniences as inhibition and continuous process operation, some of this inconveniences have

been previously solved as seen in Table 1.5 at page 14, one of the most important references in

this table is [29], who has used a dialysis membrane that in spite of being extremely expensive

is an irrefutable evidence that simultaneous reaction and separation processes are a solution

to many of the inhibitions and continuous operation problems occurring in enzyme catalyzed

Biodiesel production. The design of simultaneous processes is complicated, many parame-

ters have to be supposed and successively adjusted in order to obtain a good design, even if a

MINLP (Mixed Integer Nonlinear Programming) optimization algorithm is used to deal with

the complexity of the problem, possibilities of making a globally optimal design are scarce due

to the high computational power needed and the availability of it for most researchers to solve

complex combinatorial problems as this. A most simple and systematic approach must be used

as an starting point for the design of integrated processes , the conceptual design approach is

appropriate and has proved to be efficient in the most complex processes as distillation [42–44]
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(azeotropic, conventional and extractive) and reactive distillation [36–40]. This approach has

even been proved to be optimal using MINLP [45].

Conceptual design is very useful to previously assess a process in order to know how would

integration benefit the performance of it.

Enzymatic Biodiesel production is the perfect candidate for the bioreactor-extractor process:

as enzymes are relatively expensive [10], immobilization is necessary1, with immobilized

enzymes the continuous process is possible but long settling times in decanters to separate

Biodiesel (upper phase) and glycerol (lower phase) prevent the process to be fully continuous,

also Enzyme’s activity by its is inhibited by glycerol and methanol excess in the reacting mix-

ture, so a continuous withdraw of glycerol while the reaction is taking place would at least

theoretically prevent enzyme inhibition and would make possible a continuous operation. Ev-

idence of this can be observed in the experimental alkali catalyzed reaction extraction process

reported in [2], who used a non-dynamical and topology aided reaction extraction conceptual

design model to develop the equipment used in his experiment (Figure 1.9).

2.1 Reaction and Separation False Dichotomy

For a chemical reaction to take place some conditions must be fulfilled, such as constant stir-

ring, an specific temperature, pressure and in special cases a catalyst. For phase splitting to take

place also some special conditions must be fulfilled: pressure, temperature and in the cases of

liquid phase splitting, low or no stirring and long settling times. This apparently contradictory

and mutually exclusive stirring and no-stirring condition for reaction and liquid phase splitting

respectively is indeed false, and this has been proved in several reaction-extraction examples

where successfully constant stirred reactions and simultaneous extraction with or without sol-

vent (auto-inducted) have been carried on. Examples of this are lactic acid production with dif-

ferent solvents [47], Reactive extraction of N-acetylneuraminic acid [48, 49], Biodiesel alkali

catalyzed simultaneous reaction and extraction [2] and some antibiotics production [50, 51].

In a theoretical simultaneous simplified reaction and extraction model, the first assumption that

should be made is that the stirring is high enough for the reaction to take place at good rates

but low enough for the phase split to take place, the assumption is made because in a short-cut

model(not using CFD) it isn’t possible to determine optimal stirring velocity accurately, also
1Reason why no free enzyme literature is cited or free enzyme processes are described in this work
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Figure 2.1: Mass Transfer model scheme for a two phase system

in some models stirring it is not taken into account.

2.2 Heterogeneous Process Modeling: Assumptions and Simplifi-

cations

Most real chemical and biochemical systems are heterogeneous. This means that the system

is formed of more than one phase, with strong interaction between the various phases. Het-

erogeneous reacting and non reacting systems are complex to model specially for design, and

some simplifications have to be done in order make the model adequate for a preliminary de-

sign. there are two approaches to model heterogeneous reacting and non-reacting systems, the

thermodynamic equilibrium and the Mass Transfer:

2.2.1 Two Liquid Phase Mass Transfer Modeling

Figure 2.1 shows how is modeled a two phase system. Each phase is modeled as an independent

subsystem that only interacts with the other phase by outgoing and incoming component mass

transport. A dynamic molar balance for the i − tℎ component in a reacting phase one is

performed:

NTI
i

dt
= N I

(in)i −N
I
(out)i ±MTi ± V I ⋅ �Ii (2.1)
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Figure 2.2: Reactive mass transfer model scheme for a two phase system

And also for the reacting phase two:

NTII
i

dt
= N II

(in)i −N
II
(out)i ±MTi ± V II ⋅ �IIi (2.2)

Where NTI and NTII are the molar accumulation (mol) of the i − tℎ component in phases

I and II respectively, N I
(in)i and N II

(in)i are the input molar flows (mol/time) to phases I and

II respectively, N I
(out)i and N II

(out)i are the output molar flows (mol/time) of phase I and II

respectively, MTi is the mass transfer flux (mol/s) of the i− tℎ component between the phases,

V I and V II are the phase I and II respective volumes, �Ii and �IIi are the i − tℎ component

conversion rate by the chemical reaction taking place in each phase(mol/time*volume).

Figure 2.2 shows the scheme used to develop the mass balances for the i− tℎ component.

First conceptual design modeling problem arises form theMTi term, which for the i− tℎ com-

ponent is expressed in terms of Ci, that is the molar composition(mol/volume) of component i

on the interface and Ci that is the current molar composition of component i in the bulk of the

liquid phase2:

MTi = am ⋅KLi ⋅ (Ci − Ci) (2.3)

2The number of the liquid phase is omitted because the same flux equation applies for both phases
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Where am is the total for mass transfer area between the two phases and KLi is the liquid mass

transfer coefficient (length/time). Finding the correctCi implies a priori experimental data or to

suppose that the interphase is at equilibrium (a state where no further mass transfer is possible)

and perform a thermodynamic equilibrium calculation (to be accurate experimental data is

needed but not necessary due to group contribution methods [52]). The proper estimation of

am depends on the reactor geometry and in some cases on the stirring velocity and the impeller

type, so to properly design using this particular model implies supposing a geometry and adjust

it successively until certain desired conditions are fulfilled. The mass transfer coefficient KLi

also depends on many variables specially in all related to the interface, so specific analytical,

empiric and semi empiric correlations must be used in order to predict this coefficient [53–56].

In conclusion mass transfer reactor modeling is adequate to predict the behavior of liquid-liquid

contact equipment with or without reaction, but for a first design it requires a priori knowledge

of the equipment geometry and sizing, also requires to select impellers and nozzles3 (if needed)

and know or at least presume if the agitation speed selected is low enough to form a continuous

phase system or high enough to form disperse phases 4.

2.2.2 Two Liquid Phase Equilibrium Model

For a system in which the contact between the two phases is long and/or the rate of mass

transfer is very high, the concentrations of the different components in the two phases reach

a state of equilibrium (a state where no further mass transfer is possible). The equilibrium

relations relate the molar percent (xi) in the two, three or more phases, such that for example,

xi = f(xi) (2.4)

Where the relation between xi and xi is called equilibrium relation and is an algebraic equation.

Equilibrium thermodynamics has been widely studied and there are hundreds of journals and

books treating this topic. Equilibrium relations have proven to be remarkably accurate to model

distillation (reactive and conventional) and extraction columns [36, 52, 53, 56],it has also been

proved to be an excellent conceptual design approach [2, 42–45, 57].
3Impellers and Nozzles affect the total mass transfer area am

4Different empirical correlations are needed to model continuous and disperse phase systems [55]
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Figure 2.3: Equilibrium modeling scheme

The main idea of equilibrium modeling is assume no further mass transfer is possible, this

mean to analyze the selected system at a maximum theoretical efficiency, which is enough for

a first design, and let the designer asses the possibilities and disadvantages of his design and

decide to go further or to change his design approach.

Figure C.5 is the typical liquid-liquid equilibrium modeling scheme which mass balances are

for the ith component:

dNT
i

dt
= N1x1i +N2x2i −N3x3i −N4x4i (2.5)

Where NT
i is the total mass of i in the vessel and the supper index is the number of the current

randomly ordered, as this is a constantly stirred tank model (lumped system), concentrations

inside the vessel are assumed to be the same x3i and x4i for its corresponding phase, also x3i and

x4i are assumed to be at equilibrium physical and/or chemical, if a chemical reaction takes place.

In fact depending on specifical characteristics of the system if a reaction or several reactions

take place is up to the designer and modeler criteria to decide if simultaneous chemical and

physical equilibrium is reached [39] or just physical equilibrium is attained but the reaction is

kinetically driven [40].

Simultaneous chemical and physical equilibrium is the perfect approach for steady state simu-

lation, where dynamic is ignored and design is made based only on the steady state5.

Simultaneous physical equilibrium and kinetically driven reactions are for the other side a more

dynamic approach to equilibrium modeling, the reaction term on the balance equations allows
5steady state is the term most commonly used in chemical engineering literature to address equilibrium points,

most chemical engineering analysis and design is made based on steady states simulation which means numerically

find equilibrium points
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Figure 2.4: Differences between kinetically driven model and simultaneous physical and chem-

ical equilibrium model

the designer and/or researcher to evaluate how phase equilibria affect the reaction develop-

ment, it also allows to evaluate the multiple equilibrium points (steady states) present and to

completely explore the phase space, in order to attain the most accurate dynamic information.

Figure 2.5: Kinetically driven liquid-liquid reactor extractor with one reacting phase

d(NT ⋅ zi)
dt

= N1x1i +N2x2i −N3x3i −N4x4i ± �i�(x4) ⋅ V II (2.6)

Figure 2.5 and Equation (2.6) are the diagram and the mass balance for the itℎ-component

respectively, for a two phase physical equilibrium and simultaneous kinetically driven reaction

system, where x3i and x4i are in physical but not chemical equilibrium, and the reaction only

takes place in phase II with a reaction rate of � only depending on the volume of phase II

(V II ), its concentrations (x4 =
[
x41, x

4
2, ..., x

4
C−1, x

4
C

]
) and the stoichiometrical coefficient of

each component �i. If a fixed reactor volume is assumed as V T and the total mole inside the
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reactor (NT ) variation is described by a global mass balance:

dNT

dt
= N1 +N2 − (N3 +N4) +

C∑
i=1

�i� ∗ V II (2.7)

For a C components system, the differential equation system formed by expanding equation

(2.6) to C − 1 components, appended by equation (2.7) has the following algebraic restriction

derived from conservative laws:

V T = V I + V II (2.8)
C∑
i=1

zi = 1 (2.9)

C∑
i=1

x1i = 1 (2.10)

C∑
i=1

x2i = 1 (2.11)

C∑
i=1

x3i = 1 (2.12)

C∑
i=1

x4i = 1 (2.13)

x4i = f(x3,x4, T ) (2.14)

zi = (1− �)x4i + �x3i (2.15)
N3

N4
=

�

1− �
for � ∈ [0 1] (2.16)

V I =
NT �

�I
(2.17)

Which are explained as follows:

Equation (2.8): Means the reactor volume (V T ) is fixed, and all this volume is occupied by

the two liquid phases.

Equations (2.9) to (2.13): Are obtained by the fact that the sum of all molar percents present

in one current must be equal to 1.
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Equation (2.14): Thermodynamic equilibrium relations are imposed by the model itself and

its explicit formula and calculations issues will be discussed later in detail.

Equation (2.15): Material balance associated with the physical equilibrium relation, in which

a component i is distributed between the two phases, which are also distributed in a

specific proportion (�) of the reactor total mass.

Equation (2.16): Relates the distribution proportion of the phases in the reactor with the out-

going currents (N3 and N4). The main assumption made to obtain this relation is that

outgoing current flows are in the same proportion that the mass of the phases in the

reactor.

Equation (2.17): Relates the Volume of a desired phase (in this case one but can be phase

2) with the number of moles in it (NT ⋅ �) using the molar density �I (mol/Volume)

which can be approximated using the density of pure components and molar percents

�I =
∑C

i=1 x
3
i �i.

This is a differential-algebraic system with the following degrees of freedom:
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Although this differential-algebraic model seems much more complicated than the mass trans-

fer model, it is indeed the same than solving the mass transfer model once consistent initial

conditions are found, also this model takes into account much more aspect that have to be sup-

posed constant or modeled by complex fluid dynamic theories in the mass transfer model. The

mass transfer coefficient for example has to be obtained according to the state of the immis-

cible phases: if a phase is disperse in the other phase or if both phases can be approximated

as continuous, different mass transfer correlations have to be used [55], also stirring velocity

changes affect surface area and mass transport. Each phase volume has to be supposed or al-

gebraic restrictions have to be imposed making the model differential-algebraic, also as said

before if no experimental data is available thermodynamic equilibrium calculations [52] have

to be done to calculate the interface concentration which make mass transfer model even more

complex than equilibrium model.

2.2.3 General Conclusions of when to use each model

In conclusion both models take into account different aspects both being as complicated as the

designers wants.

For processes with limiting mass transfer and/or limiting reaction rate, the mass transfer model

approach is recommended as also for complex models where mass, momentum and heat trans-

port occurs simultaneously like in detailed heterogeneous catalytic modeling where mass trans-

fer between the liquid bulk and the catalytic surface is decisive for the designer. Mass transfer

approach is the most versatile modeling technique due to its strong theoretical foundations, but

some properties are difficult to calculate and it requires complex piecewise dynamical systems

to shortcut model the regime changes on mass,heat and momentum transport (i.e a change from

laminar to turbulent flow and viceversa, due to perturbations).

For shortcut conceptual design modeling in steady state(equilibrium points), simultaneous

physical and chemical equilibrium approach is the best for simplicity, and it has been widely

used for decades [56], also many topologically aided design techniques like statics analysis [36]

provides a strong theoretic background which helps the designer to make proper decision based

on phase space analysis instead of rules of thumb.

For processes with limiting chemical reaction rate but no mass transfer limitations, physically

but no chemical equilibrium model (kinetically driven) is the simpler and most accurate ap-
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proach, specially for short-cut design where the main aspects of the model are taken into ac-

count, but simplifications as the physical equilibrium are possible to accurately assess the future

performance of the equipment and to adequately specify most important design parameters as

reactor volume and feed ratio.

2.3 BioReactor-Extractor for the Production of Biodiesel Model

development

As probed in [2] Biodiesel production limiting step is the chemical reaction. Although [2]

treats an alkali catalyzed process, this analysis can be extended to a more complex process like

enzyme catalyst, that has multiple and complex inhibitions and interactions with the reaction

media.

Figure 2.6: General scheme for Biodiesel Production Bioreactor-Extractor Modeling
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Figure 2.6 is the general scheme of a bioreactor-extractor for the production of Biodiesel, that

uses enzymes as catalyst. From this scheme material balances would be obtained and alge-

braic restrictions obeying conservation laws will be added to model a physical equilibrium and

kinetically driven model that qualitatively and quantitatively describes the behavior of a two

phase enzyme catalyzed reactor extractor during its operation.

2.3.1 Material Balances over the Control Volume

The control volume selected for the reactor extractor modeling can be seen in Figure 2.6, the

control volume V T will serve as reference for the capacity of the reactor and as the most

important design parameter, the global balance for the selected volume control is:

dNT

dt
= N0 − (N I +N II) +

4∑
i

��V II (2.18)

In which � is the sum of the stoichiometric coefficients of the transesterification reaction, in

this case � = 1(Triglycerides)+3(Alcoℎol)−3(FAME)−1(Glycerol) = 0 (see equation

(1.4) on page 5).

Reactor volume V T is a fixed parameter while the reactor is working and there is no change in

the number of moles inside the reactor due to the reaction, then it is possible to assume that the

total number of moles inside the reactor is also fixed.

