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Abstract
Gravitational lensing studies have been considered one of the most important applica-
tions of General Theory of Relativity. The full theory of gravitational lensing has been
developed based on the scheme of the weak field approximation, which has been success-
fully used to explain all the physical observations. However, in the last years the scientific
community has started to look this phenomenon from a different point of view: the strong
field limit. The reason of studying this limit is that deviation of light rays in strong fields
is one of the most promising areas where a theory of gravitation can be tested in its full
form. In this work we have used the method proposed by V. Bozza to calculate the strong
field limit deflection angle for a light ray passing near a scalar charged spherically sym-
metric object described by the metric proposed by Sayan Kar. This metric came from the
low-energy limit of heterotic string theory equations of motion. Using Bozza’s method,
we solved the lens equation to calculate the parameters of the strong field limit expan-
sion which are directly connected with observables such as the magnification of the images.

Keywords: light deviation, gravitational lensing, weak limit, Bozza’s method,photon
sphere, strong field limit.

Resumen
El estudio de las lentes gravitacionales ha sido considerada una de las aplicaciones más
importantes de la Teoría General de la Relatividad. La teoría completa de las lentes grav-
itacionales ha sido desarrollada basada en la aproximación de campo débil, que ha sido
utilizada con éxito para explicar todas las observaciones. Sin embargo, en los últimos
años la comunidad científica ha comenzado a mirar este fenómeno desde un punto de vista
diferente: el límite de campo fuerte. La razón de estudiar esta aproximación es que la
desviación de los rayos de luz en campos fuertes es una de las áreas más prometedoras
en que una teoría de la gravitación puede ser corroborada de manera completa. En este
trabajo, se utilizó el método propuesto por V. Bozza para calcular el ángulo de deflexión
en el límite de campo fuerte para un rayo de luz que pasa cerca de objeto esféricamente
simétrico descrito por la métrica propuesta por Sayan Kar. Utilizando el método de Bozza,
hemos resuelto la ecuación de la lente para el cálculo de los parámetros de la expansión
los cuales están conectados directamente con los observables, como la magnificación de las
imágenes.

Palabras clave: deflexión de la luz, lente gravitacional, límiti de campo débil, método
de Bozza, esfera de fotones, límite de campo fuerte.



10



Contents

Agradecimientos 7

Resumen 9

1 GENERAL RELATIVITY 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Lagrangian formulation of Einstein’s field equations: . . . . . . . . . . . . . 2

1.2.1 Field equations for a massless scalar field: Klein-Gordon Equation . 4
1.3 Einstein’s field equations and stress-energy tensor: . . . . . . . . . . . . . . 4

1.3.1 Variation of δRµν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Variation of δ

√−g . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 FROM JANIS-NEWMAN-WINICOUR TO S. KAR METRIC 11
2.1 The Janis, Newman, Winicour and Max Wyman Solution: . . . . . . . . . . 11

2.1.1 Christoffel’s symbols (Γm
ij ): . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Components of Rρ
µλν . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Components of Rµν . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Integration of the Janis-Newman-Winicour-Wyman equations . . . . 13

2.2 Sayan Kar metric: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 BOZZA’S METHOD 21
3.1 Introduction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 General equations of motion: . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Equation for r: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Equation for θ: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Equation for φ: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Equation for t: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.5 Constants of motion: . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Deflexion angle: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Photon sphere: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Bozza’s method: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Divergent term of the deflection angle . . . . . . . . . . . . . . . . . 31
3.5.2 Regular term of the deflection angle . . . . . . . . . . . . . . . . . . 37

3.6 From α̂(x0) to α̂(θ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 GRAVITATIONAL LENSING FOR S. KAR METRIC 41
4.1 Solving the photon sphere equation . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Finding βm and R(0, xm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Computing bR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Finding um, a and b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

i



ii CONTENTS

5 GRAVITATIONAL LENSING IN THE STRONG FIELD LIMIT 49
5.1 Introduction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 The weak limit approach: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 The linearized field equations . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Specialization to slowly moving, perfect fluid source: . . . . . . . . . 55

5.3 Fermat’s principle and light deflection: . . . . . . . . . . . . . . . . . . . . . 56
5.4 Lens equation in the weak limit: . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 Lens equation in the strong field limit: . . . . . . . . . . . . . . . . . 61
5.5 Images position and Einstein rings: . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Magnification: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6.1 Magnification in the strong field limit: . . . . . . . . . . . . . . . . . 65

6 ANALYSIS AND DISCUSSION 67
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Appendix A 81
6.2 Schwarzschild lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Solving the photon sphere equation . . . . . . . . . . . . . . . . . . . 81
6.2.2 Finding βm and R(0, xm) . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.3 Computing bR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.4 Finding a, b and um . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Reissner-Nordstrom lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.1 Solving the photon sphere equation . . . . . . . . . . . . . . . . . . . 85
6.3.2 Finding βm and R(0, xm) . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.3 Computing bR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.4 Finding a, b and um . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Janis-Newman-Winicour lensing . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.1 Solving the photon sphere equation . . . . . . . . . . . . . . . . . . . 88
6.4.2 Finding βm and R(0, xm) . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.3 Finding um, a and b . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Appendix B: Finding bR for S. Kar metric 91



Chapter 1

GENERAL RELATIVITY

1.1 Introduction
Einstein’s General Theory of Relativity requires a curved space for the description of the
physical world. If one wishes to go beyond a superficial discussion of the physical relations
one needs to set up a precise equations for handling curved space [1]. For this reason, the
mathematical structure of space-time has been fundamentally built up using the concept
of manifold [2]. In this sense, the set of “all events” is described by the the pair (M, g),
where M is a 4−dimensional smooth manifold and g is a lorentzian metric. But, how could
we include physics on this mathematical structure? in others words what conditions must
the mathematical structure of space-time satisfies to describe gravity? On the manifold
we define several fields, such as the electromagnetic field, the neutrino field, etc, which
describe the matter content of space-time. In this sense, Einstein’s field equation will
depend on the matter field we consider (the momentum-energy one chooses). There are
two postulates on the nature of the equations obeyed by the field which are common to
both the special and the general theory of relativity: local causality and local conservation
of energy and momentum [3].

a) Local causality: The manifold is endowed with a causal structure [2]. In this sense,
the equation governing the matter fields must be such that if U is a convex normal
neighbourhood and p and q are points in U then a signal can be sent in U between
p and q if and only if p and q can be joined by a C1 curve lying entirely in U , whose
tangent vector is everywhere non-zero and is either time-like or null [3].

b) Local conservation of energy and momentum: The equations governing the
matter fields are such that there exists a symmetric tensor Tµν , called the energy-
momentum tensor, which depends on the fields, their covariant derivatives, and the
metric, and which has the properties[3]:

i T ab vanish on an open set U if and only if all the matter fields vanish on U .
ii T ab obeys the equation ∇bT

ab = 0.

Condition (i) expresses the principle that all fields have positive energy. Condition (ii) is
very important because if the metric one is working with admits a Killing vector ξ, then
the condition ∇bT

ab = 0 can be integrated to give a conservation law. To see this, define
P a to be the vector whose components are P a = T abξb. Then [3]

∇aP a = ∇a(T abξb) = (∇aT ab)ξb + T ab∇aξb, (1.1)

but ∇aT ab = 0. Then

∇aP a = T ab∇aξb. (1.2)

1
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If ξ is a killing vector it must satisfy

∇aξb +∇bξa = Lξgab = 0
2∇(aξb) = 0.

(1.3)

If D is a compact orientable region with boundary ∂D, Gauss’s theorem gives
∫

∂D
P adσa =

∫
∇aP adx4 = 0. (1.4)

This may be interpreted as saying that the local flux over a closed surface of the ξ−component
of energy-momentum is zero [3].

In this chapter, we are going to obtain Einstein’s field equations using the Lagrangian
formulation of General Theory of Relativity. What is interesting about this formalism
is that most part of physics, classical and quantum physics, can be expressed in terms
of an action. Moreover, because of this formalism the physical meaning becomes clearer;
for example, once physics has been written in terms of an action, it is easier to identify
the conserved quantities [4]. On the other hand, one of the most important advantages of
working with such a formalism is that it is possible to define the energy-momentum tensor.
In practice one relies heavily on one’s intuitive knowledge of what energy and momentum
are. However, there is a definite and unique formula for this tensor in the case that the
equations of the fields are obtained from a Lagrangian [3]. As a consequence, we will be
able to obtain a system of differential equations in which the momentum-energy tensor is
that of a massless scalar field 1.

1.2 Lagrangian formulation of Einstein’s field equations:
In order to extend the idea of a variational principle to the field theory in curved spaces,
one could consider a finite set of fields Φa(xµ)2 defined on a 4−dimentional manifold
parameterized in terms of the coordinates xµ [4]. In this sense, when considering field
theories defined on an arbitrary manifold it is necessary to include the components of the
metric tensor in the set {Φi}. For example, in electromagnetism, the complete set of fields
would be {Φi} = {Aµ, gµν}; where Aµ are the components of the potential vector. If the
potentials Φi are not function of the components of the metric tensor, it is possible to
express the lagrangian in terms of the fields, and its first or higher-order derivatives [4].
Therefore, the action takes the form

S =
∫
L̂(Φi,∇µΦi,∇ν∇µΦi, ..., gµν , ∂σgµν)

√−gdnx. (1.5)

For simplicity, let us assume that no second- or higher-order covariant derivatives appear
in L and that Φ does not depend on the components of the metric tensor. This does
not mean that the Lagrangian does not depend on those component, what this mean is
that the variation with respect to Φ does not involve terms in which the variation of the
components of the metric tensor are included. We are going to do the variation in such a
way that

Φi −→ Φi + αηi

∇µΦi −→ ∇µΦi + α∇µηi,
(1.6)

where α is a small parameter and ηi is a function of the coordinates. The variation of the
action δS is calculated in the following way [5]

1What we mean by massless scalar field is going to be clear latter.
2The index is used to enumerate the fields considered. For example, If one considers a field theory in

which exist k scalar fields then {Φa} = {φ1, φ2, ..., φk}
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δS = dα

(
∂S

∂α

)

α=0

∂S

∂α
=

∫ {
∂L̂
∂Φi

∂Φi

∂α
+

∂L̂
∂(∇µΦi)

∂(∇µΦi)
∂α

}
√−gdnx

=
∫ {

∂L̂
∂Φi

ηi +
∂L̂

∂(∇µΦi)
∇µ(ηi)

}
√−gdnx

δS = dα

∫

Σ

{
∂L̂
∂Φi

ηi +
∂L̂

∂(∇µΦi)
∇µ(ηi)

}
√−gdnx.

(1.7)

For δS = 0 we have that

∫

Σ

{
∂L̂
∂Φi

ηi +
∂L̂

∂(∇µΦi)
∇µ(ηi)

}
√−gdnx = 0. (1.8)

Taking into account that

∇µ

(
∂L̂

∂(∇µΦi)
ηi

)
= ∇µ

(
∂L̂

∂(∇µΦi)

)
ηi +

∂L̂
∂(∇µΦi)

∇µ(ηi), (1.9)

and integrating by parts the second term in (1.8)

∫

Σ

{
∂L̂
∂Φi

−∇µ

(
∂L̂

∂(∇µΦi)

)}
ηi√−gdnx +

∫

Σ

∇µ

(
∂L̂

∂(∇µΦi)
ηi

)
√−gdnx = 0. (1.10)

Because of Stokes’s theorem, it is possible to transform the volume integral in the region
Σ into a surface integral on the boundary ∂Σ

∫

Σ

∇µV µ
√
|g|dnx =

∫

∂Σ

nµV µ
√
|γ|dn−1x −→ Stokes’s theorem. (1.11)

Therefore,

∫

Σ

{
∂L̂
∂Φi

−∇µ

(
∂L̂

∂(∇µΦi)

)}
ηi√−gdnx +

∫

Σ

∇µ

(
∂L̂

∂(∇µΦi)
ηi

)
√−gdnx = 0

∫

Σ

{
∂L̂
∂Φi

−∇µ

(
∂L̂

∂(∇µΦi)

)}
ηi√−gdnx +

∫

∂Σ

nµ

(
∂L̂

∂(∇µΦi)
ηi

)√
|γ|dn−1x = 0.

(1.12)
The last integral in (1.12) vanish at ∂Σ. So that, the Euler-lagrange equation in curved
spaces takes the final form

∂L̂
∂Φi

−∇µ

(
∂L̂

∂(∇µΦi)

)
= 0. (1.13)



4 CHAPTER 1. GENERAL RELATIVITY

1.2.1 Field equations for a massless scalar field: Klein-Gordon
Equation

As an example, we are going use the Euler-Lagrange equations to deduce the differential
equation for a single scalar field Φ(xµ) defined on a space-time. Our deduction is going
to be in such a way that no second- or higher-order derivatives of the field appear in the
Lagrangian density. Therefore, the lagrangian density we are going to use is expressed as

L = −1
2
gµν(∇µΦ)(∇νΦ)− V (Φ) (1.14)

where 1
2gµν(∇µΦ)(∇νΦ) can be considered as the “kinetic energy of the field” and V (Φ)

as the “potential energy”. In (1.14) we have used covariant derivatives rather than partial
derivatives since L must itself be a scalar function of space-time position [4]. However,
since the covariant derivative of a scalar quantity reduces to a partial derivative, in this
case de later could be used. Nevertheless, it is usually wiser to retain the manifestly
covariant notation [4][6]. Then, the action for the lagrangian (1.14) is:

S =
∫

Σ

[
−1

2
gµν(∇µΦ)(∇νΦ)− V (Φ)

]√−gd4x, (1.15)

and using equation (1.13)

∂L
∂(∇µΦ)

=
∂

∂(∇µΦ)

[
−1

2
gρσ(∇ρΦ)(∇σΦ)− V (Φ)

]

= −1
2
gρσ

[
δµ
ρ∇σΦ + δµ

σ∇ρΦ
]

= −1
2
gµσ∇σΦ− 1

2
gρµ∇ρΦ = −gµν∇νΦ

∂L
∂Φ

= −dV

dΦ
,

(1.16)

where in the second equation we have relabelled the dummy indices (ρ and σ) in order to
make the differentiation more transparent. Evaluating this derivative explicitly

− dV

dΦ
−∇µ(−gµν∇νΦ) = −dV

dΦ
+∇µ(gµν)∇νΦ + gµν∇µ∇νΦ = 0; (1.17)

however, recalling that ∇µ(gµν) = 0 and ¤2 = gµν∇µ∇ν the last equation takes the form

gµν∇µ∇νΦ− dV

dΦ
= 0

¤2Φ− dV

dΦ
= 0.

(1.18)

Equation (1.18) is known as the Klein-Gordon equation. A common choice for the poten-
tial is V = 1

2m2Φ2, where m is a constant parameter that characterises the dynamics of
the scalar field. Therefore, the field equation (1.18) reduces to

¤2Φ−m2Φ = 0. (1.19)

For m = 0 the last equation reduces to ¤2Φ = 0 which is the equation for a massless
scalar field.

1.3 Einstein’s field equations and stress-energy tensor:
To write down an action principle relativistically, we need an integral which is a scalar
invariant [7]. This mean that its value has to have a value independent of the choice of the
coordinate system [8]. One of the problems when considering the curvature tensor, is that
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one has all twenty distinct components to work with. Expressed in a local inertial frame,
this twenty components are arbitrary to the extent of the six parameters of a local lorentz
transformation. There are thus fourteen independent local features of the curvature that
are coordinate-independent, any one of which one could imagine employing in the action
principle. However, the Ricci scalar R is the only one of these fourteen quantities that is
linear in the second derivatives of the metric coefficients.

Five days before Einstein presented his geometrodynamic law in its final and now stan-
dard form, Hilbert, animated by Einstein’s earlier work, independently discovered how to
formulate this law as the consequence of the simples action principle of the form

SHE =
∫ √−gRd4x. (1.20)

Any other choice of invariant other than Hilbert’s complicates the geometrodynamic law,
and destroys the simple correspondence with Newtonian theory of gravity[8].

1. The variation is made with respect to the metric.

2. It is convenient to make the variation3 with respect to gµν because gµλgλν = δµ
ν .

gµλ → gµλ + αηµλ

δµ
ν = (gµλ + αηµλ)(gνλ + αηλν)

δµ
ν = δµ

ν + α(gµληλν + gνληµλ) + α2ηµληλν .

(1.21)

The terms multiplied by α2 are not taken into account because we are working up
to first order. Then,

δµ
ν + α(gµληλν + gνληµλ) = δµ

ν

gµληλν + gνληµλ = 0.

(1.22)

There is a sum on λ for both the first and the second terms of (1.22); so that,

(gµ1η1ν + ... + gµnηnν) = −(g1νηµ1 + ... + gnνηµn)

gµρg
µληλµ = −gµρgλµηµλ

δλ
ρ ηλµ = −gµρgλµηµλ.

(1.23)

However, the remaining terms are those in which λ = ρ. therefore,

ηρν = −gµρgλνηµλ. (1.24)

In equation (1.20) R = gµνRµν . Hence,

SHE =
∫ √−ggµνRµνdnx. (1.25)

Finally, calculating δSHE we obtain that

δSHE =
∫

Σ

gµνδRµν

√−gdnx +
∫

Σ

Rµνδgµν√−gdnx +
∫

Σ

gµνRµνδ(
√−g)dnx. (1.26)

3η is not the Minkowskian metric.
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1.3.1 Variation of δRµν

The Riemann tensor is expressed by

Rρ
µλν = ∂λΓρ

µν + Γρ
λσΓσ

νµ − ∂νΓρ
µλ − Γρ

νσΓσ
λµ. (1.27)

Contracting Rρ
µλν we obtain Rµν . Therefore,

Rµν = Rρ
µρν = ∂ρΓρ

µν + Γρ
ρσΓσ

νµ − ∂νΓρ
µρ − Γρ

νσΓσ
λµ. (1.28)

Calculating the variation of δRρ
µλν it is possible to obtain the variation of Rµν . Therefore,

as (1.27) shows, it is necessary to calculate the variation of Γr
ij .

Γr
ij =

1
2
grk[∂jgik + ∂igjk − ∂kgij ]

gµν −→ gµν + αηµν

gµν −→ gµν + αηµν .

(1.29)

Γr
ij −→

1
2
(grk + αηrk)[∂j(gik + αηik) + ∂i(gjk + αηjk)− ∂k(gij + αηij)]

Γr
ij −→ Γr

ij +
α

2
grk[∂jηik + ∂iηjk − ∂kηij] +

α

2
ηrk[∂jgik + ∂igjk − ∂kgij ] +O(α2).

δΓr
ij = α

(
∂Γr

ij

∂α

)

α=0

=
α

2
grk[∂jηik + ∂iηjk − ∂kηij ] +

α

2
ηrk[∂jgik + ∂igjk − ∂kgij ].

(1.30)
Now, making Γr

ij −→ Γr
ij + δΓr

ij in (1.27):

Rρ
µλν −→ ∂λ(Γρ

µν + δΓρ
µν) + (Γρ

λσ + δΓρ
λσ)(Γσ

νµ + δΓσ
νµ)− ∂ν(Γρ

µλ + δΓρ
µλ)

− (Γρ
νσ + δΓρ

νσ)(Γσ
λµ + δΓσ

λµ)

−→ Rρ
µλν + ∂λ(δΓρ

µν) + Γρ
λσδΓσ

νµ + δΓρ
λσΓσ

νµ − ∂ν(δΓρ
µλ)− Γρ

νσδΓσ
λµ

− δΓρ
νσΓσ

λµ −O(α2).

(1.31)

Since δΓ is a tensor4, it is possible to calculate its covariant derivative; so that

∇λ(δΓρ
µν) = ∂λ(δΓρ

µν) + Γρ
λσδΓσ

µν − Γσ
λνδΓρ

σµ − Γσ
λµδΓρ

νσ

∇λ(δΓρ
µν) + Γσ

λνδΓρ
σµ = ∂λ(δΓρ

µν) + Γρ
λσδΓσ

µν − Γσ
λµδΓρ

νσ

∇ν(δΓρ
µν) = ∂ν(δΓρ

λµ) + Γρ
νσδΓσ

λµ − Γσ
λνδΓρ

σµ − Γσ
νµδΓρ

λσ.

(1.32)

Replacing into (1.31) we find that

Rρ
µλν −→ Rρ

µλν + ∂λ(δΓρ
µν) + Γρ

λσδΓσ
µν − Γσ

λµδΓρ
νσ − [∂ν(δΓρ

µλ) + Γρ
νσδΓσ

λµ − Γσ
νµδΓρ

λσ]

−O(α2)

−→ Rρ
µλν +∇λ(δΓρ

µν)− [∂ν(δΓρ
µλ) + Γρ

νσδΓσ
λµ − Γσ

λνδΓρ
σµ − Γσ

νµδΓρ
λσ]−O(α2)

−→ Rρ
µλν +∇λ(δΓρ

µν)−∇ν(δΓρ
µλ)−O(α2).

(1.33)
As a consequence, the variation of Riemann tensor is

δRρ
µλν = ∇λ(δΓρ

µν)−∇ν(δΓρ
µλ). (1.34)

4The difference of two connections is a tensor.
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We had shown above that5

δΓr
ij =

α

2
grk[∂jηik + ∂iηjk − ∂kηij ] +

α

2
ηrk[∂jgik + ∂igjk − ∂kgij ]

δgρν = −gmρgnνδgmn.
(1.35)

Replacing we obtain

δΓσ
νµ =

1
2
gσk{2Γσ

µν(δgσk) + gmµgnk∂ν(δgmn) + gnk∂ν(gmµ)δgnm

+ gmµ∂ν(gnk)δgnm + gmνgnk∂µ(δgmn) + gnk∂µ(gmν)δgnm

+ gmν∂µ(gnk)δgnm − [gmµgnν∂k(δgmn)
+ gmν∂k(gnµ)δgnm + gnµ∂k(gmν)δgnm]}.

(1.36)

The easiest way to derive δΓσ
νµ is to note that since it is a tensor relation, it must be

valid in any coordinate system. In particular, one could choose normal coordinates about
a point p. For these coordinates the components δΓσ

νµ and the coordinate derivatives of
the components gµν vanish at p [3]6

δΓσ
νµ = −1

2
{gmµδσ

n∂ν(δgnm) + gmνδσ
n∂µ(δgnm)− gmµgnνgσk∂k(δgnm)}

= −1
2
{gmµ∂ν(δgσm) + gmν∂µ(δgσm)− gmµgnν∂σ(δgnm)}

= −1
2
{gmµ∇ν(δgσm) + gmν∇µ(δgσm)− gαµgβν∇σ(δgαβ)}.

(1.37)

The first integral in (1.26) can be expressed in terms of δΓ as [6]
∫

Σ

gµνδRµν

√−gdnx =
∫

Σ

gµν{∇λ(δΓλ
µν)−∇ν(δΓλ

µλ)}√−gdnx

=
∫

Σ

√−gdnx∇σ(gµνδΓσ
µν − gµσδΓλ

µλ).

But,

gµνδΓλ
µν = −1

2
[
δν
m∇ν(δgσm) + δµ

m∇µ(δgσm)− gµνgαµgβν∇σ(δgαβ)
]

= −1
2

[∇ν(δgσν) +∇µ(δgσµ)− δν
αgβν∇σ(δgαβ)

]

= −∇λ(δgσλ) +
1
2
gβν∇σ(δgνβ).

Changing ν and µ by λ (dummy indices) we obtain:

gµσδΓλ
µλ = −1

2
[
δσ
m∇λ(δgλm) + gmλ∇σ(δgλm)− gµσgαµgβλ∇λ(δgαβ)

]

= −1
2

[∇λ(δgλσ) + gmλ∇σ(δgλm)− δσ
αgβλ∇λ(δgαβ)

]

= −1
2

[∇λ(δgλσ) + gmλ∇σ(δgλm)−∇β(δgσβ)
]
.

Putting λ instead of β 7, we have:

gµσδΓλ
µλ = −1

2
[∇λ(δgλσ) + gmλ∇σ(δgλm)−∇λ(δgσλ)

]

= −1
2
gmλ∇σ(δgλm).

5We had into account that δgµν = αηµν

6We have renamed m → α y n → β because they are dummy indices.
7Because β is a dummy indice
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So that

gµνδΓλ
µν − gµσδΓλ

µλ =
1
2
gmλ∇σ(δgλm)−∇λ(δgσλ) +

1
2
gβν∇σ(δgνβ)

= gµν∇σ(δgµν)−∇λ(δgσλ).

Finally, The first integral in (1.26) can be expressed in terms of δgαβ as
∫

Σ

gµνδRµν

√−gdnx =
∫

Σ

√−gdnx∇σ

[
gµν∇σ(δgµν)−∇λ(δgσλ)

]
. (1.38)

Equation (1.38) is a integral with respect to the natural volume element of the covariant
divergence of a vector; by Stoke’s theorem, this is equal to a boundary contribution at
infinity, which we can set to zero by making the variation vanish at infinity. therefore, this
term contributes nothing to the total variation[6]. So that,

∫

Σ

gµνδRµν

√−gdnx =
∫

Σ

√−gdnx∇σ

[
gµν∇σ(δgµν)−∇λ(δgσλ)

]

=
∫

∂Σ

nσ[gµν∇σ(δgµν)−∇λ(δgσλ]
√
|γ|dn−1x.

(1.39)

However, the boundary term will include not only the metric variation, but also its first
derivative, which is not traditionally set to zero [6]. In this sense, it is important to point
out that the calculation of this integral is not a easy task. In [9] equation (2), Einstein
shows us the possibility of express the Hilbert action in such a way that it considers the
boundary term. This idea was considered in [10]. For our present purposes it does not
matter, but in principle we might care about what happens at the boundary, and would
have to an additional term in the action to take care of this subtlety.

