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Ĺınea de Investigación:

Diseño de Experimentos

Universidad Nacional de Colombia

Facultad de Ciencias, Escuela de Estad́ıstica
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Nelfi González for their teaching, wisdom, and patience.

I would additionally like to thank the administrative staff of the Department of Statis-

tics at the Universidad Nacional de Colombia, especially Dr. Carlos Mario Lopera, Dr.
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Abstract

Experimental design is an important phase in both scientific and industrial research. In

recent years, Bayesian optimal designs have become more and more popular, particularly

in biomedical research and clinical trials. The Bayesian experimental design approach

allows the prior information of unknown parameters to be incorporated into the design

process in order to achieve a better design. The Bayesian optimal design theory can,

however, produce inadequate designs from a practical perspective that conflict with com-

mon practice in laboratories or other guidelines established.

In this research, the penalized optimal design strategy with the Bayesian approach is

suggested to reduce problems associated with the inadequacy of experimental designs

from a practical perspective. New optimality criteria, which combine the use of desir-

ability functions and the Bayesian approach, are constructed for linear and nonlinear

regression models. The proposed technique based on the use of desirability functions

helps to obtain optimal designs that fulfill Bayesian optimal design criteria and also sat-

isfy practical preferences.

The proposed penalized strategy is illustrated with corresponding examples for both lin-

ear and nonlinear models. Furthermore, the methodology of choosing the appropriate

desirability functions according to the practical design preferences is proposed and illus-

trated by an example of the Michaelis-Menten model.

Keywords: Bayesian optimal designs, Desirability functions, Penalized designs.





Resumen

El diseño experimental es una fase importante tanto en la investigación cient́ıfica como

en la industria. En los últimos años, los diseños óptimos bayesianos se han vuelto cada

vez más populares, particularmente en la investigación biomédica y los ensayos cĺınicos.

El enfoque de diseño experimental bayesiano permite incorporar la información previa

disponible de parámetros desconocidos en el proceso de diseño y aśı poder obtener un

mejor diseño. Sin embargo, la teoŕıa del diseño óptimo bayesiano puede producir diseños

inadecuados desde una perspectiva práctica que entran en conflicto con la práctica de

laboratorio común u otras pautas establecidas.

Con el objetivo de reducir los problemas asociados con la inadecuación de los diseños

experimentales desde una perspectiva práctica, en esta investigación, se proponen nuevos

criterios de optimalidad que combinan el uso de funciones de deseabilidad y el enfoque

bayesiano, tanto para modelos de regresión lineal, como no lineal. La técnica propuesta

basada en el uso de las funciones de deseabilidad ayuda a obtener diseños óptimos penali-

zados que cumplen con los criterios de diseño óptimos bayesianos y también satisfacen

preferencias prácticas.

La estrategia penalizada propuesta se ilustra con los respectivos ejemplos para mode-

los lineales y no lineales. Además, se propone y se ilustra una metodoloǵıa para elegir

las funciones de deseabilidad apropiadas de acuerdo con las preferencias experimentales

desde un punto de vista práctico mediante un ejemplo del modelo de Michaelis-Menten.

Palabras clave: Diseños óptimos bayesianos, Funciones de deseabilidad, Diseños penali-

zados.
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1. Introduction

Experimental design plays a vital role in theoretical and applied scientific research. A

well-designed experiment is an efficient method for learning about some phenomena,

while a poorly designed experiment directly affects the quality of the conclusions derived

from the experimental data. Due to cost or time, scientists want to design experiments

that maximize the amount of information that can be retrieved from a finite amount

of available resources. Statisticians have developed optimal design theory to generate

efficiently designed experiments that satisfy the mentioned requirements.

Optimal designs provide a very efficient way to maximize the amount of information

gained in an experiment. They are commonly derived using optimality criteria that are

based on the Fisher information matrix (Atkinson, Donev & Tobias 2007, ch. 10). The

D-, A-, G-optimal designs are some examples of such designs.