0 = N0 − (N I +N II) (2.19)

Component mass balances for any Alcohol (ROH), any Triglycerde (Trig), any fatty acid

methyl ester (FAME or Biodiesel) and Glycerol present on a Transesterification reaction that

occurs inside the reactor-extractor are :

NT d(zROH)

dt
= NO ⋅ xROH − (N I ⋅ xIROH +N II ⋅ xIIROH)− �ROH ⋅ V II (2.20)

NT d(zTrig)

dt
= NO ⋅ xTrig − (N I ⋅ xITrig +N II ⋅ xIITrig)− �Trig ⋅ V II (2.21)

NT d(zFAME)

dt
= −(N I ⋅ xIFAME +N II ⋅ xIIFAME) + �FAME ⋅ V II (2.22)

NT d(zGlyc)

dt
= −(N I ⋅ xIGlyc +N II ⋅ xIIGlyc) + �Glyc ⋅ V II (2.23)
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If the following mole fractions restrictions are added for i = 1 for ROH,i = 2 for Trig,i = 3

for FAME and i = 4 for Glyc:

4∑
i=1

zi = 1 (2.24)

4∑
i=1

xi = 1 (2.25)

4∑
i=1

xIi = 1 (2.26)

4∑
i=1

xIIi = 1 (2.27)

Then the glycerol balance (equation (2.23)) becomes dependent of the other 3 component mass

balance equations and the global balance, so only equations (2.20), (2.21), (2.22) and the global

balance are useful to describe the behavior of the bioreactor.

2.3.2 Material balance Inside the control Volume

At any fixed time t, the total moles inside the reactor (NT ), the moles inside phase one (N I
(in))

and the moles inside phase two (N II
(in)) are known, also the steady state material balance inside

the control volume NT (t) = N I
(in)(t) + N II

(in)(t) and the compositions of each component

in each phase. By the CSTR assumption it can be guaranteed that the compositions inside of

each phase are the same ones as the compositions in the currents leaving the reactor. Making

this assumptions, an instantaneous (fixed t) steady-state mass balance can be done for each

component:

NT ⋅ zROH = N I
(in) ⋅ x

I
ROH +N II

(in) ⋅ x
I
ROH (2.28)

NT ⋅ zTrig = N I
(in) ⋅ x

I
Trig +N II

(in) ⋅ x
I
Trig (2.29)

NT ⋅ zFAME = N I
(in) ⋅ x

I
FAME +N II

(in) ⋅ x
I
FAME (2.30)

NT ⋅ zGlyc = N I
(in) ⋅ x

I
Glyc +N II

(in) ⋅ x
I
Glyc (2.31)

Dividing by NT and replacing
NI

(in)

NT by � :
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zROH = � ⋅ xIROH + (1− �) ⋅ xIIROH (2.32)

zTrig = � ⋅ xITrig + (1− �) ⋅ xIITrig (2.33)

zFAME = � ⋅ xIFAME + (1− �) ⋅ xIIFAME (2.34)

zGlyc = � ⋅ xIGlyc + (1− �) ⋅ xIIGlyc (2.35)

Also equation (2.35) is dependent of the others by the mole fraction restrictions, so for the

model to be consistent only equations (2.32),(2.33) and (2.34) would be part of the model.

2.3.3 Thermodynamic Equilibrium Restrictions

In Biodiesel production mass transfer rates are extremely high, so physical equilibrium sim-

plification can be made in order to accurately predict the immiscible phases behavior, this is

achieved by the use of standard thermodynamic theory [52] that says that phase equilibrium is

achieved only when the chemical potential of all the liquid mixture components in each phase

are equal:

��i = ��i = ⋅ ⋅ ⋅ = ��i (2.36)

In physical equilibrium this relation can be expressed in terms of fugacity as:

f̂�i = f̂�i = ⋅ ⋅ ⋅ = f̂�i (2.37)

For liquid solutions, Gibss energy and fugacity are expressed in terms of its deviation to ideal

solutions, for this purpose an excess thermodynamical property (ME) is defined as the differ-

ence between the real property value (M ) and the ideal solution property value (M is) at the

same temperature and pressure:

ME ≡M −M is (2.38)

The only excess function that will be needed to derive a liquid equilibrium restriction would be
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Gibbs free energy:

GE = G−Gis (2.39)

For a liquid mixture containing nmoles in total, equation (2.39) can be multiplied by n and de-

rived with respect to the number of moles of a component ni for constant temperature, pressure

and moles of another component in the mixture nj :

[
∂(nGE)

∂ni

]
P,T,nj

=

[
∂(nG)

∂ni

]
P,T,nj

−
[
∂(nGis)

∂ni

]
P,T,nj

(2.40)

Equation (2.40) has the form of a partial molar property and can be expressed as it:

G
E
i = Gi −G

is
i (2.41)

Using the fugacity definition:

d�i = RTd ln f̂i (2.42)

And the definition of chemical potential:

�i = Gi (2.43)

The following expression can be obtained:

G
E
i = RT ln

f̂i
fi

(2.44)

Where fi is the fugacity of the ideal solution. An ideal solution’s fugacity is proportional to its

molar fraction:

fi = ℜixi (2.45)
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So replacing equation (2.45) into (2.44) leads to:

G
E
i = RT ln

f̂i
ℜixi

(2.46)

For a reference thermodynamical state it can be established that ℜi = f0i , where f0i is the

fucacity at the reference thermodynamic state. Replacing this on equation (2.46) and using the

activity coefficient definition [52], the following expression is obtained:

G
E
i = RT ln i (2.47)

Where i is the activity coefficient. This defines the activity coefficient as the measure of the

deviation of a solution from its ideal behavior and gives an strong theoretical background to the

study of thermodynamical equilibrium calculation due to the possibility of using Gibbs excess

function models to describe equilibrium behavior in liquid phases.

Then by definition of activity coefficient and fugacity [58] and by using equation (2.37), ther-

modynamical equilibrium restrictions can be expressed as follows for the Biodiesel production

system:

xIROH
I
ROH = xIIROH

II
ROH (2.48)

xITrig
I
Trig = xIITrig

II
Trig (2.49)

xIFAME
I
FAME = xIIFAME

II
FAME (2.50)

xIGlyc
I
Glyc = xIIGlyc

II
Glyc (2.51)

Activity coefficient (i) models can be found in th Appendix A and its selection for an specific

Biodiesel system will be discussed later.

2.3.4 Volumetric Restrictions and Assumptions

Reactor volume V T is a design parameter and is considered to be fixed, as there is only one

reaction phase inside the bioreactor for the production of biodiesel, the only real volume af-

fecting the reaction kinetics would be the volume of reacting phase, that can be approximated
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by:

V II =
N II

(in)

�II
=
NT ⋅ �
�II

(2.52)

Where �II is the density of phase two and can be approximated by the weighted sum of each

component density:

�II ≈
4∑
i=1

xIIi ⋅�IIi = xIIROH ⋅�IIROH+xIITrig ⋅�IITrig+xIIFAME ⋅�IIFAME+xIIGlyc ⋅�IIGlyc (2.53)

Then the reactor total volume V T would be the maximum volume occupied by phase one and

two during the operation to ensure a constant number of moles inside the reactor (NT ).

Last restriction added to the dynamical system is the assumption that the relation between the

leaving currents of the reactor are the same that the relation between the moles of the phases

inside the reactor:

N I

N II
=
N I

(in)

N II
(in)

(2.54)

Using � definition on equation (2.54) leads to the final restriction:

N I

N II
=

�

1− �
(2.55)

2.3.5 Kinetic Model and Specifical Reaction Selection

Most of the earlier kinetic studies on lipase-catalyzed esterifications of fatty acids are described

by a Ping-Pong kinetic model with competitive inhibition by the alcohol as given below:

� =
Vmax

1 + KF
[F ] +

[
1 + [A]

KIA

]
+ KA

[A]

(2.56)

Where � is the reaction rate, Vmax is the maximum reaction rate, KF and KA are the binding

constants for the fatty acid (F) and the alcohol (A), and KIA is the inhibition constant for the

alcohol, and the brackets denote molar concentration (mol cm−3).
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This mechanism has been modified by incorporating a Ping-Pong Bi-Bi mechanism with in-

hibition by both of the substrates. However, it was proven experimentally that the substrate

(S) (i.e., the ester bond on the triglyceride) does inhibit lipase-catalyzed reactions of vegetable

oils [3]. Therefore, this modification is not applicable for the transesterifications of vegetable

oils.

Figure 2.7: Graphical representation of the mechanismic steps of triglyceride ester-bond trans-

esterification form [3]

Figure 2.7 shows a schematic diagram of the mechanismic steps proposed for the esterification

of triglycerides with lipases. As proposed in [14], all steps except deacylation of the lipase are

assumed to be in quasisteady state. With this proposed mechanism and assumptions, the rate

of transesterification of triglycerides can now be expressed as:

� =
Vmax[S]

1 +KIS [S] + KS
[S]

[
1 + [A]

KIA

]
+ KA

[A]

(2.57)

Results obtained experimentally in [3] for immobilized Rhizomucor miehei (RM) lipase and

immobilized Thermomyces lanuginosa (TL) lipase, using Sunflower oil and methanol as reac-

tants, for equation (2.56) and (2.57) are presented in the Table 2.2.

In the mass balances obtained previously, all compositions are expressed in molar fraction, and

equation (2.57)’s terms are all in molar concentration. Since the molar concentration can be

expressed as:

[R] = xR � (2.58)
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Table 2.2: Kinetic parameters Obtained in [3] for the Ping Pong kinetics with and without

inhibition
Equation (2.56) Equation (2.57)

Lipase Lipase Lipase Lipase

Parameter RM TL RM TL

Vmax(min−1) 0.0903 0.0546 0.414 0.197

KIS(cm3 mol−1) n/a n/a 0.13 0.13

[Equation (2.56)]KF (cm−3 mol) 16.34 10.18

[Equation (2.57)]KS(cm−3 mol)) 0.16 0.44

KA(cm3 mol−1) 0.19 0.11 0.98E-4 4.82E-4

KAI(cm
3 mol−1) 0.1 0.083 1.9 0.9

WhereR is any compound into a liquid solution, brackets denote molar Composition (mol cm−3),

xR is the molar fraction of R (molR/molSolution) and � is the density of the liquid solution.

If equation (2.58) is substituted into equation (2.57), knowing that every mol of tryglyceride

contains 3 mol of ester bonds (Substrate [S]) ando using the notation used in mass balances for

phase two (where the reaction takes place), the following expression is obtained:

� =
3Vmaxx

II
Trig �

II

1 + 3KIS xIITrig �
II + KS

3 xIITrig �
II

(
1 +

xIIROH �II

KIA

)
+ KA

xIIROH �II

(2.59)

As reported in [3,14,15] equations (2.57) type is much more accurate to predict the tansesteri-

fication reaction behavior than equation (2.56). For this reason it would be the selected kinetic

model for this work.

As Rhizomucor miehei lipase (RM) is immobilized on ion-exchange resin and Thermomyces

lanuginosa lipase (TL) is immobilized on silica gel, the chosen kinetic model is suitable for

reaction-extraction system analysis, because no solvents are added to the reactor, so it would

still have the two immiscible phases, also immobilized enzymes report higher yields than free

enzymes [11, 34, 59].

With the kinetic model chosen, the reactants and products described in the mass balance are

no more general alcohols or triglycerides,now the alcohol(ROH) is methanol (MeOH) and the

triglyceride (Trig) are all the triglycerides present in the Sunflower oil.
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2.3.6 Activity Coefficient Model Selection

There are two main criteria used to select an activity coefficient model. The first is the physical

nature of the process that is going to be simulated (i.e. if its a Vapor-liquid-liquid equilibrium

not all models listed in Appendix A are suitable); the second is the experimental data and fitted

model parameters availability for the desired substances (All models on Appendix A depend

on the availability of experimental data, even group contribution models like UNIFAC use

experimental data to estimate group contribution parameters).

Availability of experimental data and correlated parameters is very limited, nevertheless the

number of publications of liquid-liquid equilibrium data referring to triglycerides, long chain

fatty acid methyl esters, glycerol and alcohol has been rising with the rising interest in biofuels,

specially in Biodiesel. As each researcher has its own interests depending on its location and

specialty, the available data, correlated models and experimental conditions is diverse as it can

be seen on Table 2.3, This reduces considerably the applicability of very specific data to a

model like the one proposed in this work.

As Models like Wilson’s, NRTL and UNIQUAC need specific data, and specific data for the

four component Sunflower Oil+ Methanol+ FAME (Derived from Sunflower oil transesterifi-

cation with metahnol)+ Glycerol is not currently available in the literature, a group contribution

model must be used.

The most widely used and accepted group contribution activity model is UNIFAC and all its

variations, the whole family of UNIFAC’s group contribution parameters has been correlated

from the data stored in the Dortmund Data Bank [67–72].

Original UNIFAC’s parameters are correlated only from vapor-liquid equilibrium [70] it is not

suitable to be used in liquid-liquid equilibrium, the same happens with UNIFAC DORTMUND

whose parameters are correlated from both vapor-liquid and vapor-liquid-liquid equilibrium;

thats why Magnussen et al. [73] correlated special group contribution parameters from a lim-

ited number of binary and ternary mixtures, this new UNIFAC model parameters for liquid-

liquid equilibrium predict within a 10% of molar deviation [73]. This liquid-liquid version of

UNIFAC is not recomendable for precting activity coefficients of big molecules, as it can be

seen in [73] where 32 different groups are reported, representing hydrocarbons,water, alcohols,

low chain organic acids, halogenated hydrocarbons and nitriles.

In a relatively recent article Batista et al. [7] used long chain fatty acids and triglycerides data to
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improve liquid-liquid UNIFAC’s accuracy to predict all compounds involved in the Biodiesel

reaction, with excellent results reported in the same work ( 2% of deviationre reported) and

in the recent PhD thesis of Luis Fernando Gutierrez [2] where this model was used to predict

palm oil and castor oil behaviour during an alkali catalyzed reaction leading to the design of

the equipment in Figure 1.9 in page 19 which pattent is pending. Group contibution paramter

modifications can be seen in table 2.4.

Table 2.4: Modification to liquid-liquid UNIFAC reported in [7]

m n amn anm

CH = CH CH2COO -149.180 -2692.200

CH = CH COOH -851.340 194.320

CH = CH OH 1172.400 -2457.900

CH2COO COOH 17.081 -167.670

CH2COO OH 511.190 247.520

COOH OH -424.310 70.196

This modifications and previous result and experiences in [2] make this kind of modified liquid-

liquid UNIFAC perfect for the bioreactor-extractor model proposed in this work.

2.3.7 Final Simplification

The last simplification to be made concerns to the complexity of vegetable oils triglyceride’s

composition. As described early in Chapter 1 on page 3, triglycerides are defined as a sin-

gle molecule of glycerol replaced on each OH group by a long chain fatty acid forming an

ester bound (see equation (1.4)); in fact any combination of capric, lauric, myristic, palmitic,

palmitoleic, oleic, elaidic, arachidic, eicosenoic, behenic, erucic, cerotic, stearic, linoleic and

linolenic acid can form a triglyceride. The composition of all the possible triglycerides present

in a vegetable oil depends on its source. The chosen sunflower oil is not the exception it is a

complex mixture of triglycerides distributed as follows6: LLL (33.8 mol%), OLL (29.3 mol%),

PLL (10.6 mol%), OOL (8.4 mol%), SLL (7.4 mol%), POL (5.1 mol%), OOO (1.4 mol%) and

SOL (2.4 mol%) reported in [74].