1.3.2 Variation of δ
√−g

For any square matrix M it is true that

ln (det M) = Tr(lnM). (1.40)

Calculating the variation of (1.40)

δ(ln (det M)) = δTr(ln M)
1

detM
δ(det M) = Tr(M−1δM);

(1.41)

for M = gµν then det gµν = g−1. Replacing we get

δ(g−1) =
1
g
gµνδgµν . (1.42)

Now, the variation of δ
√−g is

δ
√−g = −1

2
(−g−1)−

3
2 δ(−g−1)

δ(g−1) =
1
g
gµνδgµν

δ
√−g = −1

2
√−ggνµδgνµ.

(1.43)

Therefore, the contribution of δ
√−g to the total variation is
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∫

Σ

dnxgµνRµνδ
√−g = −

∫

Σ

dnx
√−g

R

2
gµνδgµν . (1.44)

Replacing in (1.26)

δSH =
∫

Σ

Rµνδgµν√−gdnx−
∫

Σ

dnx
√−g

R

2
gµνδgµν

δSH

δgµν
=

∫

Σ

dnx
√−g

[
Rµν − 1

2
Rgµν

]
= 0.

(1.45)

from which the Einstein’s field equations in vacuum are

Rµν − 1
2
gµνR = 0. (1.46)

As was mentioned in the introduction, the lagrangian formulation of General Relativity
allow us to find a unique formula for the momentum-energy tensor. When we obtained
equation (1.46), we do not considered the contribution of matter fields so that the com-
ponents of the momentum-energy tensor were zero. In order to find the Einstein’s field
equations in presence of matter fields it is necessary to add an extra term in the Hilbert-
Einstein action. Therefore,

S =
1
2κ

SHE + SM =
∫

Σ

(
1
2κ
LHE + LM

)
d4x =

∫

Σ

(
1
2κ
L̂HE + L̂M

)√−gd4x. (1.47)

Where SHE is the Hilbert-Einstein action, SM is the “matter” action and κ = 8πG/c48.
The factor 1/2κ in (1.47) has been chosen by convenience . Making the variation with
respect to the metric we find that

1
2κ

δLHE

δgµν
+

δLM

δgµν
= 0; (1.48)

from (1.45) we know that

δLHE

δgµν
=
√−gGµν = −2κ

δLM

δgµν
. (1.49)

In this sense, and recalling that Gµν ∝ Tµν , the momentum-energy tensor for any present
field is defined as

Tµν = − 2√−g

δLM

δgµν
. (1.50)

For the case we are interested: the solution to the field equations for a massless scalar
field), we have found an action of the form (1.15). Using this action we can calculate the
momentum-energy tensor and the field equations for this tensor,

δSM =
∫ [√−g

(
−1

2
δgµν∇µΦ∇νΦ

)
+ δ

√−g

(
−1

2
gµν∇νΦ∇µΦ− V (Φ)

)]
d4x, (1.51)

recalling that δ
√−g = − 1

2

√−ggµνδgµν

δSM =
∫ √−g

[
−

(
1
2
δgµν∇µΦ∇νΦ

)
− 1

2
gµνδgµν

(
−1

2
gαβ∇αΦ∇βΦ− V (Φ)

)]
d4x

= −
∫

1
2
√−gδgµν

[
∇µΦ∇νΦ− 1

2
gµνgαβ∇αΦ∇βΦ− gµνV (Φ)

]
d4x.

(1.52)
8λ2 corresponds to this constant when we consider the Newtonian limit
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From equation (1.50), the momentum-energy tensor is

Tµν = − 2√−g

δLM

δgµν
= ∇µΦ∇νΦ− 1

2
gµνgαβ∇αΦ∇βΦ− gµνV (Φ); (1.53)

setting m = 0 in V (Φ) = 1
2m2Φ2, we found that

Tµν = ∇µΦ∇νΦ− 1
2
gµνgαβ∇αΦ∇βΦ. (1.54)

Finally, the Einstein’s field equations for a massless scalar field are

Rµν − 1
2
gµνR =

8πG

c4

[
∇µΦ∇νΦ− 1

2
gµνgαβ∇αΦ∇βΦ

]
. (1.55)



Chapter 2

FROM
JANIS-NEWMAN-WINICOUR
TO S. KAR METRIC

2.1 The Janis, Newman, Winicour and Max Wyman
Solution:

The line element for a static and spherically symmetric metric has the form

ds2 = eα(r,t)dt2 − eβ(r,t)dr2 − r2dΩ2. (2.1)

The Janis-Newman-Winicour metric JNW[11],[12] is the solution to the Field equations1

Rµν − 1
2
gµνR = −κ

[
∇µΦ∇νΦ− 1

2
gµνgαβ∇αΦ∇βΦ

]

¤Φ = 0.

(2.2)

In this sense, we should calculate each of the terms involved in (2.2); it is to say:

1. The Christoffel’s symbols Γρ
µν .

2. The Riemann tensor Rρ
µλν .

3. The Ricci tensor Rρ
µρν .

In order to do so, it is necessary to find the inverse of matrix g using the relation gg−1 =
g−1g = I, where I is the identity matrix. From the line element (2.1) we know that

[g]αβ =




eα(r,t) 0 0 0
0 −eβ(r,t) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ


 . (2.3)

Using gg−1 = g−1g = I we have that




eα(r,t) 0 0 0
0 −eβ(r,t) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ


×




a b c d
e f g h
i j k l
m n o p


 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (2.4)

1In this chapter we are going to use de notation and the signature used by Wyman in [12] (+ - - -).

11
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Therefore,




a× eα(r,t) b× eα(r,t) c× eα(r,t) d× eα(r,t)

−e× eβ(r,t) −f × eβ(r,t) −g × eβ(r,t) −h× eβ(r,t)

−i× r2 −j × r2 −k × r2 −l × r2

−m× r2 sin2 θ −n× r2 sin2 θ −o× r2 sin2 θ −p× r2 sin2 θ


 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

(2.5)
and finally g−1, is

g−1 =




e−α(r,t) 0 0 0
0 −e−β(r,t) 0 0
0 0 − 1

r2 0
0 0 0 − 1

r2 sin2 θ


 . (2.6)

2.1.1 Christoffel’s symbols (Γm
ij ):

The Christoffel’s symbols are calculated by

Γm
ij =

1
2
gmk[∂j(gik) + ∂i(gjk)− ∂k(gij)]. (2.7)

However, for m = k we have that Γm
ij 6= 0. Then,

Γt
ij =

1
2
gtt[2∂igjt − ∂tgij ] Γr

ij =
1
2
grr[2∂igjr − ∂rgij ]

Γθ
ij =

1
2
gθθ[2∂igjθ − ∂θgij ] Γφ

ij =
1
2
gφφ[2∂igjφ − ∂φgij ].

(2.8)

The terms different from zero are

Γt
tt =

1
2
∂tα Γt

tr =
1
2
∂rα Γt

rr =
1
2
e(β−α)∂tβ

Γr
tt =

1
2
e(α−β)∂rα Γr

tr =
1
2
∂tβ Γr

rr =
1
2
∂rβ

Γr
θθ = −re−β Γθ

rθ =
1
r

Γr
φφ = −re−β sin2 θ

Γθ
φφ = − sin θ cos θ Γφ

rφ =
1
r

Γφ
θφ =

cos θ

sin θ
.

(2.9)

2.1.2 Components of Rρ
µλν

The Riemann tensor is calculated using

Rρ
µλν = ∂λΓρ

µν + Γρ
λσΓσ

νµ − ∂ν(Γρ
µλ)− Γρ

νσΓσ
λµ. (2.10)

The components different from zero are

Rt
rtr =

1
2
e(β−α)

[
∂2

t β +
1
2
(∂tβ)2 − 1

2
∂tα∂tβ

]
− 1

2

[
∂2

rα +
1
2
(∂rα)2 − 1

2
∂rα∂rβ

]
(2.11)

Rt
θtθ = −1

2
re−β∂rα Rt

φtφ = −1
2
re−β sin2 θ∂rα Rt

θrθ = −1
2
re−α∂tβ

Rt
φrφ = −1

2
re−α sin2 θ∂tβ Rr

θrθ =
1
2
re−β∂rβ Rr

φrφ =
1
2
re−β sin2 θ∂rβ

Rθ
φθφ = (1− e−β) sin2 θ .

(2.12)
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2.1.3 Components of Rµν

The components of the Ricci tensor Rµν are calculated by

Rµν = Rλ
µλν = ∂λΓλ

µν + Γλ
λσΓσ

νµ − ∂ν(Γλ
µλ)− Γρ

νσΓσ
λµ. (2.13)

The components different from zero are2:

Rtt =
1
2

[
∂2

t β +
1
2
(∂tβ)2 − 1

2
∂tα∂tβ

]
− 1

2
e(α−β)

[
∂2

rα +
1
2
(∂rα)2 − 1

2
∂rα∂rβ +

2
r
∂rα

]

Rrr =
1
2

[
∂2

rα +
1
2
(∂rα)2 − 1

2
∂rα∂rβ − 2

r
∂rβ

]
− 1

2
e(β−α)

[
∂2

t β +
1
2
(∂tβ)2 − 1

2
∂tα∂tβ

]

Rtr = −1
r
∂tβ

Rθθ =
1
2
re−β(∂rα− ∂rβ) + (e−β − 1)

Rφφ =
[
1
2
re−β(∂rα− ∂rβ) + (e−β − 1)

]
sin2 θ.

(2.14)

2.1.4 Integration of the Janis-Newman-Winicour-Wyman equa-
tions

The field equations we are going to solve have the form

Rµν − 1
2
gµνR = −κ

[
∇µΦ∇νΦ− 1

2
gµνgαβ∇αΦ∇βΦ

]
. (2.15)

This equation can be expressed in a more convenient way [13]. Multiplying by gµν , recalling
that gλµgνλ = δµ

ν , and having into account that A = gαβ∇αΦ∇βΦ = ∇βΦ∇βΦ , we find

gµνRµν − 1
2
gµνgµνR = −κ∇νΦ∇νΦ +

κ

2
gµνgµνA

R− 2R = −κ∇νΦ∇νΦ + 2κA.
(2.16)

In the last equation ν is a dummy index; so that, we can rename it as β. Therefore,

R = −κ∇βΦ∇βΦ = −κA. (2.17)

Replacing R in (2.15)

Rµν +
1
2
gµνκA = −κ∇µΦ∇νΦ +

1
2
gµνκA

Rµν = −κ∇µΦ∇νΦ.
(2.18)

The condition ¤2Φ = gµν∇µ∇νΦ = 0 is already included in (2.18). In order to see this,
we can use the Bianchi identities [13]

∇[λRρσ]µν = ∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0. (2.19)

A useful form of this identities comes from contracting twice (2.19),

0 = gνσgµλ(∇λRρσµν +∇ρRσλµν +∇σRλρµν)
= ∇µRρµ −∇ρR +∇νRρν

= 2∇µRρµ −∇ρR.

(2.20)

2This components are Known as the Takeno’s formulas[14].
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Therefore,

∇µRρµ =
1
2
∇ρR. (2.21)

Using this identity, and recalling that ∇ρg
µν = 0 it is possible to show that ¤2Φ =

gµν∇ν∇µΦ = 0

∇µRρµ = −κ∇µ(∇µΦ∇ρΦ)
∇µRρµ = −κ(∇µ∇µΦ)∇ρΦ− κ(∇µ∇ρΦ)∇µΦ
1
2
∇ρR = −κ(∇µ∇µΦ)∇ρΦ− κ(∇µ∇ρΦ)∇µΦ

1
2
∇ρ(κgµνTµν) = −κ(∇µ∇µΦ)∇ρΦ− κ(∇µ∇ρΦ)∇µΦ.

(2.22)

Replacing the mathematical expression for Tµν (Eq.1.54)

−(∇µ∇µ)∇ρΦ− (∇µ∇ρ)∇µΦ =
1
2
(∇ρ∇µΦ)∇µΦ +

1
2
(∇ρ∇νΦ)∇νΦ

− (∇ρ∇αΦ)∇αΦ− (∇ρ∇βΦ)∇βΦ;
(2.23)

In this expression α and β are dummy indeces; so that, we can rename them as µ and ν
respectively. Thus,

−1
2
(∇ρ∇µΦ)∇µΦ− 1

2
(∇ρ∇νΦ)∇νΦ = −(∇µ∇µ)∇ρΦ− (∇µ∇ρ)∇µΦ. (2.24)

In a similar way, The index µ in the last equation is a dummy index; therefore, we rename
it as ν and we have that

−(∇ρ∇νΦ)∇νΦ = −(∇µ∇µΦ)∇ρΦ− (∇ν∇ρΦ)∇νΦ. (2.25)

In general, the covariant derivatives do not commute as partial derivative do. However,
since Φ is a scalar function, the covariant derivative can be expressed as a partial derivative.
Therefore,

(∇ρ∇νΦ)∇νΦ = (∇µ∇µΦ)∇ρΦ + (∇ρ∇ν)∇νΦ
(∇µ∇µΦ)∇ρΦ = 0;

(2.26)

having into account that ∂ρΦ 6= 0, we finally obtain

∇µ∇µΦ = gµν∇ν∇µΦ = ¤2Φ = 0. (2.27)
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Field equations:

From equation (2.18) and using the calculations of Rµν in the last section we obtain a
system of differential equations where Φ is the scalar potential. Therefore,

−κ(∇tΦ)2 =
1
2

[
∂2

t β +
1
2
(∂tβ)2 − 1

2
∂tα∂tβ

]
− 1

2
e(α−β)[∂2

rα +
1
2
(∂rα)2 − 1

2
∂rα∂rβ

+
2
r
∂rα]

−κ(∇rΦ)2 =
1
2

[
∂2

rα +
1
2
(∂rα)2 − 1

2
∂rα∂rβ − 2

r
∂rβ

]
− 1

2
e(β−α)[∂2

t β +
1
2
(∂tβ)2

− 1
2
∂tα∂tβ]

−κ∇rΦ∇tΦ = −1
r
∂tβ

−κ(∇θΦ∇)2 =
1
2
re−β(∂rα− ∂rβ) + (e−β − 1)

−κ(∇φΦ) =
[
1
2
re−β(∂rα− ∂rβ) + (e−β − 1)

]
sin2 θ

gµσ∇σ∇µΦ = 0.
(2.28)

In [12] it is assumed that both α and β are functions of r only. Moreover, the assumption
that the line element (2.1) is static an spherically symmetric, imply that ∇νΦ = ∂νΦ also
has this properties.This does not, however, required that Φ = Φ(r, t) be independent of t.
For the moment, it will only be assumed that ∂νΦ is spherically symmetric and has been
placed into the form

∂νΦ = (∂tΦ, ∂rΦ, 0, 0) (2.29)

In this sense, the differential equations system (2.28) can be expressed as

−κ(∂tΦ)2 = −1
2
e(α−β)

[
∂2

rα +
1
2
(∂rα)2 − 1

2
∂rα∂rβ +

2
r
∂rα

]

−κ(∂rΦ)2 =
1
2

[
∂2

rα +
1
2
(∂rα)2 − 1

2
∂rα∂rβ − 2

r
∂rβ

]

0 = −κ∂rΦ∂tΦ

0 =
1
2
re−β(∂rα− ∂rβ) + (e−β − 1)

0 =
[
1
2
re−β(∂rα− ∂rβ) + (e−β − 1)

]
sin2 θ

0 = gµσ∇σ∇µΦ.

(2.30)

The equations for Rθθ and Rφφ are the same. This leave us with a system of five differ-
ential equation. Moreover, as α and β depend only on r, the partial derivatives are total
derivatives

κ(Φ̇)2e(β−α) =
1
r
α′ +

1
2

[
α′′ +

1
2
(α′)2 − 1

2
α′β′

]

−κ(∂rΦ)2 = −1
r
∂rβ +

1
2

[
α′′ +

1
2
(α′)2 − 1

2
α′β′

]

(α′ − β′) =
2
r
(eβ − 1)

∂rΦΦ̇ = 0
¤Φ = 0.

(2.31)
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Where ′ and ˙are d
dr and ∂

∂t respectively. The fourth equation in (2.31) has two possibilities:

1. The first possibility is to consider ∂rΦ 6= 0 and ∂tΦ = 0.

2. The second posibility is to consider ∂rΦ = 0 and ∂tΦ 6= 0.

We are interested in the first case. The second case can be studied from [12].

Case ∂rΦ 6= 0 y ∂tΦ = 0:

For ∂rΦ 6= 0 and ∂tΦ = 0, the first equation in (2.31) is:

1
r
α′ +

1
2

[
α′′ +

1
2
(α′)2 − 1

2
α′β′

]
= 0, (2.32)

this equation can be expressed as3

2
r
α′e(α−β) + e(α−β)

[
α′′ +

1
2
(α′)2 − 1

2
α′β′

]
= 0

e(α−β)/2α′′ +
1
2
e(α−β)/2(α′)2 − 1

2
β′α′e(α−β)/2 +

2
r
e(α−β)/2α′ = 0.

(2.33)

But,

d

dr

(
e(α−β)/2α′

)
= e(α−β)/2α′′ +

1
2
e(α−β)/2(α′)2 − 1

2
α′β′e(α−β)/2. (2.34)

then

d

dr

(
e(α−β)/2α′

)
+

2
r
e(α−β)/2α′ = 0; U = e(α−β)/2α′

dU

dr
+

2
r
U = 0,

(2.35)

whose solution is

r2α′e(α−β)/2 = h; (2.36)

where h is a constant. For ∂rΦ 6= 0 and ∂tΦ = 0, the fifth equation in (2.31) is

∂

∂r
(r2e(α−β)/2∂rΦ) = 0, (2.37)

whose solution is

r2e(α−β)/2∂rΦ = k. (2.38)

Dividing (2.36) and (2.38) between them an integrating 4, we find that5

α′ = cΦ′

α = cΦ + c′

α = cΦ.

(2.39)

Where c′ has been absorbed by the line element defining a new time dt = ec′dt. Therefore,
the proportionality between α and Φ allow us to find eβ using (2.38)

eβ =
1
k2

r4ecΦ(∂rΦ)2. (2.40)

3 Where we have rewritten the term e(β−α)/2.
4we made c = h

k
when dividing

5Here we have had into account that Φ only depends on r because Φ̇ = 0. in this sense, dΦ =
∂rΦdr + ∂tΦdt is reduced to dΦ

dr
= ∂rΦ.
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In this way, the line element is

ds2 = ecΦdt2 − 1
k2

r4ecΦ(∂rΦ)2dr2 − r2dΩ2

ds2 = ecΦdt2 − r4ecΦ

k2
(dΦ)2 − r2dΩ2.

(2.41)

This suggest the transformation of coordinates r̄ = Φ(r) to obtain r = r(r̄) and ∂νΦ =
(0, 1, 0, 0). So that the metric is

ds2 = ecr̄dt2 − r4ecr̄

k2
dr̄2 − r2dΩ2. (2.42)

The constant k2 can be absorbed by linear translation of r̄. Therefore, r̄ → r̄ + b, where
b is a constant

ds2 = ec(r̄+b)dt2 − r4ec(r̄+b)

k2
dr̄2 − r2dΩ2

ds2 = ecr̄ecbdt2 − r4ecr̄ecb

k2
dr̄2 − r2dΩ2

ds2 = ecr̄dt2 − r4(r̄)ecr̄dr̄2 − r2(r̄)dΩ2.

(2.43)

The function r = r(r̄) is unknown. Then, making the variable chance r(r̄) = 1/W (r̄) we
have

ds2 = ecrdt2 −W−4(r)ecrdr2 −W−2(r)dΩ2. 6 (2.44)

The differential equations can be obtained from the components of the Riemann tensor.
For the line element (2.44) the components different from zero are 7

RrrW = −2W ′′ Rθθecr = (W ′)2 −WW ′′ − ecr Rφφ = [(W ′)2 −WW ′′ − ecr] sin2 θ.
(2.45)

According to equation (2.18), the differential equations for (2.44) are 8:

W ′′ − cW ′ +
1
2
κW = 0 WW ′′ − (W ′)2 = −e2cr. (2.46)

the first equation in (2.46) is a second order equation with constant coefficients. The
solution has the form

W = Aem1r + Bem2r, (2.47)

where A and B are arbitrary constants and m1 y m2 need to be found. Replacing (2.47)
into first equation of (2.46)

(
m2

1 − cm1 +
κ

2

)
Aem1r +

(
m2

2 − cm2 +
κ

2

)
Bem2r = 0. (2.48)

This equation is satisfied when m1 y m2

m+ =

[
c +

√
c2 − 4κ

]

2

m− =

[
c−√c2 − 4κ

]

2
.

(2.49)

Therefore, (2.47) can be expressed as
6Al final se a cambiado r̄ por r.
7We have used W ′ to express dW

dr
8Here we used that ∂iΦ = (0, 1, 0, 0). The differential equations for para Rθθ y Rφφ are the same
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W = Aerm+ + Berm− . (2.50)

The relation between the constants A y B can be found using the second equation of
(2.46). Replacing we find

W = Aerm+ + Berm−

W ′ = Am+erm+ + Bm−erm−

W ′′ = Am2
+e

rm+ + Bm2
−e

rm−

WW ′′ − (W ′)2 = (m+ −m−)2BAe(m++m−)r = −ecr.

(2.51)

Finally,

(c2 + 2κ)BA = −1. (2.52)

On the other hand, (2.50) is solution of the system (2.31) if and only if both A and B
satisfy (2.52).

This solution will be asymptotically flat if (2.50) vanish at r = 0. Above, we had made
r = Φ in (2.44). So that, the condition r = 0 is equivalent to Φ = 0. Now, we want to find
a coordinate system in which for r →∞ the space is asymptotically flat (Φ = 0). In order
to do so, we can make r = 1/r̄ which is equivalent to Φ = 1/r̄. Therefore, the point at
r = 0 has been transformed to the point at infinity. Then, when r → ∞ equation (2.50)
takes the form

W = Aem+/r̄ + Bem−/r̄ = A + B = 0
A = −B.

(2.53)

from equation (2.52) we find that

A = −B =
1

(c2 + 2κ)1/2
. (2.54)

Therefore (2.50) is

W =
e

c
2r̄

(c2 + 2κ)1/2
(e

(c2+2κ)1/2

2r̄ − e−
(c2+2κ)1/2

2r̄ )

= 2
e

c
2r̄

(c2 + 2κ)1/2
sinh

(
(c2 + 2κ)1/2

2r̄

)

γ =
(c2 + 2κ)1/2

2

W =
e

c
2r̄

γ
sinh(γr̄−1).

(2.55)

And the line element (2.44)

ds2 = ecr̄−1
dt2 −

[
e

c
2r̄

γ
sinh(γr̄−1)

]−4 ecr̄−1

r̄4
dr̄2 −

[
e

c
2r̄

γ
sinh(γr̄−1)

]−2 1
r̄2

dΩ2

= ecr̄−1
dt2 −

[
γr̄−1

sinh(γr̄−1)

]4

e−cr̄−1
dr̄2 −

[
γr̄−1

sinh(γr̄−1)

]2

e−cr̄−1
dΩ2.

(2.56)
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2.2 Sayan Kar metric:
The most general static and spherically symmetric solution to the Einstein massless scalar
equations was independently obtained by Janis, Newman, and Winicour [11], as well as
Wyman [12]. As both solutions were available in different coordinates, they were not know
to be the same until Virbhabra [15] showed the equivalence between the two by a coordinate
transformation. As Janis, Newman and Winicour obtained this solution about 13 years
before Wyman, it is usually to call it the Janis-Newman-Winicour solution. However,
in this work, we are going to call it as Janis-Newman-Winicour-Wyman solution. Thus,
this solution,(characterized by constant and real parameters, the ADM mass m, and the
scalar charge σ) is expressed by the line element

ds2 =
(

1− 2η

r

)γ

dt2 −
(

1− 2η

r

)−γ

dr2 −
(

1− 2η

r

)1−γ

dr2(dθ2 + sin2 θdφ2), (2.57)

and the massless scalar field

Φ =
σ

2η
ln

(
1− 2η

r

)
, (2.58)

with

γ =
m

η
and η =

√
m2 + σ2 (2.59)

The Kar’s metric comes from the field equations generated by the action

Seff =
∫ [

R + 4(∇Φ)2 − 1
12

HµνρH
µνρ − FµνFµν

]
d4x

√−ge−2Φ, (2.60)

where Φ is the scalar potential, Fµν is the electromagnetic tensor and Hµνρ is related to
the antisymmetric tensor field, Bµν by

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν − [Ω3(A)µνρ], (2.61)

with the gauge Chern-Simons term

[Ω3(A)]µνρ =
1
4
(AµFνρ + AνFρµ + AρFµν). (2.62)

The corresponding equations of motion obtained by performing variations with respect
to the metric, gµν ; the antisymmetric tensor field, Bµν ; the scalar potential, Φ; and the
vector potential, Aµ, are given as follow[16]:

Rµν = −2∇µ∇νΦ + 2FµλFλ
ν +

1
4
HµλσHλσ

ν

∇ν(e−2ΦFµν) +
1
12

e−2ΦHµνρF
µρ = 0

∇ν(e−2ΦHµνρ) = 0

4∇2Φ− 4(∇Φ)2 + R− F 2 − 1
12

H2 = 0.

(2.63)

Assuming the antisymmetric tensor field to be zero they obtain the following spherically
symmetric, static solution

ds2
str =

(
1− 2η

r

)(m+σ)/η

dt2 −
(

1− 2η

r

)(σ−m)/η

dr2 −
(

1− 2η

r

)1+(σ−m)/η

r2dΩ2

Φ =
σ

2η
ln

(
1− 2η

r

)
,

(2.64)



20 CHAPTER 2. FROM JANIS-NEWMAN-WINICOUR TO S. KAR METRIC

where m is the mass, σ is the scalar charge and η is given by η2 = m2 + σ2. For σ = 0,
this solution reduces to the Schwarzschild solution.