For nonlinear models, optimal designs generally depend on the true values of the model

parameters. Since the parameter vector is not known, the researcher must postulate

a best “guess” of the unknown parameter vector resulting in locally optimal designs

(Chernoff 1953). The problem may arise when that guess is not close enough to the true

parameter vector, and therefore, the design obtained may not be optimal. Therefore,

if the model parameters are misspecified, the robustness of the non-Bayesian optimal

design may be impaired.

Usually, prior information is available to the experimentation, for example in previous

studies, specialized scientific literature or expert opinions. The Bayesian approach to

experimental design allows using this available information into the design process. The

Bayesian optimal design employes a prior distribution of the unknown parameters rather

than guessed single values. Therefore, the incorporation of prior information on the un-

known parameters would lead to more accurate and robust designs and increase their

efficiency.

Furthermore, the optimal design theory can generate inadequate designs from a practical

perspective. These designs can conflict with common practice in laboratories or other

guidelines established. Many authors proposed several alternatives to generate optimal

designs with the desired experimental properties, e.g. a combination of several crite-
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ria and inclusion of restrictions or penalties in optimal design, both non-Bayesian and

Bayesian.

The idea of incorporating constraints, such as costs or penalties, in optimal design re-

turns to the paper by Elfving et al. (1952) on the geometrical construction of c-optimal

designs. These authors introduced a constraint on the total costs instead of the con-

straint on the number of observations. Cook & Fedorov (1995) considered several types

of constraints. They proposed that optimization problems with constraints can be em-

bedded in the convex theory of experimental design. The constrained optimal design

theory can be found in the book of Fedorov & Hackl (1997).

Dragalin & Fedorov (2006) and Dragalin, Fedorov & Wu (2008) applied this constrained

optimal design theory to suggest compromise between individual and collective ethics

in dose-finding studies. These authors showed that the resulting penalized optimal de-

signs have achieved a reasonable balance between individual and collective ethics in

dose-finding studies. Pronzato (2008, 2010) continued the research of previous authors

and introduced flexibility in setting the compromise between the information gained and

the cost of the experiment. He showed that, for suitable penalty functions, all doses in

the experiment had a small cost; this allowed the avoidance of extreme doses generally

suggested by optimal design for parameter estimation.

In recent years, Bayesian optimal designs have become more and more popular, particu-

larly in biomedical research and clinical trials. Chaloner & Verdinelli (1995) presented a

general overview of Bayesian experimental design, for both linear and nonlinear models.

Chaloner & Larntz (1989) gave a unifying idea of Bayesian optimal design for nonlinear

models.

Bayesian optimal design also has used the idea of incorporating constraints. Haines,

Perevozskaya & Rosenberger (2003) formulated and used the criteria with a constraint

to deal with the ethical dilemma of avoiding highly toxic doses. These authors pro-

posed a constrained Bayesian design which maximizes Bayesian design criterion subject

to a restricted dose space. This space was defined as the weighted sum of distribution

function of the maximal allowed dose. They formulated the equivalence theorem for

the constrained Bayesian optimal designs and developed the sequential optimal design

scheme. The simulation results under this scheme indicated that this procedure per-

formed effectively and efficiently.

Gao & Rosenberger (2013) proposed using the Bayesian approach to adaptive designs of

Dragalin & Fedorov (2006) to penalize doses with too much toxicity or too little efficacy.

These authors introduced a penalty coefficient to trade-off information goal and ethical
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goal. Using simulation, they showed that a compromise between the two goals can be

achieved by tuning this coefficient.

