

Estudio de la solubilidad de gases en soluciones acuosas de sales de amonio cuaternario

Luis Carlos Arturo Garzón Salcedo

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Química Bogotá, Colombia

2013

Estudio de la solubilidad de gases en soluciones acuosas de sales de amonio cuaternario

Luis Carlos Arturo Garzón Salcedo

Tesis presentada como requisito parcial para optar al título de: Doctor en Ciencias-Química

> Directora: Profesora Carmen María Romero Isaza Codirector: Profesor Andrés Felipe Suarez Escobar

Línea de Investigación: Estudio fisicoquímico de soluciones acuosas Grupo de Investigación: Termodinámica clásica

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Química Bogotá, Colombia

2013

DEDICATORIA

Este trabajo inició bajo la dirección del profesor Luis Hernando Blanco Castañeda, a quien de cariño sus estudiantes le llamábamos Profesor Luis H. Él fue un reconocido académico de la familia de la Universidad Nacional por más de 40 años, y gestor del doctorado en química al cual está asociada la presente tesis.

El profesor Luis H. no solo se destacaba por sus grandes capacidades en el área de la fisicoquímica de soluciones y por su trabajo en el laboratorio; por encima de todo se destacó por sus inconmensurables cualidades como persona que fueron transmitidas a sus estudiantes de pregrado y posgrado en sus cátedras, junto con sus conocimientos científicos.

Su partida dejó un gran vacío que jamás podrá ser llenado. Queda como consolación la gran cantidad de estudiantes formados por él, quienes están ocupando lugares en las más importantes universidades a nivel nacional e internacional, sus grandes contribuciones a la ciencia a través de ponencias, artículos y libros, además de la huella que siempre dejaba en toda persona que le conociese, gracias a su gran carisma y afabilidad.

Como estudiante del profesor Luis H. me siento agradecido de haber estado bajo su tutoría, me dejó importantes lecciones más allá de los libros de texto y los conceptos teóricos y prácticos que tan bien manejaba. Su paciencia, apoyo y consejo en los momentos más difíciles de este trabajo serán por siempre agradecidos. Considero que sus más grandes lecciones fueron forjar en mí la capacidad del trabajo independiente y el espíritu crítico para no dar nada por sentado.

Lamento profundamente que no hubiera podido ver la culminación del presente trabajo. Sin embargo, su presencia está plasmada en cada una de estas páginas. La profesora Carmen María Romero Isaza, esposa del profesor Luis H. y colega de trabajo del mismo, asumió la dirección de esta tesis posterior al fallecimiento del querido profesor Luis H. Ella me orientó de la mejor manera a fin de hacer de esta tesis un trabajo digno de la persona que lo concibió en sus inicios.

Agradecimientos

Quiero agradecer en primera instancia a la Universidad Nacional de Colombia por todos estos años de formación académica, que de una u otra manera han influido en la transformación de mis pensamientos y de mis acciones.

A la Universidad Pedagógica Nacional por los dos años de aprendizaje que me han permitido valorar aún más el papel del maestro en la sociedad.

Agradezco especialmente a mis directores y codirector, profesor Luis Hernando Blanco C., profesora Carmen María Romero I., y profesor Andrés Felipe Suárez E., por su valiosa amistad, dedicación y apoyo durante el desarrollo de este trabajo.

Al profesor Jesús Gracia F. de la Universidad Nacional Autónoma de México, por su acompañamiento en mi actividad de pasantía.

Agradezco a mis amigos y compañeros del grupo de investigación de termodinámica clásica, en especial a Ana Rozo, Daniel Nieto y Francisco Ibla. Agradezco también a Ángela López, Xelhua Marcos, Esteban Olmera, Alberto Collado, y Jose Luis López, estudiantes de la UNAM.

A COLCIENCIAS, por su financiación en el pago de matrícula y sostenimiento a través del programa de apoyo a estudios de Doctorados Nacionales, y por el apoyo económico otorgado a través del proyecto "Estudio fisicoquímico de soluciones acuosas de aminoácidos, péptidos y proteínas" (convocatoria 452-08).

Por último, le quiero agradecer a Gina Clavijo y a toda mi familia.

Resumen

En este trabajo se determinó la solubilidad de argón y nitrógeno a 101325 Pa de presión parcial de gas en soluciones acuosas de bromuro de dodeciltrimetilamonio (BDTA), bromuro de tetrabutilamonio (BTBA), y bromuro de tetradeciltrimetilamonio (BTTA) en función de la concentración de soluto entre 283,15 y 298,15 K. Para esto, se diseñó y se construyó un equipo fundamentado en la saturación del líquido, a partir de la medida del descenso en la presión del gas. El valor de la solubilidad se calculó de acuerdo con la ley de Henry. Se estableció un nuevo método para determinar el volumen libre de una cámara y se aplicó en este trabajo para calcular el volumen de la celda de solubilidad. Se encontró que en todos los sistemas estudiados, la solubilidad de argón y nitrógeno en fracción molar aumenta conforme se incrementa la concentración de soluto, aunque el proceso de solubilización de los gases es distinto en los sistemas con BTBA y en los sistemas con BDTA y BTTA.

Palabras clave: argón, nitrógeno, bromuro de tetrabutilamonio, bromuro de dodeciltrimetilamonio, bromuro de tetradeciltrimetilamonio, solubilidad de gas, soluciones acuosas, ley de Henry.

Abstract

In this work the solubility of argon and nitrogen was determined at a partial gas pressure of 101325 Pa in aqueous solutions of dodecyltrimethylammonium bromide (DTAB), tetrabutylammonium bromide (TBAB), and tetradecyltrimethylammonium bromide (TTAB) as a function of the solute concentration between 283,15 and 298,15 K. Hence, a liquidsaturation based equipment was designed and manufactured from the drop pressure method. The solubility value was calculated according to Henry's law. A new method for determining the chamber's free volume was established and it was also applied along this work to calculate the volume of the solubility cell. In every system studied, the solubility of argon and nitrogen in molar fraction increases with the increase in solute concentration, though the gas solubilization process differs between the TBAB systems and the DTAB and TTAB systems.

Keywords: argon, nitrogen, tetrabutylammonium bromide, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, solubility of gas, aqueous solutions, Henry's law.

Contenido

ResumenIX
AbstractIX
Lista de FigurasXV
Lista de GráficasXVII
Lista de TablasXIX
Lista de Símbolos y abreviaturas XXIII
Símbolos con letras latinasXXIII
Símbolos con letras griegasXXV
SubíndicesXXVI
SuperíndicesXXVI
AbreviaturasXXVII
Introducción1
1. Aspectos teóricos
1.1 Estructura del agua líquida y de sus soluciones5
1.2 Solubilidad de gases en líquidos8
1.2.1 Cantidades empleadas para expresar la solubilidad de gases en líquidos8
1.2.2 Aspectos termodinámicos de la solubilidad de gases en líquidos10
1.2.3 Dependencia de la solubilidad de gases en líquidos con la temperatura: cambios en las funciones termodinámicas11
1.2.4 Efecto de sal: Ecuación de Sechenov12
1.3 Surfactantes
1.3.1 Generalidades
1.3.2 Concentración micelar crítica y formación de micelas
1.3.3 El modelo de acción de masas frente al modelo de equilibrio de fases19
1.3.4 Solubilización por surfactantes21

2. Antecedentes	23
2.1 Algunas propiedades físicas de argón y nitrógeno en soluciones acuosas K	s a 298,15 23
2.2 Solubilidad de argón y nitrógeno en agua	23
2.3 Solubilidad de gases en soluciones acuosas de BTBA	24
2.4 Solubilidad de gases en soluciones acuosas de surfactantes	28
3. Métodos experimentales para la determinación de la solubilidad de gases e	n líquidos
3 1 Métodos de saturación	
3 1 1 Métodos isobáricos	
3 1 2 Métodos isocóricos	35
3 2 Métodos de extracción	
4 Materiales v métodos	41
4 1 Reactivos v equipos	41
4 1 1 Reactivos	41
4.1.2 Equipos	41
4.2 Metodología	
5. Diseño y construcción de un equipo para la determinación de la solubilidad	de gases
en líquidos	45
5.1 Fundamento del método	45
5.2 Principales características del equipo de solubilidad	45
5.3 Determinación del volumen de la celda de solubilidad	47
5.3.1 Descripción del método	47
5.3.2 Resultados obtenidos	
5.4 Determinación de los tiempos de equilibrio	50
5.4.1 Saturación del gas	50
5.4.2 Saturación del líquido (medida de solubilidad)	50
5.5 Funcionamiento del equipo: Solubilidad de argón y nitrógeno en agua pu	ıra51
6. Resultados y discusión	53
6.1 Solubilidad de argón y nitrógeno en soluciones acuosas de sales de amo	onio 53
outomano	
6.2 Solubilidad de argón y nitrógeno en las micelas de RDTA y RTTA	50
6.2 Solubilidad de argón y nitrógeno en las micelas de BDTA y BTTA	
 6.2 Solubilidad de argón y nitrógeno en las micelas de BDTA y BTTA 6.3 Funciones termodinámicas estándar de solución 6.4 Comparación con otros trabajos. 	

6.4.1 Solubilidad de gases en soluciones acuosas de BTBA6
6.4.2 Solubilidad de argón en soluciones acuosas de la familia alquiltrimetilamonio a 298,15 y 299,15 K
6.4.3 Solubilidad de gases en micelas a 298,15 y 299,15 K60
7. Conclusiones y recomendaciones69
7.1 Conclusiones
7.2 Recomendaciones
Anexo A. Cálculo de la solubilidad de gases en soluciones acuosas de sales de amonio cuaternario
Anexo B. Resultados de solubilidad de gas expresados en molalidad con respecto al agua a 101325 Pa de presión parcial7
Anexo C. Algunas propiedades importantes de los surfactantes BDTA y BTTA7
Anexo D. Correlaciones para la solubilidad de argón y nitrógeno en soluciones acuosas de BDTA y BTTA en función de la concentración y la temperatura79
Anexo E. Pruebas de hipótesis para evaluar la igualdad entre los valores de solubilidad de argón y nitrógeno en las micelas de BTTA y BDTA8
Anexo F. Ajuste de los datos de solubilidad de argón y nitrógeno en soluciones acuosas de BTBA con la ecuación de Sechenov8
Bibliografía

Lista de Figuras

	Pág.
Representación de las estructuras moleculares de las sales de amonio cuaternario empleadas en este trabajo: Bromuro de dodeciltrimetilamonio (BDTA), bromuro de tetrabutilamonio (BTBA) v bromuro de tetradeciltrimetilamonio (BTTA)	3
Algunas estructuras de micelas en medios acuosos. En orden descendente: esférica, cilíndrica y lamelar	16
Imágenes de una micela formada por monómeros de bromuro de deciltrimetilamonio. La imagen superior izquierda muestra a las 43 moléculas de surfactante que conforman la micela. La imagen superior derecha muestra a la micela rodeada con los contra iones y las moléculas de agua. La imagen inferior muestra el corte transversal de la micela de 12 Å de ancho	17
Equipo de solubilidad diseñado por Fonseca y colaboradores. TB, baño termostatado; TC, controlador de temperatura; T, termómetro; PT, transductor de presión; LA, actuador lineal; PC, controlador de presión; DIF, bomba de vacío, TRAP, trampa; EQ, recipiente de equilibrio; GB, bureta de gas; V1-V6, válvulas; AGIT, agitador magnético. E, ascensor	32
Equipo de solubilidad diseñado por Haimour y Sandall Equipo de solubilidad construido por Dalmolin y colaboradores. 1, cilindro de gas; 2, válvula de control; 3, bomba de vacío; 4, celda de equilibrio; 5, reservorio de gas; 6, transductor de presión; 7, programador portátil; 8, baño de agua; V1-V3, válvulas	36 36
Equipo de solubilidad diseñado por Miyano y colaboradores con cromatógrafo de gas	38
Celda diseñada por Benson-Krause para equilibrar sistemas gas-	40
Diagrama general del instrumento de solubilidad de gases en líquidos construido en este trabaio	42
Fotografía de la celda de solubilidad construida en este trabajo	45
	Representación de las estructuras moleculares de las sales de amonio cuaternario empleadas en este trabajo: Bromuro de dodeciltrimetilamonio (BDTA), bromuro de tetrabutilamonio (BTBA) y bromuro de tetradeciltrimetilamonio (BTTA) Algunas estructuras de micelas en medios acuosos. En orden descendente: esférica, cilíndrica y lamelar Imágenes de una micela formada por monómeros de bromuro de deciltrimetilamonio. La imagen superior izquierda muestra a las 43 moléculas de surfactante que conforman la micela. La imagen superior derecha muestra a la micela rodeada con los contra iones y las moléculas de agua. La imagen inferior muestra el corte transversal de la micela de 12 Å de ancho Equipo de solubilidad diseñado por Fonseca y colaboradores. TB, baño termostatado; TC, controlador de temperatura; T, termómetro; PT, transductor de presión; LA, actuador lineal; PC, controlador de presión; DIF, bomba de vacío, TRAP, trampa; EQ, recipiente de equilibrio; GB, bureta de gas; V1-V6, válvulas; AGIT, agitador magnético, E, ascensor Equipo de solubilidad construido por Dalmolin y colaboradores. 1, cilindro de gas; 2, válvula de control; 3, bomba de vacío; 4, celda de equilibrio; 5, reservorio de gas; 6, transductor de presión; 7, programador portátil; 8, baño de agua; V1-V3, válvulas Equipo de solubilidad diseñado por Miyano y colaboradores con cromatógrafo de gas Celda diseñada por Benson-Krause para equilibrar sistemas gas- líquido Diagrama general del instrumento de solubilidad de gases en líquidos construido en este trabajo Fotografía de la celda de solubilidad construida en este trabajo

Lista de Gráficas

		Pág.
Gráfica 1-1	Variación de algunas propiedades fisicoquímicas para soluciones acuosas de surfactantes en función de la concentración	15
Gráfica 1-2	Concentración de surfactante en forma de monómero y de micela en función de la concentración de surfactante	18
Gráfica 1-3	Comportamiento general que describe el proceso de solubilización mediado por surfactantes: concentración de soluto solubilizado ([sto]) en función de la concentración de surfactante	21
Gráfica 2-1	Dependencia del logaritmo del cociente entre la solubilidad de metano en agua pura y en las soluciones de BTBA en función de la temperatura y de la concentración de sal en mol·kg ⁻¹	27
Gráfica 2-2	Solubilidad de metano, etano, propano y dióxido de carbono a 101325 Pa de presión parcial en función de la concentración de bromuro de hexadeciltrimetilamonio (mol·kg ⁻¹) a 298,15 K	30
Gráfica 2-3	Solubilidad de tetrafluoruro de carbono, oxígeno, argón, metano, etano y propano en moles de gas por kg de agua pura a 101325 Pa de presión parcial en función de la concentración del surfactante bromuro de hexadeciltrimetilamonio (mol·kg ⁻¹) a 299,15 K	30
Gráfica 5-1	Comportamiento de la presión en función del tiempo en el espacio comprendido entre la válvula 1 y la válvula 4 del equipo de solubilidad de gases en líquidos construido en este trabajo. Sistema: Argón en solución de BDTA a 298,15 K, 0,040 mol·kg ⁻¹	49
Gráfica 5-2	Comportamiento de la presión en función del tiempo para el proceso de saturación del argón en una solución de BDTA 0,040 mol·kg ⁻¹ a 298,15 K	50
Gráfica 6-1	Solubilidad de argón y nitrógeno en fracción molar a 101325 Pa de presión parcial de gas en función de la molalidad de BDTA y de la temperatura. Argón: 283,15 K (\blacksquare); 288,15 K (\blacklozenge); 293,15 K (\blacktriangle); 298,15 K (\circlearrowright); Nitrógeno: 283,15 K (\square); 288,15 K (\diamondsuit); 293,15 K (\bigtriangleup); 298,15 K (\circlearrowright); 293,15 K (\bigtriangleup); 298,15 K (\circlearrowright);	54
Gráfica 6-2	Solubilidad de argón y nitrógeno en fracción molar a 101325 Pa de presión parcial de gas en función de la molalidad de BTBA y de la temperatura. Argón: 283,15 K (\blacksquare); 288,15 K (\blacklozenge); 293,15 K (\blacktriangle); 298,15 K (\blacklozenge). Nitrógeno: 283,15 K (\square); 288,15 K (\diamondsuit); 293,15 K (\bigtriangleup); 298,15 K (\circlearrowright); 293,15 K (\bigtriangleup); 298,15 K (\circlearrowright)	56
Gráfica 6-3	Solubilidad de argón y nitrógeno en fracción molar a 101325 Pa de presión parcial de gas en función de la molalidad de BTTA y de la temperatura. Argón: 283,15 K (\blacksquare); 288,15 K (\blacklozenge); 293,15 K (\blacktriangle); 298,15 K (\bullet). Nitrógeno: 283,15 K (\square); 288,15 K (\diamondsuit); 293,15 K (\bigtriangleup); 298,15 K (\circ)	58

- Gráfica 6-4 Comparación de la solubilidad en mol·kg⁻¹ de H₂O a 101325 Pa de presión parcial de metano y de argón en función de la concentración del BTBA en mol·kg⁻¹. Metano: 288,15 K (□); 298,15 K (○). Argón: 288,15 K (■); 298,15 K (●)
- Gráfica 6-5 Comparación de la solubilidad de argón en molalidad (mol·kg⁻¹H₂0) 65 a 298,15 o 299,15 K y 101325 Pa de presión parcial de gas en soluciones acuosas de la familia de alquiltrimetilamonio con 10, 12, 14 y 16 átomos de carbono. BHTA a 299,15 K (□), BTTA a 298,15 K (♦), BDTA a 298,15 K (▲), BDeTA a 299,15 K (○)
- Gráfica F-1 Logaritmo del cociente entre la solubilidad de argón en agua pura y en las soluciones de BTBA en función de la temperatura y de la concentración de sal en mol⋅kg⁻¹: 283,15 K (■); 288,15 K (♦); 293,15 K (▲); 298,15 K (●)
- Gráfica F-2 Logaritmo de la razón entre la solubilidad de nitrógeno en agua pura y en las soluciones de BTBA en función de la temperatura y de la concentración de sal en mol·kg⁻¹: 283,15 K (■); 288,15 K (♦); 293,15 K (▲); 298,15 K (●)

Pág. 64

Lista de Tablas

		Pág.
Tabla 1-1	Dependencia del parámetro crítico de empaquetamiento sobre la geometría de una micela en medios acuosos	16
Tabla 2-1	Polarizabilidad, volumen molar y área molar superficial de argón y nitrógeno en soluciones acuosas	23
Tabla 2-2	Valores de solubilidad en fracción molar ($x \cdot 10^5$) reportados para el argón en agua a 101325 Pa de presión parcial a las temperaturas de estudio de este trabajo	23
Tabla 2-3	Valores de solubilidad en fracción molar ($x \cdot 10^5$) reportados para el nitrógeno en agua a 101325 Pa de presión parcial a las temperaturas de estudio de este trabajo	24
Tabla 2-4	Solubilidad de metano en función de la concentración de BTBA y de la temperatura a 101325 Pa de presión parcial. Tomado de Wen y Hung	26
Tabla 2-5	Solubilidad de metano en función de la concentración de BTBA y de la temperatura a 101325 Pa de presión parcial. Tomado de Feillolay y Lucas	28
Tabla 2-6	Solubilidad de argón en función de la concentración de BTBA a 298,15 K y 101325 Pa de presión parcial	28
Tabla 2-7	Resumen de los principales trabajos de solubilidad de gases en soluciones de surfactantes a 101325 Pa de presión parcial de gas	29
Tabla 3-1	Resumen de los trabajos realizados con el equipo de Ben-Naim y Baer para determinar la solubilidad de gases en líguidos	33
Tabla 3-2	Resumen de los trabajos realizados con equipos fundamentados en el cambio del volumen de gas distintos al de Ben-Naim y Baer	34
Tabla 3-3	Resumen de los trabajos realizados con equipos fundamentados en el descenso de la presión	37
Tabla 3-4	Resumen de algunos trabajos que utilizan la técnica de cromatografía para cuantificar la cantidad de gas disuelto en un líquido	39
Tabla 4-1	Densidad de las soluciones acuosas de BDTA (g·mL ⁻¹) en función de la concentración y de la temperatura	44
Tabla 4-2	Densidad de las soluciones acuosas de BTBA (g·mL ⁻¹) en función de la concentración y de la temperatura	44
Tabla 4-3	Densidad de las soluciones acuosas de BTTA (g·mL ⁻¹) en función de la concentración y de la temperatura	44
Tabla 5-1	Solubilidad en fracción molar de argón y nitrógeno a 101325 Pa de presión parcial de gas en agua pura	51
Tabla 5-2	Comparación de los resultados de solubilidad de argón en agua pura en la escala de fracción molar a 101325 Pa de presión parcial,	51

а	partir	del	%	de	diferencia	entre	los	valores	reportados	у	los
va	lores o	obtei	nido	os ei	n este traba	ajo					

- Tabla 5-3Comparación de los resultados de solubilidad de nitrógeno en agua52pura en la escala de fracción molar a 101325 Pa de presión parcial,
a partir del % de diferencia entre los valores reportados y los
valores obtenidos en este trabajo52
- Tabla 6-1Comparación del comportamiento de la solubilidad de argón y53nitrógeno en fracción molar a 101325Pa de presión parcial de gasen función de la temperatura y la concentración en solucionesacuosas de sales de amonio cuaternario
- Tabla 6-2 Solubilidad en fracción molar de argón a 101325 Pa de presión 54 parcial en soluciones acuosas de BDTA en función de concentración y temperatura
- Tabla 6-3Solubilidad en fracción molar de nitrógeno a 101325 Pa de presión54parcial en soluciones acuosas de BDTA en función de
concentración y temperatura
- Tabla 6-4Solubilidad en fracción molar de argón a 101325Pa de presión56parcial en soluciones acuosas de BTBA en función de
concentración y temperatura
- Tabla 6-5Solubilidad en fracción molar de nitrógeno a 101325 Pa de presión56parcial en soluciones acuosas de BTBA en función de
concentración y temperatura
- Tabla 6-6Solubilidad en fracción molar de argón a 101325Pa de presión58parcial en soluciones acuosas de BTTA en función de
concentración y temperatura
- Tabla 6-7Solubilidad en fracción molar de nitrógeno a 101325 Pa de presión58parcial en soluciones acuosas de BTTA en función de
concentración y temperatura
- Tabla 6-8Solubilidad de argón y nitrógeno a 101325 Pa de presión parcial en60las micelas de BDTA y BTTA en función de la temperatura, y
cociente de las solubilidades de los gases en las micelas y el agua
- Tabla 6-9Coeficientes A y B, incertidumbres estándar combinadas y r² para el62polinomio de la ecuación 6.1
- Tabla 6-10Funciones termodinámicas estándar a 298,15 K para el proceso de63disolución de argón y nitrógeno en las soluciones acuosas de BTBA
- Tabla 6-11Comparación de los resultados de solubilidad en fracción molar de
gases en micelas a 101325 Pa de presión parcial y 298,15 o 299,1566K
- Tabla B-1 Solubilidad de argón en molalidad (mol·kg⁻¹H₂0) a 101325 Pa de 75 presión parcial en función de la concentración de BTBA y de la temperatura
- Tabla B-2 Solubilidad de argón en molalidad (mol·kg⁻¹H₂0) a 101325 Pa de 75 presión parcial en función de la concentración de BTBA y de BTTA a 298,15 K
- Tabla C-1Valores de concentración micelar crítica encontrados en la literatura77para el BDTA
- Tabla C-2Valores de concentración micelar crítica encontrados en la literatura77para el BTTA
- Tabla C-3Números de agregación a 298,15 K encontrados en la literatura78para el BTTA y el BTTA

Pág.