In order to obtain equation (2.64) from equation (2.57), we are going to use the standard
relations between the tow metrics described by

gstr
µν = e2ΦgE

µν , (2.65)

where, gE
µν is each component of equation (2.57). Therefore, from equation (2.58) we have

e2Φ = e
σ
η ln(1− 2η

r ) =
(

1− 2η

r

)σ
η

. (2.66)

The equation (2.65) takes the form

gstr
µν =

(
1− 2η

r

)σ
η

gE
µν . (2.67)

Finally,

ds2
str = gstr

µν dxµdxν =
(

1− 2η

r

)σ
η

gE
µνdxµdxν . (2.68)

Which reduces to equation (2.64). The reality of the metric coefficients indicates that we
confine ourselves to the domain r ≥ η. Even for m = pη, σ = qη, with p,q as integers we
end up with p2 + q2 = 1 which contradicts the assumption that p, q are integers. We also
see later that the metric has a naked singularity at r = 2η [16].



Chapter 3

BOZZA’S METHOD

3.1 Introduction:

General Theory of Relativity has been considered one of the most important theories hu-
man kind have ever created. As far as we know, this theory establishes a new conception
of space and time describing how the curvature of space-time acts on matter to manifest
itself as gravity, and how energy and momentum influence space-time to create curvature:
Space tells matter how to move; matter tells space how to curve[8]. As a consequence,
Einstein’s theory of gravity has important astrophysical implications among which gravi-
tational lensing is one of the most important. Although Newton had suggested the idea
of light been deflected by gravity in 1704 and Johann Georg von Soldner calculated the
amount of deflection of a light ray from a star under Newtonian gravity in 18041; it was
not until Einstein that this idea took place and a correct calculation of the amount of
deflection was made. In [17] Einstein explains this idea by means of the equivalence prin-
ciple. In his paper, Einstein considered two systems of co-ordinates: a stationary system
of co-ordinates K, in a homogeneous gravitational field (acceleration of gravity ε), ori-
ented so that the lines of force of the gravitational field run in the negative direction of
the axis of z; and a second system of co-ordinates K ′ moving with uniform acceleration
ε in the positive direction of its axis of z in a space free of gravitational fields. As far
as we know, because of the Galileo’s principle in the accelerated system K ′ and from the
experience that all bodies are equally and uniformly accelerated in the system K, because
it is at rest in a homogenous gravitational field, material points which are not subjected
to the action of other material points move in keeping with equations ẍ = 0, ÿ = 0 and
z̈ = −ε relative to both K and K ′. This consideration brings important implications
if we assume that the two co-ordinate systems are equivalent; that is, if we may regard
K as been in a space free of gravitational fields and moving with uniform acceleration.
Because of this equivalence, we can not differentiate one system to the other and it is im-
possible for us to speak of the absolute acceleration of the system of reference. Although,
this conclusion is very important it will not have any deeper significance unless the sys-
tems K and K ′ are equivalent with respect to all physical processes; that is: all physical
laws with respect to K are in entire agreement with those in K ′. In his treatise, Einstein
considers three important implications or consequences of this principle: the gravitation
of energy, time and the velocity of light in the gravitational field and bending of light-rays.

The possibility of using the equivalence principle to study the behavior of light in presence
of gravitational fields is very interesting. As the principle states, all physical laws with
respect to K are in entire agreement with those with respect to K ′. This means that
we can study the behavior of light in one system of co-ordinates, for example: the one
moving with uniform acceleration in a space free of gravitational field, and realize then

1Professor Castañeda’s lecture on gravitational lensing

21
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that the results of experiments performed in K ′ are the same to those performed in K.
For example; it is known, because the special theory of relativity states so, that the inertia
mass of a body increases with the energy it contains: the famous equation E = mc2. Now
¿Is it possible for the gravitating mass to increase when the inertia mass does? As Einstein
suggested:“...the hypothesis of equivalence of the systems K and K′ gives us gravitating of
energy as a necessary condition”[17] By means of this hypothesis, we are allowed to see
the process of a definite quantity of energy E2 being emitted from S2 toward S1 (rigidly
separated along the z axis a distant h from each other) in the system of reference K ′, and
judge the process of the transference of energy by radiation from a system K0 which is
to be free from acceleration. With this hypothesis Einstein concluded, by the ordinary
theory of relativity, that the radiation arriving at S1 does not possess the energy E2, but
a grater energy E1

2, that is;

E1 = E2

(
1 +

εh

c2

)
. (3.1)

The same relation holds in the system K which is not moving with constant acceleration,
but provided with a gravitational field; in this case, however, we have to change εh by the
potential Φ of the gravitation vector on S2

3. In this way Einstein has shown us that the
difference E1 −E2 is the potential energy of the mass E2/c2 in the gravitational field and
we have to ascribe to the energy E2, before emitted, the potential energy due to gravity for
the fulfilment of the principle of energy. This increase in the potential energy correspond
to an increase E2/c2 in the gravitating mass which is equal to the increase of the inertia
mass, as given by the theory of relativity; for this reason “energy must posses gravitational
mass which is equal to its inertia mass” and in consequence it gravitates[17].

Other important consequence, emerging from the equivalence principle, regards the ve-
locity of light and time. Suppose we emit radiation from S2 toward S1 in the system of
coordinates K ′; the radiation emitted having the frequency ν2 relative to a clock in S2

¿What happens with the frequency once the radiation arrives at S1 if we judge the pro-
cess from the unaccelerated system of coordinate K0? From K0 we see K ′ moving with
constant acceleration ε; if K ′ has not velocity when emission occurs, then S1, at the time
of arrival will have, with respect to K0, the velocity εh/c. Einstein considered this exper-
iment into first approximation; that is: the velocity of K ′, relative to K0, each instant of
time is smaller than that of light. If this is the case, then in t = h/c, S1 moves toward S2

with v = εh/c and we can calculate, via Doppler effect, what an observer, in a system of
coordinates in which S1 is at rest, see. As special Theory of relativity states, an observer
who moves toward a source will see a frequency ν′ relative to a system of coordinates in
which the observer is at rest. The relation between the frequency in the source ν and the
frequency ν′, when calculated in the case of the observer approaching the source, is [18]

ν′ = ν

(
1 + v

c

1− v
c

) 1
2

. (3.2)

In our case ν′ is ν1 and ν is ν2. However, to a first approximation4 and replacing v as
εh/c, equation (6.11) takes the form

ν1 =
(

1 + ε
h

c2

)
ν2. (3.3)

As equation (3.3) shows, the radiation being emitted, in the uniformly accelerated system
K ′, from S2 toward S1 has a grater frequency when it arrives to S1. Using the equivalence
principle, the same thing must happen in the stationary system of co-ordinates K, provided

2See equation (1) in [17]
3See equation (2) in [17]
4If we expand ν′/ν in a Taylor’s series around v/c = 0 and then take terms up to first order
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with a uniform gravitational field, if there the transference by radiation takes place as
described. In this case, we have to replace εh by Φ in S2, and equation (3.3) takes the
form

ν1 =
(

1 +
Φ
c2

)
ν2. (3.4)

The last equation seems to have a serious problem regarding time. This “problem”, as
Einstein pointed out, was: ¿How can any other number of periods per second arrive in
S1 than is emitted in S2? [17] The key point to answer this question is that we can not
consider the frequencies, ν2 and ν1, as the number of periods per second because we have
not yet determined the time in the system K. All we know is that ν2 is the number of
periods per second with reference to the time-unit of the clock U in S2 and ν1 denotes the
number of periods per second with reference to an identical clock in S1. This means that
we can not assume that clocks placed in different gravitation potentials must go at the
same rate. Therefore, the two clocks in S1 and S2 do not both give the “time” correctly.
In this sense, it is necessary to define what time is in such a way that the number of crests
and troughs between S2 and S1 is independent of the absolute value of time[17]. For ν1 is
grater than ν2, the clock U at S2 takes less time to measured the signal coming from S2

when compared to the clock at S2. Then ¿How many times more slowly the clock at S2

goes? As equation (3.4) shows,

t2 =
(

1 +
Φ
c2

)
t1; (3.5)

thus, a clock placed at S2 goes
(
1 + Φ

c2

)
times more slowly than a clock in S1. In this

sense, for measuring time at places which, relatively to the origin of the co-ordinates, has
the gravitational potential Φ, we must employ a clock which, when remove to the origin of
co-ordinates, goes

(
1 + Φ

c2

)
times more slowly than the clock used for measuring time at

the origin of coordinates. If we call the velocity of light at the origin c0 then the velocity
of light at a place with the gravitational potential Φ will be given by the relation

c =
(

1 +
Φ
c2

)
c0. (3.6)

Therefore, the coordinate velocity of light in the gravitational field is a function of the
place. As a consequence, Einstein estimated that a ray of light going past the Sun undergo
deflexion to the amount of 4 · 10−6 = 0.83arcs. In this sense, the angular distant of the
star from the center of the Sun appears to be increased by this amount. The consequence
of the equivalent principle, regarding bending of light, opens the opportunity to compare
his calculation with experience, as Einstein suggested:“It would be a most desirable thing
if astronomers would take up the question here raised. For apart from any theory there is
the question whether it is possible with the equipment at present available to detect an in-
fluence of gravitational fields on the propagation of light. ” However, Einstein’s prediction
had to wait until 1919 to be confirmed during a solar eclipse. In the experiment, Arthur
Eddington observed that light from stars passing close to the sun was slightly bent, so
that stars appeared slightly out of position.

The lens-like action was proposed by Einstein in 1936. His idea was to consider the lens-
like action of a star B by the deviation of light coming form a star A in the gravitational
field of B. In [19], Einstein used the law of deviation to show that an observer situated
exactly on the extension of the central line connecting the stars A and B will perceive
a luminius circle of the angular radius β around the center of B. Einstein believed that
such a phenomenon could not be seen directly because it is necessary to approach closely
enough to the central line; furthermore, the light coming from the luminous circle can not
be distinguished by an observer as geometrically different from that coming from the star



24 CHAPTER 3. BOZZA’S METHOD

B because it will manifest itself as increased apparent brightness of B. However, it was
not until 1979 that the first gravitational lens would be discovered. At first, it looked like
two identical quasi-stellar objects so that it was known as the “Twin QSO”. Now, It is
officially named SBS 0957+561. In the last years, recent works have considered how grav-
itational lensing studies might possibly distinguish between Schwarzschild black holes and
the naked singularities that can occur for example if there is a massless scalar field present
in a spherically symmetric space-time[20]. Given that no proof is known for the cosmic
censorship hypothesis, and the importance of this hypothesis for gravitational physics,
it is a worthwhile research project to investigate the distinctive observational features of
naked singularities and black holes[20]. All these studies have been performed from the
weak field limit point of view. Nowadays, the scientific community has been interested in
the lensing properties from the strong field limit point of view. These studies will be very
important because in order to show deviations from General Relativity it is necessary to
probe exact equations of motion in some way. Moreover, deviation of light rays in the
strong field limit is one of the most promising grounds where a theory of gravitation can
be tested in its full form.

In this chapter we are going to study the influence of gravitation on the propagation of
light from the strong field limit point of view. Our main purpose here is to get an analyt-
ical expansion of the deflection angle. First, we deduce this deflection using the general
theory of relativity. In order to do so, we begin with the equation of motion of the freely
falling material particle or photon in a spherically symmetric metric. In this sense, we
follow the procedure proposed in [21] to obtain a more general expression for de deflection
angle. Then, we explain the method proposed by V. Bozza [22] in detail. Some examples
studied in [22] are reproduced in the appendix A. Finally, we use this method to calculate
the deflection angle for a metric proposed by Sayan Kar [16].

3.2 General equations of motion:

We now considered the motion of the freely falling material particle or photon in a static
isotropic gravitational field. First let us consider the most general such metric5

dτ2 = A(r)dt2 −B(r)dr2 −D(r)r2dθ2 −D(r)r2 sin2 θdφ2. (3.7)

The equations of free fall are [21]

d2xµ

dp2
+ Γµ

νλ

dxν

dp

dxλ

dp
= 0, (3.8)

where p is a parameter describing the trajectory. In general dτ is proportional to dp,
so for a material particle we could normalize p so that p = τ . However, for a photon
the proportionality constant dτ/dp vanish, and since we wish to treat photons as well as
massive particles, we shall find it convenient to reserve the right to fix the normalization
of p independently from that of τ .

Using MAPLE 13 and the metric (3.7), the nonzero Christoffel’s symbols in equation (3.8)
are:

5We use the (+−−−) signature.
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Γr
φφ = −1

2
r2 sin2 θD′(r) + 2r sin2 θD(r)

B(r)

Γr
rr =

1
2B(r)

dB(r)
dr

Γr
θθ = −1

2
r2D′(r) + 2rD(r)

B(r)

Γr
tt =

1
2B(r)

dA(r)
dr

Γθ
rθ =

1
2

rD′(r) + 2D(r)
rD(r)

= Γθ
θr

Γθ
φφ = − sin θ cos θ

Γφ
φr =

1
2

rD′(r) + 2D(r)
rD(r)

= Γφ
φr

Γφ
θφ =

cos θ

sin θ
= cot θ = Γφ

φθ

Γt
tr =

1
2A(r)

dA(r)
dr

= Γt
rt.

(3.9)

From (3.8), the equations for r, θ, φ, t are 6:

3.2.1 Equation for r:

For the r coordinate we have7

0 =
d2xr

dp2
+ Γr

νλ

dxν

dp

dxλ

dp

=
d2r

dp2
+ Γr

rr

(
dr

dp

)2

+ Γr
θθ

(
dθ

dp

)2

+ Γr
φφ

(
dφ

dp

)2

+ Γr
tt

(
dt

dp

)2

=
d2r

dp2
+

1
2

A′(r)
B(r)

(
dt

dp

)2

+
1
2

B′(r)
B(r)

(
dr

dp

)2

− 1
2

r2D′(r) + 2rD(r)
B(r)

(
dθ

dp

)2

− 1
2

r2 sin2 θD′(r) + 2r sin2 θD(r)
B(r)

(
dφ

dp

)2

.

(3.10)

3.2.2 Equation for θ:

As all we know, the Christoffel’s symbols are symmetric: Γλ
µν = Γλ

νµ; for this reason we
have to consider twice in the sum of equation (3.8).

0 =
d2xθ

dp2
+ Γθ

νλ

dxν

dp

dxλ

dp

=
d2θ

dp2
+ 2Γθ

rθ

dθ

dp

dr

dp
+ Γθ

φφ

(
dφ

dp

)2

=
d2θ

dp2
+

2
2

rD′(r) + 2D(r)
rD(r)

dr

dp

dθ

dp
− sin θ cos θ

(
dφ

dp

)2

.

(3.11)

6A prime denotes d/dr
7xr ≡ r, xφ ≡ φ, xt ≡ t and xθ ≡ θ
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3.2.3 Equation for φ:

0 =
d2xφ

dp2
+ Γφ

νλ

dxν

dp

dxλ

dp

=
d2φ

dp2
+ 2Γφ

rφ

dφ

dp

dr

dp
+ 2Γφ

φθ

dφ

dp

dθ

dp

=
d2φ

dp2
+

2
2

rD′(r) + 2D(r)
rD(r)

dφ

dp

dr

dp
+ 2 cot θ

dφ

dp

dθ

dp
.

(3.12)

3.2.4 Equation for t:

0 =
d2xt

dp2
+ Γt

νλ

dxν

dp

dxλ

dp

=
d2t

dp2
+ 2Γt

tr

dt

dp

dr

dp

=
d2t

dp2
+

A′(r)
A(r)

dt

dp

dr

dp
.

(3.13)

3.2.5 Constants of motion:
Since the field is isotropic, we may consider the orbit of our particle to be confined to the
equatorial plane,

θ =
π

2
. (3.14)

In this case, equation (3.11) is satisfied, and we can forget about θ as a dynamical variable.
Finally, the set of equations, evaluated at θ = π/2, take the form:

d2r

dp2
+

1
2

A′(r)
B(r)

(
dt

dp

)2

+
1
2

B′(r)
B(r)

(
dr

dp

)2

− 1
2

r2D′(r) + 2rD(r)
B(r)

(
dφ

dp

)2

= 0 (3.15)

d2φ

dp2
+

rD′(r) + 2D(r)
rD(r)

dφ

dp

dr

dp
= 0 (3.16)

d2t

dp2
+

A′(r)
A(r)

dt

dp

dr

dp
= 0 (3.17)

Making v = dφ
dp in (3.16) we find:

0 =
dv

dp
+

rD′(r) + 2D(r)
rD(r)

dr

dp
v

= dv +
D′(r)
D(r)

vdr +
2v

r
dr.

(3.18)

Integrating

cte =
∫

1
v
dv +

∫
D′(r)
D(r)

dr + 2
∫

1
r
dr

= ln(v) + ln(D(r)) + ln(r2).
(3.19)

0 =
d

dp

[
ln(v) + ln(D(r)) + ln(r2)

]

=
d

dp

[
ln(vD(r)r2)

]
.

(3.20)

In the same way, making u = dt
dp in (3.17), we find that
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0 = du +
A′(r)
A(r)

udr

cte =
∫

1
u

du +
∫

A′(r)
A(r)

dr

= ln u + ln A(r)

(3.21)

0 =
d

dp
[ln u + ln A(r)]

=
d

dp
[ln uA(r)]

(3.22)

Equations (3.20) and (3.22) yield two constant of the motion. One of them, the second
one, will be absorbed immediately into the definition of p as we will see. Replacing v = dφ

dp

in (3.20) and u = dt
dp in (3.22), we get

r2D(r)
dφ

dp
= cte = J, (3.23)

dt

dp
=

1
A(r)

. (3.24)

The first constant of motion plays the role of an angular momentum per unit mass[21].
For the second constant, we choose to normalize p so that the solution is (3.24)8. Since
A(r) is close to unity, p is nearly equal to the coordinate time t. Inserting (3.23) and
(3.24) in (3.15) we find

0 =
d2r

dp2
+

1
2

A′(r)
B(r)A2(r)

+
1
2

B′(r)
B(r)

(
dr

dp

)2

− 1
2

r2D′(r) + 2rD(r)
B(r)

J2

r4D2(r)

= 2B(r)
d2r

dp2
+

A′(r)
A2(r)

+ B′(r)
(

dr

dp

)2

− (r2D′(r) + 2rD(r))
J2

r4D2(r)
.

(3.25)

But

d

dr

[
B(r)

(
dr

dp

)2
]

= B′(r)
(

dr

dp

)2

+ 2B(r)
dr

dp

d

dp

(
dr

dp

)
dp

dr
. (3.26)

Inserting (3.26) in (3.25) we get

0 =
d

dr

[
B(r)

(
dr

dp

)2
]

+
A′(r)
A2(r)

− (r2D′(r) + 2rD(r))J2

r4D2(r)

=
d

dr

[
B(r)

(
dr

dp

)2
]
− d

dr

(
1

A(r)

)
+ J2 d

dr

(
1

r2D(r)

)

=
d

dr

[
B(r)

(
dr

dp

)2

− 1
A(r)

+
J2

r2D(r)

]
.

(3.27)

Our last constant of motion is therefore

cte = B(r)
(

dr

dp

)2

− 1
A(r)

+
J2

r2D(r)
= −E. (3.28)

The proper time dτ2 may now be determined from (3.7) making θ = π/2 and considering
the equations (3.23), (3.24) and (3.28). Equation 3.7 states that

8 First we changed p to p∗ = cte× p and then removed the prime.
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dτ2 = A(r)dt2 −B(r)dr2 −D(r)r2dθ2 −D(r)r2 sin2 θdφ2; (3.29)

for θ = π/2 and dividing with dp2 we get
(

dτ

dp

)2

= A(r)
(

dt

dp

)2

−B(r)
(

dr

dp

)2

−D(r)r2

(
dφ

dp

)2

= A(r)
(

1
A(r)

)2

−
[

1
A(r)

− J2

r2D(r)
− E

]
− J2

r2D(r)

(3.30)

finally we obtain

dτ2 = Edp2 (3.31)

in accordance with our earlier remark that (3.8) forces dτ/dp to be constant. We see that
E must take the values

E > 0 for material particles
E = 0 for photons

(3.32)

3.3 Deflexion angle:
In most applications of general relativity we are interested in the shape of orbits, that is,
in r as a function of φ, than in their time history[21]. The orbit shape can be obtained
directly by eliminating dp from (3.23) and (3.28). Previously, we have shown that

−E = B(r)
(

dr

dp

)2

− 1
A(r)

+
J2

r2D(r)

J = r2D(r)
dφ

dp
.

(3.33)

But dt
dp = 1

A(r) , then

−E = B(r)
(

dr

dt

dt

dp

)2

− 1
A(r)

+
J2

r2D(r)

=
B(r)
A2(r)

(
dr

dt

)2

− 1
A(r)

+
J2

r2D(r)

(3.34)

and

J = r2D(r)
dφ

dt

dt

dp

= r2 D(r)
A(r)

dφ

dt
.

(3.35)

We can express equation (3.34) in terms of φ;

− E =
B(r)
A2(r)

(
dr

dφ

dφ

dt

)2

− 1
A(r)

+
J2

r2D(r)
. (3.36)

From (3.35) dφ
dt = JA(r)

r2D(r) . Then equation (3.36) takes the form

−E =
B(r)
A2(r)

J2A2(r)
r4D2(r)

(
dr

dφ

)2

− 1
A(r)

+
J2

r2D(r)

=
J2B(r)
r4D2(r)

(
dr

dφ

)2

− 1
A(r)

+
J2

r2D(r)
.

(3.37)
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From (3.37) we get

dφ

dr
= ± 1

r2

B1/2(r)
D(r)

[
1

J2A(r)
− 1

r2D(r)
− E

J2

]−1/2

; (3.38)

and integrating

φ = ±
∫

1
r2

B1/2(r)
D(r)

[
1

J2A(r)
− 1

r2D(r)
− E

J2

]−1/2

dr + cte. (3.39)

In order to obtain the deflection angle consider a particle or photon approaching from very
great distances. At infinity the metric becomes Minkowskian, that is, A(∞) = B(∞) = 1,
and we expect motion on a straight line at constant velocity V , from the figure [21]:

we obtain that,

b ' r sin(φ− φ∞) ' r(φ− φ∞)

−V ' d

dt
(r cos(φ− φ∞)) ' dr

dt
,

(3.40)

Where b is the “impact parameter” and φ∞ is the incident direction. Inserting these in
(3.34) and (3.35), we see that they do satisfy the equation of motion at infinity, where
A = B = 1, and that the constants of the motion are:

J = bV

E = 1− V 2.
(3.41)

As we can see from (3.41) a photon has V = 1, and as we have already seen, this gives
E = 0. It is often more convenient to express J in terms of the distant r0 of closest
approach to the distribution of mass, rather than the impact parameter b. At r0, dr/dφ
vanishes so, from equations (3.37) and (3.41), we have

− E

J2
=

1
r2
0D

2(r0)
− 1

A(r0)J2

J = r0

[(
1

A(r0)
− 1 + V 2

)
D(r0)

]1/2

.

(3.42)

The orbit is then described by (3.39)

φ(r) = φ∞ +
∫ ∞

r

1
r2

√
B(r)

D(r)

[
1

J2A(r)
− 1

r2D(r)
− E

J2

]−1/2

dr. (3.43)

From (3.42)

1
J2

=
1
r2
0

[(
1

A(r0)
− 1 + V 2

)
D(r0)

]−1

; (3.44)

and we have
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1
J2A(r)

− (1− V 2)
J2

=
1

r2
0A(r)

[(
1

A(r0)
− 1 + V 2

)
D(r0)

]−1

− 1− V 2

r2
0

[(
1

A(r0)
− 1 + V 2

)
D(r0)

]−1

=
D−1(r0)

r2
0

[
1

A(r)
− 1 + V 2

] [
1

A(r0)
− 1 + V 2

]−1

.

(3.45)

Inserting the last equation in (3.43)

φ = φ∞ +
∫ ∞

r

1
r2

√
B(r)

D(r)

{
1

r2
0D(r0)

[
1

A(r)
− 1 + V 2

] [
1

A(r0)
− 1 + V 2

]−1

− 1
r2D(r)

}−1/2

dr

= φ∞ +
∫ ∞

r

1
r

[
B(r)
D(r)

]1/2
{(

r

r0

)2
D(r)
D(r0)

[
1

A(r)
− 1 + V 2

] [
1

A(r0)
− 1 + V 2

]−1

− 1

}−1/2

dr.

(3.46)
The total change in φ as r decreases from infinity to its minimum value r0 and then
increases again to infinity is just twice its change from ∞ to r0, that is, 2|φ(r0) − φ∞|.
If the trajectory were a straight line, this would equal just π; hence the deflection of the
orbit from straight line is[21]

∆φ = α̂(r0) = 2|φ(r0)− φ∞| − π (3.47)

If this is positive, then the angle φ changes by more than 180◦, that is, the trajectory is
bent toward the mass distribution; if ∆φ es negative then the trajectory is bent away from
the mass distribution. Inserting (3.46) in (3.47) we get

α̂(r0) = 2
∫ ∞

r0

1
r

[
B(r)
D(r)

]1/2




(
r

r0

)2
D(r)
D(r0)

[
1

A(r) − 1 + V 2
]

[
1

A(r0)
− 1 + V 2

] − 1





−1/2

dr − π (3.48)

For a photon E = 0, that is V 2 = 1, equation (3.48) takes the form

α̂(r0) = 2
∫ ∞

r0

1
r

[
B(r)
D(r)

]1/2
{(

r

r0

)2
D(r)
D(r0)

A(r0)
A(r)

− 1

}−1/2

dr − π. (3.49)

3.4 Photon sphere:

A photon sphere is a spherical region of space where gravity is strong enough that photons
are forced to travel in orbits. This means that Einstein bending angle of a light ray with
the closest distance of approach r0 becomes unboundedly large as r0 tends to rsp[20]. In
order to obtain the photon sphere equation we have to set r = cte in (3.15); this condition
makes (3.16) to take the form :

A′(r)
B(r)

(
dt

dp

)2

− r2D′(r) + 2rD(r)
B(r)

(
dφ

dp

)2

= 0, (3.50)

from which

(
dφ

dt

)2

=
A′(r)
(r2D)′

. (3.51)
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On the other hand, from equation (3.7) and making θ = π
2 , r = cte. and dτ2 = 0 (because

it is a photon) we get

0 = A(r)dt2 −Dr2dφ2; (3.52)

and finally

(
dφ

dt

)2

=
A(r)

r2D(r)
(3.53)

comparing (3.51) and (3.53) we find that

A(r)
r2D(r)

=
A′(r)

(r2D(r))′
(3.54)

and finally, using the relation C(r) = r2D(r) we have

A(r)C ′(r) = A′(r)C(r). (3.55)

Equation (3.55) admits at least one positive solution. We shall call the largest root of it
the radius of the photon sphere rm. A, B, C, A′ and C ′ must be positive for r > rm. For
metrics expressed by in standard coordinates (C(r) = r2) a sufficient condition for the
existence of rm is the presence of a static limit (a radius rs such that A(rs) = 0). The
strong field expansion takes the photon sphere as the starting point. In this study, we
shall not consider naked singularities without a photon sphere[22].