The reaction substrate according to kinetics is the ester bond, and any triglyceride has 3 ester
6L=Linolein, O=Olein, P=Palmitin, S=Stearin

43



Chapter 2. Dynamical Differential-Algebraic Bioreactor-Extractor Model

bonds, so for the selected kinetic model the nature and composition of the used oil is irrelevant;

nevertheless the kinetic model parameters are correlated from a reaction with sunflower oil,

which means it is not valid to simulate other kind of oils. The problem with the kinetics arises

for the product, as the substrate is the ester bond in the triglycerides, the product is the ester

bond in the FAME, which is one for any FAME derived from the reaction, sunflower oils

triglycerides are 8, the possible FAMES derived from the reaction are 4, but it is impossible to

know with the chosen kinetic or with any kinetic published until today, the exact composition

of the resulting FAME mixture of a transesterification reaction; this leads to the conclusion

that only one FAME should be supposed as the product and one triglyceride supposed as the

reactive, to simplify the liquid-liquid equilibrium calculation and eliminate the need of very

specific kinetics development, which is out of the scope of this work.

Analyzing the compositions of sunflower oil reported in [74,75] and on Table 1.2 on page 4, it

can be seen that Linolein and Olein are where the most common, being the Linolein the most

abundant with 69 mol% [74].

Taking into account the quantity of Linolein present in the sunflower oil, the main interaction

of the sunflower oil with the other reactant and the resulting products will be dominated by the

interaction of Linolein containing molecules (Triglycerides and FAMEs), so for the purposes of

this work sunflower oil will be approximated as Trilinolein and the resulting FAMEs as Methyl

Linoleate.

2.4 Bioreactor-Extractor Piecewise Model

2.4.1 Biorreactor-Extractor Start

One of the most important aspects in any chemical or physical process is the star of the equip-

ment. The start of the reactor is not usually taken into account in the first conceptual process

design stage because traditionally this design stage is done under steady-state assumption.

Biodiesel Process is catalogued as autoextractive7 [2] so a special start algorithm must be used

to generate from the reactives a two liquid phases system. This could be achieved by making

the reactor extractor to behave as a batch CSTR:

The process consist into load the reactor with a mixture of reactives and catalyst, then close the
7There is no need to add solvents to provoke a phase split
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output and input valves of the reactor and turn on the agitation fast enough to make the reactor-

extractor work as close to a CSTR as possible; as the reaction begins, glycerol and Biodiesel

will be produced, and when certain time ts is reached and a certain amount of immiscible

products is produced, inputs and output valves of the reactor-extractor will be opened, and

agitation speed will be reduced to the optimal value, where phase split and reaction will occur

simultaneously.

Mass Balances Over the Control Volume

Figure 2.8: Start of the Bioreactor

As shown before, using Figure 2.8 mass balances are derived for a no inputs no outputs reactor.

Global balance:

dNT

dt
=

4∑
i

��V T (2.60)

As proved before for the Biodiesel production reaction � = 0 so the total change of moles

inside the reactors is null.

Component balance:

NT dzROH
dt

= −�ROHV T (2.61)

NT dzTrig
dt

= −�TrigV T (2.62)

NT dzFAME

dt
= �FAMEV

T (2.63)

NT dzGlyc
dt

= �GlycV
T (2.64)
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∑
z = 1, then zGlic is a dependent variable, this makes equation (2.64) dependent and is

eliminated from the model.

Initial Value Problem

The bioreactor-extractor start model mathematically reduces the start of the reactor-extractor

to the solution of an initial value problem in ordinary differential equations, the main idea of

this is to determine a time ts to switch the bioreactor from start to operation mode. This ts

has to be chosen carefully to ensure that the bioreactor-extractor will reach the desired steady-

state, which can be previously selected numerically analyzing all the possible steady-states and

basins of attraction of the model described in section 2.3.

Initial values are also part of the design problem as a design parameter, in this particular case the

main assumption will be that the bioreactor-extractor in the starting stage will be totally full of

methanol and sunflower oil, so N is fixed as the capacity of the reactor-extractor depending on

the total volume V T , then the design parameter R will be the proportion between the reactants

in zero time:

R =
zROH(t = 0)

zTrig(t = 0)
(2.65)

2.4.2 Piecewise Bioreactor-Extractor Model

Each one of the models developed in section 2.3 and subsection 2.4 can be analyzed sepa-

rately, but also they can be analyzed together as a single piecewise model which will describe a

simplified operation trajectory on the thermodynamic limit, this is specially useful as a tool to

predict at least approximately, the behavior of the reactor-extractor in presence of disturbances,

but not accurate enough to be a model suitable for the implementation of a controller due to its

multiple simplifications.

The Piecewise Simplification

Th switch between the starting and operating mode in real is not a simple step, it includes com-

plex fluid dynamics and simultaneous reaction, while the transition between the high agitation

rate’s CSTR like induced behavior and the optimal agitation’s two phase reaction-extraction
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regime takes place; this phenomena is the one that will be simplified as a switch between the

two models, this indeed leaves the complex simulation and modeling of this transition to further

design stages in which this phenomena can be modeled or experimentally recreated to improve

the start algorithm of the bioreactor extractor, the reason for this is that for a first estimate of

the start parameters of the bioreactor-extractor there is no need to use complex fluid dynamics.

The Model

The resulting Piecewise non lineal model is a combination of the two previously formulated

models:

Figure 2.9: Piecewise Bioreactor-Extractor Model Scheme

For the Operation Stage:
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0 = N0 − (N I +N II) (2.66)

NT d(zROH)

dt
= N0 ⋅ xROH − (N I ⋅ xIROH +N II ⋅ xIIROH)− �ROH ⋅ V II (2.67)

NT d(zTrig)

dt
= N0 ⋅ xTrig − (N I ⋅ xITrig +N II ⋅ xIITrig)− �Trig ⋅ V II (2.68)

NT d(zFAME)

dt
= −(N I ⋅ xIFAME +N II ⋅ xIIFAME) + �FAME ⋅ V II (2.69)

zROH = � ⋅ xIROH + (1− �) ⋅ xIIROH (2.70)

zTrig = � ⋅ xITrig + (1− �) ⋅ xIITrig (2.71)

zFAME = � ⋅ xIFAME + (1− �) ⋅ xIIFAME (2.72)
4∑
i=1

zi = 1 (2.73)

4∑
i=1

xIi = 1 (2.74)

4∑
i=1

xIIi = 1 (2.75)

xIROH
I
ROH = xIIROH

II
ROH (2.76)

xITrig
I
Trig = xIITrig

II
Trig (2.77)

xIFAME
I
FAME = xIIFAME

II
FAME (2.78)

xIGlyc
I
Glyc = xIIGlyc

II
Glyc (2.79)

V II = NT ⋅�
�II

(2.80)

N I

N II
= �

1−� (2.81)

For the Start or CSTR like stage:

NT dzROH
dt

= −�ROHV T (2.82)

NT dzTrig
dt

= −�TrigV T (2.83)

NT dzFAME

dt
= �FAMEV

T (2.84)

4∑
i=1

zi = 1 (2.85)
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To switch form start stage to operation stage the last value of the vector z is now the initial

value of equation (2.66) to (2.69), and consistent initial values for the other variables must

be calculated using the globally stable liquid-liquid equilibrium algorithm developed for this

work in Appendix C, and then integrate the resulting differential algebraic system. The only

condition to do this switch is that the liquid-liquid equilibrium exists for the values of the vector

z, otherwise the transition isn’t possible in real life.

To switch from the operation stage to the CSTR like stage i.e to recover from a disturbance,

The final values of vector z are taken as the initial values of equations (2.82) to (2.85), and the

ODE system is integrated.
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Chapter 3

Differential Algebraic Equation’s Integration

by Effective Order Singly Implicit

Runge-Kutta Methods

In Order to numerically integrate the model purposed on Chapter 2 by any type of Runge-

Kutta Method, it is necessary to understand the properties of nonlinear Differential-Algebraic

equations and how they affect the stability and convergence of the numerical method used to

its solution, it is also important to know the numerical method inherent stability and conver-

gence properties, to make an adequate selection of method and order, taking into account the

precision, stability and computational costs associated with each method.

The present chapter gives a brief introduction to DAEs, its properties and mathematical char-

acterization, as also its integration by Runge-Kutta methods, analyzing the stability of both

implicit and explicit integration schemes making a special emphasis into singularly implicit

Runge-Kutta methods, effective order and the combination of both concepts to create the nu-

merically implementable and stable, Effective Order Implicit Runge-Kutta Methods (ESIRK).

Its numerical implementation for the solution of DAEs of order one, with fixed and variable

stepsize schemes will be discussed as long with the possibility of exploiting variable order

algorithms in the DAE integration.

3.1 Differential Algebraic Equations Generalities

The desirability of working directly with DAE’s has been recognized for over 30 yrs by scientist

and engineers in several areas [76]. The most straight forward way of studying DAE’s, certainly

from the view point of applied mathematics, is to use the singular perturbation analysis. The
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singular perturbation problem is considered

y′ = f(y, z), y(0) = y0l (3.1)

�z′ = g(y, z), z(0) = z0 (3.2)

If �→ 0, the following reduced equation is obtained,

y′ = f(y, z) (3.3)

0 = g(y, z) (3.4)

A practical way of looking at the equations (3.3) to (3.4) is to consider them as differential

equations for which the solution is constrained to lie on a manifold g(y, z) = 0, this can ap-

preciated in the model developed on chapter 2, where the solution of the bioreactor-extractor is

constrained to the physical equilibrium manifold which represents an idealization of maximum

achievable separation efficiency. As the solution lies on the manifold also the initial values

must lie on the same manifold [77], so they have to satisfy,

g(y0, z0) = 0 (3.5)

3.1.1 Differential Algebraic Equations Indices

Differential Index

A general DAE takes the form

f(y′, y, t) = 0 (3.6)

where f and y are in ℝn. The differential index di, of the system is the minimum integer m,

such that the system of equations (3.6) and

df(y′,y,t)
dt = 0

d2f(y′,y,t)
dt2

= 0
...

dmf(y′,y,t)
dtm = 0

can be solved for y′ = y′(y), This explicit ODE is often called the underlying ODE, it is

important to take into account the three first differential indexes:

51



Chapter 3. DAE’s Integration by ESI Runge-Kutta Methods

Differential Index One Consider the system of equations (3.3) and (3.4). If gz = ∂g
∂z is

invertible in a neighborhood of the solution, the the problem has differential index one since

in this case the differentiation of (3.4) gives a first order ODE for z. The initial conditions are

required to satisfy the condition (3.5).

Differential Index Two Consider the semi-explicit form,

y′ = f(y, z) (3.7)

0 = g(y) (3.8)

Differentiating the constraint with respect to y,

0 = gy
dy

dx
= gyf(y, z) (3.9)

Relation (3.9) is often referred to as the hidden constraint. Differentiating again with respect

to z, (3.7) and (3.8) are of index two if gy fz is invertible in a neighborhood of the solution.

Differential Index Three Consider the system,

y′ = k(y, z, w) (3.10)

z′ = f(y, z) (3.11)

0 = g(z) (3.12)

This problem is in Hessenberg form [76] and has index three if and only if gz fy kw is invertible

in a neighborhood of the solution.

Perturbation Index

Hairer et al [4] defined the perturbation index pi, as the smallest value of the integer m such

that the difference between the solution of (3.6) and the solution for the perturbed equation

f(z′, z, t) = e(t) (3.13)

can be bounded by an expression of the form

max ∥z(t)− y(t)∥ ≤ K[∥z(0)− y(0)∥] + max(∥e(t)∥)+

max(∥ė(t)∥) + . . .+ max(
∥∥ e(m−1)(t)∥∥]

(3.14)
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over a finite interval t ∈ [0, T ].

The perturbation index is clearly an important factor in the numerical solution of a DAE since

it will play a major role in determining the impact of roundoff errors. The expected round-

off errors would be of the order �/ℎp−1, because the method will be performing a numerical

differentiation on roundoff errors assumed to be order of �. [4].

3.1.2 Relation to Stiffnes and Order Reduction

In the early 1950’s as a result of the work by Curtiss and Hirschfelder [78] stiff ODEs were

identified as “equations were certain implicit methods, and in particular backward-differentiation

formula (BDFs) perform better, usually tremendously better than explicit ones”, although this

definition is not all precise it does encapsulate an intuitive idea of what stiffness is [77]. An-

other intuitive idea of the nature of stiffness is that they are multi-scale problems. That is, stiff

equations represent coupled physical systems having components which vary on very different

time-scales.

There is a close relationship between DAE systems and stiff ode systems, as it was seen before,

the system of equations (3.1) and (3.2) tends to be the semi explicit system of equation (3.3)

and (3.4) as � → 0. Thus it is natural to expect that there will be a relationship between the

behavior of numerical ODE methods when applied to the related DAE. This can be interpreted

as a multi-scale problem where the “time” scales of y and z become extremely different as long

as � tends to zero.

Order reduction is a phenomenon that was noted in 1974 by Prothero and Robinson. They

studied the stiff model problem

y′(t) = �y(t) + g′(t)− �g(t), � << 0 (3.15)

and noted that when an Rungue-Kutta method was applied to solve the above equation, the error

order of the solution was bellow the expected one for the applied numerical method. Some

of the numerical results reported in [4] illustrate the order reduction of singular perturbation

problems as function of � and confirm the order reduction predicted in theory, so order reduction

is expected for DAE systems.
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3.2 Runge-Kutta Methods for DAE’s

The idea of generalizing the Euler method, by allowing for a number of evaluations of the

derivative to take place in a step, is generally attributed to Runge (1895). Further contributions

were made by Heun (1900) and Kutta (1901). The latter completely characterized the set of

Runge-Kutta methods of order 4, and proposed the first methods of order 5. Special methods

for second order differential equations were proposed by Nyström (1925), who also contributed

to the development of methods for first order equations. It was not until the work of Huta

(1956,1957) that sixth order methods were introduced.

Since the advent of digital computers, fresh interest has been focused on Runge-Kutta methods,

and a large number of research workers have contributed to recent extensions to the theory, and

to the development of particular methods [79].

Runge-Kutta methods have originally been conceived for numerical solution of ordinary differ-

ential equations y′ = f(x, y) 1. From an approximation yn of the solution at xn these one-step

methods construct an approximation yn+1 at xn+1 = xn + ℎ via the formulas

yn+1 = yn + ℎ
s∑
i=1

biY
′
ni (3.16)

where Y ′ni is called stage derivative and is defined by

Y ′ni = f(xn + ciℎ, Yni) (3.17)

with internal stages Yni given by

Yni = yn + ℎ

s∑
j=1

aijY
′
ni for i = 1, . . . , s (3.18)

Here aij , bi and ci are the coefficients which determine the method, and s is the number

of stages. The most common way to represent an s-stage Runge-Kutta Methods is by the
1Since now the independent variable of differential equations will be noted by x, aiming to have a more general

notation than the former t
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Butcher’s tableau:

c1 a11 a12 ⋅ ⋅ ⋅ a1s

c2 a21 a22 ⋅ ⋅ ⋅ a2s
...

...
...

. . .
...

cs−1 a(s−1)1 a(s−1)2 ⋅ ⋅ ⋅ a(s−1)s

cs as1 as2 ⋅ ⋅ ⋅ ass

b1 b2 ⋅ ⋅ ⋅ bs

(3.19)

It can also be noted in a more compact notation as (A,b, c) or,

c A

bT
(3.20)

where A is the matrix of aij , b and c are the vectors of bi and ci respectively. If aij = 0

for i ≤ j, the internal stages Yn1, . . . , Yns can be computed one after the other from equation

(3.18) by explicit functions evaluations. Such methods are called explicit. Otherwise equation

(3.18) constitutes a non linear system for the internal s stages, and the method is called implicit.