		Pág.
Tabla C-4	Números de agregación a 298,15 K para el BTTA en función de la concentración de BTTA, a través de estudios de difracción de neutrones de pequeño ángulo y espectroscopia óptica Raman	78
Tabla D-1	Coeficientes A, B y C, incertidumbres estándar combinadas y r ² para el polinomio de la ecuación D.1	79
Tabla E-1	Resultados de solubilidad en fracción molar de argón y nitrógeno en las micelas de BDTA y BTTA obtenidos en función de la temperatura (tabla 6-8 del documento)	82
Tabla E-2	Resumen de los resultados obtenidos en las pruebas de hipótesis	82
Tabla F-1	Coeficientes A y B, incertidumbres estándar combinadas y r ² para el polinomio de la ecuación F.1	84

Lista de Símbolos y abreviaturas

Símbolo	Término	Unidad SI	Definición
A	Coeficiente adimensional	Adimensional	Ec. 1.13 y 1.14
Å	Armstrong	m	1Å=10⁻¹⁰m
а	Área transversal de una micela	Å ²	Ec. 1.16
$a^{lpha}_{ m B}$	Actividad del gas B en la fase α	Adimensional	Ec. 1.9
$a_{\rm B}^{\beta}$	Actividad del gas B en la fase β	Adimensional	Ec. 1.9
B	Coeficiente adimensional	Adimensional	Ec. 1.13 y 1.14
С	Coeficiente adimensional	Adimensional	Ec. 1.13 y 1.14
$c_{\rm g}^L$	Concentración de gas en la fase líquida	mol∙L⁻¹	Ec. 1.4 y 1.5
$c_{\rm g}^{v}$	Concentración de gas en la fase de vapor	mol∙L⁻¹	Ec. 1.4 y 1.5
D °	Grados Celsius	K	K=273.15 +°C
D	Coeficiente adimensional	Adimensional	Ec. 1.13 y 1.14
d _{sin}	Densidad de la solución	g⋅mL ⁻¹	Ec. A.2
f_{B}	Fugacidad de un gas en la fases de vapor	Pa	1Pa=1N⋅m ⁻²
GHz	Giga Hertz	Hz	1GHz=10 ⁹ Hz
g_{H_20}	Masa de agua en la solución	g	Ec. B.1
g(r)	Función de distribución radial del par	Adimensional	Sección 1.1
H _{B,A}	Constante de Henry de un gas B en un	Ра	1Pa=1N⋅m ⁻²
	solvente A		
$H^m_{\mathrm{B,A}}$	Constante de Henry del gas en la solución	Pa⋅kg⋅mol ⁻¹	Ec. B.1
H _o	Hipótesis nula		Anexo E
H ₁	Hipótesis alternativa		Anexo E
I_s	Fuerza iónica de una solución	mol⋅kg⁻¹	Ec. 1.15
K	Constante de equilibrio		Ec. 1.10
K	Kelvin	K	
k _s	Constante de Sechenov	kg·mol ⁻	Ec. 1.15
kHz	kilo Hertz	Hz	1kHz=10°Hz
L _c	Coeficiente de Ostwald (definición 3)	Adimensional	Ec. 1.4
$L_{c^{\infty}}$	Coeficiente de Ostwald (definición 4)	Adimensional	Ec. 1.5
l _{máx}	Longitud máxima de la cadena	A	Ec. 1.16
1	Indrocarbonada de un surraciante	Å	Eo. 1.19
l_s	Longitud de la cola mulocarbonada de una molécula de surfactante	A	EC. 1.10
I	Coeficiente de Ostwald (definición 2)	Adimensional	Fc 13
I_V	Coeficiente de Ostwald (definición 1)	Adimensional	Ec. 1.2
L_V	Masa de aqua en la solución	a	$E_{C} = A_{C} = A_{C}$
M.	Masa molar de aqua	9 a.mol ⁻¹	$E_{C} \Delta 6$
A	mada molar de agua	9 1101	20.7.0

Símbolos con letras latinas

Símbolo	Término	Unidad SI	Definición
m _s	Masa de sal	g	Ec. A.7
m _s	Concentración de sal de amonio cuaternario	mol⋅kg⁻¹	
Ms	Masa molar de sal	g•mol ⁻¹	Ec. A.7
m _{sln}	Masa de la solución	g	Ec. A.2
m ^{Emb}	Masa del embudo seco	g	Ec. A.3
m ^{Emb}	Masa del embudo húmedo	a	Ec. A.3
m ^{Erl}	Masa del erlenmever sin solución	a	Ec. A.3
m ^{Erl}	Masa del erlenmever con solución	a	Ec. A.3
N	Número de agregación	9	Fc. 1.17
n .	Número de moles de agua	mol	Ec. 4.1
$n_{\rm A}$	Número de moles de soluto B	mol	1
n _B	Número de moles de gas dentro de la micela	mol	Ec. 6.1
n_c	Número de átomos de carbono en la		
C	cadena no polar de surfactante		
n_f	Número de moles contenidos en la cámara 1 y 2	mol	Ec. 5.1
n _i	Número de moles de compuesto <i>i</i> en la solución	mol	Ec. 1.1
n _s	Número de moles de sal de amonio cuaternario	mol	Ec. 4.1
n _s	Número de moles de surfactante en forma micelar	mol	Ec. 6.1
n ⁰	Cantidad infinitesimal de soluto B	mol	Sección 1.3.3
n_1	Número de moles de gas en la cámara 1	mol	Ec. 5.1
n_2	Número de moles de gas en la cámara 2	mol	Ec. 5.1
Pa	Pascal	Pa	1Pa=1N·m ⁻²
p_{A}	Presión de vapor de saturación del agua en una solución	Pa	Ec. 4.1
$p_{\mathrm{A}}^{m{v}}$	Presión de vapor de saturación de un líquido puro A	Ра	1Pa=1N⋅m ⁻²
p_{Δ}^{*}	Presión de vapor de saturación del agua	Ра	1Pa=1N⋅m ⁻²
$p_{\rm B}$	Presión del gas B	Ра	1Pa=1N⋅m ⁻²
P_f	Presión final del sistema	Pa	Ec. 4.1
P_f	Presión final luego de la expansión isotérmica	Ра	Ec. 5.2
P_0	Presión inicial del sistema	Ра	Ec. 4.1
P_1	Presión de gas en la cámara 1	Ра	Ec. 5.2
P_2	Presión de gas en la cámara 2	Pa	Ec. 5.2
Ŕ	Constante universal de los gases	J⋅mol⁻¹K⁻¹	R = 8,3144621
$R_{\rm mic}$	Radio de una micela	Å	Ec. 1.17
S	Solubilidad de un soluto en una solución salina	mol∙kg⁻¹	Ec. 1.15
$S_{\rm B}^{\rm mL}$	Solubilidad de gas en mL·kg ⁻¹ H ₂ O	mL⋅kg⁻¹H₂O	Ec. 2.1
s ^{mol}	Solubilidad de gas en mol·kg ⁻¹ H ₂ O	mol·kg ⁻¹ H ₂ O	Ec. 2.1
$[S_m]$	Concentración de surfactante en la forma micelar	0 20	Ec. 1.24

Símbolo	Término	Unidad SI	Definición
<i>s</i> ₀	Solubilidad de un soluto en agua pura	mol⋅kg⁻¹	Ec. 1.15
$[S]_0$	Concentración total de surfactante	-	Ec. 1.24
$[S_1]$	Concentración de surfactante en la forma		Ec. 1.24
- 1-	de monómero libre		
Т	Temperatura	K	1
и	Incertidumbre		2
V_B	Volumen de gas	L	Ec. 4.1
Vg	Volumen de gas	L	Ec. 1.2
$\tilde{V_L}$	Volumen de solución saturada	L	Ec. 1.3
V_L^0	Volumen de líquido puro	L	Ec. 1.2
$V_{\rm mic}$	Volumen de una micela	Å ³	Ec. 1.17
V_s	Volumen de un sólido	mL	Ec. 5.6
V _{sln}	Volumen de la solución	L	Ec. A.1
V _{total}	Volumen de la celda de solubilidad	L	Ec. A.1
V_1	Volumen de la cámara 1	L	Ec. 5.2
V_2	Volumen de la cámara 2	L	Ec. 5.2
x _A	Fracción molar de agua en la solución	Adimensional	Ec. A.4
x _{Ar}	Solubilidad en fracción molar de argón	Adimensional	
x_{Ar}^{m}	Solubilidad en fracción molar de argón en las micelas	Adimensional	Sección 6.2
x _B	Fracción molar de soluto B	Adimensional	Ec. 1.1
$x_{\rm B}^{\rm m}$	Solubilidad en fracción molar de un gas en micelas	Adimensional	Ec. 6.1
x_{N_2}	Solubilidad en fracción molar de nitrógeno	Adimensional	
$x_{N_2}^{m}$	Solubilidad en fracción molar de nitrógeno en las micelas	Adimensional	Sección 6.2
x_i^{lpha}	Fracción molar del compuesto <i>i</i> en la fase α	Adimensional	Ec. 1.8
x_i^{eta}	Fracción molar del compuesto <i>i</i> en la fase β	Adimensional	Ec. 1.8

Símbolos con letras griegas

Símbolo	Término	Unidad SI	Definición
αn ⁰ _B	Moles de soluto en la forma ceto	mol	Ec. 1.21
$(1 - \alpha)n_{\rm B}^0$	Moles de soluto en la forma enol	mol	Ec. 1.21
$\gamma_{\rm B}$	Coeficiente de actividad del gas B	Adimensional	Ec. 1.6
$\Delta G_{\rm cav}$	Energía requerida para formar una cavidad en el solvente	IJ∙mol ⁻¹	Sección 6.1
$\Delta G_{\rm int}$	Energía de interacción entre el soluto y el solvente	J∙mol ⁻¹	Sección 6.1
$\Delta_{\rm sln} G_{\rm B}^{0}$	Cambio en la energía libre estándar de solución del gas B	J⋅mol⁻¹	Ec. 1.9
$\Delta_{ m sln} H_{ m B}^0$	Cambio en la entalpía estándar de soluciór del gas B	nJ∙mol⁻¹	Ec. 1.12
$\Delta_{ m sln} S^0_{ m B}$	Cambio en la entropía estándar de solución del gas B	J⋅mol ⁻¹ ⋅K ⁻¹	Ec. 1.11
$\mu_{ m B}^{lpha}$	Potencial químico del gas B en la fase α	J∙mol ⁻¹	Ec. 1.8

Símbolo	Término	Unidad SI	Definición
$\mu_{\rm B}^{\beta}$	Potencial químico del gas B en la fase β	J∙mol⁻¹	Ec. 1.8
$\mu_{\rm B}^{0\alpha}$	Potencial químico estándar del gas B en la fase α	a J∙mol⁻¹	Ec. 1.9
$\mu_{ m B}^{0eta}$	Potencial químico estándar del gas B en la fase β	a J∙mol ⁻¹	Ec. 1.9
ν	Volumen de una micela	Å ³	Ec. 1.16
$\sigma_{ m P}^2$	Varianza ponderada		Anexo E
$\phi_{ m B}$	Coeficiente de fugacidad del gas B	Adimensional	Ec. 1.6

Subíndices

Subíndice	Término
A	Solvente
Ar	Argón
В	Soluto
С	Concentración en mol·L ⁻¹
cav	Cavidad
eq.	Estado de equilibrio
f	Final
g	Gas
i	Compuesto <i>i</i> en la solución
int	Interacción
L	Líquido
máx	Máximo
mic	Micela
N ₂	Nitrógeno
Р	Ponderada
S	Sal
sln	Solución
total	Total
V	Volumen

Superíndices

Superíndice	Término
Emb	Embudo
Erl	Erlenmeyer
L	Fase líquida
ν	Fase de vapor
m	Micela
Μ	mol·kg ⁻¹
mL	Mililitro
Mol	Mol
0	Compuesto puro ó estado estándar
α	Fase α
β	Fase β
∞	Solución infinitamente diluida

Superíndice Término

Agua pura

Abreviaturas

Abreviatura	Término
BDeTA	Bromuro de deciltrimetilamonio
BDTA	Bromuro de dodeciltrimetilamonio
BHTA	Bromuro de hexadeciltrimetilamonio
BTBA	Bromuro de tetrabutilamonio
BTTA	Bromuro de tetradeciltrimetilamonio
CMC	Concentración micelar crítica
CSS	Cumeno sulfonato de sodio
СТ	Forma cetónica
DSS	Dodecilsulfato de sodio
EN	Forma enólica
G.L.	Grados de libertad
HepSS	Heptilsulfonato de sodio
HexSS	Hexilsulfonato de sodio
OSS	Octilsulfonato de sodio
PCE	Parámetro crítico de empaquetamiento
PSS	Pentilsulfonato de sodio
RMN	Resonancia magnética nuclear
SANS	Difracción de neutrones de pequeño ángulo (Small Angle Neutron
	Scattering)
SPT	Teoría de partículas a escala (Scaled Particle Theory)
TBA⁺	lón tetrabutilamonio
U.V.	Ultravioleta

Introducción

Desde el comienzo de la ciencia moderna, la solubilidad de gases en líquidos ha surgido como un campo de interés teórico y práctico. Esta propiedad fisicoquímica se utiliza a manera de sonda para conocer las propiedades de las soluciones y del estado líquido. En medio acuoso existe un amplio intervalo de solubilidades de gases en fracción molar a presión atmosférica: desde menos de 10⁻⁵ (como el SF₆) hasta 0,2 (como el NH₃). Dentro de este intervalo se encuentra un gran conjunto de gases polares y no polares de distinto tamaño, forma y polarizabilidad ³. Cuando el soluto tiene una solubilidad inferior de 10⁻⁴ en fracción molar, los tratamientos teóricos se facilitan porque la solución se aproxima al comportamiento de una solución ideal.

En relación al campo de interés práctico, la solubilidad de gases en líquidos se emplea en el área de la fisiología ⁴: la respiración es el proceso en el que en solución acuosa se intercambian el CO₂ y el O₂, la concentración de oxígeno en la sangre se monitorea en muchas intervenciones quirúrgicas. El conocimiento de la solubilización de gases en líquidos es importante en las ciencias ambientales, en el tratamiento de aguas naturales y residuales (como la demanda bioquímica de oxígeno o DBO), y en el control de la polución ⁵. En la oceanografía reviste gran importancia, porque en el océano se acumulan gases atmosféricos (CO₂, CH₄) ^{3,6}, así como en la limnología ⁷. Muchos procesos industriales requieren del conocimiento de la solubilidad de gases en líquidos: la síntesis de compuestos químicos, la metalurgia ⁸, la manufactura de plásticos, vidrios y de fertilizantes, y la fabricación de bebidas carbonatadas, entre otras.

Como parte inicial de este trabajo de tesis doctoral, se diseñó y construyó un equipo para la determinación de solubilidades de gases en líquidos a presión atmosférica con temperatura ajustable en el rango de 10 a 25 °C. El equipo monitorea la saturación de un líquido a través del descenso de presión del gas a volumen constante (proceso isocórico). El valor de solubilidad se calcula por extrapolación a 101325 Pa de presión parcial de gas, de acuerdo con la ley de Henry. Para comprobar la idoneidad del mismo, se determinó la solubilidad de argón y nitrógeno en agua pura desde 283,15 hasta 298,15 K, encontrando en general buena concordancia con los valores de solubilidad previamente reportados.

2

Durante la fase de construcción del equipo se estableció una nueva forma de calcular el volumen libre de una cámara, mediante el análisis del balance de materia de un gas ideal en un proceso de expansión isotérmica ⁹. Esta metodología se empleó para determinar el volumen de la celda de solubilidad del equipo, dado que no se pudo aplicar el cálculo del volumen por dimensiones y geometría ¹⁰, ni la evaluación gravimétrica de un líquido de densidad conocida que llena el espacio de la cámara ¹¹⁻¹³.

Como parte final de este trabajo, y con el propósito de continuar con el estudio de propiedades fisicoquímicas de soluciones acuosas de sales de amonio cuaternario en el que ha venido trabajando el grupo de investigación ¹⁴⁻¹⁷, se determinó la solubilidad de argón y nitrógeno a 101325 Pa de presión parcial de gas en soluciones acuosas de bromuro de dodeciltrimetilamonio (BDTA), bromuro de tetrabutilamonio (BTBA), y bromuro de tetradeciltrimetilamonio (BTTA) en función de la concentración de soluto entre 283,15 y 298,15 K.

Las tres sales de amonio escogidas constituyen una serie en la que a partir del BDTA ($C_{15}H_{34}NBr$), se va incrementando en su fórmula molecular un grupo metileno (- CH_2 -). En la primera adición se llega al BTBA ($C_{16}H_{36}NBr$), y en la segunda al BTTA ($C_{17}H_{38}NBr$). No obstante, la geometría de las sales es distinta. El BTBA es simétrico y presenta el mismo número de átomos de carbono en cada una de sus cuatro cadenas. Por otro lado, el BDTA y el BTTA son compuestos asimétricos que contienen una cadena alifática lo más larga posible, porque se unen tres grupos metilo al átomo de nitrógeno (ver figura 1). Son reconocidos como surfactantes con concentraciones micelares críticas muy bajas (0,015 mol·kg⁻¹ para el BDTA y 0,004 mol·kg⁻¹ para el BTTA a 298,15 K (ver anexo C)).

El estudio del comportamiento del BTBA en soluciones acuosas ha sido muy extenso ¹⁸⁻ ²⁰, porque es una sal que contiene un ión hidrofóbico. Las soluciones acuosas de BTBA aumentan la solubilidad de solutos no polares, pero el mecanismo por el cual el BTBA solubiliza dichos compuestos, ha sido tema de discusión.

Figura 1: Representación de las estructuras moleculares de las sales de amonio cuaternario empleadas en este trabajo: Bromuro de dodeciltrimetilamonio (BDTA), bromuro de tetrabutilamonio (BTBA) y bromuro de tetradeciltrimetilamonio (BTTA)

Algunos estudios sugieren la asociación entre cationes de TBA⁺ ó entre aniones y cationes como se menciona a continuación: Formación de un par catión-anión basados en medidas de coeficientes osmóticos y de actividad, y espectroscopia dieléctrica; formación de un par catión-catión por difracción de neutrones y difracción de rayos X de pequeño ángulo (SAXS), (citado por Bhowmik y colaboradores ²¹). Kühnel y Kaatze ²² en 1996 investigaron por espectrometría de absorción ultrasónica en un rango de frecuencia entre 300kHz y 5 GHz, entre otros, el comportamiento de las soluciones acuosas de BTBA a 298,15 K para una concentración de (0,175 – 3,0) mol·kg⁻¹. En las soluciones de esta sal, los resultados encontrados se explican incluyendo un proceso de relajación que está asociado con la propagación del sonido en medios no homogéneos (relajación de Hill), por lo que los autores sugieren que el BTBA en el agua se puede asociar entre los cationes de TBA⁺ ó a través de pares iónicos. En el año 2008, Dopierala y Prochaska ²³ mediante estudios de tensión superficial estática y dinámica, difracción dinámica de luz y conductividad eléctrica, han sugerido que las interacciones en solución acuosa del BTBA a temperatura ambiente, posibilitan la formación de agregados moleculares tipo micela.

De acuerdo con los autores, dichos agregados se forman a concentraciones menores de $0,01 \text{ mol} \cdot L^{-1}$.

4

Por otra parte, en el año 2012, Bhowmik y colaboradores ²¹ aplicaron varias técnicas de difracción de neutrones a una solución acuosa de BTBA 0,75 mol·L⁻¹. El estudio conjunto de difracción de neutrones de pequeño ángulo (SANS), difracción de neutrones, tiempo de vuelo y eco-espín, no permitieron evidenciar alguna agregación entre los cationes de TBA⁺.

En este trabajo se ha comparado el comportamiento de la solubilidad de argón y nitrógeno en función de la temperatura en soluciones acuosas de BTBA con el comportamiento de la solubilidad de argón y nitrógeno en soluciones acuosas de BDTA y BTTA cuyas concentraciones exceden la CMC, con el fin de evaluar si el proceso de solubilización en el BTBA se realiza por la formación de micelas de esta sal. El argón y el nitrógeno son gases que tienen distinta polarizabilidad y tamaño, el primero es monoatómico y el segundo diatómico. También, son gases fácilmente manipulables, y se encuentran en el comercio con un alto grado de pureza.

En todos los sistemas estudiados, la solubilidad de argón y nitrógeno en fracción molar aumenta con la concentración de surfactante, pero el mecanismo de solubilización de los gases es distinto en los sistemas con BTBA, en comparación con los sistemas de BDTA y BTTA. Se observaron grandes diferencias en el comportamiento de la solubilidad de los gases por efecto de la concentración de soluto y de la temperatura. El incremento de la solubilidad de argón y nitrógeno en las soluciones acuosas de BDTA y BTTA se relacionó con la formación de micelas y la capacidad que éstas tienen para solubilizar solutos. En el BTBA, por el contrario, el incremento de la solubilidad de los gases no pudo ser atribuido a la formación de micelas. Basados en el modelo de separación de fases, se calculó la solubilidad de los gases en las micelas, siendo en general mayor en las micelas de BTTA que en las micelas de BDTA.

1. Aspectos teóricos

1.1 Estructura del agua líquida y de sus soluciones

El término estructura en fisicoquímica hace referencia al arreglo o a la disposición de las moléculas en el espacio. En los líquidos, se aplica el término ya que, aunque sus moléculas se encuentran en constante movimiento, existe un arreglo local que se extiende más allá de algunas capas de solvatación ²⁴.

El arreglo tetraédrico local de las moléculas en el agua sólida (hielo) se ha podido caracterizar en detalle, pero la estructura del agua líquida aún está muy lejos de ser entendida y representa un campo abierto de interés ²⁵. El comportamiento de las propiedades fisicoquímicas del agua líquida difiere notoriamente del presentado por otros líquidos simples. Estas desviaciones han sido comúnmente denominadas anomalías. Martin Chaplin ²⁶ en su página web "*Water structure and Science*" las presenta muy detalladamente. Aquí, vale la pena destacar la temperatura de máxima densidad a 3,98 °C, el mínimo en la capacidad calorífica a 56,00 °C (muy cerca de la mitad del rango de temperatura del estado líquido), la compresibilidad isotérmica, la viscosidad y el coeficiente de difusión; porque en su conjunto representa un gran desafío a la hora de corroborar los modelos que le han desarrollado a la molécula de agua ²⁵.

No cabe duda que la interacción intermolecular más importante en el agua líquida es el enlace de hidrógeno. Si bien esta interacción se manifiesta en un gran número de moléculas, en el agua, una sola molécula dispone de cuatro sitios activos, dos sitios aceptores y dos sitios donadores de protones, lo que posibilita la formación de cuatro enlaces de hidrógeno con las moléculas de agua circundantes. La molécula de agua es tetra funcional. Por esta razón, en el agua líquida se posibilita la creación de agregados o redes tridimensionales ²⁷. Curiosamente, existen reportes de moléculas de agua formando 5 enlaces de hidrógeno ²⁵. También, el enlace de hidrógeno es sorprendentemente flexible, tanto así que hasta el momento se han podido caracterizar trece distintas formas de agua sólida ²⁸.

Tradicionalmente, el enlace de hidrógeno se ha considerado como una interacción dipolo-dipolo entre un átomo de hidrógeno que presenta una carga parcial positiva debida a la formación de un enlace covalente con un átomo electronegativo (oxígeno, nitrógeno, flúor, entre otros) y un átomo electronegativo con carga parcial negativa. Evidencias experimentales muestran que este modelo no es el más adecuado para representar la naturaleza del enlace de hidrógeno dado que la fuerza, la formación y la ruptura de los enlaces no ocurre de manera independiente, se realiza más bien de manera sincronizada, esto es, cooperativamente. La distancia entre las moléculas de agua enlazadas varía de acuerdo al número de enlaces de hidrógeno: en el dímero de agua la distancia O-O es aproximadamente 2,95 Å, en el trímero la distancia decrece aproximadamente hasta 2,85 Å, en el tetrámero cae aproximadamente a 2,79 Å y en el pentámero (hielo Ih) llega a 2,75 Å ²⁵.

Por lo mencionado anteriormente, vale la pena recalcar que la funcionalidad y la cooperatividad son dos propiedades muy importantes que influyen en el comportamiento del agua líquida y de sus soluciones acuosas ²⁹.

En 1892, Wilhelm Röntgen intentó explicar el comportamiento de máxima densidad del agua a partir de la hipótesis de que en el agua líquida coexistían pequeños cristales de agua suspendidos en un líquido de moléculas individuales; dos especies de distinta densidad y cuyo equilibrio se veía afectado por la temperatura ^{30,31}.

En 1934, Cox y Wolfenden utilizaron la mismas ideas para explicar el efecto de los solutos iónicos sobre la estructura del agua ³². Si un soluto iónico actúa como "semilla de nucleación" para que aumente la cantidad de agua estructurada se denomina "formador de estructura" o cosmótropo. Por el contrario, si un ion destruye aquella estructura tetraédrica, se considera "disruptor de estructura" o caotrópico ³³⁻³⁵. En general, los iones pequeños y de carga múltiple son formadores, mientras que los iones grandes y monovalentes son disruptores. Se tiene la idea de que los solutos iónicos presentan un efecto de largo alcance sobre los enlaces de hidrógeno de las moléculas de agua; los iones pueden fortalecer o debilitar dichas interacciones. Este concepto se fundamenta principalmente en la medida de la viscosidad y de las movilidades iónicas de sus soluciones ³².

La estructura del agua líquida se determina en primera instancia por los experimentos de difracción de neutrones, de rayos X y de electrones o con EXAFS (absorción extendida de rayos X de estructura fina) 36-46. La información estructural más importante que se puede obtener del análisis de los patrones de difracción es la función de distribución radial del par g(r), la cual establece promediado en el tiempo y en el ensamble, la probabilidad de encontrar una molécula de agua (evaluado a partir del átomo de oxígeno o de uno de los átomos de hidrógeno) a una distancia r de la molécula de referencia. En soluciones acuosas de iones, la molécula de referencia puede ser el agua o un ion. Para pequeñas distancias, q(r) tiende a cero debido a las fuerzas repulsivas que se presentan al encontrarse muy cerca. A distancias mayores, la función de distribución pasa a través de máximos y mínimos que corresponden a las subsecuentes capas de solvatación. El número de moléculas en la primera capa de hidratación puede ser calculado a partir de g(r) integrando la misma, desde 0 hasta la distancia del primer mínimo. Sin embargo, la existencia de las capas no ofrece información sobre la interacción solvente-solvente o ion-solvente, porque aún en un sistema constituido por moléculas de potencial de esfera rígida se encontrará tal distribución. La distancia entre capas, y la orientación de las moléculas de solvente dentro de las mismas, es el resultado de las interacciones intermoleculares ³⁶. A partir de los estudios de difracción, y sobre todo mediante la evaluación de las distancias O-O, se han encontrado en promedio 4,7 moléculas de agua alrededor de una molécula central a una distancia de 2,75 Å. No obstante, las funciones de distribución carecen de información angular y no consideran la distorsión de los enlaces de hidrogeno²⁵. También, ha causado cierta confusión el hecho de que existan diferencias en la normalización de los resultados de difracción dentro de un mismo grupo de investigación 47.

En términos generales existe una gran variedad de técnicas experimentales para estudiar las propiedades fisicoquímicas del agua líquida y de sus soluciones. En este sentido, se destacan las técnicas espectroscópicas de resonancia magnética nuclear (desplazamiento químico ⁴⁸, relajación espín-espín y espín-red ⁴⁹), las espectroscopías IR ⁵⁰ y Raman ⁵¹⁻⁵³, la espectroscopía dieléctrica ⁵⁴⁻⁵⁶ y las propiedades termodinámicas y de transporte ⁵⁷⁻⁵⁹.

Por otra parte, y especialmente en las últimas tres décadas, se ha realizado un gran trabajo mediante técnicas de simulación por computador, las cuales han propendido

por la explicación de las propiedades fisicoquímicas del agua y de sus soluciones en términos estructurales ⁶⁰⁻⁶⁸.

Recientemente, técnicas de espectroscopía ultra rápida han permitido estudiar la dinámica del enlace de hidrógeno en las moléculas del agua líquida (interacción dipolo-dipolo) y en las capas de hidratación de los iones (interacción ion-dipolo) en una escala de tiempo muy pequeña, en el orden de los femtosegundos (10⁻¹⁵ s). Sorprendentemente, se ha podido comprobar que el agua en estado líquido presenta un entretejido dinámico de enlaces de hidrogeno en continua evolución en una escala de tiempo muy pequeña; la ruptura y formación de un enlace de hidrogeno está en el orden de los picosegundos (10⁻¹² s). Tampoco se ha podido evidenciar el efecto de los iones sobre la estructura del agua más allá de la primera capa de hidratación ^{25,31,69-74}.

A pesar de todos los esfuerzos realizados, existe mucha confusión en el entendimiento de la estructura del agua y de los iones hidratados porque muchos de los resultados son contradictorios, sobre todo porque depende del método considerado, y aún no existe información clara y concisa de las propiedades estáticas y dinámicas de las interacciones moleculares involucradas ⁷⁵. Por esta razón, sigue siendo un tema de controversia y debate lo que le ocurre a la estructura del agua luego de que el hielo es fundido.

1.2 Solubilidad de gases en líquidos

1.2.1 Cantidades empleadas para expresar la solubilidad de gases en líquidos

Se han empleado varias cantidades para representar la solubilidad de gases en líquidos ^{3,76}. Battino y Clever ³, en su capítulo de libro recomiendan que los nuevos valores de solubilidad se expresen por lo menos en alguna de las siguientes tres cantidades, por ser en principio las más aplicables: la fracción molar a una presión estándar, el coeficiente de Ostwald y la constante de Henry. En las dos últimas se debe mencionar el rango de presión de validez. El solvente se representa por la letra A y los solutos se comienzan a nombrar desde la letra B. La fracción molar para un soluto B se define como:
$$x_{\rm B} = n_{\rm B} / \sum n_i \tag{1.1}$$

Donde $n_{\rm B}$ es el número de moles del soluto B y n_i en número de moles de cada compuesto en la solución.

El coeficiente de Ostwald se ha definido de cuatro maneras diferentes:

$$L_V^0 = (V_{\rm g}/V_L^0)_{\rm eq.}$$
(1.2)

Donde V_{g} es el volumen de gas absorbido por un volumen V_{L}^{o} de líquido puro a una temperatura y presión total *P* especificada.

$$L_V = (V_{\rm g}/V_L)_{\rm eq.}$$
 (1.3)

Donde V_{g} es el volumen de gas absorbido por un volumen V_{L} de solución saturada a una temperatura y presión total *P* especificada.

$$L_{c} = (c_{\rm g}^{L}/c_{\rm g}^{v})_{\rm eq.}$$
(1.4)

Donde c_g^L es la concentración de gas en mol·L⁻¹ en la fase líquida, y c_g^v la concentración del gas en mol·L⁻¹ en la fase de vapor a una temperatura y presión total *P* especificada.

$$L_{c^{\infty}} = \lim_{c_{g}^{L} \to 0} (c_{g}^{L}/c_{g}^{\nu})_{\text{eq.}}$$

$$(1.5)$$

Los términos son similares al de la ecuación 1.4 excepto que las concentraciones se calculan en el límite de concentración infinitamente diluida.