3.5 Bozza’s method:

The Bozza’s method is used to calculate the deflection angle in the strong filed limit
taking the photon sphere as the starting point. This method is universal and can be
applied to any space-time in any theory of gravitation provided that the photons satisfy
the standard geodesic relation, equation (3.8). The parameters of the strong field limit
expansion (ā, b̄ and um) are directly connected with the observables, providing an effective
tool to discriminate among different metrics. In this section, we are going to show that
the deflection angle diverges logarithmically as we approach the photon sphere.

3.5.1 Divergent term of the deflection angle

We defined two new variables9

y = A(x)

z =
y − y0

1− y0
,

(3.56)

where y0 = A0. The integral (3.49) becomes

9From now on x → r and x0 → r0.
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α̂(x0) = 2
∫ ∞

x0

[
B(x)
C(x)

]1/2 [
C(x)
C(x0)

y0

y
− 1

]−1/2

dx− π

= 2
∫ ∞

x0

[
B(x)
C(x)

]1/2 [
C(x)
C(x0)

y0

z(1− y0) + y0
− 1

]−1/2

dx− π

= 2
∫ ∞

x0

√
B(x)√
C(x)

[
y0 − [(1− y0)z + y0]

C0

C(x)

]−1/2 [
C(x)

C0[(1− y0)z + y0]

]−1/2

dx− π

= 2
∫ ∞

x0

√
B(x)√
C(x)

√
C0√

C(x)

√
ydx

[
y0 − [(1− y0)z + y0] C0

C(x)

]1/2
− π

= 2
∫ ∞

x0

√
B(x)y
C(x)

√
C0

dx
[
y0 − [(1− y0)z + y0] C0

C(x)

]1/2
− π.

(3.57)
From (3.56)

A′ =
d

dx
[(1− y0)z + y0] = (1− y0)

dz

dx

dx =
(1− y0)

A′
dz.

(3.58)

Then, equation (3.57) takes the form10

α̂(x0) = 2
∫ 1

0

√
B(x)y

C(x)A′(x)
(1− y0)

√
C0

dz
[
y0 − [(1− y0)z + y0] C0

C(x)

]1/2
− π; (3.59)

where all functions without the subscript 0 are evaluated at x = A−1[(1 − y0)z + y0].
Calling

R(z, x0) = 2

√
B(x)y

C(x)A′(x)
(1− y0)

√
C0

f(z, x0) =
1

[
y0 − [(1− y0)z + y0] C0

C(x)

]1/2
,

(3.60)

we find that (3.49) can be expressed as

α̂(x0) =
∫ 1

0

R(z, x0)f(z, x0)dz − π = I(x0)− π. (3.61)

The function R(z, x0) is regular for values of z and x0, while f(z, x0) diverges for z → 0.
To find out the order of divergence of integrand, we expand the argument of the square
root in f(z, x0) to the second order in z. For z0 = 0 the expansion of l(z, x0) = y0 − [(1−
y0)z + y0] C0

C(x) is:

l(z, x0) =
∞∑

n=0

l(n)(z0)
n!

(z − z0)n

= l(0) + l′(0)z +
l′′(0)

2
z2 + ...

= l(0) + αz + βz2 + ...

(3.62)

10For x = x0, equation (3.56) gives z(x0) = 0. For x →∞, A(x) → 1 because the metric is asymptoti-
cally flat then (3.56) gives z = 1
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Finding α

From equation (3.56) we notice that z is a function of x for this reason

l′(z) =
d

dz
l(z) =

dl

dx

[
dz

dx

]−1

=
d

dx

{
y0 − [(1− y0)z + y0]

C0

C

} [
dz

dx

]−1 (3.63)

d

dx

{
y0 − [(1− y0)z + y0]

C0

C

}
= −C0

C

d

dx
[(1− y0)z + y0]− C0[(1− y0)z + y0]

d

dx
C−1

= −C0

C
(1− y0)

dz

dx
− (−C−2)C ′C0[(1− y0)z + y0]

= − (1− y0)C0

C

dz

dx
+

C0[(1− y0)z + y0]C ′

C2

(3.64)

l′(z) =
{

C0[(1− y0)z + y0]C ′

C2
− (1− y0)C0

C

dz

dx

}[
dz

dx

]−1

=
C0[(1− y0)z + y0]C ′

C2

[
dz

dx

]−1

− (1− y0)C0

C
.

(3.65)

Using (3.58) we obtain

l′(z) =
C0C

′(1− y0)[(1− y0)z + y0]
C2A′

− (1− y0)C0

C
. (3.66)

For z = 0, x = x0, the last equation gives α

α = l′(z = 0) =
C0C

′
0(1− y0)y0

C2
0A′0

− (1− y0)C0

C0

α =
(1− y0)
C0A′0

[C ′0y0 − C0A
′
0].

(3.67)

Finding β

As we have done for α in the last section, β can be expressed as11:

l′′(z, x0) =
d

dz

(
dl

dz

)
=

d

dx

(
dl

dz

)
dx

dz
(3.68)

then

11From equation (3.56) dx
dz

= 1−y0
A′
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d

dx

(
dl

dz

)
=

d

dx

{
(1− y0)C0

C2A′
[C ′[(1− y0)z + y0]− CA′]

}

= (1− y0)C0{ d

dx

(
1

C2A′

)
[C ′[(1− y0)z + y0]]

+
1

C2A′
d

dx
(C ′[(1− y0)z + y0])− d

dx

(
1
C

)
}

= (1− y0)C0{− (2C ′A′ + A′′C)(C ′[(1− y0)z + y0])
A′2C3

+
CA′

C3A′2
((1− y0)(C ′′z + C ′z′) + C ′′y0)− (−1)C ′CA′2

C3A′2
}

=
(1− y0)C0

C3A′2
{−(2C ′A′ + A′′C)C ′[(1− y0)z + y0]

+ CA′((1− y0)(C ′′z + C ′z′) + y0C
′′) + CC ′A′2}.

(3.69)

For z = 0, that is x = x0, and using (3.58) equation (3.68) gives

l′′(0, x0) =
(1− y0)
C2

0A′20
{−(2C ′0A

′
0 + A′′0C0)y0C

′
0 + C0A

′
0(1− y0)C ′0z

′
0

+ C0A
′
0y0C

′′
0 + C0C

′
0A

′2
0 }

(1− y0)
A′0

=
(1− y0)2

C2
0A′30

{−(2C ′0A
′
0 + A′′0C0)y0C

′
0 + C0A

′
0(1− y0)C ′0z

′
0

+ C0A
′
0y0C

′′
0 + C0C

′
0A

′2
0 }

=
(1− y0)2

C2
0A′30

{−2y0C
′2
0 A′0 −A′′0C0y0C

′
0 + C0A

′
0(1− y0)

C ′0A
′
0

(1− y0)

+ C0A
′
0y0C

′′
0 + C0C

′
0A

′2
0 }

=
(1− y0)2

C2
0A′30

{
2C0C

′
0A

′2
0 + (C0C

′′
0 − 2C ′20 )y0A

′
0 − C0y0C

′
0A

′′
0

}
.

(3.70)

From which β is

β =
1
2
l′′(0, x0) =

(1− y0)2

2C2
0A′30

{
2C0C

′
0A

2
0 + (C0C

′′
0 − 2C ′20 )y0A

′
0 − C0C

′
0y0A

′′
0

}
. (3.71)

Finally we can express f(z, x0) as

f(z, x0) ∼ f0(z, x0) =
1√

αz + βz2
. (3.72)

When α is non zero, the leading order of the divergence in f0 is z−1/2, which can be
integrated to give a finite result. When α vanishes, the divergence is z−1 which makes the
integral diverge. Examining the form of α, we see that it vanishes at x0 = xm with xm

defined by Eq. (3.55). Each photon having x0 < xm is captured by the central object and
cannot emerge back[22].

In order to solve I(x0), we split it into two pieces

I(x0) = ID(x0) + IR(x0), (3.73)

where
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ID(x0) =
∫ 1

0

R(0, xm)f0(z, x0)dz, (3.74)

contains the divergence and

IR(x0) =
∫ 1

0

g(z, x0)dz

g(z, x0) = R(z, x0)f(z, x0)−R(0, xm)f0(z, x0),

(3.75)

is the original integral with the divergence subtracted. We shall solve both integrals sep-
arately and then sum up their results to rebuilt the deflection angle. Here we deal with
ID and its divergence, while in the next section we shall verify that IR is indeed regular[22].

We can solve the integral ID(x0) exactly. Using the Taylor expansion for f(z, x0) we have

ID(x0) =
∫ 1

0

R(0, xm)f0(x0, z)dz =
∫ 1

0

R(0, xm)√
αz + βz2

dz. (3.76)

In this integral R(0, xm) is a constant so

ID(x0) = R(0, xm)
∫ 1

0

1√
αz + βz2

dz. (3.77)

Using the list of integrals from [23] we find, for β > 0, that
∫

1√
αz + βz2

dz =
1√
β

ln |2βz + α + 2
√

β
√

βz2 + αz|. (3.78)

Inserting this result in ID(x0) we get

ID(x0) =
R(0, xm)√

β
ln |2β + α + 2

√
β
√

β + α| − ln |α|

=
R(0, xm)√

β
ln

∣∣∣∣
2β + α + 2

√
β
√

β + α

α

∣∣∣∣ .

(3.79)

But

(
√

β +
√

β + α)2 = 2β + α + 2
√

β
√

β + α. (3.80)

Then the integral ID(x0) takes the final form [22]

ID(x0) =
R(0, xm)√

β
ln

∣∣∣∣∣
(√

β +
√

β + α√
α

)2
∣∣∣∣∣

= R(0, xm)
2√
β

ln
(√

β +
√

β + α√
α

)
.

(3.81)

Since we are interested in the terms up to O(x0 − xm) we expand α as

α(x0) =
∞∑

n=0

α(n)(xm)
n!

(x0 − xm)n

= α(xm) +
dα

dx0
|x0=xm(x0 − xm) +O(x0 − xm)2 + ...

(3.82)

which means that we are working near to the photon sphere. Recalling equation (3.67),
we see that α(xm) is zero because xm is a solution of (3.55). The next term in (3.82) is
not zero.
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dα

dx0
=

d

dx0

[
(1− y0)
C0A′0

]
(C0y

′
0 − C0A

′
0) +

(1− y0)
C0A′0

d

dx0
(C0y

′
0 − C0A

′
0) (3.83)

When the first term in (3.83) is evaluated at x0 = xm its value is zero; the second term,
however, can be calculated easily as 12

(1− y0)
C0A′0

d

dx0
(C0y

′
0 − C0A

′
0) =

(1− y0)
C0A′0

(C ′′0 y0 + C ′0y
′
0 − C ′0A

′
0 − C0A

′′
0)

=
(1− y0)
C0A′0

[C ′′0 y0 − C0A
′′
0 ] ,

(3.84)

and evaluating at x0 = xm we get13

dα

dx0
=

(1− ym)
CmA′m

[C ′′mym − CmA′′m]

=
2(1− ym)2CmA′m
2(1− ym)C ′2mA2

m

[ymC ′′m − CmA′′(xm)] ,
(3.85)

and (3.82) takes the form

α =
2βmA′m
(1− ym)

(x0 − xm) +O(x0 − xm)2 (3.86)

where14

βm = β|x0=xm =
Cm(1− ym)2(ymC ′′m − CmA′′(xm))

2y2
mC ′2m

. (3.87)

As mentioned before, we are interested in working with terms up to first order in (x0−xm);
for this reason we are going to expand equation (3.81) up to first order in (x0 − xm). In
order to do so, the lowest order comes out by taking α at the first order in (x0 − xm)
and taking β = βm; this is the zero order for β. If we expand α (equation 3.82) without
expanding β, then you still get a residual dependence on x0 trough beta, and the coefficient
a will not be a number but a function of x0, which is incorrect as the power expansion is
not fulfilled15.

ID(x0) =
∞∑
n0

I
(n)
D (xm)

n!
(x0 − xm)n, (3.88)

then
ID(x0) = ID(xm) +O(x0 − xm)

=
R(0, xm)√

βm
2 ln(

√
βm +

√
α + β − ln

√
α) +O(x0 − xm)

(3.89)

Inserting (3.86) we get

ID =
R(0, xm)√

βm
2 ln



√

βm +
√

βm + 2 βmA′m
(1−ym) (x0 − xm)

√
2βmA′m
1−ym

(x0 − xm)




=
R(0, xm)√

βm

ln




(
1 +

√
1 + 2 A′m

(1−ym) (x0 − xm)
)2

2A′m
1−ym

(x0 − xm)


 .

(3.90)

12It is important to take into account that y0 = A0[22].
13We had into account that C′mAm − CmA′m = 0
14Remember that y0 = A0 and ym = Am.
15A discussion with professor V. Bozza via e-mail.
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Expanding the term
(
1 +

√
1 + 2 A′m

(1−ym) (x0 − xm)
)2

we have that

ID = −R(0, xm)√
βm

ln
(

x0

xm
− 1

)
+

R(0, xm)√
βm

ln
2(1− ym)

xmA′m
+O(x0 − xm). (3.91)

Rewriting

ID(x0) = −a ln
(

x0

xm
− 1

)
+ bD +O(x0 − xm), (3.92)

where

a =
R(0, xm)√

βm

bD =
R(0, xm)√

βm

ln
(

2(1− ym)
A′mxm

)
.

(3.93)

Equation (3.92) yields the leading order in the divergence of the deflection angle, which is
logarithmic, as anticipated before. The coefficient a is given by equation (3.93).

3.5.2 Regular term of the deflection angle

In order to find the correct coefficient b in (3.92), we have to add to the term bD of equation
(3.93), an analogous term coming from the regular part of the original integral, defined by
(3.75). To do so, we can expand IR(x0) in powers of (x0 − xm)

IR(x0) =
∞∑

n=0

1
n!

(x0 − xm)n

∫ 1

0

∂ng

∂x0
|x0=xmdz, (3.94)

and evaluate the single coefficients.

If we had not subtracted the singular part from R(z, x0)f(z, x0), we would have an infinite
coefficient for n = 0, while all other coefficients would be finite. However, the function
g(z, x0) is regular in z = 0, x0 = xm as can be easily checked by a power expansion,
recalling that αm = 0.
Since we are interested to terms up to O(x0 − xm), we will just retain the n = 0 term

IR(x0) =
∫ 1

0

g(z, xm)dz +O(x0 − xm) (3.95)

and then

bR = IR(xm), (3.96)

is the term we need to add to bD in order to get the regular coefficient. Recalling also the
term −π in the deflection angle, we have

b = bD + bR − π. (3.97)

The coefficient bR can be easily evaluated numerically for all metrics, since the integrand
has no divergence. However, in many cases it is also possible to built a completely analyt-
ical formula for bR as well. In fact, in Schwarzschild metric, the integral (3.95) is solved
exactly. Then, in most metrics, we can expand (3.95) in powers of their parameters,
starting from the Schwarzschild limit, and evaluate each coefficient separately.
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3.6 From α̂(x0) to α̂(θ)

From conservation of angular momentum, there is a relation between J and the impact
parameter u [21]

J = uV. (3.98)

As equation (3.42) states

J = x0

√[
1

A0
− 1 + V 2

]
D0; (3.99)

then

uV = x0

√[
1

A0
− 1 + V 2

]
D0. (3.100)

For a photon E = 0 (V = 1) [21]; so that, the last equation takes the form

u = x0

√
D0

A0
=

√
x2

0D0

A0
, (3.101)

but C = x2
0D (Using the notation in [22]) and finally we have

u =
√

C0

A0
. (3.102)

Making an expansion in Taylor series around xm

u =
∞∑

n=0

u(n)(xm)
n!

(x0 − xm)n (3.103)

up to second order we get

u(x0) = u(x0 = xm) +
du(x0 = xm)

dx0
(x0 − xm) +

d2u(x0 = xm)
dx2

0

(x0 − xm)2

u(x0)− um =
du(x0 = xm)

dx0
(x0 − xm) +

d2u(x0 = xm)
dx0

(x0 − xm)2

(3.104)
then calculating each coefficient in the expansion

du

dx0
=

d

dx0

(√
C0

A0

)
=

1
2

√
A0

C0

d

dx0

(
C0

A0

)

=
1
2

√
A0

C0

(C ′0A0 − C0A
′
0)

A2
0

du(x0 = xm)
dx0

=
1
2

√
Am

Cm

(C ′mAm − CmA′m)
A2

m

= 0

(3.105)

and
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d2u

dx0
=

1
2

d

dx0

[√
A0

C0

C ′0A0 − C0A
′
0

A2
0

]

=
1
2




d

dx0

(√
A0

C0

)
C ′0A0 − C0A

′
0

A2
0︸ ︷︷ ︸

at x0 = xm this term vanishes

+
√

A0

C0

d

dx0

[
C ′0A0 − C0A

′
0

A2
0

]



=
1
2

[
©+

√
A0

C0

d

dx0

[
C ′0A0 − C0A

′
0

A2
0

]]
,

(3.106)

where © ≡ d
dx0

(√
A0
C0

)
C′0A0−C0A′0

A2
0

. Then,

d2u

dx0
=

1
2

[
©+

√
A0

C0

(C ′′0 A0 + C ′0A
′
0 − C ′0A

′
0 − C0A

′′
0)A2

0 − (C ′0A0 − C0A
′
0)(2A0A

′
0)

A4
0

]

=
1
2

[
©+

√
A0

C0

(C ′′0 A0 − C0A
′′
0)A2

0 − (C ′0A0 − C0A
′
0)(2A0A

′
0)

A4
0

]

=
1
2

[
©+

√
1

C0A3
0

(
(C ′′0 A0 − C0A

′′
0)− (C ′0A0 − C0A

′
0)(2A0A

′
0)

A0

)]

(3.107)
evaluating at x0 = xm we get

c =
1
2

d2u(x0 = xm)
dx0

=
1
4




√
1

CmA3
m


(C ′′mAm − CmA′′m)−

at x0 = xm this term vanishes︷ ︸︸ ︷
(C ′mAm − CmA′m) (2AmA′m)

Am





 .

= βm

√
ym

C3
m

C ′2m
(1− ym)2

.

(3.108)
Finally we get that the impact parameter is

u− um =
1
4

(C ′′mAm − CmA′′m)√
CmA3

m

(x0 − xm)2

= c(x0 − xm)2.
(3.109)
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Using this relation, we can write the deflection angle as a function of θ. To do so, we have
to remember that θ = u/DoL as can be seen in the next figure[22]

so equation (3.109) gets the form

θDoL − um = c

(
x0

xm
− 1

)
x2

m. (3.110)

Replacing in

α̂(x0) = −a ln
(

x0

xm
− 1

)
+ bD + bR − π. (3.111)

we get

α̂(θ) = −a

2
ln

(
θDoL − um

cx2
m

− 1
)

+ bD + bR − π

= −a

2
ln

[(
θDoL

um
− 1

)]
+

a

2
ln

(
cx2

m

um

)
+ bD + bR − π.

(3.112)

This conclude our general discussion of the form of the deflection angle in the strong
field limit. Even if the proof is somewhat tricky, the application to concrete cases is very
straightforward, as we shall see in the applications. In fact, once we write the metric, it
is sufficient to:

1. Solve α(xm) = 0.

2. Write βm and R(0, xm)

3. Compute bR numerically or by a proper expansion in the parameters of the metric.

4. Compute the coefficients um, ā and b̄.

The crucial step is the calculation of bR, since it is the only integral involved in the whole
procedure.



Chapter 4

GRAVITATIONAL LENSING
FOR S. KAR METRIC

The metric proposed by S. Kar in [16] has the form,

ds2 = +
(

1− 2η

r

)(m+σ)/η

dt2 −
(

1− 2η

r

)(σ−m)/η

dr2 −
(

1− 2η

r

)1+(σ−m)/η

r2dΩ2

φ =
σ

2η
ln

(
1− 2η

r

)

η2 = m2 + σ2.
(4.1)

Where m is the mass and σ is the scalar charge. For r = 2η this metric has a naked
singularity [16]. In order to study the strong field limit approach, using the method
described in the last chapter, we have expressed the metric coefficient as

A(r) =
(

1− 2η

r

)m+σ
η

C(r) =
(

1− 2η

r

)1+ σ−m
η

r2 B(r) =
(

1− 2η

r

)σ−m
η

(4.2)

For σ = 0 this solution reduces to the Schwarzschild solution. The reality of the metric
coefficients indicates that we confine ourselves to the domain r ≥ η. In order to use the
Bozza’s method, it is convenient to define x ≡ r

2η and rename m+σ
η and σ−m

η as k and p

respectively, so that equation (4.2) takes the form

A(x) =
(

1− 1
x

)k

B(x) =
(

1− 1
x

)p

C(x) =
(

1− 1
x

)1+p

x2

φ =
σ

2η
ln

(
1− 1

x

)

η2 = m2 + σ2.

(4.3)

The first and second derivatives of A(x) and C(x) with respect to x are1

1It is important to take into account that ′ = d
dx

41
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A′(x) =
k

x2

(
1− 1

x

)k−1

A′′(x) =
(

1− 1
x

)k−1 [
k(k − 1)− 2k(x− 1)

x3(x− 1)

]

C ′(x) =
(

1− 1
x

)p

[2x + p− 1]

C ′′(x) =
(

1− 1
x

)p [
2x2 + 2(p− 1)x + p(p− 1)

x(x− 1)

]

(4.4)

4.1 Solving the photon sphere equation
From equation (3.67) and (4.4)

α =
1−

(
1− 1

x0

)k

k
(
1− 1

x0

)k+p

{
(1 + p)

(
1− 1

x0

)k+p

+ 2x0

(
1− 1

x0

)k+p+1

− k

(
1− 1

x0

)p+k
}

=
1−

(
1− 1

x0

)k

k

{
(1 + p) + 2x0

(
1− 1

x0

)
− k

}

=
1−

(
1− 1

x0

)k

k
{2x0 + p− k − 1} .

(4.5)
For σ = 0 we see that k = 1 and p = −1; therefore, α reduces to equation (6.27). The
solution of equation α = 0 from (4.5) give us the radio of photon sphere xm.

0 = 2xm + p− k − 1

xm =
k − p + 1

2
.

(4.6)

For σ = 0, xm reduces to equation (6.30).

4.2 Finding βm and R(0, xm)

In order to calculate β and βm we are going to calculate each term of equation (3.71).
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′
0A

′2
0 = 2

(
1− 1
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x2
0

(
1− 1
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1− 1
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=
2k2

x2
0
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(4.7)
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x0

)k (
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(
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= −k(k − 1)− 2k(x0 − 1)
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(
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x0

)2(p+k)

(2x0 + p− 1)

(4.8)
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(4.9)
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Finally β is

β =
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(4.11)
For σ = 0, k = 1 and p = −1; thus β reduces to equation (6.28). In order to calculate βm

we replace x0 = xm in equation (4.11) 2.

2It is important to recall that k − p = 2xm − 1
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βm =

(
1−

(
1− 1

xm

)k
)2

2k3
(
1− 1

xm

)k
[−2kx2

m + (2k(k + 1)− 4kp)x0 + k(p− 1)(1− p + k)]

=
[−2x2

m + (2(k + 1)− 4p)xm + 2(p− 1)xm]
(xm − 1)k

(xk
m − (xm − 1)k)2

2k2xk
m

=
[−2x2

m + 2(k − p)xm]
(xm − 1)k

(xk
m − (xm − 1)k)2

2k2xk
m

=
[−2x2

m + 2(2xm − 1)xm]
(xm − 1)k

(xk
m − (xm − 1)k)2

2k2xk
m

=
[2x2

m − 2xm]
(xm − 1)k

(xk
m − (xm − 1)k)2

2k2xk
m

=
(xk

m − (xm − 1)k)2

k2(xm − 1)k−1xk−1
m

.

(4.12)

Replacing xm in equation (4.11) we obtain

βm =
[(k − p + 1)k − (k − p− 1)k]2

4k2(k − p− 1)k−1(k − p + 1)k−1

=
[(k − p + 1)k − (k − p− 1)k]2

4k2((k − p)2 − 1)k−1

(4.13)

For σ = 0, βm reduces to equation (6.28).

From equation (3.60)we obtain
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(4.14)

For σ = 0, R(z, x0) reduces to equation (6.24). In order to calculate R(0, x0), notice that
z = 0 for x = x0 as equation (3.56) shows, and thus
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((
1− 1

x0

) 1+p
2 −

(
1− 1

x0

) 2k+p+1
2

)

(
1− 1

x0

) p+k
2

=
2x0

k

((
1− 1

x0

) 1−k
2

−
(

1− 1
x0

) k+1
2

)
.