If Kronecker tensor product (⊗) is used, a s-stages Runge-Kutta method (A,b, c) applied to a

system of N ODEs, can be compactly described by the following equations

Y = e⊗ yn + ℎ(A⊗ I)f(Y) (3.21)

yn+1 = yn + ℎ(bT ⊗ I)f(Y) (3.22)

where Y is the Ns elements vector of the stages of the method, e being the s elements vector

of ones, I the N ×N Identity matrix and ℎ is the stepsize (ℎ = xn − xn−1).

3.2.1 Order Conditions

To describe any Implicit Runge-Kutta method is necessary to introduce

ci =

s∑
j=1

aij (i = 1, . . . , s) (3.23)
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and the following algebraic conditions:

B(p) :
s∑
i=1

bic
k−1
i =

1

k
for k = 1, . . . , p (3.24)

C(q) :
s∑
j=1

aijc
k−1
j =

ci
k

for k = 1, . . . , q (3.25)

D(r) :
s∑
i=1

bic
k−1
i aij =

bj
k

(1− ckj ) for k = 1, . . . , r (3.26)

ConditionB(p) means that the quadrature formula with weights b1 . . . , bs and nodes c1, . . . , cs

integrates polynomials up to degree p−1 exactly on the interval [0, 1], and condition C(q) says

that polynomials up to degree at least q−1 are integrated exactly on the interval [0, ci], for each

i,, by the quadrature formula with weights ai1, . . . , ais, a deduction of this conditions based on

the rooted tree theory applied to the Taylor series expansion of the exact and the approximated

solution can be found in [79] and [80].

One of the most important conditions to this work is C(q), By comparing both the Taylor

expansions of formula (3.18) and y(xn + ciℎ) the following expression is obtained,

Yi = y(xn + ciℎ) +O(ℎq+1) (3.27)

This means that the stage is an approximation with error of order q + 1 of the solution at

xn + ciℎ, then if q = s no lower order approximations will be used to estimate the solution yn,

this avoids order reduction [81].

3.2.2 Stability Functions of The Runge-Kutta Methods

Since the identification of stiff differential equations [78], the investigation of numerical meth-

ods to overcome stiffness started, bringing very interesting and enlightening results in 1963 by

the mathematician Germund Dahlquist [82]. Dahlquist simple but yet very useful approach to

the stability, reduces the problem to a numerical method applied to the equation

y′(x) = qy(x), y(x0) = y0. (3.28)

where q is a complex constant with negative real part.

One of the most notorious members of the Runge-Kutta method family is the implicit Euler
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method, if this method is applied to the Dahlquist equation 3.28,

y(xn+1)− y(xn)

ℎ
= qy(xn+1) (3.29)

making this equation explicit in y(xn+1)

y(xn+1) =
y(xn)

1− ℎq
(3.30)

replacing ℎq by z and using the initial condition, the following difference equation is obtained:

yn =

(
1

1− z

)n
y0, for n = 1, . . . (3.31)

The stability function of the implicit Euler method is then

R(z) =
1

1− z
(3.32)

Using difference equation stability theory, R(z) is stable, if and only if ∣R(z)∣ ≤ 1, which for

the Euler method gives the following stability region:

-3 -2 -1 1 2
Re

-3

-2

-1

1

2

3

Im

Figure 3.1: Stability Region of the Implicit Euler Method
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Definition 3.1. The function R(z) is called the stability function of the method. It can be

interpreted as the numerical solution after one step for

y′(x) = qy(x), y0 = 1, z = ℎq (3.33)

the famous Dahlquist test equation, The set

S = {z ∈ ℂ, ∣R(z)∣ ≤ 1} (3.34)

is called the stability domain of the method.

Definition 3.2 (Dahlquist, 1963). A method whose stability domain contains the whole of the

left complex half plain is called A-stable

A more flexible definition of A-stability called A(�)-stability was purposed by Widlund in

1967 [83].

Definition 3.3 (Widlund, 1967). A method is called A(�)-stable if its stability domain includes

S� = {z ∈ ℂ, ∣arg(−z)∣ ≤ �} (3.35)

Runge-Kutta Methods Stability Function

For an s-stage Runge-Kutta method defined by the Tableau

c A

bT
(3.36)

the vector Y , made up from the s stages values satisfies

Y = ey0 + ℎAqY = y0 + zAY (3.37)

where y0 is the incoming approximation. It follows that

Y = (I− zA)−1ey0 (3.38)

Substituting this into the solution approximation leads to

y1 = y0 + zbT (I− zA)−1y0 = R(z)y0 (3.39)
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where

R(z) = 1 + zbT (I− zA)−1e (3.40)

Another Interesting result can be found applying the Kramer’s rule to find y1 in terms of y0

R(z) =
det(I− zA + zebT )

det(I− zA)
(3.41)

3.2.3 Stability Domains of Runge-Kutta Methods

From the resulting equivalent stability functions (3.40) and (3.41), stability domains can be

obtained and analyzed:

Explicit Runge-Kutta Stability Domain If A is strictly lower triangular, it is clear that the

stability function (3.41) would be a polynomial of the form

R(z) = 1 + z +
z

2!
+ . . .+

z

p
+O(zp+1) (3.42)

where p is the order of the method.

This means Explicit Runge-Kutta methods will always have bounded stability regions, there-

fore any explicit Runge-Kutta method would be A-stable, this is an undesirable characteristic

for integrating stiff ODEs and DAEs.

p = 1

p = 2

p = 3

p = 4

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5
Re

-3

-2

-1

1

2

3

Im

Figure 3.2: Stability Domain for Explicit Runge-Kutta Mehtods of order p
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Figure 3.3: Radau IIA Stability Domain (p = 5, s = 3)

Implicit Runge-Kutta Stability Domain Implicit Runge-Kutta methods is the opposite case,

as their stability function is rational, its stability domain is not necessarily bounded. The fa-

mous RadauIIA method based on the Radau quadrature, implemented by Hairer et al. and

discussed in several books and articles [4,80,84,85] is probe of an A-stable and stiffly accurate

3 stages and order 5 method. It’s Tableau is:

4−
√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225

4+
√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−
√
6

36
16+
√
6

36
1
9

16−
√
6

36
16+
√
6

36
1
9

(3.43)

and its stability domain is shown in Figure 3.3.

Implicit Runge-Kutta are ideal for the integration of stiff ODEs and DAEs due to its strong

stability properties, but they still present the order reduction phenomenon.

3.2.4 Numerical Solution of Index 1 DAEs by Runge-Kutta Methods

Considering the differential-algebraic system

y′ = f(y, z)

0 = g(y, z)
(3.44)

where f and g are sufficiently differentiable. System (3.44) is an index 1 problem only if∥∥(gz(y, z))
−1∥∥ ≤M (3.45)
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in a neighborhood of the exact solution, also consistent initial values y0, z0 are assumed for

system .

Solution of the equivalent ordinary differential equation

Condition (3.45) implies that in a neighborhood of the solution the second equation in system

(3.44) can be formally transformed into z = G(y) by the implicit function theorem, so that

system (3.44) becomes

y′ = f(y,G(y)) (3.46)

It is possible to apply an arbitrary (explicit or implicit) Runge-Kutta method to equation (3.46)

and to determine the z-component by zn = G(yn). This is equivalent to solve the system

Y = e⊗ yn + ℎ(A⊗ I)Y′ (3.47)

yn+1 = yn + ℎ(bT ⊗ I)Y′ (3.48)

where

Y′ = f(Y,Z) (3.49)

0 = g(Y,Z) (3.50)

and zn+1 is given by

0 = g(yn+1, zn+1) (3.51)

In this case all the classical results about the order, convergence and asymptotic expansions of

the Runge-Kutta methods hold [4].

The direct approach

Solve the equivalent differential equation approach does not correspond to the definition of the

method given in equations (3.21) and (3.22), for which formulas (3.47),(3.48),(3.49) and (3.50)

hold but (3.51) is replaced by

zn+1 = zn + ℎ(bT ⊗ I)Z′ (3.52)

Z = e⊗ zn + ℎ(A⊗ I)Z′ (3.53)

Relation (3.53) defines Z′ uniquely if the Runge-Kutta matrix A is invertible, which will be

assumed since now on.
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Convergence

For both approaches the y-component of the numerical solution can be interpreted as the nu-

merical result for the ordinary differential equation (3.46). Therefore the following result al-

ways hold

yn − y(xn) = O(ℎp) (3.54)

where yn is the exact solution, y(xn) is the approximated solution by a Runge-Kutta method

and p is the classical order of the Runge-Kutta method. The same convergence result is also

obtained for the z-component in the equivalent ODE approach, because zn−z(xn) = G(yn)−

G(y(xn)) = O(ℎp).

For the convergence of the z-component in the direct approach, the condition C(q), defined

in as the algebraic condition (3.25), becomes important. The limit of the stability function as

tends to∞ plays a decisive role for differential algebraic equations. For invertible A it is given

by

R(∞) = 1− bTA−1e (3.55)

The following theorem’s respective probe can be found in [4].

Theorem 3.1 (Hairer et al.). Suppose that the condition (3.45) holds in a neighborhood of the

solution (y(x), z(x)) of system (3.44), and that that the initial values are consistent. Consider

the Runge Kutta method defined by formulas (3.47) and (3.48) of classical order p, satisfying

C(q), with p ≥ q + 1 and having invertible coefficient matrix A

1. If bi =asi for all i, the the global error for the z-component satisfies for xn = nℎ ≤

Const

zn − z(xn) = O(ℎp)

2. If −1 ≤ R(∞) < 1 then

zn − z(xn) = O(ℎq+1)

3. Ir R(∞) = 1 then

zn − z(xn) = O(ℎq)

4. If ∣R(∞)∣ > 1 then the numerical solution diverges.
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3.3 Implementable Implicit Runge-Kutta Methods

The implicit nature of the this methods, requires the solution of an algebraic system for every

step. For an s-stage method applied to an N -dimensional problem (N is the sum of algebraic

and differential states for DAEs), there are sN unknowns to evaluate and these satisfies sN

equations. If f and therefore g are nonlinear, then the large system of equations to be solved

is non-linear. However there are linear parts of it, and it may be possible to exploit this in the

numerical solution.

A typical simplification to the solution of this kind of systems is to use the simplified newton

approach. The application of a Runge-Kutta method to an index one semi-explicit DAE with

N differential states and M algebraic estates, leads to the non linear system:

Y − es ⊗ yn − ℎ(A⊗ IN)f(Y,Z) = 0 (3.56)

g(Y,Z) = 0 (3.57)

If

⎛⎝ Y − es ⊗ yn
Z− es ⊗ zn

⎞⎠ is substituted by Γ =

⎛⎝ Γ1

Γ2

⎞⎠ then the jacobian of the system at Γ = 0

is

⎛⎝ (Is ⊗ IN )− ℎA⊗ fy −ℎA⊗ fz
Is ⊗ gy Is ⊗ gz

⎞⎠ (3.58)

which leads to the newton iteration

⎛⎝ (Is ⊗ IN )− ℎA⊗ fy −ℎA⊗ fz
Is ⊗ gy Is ⊗ gz

⎞⎠ΔΓ =

⎛⎝ −Γ1 + ℎ(A⊗ IN )f(Γ)

−g(Γ)

⎞⎠ (3.59)

with

Γk+1 = Γk + ΔΓ (3.60)

The cost measured solely in terms of linear algebra costs, divides into two components. First,

the factorization o the jacobian carried from time to time in the computation costs a small
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multiple of of s3(N + M)3 floating point operations. Secondly the back substitution for the

solution of equation (3.59) costs a small multiple of s2(N +M)2.

Implementable Runge-Kutta aim to lower the factors s3 in the occasional part of the cost and

to lower the factors s2 in the per iteration parts of the cost.

3.3.1 Diagonally Implicit Runge-Kutta Methods

Becuase the cost in evaluating the stages in a fully implicit Runge-Kutta method, Alexander

[86] developed the Diagonally Implicit Runge-Kutta methods or DIRK. For this methods A has

a lower triangular structure with equal elements on the diagonal, the computational advantage

of this methods is that the stage can be evaluated sequentially rather than as one big implicit

system.

Results of the implementation of this methods to singulary perturbed problems and the de-

velopment of diagonally singly implicit methods with explicit first stage, were treated in [87]

with very interesting results, also important numerical analysis results were published on about

“DIRK” methods on [88], this methods use the embedded Runge-Kutta approach for error es-

timations, which is not the case in the RadauIIA implemented in the code Radau5 by Hairer et

al. [4, 80, 84, 85]

3.3.2 Singly Implicit Runge-Kutta Methods

For large dimensional systems LU decomposition and backsubstitution have big computational

costs2. In order to overcome this difficulties, Butcher [89] proposed to reduce the computa-

tional cost by using the jordan canonical form of A instead of A in the newton iteration. That

is for any A matrix, there exists a nonsingular matrix T such that T−1AT = Ā. Because

of this transformation called “Butcher transformation” the operations for the LU factorization

will become proportional to dN3, being d the number of distinct eigenvalues of A, and the

operations of the back substitution are reduced to sN2 [79, 81, 90].

From this point of view it is clear to see that the biggest reduction in the computational costs

occurs when the coefficient matrix A has one point spectrum. The factorization cost will then

reduce to N3. Method with this property are called “SIRK” (singly-implicit Runge-Kutta)
2Once simplified newton approach is used the major cost is not the evaluation of the jacobian but its LU decom-

position and the solution of linear system in the newton iteration
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methods.

”SIRK” Linear Transformations

First transformation to reduce the number of operations in LU decomposition was T−1AT =

Ā which applied to DAEs gives

⎛⎝ (Is ⊗ IN )− ℎĀ⊗ fy −ℎĀ⊗ fz
Is ⊗ gy Is ⊗ gz

⎞⎠ΔΓ̄ =

⎛⎝ −Γ̄1 + ℎ(Ā⊗ IN )F̄

−Ḡ

⎞⎠ (3.61)

where

ΔΓ =

⎛⎝ (T⊗ IN )ΔΓ̄1

(T⊗ IM )ΔΓ̄2

⎞⎠ (3.62)

Γ̄1 = (T−1 ⊗ IN )Γ1 (3.63)

F̄ = (T−1 ⊗ IN )F (3.64)

Ḡ = (T−1 ⊗ IM )G (3.65)

Transformation matrix T causes high operation cost and it has to be made into a lower trian-

gular matrix by the transformation T = UL this implies

U−1AU = Â (3.66)

With this the new newton iteration is:

⎛⎝ (Is ⊗ IN )− ℎÂ⊗ fy −ℎÂ⊗ fz
Is ⊗ gy Is ⊗ gz

⎞⎠ΔΓ̂ =

⎛⎝ −Γ̄1 + ℎ(Â⊗ IN )F̂

−Ĝ

⎞⎠ (3.67)

where

ΔΓ =

⎛⎝ (U⊗ IN )ΔΓ̂1

(U⊗ IM )ΔΓ̂2

⎞⎠ (3.68)

Γ̂1 = (U−1 ⊗ IN )Γ1 (3.69)

F̂ = (U−1 ⊗ IN )F (3.70)

Ĝ = (U−1 ⊗ IM )G (3.71)
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Where Â is a lower triangular matrix with one single diagonal element.