Las diferencias para cada una de estas definiciones son despreciables en la medida que se asuma un comportamiento ideal del gas sin expansión del solvente luego de su solubilización. La constante de Henry es la cantidad termodinámica básica que describe la solubilidad de un gas B en un solvente A con una presión de vapor de saturación p_A^v a una temperatura T^3 :

$$H_{B,A}(p_A^{\nu}) + \lim_{p \to 0} (f_B / x_B) = \phi_B p_B / \gamma_B x_B$$
(1.6)

Esta ecuación representa de forma rigurosa el equilibrio del gas B en la fase de vapor, de fugacidad $f_{\rm B}$ y coeficiente de fugacidad $\phi_{\rm B}$, con la solución saturada de concentración $x_{\rm B}$ y coeficiente de actividad $\gamma_{\rm B}$.

Rutinariamente, la constante de Henry se emplea en un sentido empírico para describir la dependencia de la solubilidad del gas por efecto de su presión parcial en un rango de presión limitado. De esta manera, la ecuación 1.6 se transforma a ⁷⁶:

$$H_{\rm B,A} = \lim_{x_B \to 0} (f_B / x_B) \tag{1.7}$$

En muchas ocasiones, para representar la solubilidad del gas, se utiliza una unidad de concentración distinta a la fracción molar. Existe entonces una constante de Henry para cada tipo de concentración. También, se suele usar la ecuación 1.7 en su forma inversa. Sin importar el caso en particular, la constante de Henry debe contener unidades de presión ³.

1.2.2 Aspectos termodinámicos de la solubilidad de gases en líquidos

Si dos compuestos puros se ponen en contacto, sin importar su naturaleza, ocurre una mezcla entre ellos. Puede ser infinitamente pequeña (como la producida entre dos sólidos) o muy grande, cuando se alcanza la mezcla total. La solubilidad de una sustancia en otra representa la cuantificación del grado de mezcla que ocurre cuando las sustancias son puestas en contacto y se les deja el tiempo suficiente para que se alcance el equilibrio termodinámico. La disolución es un modelo que al ser utilizado permite describir dicho proceso⁷⁷.

Desde el punto de vista termodinámico, el proceso de mezcla se evalúa a partir de las propiedades de los compuestos puros y de la mezcla. De acuerdo con las

recomendaciones de la IUPAC del 2008⁷⁸, la solubilidad se define como la composición analítica de una mezcla o solución que se encuentra saturada de uno de los componentes de la solución, y se expresa en términos de la proporción del compuesto designado a una temperatura y presión definidas. El término solubilidad también se emplea frecuentemente en un sentido más general para relatar el proceso de la disolución.

Cuando el soluto gaseoso B alcanza el equilibrio en un sistema constituido por una fase líquida y una fase de vapor, el valor de su potencial químico es el mismo en cada fase:

$$\mu_{\rm B}^{\alpha}(T, {\rm p}, x_i^{\alpha}, \dots, x_c^{\alpha}) = \mu_{\rm B}^{\beta}(T, {\rm p}, x_i^{\beta}, \dots, x_c^{\beta})$$
(1.8)

En esta ecuación x_i^{α} y x_i^{β} son las fracciones molares de C-1 compuestos en el sistema. Al introducir la expresión analítica para los potenciales químicos se obtiene:

$$\frac{\Delta_{\rm sln}G_{\rm B}^0(T,{\rm p})}{RT} = \frac{\mu_{\rm B}^{0\beta} - \mu_{\rm B}^{0\alpha}}{RT} = -\ln\left(\frac{a_{\rm B}^\beta}{a_{\rm B}^\alpha}\right)$$
(1.9)

1.2.3 Dependencia de la solubilidad de gases en líquidos con la temperatura: cambios en las funciones termodinámicas

La relación entre la solubilidad y los cambios en las funciones termodinámicas se realiza a partir de la constante de equilibrio. La energía libre estándar de Gibbs viene dada por:

$$\Delta_{\rm sln}G_{\rm B}^0 = -RT\ln K = -RT\ln x_{\rm B} \tag{1.10}$$

Donde $x_{\rm B}$ es la solubilidad en fracción molar del gas en el equilibrio a 1,0132 bar o 1 atmósfera de presión parcial de gas, de acuerdo con el estado estándar empleado. La ecuación 1.10 utiliza la fracción molar del soluto en vez de la actividad, porque en soluciones muy diluidas, el coeficiente de actividad tiende a la unidad ($\gamma_{\rm B} \approx 1$). Se debe estudiar la solubilidad en función de la temperatura para poder calcular los cambios en la entropía y la entalpía estándar para el proceso de transferencia del gas, desde la fase de vapor hasta una solución hipotética de gas infinitamente diluida, ya que:

$$\Delta_{\rm sln} S_{\rm B}^0 = -\left[\partial (\Delta_{\rm sln} G_{\rm B}^0) / \partial T\right]_p \tag{1.11}$$

y:

$$\Delta_{\rm sln}H_{\rm B}^0 = \Delta_{\rm sln}G_{\rm B}^0 + T\Delta_{\rm sln}S_{\rm B}^0 \tag{1.12}$$

En la literatura se encuentran dos ecuaciones empíricas de gran uso para representar el comportamiento de la solubilidad del gas en función de la temperatura; son los polinomios de Clarke-Glew-Weiss (ecuación 1.13) y el de Benson-Krause (ecuación 1.14):

$$\ln x_{\rm B} = A + B/(T/100\rm{K}) + C\ln(T/100\rm{K}) + D(T/100\rm{K})$$
(1.13)

Donde A, B, C y D son coeficientes adimensionales.

$$\ln H_{B,A} = A + B/(T/K) + C/(T/K)^2 + D/(T/K)^3$$
(1.14)

Donde $H_{B,A}$ es la constante de Henry y A, B, C y D son coeficientes adimensionales.

1.2.4 Efecto de sal: Ecuación de Sechenov

El efecto de sal relaciona el cambio de la solubilidad de un no electrolito al modificar la fuerza iónica de una solución acuosa mediante la ecuación semi-empírica de Sechenov⁷⁶:

$$\log(s_0/s) = k_s I_s \tag{1.15}$$

Donde s_0 y s son las solubilidades del soluto no electrolito en agua pura y en solución salina respectivamente, k_s el parámetro ó constante de Sechenov, e I_s la fuerza iónica de la solución salina. En ciertos casos, se emplea el logaritmo natural en lugar del logaritmo común, así como distintos tipos de concentración en vez de la fuerza iónica ⁷⁹⁻⁸¹. Es común encontrar valores positivos de k_s que indican un efecto de salting-out. Cuando k_s tiene un valor negativo, se presenta un efecto de salting-in. Éste último en su gran mayoría se produce cuando el electrolito contiene un anión de alta polarizabilidad. Siempre es importante especificar las unidades de concentración empleadas, porque en algunos casos el signo de k_s puede invertirse si el valor de solubilidad se expresa con respecto a la solución o únicamente al agua, sobre todo

cuando son muy altos los volúmenes molares parciales de las sales empleadas (Conway y colaboradores, citado por Desnoyers y colaboradores ⁸²).

Dentro de los trabajos realizados para sistematizar resultados de efecto de sal, se encuentra el de Xie y colaboradores ⁸³, en el que se realiza una revisión de los datos de salting-out para la solubilidad de compuestos orgánicos en soluciones de sal a (293,15 y 298,15) K. En general se observan muchas discrepancias entre los valores para un mismo sistema. Ni y Yalkowsky ⁸⁴ relacionan las constantes k_s de salting-out de 101 compuestos en soluciones acuosas de cloruro de sodio. Ellos emplean como variables el volumen molar, la solubilidad acuosa y el coeficiente de reparto octanolagua, encontrando con ésta última propiedad la mejor correlación. De los 101 compuestos, sólo se consideran tres gases: metano, etano y etileno.

1.3 Surfactantes

1.3.1 Generalidades

Se les denomina surfactantes a las moléculas responsables de una marcada actividad superficial. Se caracterizan por presentar separadamente dentro de su estructura regiones polares y no polares. Esta separación produce una acumulación específica de sus moléculas en una interfase; la fracción polar de la molécula se ubica en la fase más polar de la interfase, mientras que la porción no polar en la fase menos polar. Los sistemas más estudiados, y a su vez, pertinentes para este trabajo, son los que involucran la interfase aire-agua.

En los surfactantes clásicos las regiones no polares están constituidas por una o más cadenas alifáticas largas, en su gran mayoría lineales y saturadas, aunque pueden ser ramificadas, cíclicas o parcialmente insaturadas. Su longitud oscila entre 10 y 18 átomos de carbono, conservando un número par, porque es de esta manera como se encuentran en la naturaleza. Moléculas con menos de 10 átomos de carbono en su cola no se consideran agentes solubilizantes efectivos, y si contienen más de 18 átomos de carbono, son demasiado insolubles en agua. En cualquiera de los casos, el grupo polar del surfactante debe ser lo suficientemente hidrofílico para mantener en solución a la región no polar de la molécula. Los surfactantes se clasifican de acuerdo

al tipo de cabeza de su estructura; puede ser iónica: catiónica, aniónica o zwiteriónica, o no iónica.

Los surfactantes aniónicos presentan grupos polares con carga eléctrica negativa. Se destacan los carboxilatos, sulfonatos y sulfatos. Los catiónicos, por el contrario, contienen carga eléctrica positiva. Dentro de esta categoría podemos mencionar los grupos amonio, amonio cuaternario y piridinio. En los surfactantes zwiteriónicos se combinan aniones con cationes. Los aminoácidos, las betaínas, las carnitinas y las fosfatidil colinas son los más representativos de este grupo.

Un surfactante no iónico, al carecer de carga eléctrica en su estructura, requiere de la presencia de muchos grupos polares como el hidroxilo y el éter, o la combinación de éstos para "igualar" el efecto producido por el de una carga eléctrica.

Los surfactantes tienen un amplio rango de aplicaciones en la industria de los polímeros, pinturas, adhesivos, cosméticos y muchos otros productos para el hogar. También en procesos de recolección de petróleo y en aplicaciones ambientales. Dada la capacidad para solubilizar otros compuestos, pueden ser empleados para controlar la velocidad y la trayectoria de varias reacciones químicas. También, los surfactantes se emplean como agentes de solubilización de muchos principios activos, con la ventaja adicional de controlar su liberación, incrementando su especificidad y reduciendo su toxicidad. La síntesis de nuevos materiales porosos con determinado tamaño de poro y forma utilizan micelas como plantillas supramoleculares, como en la construcción de celdas solares, baterías, tamices moleculares y en catálisis ^{77,85,86}. Los surfactantes catiónicos como el BDTA y el BTTA, se han empleado como vectores de liberación de genes ⁸⁷.

1.3.2 Concentración micelar crítica y formación de micelas

Se denomina concentración micelar crítica (CMC) a la mínima concentración de surfactante a partir de la cual se forman micelas. En la CMC, las propiedades fisicoquímicas de los surfactantes presentan cambios abruptos, como se puede observar en la gráfica 1-1. Por debajo de esta concentración, un surfactante iónico se comporta como un electrolito fuerte.

Una micela se puede definir como la agregación de un determinado número de moléculas de surfactante o monómero para constituir una estructura única. En medios acuosos, los grupos funcionales no polares de los surfactantes entran en contacto consigo mismos, mientras que las regiones polares se encuentran en contacto con el agua.

Gráfica 1-1: Variación de algunas propiedades fisicoquímicas para soluciones acuosas de surfactantes en función de la concentración. Tomado de Tadros ⁸⁸

El parámetro crítico de empaquetamiento (PCE) es un concepto que permite caracterizar la geometría de una micela. Depende de tres propiedades intrínsecas de la micela en relación a la cadena hidrocarbonada: volumen (ν), longitud máxima ($l_{máx}$) y área transversal (a), de la siguiente manera ⁸⁹:

$$PCE = v/l_{máx}a \tag{1.16}$$

De acuerdo al valor en el PCE, como lo muestra la tabla 1-1, las micelas pasan de la forma esférica a la forma cilíndrica, y posteriormente a la forma lamelar (ver figura 1-1).

Tabla 1-1: Dependencia del parámetro crítico de empaquetamiento sobre la geometría de una micela en medios acuosos. Tomado de Rosen⁸⁹

PCE	Estructura de la micela				
0 – 1/3	Esférica				
1/3 – ½	Cilíndrica				
1/2 – 1	Lamelar				

Figura 1-1: Algunas estructuras de micelas en medios acuosos. En orden descendente: esférica, cilíndrica y lamelar. Tomado de Holmberg y colaboradores ⁹⁰

Si la concentración de micelas es muy grande, el sistema tiende a organizarse de manera similar a los cristales líquidos nemáticos, y si la concentración es aún mayor, las micelas se asocian en capas de la misma manera que los cristales líquidos esmécticos. En cualquier caso, los grandes agregados micelares están separados por regiones acuosas y son sistemas más fluidos que los cristales líquidos de compuestos puros, porque las capas de agua actúan como lubricantes entre los agregados micelares. La agitación puede romper dichos agregados, pero inmediatamente se formará una nueva estructura. Se destaca la apariencia perlada en estos sistemas. En

realidad, no hay límite para este tipo de agregación, porque se pueden extender en cada una de las tres dimensiones ⁷⁷.

El tamaño y la forma de una micela está determinado por varios factores, entre los que se destacan el tipo de surfactante y su concentración, la temperatura, el pH, la presencia de solutos (iónicos y no iónicos) y de solventes ^{86,91-95}. Los surfactantes iónicos están expuestos a una repulsión electrostática entre sus cabezas, que genera el efecto contrario de agregación producido por las colas no polares. Existe un balance para esa repulsión, a partir de la interacción eléctrica con los iones de carga contraria que constituyen la capa de Stern de la doble capa eléctrica, y permite que las moléculas contenidas en las micelas puedan empacarse de una mejor manera. Con el fin de ilustrar la interacción eléctrica que se presenta sobre la superficie de una micela, en la figura 1-2 se muestran tres imágenes de una micela de bromuro de deciltrimetilamonio, constituida por 43 moléculas de surfactante. Allí se puede observar la forma en la que los contra iones y las moléculas de agua rodean su superficie. Las micelas se diferencian de los otros tipos de coloides porque en soluciones acuosas presentan un equilibrio de asociación-disociación entre los monómeros, las micelas y los contra iones.

Figura 1-2: Imágenes de una micela formada por monómeros de bromuro de deciltrimetilamonio. La imagen superior izquierda muestra a las 43 moléculas de surfactante que conforman la micela. La imagen superior derecha muestra a la micela rodeada con los contra iones y las moléculas de agua. La imagen inferior muestra el corte transversal de la micela de 12 Å de ancho. Imágenes tomadas de Hargreaves y colaboradores⁸⁶.

El número de moléculas requeridas para saturar la superficie de la solución usualmente es demasiado pequeño e insignificante para ser tenido en cuenta en el valor de la CMC. Para conocer la concentración de las micelas en una solución es necesario saber la concentración total de surfactante y la concentración de monómero libre. Esta última suele ser la CMC. La gráfica 1-2 muestra el equilibrio del monómero entre la forma libre (solubilizada) y la forma micelar.

Gráfica 1-2: Concentración de surfactante en forma de monómero y de micela en función de la concentración de surfactante. Tomado de Yalkowsky⁷⁷

El número de agregación (*N*) representa el número de moléculas de surfactante que se encuentran asociados para constituir una micela. Para una micela esférica y considerando a la región no polar de la misma, *N* es igual a la razón del volumen de una micela (V_{mic}) y el volumen de una molécula de surfactante (ν):

$$N = (V_{\rm mic}/\nu) = (4\pi R_{\rm mic}^3/3\nu)$$
(1.17)

Donde $R_{\rm mic}$ es el radio de la micela. El radio de una micela esférica no puede ser mayor al de la longitud de la cola de la molécula de surfactante (l_s). En las cadenas saturadas la longitud suele ser aproximadamente el 80% de su forma totalmente estirada ⁸⁹.

$$l_{\rm s} \le (1,50+1,265n_{\rm c}){\rm \AA} \tag{1.18}$$

Y para el volumen de una molécula de surfactante:

 $v = (27,4 + 26,9n_{\rm c}){\rm \AA}^3 \tag{1.19}$

1.3.3 El modelo de acción de masas frente al modelo de equilibrio de fases

De acuerdo con la termodinámica clásica, la energía libre estándar de micelización, a una temperatura y presión, está relacionada directamente con la concentración micelar crítica. Sin embargo, se han empleado dos modelos distintos para describir el proceso de formación de micelas: el modelo de separación de fases o pseudofases y el modelo de acción de masas o de equilibrio de complejación ^{77,96,97}.

Los dos modelos se explican a partir del ejemplo expuesto en el artículo de revisión de Blandamer y colaboradores ⁹⁶:

Supongamos que un vaso contiene n_A moles de agua líquida a T y P definida y constante. A él ingresan controladamente cantidades infinitesimales de soluto n_B^0 , donde $n_A \gg n_B$.

En un primer caso, el soluto B es propanona. Una vez introducida la primera cantidad de soluto, se establece rápidamente un equilibrio químico entre las formas ceto (CT) y enol (EN):

$$\left[\mathsf{CT}_{(\mathsf{ac})}\right] \leftrightarrows \left[\mathsf{EN}_{(\mathsf{ac})}\right] \tag{1.20}$$

En este equilibrio, αn_B^0 se encuentran en forma EN, y $(1 - \alpha)n_B^0$ se encuentran en forma CT, donde α es el grado de reacción. Se tiene entonces:

 $\mu^{\text{eq}}(\text{CT}_{\text{ac}}; (1 - \alpha)n_{\text{B}}^{0}) = \mu^{\text{eq}}(\text{EN}_{\text{ac}}; \alpha n_{\text{B}}^{0})$ (1.21)

Si se añade una nueva cantidad infinitesimal, la propanona se distribuye nuevamente entre las formas ceto y enol, con el fin de mantener al mínimo la energía libre del sistema. Esta condición se repite cada vez que se introduzca una nueva cantidad de soluto. La anterior consideración utiliza un modelo de acción de masas de una solución acuosa que contiene propanona.

En el segundo caso, el soluto B es un sólido, el cloruro de plata. Si se introduce una cantidad infinitesimal de n_B^0 , el solvente disocia los iones y se produce una solución acuosa de iones $Ag_{(ac)}^+$ y $Cl_{(ac)}^-$. Si se sigue adicionando soluto, los iones se seguirán disolviendo hasta que su concentración alcance el límite de solubilidad, la cual está determinada por la naturaleza del solvente, la temperatura, la presión y la naturaleza del soluto. De ahí en adelante, el sistema estará constituido por dos fases, y la concentración de los iones $Ag_{(ac)}^+$ y $Cl_{(ac)}^-$ permanecerá constante sin importar la cantidad de soluto adicionado, ya que sólo se aumentará la cantidad de sólido dentro del sistema. De esta manera, el equilibrio químico se puede plantear así:

$$AgCl_{(s)} \rightleftharpoons \left[Ag_{(ac)}^{+}\right] + \left[Cl_{(ac)}^{-}\right]$$
(1.22)

Con lo que:

$$\mu^{\text{eq}}\left(\text{AgCI}_{(s)}\right) = \mu^{\text{eq}}(\text{Ag}_{(ac)}^{+}, \text{CI}_{(ac)}^{-}; [\text{Solubilidad}])$$
(1.23)

En términos de los modelos empleados en los sistemas micelares, el segundo caso representa al modelo de equilibrio de fases. En él, el exceso de monómeros, o la saturación de monómeros en el sistema, genera la aparición de micelas en lugar de gotas de un líquido inmiscible o de cristales. Por esta razón, el modelo de separación de fases considera a las micelas como otra fase que se encuentra dispersa en la fase acuosa. La concentración de surfactante en la forma de monómero $[S_1]$ y en la forma micelar $[S_m]$ para determinada concentración total de surfactante $[S]_0$, se puede representar por medio de las siguiente función ⁹⁸:

$$[S_1] = \begin{cases} [S]_0, [S]_0 \ll \operatorname{cmc} \\ \operatorname{cmc}, [S]_0 \gg \operatorname{cmc} \end{cases}$$
(1.24)

$$[S_m] = [S]_0 - [S_1] \tag{1.25}$$

1.3.4 Solubilización por surfactantes

La cuantificación del proceso de solubilización por surfactantes ha sido trabajada por muchos investigadores quienes han empleado un conjunto muy diverso de unidades. Explicar este fenómeno resulta muy complicado, por el hecho de que las micelas no son homogéneas y los distintos solutos son solubilizados en distintas regiones de las mismas. No obstante, el proceso en general se puede representar por el mismo tipo de gráfica y ecuación, sin tener en cuenta el sistema de unidades empleado y la región en la cual se ubica el soluto dentro de la micela (ver gráfica 1-3).

Gráfica 1-3: Comportamiento general que describe el proceso de solubilización mediado por surfactantes: concentración de soluto solubilizado ([sto]) en función de la concentración de surfactante. Tomado de Rosen ⁸⁹

Concentración de surfactante

La solubilidad del soluto es muy cercana a su solubilidad acuosa para todas las concentraciones inferiores de la CMC. Al comparar la gráfica 1-2 con la gráfica 1-3 se observa que el comportamiento es similar al proceso de micelización del surfactante, ya que es justamente este proceso el que permite la solubilización del soluto. Si el soluto no se solubiliza en presencia de los monómeros, la cantidad de soluto solubilizado dependerá únicamente de la cantidad de las micelas presentes. Una vez el surfactante alcance la CMC, el soluto se comenzará a solubilizar. Como la cantidad de micelas crece proporcionalmente a la concentración de surfactante, de la misma

manera aumenta la concentración de soluto solubilizado. El proceso de solubilización se aproxima de una mejor manera al modelo de equilibrio de fases o pseudofases ⁷⁷.

La ubicación del soluto solubilizado en la micela depende de la naturaleza del mismo, y define el tipo de interacción que se presenta entre las moléculas de soluto y de surfactante. La información se puede obtener con estudios de difracción de rayos X, de espectroscopía U.V. y de fluorescencia, y de espectrometría RMN realizados al soluto en las soluciones acuosas antes y después del proceso de solubilización. Los estudios de difracción permiten obtener los cambios en las dimensiones de las micelas, mientras que los espectros U.V., de RMN y de fluorescencia indican los cambios en el ambiente con el que interactúa el soluto. Los compuestos con baja polarizabilidad, como el argón y el nitrógeno, se ubican preferentemente en la región central de la micela, donde permanecen las cadenas hidrocarbonadas de las moléculas de surfactante, como lo muestran los espectros U.V y de RMN ⁹⁰.

2. Antecedentes

2.1 Algunas propiedades físicas de argón y nitrógeno en soluciones acuosas a 298,15 K

Tabla 2-1:Polarizabilidad, volumen molar y área molar superficial de argón ynitrógeno en soluciones acuosas.Tomado de Battino y Seybold 4

Gas	Polarizabilidad (Å ³)	Volumen molar ¹ (mL·mol⁻¹)	Área molar superficial¹ (cm²⋅mol⁻¹)
Argón	1,64	22,09	38,07
Nitrógeno	1,74	23,59	40,96

1. Valores calculados por el autor a través del programa Spartan 10

2.2 Solubilidad de argón y nitrógeno en agua

A continuación se muestran los resultados más representativos de la solubilidad de argón y nitrógeno en agua a 101325 Pa de presión parcial de gas en la escala de fracción molar. En la tabla 2-2 se encuentra el sistema argón-agua, y en la tabla 2-3 el sistema nitrógeno-agua.

Investigadores		Tempera	atura (K)	Método	Rof	
investigadores	283,15	288,15	293,15	298,15	Metodo	ixel.
Krause y Benson, 1989	3,3736	3,0326	2,7568	2,5313	Benson-Krause ¹	99
Rettich y colaboradores, 1992	3,3768	3,0352	2,7583	2,5319	Benson-Krause ¹	100
Battino y colaboradores, 2011				2,516	Estimado por los autores	7

Tabla 2-2: Valores de solubilidad en fracción molar ($x \cdot 10^5$) reportados para el argón en agua a 101325 Pa de presión parcial a las temperaturas de estudio de este trabajo

1. El valor de la precisión en la medida empleando este método es cercano al 0,02%³

Tabla 2-3: Valores de solubilidad en fracción molar ($x \cdot 10^5$) reportados para el nitrógeno en agua a 101325 Pa de presión parcial a las temperaturas de estudio de este trabajo

Investigadores		Tempera	atura (K)	Mátodo	Pof	
Investigadores	283,15 288,1		293,15	298,15	Metodo	1.01.
Rettich y colaboradores, 1984	1,5265	1,3842	1,2699	1,1774	Benson-Krause ¹	101
Battino y colaboradores, 2011				1,173	Estimado por los autores	7

1. El valor de la precisión en la medida empleando este método es cercano al 0,02%³

En relación a la solubilidad de argón y nitrógeno en agua pura, además de los estudios anteriormente mencionados, vale la pena nombrar la recopilación de los resultados encontrados hasta el año de 1966 por Battino y Clever en su artículo de revisión ¹⁰², la relación O_2/N_2 y O_2/Ar en agua pura a presión atmosférica entre 292,15 y 293,15 K determinada por Emerson y colaboradores ¹⁰³, y el estudio de solubilidad de argón en agua en función de la temperatura (298-561 K) y de la presión (3-30 bar) de Potter y Clynne ¹⁰⁴.

2.3 Solubilidad de gases en soluciones acuosas de BTBA

El bromuro de tetrabutilamonio pertenece a la familia de las sales simétricas de los haluros de tetralquilamonio (R₄N⁺ X⁻). Estos compuestos han sido ampliamente estudiados. En la literatura se encuentra un capítulo de libro que resume las propiedades fisicoquímicas de las soluciones acuosas de estos compuestos ¹⁸, y un artículo de revisión aún más completo, porque incluye los estudios en sistemas no acuosos ¹⁹. Ambos trabajos fueron escritos por W-Y. Wen. Se destacan las propiedades termodinámicas y de transporte, las propiedades espectroscópicas y la revisión de los modelos que intentan explicar el comportamiento en estas propiedades. Recientemente, Marcus ²⁰ ha publicado un nuevo artículo de revisión que recopila las principales propiedades de las soluciones acuosas y no acuosas de los iones de tetralquilamonio a dilución infinita.

Estas sales se han estudiado a través de series sistemáticas para evaluar el efecto de cadena por la introducción de un grupo metileno sobre cada uno de sus cuatro sustituyentes. Por ejemplo, para realizar una investigación se utilizan los bromuros de

tetrametil, tetraetil, tetrapropil y tetrabutilamonio. Este tipo de solutos son muy interesantes porque a diferencia de la mayoría de las sales que disminuyen la solubilidad de compuestos no iónicos (salting-out), ellos permiten la solubilización de los mismos (salting-in). El cloruro de guanidinio y el tiocianato de sodio también presentan este efecto ¹⁰⁵. W-Y. Wen se refiere a las sales de tetralquilamonio con el término de "pseudo-surfactantes" ¹⁸. Aparte de representar un modelo de iones que van cambiando gradualmente su tamaño, estas sales tienen muchas aplicaciones en el campo de la química, entre las cuales se encuentran los procesos de catálisis de transferencia de fase, y su uso como cationes hidrofóbicos para precipitar aniones ²⁰.