(4.15)

For σ = 0, R(0, x0) reduces to equation (6.32).
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4.3 Computing bR

In order to calculate bR we have defined ζ = σ
η in such a way that

λ2 + ζ2 = 1; (4.16)

where λ = m
η and ζ = σ

η . Therefore, R(z, xm), R(0, xm), f(z, xm) and f0(z, xm) for S.
Kar’s metric takes the form
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where
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(4.18)

We have expressed C as a function of z using (3.56). For ζ = 0 these expressions reduce
to those of Schwarzschild (Cfr. Appendix A).

The regular term bR can not be calculated analytically. However, we can expand the
integrand in equation (3.95) in powers of ζ and evaluate the single coefficients. So that,
bR up to first order in ζ is

bR =
∞∑

n=0

1
n!

d(n)

dζn
IR(xm)(ζ − 0)n

= IR(xm)ζ=0 +
(

d

dζ
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)

ζ=0

ζ

(4.19)
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For ζ = 0 the value of IR(xm) reduces to that of Schwarzschild (Crf. Appendix A).
Therefore, for 0 ≤ z ≤ 1 (|z| = z) we obtain

IR(xm)ζ=0 = 2
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
 1

|z|
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2z
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On the other hand,
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(4.21)

where fS(z, xm), f0S(z, xm) are those of Schwarzschild. This gives

d

dζ
IR(xm) =

∫ 1

0




d
dζ R(z, xm)

z
√

1− 2
3z

−
d
dζ R(0, xm)

z
+ 2

d

dζ
f(z, xm) +

dβm

dζ

z


 dz, (4.22)

where all derivatives, evaluated at ζ = 0, are:
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(4.23)

Finally we have that
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(4.24)
Using a numerical method, we calculate the integrals
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In order to calculate de remaining integral

i =
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dz, (4.26)

we expressed ln(2z + 1) in a Taylor series around z = 0.5. The detail of this expansion is
shown in appendix B. Therefore, bR is

bR = 2 ln(6(2−
√

3)) + 3.005480454ζ. (4.27)

4.4 Finding um, a and b

To calculate a we use equation (3.93):
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(4.28)
Then
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In order to compute b̄ we must use the relation

b̄ = −π + bR + ā ln
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where

2β

ym
= 2

[(k − p + 1)k − (k − p− 1)k]2

4k2((k − p)2 − 1)k−1

(k − p + 1)k

(k − p− 1)k

=
[(k − p + 1)k − (k − p− 1)k]2

2k2(k − p + 1)k−1(k − p− 1)k−1

(k − p + 1)k

(k − p− 1)k

=
[(k − p + 1)k − (k − p− 1)k]2

2k2(k − p− 1)2k−1
(k − p + 1).

(4.31)

Finally, from equation (3.102),
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Chapter 5

GRAVITATIONAL LENSING IN
THE STRONG FIELD LIMIT

5.1 Introduction:

As explained in the last chapter, One of the consequences of Einstein’s General Theory of
Relativity is that light rays are deflected by gravity. Although this discovery was made
only in the las century, the possibility that there could be such a deflection had been sus-
pected much earlier, by Newton and Laplace among others. Furthermore, Soldner (1804)
calculated the magnitude of the deflection due to the Sun, assuming that light consist of
material particles and using Newtonian gravity. Later, Einstein [17] employed the equiv-
alence principle to calculate the deflection angle and re-derived Soldner’s formula. Later
yet, Einstein (1915) applied the full field equations of general relativity and discovered
that the deflection angle is actually twice his previous result, the factor of two arising
because of the curvature of the metric. Einstein’s final result was confirmed in 1919 when
the apparent angular shift of stars close to the limb of the Sun was measured during a total
eclipse. The quantitative agreement between the measured shift and Einstein’s prediction
was immediately perceived as compelling evidence in support of the theory of General
Relativity. The deflection of light by massive bodies, and the phenomena resulting there-
from, are now referred to as Gravitational lensing [24].

Eddington (1920) noted that under certain conditions there may be multiple light paths
connecting a source and an observer. This implies that gravitational lensing can give
rise to multiple images of a single source1. Chwolson (1924) considered the creation of
fictitious double stars by gravitational lensing of stars by stars, but did not comment on
whether the phenomenon could actually be observer[24]. Einstein [19] discussed the same
problem and concluded that there is little chance of observing lensing phenomena caused
by the stellar-mass lenses. His reason was that the angular image splitting caused by a
stellar-mass lens is to small to be resolved by an optical telescope.

Zwicky (1937) elevated gravitational lensing from a curiosity to a field with grate potential
when he pointed out that galaxies can split images of background sources by a large
enough angle to be observed. He argued that the deflection of light by galaxies which
would otherwise remain undetected, and would allow accurate determination of galaxy
masses. In this sense, gravitational lensing studies have been considered an important
tool. For example, the most accurate mass determination of the central regions of galaxies
are due to to gravitational lensing, and the cosmic telescope effect of gravitational lenses
has enable us to study faint and distant galaxies which happened to be strongly magnified

1As we will see later, this is a consequence of the lens equation.
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by galaxy clusters[24]. Other important example was proposed by Refsdal (1964). In his
paper he described how the Hubble constant H0 could in principle be measured through
gravitational lensing of a variable source. Since the light travel times for the various
images are unequal, intrinsic variations of the source would be observed at different times
in the images. The time delay between images is proportional to the difference in the
absolute lengths of the light path, which in turn is proportional to H−1

0 . Thus, if the time
delay is measured and if an accurate model of the lenses source is developed, the Hubble
constant could be measured. However, all this ideas on gravitational lensing remained
mere speculation until Walsh, Carswell and Weymann (1979) discovered the first example
of gravitational lensing, the quasar QSO0957 + 561A, B. Quasars are ideal for studying
the effects of gravitational lensing because they are distant, and the probability they
are lensed by intervening galaxies is sufficiently large. Yet, they are bright enough to be
detected even at cosmological distances[24]. Moreover, their optical emission region is very
compact, much smaller than the typical scales of galaxy lenses. The resulting magnification
can therefore be very large, and multiple image components are well separated and easily
detected [24].

(a) (b)

Figure 5.1: (a) A quasar (taken from The European Space Agency’s Faint Object Camera on
board NASA’s Hubble Space Telescope) (b) Einstein Ring (taken from Hubble space telescope)

But, how they did realize that the quasar QSO0957 + 561A,B were indeed a twin lensed
images of a single QSO? the answer is provided by (i)the similarity of the spectra of the
two images, (ii) the fact that the flux ratio between the images is similar in the optical and
ratio wave-bands, (iii) the presence of a foreground galaxy between the images, and (iv)
VLBI observations which show detailed correspondence between various knots of emission
in the two radio images.

The full theory of gravitational lensing has been developed following the scheme of the
weak field approximation. For almost all cases of relevance to gravitational lensing, we
can assume that the overall geometry of the universe is well described by the Friedmann-
Lemaître-Robertson-Walker metric and that the mater inhomogeneities which cause the
lensing are no more than local perturbation[24]. In this sense, we can broke up the light
paths propagating from the source past the lens to the observer into three distinct zones.
In the first zone, light travels from the source to a point close to the lens through un-
perturbed space-time. In the second zone, near the lens, light is deflected. Finally, in
the third zone, light again travels through unperturbed space-time. In order to study
the deflection close the lens, we can assume a locally flat, Minkowskian space-time which
is weakly perturbed by the Newtonian gravitational potential of the mass distribution
constituting the lens. This approach is legitimate if the Newtonian potential Φ is small,
| Φ |¿ c2, and the peculiar velocity ν of the lens is small, ν ¿ c [24]. This approach
has been successfully employed to explain all the physical observations[22]. Consider for
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instance, a galaxy cluster at redshift ∼ 0.3 which deflects light from a source at redshift
∼ 1. The distances from the source and the lens and from the lens to the observer are
∼ 1Gpc, or about three orders of magnitude larger than the diameter of the cluster. Thus
the second zone is limited to a small local segment of the total light path. The relative
peculiar velocities in a galaxy cluster are ∼ 103Kms−1 ¿ c, and the Newtonian potential
are is | Φ |< 10−4c2 ¿ c2. In agrement with the conditions stated about[24].

Several studies about light rays close to the Schwarzschild horizon has been lead. For
example, Viergutz (1993) made a semi-analytical investigation about geodesics in Kerr ge-
ometry. Bardeen (1973) and Falcke (1999) studied the appearance of a black hole in front
a uniform background. Virbhabra and Ellis (1999) faced the simplest strong field prob-
lem, represented by deflection in Schwarzschild space-time, by numerical techniques. The
existence of an infinity set of relativistic images has been enlightened and the results have
been applied to the black hole at the center of the galaxy. Recently (2002), Virbhabra and
Ellis in [20] distinguished the main features of gravitational lensing by normal black holes
and by naked singularities, analyzing the Janis-Newman-Winicour metric (also obtained
by Max Wyman). They remarked the importance of these studies in providing a test for
the cosmic censorship hypothesis. In the last years, however, the scientific community is
starting to look at this phenomenon from the strong field limit point of view. The reason
for such an interest in gravitational lensing in strong fields is that by the properties of the
relativistic images it may be possible to investigate the regions immediately outside of the
event horizon. Moreover, since alternative theories of gravitation must agree with General
Relativity in the weak field limit, in order to show deviations from General Relativity it
is necessary to probe strong fields in some way. In this sense, the possibility of testing the
full general relativity in a regime where the differences with non-standard theories would
be manifest, would help to discriminate among the various theories of gravitation [29].
Indeed, deviation of light rays in strong fields is one of the most promising grounds where
a theory of gravitation can be tested in its full form [22].

In this chapter we are going to study the gravitational lensing using the method proposed
by V. Bozza in [22]. As mentioned by the author: “The method proposed is universal and
can be applied to any space-time in any theory of gravitation, provided that photons satisfy
the standard geodesics equation”. As was shown in chapter II V. Bozza has proved that
the strong field limit approximation can be used to obtain a simple and reliable formula
for the deflection angle, which contains a logarithmic and a constant term. This relation
is expressed by equation,

α(θ) = −ā ln
(

θDOL

um
− 1

)
+ b̄ +O(u− um). (5.1)

Now, we are going to replace this formula into the lens equation and establish direct
relations between the position and the magnification of the relativistic images and the
deflection angel, calculated according to the strong field limit approximation. In this
sense, We are going to use this method on the line element for a spherically symmetric
metric proposed by S. Kar in [16].

5.2 The weak limit approach:
The propagation of light in arbitrary curved space-times is in general a complicated the-
oretical problem. However, for almost all cases of relevant to gravitational lensing, we
can assume that the overall geometry of the universe is well described by the Friedman-
Lemaître-Robertson-Walker metric and that the matter inhomogeneities which causes the
lensing are not more than the matter inhomogeneities which causes the lensing are no
more than local perturbations [24]. In this sense, light paths propagating from the source
to the observer can be broken up into three distinct zones. In the first zone, light travels
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from the source to a point close to the lens trough unperturbed space-time. In the second
zone, near the lens, light is deflected. Finally in the third zone light again travels trough
unperturbed space-time.

The weak limit approach emerges from studying light deflection close to the lens (third
zone). As mentioned above, the matter inhomogeneities which cause the lensing are local
perturbations. Hence, we can assume a locally flat, Minkowskian space-time which is
weakly perturbed by the Newtonian potential of the mass distribution constituting the
lens [24]. In order to study this approximation, we assume that the metric gαβ differs
little from the flat Minkowskian metric [6][25]

η =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , (5.2)

in orthonormal coordinates x0 = ct, x = xi. Then we can write,

gαβ = ηαβ + hαβ ; (5.3)

here h := ηαβhαβ and |hαβ | ¿ 1 [6][25]. The assumption that hαβ is small allows us to
ignore anything that is higher than first order in this quantity, from which we immediately
obtain,

gαβ = ηαβ − hαβ , (5.4)

where hαβ = ηαρηβσhρσ.

In linear approximation with respect to the metric deviation components hαβ , one can,
without loss of generality choose the coordinate such that

hαβ ,β = ∂βhαβ = 0. (5.5)

5.2.1 The linearized field equations

Replacing equation (5.3) into Einstein’s field equations,

Rαβ − 1
2
Rgαβ =

8πG

c4
Tαβ ,

we obtain that,

Rαβ − 1
2
R(ηαβ + hαβ) =

8πG

c4
Tαβ . (5.6)

In order to calculate the form of (5.6) under the approximation gαβ = ηαβ + hαβ , it is
necessary to find the Christoffel symbols Γρ

µν ; which are represented by

Γρ
µν =

1
2
gρλ (∂µgµλ + ∂νgµλ − ∂λgµν) . (5.7)

Replacing equation (5.3) we obtain2

Γρ
µν =

1
2
(ηρλ − hρλ) (∂µ(ηνλ + hνλ) + ∂ν(ηµλ + hµλ)− ∂λ(ηµν + hµν)) ,

then3

2We had into account that gαβ = ηαβ − hαβ

3Because ηµν is constant, ∂ληµν = 0
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Γρ
µν =

1
2
ηρλ (∂µhνλ + ∂νhµλ − ∂λhµν)− 1

2
hρλ (∂µhνλ + ∂νhµλ − ∂λhµν)

Finally4,

Γρ
µν =

1
2
ηρλ (∂µhνλ + ∂νhµλ − ∂λhµν) . (5.8)

Since the connection coefficients are first order quantities, the only contribution to the
Riemann tensor will come from the derivatives of the Γ′s, not the Γ2 terms [6]. Lowering
and index

Rµνρσ = ηνλ∂ρΓλ
νσ − ηµλ∂σΓλ

νρ (5.9)

where,

ηµλ∂ρΓλ
νσ =

1
2

[∂ρ∂νhσµ + ∂ρ∂σhµν − ∂ρ∂µhνσ]

ηµλ∂σΓλ
νρ =

1
2

[∂σ∂νhρµ + ∂σ∂ρhµν − ∂σ∂µhνρ] .

(5.10)

Then, replacing (5.10) into equation (5.9) we obtain5

Rµνρσ =
1
2

[∂ρ∂νhσµ + ∂ρ∂σhνµ − ∂ρ∂µhνσ − ∂σ∂νhρµ − ∂σ∂ρhµν + ∂σ∂µhνρ]

=
1
2

[∂ρ∂νhσµ + ∂σ∂µhνρ − ∂ρ∂µhνσ − ∂σ∂νhρµ] .
(5.11)

The Ricci tensor comes from contracting over µ and ρ. We know that

Rα
νρσ = ηµαRµνρσ, (5.12)

then, for α = ρ we have

Rνσ = Rα
νασ. (5.13)

So, from equation (5.12)

ηµαRµνρσ =
1
2
ηµα [∂ρ∂νhσµ + ∂σ∂µhνρ − ∂σ∂νhρµ − ∂ρ∂µhνσ]

=
1
2

[
∂ρ∂νhα

σ + ∂σ∂αhνρ − ∂σ∂νhα
ρ − ∂ρ∂

αhνσ

]
.

(5.14)

Finally, from equation (5.13) (making α = ρ) we obtain6

Rνσ =
1
2

[∂α∂νhα
σ + ∂α∂σhα

ν − ∂σ∂νh− ∂α∂αhνσ]

=
1
2

[∂α∂σhα
ν + ∂α∂νhα

σ − ∂ν∂σh− ∂α∂αhνσ] ,
(5.15)

which is manifestly symmetric in ν and σ. In this expression we have defined the trace of
the perturbation as h = ηµνhµν = hµ

µ. Moreover, we can rewrite 5.14 using ¤ = ∂α∂α,
then

Rνσ =
1
2

[∂α∂σhα
ν + ∂α∂νhα

σ − ∂ν∂σh−¤hνσ] . (5.16)

4Because hαβ ¿ 1
5We have used hαβ = hβα and ∂ρ∂σ = ∂σ∂ρ
6We have used that h = ηαβhαβ = hα

α
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Contracting (5.16) again to obtain the Ricci scalar,

R =ηνσRνσ = Rσ
σ

=
1
2
ηνσ [∂α∂σhα

ν + ∂α∂νhα
σ − ∂ν∂σh−¤hνσ]

=
1
2

(∂α∂σhσα + ∂α∂νhνα − ∂σ∂σh−¤h)

=
1
2

[2∂α∂σhσα − 2¤h] .

(5.17)

Finally,

R = ∂ν∂σhσν −¤h. (5.18)

Putting it all together we obtain the Einstein tensor,

Gνσ = Rνσ − 1
2
ηνσR

=
1
2

[∂α∂σhα
ν + ∂α∂νhα

σ − ∂ν∂σh−¤hνσ − ηνσ∂ν∂σhσν + ηνσ¤h] .
(5.19)

Using condition (5.5) we obtain,

¤hνσ = ∂α∂αhνσ = ηβα∂β∂αhνσ = −16πG

c4
Tνσ

and finally7,

∇2hνσ − 1
c2

∂2

∂t2
hνσ = −16πG

c4
Tνσ (5.20)

It is also possible to consider an a approximation of Einstein field equations with a cos-
mological constant in a flat Background (cfr.[26]). However, we are going to consider only
the case in which the cosmological constant is zero.

The linearized Einstein field equation were also obtained by [25] using a different pertur-
bation for the metric8

gαβ =
(

1− 1
2
h

)
ηαβ + hαβ . (5.21)

In the same way as before, we obtain that Einstein field equation in this approximation
for hαβ reads

∇2hαβ − 1
c2

∂2hαβ

∂t2
=

16πG

c4
Tαβ . (5.22)

The solution of equation (5.22) for an isolated source without incoming gravitational
radiation is the retarded one[25],

hαβ(t,x) = −4G

c4

∫ Tαβ
(
t− |y|

c ,x+ y
)

|y| d3y. (5.23)

7He had into account that x0 = ct, therefore ∂2
0 = ∂2

∂(x0)2
= 1

c2
∂2

∂t2
8In this reference ηαβ = diag(1,−1,−1,−1)



5.2. THE WEAK LIMIT APPROACH: 55

5.2.2 Specialization to slowly moving, perfect fluid source:
The Einstein’s field equation attains a physical meaning only if the matter tensor Tαβ

is specified; for example in vacuo, Tαβ = 0. The interpretation of Tαβ is generally as
follow: in any local inertial frame, T 00 represents the energy density, the spatial vector
cT 0i represents the energy flux density which equals c2 × momentum density and −T ij

represents the stress tensor which equals the momentum flux density (these quantities re-
fer to matter, whose energy-momentum is considered as localizable in General Relativity,
not to the gravitational field)[25].

For most astrophysical purposes, one idealizes bulk matter as a perfect fluid, for which

Tαβ = (ρc2 + p)UαUβ − pgαβ , (5.24)

where ρ denotes the mass density (which includes the mass-equivalents of short range
interaction and thermal energies) and p the pressure, both measured by a co-moving
observer, and Uα is the 4−velocity normalized to one,

gαβUαUβ = 1. (5.25)

In order to study the weak field limit, we have assumed a matter tensor of the form (5.24)
and that[25]

* Matter moves slowly with respect to the coordinate system xα; it is to say: vi := dxi

dt
obeys |v| ¿ c.

** | p |¿ ρc2.

Hence, equation (5.24) implies

T 00 ≈ ρc2, T 0i ≈ cρvi, T ij ≈ ρvivj + pδij (5.26)

where ≈ indicates that terms of relative order v2

c2 , p2

ρc2 have been neglected. From solution
(5.23) and using the approximations in equation (5.26), the solutions for h00 and h0i are

h00 = −4G

c4

∫
c2ρ(t− |y|

c ,x+ y)
| y | d3y =

4
c2

Φ(x, t)

h0i = −4G

c4

∫
c(ρvi)(t− |y|

c ,x+ y)
| y | d3y =

4
c3

V i(x, t).

(5.27)

The line element ds2 is expressed by

ds2 = gαβdxαdxβ . (5.28)

Then, using equation (5.21) we have

ds2 =
(

1− h

2

)
ηαβdxαdxβ + hαβdxαdxβ .

In this approximation, the stresses T ij do not affect the metric. In this sense, we only
consider terms h00 and h0i.

ds2 =
(

1− 1
2
h

)
η00(dx0)2 +

(
1− 1

2
h

)
η11(dx1)2 +

(
1− 1

2
h

)
η22(dx2)2 +

(
1− 1

2
h

)
η33(dx3)2

+ h00(dx0)2 + 2h01dx1dx0 + 2h02dx2dx0 + 2h03dx3dx0.
(5.29)
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Using equations (5.27) we obtain that9

ds2 =
(

1− 1
2
h + h

)
(dx0)2 −

(
1− 2Φ

c2

)
(dx1)2 −

(
1− 2Φ

c2

)
(dx2)2 −

(
1− 2Φ

c2

)
(dx3)2

− 2dx0

(
4V 1

c3
dx1 +

4V 2

c3
dx2 +

4V 3

c3
dx3

)

=
(

1 +
2Φ
c2

)
(dx0)2 −

(
1− 2Φ

c2

)
(dx1)2 −

(
1− 2Φ

c2

)
(dx2)2 −

(
1− 2Φ

c2

)
(dx3)2

− 8
c3

dx0(V 1dx1 + V 2dx2 + V 3dx3).

(5.30)
Finally, using x0 = c2 we obtain that,

ds2 =
(

1 +
2Φ
c2

)
c2(dt)2−

(
1− 2Φ

c2

)
[(dx1)2+(dx2)2(dx3)2]−8c

c3
dt(V 1dx1+V 2dx2+V 3dx3)

(5.31)
or, as expressed in [25]

ds2 =
(

1 +
2Φ
c2

)
c2(dt)2 −

(
1− 2Φ

c2

)
dx2 − 8c

c3
dtV.dx. (5.32)

In the near zone of as system of slowly moving bodies, the retardation in (5.27) can be
neglected; there,

h00 ≈ −4G

c4

∫
c2ρ(t,x+ y)

| y | d3y =
4
c2

Φ(x, t)

h0i ≈ − 4
c4

∫
c(ρvi)(t−,x+ y)

| y | d3y =
4
c3

V i(x, t).

(5.33)

The “post-Minkowskian” metric (5.32) satisfies the weak-field condition hαβ ¿ 1 if, and
only if, in addition to assumptions (*) and (**) above, the Newtonian potential Φ of the
mass distribution ρ obeys

| Φ |¿ c2; (5.34)

then

| V/c3 |.| v/c | .U/c2 ||¿ 1. (5.35)

For spherical bodies, the first relation implies10 2GM
c2 = RS ¿ R; hence, compact objects

as black holes and neutron stars have to be excluded. Since the gravitational vector
potential V is smaller than Φ/c2 by one order in v/c, equation (5.32) shows that, in near
zone, the metric at one instant t is completely determined in lowest order by the density
at the same instant, just like the potential in Newton’s Theory [25].

5.3 Fermat’s principle and light deflection:
As discussed in last section, the weak limit approach is valid when |Φ| << c2 and | v |<< c.
Therefore, light propagation close to gravitational lenses can be described in a locally
Minkowskian space-time by the gravitational potential of the lens to first post-Newtonian
order [24]. Hence, the metric (5.32), can be expressed as[27]

9Here h̃αβ = −hαβ

10RS is the schwarzschild radius
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ds2 =
(

1 +
2Φ
c2

)
c2(dt)2 −

(
1− 2Φ

c2

)
dx2 (5.36)

In this sense, a weak lens perturbs the Minkowskian metric such that,

ηαβ → gαβ =




(
1 + 2Φ

c2

)
0 0 0

0 − (
1− 2Φ

c2

)
0 0

0 0 − (
1− 2Φ

c2

)
0

0 0 0 − (
1− 2Φ

c2

)


 . (5.37)

It is possible to studied the behavior of light in this space-time by making ds2 = 0. This
condition corresponds to a null vector in the manifold described by equation (5.36). Hence,
we have

(
1 +

2Φ
c2

)
c2dt2 =

(
1− 2Φ

c2

)
(dx)2. (5.38)

Therefore, the speed of light in the gravitational field es thus11,

c′ =
|dx|
dt

= c

√
1 + 2Φ

c2

1− 2Φ
c2

= c

√
(1 + 2 Φ

c2 )2

1− 4Φ2

c4

≈ c

(
1 +

2Φ
c2

)
(5.39)

This means light changes its velocity as a consequence of the perturbation in the Minkowskian
metric. A. Einstein predicted in [17]. In this sense, the change in velocity of light, as a
consequence of the effect of space-time curvature on the light paths, can then be inter-
preted as an effective index of refraction n. In order to calculate n, we are going to use the
Fermat’s principle as our starting point. In its simplest form the Fermat’s principle says
that light waves of a given frequency traverse the path between two points which takes
the least time. The speed of light in a medium with refractive index n is c

n , where c is
the speed of light in a vacuum. Thus, the time required to for light to go some distance
in such a medium is n times the time light takes to go the same distance in a vacuum[27].
Therefore, the index of refraction is12

n =
c

c′
=

(
1 +

2Φ
c2

)−1

≈ 1− 2Φ
c2

. (5.40)

As in normal geometrical optics, a refractive index n > 1 (Φ ≤ 0) implies that light travels
slower than in free vacuum.