Parker & Gennings (2008) proposed a technique based on the desirability functions, as

an alternative penalty approach. The use of desirability functions allows the user to

obtain the experimental design with important particular features. These authors il-

lustrated their proposed methodology for two nonlinear models: Gompertz nonlinear

model and nonlinear threshold model. In the first example, penalized Ds-optimal de-

sign criteria included desirability functions that affect the assignment of replicates to

the control group and the location of the maximum dose point. In the second exam-

ple, penalized D-optimal design criteria included two desirability functions to define the

minimum number of subjects in each dose group and the minimum difference between

adjacent dose groups. Finally, these authors concluded that resulting penalized optimal

designs had desirable practical characteristics defined by a researcher.

Furthermore, these designs had a significant enhancement in parameter variance over an

arbitrary design with practical characteristics. Thus, the use of desirability functions

allows the researcher to obtain the optimal design with desirable particular properties.

The advantage of using them is that these functions can be represented as continuous

functions and not as fixed restrictions.

Yeatts, Gennings & Crofton (2012) used the methodology described in Parker & Gen-

nings (2008), to estimate the interaction threshold. The authors applied this penalty

approach to a mixture of 18 Polyhalogenated Aromatic Hydrocarbons to obtain the Ds-

and penalized Ds-optimal second-stage designs. The experimental data available from

the first stage were incorporated in the second stage. The penalized Ds-optimal second-

stage design criterion was applied to minimize the variance of the hypothesized inter-

action threshold given the design preferences of the researcher. These authors observed

that the resulting penalized optimal design exhibited desirable practical characteristics,

while it determined only a minimal increase in the variance of the interaction threshold.

The authors concluded that this method is a useful tool to determine an experimental

design that can be used to estimate the location of the interaction threshold precisely.

Inadequate experimental designs can cause problems in the estimation of the model

parameters and/or generate conflicts with common laboratory practices or other estab-

lished guidelines, as we mentioned before. The use of desirability functions to penalize

the optimal design criterion can help overcome these difficulties.

There is not a methodology to define an appropriate desirability function per the prac-

tical design preferences, neither to construct augmented constrained optimal designs by
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penalty functions, as far as we have reviewed, neither we have found works related with

desirability functions applied to Bayesian constrained optimal designs. In this research,

we attempt to fill this gap. More specifically, we propose a new optimality criterion to

obtain penalized Bayesian D-optimal designs, combining the use of desirability functions

and the Bayesian approach in the design construction for both linear and nonlinear re-

gression models.

The purpose of this research is to establish a procedure that allows the construction of

penalized Bayesian optimal experimental designs. We propose the methodology to deter-

mine appropriate desirability functions according to the practical design preferences and

define the steps to follow to obtain the penalized optimal design, based on the predefined

researcher experimental design preferences.

This dissertation is organized as follows. In Chapter 2 , literature on optimal design, aug-

mented design, Bayesian optimal design, and computational methods in finding optimal

designs are reviewed. This theoretical background is fundamental for the development

of subsequent chapters.

In Chapter 3 , a summary of the desirability function theory and an approach of penalized

optimal design strategy based on the use of desirability functions are presented. This

strategy produces an experimental design having good statistical inference properties as

well as desirable practical characteristics. The practical characteristics are determined

by a penalty function through an overall desirability function. This penalty function is

added to an “alphabetic” optimality criterion in order to penalize optimal designs that

are unattractive from a practical point of view. The methodology of choosing the ap-

propriate desirability functions according to the practical design preferences is proposed

and illustrated with an example of the Michaelis-Menten model. In this example, the

steps to follow to obtain the penalized optimal design are detailed.

The principal results of this dissertation are presented in Chapters 4 and 5 . An ex-

tension of the use of desirability functions in Bayesian optimal designs is proposed in

this dissertation. Its purpose is to reduce problems associated with the inadequacy of

experimental designs from a practical perspective. In Chapters 4 and 5 the new penalty

criteria, which combine the use of desirability functions and the Bayesian approach, are

constructed for linear and nonlinear regression models, respectively. Thus, the researcher

can incorporate prior information of the unknown parameters by using a Bayesian ap-

proach and also satisfy practical preferences by applying the penalty through desirability

functions. In each case, the justification of the proposed criterion is presented.