Muchos investigadores han intentado explicar el efecto de salting-in producido por las sales de tetralquilamonio de varias maneras. Desnovers y colaboradores ⁸² mencionan los siguientes casos: fuerzas de dispersión entre los grandes cationes y los solutos no electrolitos (Bockris y colaboradores); teoría de McDevit y Long con volúmenes intrínsecos del catión R₄N⁺ menores a los correspondientes volúmenes molares parciales (Deno y Spink): asociación estructural entre el no electrolito y las coesferas del catión R_4N^+ (Desnoyers y colaboradores); teoría de partículas a escala (SPT) (Feillolay y Lucas); y tensión superficial (Aveyard y Heselden). Por otra parte, Lucas y Trobriand ¹⁰⁶, haciendo uso de la teoría SPT, calcula las constantes de Sechenov de los hidrocarburos simples en soluciones acuosas de R₄NBr. También vía SPT, Graziano¹⁰⁷ intenta explicar el efecto de salting-in a través del trabajo reversible necesario para crear una cavidad dentro del sistema. Recientemente Marcus ¹⁰⁸, ha propuesto algunas ecuaciones para calcular el valor de las constantes de Sechenov de los compuestos orgánicos sólidos y líquidos en soluciones acuosas de electrolitos a partir de los volúmenes molares parciales de los iones y solutos, y la polarizabilidad de Kamlet/Taft o los parámetros de solubilidad de Hildebrand de los solutos.

En relación a los estudios de solubilidad de gases en soluciones de bromuro de tetrabutilamonio, y en general de las sales simétricas de tetralquilamonio, se encuentran en la literatura tres trabajos con gran variación en sus resultados.

El primer trabajo se realizó en el año de 1970 por Wen y Hung ¹⁰⁹, donde se determinó entre otros sistemas la solubilidad de metano en soluciones acuosas de BTBA en función de la concentración y de la temperatura a 101325 Pa de presión parcial. La incertidumbre reportada es del 0,3%. La solubilidad del gas se reportó en mL de metano (a 273,15 K y 101325 Pa) solubilizado por 1 kg de H₂O. Para efectos de

comparación, en la tabla 2-4 se muestran éstos resultados en moles de gas absorbidos por kg de H_2O a 101325 Pa de presión parcial, calculados de la siguiente manera:

$$s_{\rm B}^{\rm mol} = 1 \, \text{atm} \cdot (s_{\rm B}^{\rm mL} / 1000) / (0.08205736 \cdot \text{atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 273, 15 \, \text{K})$$
(2.1)

Donde $s_{\rm B}^{\rm mol}$ es la solubilidad de gas en moles absorbidos por kg de H₂O a 101325 Pa de presión parcial y $s_{\rm B}^{\rm mL}$ la solubilidad del gas en mL (a 273,15 K y 101325 Pa) absorbidos por kg de H₂O a 101325 Pa de presión parcial.

Wen y Hung también emplearon los bromuros de tetrametilamonio, tetraetilamonio y tetrapropilamonio para evaluar la solubilidad de metano. En todos los casos se encontró una dependencia no lineal entre la concentración de sal y el logaritmo de la razón de la solubilidad del gas entre el agua pura y la solución. Ellos calcularon el valor de la constante de Sechenov para una solución 1 mol·kg⁻¹ de sal (la gráfica 2-1 ilustra el comportamiento mencionado para el BTBA).

278,	15 K	288,15 K		298,15 K		308,15 K	
mol⋅kg ⁻¹ BTBA	mol _{CH₄} ⋅kg ⁻¹ _{H₂O} ⋅10 ³	mol∙kg⁻¹ BTBA	mol _{CH₄} ⋅kg ⁻¹ _{H₂O} ⋅10 ³	mol∙kg⁻¹ BTBA	mol _{CH₄} ⋅kg ⁻¹ _{H2O} ⋅10 ³	mol∙kg⁻¹ BTBA	mol _{CH₄} ⋅kg ⁻¹ _{H₂O} ⋅10 ³
0,000	2,209	0,000	1,718	0,000	1,400	0,000	1,184
0,096	2,224	0,096	1,735	0,096	1,430	0,099	1,225
0,098	2,226	0,102	1,739	0,099	1,429	0,192	1,259
0,100	2,223	0,103	1,739	0,194	1,443	0,415	1,315
0,187	2,227	0,185	1,746	0,415	1,487	0,537	1,347
0,201	2,226	0,403	1,761	0,526	1,509	0,693	1,401
0,409	2,200	0,523	1,759	0,704	1,542	0,993	1,500
0,526	2,184	0,703	1,772	1,022	1,639		
0,785	2,084	1,018	1,790				
0,990	2,058						

Tabla 2-4: Solubilidad de metano en función de la concentración de BTBA y de la temperatura a101325 Pa de presión parcial. Tomado de Wen y Hung ¹⁰⁹

A (298,15 y 308,15) K el que más solubilizó el metano fue el bromuro de tetrabutilamonio, seguido por el bromuro de tetrapropilamonio, el bromuro de tetraetilamonio y por último el bromuro de tetrametilamonio. Por otra parte, a 278,15 K el orden es el siguiente: tetraetil, tetrapropil, tetrabutil y tetrametil. En su discusión de

resultados mencionan que el incremento de la solubilidad del metano se debe a dos factores: el cambio en la estructura del medio (efecto indirecto) y la interacción hidrofóbica entre las cadenas hidrocarbonadas de la sal y el metano (efecto directo). Se exponen los modelos planteados hasta esa fecha para explicar cada uno estos factores, pero al final reconocen que faltan más herramientas para entender detalladamente el comportamiento observado. Según los autores, la explicación de los resultados encontrados seguirá siendo un tema de debate y discusión.

En 1972, Feillolay y Lucas ¹¹⁰ reportaron otros resultados para la solubilidad de metano en soluciones acuosas de BTBA. Ellos emplearon la misma unidad de concentración de Wen y Hung para reportar sus resultados, así que en la tabla 2-5, la solubilidad también se muestra en moles de gas por kg de H₂O, calculados a través de la ecuación 2.1. La incertidumbre reportada es del 0,5%. Como se puede observar, y se menciona en ese escrito, los resultados no concuerdan con los reportados por Wen y Hung ¹⁰⁹. Los autores no entienden las razones que originaron tal discrepancia, sobre todo cuando se emplearon equipos muy similares. Los resultados obtenidos se interpretan vía SPT.

Gráfica 2-1: Dependencia del logaritmo del cociente entre la solubilidad de metano en agua pura y en las soluciones de BTBA en función de la temperatura y de la concentración de sal en mol·kg⁻¹. Tomado de Wen y Hung¹⁰⁹

Conway y colaboradores ¹¹¹ en 1974 determinaron entre otros sistemas, la solubilidad de argón a 101325 Pa de presión parcial en soluciones acuosas de BTBA a 298,15 K.

Los resultados se muestran en la tabla 2-6. La concentración de sal y la solubilidad se reportaron en la escala de molaridad (mol·L⁻¹). Ellos diseñaron un equipo fundamentado en el método de extracción que permite cuantificar la cantidad de gas solubilizado a varias presiones. El valor en la incertidumbre reportado es del 2,3%.

Tabla 2-5: Solubilidad de metano en función de la concentración de BTBA y de la temperatura a 101325 Pa de presión parcial. Tomado de Feillolay y Lucas ¹¹⁰

298,	15 K	308,15 K			
mol⋅kg ⁻¹ BTBA	mol _{CH₄} ·kg ⁻¹ _{H2O} ·10 ³	mol∙kg⁻¹ BTBA	mol _{CH₄} ∙kg⁻¹ _{H₂O} ∙10 ³		
0,000	1,334	0,000	1,130		
0,000	1,339	0,000	1,133		
0,000	1,342	1,025	1,442		
1,010	1,580	1,005	1,431		
1,020	1,607	2,025	1,943		
1,981	1,978	2,078	1,947		
1,991	1,991	3,610	3,281		
3,623	3,483	3,640	3,328		
3,925	3,647	4,010	3,679		

Tabla 2-6: Solubilidad de argón en función de la concentración de BTBA a 298,15 K y 101325 Pa de presión parcial. Tomado de Conway y colaboradores ¹¹¹

mol·L⁻¹	mol _{Ar} ·L ⁻¹
BTBA	$\cdot 10^3$
0,00	1,31
0,20	1,25
0,30	0,63
0,50	0,67
0,75	0,94

2.4 Solubilidad de gases en soluciones acuosas de surfactantes

En la tabla 2-7 se muestran los principales trabajos adelantados en relación a la solubilidad de gases en soluciones acuosas de surfactantes. En términos generales se puede observar la misma tendencia en el incremento de la solubilidad del gas por el aumento de la concentración de surfactante añadido una vez haya superado la CMC; crece linealmente sin importar la naturaleza del gas ni la naturaleza del surfactante.

Para ilustrar este comportamiento, en la gráfica 2-2 y 2-3 se presentan los resultados de solubilidad de varios gases en soluciones micelares de bromuro de hexadeciltrimetilamonio a (298,15 y 299,15) K.

Tabla 2-7: Resumen de los principales trabajos de solubilidad de gases e	en soluciones
de surfactantes a 101325 Pa de presión parcial de gas	

Gas(es)	Surfactante(s)	Unidad de concentración reportada	Rango de Temperatura (K)	Ref.
Ar	DSS ¹	Coeficiente de Ostwald	285,15 - 297,15	112
$CH_4, C_2H_6, C_3H_8, C_4H_{10}$	DSS	Coeficiente de Ostwald	288,15 – 300,15	113
Ar	DSS	Coeficiente de Ostwald	297,15 – 323,15	12
CF ₄ , O ₂ , Ar, CH ₄ , C ₂ H ₆ , C ₃ H ₈	BDeTA ² , BHTA ³	mol gas ⋅ kg ⁻¹ H₂O	299,15	114
$\begin{array}{c} CH_4,C_2H_6,\\ C_3H_8,CO_2\end{array}$	DSS, BHTA	mol gas ⋅ kg ⁻¹ H₂O	298,15	115
C_2H_6, C_3H_8	CSS⁴	mol gas ⋅ kg⁻¹ H₂O	298,15	116
C_2H_6	PSS⁵, HexSS ⁶ , HepSS ⁷ , OSS ⁸	mol gas · kg ⁻¹ H ₂ O	298,15	117

1. DSS: Dodecilsulfato de sodio

2. BDeTA: Bromuro de deciltrimetilamonio

3. BHTA: Bromuro de hexadeciltrimetilamonio

4. CSS: Cumeno sulfonato de sodio

5. PSS:Pentilsulfonato de sodio

6. HexSS: Hexilsulfonato de sodio

7. HepSS: Heptilsulfonato de sodio

8. OSS: Octilsulfonato de sodio

Gráfica 2-2: Solubilidad de metano, etano, propano y dióxido de carbono a 101325 Pa de presión parcial en función de la concentración de bromuro de hexadecil trimetilamonio (mol·kg⁻¹) a 298,15 K. Tomado de Roy y colaboradores ¹¹⁵

Gráfica 2-3: Solubilidad de tetrafluoruro de carbono, oxígeno, argón, metano, etano y propano en moles de gas por kg de agua pura a 101325 Pa de presión parcial en función de la concentración del surfactante bromuro de hexadeciltrimetilamonio (mol·kg⁻¹) a 299,15 K. Tomado de Prapaitrakul y King¹¹⁴.

3. Métodos experimentales para la determinación de la solubilidad de gases en líquidos

La manera en la que se mide la cantidad de gas disuelto en el líquido a cierta presión y temperatura, ha sido el punto de partida para clasificar los métodos experimentales que permiten determinar la solubilidad de gases en líquidos. En este sentido, se pueden emplear métodos de saturación y métodos de extracción ¹⁰². De cualquier manera, es importante recalcar que la presión, la temperatura y el volumen se deben conocer, ya que dichas variables afectan el estado de un gas o de un vapor.

Los métodos de saturación requieren que el líquido se encuentre totalmente desgasificado para que entre el gas y se disuelva en él hasta su saturación, es decir, hasta que el sistema alcance el equilibrio termodinámico. Durante el proceso de transferencia de gas, se mide de algún modo la cantidad de gas transferido. Por su parte, en los métodos de extracción, la cantidad de gas disuelta en el líquido se mide luego de que el sistema haya alcanzado el equilibrio termodinámico. Los dos métodos emplean varias maneras para llevar a cabo la saturación del gas. Se destacan la agitación de los dos compuestos, el paso de una corriente de líquido por el gas, el burbujeo del gas en el líquido, y el flujo del gas sobre el líquido estático que se encuentra contenido en un recipiente.

En este capítulo se hará una revisión exhaustiva de los distintos equipos que se han utilizado para determinar la solubilidad de gases en líquidos a presión atmosférica. La medida de la solubilidad de gases en líquidos a altas presiones utiliza en general los mismos principios. Sin embargo, vale la pena anotar la importancia del diseño del equipo para soportar la presión a la que es sometido y el modelo empleado para conocer la desviación del gas sobre el comportamiento ideal ^{10,13,81,116-128}.

3.1 Métodos de saturación

Si bien existen muchos diseños y modificaciones de equipos, la medida de la cantidad de gas transferido al sistema líquido puede determinarse mediante un cambio en el volumen de gas a presión constante (proceso isobárico), un cambio en la presión del sistema (proceso isocórico), o midiendo el flujo de gas en función del tiempo de saturación de la solución, como se realizó en el trabajo de Roy y colaboradores ¹¹⁵ para determinar la solubilidad del CH₄, CO₂ y C₃H₈ en soluciones acuosas de dodecilsulfato de sodio y bromuro de cetiltrimetilamonio a 298,15 K.

3.1.1 Métodos isobáricos

Figura 3-1: Equipo de solubilidad diseñado por Fonseca y colaboradores ¹²⁹. TB, baño termostatado; TC, controlador de temperatura; T, termómetro; PT, transductor de presión; LA, actuador lineal; PC, controlador de presión; DIF, bomba de vacío, TRAP, trampa; EQ, recipiente de equilibrio; GB, bureta de gas; V1-V6, válvulas; AGIT, agitador magnético, E, ascensor

Dentro de esta categoría, el equipo de Ben-Naim y Baer es el más empleado. Su diseño inicial se conoció en el año de 1963¹³⁰, y partir de ese momento se le han realizado muchas modificaciones, sin que por esto se haya alterado el principio de operación. En esencia, una cantidad medida de líquido se pone en contacto con un volumen conocido de gas a cierta temperatura y presión. Luego de que el sistema alcanza el equilibrio, el cambio en el volumen permite conocer la cantidad de gas disuelto, y por ello, la solubilidad. La tabla 3-1 resume algunos trabajos realizados con

este equipo y la figura 3-1 muestra a manera de ejemplo el equipo automatizado de Fonseca y colaboradores ¹²⁹, en el que el cambio en el volumen del gas se mide a partir del desplazamiento de un actuador.

Tabla 3-1: Resumen	de los	trabajos	realizados	con	el	equipo	de	Ben-Naim	у	Baer
para determinar la solu	ubilidad	de gase	s en líquido	s						

Investigadores	Soluto (s)	Solvente (s)	Rango de temperatura (K)	Ref.
Wen y Hung, 1970	$\begin{array}{c} CH_{4,} C_2 H_{6,} \\ C_3 H_{8,} \\ C_4 H_{10} \end{array}$	Soluciones acuosas de NH ₄ Br, (HOC ₂ H ₄) ₄ NBr, R ₄ NBr donde R = met, et, prop y but	278,15 – 308,15	109
Barone y colaboradores, 1979	$CH_{4,}C_2H_6$	Soluciones acuosas de hexametilentetramina	288,15 – 308,15	131
Ben-Naim y Wilf, 1983	Ar	Soluciones acuosas de octanoato de sodio y dodecilsulfato de sodio	283,15 – 298,15	112
Ben-Naim y Battino, 1985	$\begin{array}{c} CH_{4,} C_2 H_{6,} \\ C_3 H_{8,} \\ C_4 H_{10} \end{array}$	Soluciones acuosas de dodecilsulfato de sodio	288,15 – 300,15	113
Scharlin y Battino, 1994	$\begin{array}{c} CCI_2F_2,\\ CCIF_3,\\ C_4F_8 \end{array}$	H ₂ O y D ₂ O	288 – 318	132
Serra y coaboradores, 1995	Ar	Soluciones acuosas de dodecilsulfato de sodio	297,15 – 323,15	12
Pardo y colaboradores, 1996	$\begin{array}{c} \text{He, Ne,} \\ \text{Ar, Kr, Xe,} \\ \text{H}_2, \text{D}_2, \text{N}_2, \\ \text{O}_2, \text{CH}_4, \\ \text{C}_2\text{H}_4, \\ \text{C}_2\text{H}_6, \text{CF}_4, \\ \text{SF}_6, \text{CO}_2 \end{array}$	2-metil-1-propanol	263,15 – 303,15	133

Pardo y colaboradores, 1997	$\begin{array}{c} \text{He, Ne,} \\ \text{Ar, Kr, Xe,} \\ \text{H}_2, \text{D}_2, \text{N}_2, \\ \text{O}_2, \text{CH}_4, \\ \text{C}_2\text{H}_4, \\ \text{C}_2\text{H}_6, \text{CF}_4, \\ \text{SF}_6, \text{CO}_2 \end{array}$	2-butanol	263,15 – 303,15	134
Pardo y colaboradores, 1999	$\begin{array}{c} \text{He, Ne,} \\ \text{Ar, Kr, Xe,} \\ \text{H}_2, \text{ D}_2, \text{ N}_2, \\ \text{O}_2, \text{ CH}_4, \\ \text{C}_2\text{H}_4, \\ \text{C}_2\text{H}_6, \text{ CF}_4, \\ \text{SF}_6, \text{ CO}_2 \end{array}$	2-metil-2-propanol	263,15 – 303,15	135
Serra y colaboradores, 2006	CH4	H ₂ O	293,15 – 323,15	136
Fonseca y colaboradores, 2007	CO ₂ , N ₂ O	H ₂ O	290 – 303	129

Existen equipos que también miden el cambio del volumen del gas mediante un proceso isobárico, pero su diseño difiere del de Ben-Naim y Baer. Éstos son menos precisos y usualmente tienen aplicaciones en la ingeniería, específicamente en la remoción de gases ácidos por soluciones alcalinas. Se suele emplear el N₂O para simular el comportamiento del CO₂, ya que no presenta reacción química en el agua. La tabla 3-2 muestra algunos de los trabajos desarrollados con este tipo de equipos, y la figura 3-2 ilustra el equipo diseñado por Haimour y Sandall¹³⁷.

 Tabla 3-2:
 Resumen de los trabajos realizados con equipos fundamentados en el cambio del volumen de gas distintos al de Ben-Naim y Baer

Investigadores	Soluto (s)	Solvente (s)	Rango de temperatura (K)	Ref.
Haimour y Sandall, 1984	N ₂ O	Soluciones acuosas de metildietanolamina	288,15 – 308,15	137
Al-Ghawas y colaboradores,	N ₂ O	Soluciones acuosas de	288,15 – 323,15	138

1989		metildietanolamina		
Saha y colaboradores, 1993	N_2O	Soluciones acuosas de 2- amino-2-metil-1-propanol	288,5 – 303,0	139
Li y Lai, 1995	N ₂ O	Soluciones acuosas de monoetanolamina con N- metildietanolamina y de monoetanolamina con 2- amino-2-metil-1-propanol	303,15-313,15	140
Abu-Arabi y colaboradores, 2001	N ₂ O	Soluciones acuosas de dietanolamina	288,15 – 333,15	141
Abu-Arabi y colaboradores, 2001	N ₂ O	Soluciones acuosas de trietanolamina	293,15 – 333,15	142
Mandal y colaboradores, 2004	N ₂ O	Soluciones acuosas de 2- amino-2-metil-1-propanol con dietanolamina y de N- metildietanolamina con dietanolamina	293 – 313	143
Milgorod, 2005	$C_2H_{6,}\ C_3H_{8,}\ C_4H_{10}$	Soluciones acuosas de dodecilsulfato de sodio	298,15	144
Mandal y colaboradores, 2005	N ₂ O	Soluciones acuosas de 2- amino-2-metil-1-propanol con monoetanolamina y de N- metildietanolamina con monoetanolamina	293 – 313	145

3.1.2 Métodos isocóricos

El principio del método se fundamenta en la medida del descenso en la presión del sistema en una celda de volumen constante. La presión se mide mediante transmisores, transductores de presión y manómetros. Usualmente, el valor de la solubilidad se extrapola a 1 bar o 1 atmósfera de presión parcial. El equipo construido en este trabajo está contenido dentro de esta categoría. La figura 3-3 muestra el

equipo diseñado por Dalmolin y colaboradores ¹¹⁸, mientras que la tabla 3-3 resume algunos de los trabajos realizados.

Figura 3-2: Equipo de solubilidad diseñado por Haimour y Sandall ¹³⁷

Figura 3-3: Equipo de solubilidad construido por Dalmolin y colaboradores ¹¹⁸. 1, cilindro de gas; 2, válvula de control; 3, bomba de vacío; 4, celda de equilibrio; 5, reservorio de gas; 6, transductor de presión; 7, programador portátil; 8, baño de agua; V1-V3, válvulas

 Tabla 3-3:
 Resumen de los trabajos realizados con equipos fundamentados en el descenso de la presión

Investigadores	Soluto (s)	Solvente (s)	Rango de temperatura (K)	Ref.
Versteeg y van Swaaij, 1988	N ₂ O	Soluciones acuosas de dietanolamina con dimetilmonoetanolamina	298,15 – 313,15	146
Oliveira y Uller, 1989	1,3- butadieno, metilprope no	Metil-2-pirrolidona	288,15 – 308,15	147
Oyevaar y colaboradores, 1989	N ₂ O	Soluciones acuosas de dietanolamina con etilenglicol	298,15	148
Littel y colaboradores, 1992	N ₂ O	Soluciones acuosas de metildietanolamina	298	149
Munder y colaboradores, 2000	H₂S	Soluciones acuosas de 2- <i>ter-</i> butilaminoetanol	283,15 – 313,15	11
Senthil Kumar y colaboradores, 2001	N ₂ O	Soluciones acuosas de taurato de potasio y glicinato de potasio	293 – 303	80
Dalmolin y colaboradores, 2006	CO ₂	Soluciones acuosas de etanol	288 – 323	118

3.2 Métodos de extracción

Como se había indicado anteriormente, en los métodos de extracción la cantidad de gas disuelto en el líquido se mide luego de que el sistema haya alcanzado el estado de saturación. Al ser totalmente dependiente del sistema estudiado, y sobre todo, de las propiedades fisicoquímicas del gas, las metodologías empleadas para su cuantificación pueden diferir notoriamente unas de otras. Dentro de este grupo se

destacan los métodos cromatográficos, los métodos volumétricos, la espectrofotometría, las titulaciones, y los sensores electroquímicos.

Figura 3-4: Equipo de solubilidad diseñado por Miyano y colaboradores ¹⁵⁰ con cromatógrafo de gas

La cuantificación por cromatografía se suele emplear en sistemas con altas temperaturas como se puede observar en la tabla 3-4, así como para la determinación de la solubilidad de mezclas de gases en líquidos. La figura 3-4 muestra un diseño experimental típico, recopilado del trabajo de Miyano y colaboradores ¹⁵⁰.

En el método de cuantificación por volumen se destaca el equipo diseñado por Benson-Krause ¹⁵¹. La figura 3-5 muestra el diseño de la celda en la cual se equilibra el gas y el líquido. Posteriormente se extrae el gas exhaustivamente por medio de trampas y una bomba automática para ser cuantificado a través del volumen seco que ocupa en cámaras previamente calibradas. Algunos investigadores lo han empleado en sus estudios de solubilidad ⁹⁹⁻¹⁰¹, y Clever y Battino ³ lo nombran como uno de los diseños de alta precisión.

La cuantificación del gas por espectrofotometría la ha empleado Andreozzi y colaboradores ¹⁵² para determinar la solubilidad de ozono en soluciones buffer de fosfatos en un intervalo de pH de 2 a 6 entre 291,15 y 315,15 K mediante espectrofotometría U.V.

Tabla 3-4: Resumen de algunos trabajos que utilizan la técnica de cromatografía para cuantificar la cantidad de gas disuelto en un líquido

Investigadores	Soluto (s)	Solvente (s)	Rango de temperatura (K)	Ref.
Miyano y Fujihara, 2004	CO ₂	Metanol	250 – 500	153
Kundu y Bandyopadh- yay, 2006	CO ₂	Soluciones acuosas de dietanolamina con metildietanolamina	303 – 323	154
Song y colaboradores, 2006	Relación N ₂ /CO ₂	Soluciones acuosas de glicinato de sodio	303,15 – 323,15	155
Miyano y colaboradores, 2006	Propano, propeno, butano, y 2-metilpro- pano	Metanol	374 – 490	150
Huttenhuis y colaboradores, 2007	H ₂ S, CO ₂	Soluciones acuosas de <i>N</i> metildietanolamina	283,15 – 298,15	156

Por otra parte, se pueden destacar los trabajos de Kumar y colaboradores ¹⁵⁷ y de Millero y colaboradores ^{79,158} para mencionar la cuantificación de gases vía titulación. En el primero, se determinó la solubilidad del CO₂ en soluciones acuosas de taurato de potasio a 298 K por titulación ácido-base, mientras que en los dos trabajos de Millero y colaboradores, se midió la solubilidad del O₂ en función de la temperatura para algunas soluciones acuosas de sales y en agua de mar.

Kaskiala ⁸ utilizó un sensor electroquímico para evaluar la solubilidad de O₂ en soluciones de H₂SO₄ entre 298,15 y 328,15 K. Por su parte, Raposo y colaboradores ⁵ emplearon dos tipos distintos de sensores electroquímicos para medir la solubilidad de H₂ en agua a 298,15 K.

Figura 3-5: Celda diseñada por Benson-Krause ¹⁵¹ para equilibrar sistemas gaslíquido.

4. Materiales y métodos

4.1 Reactivos y equipos

4.1.1 Reactivos

- Bromuro de tetrabutilamonio SIGMA, ≥ 0,98 en fracción másica
- Bromuro de dodeciltrimetilamonio SIGMA, ≥ 0,99 en fracción másica
- Bromuro de tetradeciltrimetilamonio SIGMA, ≥ 0,99 en fracción másica
- Agua desgasificada ultrapura (tipo I), sistema Milli Q®. Resistividad: 18,2 MΩ·cm
- Argón LINDE, 0,99999 en fracción molar
- Nitrógeno LINDE, 0,9999 en fracción molar

4.1.2 Equipos

- Transductor absoluto de presión amplificado Druck® PMP 4030 General Electric.
 Exactitud ± 0,04% sobre toda la escala (combinando no-linealidad, histéresis y repetitividad). Rango de 0 a 103421 Pa de presión, salida de 0 a 10000 mV CD ¹⁵⁹
- Voltímetro digital Keithley 182, incertidumbre 0,1 mV
- Balanza analítica Mettler Toledo AT 261 de doble rango. Incertidumbre 10⁻⁵g en el rango más bajo
- Termostato circulador Lauda E-100 que permite un control de temperatura mejor que 0,05 K
- Termómetro RTD Extech 407907, resolución 10⁻² K
- Densímetro digital DMA 45 Anton Paar, incertidumbre 10⁻⁴ g·mL⁻¹
- Válvula reguladora de presión en cilindros Linde Hi Q® Red Line. Presión de entrada: 230 bar, presión de salida 0,5 - 12 bar
- Sistema de agitación magnética sumergible
- Bomba de vacío Sargent-Welch Scientific Company
- Sonicador Cole Parmer EW-08895-50, 47 kHz de frecuencia
- Unidad de refrigeración de ¼ H.P.