Mathematically, Fermat’s principle is expressed as a theorem[25]: Let S be a event
(“source”) and l a time-like world line (“Observer”) in a space-time (M ,gαβ). Then, a
smooth null curve γ from S to l is a light ray (null geodesic) if, and only if, its arrival time
τ on l is stationary under first-order variations of γ with in the set of smooth null curves
from S to l, δτ = 0. It is important to point out two things: (i) this version of Fermat’s
principle does not refer to the “time” a light ray needs to travel from the source to the
observer (which in general has no intrinsic meaning in General Relativity) but states a sta-
tionary property of the time of arrival at the observer who, in contrast to the assumptions
made in classical optics, may be moving relative to the source, in a time-dependent optical
field; (ii) no preferred parameters on l or γ enter the theorem; on l one may use proper
time τ or any monotonic function of it; and (iii) the assertion is conformally invariant. In
this sense, light will follow a path a long which the travel time,

∫
n

c
dl, (5.41)

11We had into account that Φ
c2
¿ 1

12In order to calculate this approximation we considered that (1 + x)b ≈ (1 + bx) for x ¿ 1. We can
use this approximation because of the weak field approach.
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will be extremal[27]. The index of refraction n will typically depends on the spacial
coordinates x and perhaps also on time t. Let x(l) be a light path. Then the light travel
time is proportional to

∫ B

A
n[x(l)]dl. Hence, we are looking for a path x(l) for which the

variation

δ

∫ B

A

n(x(l))dl = 0, (5.42)

where the starting point A and the end point B are kept fixed[27]. If we choose λ as the
curve parameter (which is yet arbitrary), we have that

dl = n[x(λ)] | dx
dλ

| dλ (5.43)

This is a standard variational problem. Hence, using Euler-Lagrange equation,

d

dλ

(
∂

∂ẋi
L

)
− ∂L

∂xi
= 0,

where,

L(ẋ,x, λ) ≡ n[x(λ)] | dx
dλ

|
= n[x(λ)] | ẋ |

= n[x(λ)]
√

ẋ2
1 + ẋ2

2 + ẋ2
3.

(5.44)

For each xi we have that,

d

dλ

(
n

ẋi

| ẋ |
)

+ | ẋ | ∂n

∂xi
= 0. (5.45)

Putting each component together we obtain [27],

d

dλ

(
n

ẋ
| ẋ |

)
+ (∇n | ẋ |) = 0. (5.46)

ẋ is a tangent vector to the light path, which we can assume to be normalized by a suitable
choice for the curve parameter λ. We thus assume | ẋ |= 1 ≡ e. Then, for the tangent
vector to the light path, equation (5.46) we have,

d

dλ
(ne)−∇n = 0. (5.47)

Then13,

ne+ e[∇n · ẋ]−∇n = 0 (5.48)

or

ė =
∇n

n
− ė(∇n · ė). (5.49)

The second term on the right had side is the derivative along the light path, thus the
whole right hand side is the gradient of n perpendicular to the light path. Thus,

ė =
1
n
∇⊥n = ∇⊥ ln n. (5.50)

As n = 1− 2Φ
c2 and Φ

c2 ¿ 1, ln(n) ≈ − 2Φ
c2 . Then,

13We used dn
dλ

=
∑3

i=1
∂n
∂xi

dxi
dλ

= ẋ∇n
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ė ≈ − 2
c2
∇⊥Φ. (5.51)

The total deflection angle of the light path is now the integral over −ė along the light
path[27],

~̂α =
2
c2

∫ λB

λA

∇⊥Φdλ. (5.52)

This deflection is thus the integral over the “pull” of the gravitational potential perpendic-
ular to the light path. Note that ∇⊥Φ points away from the lens center, so de deflection
angle points towards it. As it stands, equation (5.52) is not useful, as we would have
to integrate over the actual light path. However, since Φ

c2 ¿ 1, we expect the deflection
angle to be small. Then, we can adopt the Born approximation familiar from scattering
theory and integrate over the unperturbed light path[27]. Using this approximation the
deflection angle reduces to (Cfr. [24][27]),

~̂α(b) =
2
c2

∫ ∞

−∞
∇⊥Φdz, (5.53)

where b is the impact parameter. Using the Newtonian potential

Φ = −GM

r
, (5.54)

where r =
√

x2 + y2 + z2 =
√

b2 + z2, b =
√

x2 + y2 we find that the deflection angle
reduces to,

| ~̂α |= 4
GM

c2b
= 2

RS

b
, (5.55)

where RS is the Schwarzschild radius of a (point) Mass. It is important to point out
that the | ~̂α | is linear in M , thus the deflection angles of an array of lenses can linearly
be superposed. The deflection angle found here in the framework of General relativity
exceeds by a factor of two that calculated by using Newtonian gravity.

5.4 Lens equation in the weak limit:
In this section we derived a lens equation that allows us to study the bending of light
in the Strong field limit approximation. Figure 2 shows the geometrical configuration of
gravitational lensing. Light rays emitted by the source S are deflected by the lens L and
reach the observer O with an angle θ, instead of β. The total deflection angle is α̂. x0 is
the closest approach distance and u is the impact parameter. DOL is the distance between
the lens and the observer. DLS is the distance between the lens and the projection of the
source on the optical axis OL. DOS = DOL+DLS

14. The space-time under consideration,
with the lens (deflector) causing strong curvature, is asymptotically flat; the observer as
well as the source are situated in the flat space-time region [28].

SQ and OI are tangents to the null geodesic at the source and image positions, respec-
tively; C is where their point of intersection would be if there were no lensing object
present. The angular positions of the source and the image are measured from the optic
axis OL. The null geodesic and the broken geodesic OCS will be almost identical, except
near the lens where most of the bending will take place. Given the vast distances from
observer to lens and from lens to source, this will be a good approximation, even if the
light goes round and round the lens before reaching the observer. We assume that line

14In General DOS 6= DOL + DOS [24]. However, we have consider DOS = DOL + DOS as considered
in [22]
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(a)

Figure 5.2: Geometrical configuration of gravitational lensing

joining the point C and the location of the lens L is perpendicular to the optic axis. This
is a good approximation for small values of β (for observationally significant lensing β is
small)[28]. From the figure,

tan(β) =
P − a

DOS
=

P

DOS
+

a

DOS

tan(θ) =
P

DOS
.

(5.56)

Then,

tan(β) = tan θ − a

DOS
. (5.57)

From figure (2),

a = DLS [tan (θ) + tan (α̂− θ)] (5.58)

Finally the relation among the source position, the image position and the deflection angle
α̂ is

tan(β) = tan(θ)− DLS

DOS
[tan(θ) + tan(α̂− θ)]. (5.59)

This is what is called the lens equation. Given a source position β, the values of θ, solving
this equation, give the position of the images observed by O.

In the weak field limit, several standard approximations are performed. The tangents are
expanded to the first order in the angles since they are, at most, of the order of arcsec.
The weak field assumption reduces to de deflection angle to 4GM

c2x0
. Then the lens equation

can be solved exactly and two images are fund: one on the same side of the source and
one on the opposite. We will put our attention on situations where the source is almost
perfectly aligned with the lens. In fact, this is the case where the relativistic images are
most prominent[29]. In this case we are allowed to expand tan(β) y tan(θ) to the first
order[29]. Therefore, expanding the tangents to first order we obtain that
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tan(β) =
∞∑

k=1

1
k!

d(n) tan(β)
dβn

|β=0β
n ' β +O(β2)

tan(θ) =
∞∑

k=1

1
k!

d(n) tan θ

dθn
|β=0β

n ' θ +O(θ2).

(5.60)

Then the lens equation, takes the form

β = θ − DLS

DOS
[θ − tan(α̂− θ)]. (5.61)

Some more words are needed for the term tan(α̂ − θ). Even if θ is small α̂ is not small
in the situations of our interest. However, if a ray of light emitted by the source S is
going to reach the observer after turning around the black hole, α̂ must be very close to
a multiple of 2π. In this sense, writing15 α̂ = 2nπ +4αn, with n integer, we can perform
the expansion tan(α̂− θ) ∼ 4αn − θ [29]. Finally the lens equation becomes

β = θ − DLS

DOS
4αn. (5.62)

Taking a positive β, this equation describes only images on the same side of the source
(θ > 0). To obtain the images on the opposite side, we can solve the same equation with
the source placed in −β. Taking the opposite of these solutions, we obtain the full set of
secondary images.

5.4.1 Lens equation in the strong field limit:

As was shown in the last chapter, the deflection angle in the strong field limit takes the
form

α̂(θ) = −ā ln
(

θDOL

um
− 1

)
+ b̄ +O(u− um). (5.63)

Our intention now is to study the lens equation in the strong field limit using equation

β = θ − DLS

DOS
4αn, (5.64)

where DLS is the distance between the lens and the source, DOS = DOL +DLS
16, β is the

angular separation between the source and the lens, θ is the angular separation between
the lens and the image (Cfr. figure 2), 4αn = α̂(θ) − 2nπ is the offset of the deflection
angle, once we subtracted all the loops done by the photon [22]. To obtain the offset 4αn

we have to expand α̂(θ) around θ0
n. Hence,

α̂(θ) =
∞∑

k=0

1
k!

d(k)α(θ)
dθ

|θ=θ0
n

(θ − θ0
n)k

α̂(θ) ≈ α̂(θ0
n) +

dα̂(θ)
dθ

|θ=θ0
n

(θ − θ0
n).

(5.65)

Calculating dα̂(θ)
dθ ,

15In the next subsection, we will show where the relation α = 2nπ +4αn comes from.
16In General DOS 6= DOL + DOS[24]. However, we have consider, as considered in [22], DOS =

DOL + DOS
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dα̂

dθ
=

d

dθ

[
−ā ln

(
θDOL

um
− 1

)
+ b̄

]

= − āDOL

θDOL − um
;

(5.66)

evaluating at θ = θ0
n we have

dα̂

dθ
|θ=θ0= − āDOL

θ0
nDOL − um

. (5.67)

Then,

α̂(θ) = α̂(θ0
n)− āDOL

θ0
nDOL − um

(θ − θ0
n). (5.68)

Finally17,

α̂(θ)− α̂(θ0
n) = − āDOL

θ0
nDOL − um

4θn. (5.69)

To pass from the deflection angle α̂(θ) to the offset 4αn, we need to find the values θ0
n

such that α̂(θ0
n) = 2nπ. In this sense, the offset 4αn is

4αn = α̂(θ)− 2nπ = − āDOL

θ0
nDOL − um

4θn. (5.70)

Solving the strong field limit expansion of the deflection angle we find that,

2nπ = −ā ln
(

θ0
n

um
− 1

)
+ b̄, (5.71)

then,

2nπ − b̄

ā
= − ln

(
θ0

nDOL

um
− 1

)
. (5.72)

Therefore,

e
b̄−2nπ

ā =
θ0

nDOL

um
− 1

θ0
n =

um

DOL
(e

b̄−2nπ
um + 1),

(5.73)

calling

en = e
b̄−2nπ

a , (5.74)

we obtain that.

θ0
n =

um

DOL
(en + 1) (5.75)

Using the expression for θ0
n in the expression for 4αn we have,

4αn = − b̄DOL

umen
4θn. (5.76)

Replacing into the lens equation we obtain that
17We have defined 4θn = θ − θ0

n.
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β = θ +
DLS

DOS

āDOL

umen
4θn

= (θ0
n +4θn) +

(
āDOL

umen

DLS

DOS

)
4θn.

(5.77)

5.5 Images position and Einstein rings:
From equation (5.77) we can observe that DOL, DLS , DOS (since um ¿ DOL) are all much
grater than unity (remember that all distances are measured in Schwarzschild radii). This
means that the last term in the lens equation prevails on the 4θn at the second place in
the right hand side. Neglecting this term, we get

β = θ0
n +

(
āDOL

umen

DLS

DOS

)
4θn, (5.78)

and the position of the nth image is

θn = θ0
n +

umen(β − θ0
n)DOS

āDLSDOL
. (5.79)

Where the correction to θ0
n is much smaller than θ0

n. Equation (5.79) is valid both for
the images on the same side of the source and the images on the opposite side. In fact,
to find the later, it is sufficient to take a negative β [22]. When β equals θ0

n, there is no
correction to the position of the nth image, that remains in θ0

n simply. In this particular
case, the image position coincides with the source position. It is worthwhile to note that
the second term term in the las equation is much smaller than the first one. For practical
purposes, θ0

n are already a good approximation for the position of relative images[29].

Making β = 0 in equation 5.79 it is possible to obtain the radius of the Einstein ring
for the nth image. Einstein ring correspond to a source perfectly aligned with the lens.
Therefore, the radius is expressed by

θn,E =
(

1− umenDOS

āDLSDOL

)
θ0

n. (5.80)

Einstein rings, a particularly interesting manifestation of gravitational lensing, were dis-
covered first in the radio waveband by known and these sources permit the most detailed
modeling yet of the mass distribution of lensing galaxies [24].

5.6 Magnification:
Light deflection in a gravitational field not only changes the direction of a light ray (as we
have shown in last chapter and section 3 using General Relativity and the weak field limit
approach), but also the cross-section of a bundle of rays [25]. This means that deflection
also affects the properties of the image of a source. In particular, the flux of images is
influenced since the cross sectional area of a light bundle is distorted by the deflection.
Since the photon number is conserved, the flux of an image is determined by this area
distortion. Consider an infinitesimal source with surface brightness Iν (ν is the observer
frequency), which, in the absence of gravitational light deflection, subtends a solid angle
(4ω)0 on the sky. Hence, the monochromatic flux from this source is the product of its
surface brightness and the solid angle (4ω)0 it subtends on the sky [25]. Therefore,

S0
ν = Iν(4ω)0. (5.81)

If the light bundle undergoes a deflection, the solid angle 4ω of the image will differ from
(4ω)0. Since gravitational light deflection is not connected with emission or absorption
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because of Liouville’s theorem[24], the specific intensity Iν is constant along a ray, if mea-
sured by observers with no frequency shift relative to each other. Moreover, gravitational
light deflection by a localized, near static deflector does not introduce an observer; there-
fore, the surface brightness I for an image is identical to that of source in the absence of
the lens (both per unit frequency, and as an integral over frequency). Since I is unchanged
during light deflection, the ratio of the flux of a sufficiently small image to that of its
corresponding source in absence on the lens, is given by

µ =
4ω

(4ω)0
, (5.82)

where 0−subscripts denote undeflected quantities.

(a)

Figure 5.3: The distortion of the solid angle subtended by a source. taken from [25]

In figure 3 we shows a typical gravitational lensing arrangement. This figure represents
schematically the distortion of a light bundle. The source spans an area As and thus
subtends a solid angle (4ω)0 = As

D2
s
at the observer O in the absence of lensing. If the

lensing takes place, the solid angle of the image is 4ω = AI

D2
S
, in general different from

(4ω)0. Since the surface brightness of the source is unchanged by the light deflection, the
apparent brightness of the source is magnified in proportion to the solid angle 4ω,

µ =
Iν

AI

D2
d

Iν
AS

D2
s

=
AI

A2

(
Ds

Dd

)2

(5.83)

Consider now an infinitesimal source at β that subtends a solid angle (4ω)0 on the source
sphere and also on the sphere of vision of the observer. Let θ be the angular position of
an image with solid angle 4. The relation of the two solid angles is determined by the
area-distortion of the lens and given by [25]

(4ω)0
4ω

=
1

| det ∂β
∂θ |

=
As

AI

(
Dd

Ds

)2

; (5.84)

This means that the distortion caused by the deflection is given by the determinant of
the Jacobian matrix of the lens mapping θ → β. From (5.81) the magnification factor
is[22][25]

µ =
1

| det ∂β
∂θ |

. (5.85)

For circularly symmetric lens, the magnification factor µ is given by [22][24]
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µ =
θ

β ∂β
∂θ

. (5.86)

5.6.1 Magnification in the strong field limit:
The Magnification of images is given by equation (6.7) evaluated at the position of the
image. For simplicity, we approximate the position of the images by θ0

n. Since, um ¿ DOL

we have that [22]

µn =
1

sin(β)
sin(θ)

∂β
∂θ

|θ0
n
=

θ

β ∂β
∂θ

|θ0
n

. (5.87)

From equation (5.77),

∂β

∂θ
|θ0

n
= 1 +

āDOL

umen

DLS

DOS
. (5.88)

Where the first term is small compared to the second and can be neglected. Therefore,
we use ∂β

∂θ |θ0
n
≈ āDOL

umen

DLS

DOS
in equation (5.87)

µn = en
θ0

numenDOS

āβDOLDLS
.

Recalling that θ0
n = um

DOL
(1 + en), we finally obtain that

µn = en
u2

m(1 + en)DOS

āβD2
OLDLS

, (5.89)

which decreases very quickly in n.
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Chapter 6

ANALYSIS AND DISCUSSION

The general theory of relativity has passed experimental tests scenario in a weak gravita-
tional field limit; however, the theory has not been tested in a strong gravitational field.
Testing the gravitational field in the vicinity of a compact massive object, such as a black
hole or a neutron star, could be a possible avenue for such investigations. Dynamical
observations of several galaxies show that their centers contain massive dark objects. This
observations suggest that these are super-massive black holes at least in the galaxy as well
as in NGC4258 [28]. In this sense, these objects could be possible observational targets
to test the Einstein Theory of relativity in a strong gravitational field scenario through
gravitational lensing.

In 2000 Virbhabra and George Ellis studied black hole lensing using Schwarzschild’s so-
lution. As we know, the Schwarzschild solution is a static spherically symmetric asymp-
totically flat vacuum solution to the Einstein equations which has an event horizon when
maximally extended. In this sense, it represents the gravitational field of a spherically
symmetric black hole. In order to study black hole lensing, the authors obtained a lens
equation that allows for the large bending of light near a black hole, model the Galactic
super-massive “Black hole” as a Schwarzschild lens and studied point source lensing in
the strong gravitational field region, when the bending angle can be very large. This lens
equation, as shown in the last chapter, was used by V. Bozza in [22] [29] to calculate
the position of relativistic images and magnification. Apart from a primary image and a
secondary image (which are observed due to small bending of light in a weak gravitational
field) the authors obtained a theoretically infinite sequence of images on both sides close to
the optic axis. This images are named by the authors as relativistic images. These images
are formed due to the large bending of light in a strong gravitational field in the vicinity
of 3M1 (the photon sphere xm = 3

2 [22]), and are usually greatly demagnified. Thought
the observation of relativistic images is a very difficult task, if it ever were accomplished
it would support the general theory of relativity in a strong gravitational field.

It is known that the Schwarzschild gravitational lensing in the weak approximation gives
rise to an Einstein ring when the source, lens and observer are aligned on the optical axis;
i.e. the value of the angular position of the source is zero (β = 0)2. The Einstein ring is
given by [24][25]

θE =
√

4GM

c2

DLS

DOLDS
. (6.1)

On the other hand, a pair of images (primary and secondary) of opposite parities are
formed when the lens components are misaligned. This images are solution to the lens

1In [28] the authors use geometrized units: G = 1, c = 1 so that M ≡ MG
c2

2Cfr. Figure2 last chapter

67
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equation. The angular position of these images are given by [24][25]

θ± =
1
2

(
β ±

√
β2 +

8RsDLS

DOLDS

)
. (6.2)

However, when the lens is a massive object, a light ray can pass close to the photon sphere
and go around the lens many times before reaching the observer depending on the impact
parameter u. In figure 1, for example, we have plotted the behavior of the deflection angle
α̂ vs. x0. For x0 > xm = 3

2 (u > um) a light ray reaches the observer; when x0 → ∞,
α̂ → 0 and for x0 → xm = 3

2 (u → um), α̂ diverges[22]. This means that the photon is
captured on the photon sphere. When x0 → xm = 3

2 (u → um) a light ray can pass close
the photon sphere and go around the lens once, twice, thrice, or many times. Therefore,
a massive compact lens gives rise, in addition to the primary and secondary images, to a
a large number of images on both sides of the optical axis. These images are called by
the authors as relativistic images and the rings which are formed by bending of light rays
more that 2π, relativistic Einstein rings.

(a)

Figure 6.1: (a) α̂ (radians) vs. x0 For Schwarzschild.

In the study, the authors modeled the Galactic super-massive “black hole” as a Schwarzschild
lens. This has mass M = 2.8 × 106M⊙ and the distance DOL = 8.5Kpc; therefore, the
ratio of the mass to the distance M

DOL
≈ 1.57 × 10−11. For calculations they consid-

ered a point source, with the lens situated half way between the source and the observer
(DLS

DS
= 1

2 ). They allowed the angular position of the source to change keeping DLS fixed.
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(a)

(b)

Figure 6.2: (a) A plot of −α = −DLS
DS

[tan(θ) + tan(α̂− θ)] (red line) and − tan(θ)− tan(β) (b)
A plot of α = DLS

DS
[tan(θ) + tan(α̂− θ)] (red line) and tan(θ)− tan(β)

Figure 2 shows the relativistic image positions for β = ∓0.075 radian (≈ 4.29718◦). The
points of intersection of the red line (α) (the two outermost ones on each side being shown)
with the two other lines (blue and green) give the angular position of the relativistic images.
In order to find the angular positions of images on the same side of the source we plot
α and tan(θ) − tan(β) against θ (expressed in microarcoseconds) for the given value of
the source position β; the points of intersection give the image position. Similarly, to find
the image position on the opposite side of the source, we plot −α and − tan(θ) − tan(β)
against θ. In fact there is a sequence of theoretically an infinite number of continuous
curves which intersect with a given horizontal curve (blue and green lines) giving rise to a
sequence of an infinite number of images on both sides of the optic axis [28]. For β = 0 the
lens equation reduce to (Cfr. the graphic in section “Lens equation” in the last chapter)

tan θ = α = tan(α̂− θ). (6.3)

In this sense, the points of intersection of α with tan θ give a sequence of infinite number of
Relativistic Einstein rings. As β increase any image on the same side of the source moves
away from the optic axis, whereas any image on the opposite side of the source moves away
from the optic axis. As can be seen from figure 2, the displacement of relativistic images
with respect to a change in the source position is very small. In the figure the two sets of
outermost relativistic images are formed at about 17 microarcoseconds from the optic axis.
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The magnification is defined as the ration between the flux of the image to the flux on the
unlensed source. As explained in the last chapter, because of the Liouville’s theorem, the
magnification reduces to the ratio of the solid angles of the image and of the unlensed source
(at the observer). For a circularly symmetric gravitational lensing, the magnification is
given by [22][24][25]

µ =
(

sin β

sin θ

dβ

dθ

)−1

. (6.4)

In order to study the magnification it is usually defined the tangential and radial magni-
fications as,

µt ≡
(

sinβ

sin θ

)−1

µr ≡
(

dβ

dθ

)−1

. (6.5)

The singularities in these give the tangential critical curves and radial critical curves;
respectively; the corresponding values in the source plane are know as tangential caustic
and radial caustics, respectively. For example, β = 0 gives tangential critical curves which
correspond to relativistic Einstein rings.

(a)

Figure 6.3: Tangential magnification µt and total magnification as a function of θ (expressed in
microarcoseconds)

In figure 3 (taken from [28]) the authors plotted the tangential magnification µt and the
total magnification as a function of θ (expressed in microarcoseconds). As can be seen
from the figure, the singularities in µt give the angular radii of the two relativistic Ein-
stein rings. The first relativistic Einstein ring has an angular radii of 16.898µas and the
second one a radii of 16.877µas. The angular radius of the Einstein ring in Schwarzschild
is expressed by equation 6.1; therefore, the value of θE is 1.157544 arcseconds. When we
compare the magnification of the primary and secondary images (Cfr. figure 4 taken from
[28]), we concluded that the magnification for the relativistic images falls very fast as the
source position increase from perfect alignment.

It is important to point out that the values of the Einstein and relativistic rings correspond
to the singularities in µt (cfr. figure 3 and 4). On the other hand, the sing of µt as well
as the sing of µ are positive for all images on the same side of the source. Furthermore,
the sing of µr is positive for all the images in the Schwarzschild lensing.

As observation suggest, the super-massive “black hole ” at the center of NGC3115 and
NGC4486 have M

DOL
≈ 1.14× 10−11 and 1.03× 10−3, respectively. These values are very
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(a)

Figure 6.4: the tangential magnification µt and the total magnification as a function of θ (ex-
pressed in microarcoseconds)

close to that used by the authors in [28]. Therefore, the results obtained from model-
ing the galactic super-massive “black hole” as a Schwarzschild lens will be very similar to
those using the galactic center of NGC3115 or NGC4486. In this sense, there is the pos-
sibility to study gravitational lensing in the strong field limit for real astrophysical objects.

As explained before, for a given source position the magnification for relativistic images
decrease very fast as the angular position θ decrease; therefore the outermost set of images,
one on each side of the optic axis, is observationally the most significant. The angular
separation among relativistic images are to small to be resolved, so that all these images
would be at the same position; however, these relativistic images will be resolved from
the primary and secondary images and thus resolution is not a problem for observation of
relativistic images [28].

In a similar paper [20] published in 2002. Virbhabra and Ellis studied gravitational lensing
using the Janis-Newman-Winicour-Wyman metric. In this paper they obtained a photon
sphere equation for a general static spherically symmetric metric which was deduced in
chapter 3. Using this equation, they classify a naked singularity in two categories:

a) Weakly naked singularities (WNS): Naked singularities contained within at
least one photon sphere.

b) Strong naked singularities (SNS): Naked singularities which are not covered
within any photon spheres.

These photon spheres are solution to the photon sphere equation. Therefore, a naked
singularity may or may not be covered within a photon sphere. The existence or non ex-
istence of a photon sphere with a space-time acting as a gravitational lens has important
implications for gravitational lensing.

The solution to photon sphere equation for Janis-Newman-Winicour-Wyman metric (Cfr.
chapter 2) is expressed by [20]

xm =
(1 + 2γ)

2
xm =

rps

2η
.

(6.6)
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The Janis-Newman-Winicour-Wyman metric has a photon sphere only for 1
2 ≤ γ ≤ 1

(0 ≤ (
σ
m

)2
< 3). In figure 5, it is plotted rsp

m and 2η
m vs. the square of the scalar charge.

As figure 5 shows, rps
m and 2η

m increase with an increase in
(

σ
m

)2 and meet at
(

σ
m

)2 = 3.
For 0 <

(
σ
m

)2
< 3 there is always one photon sphere which covers the naked singularities

and thus these singularities are weakly naked; nevertheless, for
(

σ
m

)2 ≥ 3 the singularities
ar not covered by any photon sphere and there fore these are strongly naked.

(a)

Figure 6.5: rsp

m
and 2η

m
vs.

(
σ
m

)2

(a)

Figure 6.6: Impact parameter ups

m
vs.