Making M = �Â−1, and multiplying equation (3.67) by M gives

⎛⎝ (M⊗ IN )− ℎ�(Is ⊗ fy) −ℎ�Is ⊗ fz
Is ⊗ gy Is ⊗ gz

⎞⎠ΔΓ̂ =

⎛⎝ −Γ̃1 + ℎ�(Is ⊗ IN )F̂

−Ĝ

⎞⎠ (3.72)

where

Γ̃1 = (M⊗ IN )Γ̂1 (3.73)

(3.74)

3.4 Efective Order Singly Implicit Runge Kutta Methods

SIRK with s ≥ 3 possess the undesirable property that some of their abscissae, because of

the A-stability requirement, lie outside the integration inteval. One solution to this problem

was to use extra stages, but this add implementation disadvantages, instead of this Butcher

and Chartier [91] applied a concept used to overcome the well known butcher barrier called

effective order and they created effective order SIRK. by adopting the more general defini-

tion of order, “efective order”, these new methods allow more freedom in the choice of their

parameters without loosing the high stage order property.

3.4.1 Effective Order

In order to overcome the famous difficulty shown in the following theorem, Butcher introduced

“effective order”

Theorem 3.2. When s ≥ 5, no s-stage explicit Runge-Kutta method can attain order s.

This is the well-known “Butcher barrier” . With the aid of th is new interpretation of order,

Butcher was able to construct 5-stage explicit Runge-Kutta methods which were of order 5. In

that design, two different 5-stage explicit Runge-Kutta methods of order 3 are used to integrate

the first step and the final step respectively, and a 5-stage explicit method of order 4 is used to

integrate the remaining n − 2 steps (if total integration steps are n). It turns out that after this

combination, the final output numerical solution will be of order 5. [81]
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When any Order p numerical method is used to integrate a differential equation y′(x) =

f(y(x)) the local error is

y(xn)− yn = O(ℎp+1) (3.75)

If the function �(y(xn−1)) is used to represent the numerical solution obtained using a method

after the first step then the above equation can be written as

y(xn−1 + ℎ)− �(y(xn−1)) = O(ℎp+1) (3.76)

Similarly if  and � are assumed as the mappings associated with a starting method and an

effective order p method respectively, then from the definition of effective order:

y(xn−1 + ℎ)−  −1(�( (y(xn−1))) = O(ℎp+1) (3.77)

this leads to the following definition,

Definition 3.4. A method is said to have effective order p at xn, if it satisfies

 (y(xn−1 + ℎ))− �( (y(xn−1))) (3.78)

where  and � are the mappings associated with the starting method and the method itself.

Figure 3.4: Effective order method � and the starting method  

From this definition the “exact solution” at xn for an effective order method � can be treated

as the perturbation using the starting method  at xn. this is illustrated on figure 3.4.

Any effective order integration has to have an stating method for the first and the last steps and

an effective order method which integrates the n − 2 steps, if n is the number of steps in the

integration.
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Figure 3.5: Integration procedure for effective order methods

3.4.2 Effective order of Runge-Kutta methods

The classical order SIRK methods have restrictions in their abscissae because they are col-

location methods, collocation method’s abscissae is restricted to be formed from Laguerre’s

polynomials zeros [79, 81], for which the L-stability requirement dictates that the some values

of theabscissae ci would lie outside the integration interval.“Effective order” definition frees

the abscissae from its restriction by defining the expansion of the exact solution  (y(xn−1))

around xn−1 as a weighted Taylor series

y(xn−1) + �1ℎy(xn−1) + �2ℎy
′′(xn−1) + . . .+ �sℎy

(s)(xn−1) (3.79)

Hence, s free parameters are introduced. With this s parameters, the abscissae ci can be chosen

freely as long they are distinct. For conviniece the following notation is given

Bs,ℎ(�, y(xn−1)) = y(xn−1)+�1ℎy(xn−1)+�2ℎy
′′(xn−1)+ . . .+�sℎy

(s)(xn−1) (3.80)

where y(xn−1) is the exact solution at the n-th step and� = [�1, �2, . . . , �s]
T ∈ ℝs. Bs,ℎ(�, y(xn−1))

will be called the “Butchered Solution”. The definition of a SIRK method which has effective

order s can now be given.

Definition 3.5. An s-stage SIRK method is said to have effective order s at xn−1 if it satisfies

Bs,ℎ(�, y(xn−1))− �(Bs,ℎ(�, y(xn−1))) = O(ℎs+1) (3.81)

where � is the associated mapping of the method.

the procedure to obtain effective order singly implicit methods or ESIRK from a chosen ab-

scissae vector c can be found in chapter 4 of [81], with its respective deduction.
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3.4.3 Variable stepsize for ESIRK methods and their stability

Stepsize selection is crucial to the starting method and the method itself, not only for conver-

gence reasons but for precision. Many integration problems require variable stepsize because

the numerical behavior change along the integration region, the error will change with it, aug-

menting the local error and affecting the error propagation. However representative difficulties

arise when variable stepsize is used for effective order methods.

When definition 3.5 is interpreted, it is taken for granted that the same stepsize ℎ is used for

1. The perturbation of the incoming approximation Bs,ℎ(�, y(xn−1)).

2. the step represented by �ℎ.

3. the stepsize expected in the following step.

In order to have a new stepsize (say rℎ) the ESIRK method need to be built to have an ap-

proximation of the butchered solution Bs,rℎ(�, y(xn−1 + ℎ)) so the step size can be changed

repitedly, this is achieved by the derivation of a new vector b as a function of the stepsize

changing ratio r. the deduction and procedure to achieve this in a ESIRK is given in [81].

The final result is a ESIRK in function of the stepsize changing ratio, this affects the stability

of the method under successive stepsize changes, this is mainly because the stability function

of a Runge-Kutta method always depends on b, then a stability function depending on r and z

must be derived in order to study the stability of the method

Theorem 3.3 (Chen and Butcher). For an s stage ESIRK method, if the stepsize for the present

step and the next step are ℎ and rℎ respectively, then the stability function R̂(z, r) for the step

is

R̂(z, r) =
P (z, r)

(1− �z)s
(3.82)

where

P (z, r) =
(1− �z)s exp z�(rz)

�(z)
+O(zs+1) (3.83)

and

�(z) = 1 + �1z + �2z
2 + . . .+ �sz

s (3.84)
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moreover, as the step changing occurs in two successive steps the stability function is

R̂2(z, r) = R̂(z, r)R̂(rz),
1

r
) =

P (z, r)

(1− �z)s
P (rz, 1r )

(1− �z)s
(3.85)

Applying the E-polynomial criteria, Chen [81] investigated the stability A stability of several

abscissae vectors some of its result are listed in the following table:

Table 3.1: r-intervals for A-stability of ESIRK

s Abscissae r-interval

2 [3− 2
√

2, 1](SIRK) (0,∞)

2 [0, 1] [.355047, 2.81653]

2 [7−4
√
2

3 , 1] [0.235576, 4.24431]

3 [2.7415165, 0.1812222, 1](SIRK) (0,∞)

3 [0, 12 , 1] [0.444787, 2.24827]

3 [0, 15 , 1] [0.559114, 1.78855]

4 [0, 13 ,
2
3 , 1] [0.368532, 2.71347]

4 [−1, 0, 0.5, 1] [0.378442, 2.64472]

5 [0, 14 ,
1
2 ,

3
4 , 1] [0.707239, 1.41395]

5 [−1,−0.5− 0, 0.5, 1] [0.788534, 1.26818]

Graphical representations of the domains of stability for s = 3, c = [0, 12 , 1] and s = 4, c =

[0, 13 ,
2
3 , 1] can be seen on figure 3.6.

3.5 Implementation of ESIRK for DAEs

3.5.1 Error estimation

Error estimation is crucial for practical pourpuses. The concept of Richardson deferred ap-

proach to the limit can be used to estimate the local truncation error of any integration method

but, specially for Implicit Runge-Kutta methods this is numericaly costly. Another very com-

mon way of error estimation is called “embedding”, this error estimation used on Runge-Kutta

methods consist in build another method (A, b̄T , c) of order one higher, say p+1, if the original

method (A, bT , c) has order p, then the solutions obtained by the order p + 1 and p are ȳn and
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Figure 3.6: s = 3 and s = 4 ESIRK Stability Domains

yn respectively then the local truncation error can be deducted as follows:

y(xn)− yn = � +O(ℎp+2) (3.86)

y(xn)− ȳn = O(ℎp+2) (3.87)

(3.88)

therefore the local error � can be estimated by

� = ȳn − yn +O(ℎp+2) = ℎ(b̄T − bT )Y′ (3.89)

Although DIRK or semi-implicit methods are built under “embedding” strategy, there is no

need for this approach or for Richardson extrapolation in ESIRK methods, it is because it has

the advantage that the stage order is equal to the number of stages that Nordsieck vector can be

used for the purpose of estimating the local truncation error. Nordsiek vector can be approx-

imated as follows form the previous stage derivatives form the n − 1 step of the integration
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ℎF [n−1] = (W ⊗ In)� [n−1] +O(ℎs+1) (3.90)

where

W =

⎛⎜⎜⎜⎜⎜⎜⎝
1 c1

c21
2 ⋅ ⋅ ⋅ cs−1

1
(s−1)!

1 c1
c21
2 ⋅ ⋅ ⋅ cs−1

1
(s−1)!

...
...

...
. . .

...

1 cs
c2s
2 ⋅ ⋅ ⋅ cs−1

s
(s−1)!

⎞⎟⎟⎟⎟⎟⎟⎠ (3.91)

Nordsieck vector is

� [n−1] =

⎡⎢⎢⎢⎢⎢⎢⎣
ℎy′(xn−1)

ℎ2y′′(xn−1)
...

ℎsy(s)(xn−1)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.92)

and

ℎF =

⎡⎢⎢⎢⎢⎢⎢⎣
ℎf(Y1)

ℎf(Y2)
...

ℎf(Ys)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.93)

This and the C(s) condition allows the construction of the following error estimator

ℎs+1y(s+1) = eTs+1(Ŵ ⊗ In)ℎF̂ [n−1] (3.94)

where

Ŵ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ci − 1 (ci−1)2
2 ⋅ ⋅ ⋅ (ci−1)s

s!

1 c1
c21
2 ⋅ ⋅ ⋅ cs1

s)!

1 c1
c21
2 ⋅ ⋅ ⋅ cs1

s!
...

...
...

. . .
...

1 cs
c2s
2 ⋅ ⋅ ⋅ css

s!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.95)
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s C

2 0.04044011451988

3 0.02589708465063

4 0.02725898678972

5 0.00053004823515

6 0.00034135121283

8 0.00000268206244

Table 3.2: Absolute value of error constant for ESIRK methods

and ℎF̂ [n−1] = [ℎf(Y
[n−2]
i , Z

[n−2]
i ), ℎf(Y

[n−1]
1 , Z

[n−1]
1 ), ℎf(Y

[n−1]
2 , Z

[n−1]
2 ), . . . , ℎf(Y

[n−1]
s , Z

[n−1]
s )].

So it is possible to approximate the truncation error ℎs+1y(s+1) as long as ci − 1 ∕= cj , ∀j

This local error estimation is only good if the stepsize hasn’t changed in two consecutive steps,

which is restrictive for a variable stepsize method, thats why using

ℎsy(s)(xn)− ℎsy(s)(xn−1) = ℎs+1y(s+1)(xn) +O(ℎs+2) (3.96)

yields to the following theorem

Theorem 3.4. For an s-stage ESIRK method with distinct abscissae c1, c2, . . . , cs, suppose �1

and �2 satisfy

�1 =

(
ℎ

r

)s
y(s)(xn−2) +O(ℎs+1), �2 = ℎsy(s)(xn−1) +O(ℎs+1) (3.97)

where r is defined as the stepsize change ratio r = ℎnew
ℎold

. then the principal local truncation

error is given by

Cℎs+1ys+1(xn) = C
sr

s+ (r − 1)
∑s

i=1 ci
(�2 − rs�1) +O(ℎs+2) (3.98)

and C is the associated error constant.

�1 and �2 have the form
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�1 =
s∑
i=1

ℎ

r
dif(Y

[n−2]
i , Z

[n−2]
i ) (3.99)

�2 =
s∑
i=1

ℎdif(Y
[n−1]
i , Z

[n−1]
i ) (3.100)

and d can be estimated using

d = eTs W−1 (3.101)

where eTs = [0, 0, . . . , 1]s and W is the modified Vandermond matrix.

3.5.2 Newton Iterations Convergence

When solving then nonlinear algebraic equations for Implicit Runge-Kutta methods, a good

question to make is, When to stop the Newton iterations and accept the approximations of

the iterations?. The way this question is answered affects greatly the efficient of a numer-

ical implementation. It is hoped to obtain an expected accuracy in the solution at the low-

est computational cost. This criteria has been studied widely as long with the stepsize con-

trol [79, 80, 92–95].

Suppose T [n] is the n-th Newton update during the iteration in a certain step, then the quantity

Θ[n] =

∥∥T [n+1] − T [n]
∥∥∥∥T [n] − T [n−1]
∥∥ (3.102)

is the convergence rate. If Θ[n] > 1, the iteration is not contracting and the iteration should

be terminated. If � is the expected error bound and its related to the desired accuracy � in the

solution, then the test for stopping the iteration is given by

Θ

1−Θ

∥∥∥T [n+1] − T [n]
∥∥∥ ≤ � (3.103)

In general if the user defined tolerance tol = �, then � = 0.1 �. For stiff problems relative

tolerance rtol and absolute tolerance atol are recommended to be used as follows

Θ

1−Θ

∥∥∥T [n+1] − T [n]
∥∥∥ ≤ 0.1

(
atol + max

i
(∥yi∥)rtol

)
(3.104)

where yi denotes the i-th component of the numerical solution.
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3.5.3 Estimation of the next stepsize

For robustness, a stepsize controller has to respond as smoothly as possible to abrupt changes in

behavior. This means that the stepsize should not decrease or increase from one step to the next

by an excessive ratio. Also, if the user-specified tolerance, given as a bound on the norm of the

local truncation error estimate, is ever exceeded, recomputation and loss of performance will

result. Hence, to guard against this as much as possible, a “safety factor” is usually introduced

into the computation. If ℎ is the estimated stepsize to give a predicted truncation error equal to

the tolerance, then some smaller value, such as 0.9 ℎ, is typically used instead. Combining all

these ideas, we can give a formula for arriving at a factor r, to give a new stepsize rh, following

a step for which the error estimate is est. The tolerance is written as tol, and it is assumed that

this previous step has been accepted. The ratio r is given by [79]

r = max

(
�,min

(
�, fac

(
tol

∥err∥

)1/(s+1)
))

(3.105)

where � and � are design factors associated with the A-stability domain of the ESIRK method,

and fac is a safety factor.

3.6 Conclusions

By using the general definition of order “effective order” Butcher et al achieved to develop

A-stable and numerically implementable Runge-Kutta methods that are perfect for integrating

extremely stiff ODEs and DAEs up to differential order 2, because of its high stage order

this methods deal with the order reduction in both ODEs and DAEs. The great problem with

effective order methods comes when variable stepsize schemes are applied to it, this affects the

error estimation and also the method itself, Butcher tableaus for constant and variable stepsize

were derived using procedures in [81] and the can be found in Appendix B.
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Chapter 4

Numerical Experiments and

Bioreactor-Extractor Simulation

4.1 Preliminary Numerical Experiments

To test the accuracy and efficiency of the ESIRK implementation for DAEs, Two main test

subjects were analyzed to see the behavior of the integrator on Index 1 semi-implicit DAE

systems, this are the well known pendulum equation and the residue curve map, which is a

direct application of physical equilibrium manifold restricted systems, used to describe ideal

operations on chemical engineering.