4.2 Metodología

Todas las soluciones se prepararon por pesada. La masa se midió con una balanza analítica Mettler Toledo AT 261. Se llevó aproximadamente 20 mL de la solución de trabajo al saturador para que el argón o el nitrógeno se saturaran con el vapor de agua a la temperatura de medida. La reducción de la presión dentro del sistema se realizó con bomba de vacío hasta que la presión igualara el valor de la presión de vapor del agua a temperatura ambiente (≈3300 Pa). La solución de estudio contenida en un erlenmeyer se introdujo por la parte superior de la celda del líquido con la ayuda de un embudo de vidrio. Conociendo la masa de solución inicial, y las masas remanentes de solución en el erlenmeyer y en el embudo luego de la operación de llenado, se calculó la masa de solución que ingresa a la celda del líquido (ver anexo A).

La desgasificación de la solución comienza con la evacuación del aire en el instrumento. Posteriormente, y con la válvula 1 cerrada (ver figura 4-1), se retiró herméticamente la celda del líquido desde la misma válvula, y se expuso durante un minuto a ultrasonido en un sonicador Cole Parmer EW-08895-50. Luego de la desgasificación de la solución, la celda del líquido se acopló nuevamente al equipo. El argón o el nitrógeno se cargaron al sistema desde el cilindro de gas mediante la válvula reguladora (válvula 6) hasta una presión aproximada de 85000 Pa. Transcurridas tres horas (tiempo necesario para que el gas se encuentre saturado con

el vapor de agua (ver sección 5.4.1)), se abrió la válvula 1 para permitir el contacto entre el gas saturado y la solución, y luego de 5 minutos, se cerró la válvula 2 y se registró el valor de la presión inicial (P_0). Con agitación constante, se registró el valor de la presión hasta que se mantuviera constante durante 1 hora. En ese momento, se consideró completo el proceso de saturación de la solución y se registró el valor de la presión final (P_f). Se lavó y se secó a 60 °C la celda del líquido y el saturador luego de la descarga de la solución. El exceso de agua dentro del sistema se retiró por ebullición a presión reducida. La solubilidad del gas se calculó asumiendo la validez del modelo de solución ideal, de acuerdo con la ley de Henry:

$$x_{\mathsf{B}} = \frac{101325 \,\mathsf{Pa}}{k_{H,\mathsf{B}}} = \frac{101325 \,\mathsf{Pa} \cdot V_B(P_0 - P_f)}{(P_f - p_{\mathsf{A}})[RT(n_{\mathsf{A}} + n_{\mathsf{S}}) + V_B(P_0 - P_f)]} \tag{4.1}$$

Donde $k_{H,B}$ es la constante de Henry del gas en la solución en Pa, V_B el volumen de gas en L, P_0 y P_f la presión inicial y final respectivamente en Pa, p_A la presión parcial del agua a la temperatura T de la medida en Pa, R la constante de los gases en Pa·L·mol⁻¹·K⁻¹, n_A y n_s los moles de agua y de sal de amonio cuaternario.

Los valores de la presión de vapor del agua pura y los pesos atómicos se tomaron del libro Web de química del NIST ¹⁶⁰. De la sección "Fundamental Physical Constants" del NIST, se extrajo el valor de la constante universal de los gases ideales (R= $8,3144621\cdot10^3$ Pa·L·mol⁻¹·K⁻¹) ¹⁶¹. La presión parcial del agua en cada solución se calculó a partir de la ley de Raoult ^{24,162}.

El volumen que ocupa el gas (V_B) se determinó a partir de la diferencia entre el volumen del sistema y el volumen de la solución. El valor en el volumen de la solución se calculó con los valores de masa y densidad a cada temperatura de trabajo. La densidad se midió en un densímetro digital DMA 45 Anton Paar, acoplado a un termostato de recirculación Thermo NesLab RTE 100, con un valor de incertidumbre de 10^{-4} g·mL⁻¹. Las tablas 4-1 a 4-3 muestran los resultados obtenidos en los valores de densidad de las soluciones de sales de amonio cuaternario en función de la temperatura. Los resultados muestran en general buena concordancia con los valores previamente reportados.

Т (К)	Concentración de BDTA (mol·kg ⁻¹)				
	0,03996	0,07989	0,11983	0,16004	0,20012
283,15	1,0004	1,0010	1,0016	1,0022	1,0028
288,15	0,9998	1,0004	1,0010	1,0016	1,0022
	0,9998 ¹	1,0004	1,0011	1,0017	1,0023
293,15	0,9988	0,9995	1,0000	1,0005	1,0011
298,15	0,9976	0,9982	0,9987	0,9992	0,9997
	0,9977 ¹	0,9982	0,9987	0,9993	0,9998

Tabla 4-1: Densidad de las soluciones acuosas de BDTA (g·mL⁻¹) en función de la concentración y de la temperatura

1. Valores de densidad interpolados de De Lisi y colaboradores ¹⁶³

Tabla 4-2: Densidad de las soluciones acuosas de BTBA (g·mL⁻¹) en función de la concentración y de la temperatura

Т (К)	Concentración de BTBA (mol·kg ⁻¹)				
	0,20003	0,39994	0,60011	0,79989	1,00012
283,15	1,0051	1,0105	1,0158	1,0208	1,0253
288,15	1,0042	1,0093	1,0142	1,0187	1,0228
293,15	1,0031	1,0078	1,0124	1,0167	1,0206
298,15	1,0016	1,0063	1,0106	1,0147	1,0185
	1,0016 ¹	1,0062	1,0106	1,0147	1,0184

1. Valores de densidad calculados a partir del volumen molar aparente. Tomado de Lucas y Trobriand ¹⁰⁶.

Tabla 4-3: Densidad de las soluciones acuosas de BTTA (g·mL⁻¹) en función de la concentración y de la temperatura

Т (К)	Concentración de BTTA (mol·kg ⁻¹)				
	0,04013	0,07998	0,12000	0,16020	0,19997
283,15	1,0001	1,0006	1,0010	1,0014	1,0018
288,15	0,9995	1,0000	1,0004	1,0008	1,0012
	0,9996 ¹	1,0000	1,0005	1,0009	1,0013
293,15	0,9986	0,9990	0,9994	0,9997	1,0001
298,15	0,9974	0,9977	0,9981	0,9984	0,9988
	0,9974 ¹	0,9978	0,9982	0,9985	0,9989

1. Valores de densidad interpolados de De Lisi y colaboradores ¹⁶³
5. Diseño y construcción de un equipo para la determinación de la solubilidad de gases en líquidos

5.1 Fundamento del método

El instrumento de solubilidad de gases en líquidos desarrollado en este trabajo está incluido dentro de los métodos de saturación, y en particular utiliza un proceso isocórico para cuantificar la cantidad de gas absorbida dentro del líquido, a partir de la medida del descenso en la presión del sistema (ver sección 3.1.2).

5.2 Principales características del equipo de solubilidad

Sensor absoluto de presión Válvula 1 Válvula 2 Celda de líquido Celda de líquido

Figura 5-1: Fotografía de la celda de solubilidad construida en este trabajo

Con el propósito de minimizar el cambio de la presión y la temperatura dentro del sistema al momento de poner en contacto el gas saturado y el líquido, la celda de solubilidad aloja el líquido y el gas en celdas separadas (ver figura 5-1). El diseño del equipo es novedoso si se compara con los equipos construidos anteriormente por otros autores (ver tabla 3-3). Cada celda se fabricó en acero inoxidable 316 y tiene un volumen aproximado de 72 mL. Las conexiones se realizaron con tubería de 1/4", acoples y válvulas de acero inoxidable 316 resistentes a alta presión. La solución ingresa a la celda del líquido por la parte superior a través de un agujero roscado NPT de 1/4". Esta celda tiene la capacidad de ser removida herméticamente del instrumento desde la válvula 1, para que allí se realice el proceso de desgasificación de la solución. El sistema de control de temperatura lo constituye un baño de agua externo en el que opera un sistema de refrigeración para que permanezca 2 K por debajo de la temperatura requerida, y un baño de agua interno, que permite un control de temperatura mejor que 0,05 K por la acción de un termostato Lauda E-100. Lo anterior se determinó midiendo la temperatura a (283,15; 288,15; 293,15; 298,15) K cada 30 minutos durante 15 horas en varios puntos del baño, con un termómetro RTD Extech 407907.

El saturador tiene un volumen aproximado de 7 L. La presión se mide con un transductor absoluto de presión Druck PMP 4030 de rango 0 a 103421 Pa y de 0 a 10000 mV CD de salida. El voltaje emitido por el transductor se mide con un voltímetro digital Keithley 182. La evacuación del aire del sistema se realiza con una bomba de vacío desde la válvula 5. El argón y el nitrógeno contenidos en cilindros entran al sistema mediante una válvula reguladora de baja presión Linde Hi Q® Red Line (válvula 6).

La figura 4-1 muestra el diagrama general del equipo constituido por la celda solubilidad, un saturador para equilibrar el argón o el nitrógeno con el vapor de agua de la solución, una línea de vacío para evacuar el aire al interior del equipo, y una línea para alimentar el gas.

5.3 Determinación del volumen de la celda de solubilidad

El valor del volumen de la celda de solubilidad, que corresponde al espacio interno generado luego de acoplar la celda del líquido (con el agitador magnético), la celda del gas, el sensor de presión, y las válvulas 1 y 2, se determinó mediante un método propuesto por el autor de esta tesis ⁹, y puede ser empleado para medir el volumen de cualquier cámara. Surgió gracias a las dificultades que se presentaron al momento de aplicar los dos métodos tradicionales, ya que no fue posible medir el volumen de la celda de solubilidad del equipo por dimensiones y geometría ¹⁰, ni con la evaluación gravimétrica de un líquido de densidad conocida que llena el espacio de la cámara ¹¹⁻

5.3.1 Descripción del método

La válvula 1 divide el volumen de la celda de solubilidad en dos partes; se le denomina V_1 al volumen que hay a la izquierda de la válvula 1 (cámara 1), y V_2 al volumen que hay entre la válvula 1 y la válvula 2 (cámara 2). La temperatura se mantiene constante a 298,15 K. El aire atmosférico contenido dentro de la celda de solubilidad se evacúa y se llena la misma con argón. Una vez el gas haya alcanzado el equilibrio térmico (aproximadamente en dos horas), se cierra la válvula 1 y se registra el valor de la presión en V_1 . Luego se modifica la presión del gas en la cámara dos, a través de una de una evacuación o de una recarga del mismo. Se permite alcanzar de nuevo el equilibrio térmico y se mide la presión dentro de V_2 . Para terminar, se abre la válvula 1 con el fin de equilibrar la presión del argón en las dos cámaras, mediante un proceso de expansión isotérmica. Este último valor corresponde a la presión final (P_f).

El balance de materia para este proceso es:

$$n_1 + n_2 = n_f$$
 (5.1)

Donde n_1 y n_2 son el número de moles de argón en la cámara uno y dos respectivamente, y n_f es el número de moles dentro de las dos cámaras. Empleando la ecuación de estado para un gas ideal tenemos:

$$P_1 V_1 / RT + P_2 V_2 / RT = P_f (V_1 + V_2) / RT$$
(5.2)

Como el proceso se lleva a cabo a la misma temperatura:

$$P_1V_1 + P_2V_2 = P_f(V_1 + V_2)$$
(5.3)

Reordenando términos:

$$(P_1 - P_f)V_1 = (P_f - P_2)V_2$$
(5.4)

Con lo que se puede obtener la relación entre los dos volúmenes de las cámaras:

$$V_1/V_2 = (P_f - P_2)/(P_1 - P_f)$$
(5.5)

La ecuación 5.5 contiene dos incógnitas (V_1 , V_2). Para conocer el valor de cada una, es necesario plantear una nueva ecuación. Se propuso la modificación del volumen en una de las cámaras con un sólido de volumen conocido (V_s). Si por ejemplo, la introducción del sólido se realiza en la cámara 2, como se hizo en el experimento, la ecuación 5.5 se transforma en:

$$V_1/(V_2 - V_s) = (P_f - P_2)/(P_1 - P_f)$$
(5.6)

Así, se obtiene un sistema de dos ecuaciones con dos incógnitas y única solución, lo que permite a su vez, conocer el volumen total del sistema ($V_1 + V_2$).

5.3.2 Resultados obtenidos

La relación de los volúmenes de las cámaras (ecuación 5.5), con la incertidumbre estándar tipo A² para doce réplicas fue:

$$V_1/V_2 = 0.9414 \pm 0.0007 \tag{5.7}$$

La cámara 2 se modificó introduciendo un conjunto de 30 varillas de vidrio de borosilicato 3.3 DURAN de 2 mm de radio por 40 mm de alto aproximadamente y de masa (33,5091 ± 0,0001) g. Se determinó el valor de la densidad del vidrio, tomando como referencia el volumen de un balón aforado de (50,00 ± 0,02) mL y la masa de agua destilada requerida para completar este volumen a temperatura ambiente. En cada una de las doce medidas realizadas, se tomaron cinco varillas de vidrio al azar. La densidad promedio y la incertidumbre estándar combinada ² para las varillas de vidrio fue de (2,228 ± 0,002) g·mL⁻¹. Este valor se ajusta satisfactoriamente al reportado por el fabricante a 298,15 K: 2,23 g·mL^{-1 164}. Así, se encontró un volumen de sólido de (15,041 ± 0,010) mL.

La relación de los volúmenes de las cámaras con la respectiva modificación, al realizar doce réplicas fue (ecuación 5.6):

$$V_1/[V_2 - (15,041 \pm 0,010) \text{mL}] = 1,1728 \pm 0,0006$$
 (5.8)

Desarrollando el sistema de dos ecuaciones con dos incógnitas, se encontró para la celda de solubilidad del equipo un volumen de $(148,04 \pm 0,40)$ mL.

Gráfica 5-1: Comportamiento de la presión en función del tiempo en el espacio comprendido entre la válvula 1 y la válvula 4 del equipo de solubilidad de gases en líquidos construido en este trabajo. Sistema: Argón en solución de BDTA a 298,15 K, 0,040 mol·kg⁻¹

5.4 Determinación de los tiempos de equilibrio

5.4.1 Saturación del gas

La gráfica 5-1 muestra el comportamiento de la presión en función del tiempo dentro del espacio comprendido entre la válvula 1 y la válvula 4 para un experimento típico (Ar en solución de BDTA 0,040 mol·kg⁻¹ a 298,15 K). Como se puede apreciar, luego de tres horas el gas alcanza la saturación con el vapor de agua. Los tiempos de equilibrio fueron similares para el nitrógeno y para los dos gases a las otras temperaturas de trabajo.

Gráfica 5-2: Comportamiento de la presión en función del tiempo para el proceso de saturación del argón en una solución de BDTA 0,040 mol·kg⁻¹ a 298,15 K

5.4.2 Saturación del líquido (medida de solubilidad)

La gráfica 5-2 muestra el comportamiento para el Ar en solución de BDTA 0,040 mol·kg⁻¹ a 298,15 K. En general, se encontró un comportamiento similar para todas las soluciones acuosas a las distintas temperaturas de trabajo. De acuerdo con lo anterior, 4 horas fue el tiempo requerido para la medida de solubilidad del gas.

5.5 Funcionamiento del equipo: Solubilidad de argón y nitrógeno en agua pura

Con el fin de conocer el funcionamiento del equipo, se determinó la solubilidad de argón y nitrógeno en agua pura a (283,15; 288,15; 293,15 y 298,15) K y 101325 Pa de presión parcial. Para cada temperatura y gas, se realizaron siete réplicas. La incertidumbre estándar tipo A fue de $8 \cdot 10^{-8}$ para el argón y $6 \cdot 10^{-8}$ para el nitrógeno. La tabla 5-1 muestra los resultados obtenidos.

Tabla 5-1: Solubilidad en fracción molar de argón y nitrógeno a 101325 Pa de presión parcial de gas en agua pura

<i>T</i> /K	$x_{Ar} \cdot (10^5)$	$x_{N_2}\cdot(10^5)$
283,15	3,365	1,524
288,15	3,022	1,376
293,15	2,733	1,275
298,15	2,506	1,185

Como se puede observar en las tablas 5-2 y 5-3, los resultados de solubilidad obtenidos concuerdan satisfactoriamente con los valores previamente reportados (ver sección 2.2), porque el porcentaje de diferencia en las medidas de solubilidad de argón y nitrógeno es inferior al 1,02%.

Tabla 5-2: Comparación de los resultados de solubilidad de argón en agua pura en la escala de fracción molar a 101325 Pa de presión parcial, a partir del % de diferencia entre los valores reportados y los valores obtenidos en este trabajo

		% de diferencia					
Investigadores	283,15 K	288,15 K	293,15 K	298,15 K	Ref.		
Krause y Benson, 1989	0,25	0,35	0,86	1,00	99		
Rettich y colaboradores, 1992	0,35	0,43	0,92	1,02	100		
Battino y colaboradores, 2011				0,40	7		

Tabla 5-3: Comparación de los resultados de solubilidad de nitrógeno en agua pura en la escala de fracción molar a 101325 Pa de presión parcial, a partir del % de diferencia entre los valores reportados y los valores obtenidos en este trabajo

		% de diferencia					
Investigadores	283,15	288,15	293,15	298,15	Ref.		
	K	K	K	K			
Rettich y	0.16	0 59	0.40	0.65	101		
colaboradores, 1984	0,10	0,00	0,40	0,00			
Battino y				1 02	7		
colaboradores, 2011				1,02			

Con base en lo anterior, se pudo comprobar que el equipo de solubilidad construido funciona adecuadamente.

6. Resultados y discusión

6.1 Solubilidad de argón y nitrógeno en soluciones acuosas de sales de amonio cuaternario

Los resultados obtenidos de solubilidad de argón y nitrógeno en fracción molar a 101325 Pa de presión parcial de gas en función de la temperatura para las soluciones acuosas de sales de amonio cuaternario, se muestran desde la tabla 6-2 hasta la tabla 6-7. Se reporta el promedio para siete réplicas sobre cada valor de concentración y temperatura. La incertidumbre estándar tipo A para el argón es $9 \cdot 10^{-8}$, y $7 \cdot 10^{-8}$ para el nitrógeno. El comportamiento de la solubilidad de argón y nitrógeno para cada sal de amonio cuaternario estudiada se presenta separadamente en las gráficas 6-1 a 6-3. El punto que aparece sobre el eje x en la solubilidad de argón y nitrógeno para las soluciones de BDTA y BTTA corresponde al valor de la CMC reportada (ver anexo C). En los sistemas con BTBA, se muestra el valor de la CMC propuesto por Dopierala y Prochaska²³.

Con base en los resultados, se observan para las tres sales de amonio cuaternario dos tendencias distintas: Una para el BDTA y el BTTA, y otra para el BTBA. A continuación (tabla 6-1), se resumen estos comportamientos.

Tabla 6-1: Comparación del comportamiento de la solubilidad de argón y nitrógeno en fracción molar a 101325 Pa de presión parcial de gas en función de la temperatura y la concentración en soluciones acuosas de sales de amonio cuaternario

Comportamiento ^{1,2}	BDTA y BTTA	BTBA
Relación entre m_s y $x_{ m B}$	Lineal	No lineal
Valor de la pendiente:	Para argón: 2,66 – 4,37	Para argón ³ : 0,05 – 0,37
$(dx_{\rm B}/dm_s) \cdot 10^{\circ} \cdot {\rm mol} \cdot {\rm kg}^{-1}$	Para nitrógeno: 1,40 – 2,36	Para nitrógeno ³ : 0,05 – 0,19
Variación de $(dx_{\rm B}/dm_s)$ por T	Aumenta al disminuir T	Aumenta al aumentar T

^{1.} $m_s = \overline{\text{Concentración de sal}} (\text{mol} \cdot \text{kg}^{-1})$

^{2.} $x_{\rm B}$ = Solubilidad de gas en fracción molar

^{3.} Dado a que el comportamiento no es lineal, se reporta el valor promedio en cada caso

283,15	5 K	288,15	5 K	293,15 K		298,15 K	
mol∙kg⁻¹	$x_{\rm Ar} \cdot 10^5$						
0,04000	3,520	0,04000	3,169	0,04000	2,865	0,03987	2,599
0,07995	3,690	0,07998	3,298	0,08000	2,980	0,07973	2,676
0,11996	3,840	0,11998	3,435	0,12001	3,071	0,11965	2,811
0,16001	4,017	0,16000	3,619	0,15999	3,228	0,15952	2,898
0,20002	4,220	0,20007	3,734	0,20050	3,347	0,19995	3,019

Tabla 6-2: Solubilidad en fracción molar de argón a 101325 Pa de presión parcial en soluciones acuosas de BDTA en función de concentración y temperatura

Tabla 6-3: Solubilidad en fracción molar de nitrógeno a 101325 Pa de presión parcial en soluciones acuosas de BDTA en función de concentración y temperatura

283,15	283,15 K 288,15 K		293,15	5 K	298,15 K		
mol∙kg⁻¹	$x_{N_2} \cdot 10^5$						
0,04000	1,603	0,04000	1,469	0,04000	1,337	0,03987	1,216
0,07995	1,702	0,07998	1,519	0,08000	1,395	0,07973	1,285
0,11996	1,782	0,11998	1,610	0,12001	1,469	0,11965	1,336
0,16001	1,874	0,16000	1,678	0,15999	1,529	0,15952	1,397
0,20002	1,973	0,20007	1,733	0,20050	1,580	0,19995	1,440

Gráfica 6-1: Solubilidad de argón y nitrógeno en fracción molar a 101325 Pa de presión parcial de gas en función de la molalidad de BDTA y de la temperatura. Argón: 283,15 K (\bullet); 288,15 K (\bullet); 293,15 K (\bullet); 298,15 K (\bullet). Nitrógeno: 283,15 K (\Box); 288,15 K (\Diamond); 293,15 K (\Diamond); 298,15 K (\circ)

Si bien las tres sales de amonio cuaternario estudiadas incrementan la solubilidad de argón y nitrógeno en las cuatro temperaturas si se compara con la solubilidad en agua pura, es claro que el mecanismo de solubilización de los gases es distinto en el BTBA que en el BDTA y BTTA.

Teniendo en cuenta que las tres sales investigadas tienen pesos moleculares muy parecidos, y que existe una diferencia como máximo de un grupo etileno dentro de sus estructuras, se observa que las diferencias encontradas en el proceso de solubilización de argón y nitrógeno no dependen del peso molecular de la sal.

Por otra parte, se observa que la disposición de las cuatro cadenas de hidrocarburo sobre el átomo de nitrógeno, que define la geometría del catión, afecta de manera significativa la solubilización de los gases estudiados. La solubilización de argón y nitrógeno es comparable en las soluciones de BDTA y BTTA porque ambos cationes son asimétricos y tienen una cadena alifática larga, a diferencia del TBA⁺, que es un catión simétrico, que puede ser representado por medio de una esfera, y tiene el mismo número de átomos de carbono en cada una de sus cuatro cadenas.

La geometría del catión efectivamente permite que en medios acuosos las cadenas hidrocarbonadas interaccionen de cierta manera con otros cationes para formar agregados moleculares. En el caso de los surfactantes BDTA y BTTA, dicha interacción da origen a la formación de micelas y es justamente esta organización de moléculas de surfactante la que genera el aumento de la solubilidad de argón y nitrógeno por concentración de manera lineal en todos los sistemas con BDTA y BTTA, ya que el proceso de solubilización de los gases involucra la inclusión de los mismos al interior de las micelas, donde predominan las colas no polares de las moléculas de surfactante ¹¹⁶. Cuando se incrementa la concentración de surfactante, aumenta de manera proporcional el número de micelas formadas y la cantidad de gas solubilizado. Vale la pena mencionar que en este trabajo, las concentraciones de las soluciones de estudio están por encima de la CMC (para el BDTA y el BTTA a 298,15 K la CMC es aproximadamente 0,015 y 0,004 mol·kg⁻¹. Ver anexo C).

Los resultados obtenidos en los sistemas con BDTA y BTTA presentan la misma tendencia a la encontrada en el proceso de solubilización de argón y de otros gases en soluciones acuosas micelares de dodecilsulfato de sodio y de bromuro de hexadecil

283,15	5 K	288,15	5 K	293,15 K		298,15	298,15 K	
mol∙kg⁻¹	$x_{\rm Ar} \cdot 10^5$							
0,20002	3,383	0,19991	3,070	0,20000	2,770	0,20005	2,563	
0,39970	3,399	0,39994	3,116	0,40029	2,829	0,39989	2,621	
0,60011	3,412	0,60023	3,156	0,59995	2,878	0,59969	2,697	
0,79994	3,419	0,79994	3,178	0,80007	2,949	0,79999	2,764	
1,00016	3,425	1,00008	3,200	0,99993	3,041	1,00045	2,861	

Tabla 6-4: Solubilidad en fracción molar de argón a 101325 Pa de presión parcial en soluciones acuosas de BTBA en función de concentración y temperatura

Tabla 6-5: Solubilidad en fracción molar de nitrógeno a 101325 Pa de presión parcial en soluciones acuosas de BTBA en función de concentración y temperatura

283,15 K 288,15 K		15 K	293,15 K		298,15 K		
mol∙kg⁻¹	$x_{N_2} \cdot 10^5$	mol∙kg⁻¹	$x_{N_2} \cdot 10^5$	mol∙kg⁻¹	$x_{N_2} \cdot 10^5$	mol∙kg⁻¹	$x_{N_2} \cdot 10^5$
0,20002	1,534	0,19991	1,386	0,20000	1,293	0,20005	1,216
0,39970	1,540	0,39994	1,400	0,40029	1,330	0,39989	1,268
0,60011	1,550	0,60023	1,415	0,59995	1,360	0,59969	1,306
0,79994	1,558	0,79994	1,437	0,80007	1,387	0,79999	1,338
1,00016	1,573	1,00008	1,465	0,99993	1,425	1,00045	1,378

Gráfica 6-2: Solubilidad de argón y nitrógeno en fracción molar a 101325 Pa de presión parcial de gas en función de la molalidad de BTBA y de la temperatura. Argón: 283,15 K (\bullet); 288,15 K (\bullet); 293,15 K (\bullet); 298,15 K (\bullet). Nitrógeno: 283,15 K (\Box); 288,15 K (\Diamond); 293,15 K (\Diamond); 298,15 K (\circ)

trimetilamonio dentro del rango de temperatura estudiado ^{12,112-114,144}, como se indicó en la sección 2.4 de este documento. El comportamiento de la solubilidad de gases en soluciones con concentración de surfactante menores que la CMC ha sido estudiada por varios investigadores. Ellos han encontrado que los efectos de salting-out son insignificantes, porque la solubilidad del gas presenta un valor muy cercano al de la solubilidad en agua pura. Lo anterior se debe al rango tan estrecho en el que el surfactante se encuentra únicamente en la forma de monómero ^{12,112-114,116,117}.