(
σ
m

)2

In figure 6 it is plotted the impact parameter ups

m
3 of the photon sphere against the square

of the scalar charge
(

q
m

)2. ups

m is real only for 0 6
(

q
m

)2
< 3 and it decrease monotonically

in the range with an increase in the value of
(

q
m

)2.

In order to study the implications of the existence or non existence of a photon sphere with
a space-time acting as a gravitational lens for gravitational lensing, it is important to point
out that one has limr0→∞α̂(r0) = 0 for all values of γ, limr0→rm α̂(r0) = ∞ for 1

2 < γ 6 1
(Schwarzschild black hole and weakly naked singularity (WNS)) and limr0→2ηα̂ = −π

3ups is the same as um in [22]
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for 0 ≤ γ ≤ 1
2 (strongly naked singularities (SNS)). In this sense, the authors in [20] dis-

cuss the behavior of the bending angle α̂ for the Schwarzschild black hole (γ = 1), WNS,
and SNS. When they plotted the behavior of α̂ in the WNS region, which correspond a
values of γ in the interval 1

2 < γ 6 1 (Cfr. figure 5), they found that α̂ strictly increases
with a decrease in the impact parameter and becomes unboundedly large as the impact
parameter approaches the impact parameter for their respective photon sphere. Thus
lensing by WNS would not give rise to a radial critical curve, instead they would give
relativistic Einstein rings as in the case of the Schwarzschild black hole lensing. On the
other hand, the authors plotted the behavior of α̂ in the SNS region (for 0 ≤ γ ≤ 1

2 ). In
this region α̂ first increase with a decrease in the impact parameter and further decrease
to the minimum value −π as the impact parameter u → 0. Because of this behavior of
the deflection angle gravitational lensing with SNS would give either two or nil Einstein
rings and one radial critical curve. As there are no photon spheres of SNS the deflection
angles for these cases are never unboundedly large. Gravitational lensing by SNS would
not give rise to relativistic images.

Taking into account the studies by Virbhadra and Ellis, gravitational lensing must not
be conceived as a weak field phenomenon, since high bending and looping of light rays
in strong field is one of the most well-known and amazing prediction of general relativity.
The importance of gravitational lensing in strong fields is highlighted by the possibility
of testing the full general relativity in a regime where the differences with non-standard
theories would be manifest, helping the discriminations among the various theories of
gravitation. For this reason, the scientific community has been interested in the lensing
properties near the photon sphere (the strong field limit). The first attempt to study light
deflection near the photon sphere, as suggested in [28], was made in [29] by V. Bozza, S.
Capozziello, G. Iovane and G. Scarpetta (2001). In order to study gravitational lensing in
the strong field limit, the authors started from the lens equation proposed by Virbhadra
and Ellis. In [29], they performed a set of expansions exploiting the source-lens-observer
geometry (Cfr. [28]) and the properties of highly deflected light rays. In this analysis, they
considered situations where the source is almost aligned with the lens (when the relativistic
images are more prominent). Thus, they could expand tan β and tan θ to the first order.
However, because α̂ is not small in this situation4, the authors expressed tan(α̂ − θ) as
4αn − θ and finally they obtained the lens equation (Cfr. chapter 5)

β = θ − DL

DOS
4αn, (6.7)

where 4αn (the offset) is 4αn = α̂− 2nπ. This offset was named as “effective deflection
angle” by Virbhadra and Ellis. As studied in [28], the effective deflection angle decreases
with the decrease in the angular position radius for Schwarzschild metric.

For Schwarzschild, the deflection angle can be evaluated exactly with an integral (Cfr.
[21]), but its expression does not allow the resolution of (6.7). However, it is possible to
make some approximations which reduce the deflection angle to an expression easier to
handle. As mentioned above, the authors were interested just into small closest approach
(x0), since they correspond to the high deflection angles producing relativistic images. In
this sense, all approximation are essentially based on the proximity of the closest approach
distance x0 to its minimum value which is 3

2 (The photon sphere for Schwarzschild).
Therefore, for x0 = 3

2 + ε, the authors found that the leading order of the deflection angle
is logarithmic in ε, that is,

α̂ ∼ −2 ln

(
(2 +

√
3)ε

18

)
− π. (6.8)

4Near to photon sphere the deflection angle could be very large
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This approximation in terms of θ is (Cfr. [29])

α̂ ≈ − ln

(
θDOL − 3

√
3

2

)
+ A, (6.9)

where A = − ln
(

5+3
√

3
1944

)
− π.

Equation (6.9) was replaced into the lens equation (6.7) to study gravitational lensing in
the strong field limit for Schwarzschild. With this approximation of the deflection angle
the authors could calculate the position of the relativistic images and the magnification
(Cfr. chapter 5).

The formulae derived in [29] provide a complete characterization of the two infinite set
of relativistic images surrounding a black hole or, in general, any compact object acting
as a lens whose size is comparable with its Schwarzschild radius (Cfr. figure 2). Never-
theless, in [22] (2008) professor V. Bozza provide an analytical method to discriminate
among different types of black holes on the ground of their strong field gravitational
lensing properties. In this paper, he expand the deflection angle of the photon in the
neighbourhood of complete capture, defining a strong field limit, in opposition to the
standard weak limit. This expansion was worked out for a complete generic spherically
symmetric space-time, without any reference to the field equations and just assuming that
the light ray follows the geodesic equation. In this analysis, V. Bozza proved that the
deflection angle always diverges logarithmically when the minimum impact parameter is
reached (u = um or x0 = xm). All this ideas were studied in detail in chapter 3. Using
this method we calculated the deflection angles for Schwarzschild, Reissner-Nordstrom
and Janis-Newman-Winicour (Cfr. appendix A). However, the values of βm and b̄ ob-
tained for Janis-Newman-Winicour are different from equations (71) and (74) of [22]. The
expressions obtained in appendix A are

b̄ = −π + bR + ln
(

(2γ + 1)[(2γ + 1)γ − (2γ − 1)γ ]2

2γ2(2γ − 1)2γ−1

)

βm =
[(2γ + 1)γ − (2γ − 1)γ ]2

4γ2(4γ2 − 1)γ−1
,

(6.10)

and those obtained by V. Bozza are

b̄ = −π + bR − 2 ln
(

(2γ + 1)[(2γ + 1)γ − (2γ − 1)γ ]2

2γ2(2γ − 1)2γ−1

)

βm =
[(2γ + 1)γ − (2γ − 1)γ ]2

4γ2(4γ2 − 1)2γ−1
.

(6.11)

For γ = 1 equation (6.10) reduces to βm = 1 and b̄ = −π + 0.9496 + ln(6). These are the
values reported for Schwarzschild in [22]. Nevertheless, for γ = 1, equation (2) (equations
(71) and (75) of [22]) does not reduce to those of Schwarzschild. In consequence, the
expression describing the deflection angle in the strong field limit does not reduce to that
of Schwarzschild when γ = 1. For this reason, we included the Janis-Newman-Winicour
in the discussion.

In chapter 3 we explained that um is the value of the impact parameter at x0 = xm, where
x0 is the closest approach distance. Moreover, we showed that for u = um (x0 = xm)
the deflection angle diverges. The strong field limit expansion studies the behavior of
the deflection angle near the photon sphere (x0 = xm); in this sense, using the impact
parameter as um + 0.003 we ensure that our analysis will be constrained to this limit.
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(a)

(b)

Figure 6.7: (a) Strong field limit parameters as a function of γ for Janis-Newman-Winicour (b)
Deflection angle in the strong field limit u = um + 0.003.

In figure 7, we have plotted ā, b̄, um and the deflection angle in the strong field limit
for Janis-Newman-Winicour considering u = um + 0.003. Figure 7.a shows us the behav-
ior of the strong field limit parameters. In this plot, ā has the same constant value as
Schwarzschild, e.i. 1 and the impact parameter um increase for 0.5 < γ ≤ 1. At γ = 1
the value of um reaches that of Schwarzschild, e.i. 3

√
3

2 (cfr. Appendix A). This value
correspond to the brown line in the plot. In the same figure, the b̄ parameter decrease for
the same interval and for γ = 1 its value is the same as that of Schwarzschild, e.i. −0.4002
(cfr. Appendix A). This limit corresponds to the green line in the plot. On the other
hand, Figure 1.b shows the behavior of the deflection angle as a function of γ. In the plot,
the angle only has values in the interval 0.5 ≤ γ ≤ 1. The reason for such a behavior is
that the photon sphere equation for Janis-Newman-Winicour

xm =
2γ + 1

2
, (6.12)

does not have solution unless γ : 0.5 ≤ γ ≤ 1 if we consider m ≥ 0 [33]. For this interval,
a photon coming from infinity is deflected through an unboundedly large angle, i.e. the
photon passes increasingly many times around the singularity as the closest distance of
approach tends to xm. In order to understand this idea, we plotted the deflection angle for
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Janis-Newman-Winicour as a function of u, Figure 8. This figure, shows how the deflection
angle in the strong field limit changes for γ = 0.6; 0.8; 1(Schwarzschild) as a function of
the impact parameter u. Although the behavior of the deflection angle for greater values
of u in this approximation does not fit well, when we get closer to um (near the photon
sphere) the plot reproduce very well the behavior in this limit: the strong limit. As can
be inferred from the plot, when we decrease the impact parameter, the deflection angle
increase. At some point, the deflection angle will exceed 2π, resulting in a complete loop
around the black hole. Decreasing u further, the photon will wind several times before
emerging. Finally, for um = u (x0 = xm) the deflection angle diverges and the photon is
captured.

Figure 6.8: Deflection angle for Janis-Newman-Winicour as a function of u for γ = 0.6; 0.8; 1

In order to discuss S. Kar lensing (no charge case), it is necessary to define the interval in
which we are going to work. As considered in [33] r : 2η < r < ∞. Making x = r/2η this
interval reduces to 1 < x < ∞. In chapter 4 we rewrite this metric defining ζ = σ

η in such
a way that5

λ2 + ζ2 = 1; (6.13)

where λ = m
η and ζ = σ

η . Hence, the S. Kar metrics in terms of ζ takes the form,

ds2 =
(

1− 1
x

)ζ+
√

1−ζ2

dt2 −
(

1− 1
x

)ζ−
√

1−ζ2

dx2 −
(

1− 1
x

)1+ζ−
√

1−ζ2

x2dΩ2 (6.14)

As considered in [33], we assume η > 0. In this sense, in order to obtain m ≥ 0 one must
assume 0 ≤ ζ ≤ 1. However, the photon sphere equation for S. Kar metric, calculated in
Chapter 3, change the interval of ζ because we have to consider x > 1 (naked singularity).
In terms of ζ equation (4.5) takes the form,

xm =
√

1− ζ2 +
1
2
. (6.15)

Using the analysis from [33], we found that equation (6.15) has solution for ζ : 0 ≤ ζ <√
3

2 . To obtain this interval, we calculated the value of ζ when xm = 1. Therefore,√
1− ζ2 + 1

2 = 1 or ζ =
√

3
2 . In consequences, if we consider x > 1 it is necessary that

5This expression comes from η2 = m2 + σ2
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0 ≤ ζ <
√

3
2 .

The deflection angle in the strong field limit is expressed by

α(θ) = −ā ln
(

θDOL

um
− 1

)
+ b̄. (6.16)

For u = θDOL = um + 0.003 and using equations (4.29), (4.30) and (4.32) the strong field
limit expression for the deflection is

α(θ) = − ln
(

0.003
um

)
+0.9496+3.005480454ζ−π+ln

(
[(k − p + 1)k − (k − p− 1)k]2(k − p + 1)

2k2(k − p− 1)2k−1

)
.

(6.17)
In order to plot the behavior of α(θ) as a function of the parameter ζ, we express k = m+σ

η ,
p = σ−m

η and um in terms of ζ. These values are,

k =
√

1− ζ2 + ζ, p = ζ −
√

1− ζ2, um =
1
2

(
2
√

1− ζ2 − 1
) 1

2−
√

1−ζ2

(
2
√

1− ζ2 + 1
)− 1

2−
√

1−ζ2
,

(6.18)

then α(θ) is

α(θ) = − ln


0.006

(
2
√

1− ζ2 + 1
)− 1

2−
√

1−ζ2

(
2
√

1− ζ2 − 1
) 1

2−
√

1−ζ2


 + 0.9496 + 3.005480454ζ − π + ln [¤] ,

(6.19)

where ¤ ≡ 1
2

(
(2
√

1−ζ2+1)2ζ+2
√

1−ζ2−2(3−4ζ2)
√

1−ζ2+ζ
+

(
2
√

1−ζ2−1
)2
√

1−ζ2+2ζ

)
(2
√

1−ζ2+1)

(
√

1−ζ2+ζ)2(2
√

1−ζ2−1)2ζ+2
√

1−ζ2−1
. For

ζ = 0 de deflection angle for S. Kar reduces to that of Schwarzschild [22].

The behavior of b̄, um and α(θ) as a function of ζ is shown in figure 9.a, 9.b and figure
10.a respectively. From figure 9.a, we see that b̄ and um reduce to those of Schwarzschild
when ζ = 0. In this sense, as ζ tends to 0 we see that b̄ → −0.4002 and um → 3

√
3

2 .
This values are represented as green and yellow lines in the plot. As occurred in Janis-
Newman-Winicour, the value of ā is the same to that of Schwarzschild [22]. On the other
hand, for ζ →

√
3

2 we see that b̄ diverges. In the same plot, we see that um only takes
values in the interval 0 ≤ ζ <

√
3

2 . In figure 9.b we plotted the deflection angle α(θ) for
Janis-Newman-Winicour, Schwarzschild and S. Kar as a function of γ (for JNW) and ζ (for
S. Kar). When γ = 1, as was discussed previously, the Janis-Newman-Winicour-Wyman
deflection angle reduces to that of Schwarzschild. For γ = 0.5 it diverges. This means
that we are at the naked singularity [20][22][33]. On the other hand, For ζ = 0 the S.
Kar deflection angle reduces to − ln

(
2

3
√

3
u− 1

)
+ 0.9496 − π + ln(6) which is the value

for Schwarzschild (cfr. Appendix A). However, for ζ →
√

3
2 the deflection angle diverges

because we are at r = 2η: the naked singularity. In figure 10.a it is possible to see this
behavior more closely. The deflection angle α(θ) is positive for 0 < ζ <

√
3

2 . This means
that S. Kar metric always acts like a converging lens.
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(a) (b)

Figure 6.9: (a) Strong field limit parameters ā, b̄ y um for S. Kar as a function of ζ (b) Deflection
angle as a function of γ, ζ for Schwarzschild, JNW and S. Kar (u = um + 0.003)

Finally, in figure 10.b, 10.c, 10.d we plotted the behavior of the deflection angle for S.
Kar as a function of the impact parameter u for ζ = 0; 0, 6; 0, 8. As happened in the case
of Janis-Newman-Winicour, the plot of the deflection angle seems to be wrong for bigger
values of u. It is know that the bigger the value of u the smaller the value of deflection
and for u →∞ the deflection angle tens to zero. As figure 10.b shows, the deflection angle
becomes negative when u increase which contradicts the idea of not deflection for bigger
values of u. However, as was explained before, it is necessary to recall that we are working
near the photon sphere: the strong field limit (Cfr. [29]). In this sense, the behavior of the
deflection angle fits well only for values of u near to um; e.i. when x0 tends to xm (photon
sphere). As occurred before for Janis-Newman-Winicour lensing, de deflection angle for
S. Kar diverges when u → um. For example, for ζ =

√
3

2 the deflection angle diverges (the
green line in the plot) when u tends to um = 1.398079777.

As explained in chapter 5, the magnification is expressed by

µn = en
u2

m(1 + en)DOS

āβDOLDLS
. (6.20)

Then, the tangential magnification µt
n is defined as

µt
n =

(
β

θ0
n

)−1

(6.21)

In order to study the behavior of the magnification as a function of β (the source position)
we have chosen for this analysis, as the lens, the galactic “Black hole” with mass M =
2.8×106M¯ and DOL = 8.5kpc so that M

DOL
≈ 1.57×10−11 (geometrized units Cfr. [28]).

From equation (6.21), and making ζ = 0, we obtain the magnification for the relativistic
images as a function of β (expressed in microarcoseconds). The tangential magnification
for Schwarzschild is expressed by

µt
n =

3
√

3
2

6.37× 1010β
(1 + eb̄−2nπ)

=
3
√

3
2

6.37× 1010β

(
1 + e0.9496−π+ln(6)−2nπ

)
.

(6.22)

In figure 11 we plotted the behavior of ut
m as a function of the source position β for n = 1.
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(a) (b)

(c) (d)

Figure 6.10: (a) Deflection angle near
√

3
2

(b) Deflection angle as a function of u for S. Kar for
ζ = 0 (Schwarzschild) (c) Deflection angle as a function of u for S. Kar for ζ = 0.6 (d) Deflection
angle as a function of u for S. Kar for ζ = 0.8

As can be seen from the figure the relativistic images decreases very fast as the position of
the source increases; which agrees with the results obtained in [28]. Furthermore, the order
of magnitude of µt

m in figure 11.a agrees with those in figure 3. In this sense, relativistic
images are very much demagnified unless the source, lens and observer are highly aligned
(when β = 0). When the position β decreases the magnification in creases rapidly and
therefore one may possible get observable relativistic images.

6.1 Conclusions
1. In this work we studied a general method to compute the coefficient of the leading

order divergent term and the first regular term (ā and b̄ respectively). When the lat-
ter can not be calculated analytically, we have seen that it can be well approximated
by a simple series expansion starting from Schwarzschild space-time (Cfr. appendix
B). As was shown in this thesis, the method proposed by V. Bozza is very general
and can be applied to any spherically symmetric metric representing a “black hole”.

2. In this work we used the strong field limit approach to study the light deflection for
S. Kar metric and we compare it with Schwarzschild and Janis-Newman-Winicour-
Wyman lensing. This study enable us to see, by general arguments, that the deflec-
tion angle diverges logarithmically as we approach the photon sphere (Cfr. chapter
3). In this sense, this method opens the possibility to compare the gravitational
lensing behaviour of “Black holes” in different theories of gravitation near the zone
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(a) (b)

Figure 6.11: (a) Tangential magnification for Schwarzschild (ζ = 0 and n = 1) (b) Tangential
magnification (ζ = 0.5 and n = 1)

in which x0 → xm.

3. Gravitational lensing is undoubtedly a potential powerful tool for the investigation
of strong fields. However, there are some difficulties hindering the observation of
the primary and secondary images (weak limit) pair near a galactic center; the
observation of relativistic images is even much more difficult. For one hand, these
images are very much demagnified unless the source, lens and observer are highly
aligned. When the position β decreases the magnification in creases rapidly and
therefore one may possible get observable relativistic images, but only when the
source, lens and observer are highly aligned (β ¿ 1 microarcsec) and the source
has a large surface brightness. Quasar and supernovas would be ideal sources for
observations of relativistic images. Nevertheless, the number of quasars is low and
therefore the probability that a quasar will be highly aligned along the direction
of any galactic center is a very small probability that a supernova will be strongly
aligned with any galactic center. If relativistic images were observed it would be for a
short period of time because the magnification decreases very fast with increase in the
source position. On the other hand, The extinction of electromagnetic radiation near
the line of sight to galactic nuclei would be appreciable; the smaller the wavelength,
the larger the extinction. The radiation at several frequencies from the material
accreting on the “Black hole” would make these observations more difficult. Due to
theses obstacles no lensing event near a galactic center has been observed till now,
but it seems this is a very worth while project.
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6.2 Schwarzschild lensing
This is the simplest spherically symmetric metric describing the outer solution for a black
hole. It only depends on the mass of the central object (by Birkhoff’s theorem). It is
convenient to define the Schwarzschild radius xs = 2M as the measure of distances; them
in standard coordinates, the functions in the metric (3.7) become

A(x) = 1− 1
x

B(x) =
(

1− 1
x

)−1

C(x) = x2,

(6.23)

Which obviously satisfy all hypotheses required by the method, with static limit xs = 1.
Before following the Bozza’s method, we must find R(z, x0) and f(z, x0). From equation
(3.60) we have

R(z, x0) = 2

√(
1− 1

x

) (
1− 1

x

)−1

x2 1
x2

[
1−

(
1− 1

x0

)] √
x2

0 = 2 (6.24)

and6

f(z, x0) =
1√(

1− 1
x0

)
−

[(
1−

(
1− 1

x0

))
z +

(
1− 1

x0

)]
x2
0

x2

=
1√(

1− 1
x0

)
−

[
z
x0

+
(
1− 1

x0

)]
(1− z)2

=
1√(

1− 1
x0

)
−

[
z
x0

+
(
1− 1

x0

)]
(1− 2z + z2)

=
1√(

2− 3
x0

)
z +

(
3
x0
− 1

)
z2 − z3

x0

(6.25)

6.2.1 Solving the photon sphere equation
Before solving the photon sphere equation we should find f0(z.x0). Ones we have found
this expansion up to second order for f(z, x0) we can compute xm using the condition
α(xm) = 0 which is equivalent to solve equation (3.55). From equation (3.72) we have
that

f0(z, x0) =
1√

αz + βz2
; (6.26)

6Here we have used the relation between z and x: (1− z) = x0
x

81
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where

α =
(1− y0)
C0A′0

(C ′0y0 − C0A
′
0)

=

(
1−

(
1− 1

x0

))

x2
0

1
x2
0

(
2x0

(
1− 1

x0

)
− x2

0

1
x2

0

)

=
1
x0

(2x0 − 3) = 2− 3
x0

(6.27)

and

β =
(1− y0)2

C2
0A′30

{
2C0C

′
0A

′2
0 + (C0C

′′
0 − 2C ′20 )y0A

′
0 − C0y0C

′
0A

′′
0

}

=
1
2

1/x2
0

1/x2
0

[
4x2

0x0
1
x4

0

+ (2x2
0 − 8x2

0)
1
x2

0

(
1− 1

x0

)
− 2x2

0x0

(
1− 1

x0

)(
− 2

x3
0

)]

=
1
2

[
4
x0
− 2

(
1− 1

x0

)]

=
3
x0
− 1.

(6.28)

Finally f0(z, x0) can be expressed as

f0(z, x0) =
1√(

2− 3
x0

)
z +

(
3
x0
− 1

)
z2

(6.29)

Once we have calculated the α coefficient from the expansion, we can now solve the the
condition α(xm) = 0 to find the photon sphere radius xm

0 = α(xm)

= 2− 3
xm

xm =
3
2

(6.30)

6.2.2 Finding βm and R(0, xm)

To find βm and R(0, xm) we replace the value xm = 3/2, equation (6.30), into equations
(6.28) and (6.24) respectively

βm =
3

xm
− 1 = 1 (6.31)

and

R(0, xm) = 2 (6.32)

6.2.3 Computing bR

For this simple case, it is possible to solve the integral (3.96) exactly. To do so we evaluate
x0 = xm in equations (3.75) and (6.29), taking into account that R(z, x0) is a constant as
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can be seen from equation (3.60). The regular term in the deflection angle is

br =
∫ 1

0

[R(z, xm)f(z, xm)−R(0, xm)f0(z, xm)]

=
∫ 1

0





2√
z2 − 2

3z3
− 2√

z2



 dz

=
∫ 1

0





2

|z|
√

1− 2
3z
− 2
|z|



 dz.

(6.33)

However, z is positive in the interval of integration then |z| = z. We compute the integral’s
value using a list of integrals from [23]

bR =
∫ 1

0





2

z
√

1− 2
3z
− 2

z



 dz;

= 2 ln




√
1− 2

3z − 1
√

1− 2
3z + 1




1

0

− 2 ln(z)|10

= 2 ln
(√

9− 6z − 3√
9− 6z + 3

)1

0

− 2 ln(z)|10
= 2 ln(2) + 2 ln(3)− 2 ln(

√
3 + 3) + 2 ln(3−

√
3)

= 2 ln 6(2 +
√

3).

(6.34)

6.2.4 Finding a, b and um

From equations (3.93) the coefficients are

a =
R(0, xm)√

β
= 2, (6.35)

then
ā =

a

2
= 1. (6.36)

From equation (3.93)

bD =
R(0, xm)√

β
ln

(
2(1− ym)

A′mxm

)

= 2 ln
2(1− 1/3)
(4/9)(3/2)

= 2 ln 2,

(6.37)

in consequence
b = −π + bD + bR

= −π + 2 ln 2 + 2 ln 6(2 +
√

3),
(6.38)

and

b̄ = b + ā ln
cx2

m

um
= −π + bR + ā ln

2βm

ym

= −π + 2 ln 6(2 +
√

3) + ln
2(

1− 2
3

)

= −π + 2 ln 6(2 +
√

3) + ln 6

(6.39)
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Finally from equation (3.112), where um =
√

Cm

ym
= 3

√
3

2 , The Schwarzschild deflection
angle, in the strong field limit, is

α(θ) = −ā ln
(

2θDOL

3
√

3
− 1

)
+ b̄

= − ln
(

2θDOL

3
√

3
− 1

)
+ 2 ln 6(2 +

√
3) + ln 6− π

= − ln
(

2θDOL

3
√

3
− 1

)
+ ln 216(7 + 4

√
3)− π.

(6.40)

6.3 Reissner-Nordstrom lensing
The Reissner-Nordstrom metric describes the gravitational field of a spherically symmetric
massive object endowed with an electric charge q. The metric functions in standard
coordinates are

A(x) = 1− 1
x

+
q2

x2

B(x) =
(

1− 1
x

+
q2

x2

)−1

C(x) = x2.

(6.41)

They satisfy the hypotheses required in the introduction, only when q ≤ 3
4
√

2
. However,

beyond the critical value q = 0.5, there is no event horizon and causality violations appear.
We shall restrict to q = 0.5.