4.1.1 The Pendulum

The simplest constrained mechanical system is the pendulum. The equations of motion of a

point-mass m suspended at a massless rod of length l under the influence of a gravity g in

cartesian coordinates (p, q) are

ṗ = u (4.1)

q̇ = v (4.2)

mu̇ = −p� (4.3)

mv̇ = −q�− g (4.4)

0 = p2 + q2 − l2 (4.5)

where (u, v) is the velocity and � is the rod tension. This formulations is an index 3 DAE. Its
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reduction to index one can be found in [4], and consist on replacing the equation (4.5) by

0 = m(u2 + v2)− gq − l2� (4.6)

Numerical Simulations

Several successful numerical simulations were carried on for the pendulum differential index

one DAE system, ESIRK methods of order 2,3,4 and 5 were used. The only restriction of

this ESIRK methods was the value of ℎ = 0.01 as the maximum stepize where the simplified

newton algorithm and regular newton algorithm were convergent.

Figure 4.1: Numerical Simulation of the pendulum using ESIRK of order 5 with ℎ = 0.01
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Figure 4.2: Numerical Simulation of the pendulum using ESIRK of order 3 with ℎ = 0.01

Local Error Estimates in dependence of ℎ

A good way to evaluate a numerical integration algorithm is to plot the behavior of the local

error in dependence of ℎ, here the maximum local error of 100 integration steps was plotted

against the step of integration ℎ.

Figure 4.3: Maximum Truncation Error Behavior along 100 integration steps with different

stepsizes ℎ
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Figure 4.4: Maximum Truncation Error Behavior along 100 integration steps with different

stepsizes ℎ

4.1.2 Residue Curve Map

Figure 4.5: Residue curve map experimental set up

Residue curve maps are useful to know in advance to any kind of design the separation feasi-

bility of a certain given mixture by distillation. Figure 4.5, Shows the residue curve map main

idea. First it can be seen a heated vessel with mixture of some liquid components, total moles

in the vessel are W (t). As it is heated, the mixture evaporates, the vapor stream D(t) goes to

a Condenser and is turned again into liquid.Note than W (t) is in molar units, and D(t) is in
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mole/time units.

The molar percent of a liquid component will be noted as x with subscript i for an specific

component of the mixture with c number of components, the molar percent of a vapor com-

ponent will be noted as y with subscript i for an specific component,of a vapor mixture with

c number of components. In order to obtain the Residue Curve DAE system is necessary to

perform the material balance:

Global Material Balance

dW (t)

dt
= −D(t) (4.7)

This means that the evaporation rate (dW (t)
dt ) of the whole liquid mixture in a time t is equal to

the evaporation stream (D(t)) in a time t. The negative sign means that the total mass of the

liquid mixture is decreasing in the vessel.

i− tℎ component Material Balance

d (W (t) ⋅ xi(t))
dt

= −D(t) ⋅ yi(t) (4.8)

This means that the evaporation rate (d(W (t)⋅xi(t))
dt ) in a time t of a component i is equal to the

evaporated stream (D(t) ⋅ yi(t)) of the same component in a time t. The negative sign mean

that component i in the liquid mixture is leaving the vessel in form of vapor.

Expanding the evaporation rate component mass balance leads to:

dW (t)

dt
xi(t) +

dxi(t)

dt
W = −D(t) ⋅ yi(t) (4.9)

Replacing (4.7) into (4.9) gives

W (t)

dt
xi(t) +

dxi(t)

dt
W =

dW (t)

dt
⋅ yi(t) (4.10)

Canceling dt at both sides and reordering

dxi(t) =
dW (t)

W
⋅ yi(t)−

dW (t)

W
⋅ xi(t) (4.11)
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replacing −dW (t)
W of (4.11) by −dln(W (t) = d� leads to the residue curve DAEs:

dxi(�)

d�
= xi(�)− yi(�) (4.12)

This system is very useful in conceptual design of distillation towers because it is an idealiza-

tion of a distillation column, and is possible based on its analysis to determine without much

effort if a separation of a mixture by distillation is feasible [44]. As it can be seen there’s

no chemical reaction, and the algebraic constraints are not explicit yet. To make the alge-

braic constrains explicit is necessary to establish the thermodynamical relationship between

the composition of a boiling liquid mixture component (xi(�)) with its vapor composition:

xi ⋅ i(x, T ) ⋅ PSATi (T ) = yi ⋅ �i(y, t, P ) ⋅ P (4.13)

where PSATi (T ),i and �i are the saturation pressure, activity and fugacity coefficients of

the component i respectively, which are strong nonlinear functions of y, x, T and P which

are the vapor composition vector y = [y1, y2, . . . , yn]T , the liquid composition vector x =

[x1, x2, . . . , xn]T , the temperature and the pressure of the thermodynamic system.

� and  computation is not a trivial step, this functions are intricate and there is no explicit

solution for them.

Finally adding the thermodynamical equilibrium manifolds restriction and the percentage re-

strictions the DAE system for a c component mixture that only behaves as what is know as

vapor liquid equilibrium, the following index one DAE is obtained

dxi(�)

d�
= xi(�)− yi(�) (4.14)

xi(�) ⋅ i(x, T ) ⋅ PSATi (T )− yi(�) ⋅ �i(y, T, P ) ⋅ P = 0 (4.15)
c∑
i=1

xi(�)−
c∑
i=1

yi(�) = 0 (4.16)

1−
c∑
i=1

xi(�) = 0 (4.17)
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Numerical Simulation

For the integration of residue curve map equations, a well known study case has been selected,

this is the Ethanol-Isobutylene-ETBE distillation [40, 45], where the Unifac Dortmund Ac-

tivity Coefficient Model [72] and the PSRK model with adjusted � constants was chosen to

be simple and accurate enough to predict the tricky vapor liquid equilibrium of this ternary

thermodynamic system.

Figure 4.6: Numerical simulation of residue curve DAEs with ESIRK of order 2

Figure 4.7: Numerical simulation of residue curve DAEs with ESIRK of order 4
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Local Error Estimates in dependence of ℎ

Also local error estimates in dependence of different ℎ were calculated for the residue curve

map problem, with excellent results.

Figure 4.8: Maximum Truncation Error Behavior along 100 integration steps with different

stepsizes ℎ

Figure 4.9: Maximum Truncation Error Behavior along 100 integration steps with different

stepsizes ℎ
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4.2 Bioreactor Extractor Simulation

The bioreactor-extractor DAE system is more complicated to simulate than the previous ex-

amples, its differential index is two, this mean as stated in [4, 80] that the convergence of the

simplified newton iteration will be slower and the restrictive ℎ will randomly be under the re-

strictive value (0.01). The main advantage of ESIRK methods on the integration of DAEs of

order at least two, is that the stage order is equal to the order of the method, this overcome the

conventional Runge-Kutta order reduction for the algebraic and differential components of the

DAE.

The selected parameters chosen for the numerical simulation were N0 = 120mol/day, NT =

100 mo, and the feed parameter R = xMeOH/xTrig was varied between 1 and 4.

Figure 4.10: Simulation of the Bioreactor-Extractor under different feed ratios R

The simulations were carried on with a constant stepsize of ℎ = 0.01, and local errors were

about the order of 1E − 6. The sparsity pattern of both, the jacobian and its inverse on the

newton iteration of the ESIRK method applied to this system in particular can be seen on

Figures 4.12 and 4.13 respectively.

Local Error Estimates in dependence of ℎ

Local error estimates of the ESIRK methods of different orders were calculated in dependence

of the stepsize ℎ (Figures 4.14 and 4.15), although the resulting truncation errors were not as

low as with the index one systems of the pendulum and the residue curve maps, the always
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Figure 4.11: Phase plots of the simulations in Figure 4.10

decreasing tendency of the error as ℎ decreases is good enough to show the ESIRK methods

are appropriate for high accuracy integration of differential index two DAEs.
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Figure 4.12: Sparsity pattern of the jacobian in the newton iteration

Figure 4.13: Sparsity pattern of the inverse of the jacobian in the newton iteration
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Figure 4.14: Local error estimtes in dependence of ℎ for 500 integration steps

Figure 4.15: Local error estimtes in dependence of ℎ for 500 integration steps
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4.3 Conclusions

Although the restrictive stepsize of ℎ = 0.01 is a difficulty to be solved in the future, ESIRK

methods are really superior to conventional Implicit Runge-Kutta methods as RadauIIA, this

can be deducted by the simple observation of Figure 4.16, where local error estimates in de-

pendence of ℎ for different pairs of methods were plotted.

Comparing the local errors achieved by ESIRK methods of orders 2,3,4 and 5 in common

differential algebraic problems with the same errors reported in [4] for common implicit Runge-

Kutta methods applied to the pendulum equation (Figure 4.16), many advantages can be seen:

∙ Higher Accuracy

∙ Monotonic decreasing error as stepsize ℎ decreases

∙ Error behavior stability

∙ Lower cost on the Jacobian inversion, which for some problems compensates the restric-

tive stepsize ℎ = 0.01 with the accuracy gained in comparison with traditional implicit

Runge-Kutta schemes

∙ No order reduction due to the high stage order

∙ No need for an embedded Runge-Kutta scheme for error estimation

∙ Implementability

The main advantage for the bioreactor-extractor is accuracy. ESIRK methods are capable to

integrate DAEs to order up to 2 with as much accuracy as needed, the high stage order guar-

antees high orders of convergence in the simplified newton iteration [4] and no order reduction

for the error on algebraic and differential variables [80, 81].

Conventions for Figure 4.16

□ Radau IIA (s = 2) and Radau IIA (s = 3)

+ SDIRK (see [88] for examples ) and Radau IIA (s = 3)

× Lobatto IIIC (s = 2) and Lobatto IIIC (s = 3)
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Figure 4.16: Local Error estimates in dependence of ℎ from [4]
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Chapter 5

Bioreactor-Extractor Analysis

...beware of mathematicians, and all those who make empty prophecies.

The danger already exists that the mathematicians have made a covenant

with the devil to darken the spirit and to confine man in the bonds of Hell.

Saint Augustine, De Genesi ad Litteram

5.1 Bioreactor Start Dynamics

The most important parameter to vary during the Bioreactor start is the relation of Reactants,

noted as R = xMeOH
xTrig

. Twelve simulation were done to determine a good reactants relation R,

results can be seen on Figure 5.1 where the behavior of the reactants during the start phase was

plotted for a time of 24 hours.

The most efficient starting R is 3, as it can be seen in the Figures 5.1 and 5.2, where almost

all the reactants were consumed in less than 10 hours, giving the best conversion. From this

simple analysis of the bioreactor extractor in the starting stage, derived from its simulation, the

best theoretical reactant relation R has been selected.

5.1.1 Starting time

The determination of a good starting time for the bioreactor-extractor is important due to the

possibility of reaching operation mode faster. A practical criteria to choose a good switching

time is the change percent of the molar composition along time, if a threshold is selected to

be the minimum change percent allowed during a period of time for the reactor to continue

operating on batch mode, then a good switching time estimate can be selected to ensure a good

reactants conversion along time.

It can be seen that the starting time should be less than 12 hours, after 12 hours of batch
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Figure 5.1: Start Dynamic behavior of the bioreactor varying parameter R

operation the percent of change in the biodiesel concentration is less than 5 % (Figure 5.3),

also after 6 hours of operation no change over 10% in the biodiesel concentration is achieved,

from there the changes in the Trilinolein conversion become less significative (i.e. a conversion

of 10% is achieved after an hour of operation, after 6 hours to achive a change from 37.95% to

46.63% 3 hours are needed, see Figure 5.4). Using a threshold of 10% of change per hour in

biodiesel production a reasonable switching time for the biorreactor extractor is 6 hours.

5.1.2 Bioreactor start and operational behavior

Figure5.5 shows how the reactor extractor behaves when it is switched from batch to operation

(continue) mode. After the reactor is switched form batch (starting) to operation mode, it can

be noted a drastic acceleration in the reaction rate that leads the bioreactor toward a steady

state relatively fast, the stable steady state reached is a high conversion steady state, where the

degree of separation between glycerol and FAME (biodiesel) is almost complete.

This result shows the feasibility of the continuous reaction-extraction technology, and the utility

of shortcut methods and its dynamic extension to foresee the stability of a new process.
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Figure 5.2: Batch Bioreactor phase plot varying the paramter R

Figure 5.3: Percent of change of the biodiesel molar composition and reactive along time
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Figure 5.4: Conversion of Triolein for the batch operation stage

Figure 5.5: Biorreactor Start and operation mode switch at 6 hours

5.2 Biorreactor’s Parametric Space Exploration

Bifurcation of differential-algebraic equations is a new field of study in mathematics, theres a

general lack of articles, books and software dedicated to this new topic. This has difficulted

the analysis of the bioreactor-extractor system, limiting its continuation and bifurcation search

drastically, as the software and algorithms used to detect bifurcations tend to take into account

the eigenvalues associated to algebraic states of the system. Singular perturbation theory was

also discarded for this analysis as bifurcations were inducted by the variation of the singular

perturbation parameter affecting the result and generating doubts about the real meaning of this
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Figure 5.6: Bifurcation Diagram of the four differential states varying the parameter R

kind of bifurcations on an engineering analysis.

Therefore the bifurcation and stability analysis of this system was carried on using the implicit

function theorem and basic numerical procedures based on newton and newton-like algorithms

to infer the real stability of the three differential variables.

5.2.1 One Parameter Bifurcation Analisys

For the codimension one bifurcation analysis two independent design parameters were selected

in order to obtain physically significant bifurcations, this parameters were the relation of reac-

tives at the inlet of the reactor (R) and the reactor dilution rate (D = N0

NT ) which are decisive

control and design parameters.

Behavior under variations on Parameter R

Figure 5.6 show the behavior of the four differential sates as the parameter R is varied and D

is fixed at 1.2. It is possible to observe the appearance of a Saddle-Node bifurcation joining

the stable and the unstable equilibrium points of the bioreactor-extractor, this means that under

normal reactions conditions the variation of R is possible in wide ranges, but operation of

the reactor is not possible when R is under 0.011. The presence of a maximum biodiesel

concentration at R = 1.933 show that the slightest perturbation in the reactor’s feed would
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affect the production negatively, which means that a disturbance rejection control might be

necessary to ensure the reactor to be operating at as near as possible of his maximum.

Figure 5.7: Bifurcation Diagram of the four differential states varying the parameter D

Behavior under variations on Parameter D

Figure 5.7 is a less less explicit on the behavior of the reactor than Figure 5.6 but still important

conclusions cane be derived from its analysis. The Dilution rate of the reactor is another im-

portant design and control parameter that has to be taken into account, it can be associated with

the reactor sizing, valve selection and with the control during the operation of the equipment.

As a design parameter dilution rate is associated with the size of the reactor, when the dilution

rate D decreases under 0.75 no appreciable change on the biodiesel concentration is observed,

so the bioreactor sizes increases ( for a desired production) but no significant benefits are ob-

tained. As control parameter the implications are less severe because no instability could be

generated from the variation of the dilution rate, but the decrease or increase of it should cause

the decrease on the production or the decrease of the bioreactor-extractor efficiency.
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Bioreactor-Extractor’s Equilibrium Manifolds

Bioreactor-extractor’s equilibrium manifold is the space region where the bioreactor reaches

its physical and chemical equilibrium simultaneously, it differs from the physical and chemical

equilibrium manifold because it takes into account the reaction kinetics which present dynami-

cal phenomenons like inhibition and multiple stable solutions, that finally alters the equilibrium

manifold. The use of the bioreactor’s equilibrium manifold instead of the physical and chem-

ical equilibrium manifold is a more realistic way to approaching bioreactor’s design when the

mass transfer rates are faster than the reaction kinetic rates (like the present case).