En relación al comportamiento de la solubilidad en argón y nitrógeno en las soluciones acuosas de BDTA y BTTA para la misma concentración de surfactante, la solubilidad de los gases es en general mayor en los sistemas con BTTA que con BDTA. Esto significa que entre estas sales, se puede evidenciar un efecto de la longitud de cadena sobre la solubilidad de argón y nitrógeno. El BTTA al poseer un grupo etileno de más, forma agregados micelares de mayor tamaño, permitiendo una mayor inclusión de gas al interior de las mismas.

En contraposición se encuentra la sal BTBA, que como se indicó anteriormente, la solubilidad de argón y nitrógeno también aumenta por concentración, pero su incremento no es comparable con el que se obtuvo en los sistemas con BDTA y BTTA. A partir de los valores de las pendientes (tabla 6-1), se observa que las diferencias en solubilización son por lo menos de un orden de magnitud; esto significa que para la misma concentración de sal, la solubilidad de argón y nitrógeno aumenta por lo menos 10 veces más en las soluciones acuosas de BDTA y BTTA, en comparación con el aumento de la solubilidad en las soluciones acuosas de BTBA. Tampoco se observa un comportamiento lineal entre la solubilidad del gas y la concentración de sal. Por lo anterior, es poco probable que el proceso de solubilización de argón y nitrógeno en las soluciones acuosas de BTBA sea producido por micelas. En otras palabras, los resultados de solubilidad de este trabajo muestran que el BTBA en medio acuoso no forma micelas por debajo de una concentración de 1 mol·kg⁻¹ de sal.

Por otra parte, el valor de la polarizabilidad de los gases estudiados no es un factor determinante en el valor su solubilidad, porque el nitrógeno es más polarizable en un 6% en relación al argón, y es menos soluble en los sistemas cerca de un 50%.

283,15	5 K	288,15	5 K	293,15 K		298,15 K	
mol∙kg⁻¹	$x_{\rm Ar} \cdot 10^5$						
0,04007	3,534	0,04002	3,169	0,03999	2,862	0,03990	2,617
0,08002	3,732	0,07999	3,323	0,08009	2,984	0,07989	2,691
0,11949	3,845	0,12002	3,478	0,11998	3,091	0,11999	2,827
0,16008	4,035	0,15999	3,647	0,16001	3,252	0,15992	2,946
0,20021	4,257	0,19996	3,766	0,20004	3,372	0,20007	3,052

Tabla 6-6: Solubilidad en fracción molar de argón a 101325 Pa de presión parcial en soluciones acuosas de BTTA en función de concentración y temperatura

Tabla 6-7: Solubilidad en fracción molar de nitrógeno a 101325 Pa de presión parcial en soluciones acuosas de BTTA en función de concentración y temperatura

283,15	3,15 K 288,15 K		293,15	293,15 K		298,15 K	
mol∙kg⁻¹	$x_{N_2} \cdot 10^5$						
0,04007	1,612	0,04002	1,447	0,03999	1,339	0,03990	1,216
0,08002	1,728	0,07999	1,537	0,08009	1,404	0,07989	1,283
0,11949	1,788	0,12002	1,611	0,11998	1,470	0,11999	1,343
0,16008	1,893	0,15999	1,674	0,16001	1,536	0,15992	1,400
0,20021	2,002	0,19996	1,743	0,20004	1,589	0,20007	1,457

Gráfica 6-3: Solubilidad de argón y nitrógeno en fracción molar a 101325 Pa de presión parcial de gas en función de la molalidad de BTTA y de la temperatura. Argón: 283,15 K (\bullet); 288,15 K (\bullet); 293,15 K (\bullet); 298,15 K (\bullet). Nitrógeno: 283,15 K (\Box); 288,15 K (\Diamond); 293,15 K (\Diamond); 298,15 K (\circ)

Recientemente, Battino y Seybold⁴ han discutido el inusual comportamiento que presenta la relación de solubilidad O_2/N_2 en agua y en otros solventes. Ellos emplearon varias propiedades (como la polarizabilidad, volumen molar, área molar superficial, masa molar, punto de ebullición, temperatura crítica, presión crítica y volumen crítico) con el propósito de correlacionarlas con los valores de solubilidad. No hallaron alguna relación. A partir de la teoría SPT, calcularon la energía libre de solución de oxígeno y nitrógeno en agua por medio de la suma del cambio en la energía debida a la formación de una cavidad en el solvente para acomodar el soluto (ΔG_{cav}) , un cambio en la energía debida a la interacción entre el soluto y solvente (ΔG_{int}) , y un factor de corrección de aproximadamente 17,875 kJ·mol⁻¹ para el proceso de disolución del gas en el agua (la teoría SPT considera esféricas las moléculas de soluto y solvente); encontraron que la energía de interacción (ΔG_{int}) entre el nitrógenoagua, y el oxígeno-agua es similar, pero en el agua por ser el nitrógeno más voluminoso en comparación con el oxígeno, se necesita de una mayor energía para crearle una cavidad (ΔG_{cav}). Al parecer, las diferencias tan marcadas en la solubilidad de oxígeno y nitrógeno se deben a las diferencias en la energía de formación de cavidades en el agua.

6.2 Solubilidad de argón y nitrógeno en las micelas de BDTA y BTTA

Si la concentración de monómero de cada uno de los surfactantes permanece constante en todos los sistemas micelares estudiados, tal y como lo supone el modelo de equilibrio de fases ^{96,116,117,144}, la solubilidad de argón y nitrógeno en las micelas de BDTA y BTTA en fracción molar pueden ser calculadas.

Para ello, se requiere realizar una gráfica entre la concentración del gas y del surfactante, ambas concentraciones en fracción molar. El valor de la pendiente, se aproxima al valor de la solubilidad en fracción molar de los gases en las micelas (x_B^m) ^{116,117,144}, ya que:

$$x_{\rm B}^{\rm m} \approx n_{\rm B}/n_{\rm s} \tag{6.1}$$

Donde n_B representa el número de moles de gas dentro de las micelas, y n_s el número de moles de surfactante en forma micelar. En la tabla 6-8 se muestra el valor de la solubilidad en fracción molar de argón y nitrógeno en los agregados micelares de

BDTA y BTTA, calculadas a partir del valor de cada pendiente, junto con la relación de solubilidades del gas en la micela y en el agua pura. El argón y el nitrógeno son más solubles en las micelas de los surfactantes considerados entre 59,0 y 86,3 con respecto del agua pura.

Tabla 6-8: Solubilidad de argón y nitrógeno a 101325 Pa de presión parcial en las micelas de BDTA y BTTA en función de la temperatura, y cociente de las solubilidades de los gases en las micelas y el agua

Surfactante	<i>Т (</i> К)	$x_{Ar}^{m} \cdot 10^{3}$	$u(x_{Ar}^{M} \cdot 10^{3})$	$x_{N_2}^{m} \cdot 10^3$	$u(x_{N_2}^{m}$ $\cdot 10^3)$	$\frac{x_{Ar}^{m}}{x_{Ar}}$	$\frac{x_{\rm N_2}^{\rm m}}{x_{\rm N_2}}$
	283,15	2,404	0,083	1,272	0,060	71,5	83,5
PDTA	288,15	2,024	0,066	0,958	0,050	67,0	69,6
BUTA	293,15	1,684	0,064	0,861	0,057	61,6	67,5
	298,15	1,479	0,051	0,782	0,046	59,0	66,0
	283,15	2,429	0,098	1,315	0,067	72,2	86,3
BTTA	288,15	2,119	0,059	1,020	0,031	70,1	74,1
	293,15	1,792	0,062	0,884	0,056	65,6	69,3
	298,15	1,566	0,072	0,836	0,047	62,5	70,3

Con el ánimo de conocer si la solubilidad de los gases en las micelas de BTTA es estadísticamente mayor que la solubilidad de los gases en las micelas de BDTA bajo las condiciones experimentales de este trabajo, se ha realizado una prueba de hipótesis para evaluar la igualdad o no igualdad de estas cantidades a través del cálculo de la varianza ponderada. Esta prueba que se muestra en el anexo E, se empleó en cada temperatura y con cada gas. Con una confianza del 98%, se encontró que las micelas de BTTA tienen mayor capacidad para solubilizar el argón y el nitrógeno que las micelas de BDTA, es decir, los gases estudiados son más solubles en el BTTA que en el BDTA excepto a 283,15 K para el argón, donde su solubilidad en las micelas de BTTA es estadísticamente igual a la del BDTA. De esta manera, se puede evidenciar un efecto positivo sobre la solubilidad de argón y nitrógeno a través de la inserción de un grupo etileno sobre la cadena no polar del BDTA, que permite la formación de micelas de mayor tamaño.

6.3 Funciones termodinámicas estándar de solución

Los resultados de solubilidad en función de la temperatura permiten calcular las funciones termodinámicas estándar de solución desde la fase de vapor hasta una solución hipotética de gas infinitamente diluida. Como el proceso de solubilización de argón y nitrógeno es distinto en las sales de BDTA y BTTA que en el BTBA, el cálculo de las funciones termodinámicas en el BTBA representa el cambio desde la fase de vapor hasta una solución infinitamente diluida en medio acuoso, y en el BDTA y BTTA, representa el cambio desde la fase de vapor hasta una solución infinitamente diluida en solución infinitamente diluida al interior de las micelas. El ambiente donde se ubica el gas en este caso, se parece más al de un hidrocarburo que al agua.

Al efectuar los cálculos en las funciones termodinámicas estándar de solución con los valores calculados de solubilidad de argón y nitrógeno en las micelas de BDTA y BTTA (tabla 6-8), se encontraron valores muy altos en la incertidumbre para la entalpía y la entropía, porque se dispone de un solo dato por temperatura. Por esta razón, en este trabajo se presentan únicamente las funciones termodinámicas estándar de solución para el BTBA.

La dependencia de la solubilidad en fracción molar por temperatura se ha ajustado para cada valor de concentración de BTBA y gas por medio del siguiente polinomio, el cual es una adaptación de la ecuación de Clarke-Glew-Weiss (ecuación 1.13 de la sección 1.2.3 de este documento) truncada en el segundo coeficiente:

$$\ln x_{\rm B} = A + (B \cdot 290,65 \text{ K})/T \tag{6.2}$$

El valor de 290,65 K corresponde al punto medio del intervalo de temperatura estudiado. Los valores de cada uno de los coeficientes con su respectiva incertidumbre estándar combinada y r² se muestran en la tabla 6-9. Éstos valores fueron calculados con el software LAB fit ¹⁶⁵.

De acuerdo con lo anterior, el cálculo de las funciones termodinámicas estándar para el proceso de disolución de argón y nitrógeno en las soluciones acuosas de BTBA se realiza a partir de los coeficientes de la ecuación 6.2 de la siguiente manera:

mol⋅kg⁻¹ de BTBA	Gas	- A	<i>u</i> _c (<i>A</i>)	В	<i>u</i> _c (<i>B</i>)	r ²
0	Argón	16,20	0,07	5,75	0,07	0,9966
0	Nitrógeno	16,11	0,13	4,88	0,13	0,9816
0 20000	Argón	15,90	0,07	5,46	0,07	0,9970
0,20000	Nitrógeno	15,73	0,13	4,52	0,13	0,9822
0.20006	Argón	15,52	0,07	5,10	0,07	0,9967
0,39990	Nitrógeno	14,95	0,15	3,76	0,15	0,9700
0 60000	Argón	15,06	0,07	4,65	0,07	0,9954
0,80000	Nitrógeno	14,47	0,16	3,30	0,16	0,9556
0 70000	Argón	14,54	0,06	4,14	0,06	0,9966
0,79999	Nitrógeno	14,07	0,14	2,91	0,14	0,9556
1 00016	Argón	13,81	0,08	3,44	0,08	0,9885
1,00016	Nitrógeno	13,64	0,12	2,50	0,12	0,9544

Tabla 6-9: Coeficientes $A \neq B$, incertidumbres estándar combinadas y r² para el polinomio de la ecuación 6.1

Para la energía libre:

$$\Delta_{\rm sln}G_{\rm B}^{o} = -RT\ln x_{\rm B} = -RTA - RB(290,65 \,\rm K) \tag{6.3}$$

Para la entropía:

$$\Delta_{\rm sln}S^o_{\rm B} = -[\partial(\Delta G^o_{\rm B})/\partial T]_p = RA \tag{6.4}$$

Y para la entalpía:

$$\Delta_{\rm sln} H^o_{\rm B} = \Delta_{\rm sln} G^o_{\rm B} + T \Delta_{\rm sln} S^o_{\rm B} = -RB(290,65 \text{ K})$$
(6.5)

El resultado en las funciones termodinámicas estándar a 298,15 K se muestra en la tabla 6-10, junto con los valores respectivos de incertidumbre. En primera instancia se observa que los valores de entalpía y entropía para el argón y el nitrógeno en agua pura son mayores que los reportados por Battino y Seybold⁴, aunque la diferencia es similar para los dos gases. Lo anterior se debe a que en este trabajo las funciones termodinámicas se calculan con las solubilidades a cuatro temperaturas, mientras que Battino y Seybold emplean un mayor rango y un mayor número de temperaturas.

mol·kg ⁻¹ de BTBA	Gas	$\Delta_{ m sln}G^o_{ m B}$ kJ·mol ⁻¹	$u(\Delta G_{\rm B}^{o})$ kJ·mol ⁻¹	−Δ _{sln} H ^o _B kJ·mol ⁻¹	$u(\Delta H_{\rm B}^o)$ kJ·mol ⁻¹	$-\Delta_{ m sln}S^o_{ m B}$ J·K ⁻¹ ·mol ⁻¹	$u(\Delta S_{\rm B}^o)$ J·K ⁻¹ ·mol ⁻¹
0	Argón	26,3(26,25) ¹	0,3	13,9(12,24) ¹	0,2	135(129,1) ¹	1
0	Nitrógeno	28,1(28,12) ¹	0,5	11,8(10,30) ¹	0,4	134(129) ¹	2
0.20000	Argón	26,2	0,3	13,2	0,2	132	1
0,20000	Nitrógeno	28,1	0,5	10,9	0,4	131	2
0.00000	Argón	26,2	0,3	12,3	0,2	129	1
0,39990	Nitrógeno	28,0	0,5	9,1	0,4	124	2
0 60000	Argón	26,1	0,3	11,2	0,2	125	1
0,00000	Nitrógeno	27,9	0,6	8,0	0,4	120	2
0 70000	Argón	26,0	0,2	10,0	0,2	121	1
0,79999	Nitrógeno	27,8	0,5	7,0	0,4	117	2
1 00016	Argón	25,9	0,3	8,3	0,2	115	1
1,00010	Nitrógeno	27,8	0,4	6,1	0,3	113	2

Tabla 6-10: Funciones termodinámicas estándar a 298,15 K para el proceso de disolución de argón y nitrógeno en las soluciones acuosas de BTBA

1. Valores tomados de Battino y Seybold ⁴

Para todas las concentraciones, a 298,15 K se mantiene una diferencia en la energía libre entre el argón y el nitrógeno de aproximadamente 1,8 kJ·mol⁻¹. En agua pura, el cambio en la solubilidad de estos gases lo ocasiona solo la diferencia en la entalpía, pero a medida que se incrementa la concentración de sal, existe cierto aporte por parte de la entropía.

La interpretación de las funciones termodinámicas de solución es compleja, porque como lo demuestran Battino y Seybold con varios gases que presentan la misma solubilidad en agua, el aporte entálpico y entrópico al proceso de solución ocurre de muchas maneras ⁴. Sin embargo, los resultados encontrados en las funciones termodinámicas son muy útiles para corroborar la validez de los modelos propuestos que buscan explicar dichos resultados.

6.4 Comparación con otros trabajos

6.4.1 Solubilidad de gases en soluciones acuosas de BTBA

Los resultados de solubilidad de argón y metano a 101325 Pa de presión parcial de gas en soluciones acuosas de BTBA a 288,15 K y 298,15 K se muestran en la gráfica 6-4. Para el metano, se consideran los resultados obtenidos por Wen y Hung ¹⁰⁹ por

coincidir en dos temperaturas y presentar el mismo rango de concentración de BTBA (tabla 2-4). El argón se compara con metano, porque es el hidrocarburo que presenta un valor de polarizabilidad más cercano al del argón. Los valores de solubilidad de argón obtenidos en este trabajo se transformaron a moles de gas absorbidos por kg de H₂O, tal y como se encuentran los valores reportados por Wen y Hung (ver anexo B). En términos generales, se aprecia una tendencia similar con respecto al incremento de la solubilidad de estos gases por la presencia del BTBA, porque en ambos gases el BTBA produce un salting-in, siendo éste mayor a 298,15 K que a 288,15 K.

Gráfica 6-4: Comparación de la solubilidad en mol·kg⁻¹ de H₂O a 101325 Pa de presión parcial de metano y de argón en función de la concentración del BTBA en mol·kg⁻¹. Metano (tomado de Wen y Hung ¹⁰⁹): 288,15 K (\Box); 298,15 K (\Box). Argón (este trabajo): 288,15 K (\blacksquare); 298,15 K (\bullet)

Por otra parte, los resultados de solubilidad de argón en mol·L⁻¹ en soluciones acuosas de BTBA a 298,15 K y 101325 Pa de presión parcial obtenidos en este trabajo fueron comparados con los reportados por Conway y colaboradores ¹¹¹. Los resultados en general difieren significativamente. Sin embargo, el comportamiento de la solubilidad observado en el trabajo de Conway y colaboradores no presenta la tendencia que en general se ha encontrado en este tipo de sistemas (ver tabla 2-6).

6.4.2 Solubilidad de argón en soluciones acuosas de la familia alquiltrimetilamonio a 298,15 y 299,15 K

La gráfica 6-5 muestra la solubilidad de argón en molalidad (mol·kg⁻¹H₂0) a 298,15 o 299,15 K y 101325 Pa de presión parcial de gas en soluciones acuosas de surfactantes de la familia alquiltrimetilamonio con 10, 12, 14 y 16 átomos de carbono (BDeTA, BDTA, BTTA, BHTA respectivamente). Los valores de solubilidad de argón en soluciones acuosas de BDTA y BTTA a 298,15 K obtenidos en este trabajo se transformaron a esta unidad de concentración para ser comparados con los resultados de Prapaitrakul y King a 299,15 K ¹¹⁴ (ver anexo B). Aunque la temperatura difiere en 1 K, en términos generales, se observa una correlación aceptable entre los dos trabajos, sobre todo a concentraciones superiores de 0,1 mol·kg⁻¹ de surfactante, porque permite apreciar cómo se va incrementando la solubilidad de argón en las soluciones acuosas, a medida que aumenta el número de átomos de carbono en la cadena no polar del surfactante, producto de la formación de micelas con mayor volumen.

Gráfica 6-5: Comparación de la solubilidad de argón en molalidad (mol·kg⁻¹H₂0) a 298,15 o 299,15 K y 101325 Pa de presión parcial de gas en soluciones acuosas de la familia de alquiltrimetilamonio con 10, 12, 14 y 16 átomos de carbono. BHTA a 299,15 K (\Box), tomado de Prapaitrakul y King ¹¹⁴; BTTA a 298,15 K (\blacklozenge), este trabajo; BDTA a 298,15 K (\blacktriangle), este trabajo; BDTA a 299,15 K (\Box), tomado de Prapaitrakul y King ¹¹⁴; BTTA a 298,15 K (\blacklozenge), este trabajo; BDTA a 299,15 K (\Box), tomado de Prapaitrakul y King ¹¹⁴

6.4.3 Solubilidad de gases en micelas a 298,15 y 299,15 K

En la tabla 6-11 se muestran los resultados de solubilidad en fracción molar de varios gases en micelas a 101325 Pa de presión y 298,15 o 299,15 K. A partir de los datos experimentales de literatura se observa que la solubilidad de metano es significativamente mayor que la solubilidad de argón en las micelas de BDeTA, DSS y BHTA. Comparando el DSS con el BDTA, surfactantes con el mismo número de átomos de carbono en su cadena no polar pero diferente grupo polar, es mayor la solubilidad de argón en las micelas de BDTA (surfactante catiónico) que en las micelas de DSS (surfactante aniónico). Este resultado también se ha encontrado en otros procesos de solubilización de solutos no iónicos por agregados micelares⁷⁷.

en micelas a 10)1325 Pa d	le presión	parcial y 29	98,15 o 299	9,15 K	_
	Caa	Micolo		^m 103	Def	

Tabla 6-11: Comparación de los resultados de solubilidad en fracción molar de gases

Gas	Micela	T(K)	$x_{\rm B}^{\sf m} \cdot 10^3$	Ref.
Argón	BDeTA	299,15	0,7	114
Metano	BDeTA ¹	299,15	1,7	114
Argón	DSS	298,15	1,1	166
Metano	DSS ¹	298,15	1,83	115
Metano	DSS	298,15	1,90	167
Argón	BDTA	298,15	1,479	Este trabajo
Argón	BTTA	298,15	1,566	Este trabajo
Argón	BHTA	299,15	1,3	114
Metano	BHTA ¹	298,15	2,85	115
Metano	BHTA	299,15	2,90	114

1. DSS: Dodecilsulfato de sodio, BDeTA: Bromuro de deciltrimetilamonio, BHTA: Bromuro de hexadeciltrimetilamonio

Al considerar la solubilidad de argón en las micelas de los surfactantes de bromuro de alquiltrimetilamonio de 10, 12, 14 y 16 átomos de carbono se encuentra que el argón es menos soluble en las micelas de BDeTA, pero la solubilidad del gas en las micelas de BDTA y BTTA es mayor que en la micelas de BHTA. En este punto es importante tener en cuenta que el cálculo de la solubilidad de argón en las micelas de tetralquilamonio se realiza a partir de la evaluación de unos valores experimentales contenidos en un rango de concentración específico, y en ese sentido, el rango considerado no fue el mismo para los cuatro surfactantes. Como se muestra en la gráfica 6-5, el rango para el BDeTA fue de 0 a 0,5 mol·kg⁻¹, para el BDTA y BTTA de 0

a 0,2 mol·kg⁻¹, y para el BHTA de 0 a 0,4 mol·kg⁻¹. También, existe una diferencia de temperatura de 1 K entre este trabajo y el de Prapaitrakul y King¹¹⁴.

7. Conclusiones y recomendaciones

7.1 Conclusiones

Fundamentado en el balance de materia cuando un gas ideal lleva a cabo un proceso expansión isotérmica, se propuso y se desarrolló exitosamente un método para determinar el volumen libre de una cámara.

El equipo de solubilidad construido funcionó adecuadamente porque los valores de solubilidad de argón y de nitrógeno en agua pura obtenidos para cada temperatura muestran buena concordancia con los valores experimentales reportados en la literatura.

La adición de las sales de amonio cuaternario empleadas incrementó la solubilidad de argón y nitrógeno en el agua líquida a 101325 Pa de presión parcial en todos los sistemas estudiados, aunque el mecanismo de solubilización de los gases es distinto en el BDTA y BTTA que en el BTBA. En el primer caso, el incremento de la solubilidad de argón y nitrógeno es producido por la formación de micelas y la inclusión de los gases al interior de las mismas. En el segundo caso, el proceso de solubilización es diferente, porque dentro del intervalo de concentración estudiado, el BTBA no forma micelas.

La geometría del catión afecta el valor de la solubilidad de argón y nitrógeno en las soluciones acuosas estudiadas.

La polarizabilidad de argón y nitrógeno no es un factor que determina su solubilidad en los sistemas estudiados, porque el nitrógeno es más polarizable en un 6% en relación al argón, pero su solubilidad es menor cerca de un 50%. Empleando el modelo de separación de fases, se encontró que la solubilidad de argón y nitrógeno en las micelas de BDTA y de BTTA es mayor entre 59,0 y 86,3 veces la del agua pura.

Con una confianza del 98%, la solubilidad de argón y nitrógeno en las micelas de BTTA es estadísticamente mayor que en las micelas de BDTA, excepto en el argón a 283,15 K. Esto significa que la inserción de un grupo etileno en la cadena no polar del BDTA genera un efecto positivo en la solubilidad de argón y nitrógeno al constituir micelas de mayor tamaño con mayor capacidad de solubilización.

Los resultados experimentales obtenidos en este trabajo son novedosos porque no existían reportes anteriores en la literatura, y permiten ampliar el conocimiento de las propiedades fisicoquímicas de los sistemas estudiados.

7.2 Recomendaciones

Debido a que no existe una relación clara entre la polarizabilidad de un gas y la solubilidad en medios acuosos, se sugiere el estudio de la solubilidad de otros gases de distinta polarizabilidad como el Ne, Kr, Xe, O₂, CH₄, C₂H₆, C₃H₈, C₄H₁₀ en las sales de amonio cuaternario empleadas en este trabajo.

Considerar a otros surfactantes de la misma familia en los estudios de solubilidad de argón y nitrógeno, como por ejemplo el bromuro de deciltrimetilamonio y el bromuro de hexadeciltrimetilamonio, para evaluar el efecto del tamaño de las micelas sobre la solubilidad de los gases a las temperaturas de trabajo.

Emplear otras sales simétricas de bromuro de tetralquilamonio como el bromuro de tetrametilamonio, bromuro de tetraetilamonio, bromuro de tetrapropilamonio y bromuro de tetrapentilamonio, para evaluar el efecto de la longitud de cadena sobre la solubilidad de los gases.

Estudiar la solubilidad de argón en soluciones de BDTA y BTTA por debajo de 283,15 K para observar si existen diferencias significativas en el valor de su solubilidad dentro de las micelas de BDTA y BTTA.

Para una segunda versión del equipo se recomienda que las celdas de líquido y de gas sean más grandes, para reducir el valor de la incertidumbre en la solubilidad medida.

Anexo A. Cálculo de la solubilidad de gases en soluciones acuosas de sales de amonio cuaternario

A continuación se muestra la manera en la que se calculó la solubilidad de argón y nitrógeno en las soluciones acuosas de sales de amonio cuaternario. El proceso se aplica sobre el sistema argón-solución de BDTA 0,200 mol·kg⁻¹ a 298,15 K.

A.1 Volumen del gas:

$$V_B = V_{\text{total}} - V_{\text{sin}} \tag{A.1}$$

$$V_{\rm total} = 0,14804 \, {\rm L}$$

$$V_{\rm sin} = m_{\rm sin}/d_{\rm sin} \tag{A.2}$$

$$m_{sln} = (m_2^{Erl} - m_1^{Erl}) - (m_2^{Emb} - m_1^{Emb})$$
(A.3)

Donde m_2^{Erl} , m_1^{Erl} son respectivamente la masa del erlenmeyer con la solución y la masa del erlenmeyer luego de que la solución se ha cargado en la celda del líquido (con gotas de solución), y m_2^{Emb} , m_1^{Emb} son la masa del embudo húmedo (con gotas de solución) y la masa del embudo seco.

 $V_{sln} = 47,3649 \text{ g} / 0,9997 \text{ g} \cdot \text{mL}^{-1} = 47,38 \text{ mL} = 0,04738 \text{ L}$

 $V_B = 0,14804 \text{ L} - 0,04738 \text{ L} = 0,1007 \text{ L}$

A.2 Presiones inicial y final:

 $mV_0 = 8032$

$P_0 = 83068 \text{ Pa}$

 $mV_f = 7893$

P_f = 81631 Pa

Donde mV_0 y mV_f representa el voltaje (en mV) inicial y final del transductor absoluto de presión.