The penalized Bayesian D-optimal designs for both linear and nonlinear regression mod-
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els, by incorporating our proposed penalty criterion in the design construction are ob-

tained and discussed in Chapters 4 and 5 , respectively. The proposed methodology is

illustrated with two examples of regression models. Chapter 4 presents the penalized

Bayesian D-optimal design procedures and results for the quadratic regression model;

and Chapter 5 presents the penalized Bayesian D-optimal design procedures and results

for the exponential regression model. The recommended steps to follow to obtain the

penalized Bayesian optimal design for nonlinear models are detailed in Chapter 5. Cor-

responding programs are developed in the statistical software R (Team 2018) to calculate

the penalized designs.

Conclusions, recommendations, and possible future work are discussed in Chapter 6 .

Computer codes implemented in R-project (Team 2018) to generate penalized and pe-

nalized Bayesian D-optimal designs may be found in Appendix B.





2. Background of Optimal Designs

This chapter presents the most important concepts and results of optimal design the-

ory for regression models used in this dissertation. First, it covers classical linear and

nonlinear optimal design theory described in Section 2.1 . Most of the content of this

section has been taken from the books of Atkinson et al. (2007), Ermakov & Zhiglijavsky

(1987), Fedorov & Hackl (1997), and (Fedorov & Leonov 2013).

The ways to solve the shortcomings of the classical theory of optimal design, such as

augmented designs and Bayesian optimal designs, are presented in Section 2.2 and Sec-

tion 2.3, respectively. The addition of extra points to an existing optimal design has the

objective of improving the properties of the design. Meanwhile, the Bayesian optimal

design uses available prior information of unknown parameters into the design process in

order to obtain accurate and robust designs and increase their efficiency. Furthermore,

the computational methods for finding optimal designs are reviewed in Section 2.4.

2.1. Optimal Experimental Design

Experimental design plays a vital role in theoretical and applied scientific research. Usu-

ally, its costs are high, and its resources are limited. A well-designed experiment is an

efficient method for maximizing the amount of information that can be retrieved from

a limited amount of available resources in the experiment. Statisticians have developed

optimal design theory to generate efficiently designed experiments that satisfy the men-

tioned requirements.

2.1.1. Model

Suppose that observations yi of an experiment satisfy

yi = η(xi,θ) + εi, i = 1, 2, . . . , N, (2-1)

where yi are continuous response (or dependent or observed) variables, xi is a m × 1

vector of explanatory variables, θ is a p×1 vector of unknown parameters, where θ ∈ Θ,

here Θ is an open convex set in Rp, εi are uncorrelated normally distributed random

variables with zero mean and constant variance σ2. Further, suppose that the vector

xi ∈ X called space or design region, where X is a compact set in Rm and η(xi,θ) is
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a known continuous in X function that can be linear or nonlinear with respect to the

model parameters θ.

For linear regression models the function η(xi,θ) is given by

η(xi,θ) = f (xi)
Tθ, (2-2)

where f (xi) = (f1(xi), f2(xi), . . . , fp(xi))
T is a vector of known “basis” regression func-

tions. They are p linearly independent real-valued continuous functions on the de-

sign space X . The linear model may be written in the matrix form (Ermakov &

Zhiglijavsky 1987, p. 16)

Y = Xθ + ε, (2-3)

where Y = (y1, y2, . . . , yN)T is the vector of observations, X = (f(x1), f(x2), . . . , f(xN))T

is the N × p extended design matrix and ε = (ε1, ε2, . . . , εN)T is the N × 1 vector of the

errors.

Under the above assumptions E(Y) = Xθ and Cov(Y) = σ2IN , where IN is the N ×N
identity matrix (Fedorov & Hackl 1997, p. 7).