Figure 5.8 shows the behavior of the equilibrium manifold as R varies between 0 and 5, the

most important characteristic that can be observed in this figure, is the Saddle-Node bifurca-

tion meaning on physical equilibrium systems. As R reaches the bifurcation value of 0.011 the

global composition values get closer to one of the phases compositions, and in the bifurcation

point they become equal, this means the bioreactor global equilibrium composition touches the

physical equilibrium manifold, no possible bioreactor operation can be achieved outside the

physical equilibrium manifold, then the Saddle-Node bifurcation can be interpreted as the low-

est R value were the reactor-extractor can operate or the point where the physical equilibrium

manifold and the bioreactor’s equilibrium manifold touch.

Bioreactor-extractor’s global compositions are always restricted to be inside the physical equi-

librium manifold, once they touch it, a bifurcation occurs due the impossibility of the bioreactor-

extractor to operate outside the physical equilibrium manifold.

5.2.2 Two Parameter Operation Curve Analysis

As no codimension two bifurcations with physical meaning where found there was no possibil-

ity to perform a significant two parameter bifurcation analysis, therefore the analysis was done

over the system’s operation surfaces which are a very good source of information for further

design and optimization.

Global, phase one and phase two compositions response surface analysis

The main phenomenon observed in this curves is the inhibition due to the methanol, as R and

the molar composition of methanol at the inlet current in the reactor rises, the inhibition of
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∗ Equilibrium global compositions, ∘ Phase one and two compositions,−Material balance lines

Figure 5.8: Two different views of the bioreactor’s equilibrium manifold generated when R

varies between 0 and 5

∗ Equilibrium global compositions, ∘ Phase one and two compositions,−Material balance lines

Figure 5.9: Bioreactor’s Equilibrium manifold generated when D varies between 0 and 5
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the enzymatic reaction mechanism is more evident, if D decreases and R increases the non

inhibition zone (see Methanol composition on Figure 5.10) becomes more narrow; the reactor

should be operated in this zone to avoid the excess of methanol in the reactors outlet which

would cause the necessity of its evaporation and also high yields of unreacted triglyceride in

the Biodiesel composition (See Figure 5.12 and Figure 5.15 where the non inhibition zone is in

white).

Due to the inhibition caused by the Methanol on the lipases, phase two outlet composition of

trilinolein would be at least 10% with methanol traces(See Figure 5.12), this will difficult the

obtention of biodiesel because an extra separation of the biodiesel and the triglyceride should

be done as post processing causing extra costs. This kind of a priori observations based on

shortcut modelling can be discarded in further steps of the design such as the rigurous model

or optimization stage, where more than one reaction and separation stage would be taken into

account.

Something important to remark is that due to the shape of the operation surfaces it is not

possible to optimize the production of biodiesel only based on the operation surfaces or com-

binations of both, but it is possible to reduce optimization space with simple analysis.

Figure 5.10: Global composition operation surface
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Figure 5.11: Phase one operation surface

Figure 5.12: Phase two operation surface
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Figure 5.13: Reaction volume operation surface

Reactor volume and Total production analysis

The Reaction volume is an important variable on the design of the bioreactor-extractor, the

volume occupied by the reaction’s phase is decisive on the bioreactor’s design. To complete a

successful design at least the reaction volume should be guaranteed to ensure the biodiesel’s

rate of production. Figure 5.13 shows how the reaction volume or phase two volume varies

as the principal design parameters (D and R) are varied between 0 and 5, reaction volume

reach its maximum a R tends to zero due to the high amount of unreacted trilinolein on the

reaction phase, so this high volumes are apparent and don’t mean that the higest biodiesel

production yields are being reached. Nevertheless the volume graph presents a constant ridge

that represents the highest achievable volume if the parameter R is kept constant. The volume

response surface can’t be interpreted directly, it has to be part of a cost minimization objective

function where the bioreactor’s biodiesel yield benefits and costs are pondered, this has to

be done in a further design step because in the conceptual design stage there is not enough

information to do a realistic estimation.

Figure 5.15 shows the low methanol composition zone (in white) overlaid with the production

isoclines. Using this Figure two study cases have been selected to show the utility of surface
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Figure 5.14: Total production surface, with production isoclines

for 20,40,60,80,100,120,140,160,180,200,220,240 mol/day of biodiesel

response analysis to obtain a desired response, the first one located in the non inhibition zone

with R = 1.5 and D = 3.22 for a production of 160 mol/day and the second one located in

the blue region of the figure with R = 3.5 and D = 4.27 for a production of 160 mol/day.

Figure 5.16 and Figure 5.17 show the operational behavior of the reactor when this this different

values of the design parameters are varied to be in an out the low methanol composition zone

with a fixed production rate.

Using Figure 5.18 and fixing the desired average of the molar compositions of methanol and

triglyceride on 0.07 the parameter values R = 2.25 and D = 0.732 are obtained to shape the

response of the reactor to the desired response than can bee seen in Figure 5.19, were the outlet

compositions of reactives were reduced as desired.

In conclusion the response curve analysis is a good way to shape the desired response of a

reactor without much computational effort, although it has big limitations it is adequate for

shortcut models and the level of detail they involve.
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Figure 5.15: Non inhibition reaction zone and production isoclines

Figure 5.16: biorreactor operational behavior when R = 1.5 and D = 3.22
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Figure 5.17: biorreactor operational behavior when R = 3.5 and D = 4.27

Figure 5.18: Average between xIImet and xIItrig isoclines
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Figure 5.19: biorreactor operational behavior when R = 2.25 and D = 0.732
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Chapter 6

Final Conclusions

6.1 About Biodiesel Production

Biofuels market is a new born opportunity for Colombia economically speaking but the lack

of solid relations between academy and industry tend to isolate the academical research in

lonely efforts that don’t have repercussions on national reality. The most evident case was

the law 693 of 2001, that benefited only the big sugar company’s and promoted the creation

of several new work vacancies (less than were promised), but the technological quota of the

national universities and even of national companies on the construction of this new process

plants was minimum. Biodiesel production is the new opportunity the country has to amend

the mistakes made in the past and create new bonds between industry and universities that will

benefit not only the industries as in the past but a complete academic community that is eager

for the opportunity of make the difference.

6.2 About Shortcut Modeling

Shortcut modeling strategies as residue curve map and finite reflux residue curve map modeling

has proven to be great tools of analysis and design, they are dynamic tools but they are used

for steady state or static design and analysis. Dynamic design takes into account important

operational factors that static design doesn’t. With the formulation of the bioreactor-extractor

shortcut design model the best qualities of both dynamic and static models were combined to

produce a much more complete model that takes into account stability and the reactor start dy-

namics but not loosing the “simplicity” of thermodynamical equilibrium and infinite efficiency

that has been used on shortcut design for years. The main idea in the formulation of dynamic
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shortcut model is to asses the possible benefits and withdraws of a new technology with the

information thats already available in the literature, this aloud the investigator or the designer

of the new equipment to accept or discard new technologies as the combined reaction and ex-

traction as the solution to specific problems, and to know in advance if this unit would have the

expected better performance than conventional technology, without having to spend enormous

amounts of time in laboratory design or rigorous modeling.

6.3 About the Bioreactor-Extractor

The combined reaction and extraction has been used in some applications mostly at pilot scale

but always with the addition of a solvent, there are not many works in the available literature

about auto inducted reaction and extraction processes, this work contributes to the state of the

art in auto inducted reaction-extraction design doing as an extension of the previous work done

in the PhD thesis of Dr. Luis Fernando Gutierrez, and adds the dynamic and stability analysis

to shortcut design.

The enzymatic production of Biodiesel has had several withdraws with the inhibition caused

by the the glycerol on enzymes, reaction-extraction technology is a solution to this problem be-

cause using the concentration field redistribution principle it concentrates the produced glycerol

in a different phase that the phase where the reaction is taking place avoiding the inhibition.

In general the use of enzymes seems like a promising technology specially if immobilized

enzymes are used, because of the high selectivity, but the lack of complete kinetics for this kind

of processes make the analysis difficult and theoretical solutions to problems like inhibition

cant be complete because the available models in the literature don’t take into account all the

inhibitions present in the reactions at the same time, further developments in the enzymatic

kinetics and enzyme technology would do the labor of shortcut modeling and design much

more precise and reliable.

In conclusion the reaction-extraction technology is appropriate to deal with the problems gen-

erated by the use of enzymes being much more suitable that the use of membranes due to the

high cost of this.
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6.4 About the Numerical Methods used in this Work

Non linear modeling and design bring new challenges to the modern engineer one of them

is that the computational solution of this problems is not as easy as it used to be for much

more simple approaches. The use of simple fixed point iterations is a common practice in the

chemical engineering world but its an archaic practice, that has proven to be slow, inefficient

and in some cases inaccurate. The numerical methods used in this work were specially selected

to overcome the archaic practice of using simple fixed points iterations and to improve this by

the use of topology and general differential-algebraic techniques developed over the past two

decades.

this work attacked several numerical problems:

Material Stability: the first successfully solved problem that made the realization of the whole

analysis possible was the creation of a new algorithm described in appendix C that allows

an easy, precise and accurate solution of one of the biggest problems in liquid-liquid cal-

culations, the material stability has been topic of research for decades and although the

algorithm developed in Appendix C is not the ultimate answer to the problem of globals

stability it give a good grade of certainty that the solution to the problem is correct but

without spending ridiculous amounts of time on numerical and global optimizations that

don’t guarantee anything.

Differential-Algebraic Equations Integration: With the first implementation of ESIRK meth-

ods for the solution of DAEs this work contributes to the state of the art in numerical

integration of DAEs with very good results. The use of ESIRK probed to be the right

choice for the integration of the index 2 differential algebraic equation derived from the

modeling of the reactor-extractor, this become more evident when Matlab’s algorithms

failed to integrate successfully this DAE system in several occasions. ESIRK proved to

be superior to existing DAE integration algorithms due to its high order stage and the

effective order concept that made this algorithm a perfect choice for high accuracy.

Numerical Continuation and Bifurcation Search: This work evidenced the lack of avail-

able software and literature about differential-algebraic equation’s bifurcations, as con-

ventional software as Matcont proved to be ineffective to predict the bifurcation of the
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differential variables in the DAE systems due to the bifurcations inducted by single per-

turbation theory, the implementation of a continuation algorithm and implicit function

theorem newton based Matlab routines to establish the real stability of the system was

necessary and it proved to be effective in the analysis. Still DAE Bifurcation is a new

born field of investigation and there are many questions that this work was unable to

answer.
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Appendix A

Brief Review of the most used Activity

Coefficient Models

As discussed in Chapter 2 in page 35, to predict the activity coefficient of a compound in a

mixture, an excess Gibbs Free energy model must be formulated based on thermodynamical

principles. Some of the most used models where studied, in order to select the best and most

versatile theory to correctly model qualitatively phase behavior and reduce the quantitative

error to the minimum possible.

The Activity coefficient is an excess property so it has to satisfy the Gibbs-Duhem Equation,

therefore any excess model can be formulated meanwhile it satisfies it for N being the number

of compounds in the liquid mixture:(
N∑
i=1

xid ln(i)

)
P,T

(A.1)

A.1 Wilson’s Activity Coefficient Model

Wilson in 1964 [150], brought the first major contribution in the field of modem liquid activity

models by developing the local composition concept. This is related to the segregation caused

by different interaction energies between pairs of molecules. Thus, the probability of finding a

species 1 surrounded by molecules of species 2, relative to the probability of being surrounded

by the same species 1, is given by the expression:

x12
x11

=
x2 exp(�12/RT )

x1 exp(�11/RT )
(A.2)

The quantities �12 and �11 signify interaction energies between molecules. The quantity x12
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has the meaning of a local composition. Furthermore, a local volume fraction of the component

1 can be formulated as:

�1 =
v1Lx11

v1Lx11 + v2Lx12
(A.3)

The quantities vlL and v2L are the molar liquid volumes of the two components. The following

relation can describe the excess Gibbs free energy:

G
E

RT
= x1 ln

�1
x1

+ x2 ln
�2
x2

(A.4)

Binary interaction constants may be defined as:

Λ12 =
v2L
v1L

exp

[
−�12 − �11

RT

]
(A.5)

Λ21 =
v1L
v2L

exp

[
−�21 − �22

RT

]
(A.6)

The energies of interaction are �12 = �21 but �11 ∕= �22 After substitution of equations A.5

and A.6 in A.4 the excess Gibbs energy becomes:

G
E

RT
= −x1 ln(x1 + Λ12x2)− x2 ln(x2 + Λ21x1) (A.7)

Finally, the following equations for the activity coefficients are obtained:

ln i = − ln(x1 + x2Λ12) + x2

(
�12

x1 + x2Λ12
− Λ21

x2 + x1Λ21

)
(A.8)

ln i = − ln(x2 + x1Λ21) + x2

(
�12

x1 + x2Λ12
− Λ21

x2 + x1Λ21

)
(A.9)

Wilson model describes very accurately the VLE of strong non-ideal mixtures, but unfortu-

nately is not convenient for liquid/liquid equilibrium [118].

A.2 NRTL Activity Coefficient Model

NRTL (non-random two-liquids) model developed by Renon and Prausnitz in 1968 [137] is an

extension of the local composition concept that accounts for the non-randomness of interac-

tions. The following expression for GE is obtained:

G
E

RT
= x1x2

(
�21G21

x1 + x2G21
+

�12G12

x2 + x1G12

)
(A.10)

125



Chapter A. Brief Review of the most used Activity Coefficient Models

Quantities �ij express differences in interaction energies,�ij = (gij − gji)/RT The parameters

Gij take into account the non-randomness of interactions such as Gij = exp(−�/RT ). The

parameter � can be treated as adjustable, although better it should be fixed. Some recommen-

dations are:

∙ �=0.20 for saturated hydrocarbon with polar non-associated species

∙ �=0.30 for non-polar compounds, but also for water and non-associated species

∙ �=0.40 for saturated hydrocarbon and homologue per-fluorocarbons

∙ �=0.47 for alcohol and other self-associated non-polar species

Binary activity coefficients are given by the following equations:

ln 1 = x22

[
�21G

2
21

(x1 + x2G21)2
+

�12G
2
12

(x2 + x1G12)2

]
(A.11)

ln 2 = x21

[
�12G

2
12

(x2 + x1G21)2
+

�21G
2
21

(x1 + x2G12)2

]
(A.12)

NRTL model is somewhat sensitive in computation, but it can be used to describe very accu-

rately both VLE, VLLE and LLE of high non-ideal mixtures [118].

A.3 UNIQUAC Activity Coefficient Model

UNIQUAC stands for UNiversal QUAsi-Chemical model, and has been developed by Abrams

and Prausnitz 1978. Unlike Wilson and NRTL, where local volume fraction is used, in UNI-

QUAC the primary variable is the local surface area fraction �ij . Each molecule is characterised

by two structural parameters: r the relative number of segments of the molecule (volume pa-

rameter) and q, the relative surface area (surface parameter). Values of these parameters have

been obtained in some cases by statistical mechanics. In UNIQUAC the excess Gibbs free

energy is computed from two contributions. The first called combinatorial part represents the

influence of the structural parameters, as size (parameter r) and shape (area parameter q). The

second called the residual part account for the energy of interactions between segments. for the

UNIQUAC MODEL the expression for the excess Gibbs free energy is: For the combinatorial

part:

G
E
C

RT
=
∑
i

xi ln
Φi

xi
+ 5

∑
i

qixi ln
�i
Φi

(A.13)
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For the residual part:

G
E
C

RT
= −

∑
i

qixi ln

⎛⎝∑
j

�j�ji

⎞⎠ (A.14)

Where

Φi =
xiri∑
j xjrj

(A.15)

�i =
xiqi∑
j xjqj

(A.16)

And the binary interaction energy is:

�ji = exp−
(
uji − uii
RT

)
(A.17)

UNIQUAC is as accurate as Wilson’s model, but it may be applied to liquid/liquid equilibrium.