A.3 Presión de vapor del agua:

$$p_{\rm A} = x_{\rm A} p_{\rm A}^* \tag{A.4}$$

Donde x_A es la fracción molar del agua en la solución y p_A^* es la presión de vapor del agua a 298,15 K.

$$x_{\mathsf{A}} = n_{\mathsf{A}}/(n_{\mathsf{A}} + n_{\mathsf{s}}) \tag{A.5}$$

$$n_{\rm A} = m_{\rm A}/M_{\rm A} \tag{A.6}$$

 $n_{\rm A} = 44,6161 \text{ g} / 18,011 \text{ g} \cdot \text{mol}^{-1} = 2,4772 \text{ moles}$

$$n_{\rm s} = {\rm m}_{\rm s}/{\rm M}_{\rm s} \tag{A.7}$$

 $n_{\rm s} = 2,7488 \text{ g} / 308,327 \text{ g} \cdot \text{mol}^{-1} = 8,9153 \cdot 10^{-3} \text{ moles}$

 $x_{A} = 2,4772 \text{ moles} / (2,4772 \text{ moles} + 8,9153 \cdot 10^{-3} \text{ moles}) = 0,99641$

*p*_A = 0,99641·3169,9 Pa = 3158,6 Pa

A.4 Constante *R* de los gases:

 $R = 8,3144621 \cdot 10^{3} \text{ Pa} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

A.5 Temperatura:

T = 298,15 K

A.6 Solubilidad de argón a 101325 Pa de presión parcial:

$$x_{\rm B} = \frac{101325 \,\text{Pa}}{k_{H,\rm B}} = \frac{101325 \,\text{Pa} \cdot V_B (P_0 - P_f)}{(P_f - p_{\rm A}) [RT(n_{\rm A} + n_{\rm s}) + V_B (P_0 - P_f)]} = 3,032 \cdot 10^{-5}$$

Anexo B. Resultados de solubilidad de gas expresados en molalidad con respecto al agua a 101325 Pa de presión parcial

283,	283,15 K 288,15 K		293,	15 K	298,15 K		
mol⋅kg⁻¹	mol _{Ar} ⋅kg ⁻¹ ₊10³	mol∙kg⁻¹	mol _{Ar} ·kg ⁻¹ ·10 ³	mol∙kg⁻¹	kg^{-1} $mol_{Ar} kg^{-1}$ $mol kg^{-1}$ $mol kg^{-1}$		mol _{Ar} ⋅kg ⁻¹ ·10 ³
0	1,868	0	1,678	0	1,517	0	1,392
0,20002	1,885	0,19991	1,710	0,20000	1,543	0,20005	1,428
0,39970	1,900	0,39994	1,742	0,40029	1,582	0,39989	1,465
0,60011	1,914	0,60023	1,771	0,59995	1,615	0,59969	1,513
0,79994	1,925	0,79994	1,790	0,80007	1,660	0,79999	1,557
1,00016	1,936	1,00008	1,809	0,99993	1,719	1,00045	1,617

Tabla B-1: Solubilidad de argón en molalidad (mol·kg⁻¹H₂0) a 101325 Pa de presión parcial en función de la concentración de BTBA y de la temperatura

Tabla B-2: Solubilidad de argón en molalidad (mol·kg⁻¹H₂0) a 101325 Pa de presión parcial en función de la concentración de BTBA y de BTTA a 298,15 K

BD.	ТА	B	TTA
mol∙kg⁻¹	mol·kg ⁻¹ mol _{Ar} ·kg ⁻¹ ·10 ³		mol _{Ar} ∙kg ⁻¹ ∙10³
0,03987	1,444	0,03990	1,453
0,07973	1,488	0,07989	1,496
0,11965	1,564	0,11999	1,573
0,15952	1,614	0,15992	1,640
0,19995	1,682	0,20007	1,700

La solubilidad de los gases en soluciones acuosas de sales de amonio cuaternario en (mol·kg⁻¹H₂0) a 101325 Pa de presión parcial presentada en las tablas B-1 y B-2 se calculó a partir de la siguiente ecuación:

$$m_{\rm B} = \frac{101325 \,{\rm Pa}}{H_{\rm B,A}^m} = \frac{1,01325 \cdot 10^8 \,{\rm Pa} \cdot V_B(P_0 - P_f)}{(P_f - P_A) R T_{\rm SH_20}} \tag{B.1}$$

Donde $H_{B,A}^m$ es la constante de Henry del gas en la solución en Pa·kg·mol⁻¹, V_B el volumen de gas en L, P_0 y P_f la presión inicial y final respectivamente en Pa, p_A la presión parcial del agua a la temperatura T de la medida en Pa, R la constante de los gases en Pa · L · mol⁻¹ · K^{-1} , y g_{H₂0} la masa de agua en g.

Anexo C. Algunas propiedades importantes de los surfactantes BDTA y BTTA

C.1 Concentración micelar crítica

 Tabla C-1: Valores de concentración micelar crítica encontrados en la literatura para el BDTA

Valor	Unidad	T (K)	Método	Ref.
0,014	mol·L ⁻¹	298,15	Tensión superficial	168
0,007	mol∙L ⁻¹	298,15	Microviscosidad (RMN)	168
0,0154	mol∙kg⁻¹	298,15	Conductividad Eléctrica	169
0,0148	mol∙kg⁻¹	298,15	Compresibilidad Adiabática	170
0,0146	mol∙L ⁻¹	298,15	Promedio de 4 Trabajos	93
0,0143	mol⋅kg⁻¹	298,15	Coeficiente de Intradifusión (RMN)	171
0,0156	mol⋅kg⁻¹	288,15		
0,0148	mol∙kg⁻¹	298,15	Citado por Menta y colaboradores,	172
0,0153	mol⋅kg⁻¹	308,15	2000	

Tabla C-2: Valores de concentración micelar crítica encontrados en la literatura para el BTTA

Valor	Unidad	T (K)	Método	Ref.
0,00379	mol∙kg⁻¹	298,15	Conductividad Eléctrica	169
0,0037	mol∙kg⁻¹	298,15	Compresibilidad adiabática	170
0,00354	mol·L ⁻¹	298,15	Promedio de 5 Trabajos	93

C.2 Número de agregación

Tabla C-3: Números de agregación a 298,15 K encontrados en la literatura para el BTTA y el BTTA

Surfactante	N _{ag}	Método	Ref.
BDTA	50	Difracción Estática y Dinámica de Luz	173
BTTA	70,8	Difracción Estática de Luz	174

Tabla C-4: Números de agregación a 298,15 K para el BTTA en función de la concentración de BTTA, a través de estudios de difracción de neutrones de pequeño ángulo y espectroscopia óptica Raman. Tomado de Haramagatti y colaboradores ⁹⁴

mmol⋅L ⁻¹ de BTTA	Ν
25	90
50	93
74	102
149	105
300	119
375	138
524	160
595	172
673	203

Anexo D. Correlaciones para la solubilidad de argón y nitrógeno en soluciones acuosas de BDTA y BTTA en función de la concentración y la temperatura

Los valores de solubilidad encontrados, incluyendo la solubilidad de argón y nitrógeno en agua pura, se pueden ajustar adecuadamente a través del siguiente polinomio que toma a la temperatura y a la concentración de surfactante (mol·kg⁻¹) como variables independientes:

$$\ln x_{\rm B} = A + BT/290,65 \text{ K} + Cm/0,1 \text{mol·kg}^{-1}$$
(D.1)

La temperatura y concentración de referencia corresponden al valor intermedio de cada rango estudiado. En la tabla D-1 se presenta el valor de los coeficientes con sus respectivas incertidumbres estándar combinadas y el valor de r² para los cuatro sistemas.

Surfactante	Gas	-A	u(A)	-B	<i>u</i> (<i>B</i>)	С	u(C)	r ²
BDTA	Argón	4,401	0,056	6,025	0,056	0,105	0,002	0,9963
	Nitrógeno	5,854	0,098	5,371	0,099	0,117	0,003	0,9878
BTTA	Argón	4,419	0,057	6,033	0,057	0,110	0,002	0,9962
	Nitrógeno	5,778	0,105	5,447	0,105	0,121	0,003	0,9867

Tabla D-1: Coeficientes *A*, *B* y *C*, incertidumbres estándar combinadas y r^2 para el polinomio de la ecuación D.1
Anexo E. Pruebas de hipótesis para evaluar la igualdad entre los valores de solubilidad de argón y nitrógeno en las micelas de BTTA y BDTA

Considerando la pequeña diferencia que existe entre los valores de la solubilidad de argón y nitrógeno en las micelas de BDTA y BTTA, se hace indispensable conocer si realmente existe una diferencia estadísticamente significativa en cada una de las temperaturas de trabajo. La siguiente prueba estadística permite evaluar dichas diferencias, a través de la función de distribución de probabilidad "*t de student*" y del cálculo de la varianza ponderada (σ_P^2).

El procedimiento se describe a continuación:

1) $H_0: x_B^m BDTA = x_B^m BTTA$

H₁: x_B^m BDTA≠ x_B^m BTTA

- 2) p: 0,02
- 3) G.L.= *n*−2

4)
$$t_{\exp} = \frac{|\bar{x}_{B}^{m}BDTA-\bar{x}_{B}^{m}BTTA|}{\sigma_{P}\sqrt{\frac{1}{n_{BDTA}}+\frac{1}{n_{BTTA}}}}$$

Donde:

$$\sigma_{\rm P}^2 = \frac{\sigma_{\rm BDTA}^2(n_{\rm BDTA}-1) + \sigma_{\rm BTTA}^2(n_{\rm BTTA}-1)}{n_{\rm BDTA} + n_{\rm BTTA} - 2}$$

5) Criterio de decisión: Rechazar H₀ si $t_{exp} > t_{tabla}$

No rechazar H_0 si $t_{exp} < t_{tabla}$

., ,

.

I abla E-1: Resultados de solubilidad en fraccion molar de argon y nitrogeno en las
micelas de BDTA y BTTA obtenidos en función de la temperatura (tabla 6-8 del
documento)

.

Gas	Т (К)	n_{BDTA}	x ^m _B BDTA ·10 ³	σ _{BDTA} · 10 ⁵	n_{BTTA}	$x_{B}^{m} \operatorname{BTTA}^{\cdot 10^3}$	$\sigma_{ m BTTA} \cdot 10^5$
	283,15	35	2,404	8,33	35	2,429	9,80
Argón	288,15	35	2,024	6,60	35	2,119	5,89
Argon	293,15	35	1,684	6,41	35	1,792	6,16
	298,15	35	1,479	5,07	35	1,566	7,13
	283,15	35	1,272	5,99	35	1,315	6,64
Nitrógeno	288,15	35	0,958	4,98	35	1,020	3,01
	293,15	35	0,861	5,67	35	0,884	5,56
	298,15	35	0,782	4,60	35	0,836	4,70

Tomando como punto de partida los resultados obtenidos en este trabajo (tabla E-1), y para la misma temperatura con una confianza del 98%, se realizó el procedimiento para evaluar diferencias significativas en la solubilidad de los gases en las micelas de BDTA y BTTA. La tabla E-2 resume los resultados obtenidos luego de aplicar las pruebas de hipótesis.

 Tabla E-2:
 Resumen de los resultados obtenidos en las pruebas de hipótesis

H _o	Gas	Т (К)	$\sigma_{P} \cdot 10^5$	$t_{ m exp}$	$t_{ m tabla}$	Decisión
	Argón	283,15	9,09	1,140	2,390	No rechazar
		288,15	6,26	6,348	2,390	Rechazar H_0
		293,15	6,29	114,8	2,390	Rechazar H_0
		298,15	6,18	101,6	2,390	Rechazar H_0
$x_{\rm B}$ DDIA= $x_{\rm B}$ DIIA	Nitrógeno	283,15	6,32	2,844	2,390	Rechazar H_0
		288,15	4,12	6,313	2,390	Rechazar H_0
		293,15	5,61	62,15	2,390	Rechazar H_0
		298,15	4,65	70,18	2,390	Rechazar H_0

Con una confianza del 98%, excepto en el argón a 283,15 K, se puede decir que las micelas de BTTA tienen mayor capacidad para solubilizar el argón y el nitrógeno en comparación con las micelas de BDTA; dicha capacidad en el BTTA tiene que ver con el efecto que produce la inserción de un grupo etileno en la cadena no polar del BDTA.

Anexo F. Ajuste de los datos de solubilidad de argón y nitrógeno en soluciones acuosas de BTBA con la ecuación de Sechenov

Las gráficas F-1 y F-2 muestran la dependencia del logaritmo de la solubilidad en fracción molar de los gases en agua pura menos el logaritmo de la solubilidad en las soluciones de BTBA en función de la concentración de BTBA y de la temperatura.

Como se puede observar, el comportamiento encontrado difiere del que describe la ecuación semiempírica de Sechenov. Por su parte, el comportamiento de la solubilidad de metano en las soluciones acuosas de BTBA es similar al presentado por el argón y el nitrógeno (ver gráfica 2-1).

Gráfica F-1: Logaritmo del cociente entre la solubilidad de argón en agua pura y en las soluciones de BTBA en función de la temperatura y de la concentración de sal en mol·kg⁻¹: 283,15 K (\blacksquare); 288,15 K (\blacklozenge); 293,15 K (\blacktriangle); 298,15 K (\blacklozenge);

Gráfica F-2: Logaritmo del cociente entre la solubilidad de nitrógeno en agua pura y en las soluciones de BTBA en función de la temperatura y de la concentración de sal en mol·kg⁻¹: 283,15 K (\bullet); 288,15 K (\bullet); 293,15 K (\bullet); 298,15 K (\bullet)

Los resultados encontrados se ajustan satisfactoriamente a un polinomio de orden 2, de acuerdo con la siguiente ecuación:

$$\log(s_0/s) = Am/mol \cdot kg^{-1} + Bm^2/mol^2 \cdot kg^{-2}$$
(F.1)

La tabla F-1 muestra los valores de los coeficientes para la ecuación F.1 con el valor de r².

Tabla F-1: Coeficientes $A \neq B$, incertidumbres estándar combinadas y r² para el polinomio de la ecuación F.1

Temperatura (K)	Gas	- A	<i>u_c</i> (<i>A</i>)	-В	<i>u_c(B</i>)	r ²
292.15	Argón	1,29	0,02	-0,51	0,03	0,9997
203,15	Nitrógeno	1,17	0,12	0,09	0,02	0,9939
200.15	Argón	3,82	0,09	-1,31	0,12	0,9995
200,15	Nitrógeno	1,18	0,06	1,49	0,11	0,9991
293,15	Argón	2,64	0,17	1,97	0,29	0,9980
	Nitrógeno	2,86	0,43	2,29	0,38	0,9888
209.15	Argón	4,54	0,12	1,11	0,19	0,9996
290,15	Nitrógeno	5,95	0,56	0,97	0,10	0,9924

Bibliografía

1 Definitions of the SI Base Units, <<u>http://physics.nist.gov/cuu/Units/current.html</u>> (04/07/2013).

2 Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement,
<<u>http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf</u>>
(07/10/2012).

3 Hefter, G.T. & Tomkins, R.P.T. in *The Experimental Determination of Solubilities* Vol. 6 (John Wiley & Sons, LTD, England, 2003).

4 Battino, R. & Seybold, P.G. The O2/N2 Ratio Gas Solubility Mystery. *J. Chem. Eng. Data* **56**, 5036-5044 (2011).

5 Raposo, R.R., Calviño, E. & Esteso, M.A. A New Electrochemical Method for the Determination of Gas Solubility in Aqueous Solutions. *J. Electroanal. Chem.* **617**, 157-163 (2008).

6 Davie, M.K., Zatsepina, O.Y. & Buffett, B.A. Ethane Solubility in Marine Hydrate Environments. *Mar. Geol.* **203**, 177-184 (2004).

7 Battino, R., Seybold, P.G. & Campanell, F.C. Correlations Involving the Solubility of Gases in Water at 298.15 K and 101325 Pa. *J. Chem. Eng. Data* **56**, 727-732 (2011). 8 Kaskiala, T. Determination of Oxygen Solubility in Aqueous Sulphuric Acid Media. *Miner. Eng.* **15**, 853-857 (2002).

9 Garzón, L.C.A. & Blanco, L.H. Descripción de un Método Preciso para la Determinación del Volumen Libre de una Cámara *Avances* **9**, 66-70 (2012).

Liu, Q., Takemura, F. & Yabe, A. Solubility and Diffusivity of Carbon Monoxide in Liquid Methanol. *J. Chem. Eng. Data* **41**, 589-592 (1996).

11 Munder, B., Lidal, H. & Sandall, O.C. Physical Solubility of Hydrogen Sulfide in Aqueous Solutions of 2-(tert-Butylamino)Ethanol. *J. Chem. Eng. Data* **45**, 1201-1204 (2000).

12 Serra, M.C.C., Coelho, J.P.A., Calado, J.C.G. & Palavra, A.M.F. Solubility of Argon in Micellar Aqueous Solutions of Sodium Dodecyl Sulfate. *J. Colloid Interface Sci.* **173**, 278-283 (1995).

13 Xia, J., Jödecke, M., Pérez-Salado, A. & Maurer, G. Solubility of CO_2 in (CH₃OH + H₂O). *J. Chem. Eng. Data* **49**, 1756-1759 (2004).

Amado, E. & Blanco, L.H. Isopiestic Determination of the Osmotic and Activity Coefficients of Dilute Aqueous Solutions of Symmetrical and Unsymmetrical Quaternary Ammonium Bromides with a New Isopiestic Cell at 298.15 K. *Fluid Phase Equilib.* **233**, 230-233 (2005).

Blanco, L.H. & Torres, A. The Effect of Me₄NBr, Et₄NBr, Bu₄NBr, and (EtOH)₃EtNBr on the Temperature of Maximum Density of Water. *J. Solution Chem.*37, 1657-1669 (2008).

Blanco, L.H. & Rozo, A.P. Osmotic and Activity Coefficients of Trimethyloctylammonium Bromide and Decyltrimethylammonium Bromide in Aqueous Solutions as a Function of Temperature. *J. Solution Chem.* **39**, 1819-1827 (2010). 17 Salamanca, Y.P., Blanco, L.H., Buchner, R. & Vargas, E.F. Electrical Conductivity Studies of Tetraalkylammonium Bromides in Aqueous Solutions at Several Temperatures. *J. Chem. Eng. Data* **57**, 2203-2210 (2012).

18 Horne, R.A. in *Water and Aqueous Solutions. Chapter 15* (Wiley, New York, 1972).

Wen, W.-Y. Structural Aspects of Aqueous Tetraalkylammonium Salt Solutions.J. Solution Chem. 2, 253-276 (1973).

20 Marcus, Y. Tetraalkylammonium Ions in Aqueous and Non-aqueous Solutions. *J. Solution Chem.* **37**, 1071-1098 (2008).

21 Bhowmik, D., Malikova, N., Teixeira, J., Mériguet, G., Bernard, O., Turq, P. & Häussler W. Study of Tetrabutylammonium Bromide in Aqueous Solution by Neutron Scattering. *Eur. Phys. J. Special Topics* **213**, 303-312 (2012).

Kühnel, V. & Kaatze, U. Uncommon Ultrasonic Absorption Spectra of
 Tetraalkylammonium Bromides in Aqueous Solution. *J. Phys. Chem.* 100, 19747 19757 (1996).

Dopierala, K. & Prochaska, K. The Effect of Molecular Structure on the Surface
 Properties of Selected Quaternary Ammonium Salts. *J. Colloid Interface Sci.* 321,
 220-226 (2008).

24 Berry, R.S., Rice, S.A. & Ross, J. *Physical Chemistry*. Second edn, (Oxford University Press, 2000).

25 Cavalleri, M. *Ph. D Thesis: Local Structure of Hydrogen-Bonded Liquids*, Stockholm University, (2004). 26 Chaplin, M. Anomalous Properties of Water,

<<u>http://www.lsbu.ac.uk/water/anmlies.html</u>> (21/02/2013).

27 Symons, M.C.R. Water Structure: Unique but not Anomalous *Philos. Trans. R. Soc. London, Ser. A* **359**, 1631-1646 (2001).

28 Mishima, O. & Stanley, H.E. The Relationship Between Liquid, Supercooled and Glassy Water. *Nature* **396**, 329-335 (1998).

29 Stillinger, F.H. Water Revisited. *Science* **209**, 451-457 (1980).

30 Zubavicus, Y. & Grunze, M. New Insights into the Structure of Water with Ultrafast Probes *Science* **304**, 974-976 (2004).

Teixeira, J. Can Water Possibly Have a Memory? A Sceptical View. *Homeopathy* **96**, 158–162 (2007).

32 Bakker, H.J. Structural Dynamics of Aqueous Salt Solutions. *Chem. Rev.* **108**, 1456-1473 (2008).

33 Hribar, B., Southall, N.T., Vlachy, V. & Dill, K.A. How Ions Affect the Structure of Water. *J. Am. Chem. Soc.* **124**, 12302-12311 (2002).

Collins, K.D., Neilson, G.W. & Enderby, J.E. Ions in Water: Characterizing the
Forces that Control Chemical Processes and Biological Structure. *Biophys. Chem.* **128**, 95-104 (2007).

35 Collins, K.D. Charge Density-Dependent Strength of Hydration and Biological Structure. *Biophys. J.* **72**, 65-76 (1997).

36 Kropman, M.F. *Ph. D Thesis: Ion Solvation in Water Femtosecond Spectroscopy of Hydrogen-Bond Dynamics*, Amsterdam University, (2004).

Bakó, I., Pálinkás, G., Dore, J.C., Fischer, H. & Jóvári, P. Wide and Low Angle
Neutron Scattering of Water–Pyridine Mixtures. *Chem. Phys. Lett.* 388, 468-472
(2004).

Botti, A., Bruni, F., Imberti, S., Ricci, M.A. & Soper, A.K. Solvation Shell of H⁺ Ions in Water. *J. Mol. Liq.* **117**, 77-79 (2005).

Buchanan, P., Aldiwan, N., Soper, A.K., Creek, J.L. & Koh, C.A. Decreased Structure on Dissolving Methane in Water. *Chem. Phys. Lett.* **415**, 89-93 (2005).

Dixit, S., Soper, A.K., Finney, J.L. & Crain, J. Water Structure and Solute Association in Dilute Aqueous Methanol. *Europhys. Lett.* **59**, 377-383 (2002).

41 Fischer, H.E., Barnes, A.C. & Salmon, P.S. Neutron and X-Ray Diffraction Studies of Liquids and Glasses. *Rep. Prog. Phys.* **69**, 233–299 (2006).

Harsányi, I., Jóvári, P., Mészáros, G., Pusztai, L. & Bopp, P.A. Neutron and X-Ray Diffraction Studies of Aqueous Rubidium Bromide Solutions. *J. Mol. Liq.* 131-132, 60-64 (2007).

43 Kameda, Y., Mochiduki, K., Imano, M., Naganuma, H., Sasaki, M., Amo, Y. & Usuki, T. Neutron Diffraction Study of Concentrated Aqueous Lithium Benzoate Solutions. *J. Mol. Liq.* **119**, 159-166 (2005).

Mason, P.E., Ansell, S. & Neilson, G.W. Neutron Diffraction Studies of
Electrolytes in Null Water: a Direct Determination of the First Hydration Zone of Ions.
J. Phys. Condens. Matter 18, 8437–8447 (2006).

45 Nilsson, A. & Pettersson, L.G.M. Perspective on the Structure of Liquid Water. *Chem. Phys.* **389**, 1-34 (2011).

46 Soper, A.K. & Weckström, K. Ion Solvation and Water Structure in Potassium Halide Aqueous Solutions. *Biophys. Chem.* **124**, 180-191 (2006).

Leetmaa, M., Ljungberg, M., Ogasawara, H., Odelius, M., Näslund, L.A.,
Nilsson, A. & Pettersson, L.G. Are Recent Water Models Obtained by Fitting
Diffraction Data Consistent with Infrared/Raman and X-Ray Absorption Spectra? *J. Chem. Phys.* **125**, 244510 (2006).

Li, R., Jiang, Z., Yang, H. & Guan, Y. Effects of Ions in Natural Water on the ¹⁷O NMR Chemical Shift of Water and their Relationship to Water Cluster. *J. Mol. Liq.* **126**, 14-18 (2006).

49 Mallamace, F., Broccio, M., Corsaro, C., Faraone, A., Liu, L., Mou, C.-Y. & Chen S.-H. Dynamical Properties of Confined Supercooled Water: an NMR Study. *J. Phys. Condens. Matter* **18**, S2285–S2297 (2006).

Jin, Y. & Ikawa, S.-I. Near-Infrared Spectroscopic Study of Water at High Temperatures and Pressures. *J. Chem. Phys.* **119**, 12432-12438 (2003).

51 Dillon, S.R. & Dougherty, R.C. Raman Studies of the Solution Structure of Univalent Electrolytes in Water. *J. Phys. Chem. A* **106**, 7647-7650 (2002).

Li, R., Jiang, Z., Chen, F., Yang, H. & Guan, Y. Hydrogen Bonded Structure of Water and Aqueous Solutions of Sodium Halides: a Raman Spectroscopic Study. *J. Mol. Struct.* **707**, 83-88 (2004).

53 Kitano, H., Imai, M., Gemmei-Ide, M. & Takaha, K. Raman Spectroscopic Study on the Structure of Water in Aqueous Solution of Zwitterionic Surfactants. *J. Colloid Interface Sci.* **269**, 459-465 (2004). 54 Lyashchenko, A.K. & Novskova, T.A. Structural Dynamics of Water and its Dielectric and Absorption Spectra in the Range 0–800 cm⁻¹. *J. Mol. Liq.* **125**, 130-138 (2006).

55 Chen, T., Hefter, G. & Buchner, R. Dielectric Spectroscopy of Aqueous Solutions of KCl and CsCl. *J. Phys. Chem. A* **107**, 4024-4031 (2003).

56 Kaatze, U. & Feldman, Y. Broadband Dielectric Spectrometry of Liquids and Biosystems. *Meas. Sci. Technol.* **17**, R17-R35 (2006).

57 Kay, R.L. The Current State of our Understanding of Ionic Mobilities. *Pure Appl. Chem.* **63**, 1393-1399 (1991).

Nikam, P.S., Pawar, T.B., Sawant, A.B. & Hasan, M. Limiting Ionic Partial Molar Volumes of R4N⁺ and Br⁻ in Aqueous Ethanol at 298.15 K. *J. Mol. Liq.* **126**, 19-22 (2006).

59 Lindenbaum, S. Thermodynamics of Aqueous solutions of Tetra-n-Alkylammonium Halides. Enthalpy and Entropy of Dilution. *J. Phys. Chem.* **70**, 814-820 (1966).

60 Rey, R., Møller, K.B. & Hynes, J.T. Hydrogen Bond Dynamics in Water and Ultrafast Infrared Spectroscopy. *J. Phys. Chem. A* **106**, 11993-11996 (2002).

Gallo, P., Corradini, D. & Rovere, M. Ion Hydration and Structural Properties of Water in Aqueous Solutions at Normal and Supercooled Conditions: a Test of the Structure Making and Breaking Concept. *Phys. Chem. Chem. Phys.* **13**, 19814– 19822 (2011).

Raschke, T.M. & Levitt, M. Nonpolar Solutes Enhance Water Structure within
Hydration Shells While Reducing Interactions Between Them. *PNAS* **102**, 6777–6782 (2005).