2.1.2. Estimation

Least squares are used as an estimation method to estimate parameters in linear and

nonlinear models when the assumption of constant variance is valid. The least-squares

estimate of θ is the p×1 vector θ̂ that minimizes the error sum of squares criterion with

respect to θ, given in (Atkinson et al. 2007, p. 45):

θ̂ = arg min
θ∈Ω

N∑
i=1

(yi − η(xi,θ))2. (2-4)

For linear model the least-squares estimator of the parameters is (Atkinson et al. 2007,

p. 52)

θ̂ = (X TX)−1X TY, (2-5)

where XTX is the p× p matrix. The covariance matrix of the least-squares estimator is

Cov(θ̂) = σ2(X TX)−1. (2-6)

The value of σ2 is not relevant in optimal design theory, and its value is chosen the same

for all proposed designs for a given experiment.

For nonlinear model it is not possible to find a closed-form expression for θ̂ like (2-5) in

the linear case. The least-squares estimators are strongly consistent with a probability
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of 1 when a large number of observations N (Seber & Wild 2003, p. 565). Therefore θ

is located in a sufficiently small neighborhood of θt, where θt is the true vector of the

unknown parameters. Then the model function in that neighborhood can be expressed

as follows (Fedorov & Hackl 1997, p. 17):

η(x,θ) ∼= η(x,θt) + (θ − θt)T f (x,θt), (2-7)

where f (x,θ) =
∂η(x,θ)

∂θ
, i.e., the model can be linearized. The least-squares estimator

obtained in the linearized regression model is (Ermakov & Zhiglijavsky 1987, p. 200):

θ̂ ∼=
(
F TF

)−1
F TY, (2-8)

where F is the first partial derivative matrix of the model with respect to θ, defined as

F =

[(
∂η(xi,θt)

∂θj

)]
(2-9)

for i = 1, 2, . . . , N observations and j = 1, 2, . . . , p model parameters. The asymp-

totic variance-covariance matrix of θ̂ is given by σ2
(
F TF

)−1
. The determinant of this

variance-covariance matrix is called the generalized variance (GV) of θ̂ (Sengupta 2004).

This concept was introduced by Wilks (1967) as a scalar measure of global multidimen-

sional dispersion.

2.1.3. Experimental Designs

The precision of parameter estimates depends on the choice of the experimental points

xi ∈ X , as it was shown in the previous paragraph. This dependence allows the prob-

lem of optimal point selection to be considered, that is, designing the optimal experiment.

Suppose that the total number of observations is N , and this number is usually pre-

determined by cost constraints. A sequence of experimental conditions, x1 . . .xN , from

a compact set X is referred to as a design of fixed size or exact design of size N

(López-Fidalgo 2009). Some of these N points may be repeated, meaning that several

observations are taken at the same value of x. Therefore, a probability measure may be

assigned to the design, assuming that only n of these points are different.

Kiefer (1959) and Kiefer, Wolfowitz et al. (1959) formed a theoretical framework of

optimal design by expressing a design as a probability measure and representing the

design as the allocations of observations at any particular point in the design space.

If point xi appears ri times then weight pi = ri/N is the probability of xi, that is

the proportion of experiments to be made under these conditions. This exact design,

realizable in integers ri for a specific N , is defined by the following array:

ξN =

{
x1 . . . xn
p1 . . . pn

}
, (2-10)



10 2 Background of Optimal Designs

i.e., is a probability discrete measure concentrated on points xi with weights pi. Here,

n ≤ N, pi ≥ 0,
n∑
i=1

pi = 1, pi =
ri
N
,

n∑
i=1

ri = N, i = 1, 2, . . . , n. (2-11)

The set of all possible exact designs for a specific N is denoted by ΞN .

The pi’s in (2-10) are rational numbers. Removing this constraint, the weights are

assumed to be real numbers in the interval [0, 1]. Designs that allow weights to vary

continuously in [0, 1] are called continuous or approximate designs. The continuous or

approximate design is defined by a probabilistic measure (Atkinson et al. 2007, pp.