For Reissner-Nordstrom, the functions R(z, x0) and f(z, x0) are calculated using equation
(3.60). Initially the functions R(z, x) and f(z, x0) do not depend on z but on x because
of the metric as equation (6.41) shows. However, solving equation (3.56) we obtain x as a
function of z. It is important to point out that the solution of (3.56) is the positive one.

R(x, x0) = 2

√(
1− 1

x + q2

x2

)(
1− 1

x + q2

x2

)−1

x2
(

1
x2 − 2 q2

x3

)
(

1−
(

1− 1
x0

+
q2

x2
0

))
x0

= 2

(
1− q2

x0

)
(
1− 2 q2

x

) .

(6.42)

From equation (3.56)

z =

(
1− 1

x + q2

x2

)
−

(
1− 1

x0
+ q2

x2
0

)

1−
(
1− 1

x0
+ q2

x2
0

)

=

(
1
x0
− q2

x2
0

)
− 1

x + q2

x2

1
x0
− q2

x0

,

(6.43)

then (
1
x0
− q2

x2
0

)
(z − 1)x2 + x− q2 = 0, x > 0, (6.44)

and solving we have

x+ =
1
2

(x0 +
√

x2
0 + 4q2x0z − 4q2x0 − 4q4z + 4q4)x0

−zx0 + q2z + x0 − q2

x− = −1
2

(−x0 +
√

x2
0 + 4q2x0z − 4q2x0 − 4q4z + 4q4)x0

−zx0 + q2z + x0 − q2
.

(6.45)
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For x = x+(z), R(z, x0) is

R(z, x0) = 2
(x0 − q2)(x0 +

√
x2

0 + 4q2x0z − 4q2x0 − 4q2z + 4q4)
x0(x0 +

√
x2

0 + 4q2x0z − 4q2x0 − 4q2z + 4q4)− 4q2(−x0z + q2z + x0 − q2)
.

(6.46)
From equation (3.60)

f(z, x0) =
1√

y0

(
1− x2

0
x2
+

)
+ (y0−1)x2

0
x2
+

z

. (6.47)

If we set q = 0 in f(z, x0) and R(z, x0) we obtain those for Schwarzschild; it is to say
equations (6.25) and (6.32).

6.3.1 Solving the photon sphere equation
In order to solve the photon sphere for Reissner-Nordstrom we have to solve the equation
α = 0 as we did in the last section for Schwarzschild’s metric. From equation (3.67) we
have

α =
1−

(
1− 1

x0
+ q2

x2
0

)

x2
0

(
1
x0
− 2 q2

x3
0

)
(

2x0

(
1− 1

x0
+

q2

x2
0

)
− x2

0

(
1
x2

0

− 2
q2

x3
0

))

=
(

2− 3
x0

+ 4
q2

x2
0

)
(x0 − q2)
(x0 − 2q2)

,

(6.48)

then the equation α = 0 for x0 = xm

0 =
(

2− 3
x0

+ 4
q2

x2
0

)
(x0 − q2)
(x0 − 2q2)

0 = 2x2
m − 3xm + 4q2 xm > 0

(6.49)

these equation has two solutions

xm =
3 +

√
9− 32q2

4
xm1 =

3−
√

9− 32q2

4
. (6.50)

We chose xm as the photo sphere radius because it is the largest root.

6.3.2 Finding βm and R(0, xm)

To calculate βm we evaluate β at x0 = xm. From equation (3.71) the coefficient β is7

β =

(
1−

(
1− 1

x0
+ q2

x2
0

))2

2x4
0

(
1
x2
0
− 2 q2

x3
0

)3 {4x3
0

(
1
x2

0

− 2
q2

x3
0

)2

− 6x2
0

(
1− 1

x0
+

q2

x2
0

)(
1
x2

0

− 2
q2

x3
0

)

− 2x3
0

(
1− 1

x0
+

q2

x2
0

)(
6
q2

x4
0

− 2
x3

0

)
}

=
1
2

x0(x0 − q2)2

(x0 − 2q2)3

{
−2− 18q2

x2
0

+
6
x0

+
16q2

x3
0

}

=
{

3
x0
− 1− 9

q2

x2
0

+ 8
q4

x3
0

}
x0(x0 − q2)2

(x0 − 2q2)3
.

(6.51)
7There was a mistake in [22] it is (x0 − 2q2)3 instead of (x3

0 − 2q2)3.
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For x0 = xm

βm =
{

3
xm

− 1− 9
q2

x2
m

+ 8
q4

x3
m

}
xm(xm − q2)2

(xm − 2q2)3

= [−9 + 32q2 − 144q4 + 512q6 +
√

9− 32q2(3 + 16q2 − 80q4)][8(q − 4q3)]−2

(6.52)

In order to calculate R(0, xm) it is necessary to set z = 0 and x0 = xm in (6.46)

R(0, xm) = 2
(xm − q2)(xm +

√
x2

m − 4q2xm + 4q4)
xm(xm +

√
x2

m − 4q2xm + 4q4)− 4q2(xm − q2)

= 2
(xm − q2)(xm + (xm − 2q2))

xm(xm + (xm − 2q2))− 4q2(xm − q2)

= 2
(xm − q2)
(xm − 2q2)

.

(6.53)

For q = 0 we get (6.32).

6.3.3 Computing bR

The regular term bR can not be calculated analytically. However, we can expand the
integrand in equation (3.95) in powers of q and evaluate the single coefficients.

g(z, xm) = R(z, xm)f(z, xm)−R(0, xm)f0(z, xm)

≈ [R(z, xm)f(z, xm)−R(0, xm)f0(z, xm)]|q=0 + q[Ṙ(z, xm)f(z, xm)

+ R(z, xm)ḟ(z, xm)− Ṙ(0, xm)f0(z, xm)−R(z, xm)ḟ0(z, xm)]|q=0

+
q2

2
[R̈(z, xm)f(z, xm) + 2Ṙ(z, xm)ḟ(z, xm)

+ R(z, xm)f̈(z, xm)− R̈(0, xm)f0(z, xm) + 2Ṙ(0, xm)ḟ0(z, xm)

−R(0, xm)f̈0(z, xm)]|q=0 +O(q4).

(6.54)

Calculating g(z, xm) we obtain that the expression for bR is

bR =
1
2

∫ 1

0


 8

9z
−

(
16
9 z4 − 80

27z3 + 24
27z2

)

(z
√

1− 2
3z)3


 dz

=
8
9
[ln 6(2−

√
3) +

√
3− 4]

(6.55)

6.3.4 Finding a, b and um

From equation (3.93)

a =
R(0, xm)√

βm

= 2
(xm − q2)
(xm − 2q2)

(xm − 2q2)
√

xm − 2q2

√
(3− xm)x2

m − 9q2xm + 8q4
(
1− q2

xm

)

= 2
xm

√
xm − 2q2

√
(3− xm)x2

m − 9q2xm + 8q4

(6.56)

then

ā =
a

2
=

xm

√
xm − 2q2

√
(3− xm)x2

m − 9q2xm + 8q4
. (6.57)
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To calculate b̄ we use
b̄ = −π + bR + ā ln

2βm

ym
(6.58)

but

βm

ym
=

[(3− xm)x2
m − 9q2xm + 8q4]

(
1− q2

xm

)
(
1− 1

xm
+ q2

x2
m

)
(xm − q2)3

=
[(3− xm)x2

m − 9q2xm + 8q4](xm − q2)2

(x2
m − xm + q2)(xm − 2q2)3

(6.59)

then b̄ is

b̄ = −π + bR + ā ln
2(xm − q2)2[(3− xm)x2

m − 9q2xm + 8q4]
(x2

m − xm + q2)(xm − 2q2)3
. (6.60)

Finally from equation um

um =
√

Cm

Am

=

√√√√ x2
m(

1− 1
xm

+ q2

x2
m

)

=
x2

m√
(x2

m − xm + q2)
,

(6.61)

replacing xm = 3+
√

9−32q2

4 in the last equation we get

um =
(3 +

√
9− 32)2

16
√

9+6
√

9−32q2+9−32q2

16 − 12+4
√

9−32q2

16 + 16q2

16

=
(3 +

√
9− 32q2)2

4
√

2
√

3− 8q2 +
√

9− 32q2

.

(6.62)

6.4 Janis-Newman-Winicour lensing
The spherically symmetric solution to the Einstein massless scalar equations8 can be writ-
ten in Janis-Newman-Winicour (JNW) coordinates

A(x) =
(

1− 1
x

)γ

B(x) =
(

1− 1
x

)−γ

C(x) =
(

1− 1
x

)1−γ

x2

Φ(x) =
q

2
√

M2 + q2
ln

(
1− 1

x

)

γ =
M√

M2 + q2
.

(6.63)

where all distances are measured in terms of xs = 2
√

M2 + q2 and q is the scalar charge
of the central object. This metric admits a photon sphere external to the static limit when

8See chapter I equation (71)
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γ > 1
2 , i.e. when q < M . We shall thus restrict our investigations to the objects with

scalar charge lower than their mass.

Using equation (3.60) and (6.63) we obtain

R(z, x0) = 2

(
1−

(
1− 1

x0

)γ)(
1− 1

x0

) 1−γ
2

x0

(
1− 1

x

)1−γ
x2 γ

x2

(
1− 1

x

)γ−1

= 2

(
1−

(
1− 1

x0

)γ)(
1− 1

x0

) 1−γ
2

x0

γ

=
2x0

γ

((
1− 1

x0

) 1−γ
2

−
(

1− 1
x0

) 1+γ
2

)
.

(6.64)

6.4.1 Solving the photon sphere equation

As in the previous cases, we compute the α coefficient using equation (3.67). However, as
it shows we have to calculate C ′0 and A′0 first from (6.63)

A′0 =
γ

x2
0

(
1− 1

x0

)γ−1

C ′0 = (1− γ)
(

1− 1
x0

)−γ

+ 2x0

(
1− 1

x0

)1−γ

;

(6.65)

then

(1− y0) = 1−
(

1− 1
x0

)γ

C0y
′
0 =

(
1− 1

x0

)1−γ

x0γ

(
1− 1

x0

)γ−1 1
x2

0

= γ

C ′0y0 =

[
(1− γ)

(
1− 1

x0

)−γ

+ 2
(

1− 1
x0

)1−γ

x0

] (
1− 1

x0

)γ

= (1− γ) + 2
(

1− 1
x0

)
x0.

(6.66)

Replacing in (3.67) we obtain

α =
1− (1− 1

x0
)γ

γ
((1− γ) + 2x0 − 2− γ)

=
1−

(
1− 1

x0

)γ

γ
(2x0 − 1− 2γ)

=
1− x−γ

0 (x0 − 1) γ

γ

(
2− 1 + 2γ

x0

)
x0

=
(

2− 1 + 2γ

x0

)
1

γxγ−1
0

(xγ
0 − (x0 − 1)γ).

(6.67)

When γ = 1 (6.67) reduces to (6.27). From α = 0, we derive the radius of the photon
sphere.

0 =
(

2− 1 + 2γ

xm

)
1

γxγ−1
m

(xγ
m − (xm − 1)γ) (6.68)
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Therefore

0 =
(

2− 1 + 2γ

xm

)

xm =
2γ + 1

2

(6.69)

6.4.2 Finding βm and R(0, xm)

β = − [(2γ + 1)(γ + 1)− 2x0(3γ + 1) + 2x2
0]

(x0 − 1)γ

[xγ
0 − (x0 − 1)γ ]2

2γ2xγ
0

. (6.70)

For x0 = xm we obtain9

βm = − [(2γ + 1)(γ + 1)− 2xm(3γ + 1) + 2x2
m]

(xm − 1)γ

[xγ
m − (xm − 1)γ ]2

2γ2xγ
m

= − [2(2γ2 + 3γ + 1)− 2(6γ2 + 5γ + 1)] + (4γ2 + 4γ + 1)[(2γ + 1)γ − (2γ − 1)γ ]2

4γ2(4γ2 − 1)γ

= − [−4γ + 1][(2γ + 1)γ − (2γ − 1)γ ]2

4γ2(4γ2 − 1)γ

=
[(2γ + 1)γ − (2γ − 1)γ ]2

4γ2(4γ2 − 1)γ−1
.

(6.71)
setting z = 0 in equation (6.64) we obtain

R(0, x0) =
2x0

γ

((
1− 1

x0

) 1−γ
2

−
(

1− 1
x0

) 1+γ
2

)
. (6.72)

For γ = 1 we obtain (6.32).

6.4.3 Finding um, a and b

The coefficients of the strong field limit

a =
R(0, xm)√

βm

=

[
(2γ − 1)

1−γ
2 (2γ + 1)

1+γ
2 − (2γ − 1)

1+γ
2 (2γ + 1)

1−γ
2

γ

]
2γ(2γ − 1)

γ−1
2 (2γ + 1)

γ−1
2

(2γ + 1)γ − (2γ − 1)γ

= 2
(2γ + 1)γ − (2γ − 1)γ

(2γ + 1)γ − (2γ − 1)γ
= 2,

(6.73)
then

ā =
a

2
= 1. (6.74)

To calculate b̄ we use

b̄ = −π + bR + ā ln
(

2βm

ym

)
(6.75)

9There was a mistake in equation (71) of [22]. It is (4γ2 − 1)γ−1 instead of (4γ2 − 1)2γ−1
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but
2βm

ym
= 2

[(2γ + 1)γ − (2γ − 1)γ ]2

4γ2(4γ2 − 1)γ−1

(
2γ − 1
2γ + 1

)−γ

= 2
[(2γ + 1)γ − (2γ − 1)γ ]2

4γ2(2γ − 1)γ−1(2γ + 1)γ−1

(
2γ + 1
2γ − 1

)γ

= 2
[(2γ + 1)γ − (2γ − 1)γ ]2

4γ2(2γ − 1)2γ−1
(2γ + 1)

(6.76)

in consequence we obtain for b̄

b̄ = −π + bR + ln
(

(2γ + 1)[(2γ + 1)γ − (2γ − 1)γ ]2

2γ2(2γ − 1)2γ−1

)
(6.77)

Finally, um is

um =

√
Cm

ym

= xm




(
1− 1

xm

)1−γ

(
1− 1

xm

)γ




1
2

= xm

(
1− 1

xm

) 1−2γ
2

=
(2γ + 1)

2

(
(2γ − 1)
(2γ + 1)

) 1−2γ
2

=
(2γ + 1)

1
2+γ

2(2γ − 1)γ− 1
2
.

(6.78)



Appendix B: Finding bR for S.
Kar metric

In order to calculate bR we have defined ζ = σ
η in such a way that

λ2 + ζ2 = 1; (6.79)

where λ = m
η and ζ = σ

η . Therefore, R(z, xm), R(0, xm), f(z, xm) and f0(z, xm) for S.
Kar metric take the form

R(z, xm) =
2
√

1− ζ2 + 1√
1− ζ2 + ζ





(
2
√

1−ζ2−1

2
√

1−ζ2+1

) 1+ζ−
√

1−ζ2
2

−
(

2
√

1−ζ2−1

2
√

1−ζ2+1

) 3ζ−
√

1−ζ2+1
2

[(1− ym)z + ym]
ζ√

1−ζ2+ζ





R(0, xm) =
2
√

1− ζ2 + 1√
1− ζ2 + ζ





(
2
√

1−ζ2−1

2
√

1−ζ2+1

) 1+ζ−
√

1−ζ2
2

−
(

2
√

1−ζ2−1

2
√

1−ζ2+1

) 3ζ−
√

1−ζ2+1
2

y

ζ√
1−ζ2+ζ

m





f(z, xm) =
1√

ym − [(1− ym)z + ym]Cm

C

f0(z, xm) =
1√

βm(ζ)|z| =
2(

√
1− ζ2 + ζ)(3− 4ζ2)

√
1−ζ2+ζ−1

2

(2
√

1− ζ2 + 1)
√

1−ζ+ζ − (2
√

1− ζ2 − 1)
√

1−ζ+ζ

1
|z| ,

(6.80)
where

ym =

(
2
√

1− ζ − 1

2
√

1− ζ2 + 1

)√1−ζ2+ζ

Cm =

[
2
√

1− ζ2 + 1
2

]2 [
2
√

1− ζ2 − 1

2
√

1− ζ2 + 1

]1+ζ−
√

1−ζ2

C =
[(1− ym)z + ym]

1+ζ−
√

1−ζ2

ζ+
√

1−ζ2

[1− [(1− ym)z + ym]
1

ζ+
√

1−ζ2 ]2

βm =
1
4

[(2
√

1− ζ2 + 1)
√

1−ζ2+ζ − (2
√

1− ζ2 − 1)
√

1−ζ2+ζ ]2

(
√

1− ζ2 + ζ)2(3− 4ζ2)
√

1−ζ2+ζ−1
.

(6.81)

91



92 APPENDIX B: FINDING BR FOR S. KAR METRIC

We have expressed C as a function of z using 3.56. For ζ = 0 these expressions reduce to
those of Schwarzschild (Cfr. Appendix A).

The regular term bR can not be calculated analytically. However, we can expand the
integrand in equation (3.95) in powers of ζ and evaluate the single coefficients. So that,
bR up to first order in ζ is

bR =
∞∑

n=0

1
n!

d(n)

dζn
IR(xm)(ζ − 0)n

= IR(xm)ζ=0 +
(

d

dζ
IR(xm)

)

ζ=0

ζ.

(6.82)

For ζ = 0 the value of IR(xm) reduces to that of Schwarzschild (Crf. Appendix A).
Therefore, for 0 ≤ z ≤ 1 (|z| = z) we obtain

IR(xm)ζ=0 = 2
∫ 1

0


 1

|z|
√

1− 3
2z
− 1
|z|


 dz = 2 ln 6(2−

√
3) = 0.9496. (6.83)

On the other hand,

d

dζ
IR(xm) =

∫ 1

0

[
d

dζ
(R(z, xm)f(z, xm))− d

dζ
(R(0, xm)f0(z, xm))

]

ζ=0

dz

=
∫ 1

0

[f(z, xm)
d

dζ
R(z, xm) + R(z, xm)

d

dζ
f(z, xm)− f0(z, xm)

d

dζ
R(0, xm)

−R(0, xm)
d

dζ
f0(z, xm)]ζ=0dz

=
∫ 1

0

{fS(z, xm)
[

d

dζ
R(z, xm)

]

ζ=0

+ 2
[

d

dζ
f(z, xm)

]

ζ=0

− f0S(z, xm)
d

dζ
R(0, xm)− 2

[
d

dζ
f0(z, xm)

]
}dz,

(6.84)
where fS(z, xm), f0S(z, xm) are those of Schwarzschild. Therefore,

d

dζ
IR(xm) =

∫ 1

0




d
dζ R(z, xm)

z
√

1− 2
3z

−
d
dζ R(0, xm)

z
+ 2

d

dζ
f(z, xm) +

dβm

dζ

z


 dz, (6.85)

where all derivatives, evaluated at ζ = 0, are:

[
d

dζ
R(z, xm)

]

ζ=0

= −2− 2 ln
(

2
3
z +

1
3

)

[
d

dζ
R(0, xm)

]

ζ=0

= −2 + 2 ln(3)

[
d

dζ
f0(z, xm)

]

ζ=0

=
ln(3)− 1
|z|

[
d

dζ
f(z, xm)

]

ζ=0

= −1
2

ln 3
[
7
3z3 − 2z2

]
+ z(2z + 1)(1− z) ln(2z + 1)

z3(1− 2
3z)

3
2

.

(6.86)

Thus,
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d

dζ
IR(xm) =

∫ 1

0


2− 2 ln(3)

z
− 2 + 2 ln

(
2
3z + 1

3

)

z
√

1− 2
3z


 dz

+
∫ 1

0

[
ln 3

[
7
3z3 − 2z2

]
+ z(2z + 1)(1− z) ln(2z + 1)

z3(1− 2
3z)

3
2

+
2 ln(3)− 2

z

]
dz.

(6.87)
Using a numerical method, we calculate the integrals

∫ 1

0


2− 2 ln(3)

z
− 2 + 2 ln

(
2
3z + 1

3

)

z
√

1− 2
3z


 dz = −3.457723875

7 ln(3)
3

∫ 1

0

dz
(
1− 2

3z
) 3

2
=

14
√

3 ln(3)
(3 +

√
3)

(6.88)

In order to calculate de remaining integral

i =
∫ 1

0

[
−2 ln(3)z2 + z(2z + 1)(1− z) ln(2z + 1)

z3(1− 2
3z)

3
2

+
2 ln(3)− 2

z

]
dz, (6.89)

we can express ln(2z + 1) in a Taylor series around z = 0.5. This expansion is

ln(2z + 1) = ln(2) +
∞∑

n=1

(−1)n+1

n

(
z − 1

2

)n

= ln(2) +
∞∑

n=1

(−1)n+1

2nn
(2z − 1)n

. (6.90)

A plot of ln(2z + 1) and (6.90) is shown in the next figure

(a) (b)

Figure 6.12: (a) ln(2z + 1) (b) Approximation ln(2z + 1) = ln(2) +
∑∞

n=1
(−1)n+1

2nn
(2z − 1)n

In order to express ln(2z + 1) as a Taylor series in the interval 0 ≤ z ≤ 1, it is necessary
to demonstrate that

∞∑
n=1

(−1)n+1

n

(
z − 1

2

)n

, (6.91)

converges in that interval. As we see this series is alternating; therefore, if the series∑∞
n=1 an is alternating, then it converges absolutely if the series

∑∞
n=1 |an| converges. In

this sense, it is necessary to show that
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∞∑
n=1

| (z − 1
2

)n |
n

, (6.92)

converges for 0 ≤ z ≤ 1. Using the criterion of D´Alembert for a series of positive terms
and the H´Lopital rule we obtain that

limn→∞
|z − 1

2 |n+1

n + 1
n

|z − 1
2 |n

= |z − 1
2
| < 1. (6.93)

Hence, the series converges for− 1
2 < z < 3

2 . This means that the series
∑∞

n=1
(−1)n+1

n

(
z − 1

2

)n

converges absolutely for 0 ≤ z ≤ 1.

Using the Newton binomial theorem,

(x + y)n =
n∑

k=0

n!
k!(n− k)!

xn−kyk (6.94)

we can express equation (6.90) as

ln(2z + 1) = ln(2) +
∞∑

n=1

(−1)n+1

n

1
2n

n∑

k=0

n!
k!(n− k)!

2n−kzn−k(−1)k

= ln(2) +
∞∑

n=1

n∑

k=0

(−1)n+k+1(n− 1)!
k!(n− k)!

1
2k

zn−k

=
∞∑

n=2

n−2∑

k=0

(−1)n+k+1(n− 1)!
k!(n− k)!

1
2k

zn−k + z

∞∑
n=1

1
2n−1

−
∞∑

n=1

1
22n

+ ln(2).

(6.95)

∑∞
n=1

1
2n−1 =

∑∞
n=0

1
2n is a geometric series of the form

∞∑
n=0

arn =
a

1− r
, (6.96)

for a = 1 and r = 1
2 we have that

∞∑
n=0

1
2n

= 2. (6.97)

On the other hand, we know that

ln(2) =
∞∑

n=1

1
2nn

. (6.98)

Finally, equation (6.95) is

ln(2z + 1) = 2z +
∞∑

n=2

n−2∑

k=0

(−1)n+k+1(n− 1)!
k!(n− k)!

1
2k

zn−k. (6.99)

A plot of this expansion is shown in figure 2.

In this sense, the integrant of (6.89) can be expressed as
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z(2z + 1)(1− z) ln(2z + 1)
z3(1− 2

3z)
3
2

=
(−2z2 + z + 1)

z2
(√

1− 2
3z

)3

∞∑
n=2

n−2∑

k=0

(−1)n+k+1(n− 1)!
k!(n− k)!

1
2k

zn−k

− 4z
(√

1− 2
3z

)3 +
2

(√
1− 2

3z
)3 +

2

z
(√

1− 2
3z

)3

=
∞∑

n=2

n−2∑

k=0

(−1)n+k+1(n− 1)!
k!(n− k)!

1
2k

(−2zn−k + zn−k−1 + zn−k−2)
(√

1− 2
3z

)3

− 4z
(√

1− 2
3z

)3 +
2

(√
1− 2

3z
)3 +

2

z
(√

1− 2
3z

)3 .

(6.100)

(a) (b)

Figure 6.13: (a) ln(2z + 1) (b) Approximation ln(2z + 1) = 2z +∑∞
n=2

∑n−2
k=0

(−1)n+k+1(n−1)!
k!(n−k)!

1
2k zn−k

Finally, the integral (6.89) is

i =
∫ 1

0

∞∑
n=2

n−2∑

k=0

(−1)n+k+1(n− 1)!
k!(n− k)!

1
2k

(−2zn−k + zn−k−1 + zn−k−2)
(√

1− 2
3z

)3 dz

+ 2
∫ 1

0

dz
(√

1− 2
3z

)3 − 4
∫ 1

0

zdz
(√

1− 2
3z

)3 + (2 ln(3)− 2)
∫ 1

0


1

z
− 1

z
(√

1− 2
3z

)3


 dz

(6.101)

Approximating up to a 20th polynomial we have that
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i =
∫ 1

0

20∑
n=2

n−2∑

k=0

(−1)n+k+1(n− 1)!
k!(n− k)!

1
2k

(−2zn−k + zn−k−1 + zn−k−2)
(√

1− 2
3z

)3 dz

+ 2
∫ 1

0

dz
(√

1− 2
3z

)3 − 4
∫ 1

0

zdz
(√

1− 2
3z

)3 + (2 ln(3)− 2)
∫ 1

0


1

z
− 1

z
(√

1− 2
3z

)3


 dz

i = −1.064885740 +
12
√

3
3 +

√
3
− 72

√
3

(3 +
√

3)2
− 0.3823993616

(6.102)
Finally, from (6.88) and (6.102) we obtain that

d

dζ
IR(xm)|ζ=0 = 3.005480454 (6.103)

Then
bR = 2 ln(6(2−

√
3)) + 3.005480454ζ (6.104)
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