63 Kirchner, B. Theory of Complicated Liquids Investigation of Liquids, Solvents and Solvent Effects with Modern Theoretical Methods. *Phys. Rep.* **440** (2007).

64 Teboul, V. Pressure Dependence of Dynamical Heterogeneity in Water. *J. Phys. Condens. Matter* **20**, 244116 (2008).

Koneshan, S., Rasaiah, J.C., Lynden-Bell, R.M. & Lee, S.H. Solvent Structure,
Dynamics, and Ion Mobility in Aqueous Solutions at 25 °C. *J. Phys. Chem. B* 102,
4193-4204 (1998).

66 Chandra, A. & Chowdhuri, S. Pressure Effects on the Dynamics and Hydrogen Bond Properties of Aqueous Electrolyte Solutions: The Role of Ion Screening. *J. Phys. Chem. B* **106**, 6779-6783 (2002).

67 Chandra, A. Dynamical Behavior of Anion-Water and Water-Water Hydrogen Bonds in Aqueous Electrolyte Solutions: A Molecular Dynamics Study. *J. Phys. Chem. B* **107**, 3899-3906 (2003).

68 Lyashchenko, A.K. & Dunyashev, V.S. Spatial Organization of Water Structure. *J. Mol. Liq.* **106**, 199-213 (2003).

69 Omta, A.W., Kropman, M.F., Woutersen, S. & Bakker, H.J. Negligible Effect of Ions on the Hydrogen-Bond Structure in Liquid Water. *Science* **301**, 347-349 (2003).

Fecko, C.J., Eaves, J.D., Loparo, J.J., Tokmakoff, A. & Geissler, P.L. Ultrafast Hydrogen-Bond Dynamics in the Infrared Spectroscopy of Water. *Science* **301**, 1698-1702 (2003).

Eaves, J.D., Loparo, J.J., Fecko, C.J., Roberts, S.T., Tokmakoff, A. & Geissler,
P.L. Hydrogen Bonds in Liquid Water are Broken Only Fleetingly. *PNAS* 102, 13019-13022 (2005).

Gilijamse, J.J., Lock, A.J. & Bakker, H.J. Dynamics of Confined Water Molecules. *PNAS* **12**, 3202-3207 (2005).

73 Bakker, H.J., Kropman, M.F. & Omta, A.W. Effect of lons on the Structure and Dynamics of Liquid Water. *J. Phys. Condens. Matter* **17**, S3215–S3224 (2005).

Rezus, Y.L.A. & Bakker, H.J. Effect of Urea on the Structural Dynamics of Water. *PNAS* **103**, 18417–18420 (2006).

75 Ohtaki, H. & Radnai, T. Structure and Dynamics of Hydrated Ions. *Chem. Rev.*93, 1157-1204 (1993).

Gamsjäger, H., Lorimer, J.W., Salomon, M., Shaw, D.G. & Tomkins, R.P.T. The IUPAC-NIST Solubility Data Series: A Guide to Preparation and Use of Compilations and Evaluations. *J. Phys. Chem. Ref. Data* **39**, 023101 (2010).

77 Yalkowsky, S.H. *Solubility and Solubilization in Aqueous Media*. First edn, (Oxford University Press, 1999).

Gamsjäger, H., Lorimer, J.W., Scharlin, P. & Shaw, D.G. Glossary of Terms Related to Solubility (IUPAC Recommendations 2008). *Pure Appl. Chem.* **80**, 233-276 (2008).

Millero, F.J., Huang, F. & Laferiere, A.L. The Solubility of Oxygen in the Major Sea Salts and their Mixtures at 25°C. *Geochim. Cosmochim. Acta* **66**, 2349-2359 (2002).

Kumar, P.S., Hogendoorn, J.A., Feron, P.H.M. & Versteeg, G.F. Density,
 Viscosity, Solubility and Diffusivity of N₂O in Aqueous Amino Acid Salt Solutions. *J. Chem. Eng. Data* 46, 1357-1361 (2001).

81 Engel, D.C., Versteeg, G.F. & van Swaaij, W.P.M. Solubility of Hydrogen in Aqueous Solutions of Sodium and Potassium Bicarbonate from 293 to 333 K. *J. Chem. Eng. Data* **41**, 546-550 (1996).

Desnoyers, J.E., Perron, G., Léger, S., Okamoto, B.Y., Lilley, T.H. & Wood,
R.H. Salting-in of Alcohols in Aqueous Solutions by Tetraalkylammonium Bromides at the Freezing Temperature. *J. Solution Chem.* 7, 165-178 (1978).

Xie, W.-H., Shiu, W.-Y. & Mackay, D. A Review of the Effect of Salts on the Solubility of Organic Compounds in Seawater. *Mar. Environ. Res.* **44**, 429-444 (1997).

Ni, N. & Yalkowsky, S.H. Prediction of Setschenow Constants. *Int. J. Pharm.*254, 167-172 (2003).

Stam, J.V., Depaemalaere, S. & Schryver, F.C.D. Micellar Aggregation Numbers—A Fluorescence Study. *J. Chem. Educ.* **75**, 93-98 (1998).

Hargreaves, R., Bowron, D.T. & Edler, K. Atomistic Structure of a Micelle in
Solution Determined by Wide Q-Range Neutron Diffraction. *J. Am. Chem. Soc.* 133, 16524-16536 (2011).

Fisicaro, E., Biemmi, M., Compari, C., Duce, E. & Peroni, M. Thermodynamics of Aqueous Solutions of Dodecyldimethylethylammonium Bromide. *J. Colloid Interface Sci.* **305**, 301-307 (2007).

Tadros, T.F. *Applied Surfactants. Principles and Applications*. First edn, (Wiley, 2005).

89 Rosen, M.J. *Surfactants and Interfacial Phenomena*. Third edn, (John Wiley & Sons, 2004).

90 Holmberg, K., Jönsson, B., Kronberg, B. & Lindman, B. *Surfactants and Polymers in Aqueous Solution*. Second edn, (Wiley, 2002).

del Río, J.M., Pombo, C., Prieto, G., Mosquera, V. & Sarmiento, F. Effect of
Temperature and Alkyl Chain Length on the Micellar Properties of nAlkyltrimethyammonium Bromides in a Low pH Medium. *J. Colloid Interface Sci.* 172, 137-141 (1995).

Bayrak, Y. Micelle Formation in Sodium Dodecyl Sulfate and
Dodecyltrimethylammonium Bromide at Different Temperatures. *Turk. J. Chem.* 27, 487-492 (2003).

Mosquera, V., del Rio, J.M., Attwoodb, D., Garcia, M., Jones, M.N., Prieto, G.,
Suarez, J. & Sarmiento F. A Study of the Aggregation Behavior of
Hexyltrimethylammonium Bromide in Aqueous Solution. *J. Colloid Interface Sci.* 206,
66-76 (1998).

Haramagatti, C.R., Islamov, A., Gibhardt, H., Gorski, N., Kuklin, A., & Eckold, G.
Pressure Induced Phase Transitions of TTAB-Micellar Solutions Studied by SANS
and Raman Spectroscopy. *Phys. Chem. Chem. Phys.* 8, 994-1000 (2006).

5 Kumar, S., Naqvi, A.Z., Aswal, B.K., Goyal, P.S. & Ud-Din, K. A SANS Study on Growth of Anionic Micelles with Quaternary Ammonium Bromide. *Curr. Sci.* **84**, 1346-1349 (2003).

96 Blandamer, M.J., Cullis, P.M., Soldi, L.G., Engberts, J.B.F.N., Kacperska, A., Van Os, N.M. & Subha, M.C.S. Thermodynamics of Micellar Systems: Comparison of Mass Action and Phase Equilibrium Models for the Calculation of Standard Gibbs Energies of Micelle Formation. *Adv. Colloid Interface Sci.* 58, 171-209 (1995).

97 Cui, X., Mao, S., Liu, M., Yuan, H. & Du, Y. Mechanism of Surfactant Micelle Formation. *Langmuir* **24**, 10771-10775 (2008). 98 Al-Soufi, W., Piñeiro, L. & Novo, M. A model for Monomer and Micellar Concentrations in Surfactant Solutions: Application to Conductivity, NMR, Diffusion, and Surface Tension Data. *J. Colloid Interface Sci.* **370**, 102-110 (2012).

Krause, D. & Benson, B.B. The Solubility and Isotopic Fractionation of Gases in
Dilute Aqueous Solution. IIa. Solubilities of the Noble Gases. *J. Solution Chem.* 18,
823-873 (1989).

100 Rettich, T.R., Battino, R. & Wilhelm, E. Solubility of Gases in Liquids. 18. High-Precision Determination of Henry Fugacities for Argon in Liquid Water at 2 to 40 °C. *J. Solution Chem.* **21**, 987-1004 (1992).

101 Rettich, T.R., Battino, R. & Wilhelm, E. Solubility of Gases in Liquids. XVI. Henry's Law Coefficients for Nitrogen in Water at 5 to 50 °C. *J. Solution Chem.* **13**, 335-348 (1984).

102 Battino, R. & Clever, H.L. The Solubility of Gases in Liquids. *Chem. Rev.* 66, 395-463 (1966).

103 Emerson, S., Stump, C., Wilbur, D. & Quay, P. Accurate Measurement of O_2 , N_2 , and Ar Gases in Water and the Solubility of N_2 . *Mar. Chem.* **64**, 337-347 (1999).

104 Potter, R.W. & Clynne, M.A. The Solubility of the Noble Gases He, Ne, Ar, Kr, and Xe in Water up to the Critical Point. *J. Solution Chem.* **7**, 837-844 (1978).

105 Silva, R.C.D., Spitzer, M., Silva, L.H.M.D. & Loh, W. Investigations on the Mechanism of Aqueous Solubility Increase Caused by Some Hydrotropes. *Thermochim. Acta* **328**, 161-167 (1999).

106 Lucas, M. & Trobriand, A.D. The Salting-In of Nonpolar Gases in Aqueous Tetraalkylammonium Bromide Solutions and the Apparent Molal Volume of These Salts in Water. *J. Phys. Chem.* **75**, 1803-1807 (1971). 107 Graziano, G. On the Salting In Effect of Tetraalkylammonium Bromides. *Chem. Phys. Lett.* **505**, 26–30 (2011).

108 Marcus, Y. Prediction of Salting-Out and Salting-In Constants. *J. Mol. Liq.* **177**, 7-10 (2013).

109 Wen, W.-Y. & Hung, J.H. Thermodynamics of Hydrocarbon Gases in Aqueous Tetraalkylammonium Salt Solutions. *J. Phys. Chem.* **74**, 170-180 (1970).

110 Feillolay, A. & Lucas, M. The Solubility of Helium and Methane in Aqueous Tetrabutylammonium Bromide Solutions at 25 and 35°. *J. Phys. Chem.* **76**, 3068-3072 (1972).

111 Conway, B.E., Novak, D.M. & Laliberté, L. Salting-Out and Ionic Volume Behavior of Some Tetraalkylammonium Salts. *J. Solution Chem.* **3**, 683-711 (1974).

112 Ben-Naim, A. & Wilf, J. Solubility and Thermodynamics of Solution of Argon in Aqueous Solutions of Sodium Octanoate and Sodium Dodecylsulfate. *J. Solution Chem.* **12**, 861-868 (1983).

113 Ben-Naim, A. & Battino, R. Solubilization of Methane, Ethane, Propane and n-Butane in Aqueous Solutions of Sodium Dodecylsulfate. *J. Solution Chem.* **14**, 245-253 (1985).

114 Prapaitrakul, W. & King Jr., A.D. The Solubility of Gases in Aqueous Solutions of Decyltrimethyl- and Cetyltrimethylammonium Bromide. *J. Colloid Interface Sci.* **106**, 186-193 (1985).

115 Roy, S., Mehra, A. & Bhowmick, D. Prediction of Solubility of Nonpolar Gases in Micellar Solutions of Ionic Surfactants. *J. Colloid Interface Sci.* **196**, 53-61 (1997).

King Jr., A.D. The Solubility of Ethane, Propane, and Carbon Dioxide in
Aqueous Solutions of Sodium Cumene Sulfonate. *J. Colloid Interface Sci.* 273, 313-319 (2004).

117 Calhoun, A.R. & King, A.D. The Solubility of Ethane in Aqueous Solutions of Sodium 1-pentanesulfonate, Sodium 1-hexanesulfonate, Sodium 1-heptanesulfonate, and Sodium 1-octanesulfonate at 25 °C. *J. Colloid Interface Sci.* **309**, 505-510 (2007).

118 Dalmolin, I., Skovroinski, E., Corazza, M.L., Dariva, C. & Oliveira, J.V. Solubility of Carbon Dioxide in Binary and Ternary Mixtures with Ethanol and Water. *Fluid Phase Equilib.* **245**, 193-200 (2006).

Someya, S., Bando, S., Chen, B., Song, Y. & Nishio, M. Measurement of CO₂
Solubility in Pure Water and the Pressure Effect on it the Presence of Clathrate
Hydrate. *Int. J. Heat Mass Transfer* **48**, 2503-2507 (2005).

120 Peng, B.-Z., Chen, G.-J., Luo, H. & Sun, C.-Y. Solubility Measurement of Methane in Aqueous Solution of Sodium Dodecyl Sulfate at Ambient Temperature and Near Hydrate Conditions. *J. Colloid Interface Sci.* **304**, 558-561 (2006).

121 Rumpf, B., Nicolaisen, H., Öcal, C. & Maurer, G. Solubility of Carbon Dioxide in Aqueous Solutions of Sodium Chloride: Experimental Results and Correlation. *J. Solution Chem.* **23**, 431-447 (1994).

122 Tan, Z.-Q., Gao, G.-H., Yu, Y.-X. & Gu, C. Solubility of Oxygen in Aqueous Sodium Carbonate Solution at Pressures up to 10 MPa. *Fluid Phase Equilib.* **180**, 375-382 (2001).

123 Descamps, C., Coquelet, C., Bouallou, C. & Richon, D. Solubility of Hydrogen in Methanol at Temperatures from 248.41 to 308.20 K. *Thermochim. Acta* **430**, 1-7 (2005). 124 Kumełan, J., Pérez-Salado, A., Urukova, I., Tuma, D. & Maurer, G. Solubility of Oxygen in the Ionic Liquid [Bmim][PF₆]: Experimental and Molecular Simulation Results. *J. Chem. Thermodyn.* **37**, 595-602 (2005).

125 Kumełan, J., Pérez-Salado, A., Tuma, D. & Maurer, G. Solubility of CO₂ in the Ionic Liquid [hmim][Tf'2N]. *J. Chem. Thermodyn.* **38**, 1396-1401 (2006).

126 Park, S.-B., Shim, C.-S., Lee, H. & Lee, K.-H. Solubilities of Carbon Dioxide in the Aqueous Potassium Carbonate and Potassium Carbonate-poly(ethylene glycol) Solutions. *Fluid Phase Equilib.* **134**, 141-149 (1997).

127 Rebolledo-Libreros, M.E. & Trejo, A. Gas Solubility of CO_2 in Aqueous Solutions of N-methyldiethanolamine and Diethanolamine with 2-amino-2-methyl-1-propanol. *Fluid Phase Equilib.* **218**, 261-267 (2004).

128 Li, G., Li, H., Turng, L.S., Gong, S. & Zhang, C. Measurement of Gas Solubility and Diffusivity in Polylactide. *Fluid Phase Equilib.* **246**, 158-166 (2006).

129 Fonseca, I.M.A., Almeida, J.P.B. & Fachada, H.C. Automated Apparatus for Gas Solubility Measurements. *J. Chem. Thermodyn.* **39**, 1407-1411 (2007).

130 Ben-Naim, A. & Baer, S. Method for Measuring Solubilities of Slightly Soluble Gases in Liquids. *Trans. Faraday Soc.* **59**, 2735–2738 (1963).

131 Barone, G., Castronuovo, G., Volpe, C.D., Ella, V. & Grassi, L. Solubility of Gaseous Hydrocarbons and the Hydrophobic Effect in Aqueous Solutions of Hexamethylenetetramine *J. Phys. Chem.* **83**, 2303-2706 (1979).

132 Scharlin, P. & Battino, R. Solubility of CCl_2F_2 , $CCIF_3$, CF_4 and $c-C_4F_8$ in H_2O and D_2O at 288 to 318 K and 101.325 kPa. Thermodynamics of Transfer of Gases from H_2O to D_2O . *Fluid Phase Equilib.* **94**, 137-147 (1994).

Pardo, J., López, M.C., Santafé, J., Royo, F.M. & Urieta, J.S. Solubility of
Gases in Butanols II. Solubilities of Nonpolar Gases in 2-methyl-1-propanol from
263.15 to 303.15 K at 101.325 kPa Partial Pressure of Gas. *Fluid Phase Equilib.* 119, 165-173 (1996).

134 Pardo, J., López, M.C., Mayoral, J.A., Royo, F.M. & Urieta, J.S. Solubility of Gases in Butanols. III. Solubilities of non-Polar Gases in 2-Butanol from 263.15 to 303.15 K at 101.33 kPa Partial Pressure of Gas. *Fluid Phase Equilib.* **134**, 133-140 (1997).

135 Pardo, J., Mainar, A.M., López, M.C., Royo, F. & Urieta, J.S. Solubility of Gases in Butanols IV. Solubilities of nonpolar Gases in 2-Methyl-2-Propanol at 303.15 K and 101.33 kPa Partial Pressure of Gas. *Fluid Phase Equilib.* **155**, 127-137 (1999).

136 Serra, M.C.C., Pesoa, F.L.P. & Palavra, A.M.F. Solubility of Methane in Water and in a Medium for the Cultivation of Methanotrophs Bacteria. *J. Chem. Thermodyn.*38, 1629-1633 (2006).

137 Haimour, N. & Sandall, O.C. Absorption of Carbon Dioxide into Aqueous Methyldiethanolamine *Chem. Eng. Sci.* **39**, 1791-1796 (1984).

Al-Ghawas, H.A., Hagewiesche, D.P., Ruiz-Ibanez, G. & Sandall, O.C.
Physicochemical Properties Important for Carbon Dioxide Absorption in Aqueous
Methyldiethanolmine. *J. Chem. Eng. Data* **34**, 385-391 (1989).

139 Saha, A.K., Bandyopadhyay, S. & Biswas, A.K. Solubility and Diffusivity of N_2O and CO_2 in Aqueous Solutions of 2-Amino-2-Methyl-1-Propanol. *J. Chem. Eng. Data* **38**, 78-82 (1993).

Li, M.-H. & Lai, M.-D. Solubility and Diffusivity of N₂O and CO₂ in
(Monoethanolamine + N-Methyldiethanolamine + Water) and in (Monoethanolamine +
2-Amino-2-Methyl-1-Propanol + Water) *J. Chem. Eng. Data* 40, 486-492 (1995).

141 Abu-Arabi, M.K., Al-Jarrah, A.M., El-Eideh, M. & Tamimi, A. Physical Solubility and Diffusivity of CO₂ in Aqueous Diethanolamine Solutions. *J. Chem. Eng. Data* **46**, 516-521 (2001).

142 Abu-Arabi, M.K., Tamimi, A. & Al-Jarrah, A.M. Solubility and Diffusivity of CO₂ in Triethanolamine Solutions. *J. Chem. Eng. Data* **46**, 1125-1129 (2001).

143 Mandal, B.P., Kundu, M., Padhiyar, N.U. & Bandyopadhyay, S.S. Physical Solubility and Diffusivity of N_2O and CO_2 into Aqueous Solutions of (2-Amino-2-Methyl-1-Propanol + Diethanolamine) and (N-Methyldiethanolamine + Diethanolamine) *J. Chem. Eng. Data* **49**, 264-270 (2004).

144 Mirgorod, Y. A. Solubility of Ethane, Propane, and Butane in Aqueous Solutions of Sodium Dodecyl Sulfate. *Russ. J. Gen. Chem.* **75**, 31-33 (2005).

145 Mandal, B.P., Kundu, M. & Bandyopadhyay, S.S. Physical Solubility and Diffusivity of N_2O and CO_2 into Aqueous Solutions of (2-Amino-2-Methyl-1-Propanol + Monoethanolamine) and (N-Methyldiethanolamine + Monoethanolamine). *J. Chem. Eng. Data* **50**, 352-358 (2005).

146 Versteeg, G.F. & van Swaaij, W.P.M. Solubility and Diffusivity of Acid Gases (CO₂, N₂O) in Aqueous Alkanolamine Solutions. *J. Chem. Eng. Data* **33**, 29-34 (1988).

147 Oliveira, J.V.D. & Uller, A.M.C. Solubility of 1,3-Butadiene and Methyl Propene in n-Methyl-2-Pyrrolidone. *Fluid Phase Equilib.* **46**, 267-280 (1989).

148 Oyevaar, M.H., Morssinkhof, R.W.J. & Westerterp, K.R. Density, Viscosity, Solubility, and Diffusivity of CO₂ and N₂O in Solutions of Diethanolamine in Aqueous Ethylene Glycol at 298 K. *J. Chem. Eng. Data* **34**, 77-82 (1989). Littel, R. J., Versteeg, G.F. & van Swaaij, W.P.M. Solubility and Diffusivity Data for the Absorption of COS, CO₂, and N₂O in Amine Solutions. *J. Chem. Eng. Data* **37**, 49-55 (1992).

150 Miyano, Y., Fujihara, I. & Sato, K. Henry's Law Constants of Propane, Propene, Butane, and 2-Methylpropane in Methanol at 374–490K. *Fluid Phase Equilib.* **240**, 56-62 (2006).

151 Benson, B.B., King Jr., A.D. & Peterson, M. A. The Solubility and Isotopic Fractionation of Gases in Dilute Aqueous Solution. I. Oxygen. *J. Solution Chem.* **8**, 655-690 (1979).

152 Andreozzi, R., Caprio, V., Ermellino, I., Insola, A. & Tufano, V. Ozone Solubility in Phosphate-Buffered Aqueous Solutions: Effect of Temperature, tert-Butyl Alcohol, and pH. *Ind. Eng. Chem. Res.* **35**, 1467-1471 (1996).

153 Miyano, Y. & Fujihara, I. Henry's Constants of Carbon Dioxide in Methanol at 250–500 K. *Fluid Phase Equilib.* **221**, 57-62 (2004).

Kundu, M. & Bandyopadhyay, S.S. Solubility of CO₂ in Water + Diethanolamine
+ N-Methyldiethanolamine. *Fluid Phase Equilib.* 248, 158-167 (2006).

155 Song, H.-J., Lee, S., Maken, S., Park, J.-J. & Park, J.-W. Solubilities of Carbon Dioxide in Aqueous Solutions of Sodium Glycinate. *Fluid Phase Equilib.* **246**, 1-5 (2006).

156 Huttenhuis, P.J.G., Agrawal, N.J., Hogendoorn, J.A. & Versteeg, G.F. Gas Solubility of H_2S and CO_2 in Aqueous Solutions of N-Methyldiethanolamine. *J. Pet. Sci. Eng.* **55**, 122-134 (2007).

157 Kumar, P.S., Hogendoorn, J.A., Feron, P.H.M. & Versteeg, G.F. Equilibrium Solubility of CO₂ in Aqueous Potassium Taurate Solutions: Part 1. Crystalization in Carbon Dioxide Loaded Aqueous Salt Solutions of Amino Acids. *Ind. Eng. Chem. Res.* **42**, 2832-2840 (2003).

158 Millero, F.J. & Huang, F. Solubility of Oxygen in Aqueous Solutions of KCl, K_2SO_4 , and $CaCl_2$ as a Function of Concentration and Temperature. *J. Chem. Eng. Data* **48**, 1050-1054 (2003).

159 *PMP 4000 Series. Amplified Output Pressure Transducers*, <<u>http://www.gesensing.com.cn/PDF/YALIXIANGGUAN/CHUANGANBIANSONG/CH</u> <u>UANGAN/pmp4000.pdf</u>> (06/03/2013).

160 Thermophysical Properties of Fluid Systems: National Institute of Standards and Technology <<u>http://webbook.nist.gov/chemistry/fluid</u>> (05/07/2012).

161 Fundamental Physical Constants. Molar Gas Constant R, <<u>http://physics.nist.gov/cgi-bin/cuu/Value?r</u>> (11/11/2012).

162 Levine, I.N. *Fisicoquímica. Volumen 1*. Quinta edn, (Mc Graw Hill, 2004).

163 Lisi, R.D., Milioto, S. & Verrall, R.E. Partial Molar Volumes and Compressibilities of Alkyltrimethylammonium Bromides. *J. Solution Chem.* **19**, 665-692 (1990).

164 *DURAN. Tubos, Varillas y Capilares de Vidrio Borosilicato 3.3,* <<u>http://www.schott.com/tubing/english/download/schott-</u> <u>tubing_brochure_duran_spanish.pdf</u>> (24/08/2012).

165 Silva, W.P. & Silva, C.M.D.P.S. *LAB Fit Curve Fitting Software (Nonlinear Regression and Treatment of Data Program) V 7.2.48 (1999-2011), <<u>www.labfit.net</u>> (11/08/2012).*

166 Matheson, I.B.C. & King Jr., A.D. Solubility of Gases in Micellar Solutions *J. Colloid Interface Sci.* **66**, 464-469 (1978).

Bolden, P.L., Hoskins, J.C. & King, A.D. The Solubility of Gases in Solutions
Containing Sodium Alkylsulfates of Various Chain Lengths. *J. Colloid Interface Sci.*91, 454-463 (1983).

168 Bahri, M.A., Hoebeke, M., Grammenos, A., Delanaye, L., Vandewalle, N. & Seret, A. Investigation of SDS, DTAB and CTAB Micelle Microviscosities by Electron Spin Resonance. *Colloids Surf., A* **290**, 206-212 (2006).

169 Evans, D.F., Allen, M., Ninham, B.W. & Fouda, A. Critical Micelle Concentrations for Alkyltrimethylammonium Bromides in Water from 25 to 160 °C. *J. Solution Chem.* **13**, 87-101 (1984).

Kudryashov, E., Kapustina, T., Morrissey, S., Buckin, V. & Dawson, K. The
Compressibility of Alkyltrimethylammonium Bromide Micelles. *J. Colloid Interface Sci.* **203**, 59-68 (1998).

171 D'Errico, G., Ortona, O., Paduano, L. & Vitagliano, V. Transport Properties of Aqueous Solutions of Alkyltrimethylammonium Bromide Surfactants at 25 °C. *J. Colloid Interface Sci.* **239**, 264-271 (2001).

172 Mehta, S.K., Bhasin, K.K., Chauhan, R. & Dham, S. Effect of Temperature on Critical Micelle Concentration and Thermodynamic Behavior of Dodecyldimethylethylammonium Bromide and Dodecyltrimethylammonium Chloride in Aqueous Media. *Colloids Surf., A* **255**, 153-157 (2005).

Pisárcik, M., Devínsky, F. & Svajdlenka, E. Spherical
 Dodecyltrimethylammonium Bromide Micelles in the Limit Region of Transition to
 Rod-Like Micelles. A Light Scattering Study. *Colloids Surf., A* **119**, 115-122 (1996).

174 Imae, T. & Ikeda, S. Sphere-Rod Transition of Micelles of
Tetradecyltrimethylammonium Halides in Aqueous Sodium Halide Solutions and
Flexibility and Entanglement of Long Rodlike Micelles. *J. Phys. Chem.* **90**, 5216-5223
(1986).