Despite its apparent complexity the UNIQUAC model is robust in computations [118].

A.4 UNIFAC Activity Coefficient Model

UNIFAC is an extension of UNIQUAC, in which the interaction parameters are estimated by

means of contributions of groups. Firstly, the molecules are decomposed in characteristic struc-

tures, as functional groups and subgroups. Some small molecules are considered separately for

more accuracy. Then the parameters involved in UNIQUAC-type equations are determined, as

follows:

Molecular volume and area parameters in the combinatorial part are replaced by:

ri =
∑
k

v
(i)
k Rk (A.18)

qi =
∑
k

v
(i)
k Qk (A.19)

v
(i)
k is the number of functional group of type k in the molecule i, while Rk,Qk are volume and

area parameters of the functional group. Residual and combinatorial activity coefficients are

calculated using the following expressions:

ln Ci = 1− Ji + ln Ji − 5qi

(
1− Ji

Li
+ ln

Ji
Li

)
(A.20)

ln Ri = qi(1− lnLi)−
∑
j

(
�
sji
�j
− qi ln

sji
�j

)
(A.21)
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Where

Ji =
ri∑
j rjxj

(A.22)

Li =
qi∑
j qjxj

(A.23)

Gki = v
(i)
k Qk (A.24)

�k =
∑
i

Gkixi (A.25)

ski =
∑
m

Gmi�mk (A.26)

�k =
∑
i

skixi (A.27)

And

�mk = exp
−amk
T

(A.28)

UNIFAC is recommended only for exploratory purposes. A true liquid activity model should

replace it when experimental data becomes available. Sometimes the predictions by UNIFAC

are surprisingly good, when sufficient experimental data was available.

UNIFAC is not reliable for LLE, which is more difficult for modeling than VLE [118].

Since 1979 when the first UNIFAC revision and extension [70] was published, five more ex-

tensions were published [67–69, 71], a special UNIFAC for liquid-liquid equilibrium calcula-

tion [73] and other modifications of the method being UNIFAC Dortmund the more used [72].
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Appendix B

ESIRK Butcher’s Tableaus up to order 5

For the development of this thesis using the procedures in Dr. David Chen’s PhD thesis [81],

several Effective Order Singly Implicit Methods where obtained in order to select select an

appropriate one for the implementation. As ESIRK are collocations methods, L-Stability was

guaranteed using table B.1 which was obtained using Laguerre polinomials.

Table B.1: � for L-stability with s-stage SIRK Methods

s �

2 1±
√
2
2

3 0.43586652150845899942

4 0.57281606248213485541

5 0.27805384113645232493

6 0.33414236706805043595

B.1 Order 2 ESIRK

B.1.1 Starting Method

0.171573 0.18934 −0.017767

1 0.603553 0.396447

0.551777 0.362437

(B.1)
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B.1.2 ESIRK Method

0 0.1286796564403574268 −0.04289321881345247560

1 0.6286796564403574268 0.45710678118654752440

0.58578643762690495120 0.41421356237309504880

0.62868− 0.042893r2 0.45711− 0.085786r + 0.042893r2

(B.2)

B.2 Order 3 ESIRK

B.2.1 Starting Method

0.181222 0.208637 −0.0308751 0.00346011

1 0.574386 0.44267 −0.0170564

2.74158 0.154424 1.93086 0.656292

0.530301 −0.347665 0.00976398

(B.3)

B.2.2 ESIRK Method

0 0.95243 −0.12405 −0.020783

1
2 1.1608 0.20929 −0.062449

1 1.1191 0.54262 0.14588

1.3055 0.0042206 −0.30971

b1(r) b2(r) b3(r)

(B.4)

Where,

b1(r) = 1.1191 + 0.082806r2 + 0.10359r3 (B.5)

b2(r) = 0.54262− 0.33122r2 − 0.20718r3 (B.6)

b3(r) = 0.14588− 0.80760r + 0.24842r2 + 0.10359r3 (B.7)
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B.3 Order 4 ESIRK

B.3.1 Starting Method

0.18476 0.217813 −0.0403479 0.00793744 −0.00064175

1. 0.561829 0.468287 −0.0323334 0.00221716

2.59865 0.323308 1.59757 0.692906 −0.0151317

5.38165 1.37366 −0.79636 3.89209 0.912258

−0.164054 −0.873452 0.266426 −0.0201843

(B.8)

B.3.2 ESIRK Method

0 7.2564 −8.4408 3.3998 −0.42420

1
3 7.3814 −8.1769 3.3304 −0.41031

2
3 7.3675 −7.9963 3.5110 −0.42420

1 7.3814 −8.0658 3.7748 −0.29920

8.2980 −10.029 2.0382 0.69302

b1(r) b2(r) b3(r) b4(r)

(B.9)

Where,

b1(r) = 7.3814− 0.97123r2 + 0.67041r3 + 1.2174r4 (B.10)

b2(r) = −8.0658 + 4.3705r2 − 2.6816r3 − 3.6523r4 (B.11)

b3(r) = 3.7748− 8.7410r2 + 3.3521r3 + 3.6523r4 (B.12)

b4(r) = −0.29920− 1.7913r + 5.3417r2 − 1.3408r3 − 1.2174r4 (B.13)
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B.4 Order 5 ESIRK

B.4.1 Starting Method

0.073284 0.0877152 −0.0186247 0.00490082 −0.000752492 0.0000450816

0.393002 0.217993 0.19057 −0.0177425 0.00231088 −0.000129449

1 0.148462 0.579999 0.283114 −0.0121375 0.000563101

1.97024 0.319203 0.130998 1.15509 0.370183 −0.00523269

3.51482 −1.01861 3.19715 −1.7046 2.5822 0.458687

0.345336 0.0221253 −0.316524 0.062002 −0.0032084

(B.14)

B.4.2 ESIRK Method

0 2.0135 −1.1885 −0.18870 0.32454 −0.070572

1
4 2.1006 −0.96417 −0.28036 0.36135 −0.077169

1
2 2.0940 −0.84403 −0.12203 0.33566 −0.073349

3
4 2.0978 −0.86972 0.036303 0.45579 −0.079947

1 2.0912 −0.83292 −0.055364 0.68010 0.0072061

1.8250 0.12265 −0.81183 −0.48337 0.34751

b1(r) b2(r) b3(r) b4(r) b5(r)

(B.15)

Where,

b1(r) = 2.0912 + 0.21863r2 + 0.069440r3 − 0.38702r4 − 0.16726r5 (B.16)

b2(r) = −0.83292− 1.1660r2 − 0.35351r3 + 1.8061r4 + 0.66902r5 (B.17)

b3(r) = −0.055364 + 2.6236r2 + 0.71965r3 − 3.0961r4 − 1.0035r5 (B.18)

b4(r) = 0.68010− 3.4981r2 − 0.65652r3 + 2.3221r4 + 0.66902r5 (B.19)

b5(r) = 0.0072061− 0.89027r + 1.8219r2 + 0.22095r3 − 0.64503r4 (B.20)

−0.16726r5 (B.21)
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Appendix C

Globaly Stable Liquid-Liquid Equilibrium

Calculations

Equilibrium calculations are common in process modeling and simulation, sometimes hetero-

geneous liquid systems are encountered in many processes like distillation and they are neces-

sary in others like liquid extraction. In Processes presenting this, the number of liquid phases

is not fixed and can vary for different parts of the process or over time in case of a dynami-

cal simulation, although a simulation based on a wrong prediction of the number of phases or

even with the right number of phases converging to thermodynamically unstable or metastable

solutions of phase equilibrium may lead to results far away from the real behavior of the mod-

eled phenomena, misleading the designer into a wrong equipment sizing. Conceptual design is

based on intelligently simplified equipment models that sacrificing precision intends to quali-

tatively and quantitatively serve as a first design model to determine the most relevant design

parameters to be fixed. This kind of design approach relies on equilibrium models and on its

capability to accurately predict the behavior of a physical and/or chemical phenomena happen-

ing into steady state equipment. For this reason is really important for modelers, simulators and

designers to attain the correct number of phases and globally stable results in order to make its

work correctly.

C.1 Stability test

In 1876, Gibbs showed that the necessary and sufficient condition for absolute stability of a

mixture at fixed temperature, pressure and overall composition is that the Gibbs energy surface

be at no point below the plane tangent to the surface at the given overall composition [148].
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Let the overall composition of a mixture be z, temperature T , and pressure P , let the chemical

potential of the i− tℎ component of the mixture be � at this conditions. The stability condition

can be stated quantitatively as follows:

F (x) ≡ g(x)− L(x, z) =
c∑
i=1

xi [�i(x)− �i(z)] (C.1)

Where g(x) is the Gibbs energy at x and L(x, z) is the tangent plane to the Gibbs energy

surface at composition z. F (x) is the tangent plane distant function, which represents the

displacement from the tangent plane to the Gibbs energy surface at composition x.

The necessary and sufficient condition for Global stability is:

F (x) ≥ 0 (C.2)

All the minimums of F (x) are located in the permissible region. Consequently F (x) will

be nonnegative at all stationary points where it derivatives with respect to the independent

variables vanish.

For liquid mixtures at low moderate pressures it is common to write the chemical potentials in

terms of activity coefficients then (C.1) can be rewritten as:

F (x)

RT
=

c∑
i=1

xi [lnxi + ln i(x)− ln zi − ln i(z)] ≥ 0 (C.3)

Where i(x) and i(z) are the activity coefficients of the itℎ component evaluated at x and z,

z is the fixed overall composition, and any term related to it is constant.

To locate all the F (x) special points (minimums, maximums and saddles), is necessary to

solve ∇F (x) = 0 finding all its roots, or Minimize F (x) with a numerical algorithm to find

the global minimum. This approaches seem easy but they are not, most numerical method

are based on local convergence, specially Newton method and all Gradient and hessian based

numerical optimization methods [146, 148, 149]. In fact there are several approaches to global

optimization and Global Newton Methods such like homotopy based techniques, interval alge-

bra, tunneling and Artificial intelligence, all of them proved to be successful in some cases, but

none of them infallible.

The main idea of solving material stability problems by tangent plane approach is to obtain real

results, but solving the optimization or the Newton problem is time consuming, and most of the

134



Chapter C. Globaly Stable Liquid-Liquid Equilibrium Calculations

simulations are complicated enough to be slowed down by time consuming internal algorithms.

A way to solve this problem is leaving behind the traditional LL and LLV flash algorithms that

are extremely time consuming (and why not, obsolete) and use hybrid algorithms whom use

globally convergent methods that guarantee material stability.

C.2 Liquid-Liquid Equilibrium Calculation by Homotopy

For a given liquid composition z, pressure P and temperature T , the number and composi-

tion of liquid phases has to be calculated. To perform the phase stability test, the LLE flash

equations F (u) = 0 defined by

Fi(u) = (1− �)xIIi + �xIi − zi, i = 1, . . . , C (C.4)

FC+i(u) = i(x
I, P, T )xIi − i(xII, P, T )xIIi , i = 1, . . . , C (C.5)

F2C+1(u) =
C∑
k=1

(xIk − xIIk ) (C.6)

are solved for u = [xIT,xIIT, �]T , comprising the composition of both liquid phases xI and

xII and the phase fraction �. A lack of convergence of equations (C.4)-(C.6) does not reliably

indicate, that no phase split exists, since convergence strongly depends on the initialization of

the solver. Thus, the idea of the algorithm presented here is to always provide good initial

values to the solver by means of a homotopy continuation algorithm. In order to solve the

difficult problem F (u) = 0, we start with an easy problem G(u) = 0 that has the same

number of variables and a similar structure.The homotopy is defined as

H(u, �) = �F (u) + (1− �)G(u) (C.7)

involving both problems and the additional parameter �. The solution of H(u, �) = 0 for

0 ≤ � ≤ 1 is calculated starting at the easy problem H(u, � = 0) = G(u) and ending up at

the difficult problem H(u, � = 1) = F (u). For the LLE flash problem, G(u) is defined by

equations (C.5) and (C.6) and

Gi(u) = (1− �)xIi + �xIIi − z0,i, i = 1, . . . , C (C.8)
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where z0 is a composition inside the heterogeneus region stored in the preprocessing step. The

resulting Homotopy comprises equations (C.5) and (C.6) and

Hi(u, �) = (1− �)xIi + �xIIi − [�zi + (1− �)zo,i], i = 1, . . . , C (C.9)

Due to the choice of z0, the homotpy is solved by � = 0 and u = [xIT
0 ,xIIT

0 , �0]
T . To obtain

results at � = 1 a predictor/corrector continuation algorithm is used [97, 117, 123, 141].

C.2.1 Preprocessing Step

Wasylkiewicz et al. [146, 148, 149] , developed a global stability analysis for liquid-liquid

equilibrium based on topology, this approach uses idea from differential geometry and ODE

theory, the differential equation

dx

d�
= ∇F (x) (C.10)

is a gradient system of the tangent plane distant function, a gradient system has the following

properties [148]:

1. The singular points of equation (C.10) occur at stationary points in F (x) and vice versa.

2. The Jacobian is a symmetric matrix and have all real eigenvalues

3. Inspection of Eigenvalues of J [∇F (x)] reveals the following:

∙ Unstable Nodes Occur at maximums of F (x)

∙ Stable Nodes Occur at Minimums of F (x)

∙ Saddle points occur at saddles of F (x)

4. Ridges in F (x) correspond to unstable invariant manifolds of equation (C.10), and val-

leys correspond to the stable invariant manifolds.

5. The flow trajectories are always downhill

6. The flow trajectories are always into the permissible region
∑
xi = 1, xi ≥ 0
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All properties are common to all gradient systems but number six is a special property of the

tangent plane function, this property combined with the first four allows the application of the

following topological criterion based on index theory for n dimensions:

Nmax + (−1)nNmin +N even
saddle −Nodd

saddle = (−1)n (C.11)

Where Nmax is the number of maximums of F (x) , Nmin is the number of minimums of

F (x), N even
saddle is the number of saddles with even number negatives of eigenvalues, Nodd

saddle is

the number of saddles with odd number negatives of eigenvalues of the jacobian of the matrix

J [∇F (x)].

By integrating equation (C.10) along the direction of its stationary points’ eigenvectors (in-

variant manifolds), it is possible to track all the ridges and valleys of F (x) searching for other

stationary points. This enables a systematic exploration of the domain rather than repeated

calculations starting from various points generated from heuristics.

Using a binary system equation (C.10) and (C.11) get reduced, and the calculation of initializa-

tion z0 gets easier due to the lack of saddles, so preprocessing step is done for binary systems

tracking its valley and ridges in a two dimensional space.

C.3 Trilinolein + Methanol + MethylLinoleate + Glycerol LLE

Using the numerical techniques described above, Trilinolein + Methanol + MethylLinoleate +

Glycerol LLE was calculated.
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Figure C.1: Trilinolein + Gycerol LLE at Different Temperatures

Figure C.2: Trilinolein + Methanol LLE at Different Temperatures
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Figure C.3: Methyl Linoleate + Methanol LLE at Different Temperatures

Figure C.4: Methyl Linoleate + Glycerol LLE at Different Temperatures
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Figure C.5: Trilinolein + Methyl Linoleatre + Methanol LLE at 300K

Figure C.6: Glycerol + Methyl Linoleatre + Methanol LLE at 300K
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Figure C.7: Trilinolein + Methyl Linoleatre + Glycerol LLE at 300K

Figure C.8: Trilinolein + Glycerol + Methanol LLE at 300K
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Figure C.9: Quaternanry LLE Phase II surface
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