119,120):

ξ =

{
x1 . . . xn
w1 . . . wn

}
, (2-12)

where xi, i = 1, 2, . . . , n, is a point of the compact set X with the wi the associated

design weights. Since ξ is a measure,∫
X

ξ (dx) = 1 and wi > 0 for all i with
n∑
i=1

wi = 1. (2-13)

If all points xi in (2-12) are different, then the design is concentrated on n points called

support points of design. The set of all possible continuous designs of the form (2-12)

and (2-13) is denoted by Ξ.

However, all experimental designs are exact in practice. For moderate N , exact designs

can be found by integer approximation to the optimal continuous design. The details of

approximation rules are considered by Pukelsheim & Rieder (1992).

2.1.4. Information Matrix

For linear models the information matrix (Fisher) associated with the continuous design

(2-12) defines the matrix (Atkinson et al. 2007, p. 121):

M(ξ) =

∫
X

f (x)f (x)T ξ(dx) =
n∑
i=1

wif (xi)f (xi)
T , (2-14)

where f (x) is a vector of known “basis” regression functions. For an N -trial exact

design the information matrix (normalized) for θ in the linear model (2-3) is defined as

(Ermakov & Zhiglijavsky 1987, p. 87)

M(ξN) =
1

N
X TX =

1

N

N∑
i=1

f (xi)f (xi)
T . (2-15)
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If the experiment design has the form (2-10) and complies with the constraint (2-11),

then the information matrix is equal to (Ermakov & Zhiglijavsky 1987, p. 87)

M(ξN) =
n∑
i=1

ri
N
f (xi)f (xi)

T =
n∑
i=1

pif (xi)f (xi)
T . (2-16)

In linear models, the information matrices are determined only by design and are not

dependent on observations yi. A valuable property of linear models is that the informa-

tion matrix does not depend on parameter values either.

For nonlinear models the information matrix (Fisher) associated with the continuous

design (2-12) defines the matrix (Fedorov & Hackl 1997, p. 100):

M(ξ,θ) =

∫
X

f (x,θ)f (x,θ)T ξ(dx) =
n∑
i=1

wif (xi,θ)f (xi,θ)T , (2-17)

where f (x,θ) =
∂η(x,θ)

∂θ
is the vector of partial derivatives of the model. For an N -trial

exact design the information matrix (normalized) for θ in nonlinear models is defined as

(Fedorov & Leonov 2013, p. 18)

M(ξN ,θ) =
1

N
F TF =

1

N

N∑
i=1

f (xi,θ)f (xi,θ)T =
n∑
i=1

pif (xi,θ)f (xi,θ)T . (2-18)

In nonlinear models the information matrices and, consequently, Cov(θ̂) depend on the

unknown parameters θ.

Two important properties of the information matrix are (Fedorov & Leonov 2013, pp.

6-7):

1. The information matrix is a symmetric nonnegative definite matrix.

2. The information matrix is additive, i.e., it is the sum of information matrices that

corresponds to the individual observations.

The set of information matrices M(ξ,θ) corresponding to all possible designs continuous

ξ is denoted byM. The goal of an optimal design is to select the values of the explana-

tory variables to maximize the information available from the experiment concerning the

chosen optimality criterion.

2.1.5. Optimality Criteria

Some dimensional convex function of the information matrix, Ψ{M(ξ)} is used in optimal

design theory. A function Ψ defined as follows

Ψ :M→ R+ ∪ {+∞} (2-19)
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is called Ψ-optimality criteria. Three important properties of optimality criteria are

(Fedorov & Leonov 2013, p. 61):

1. Monotonicity. Ψ is a monotonically nonincreasing function if

Ψ(M) ≤ Ψ(M ′), if M ≥M ′, (2-20)

where M and M ′ are nonnegative definite matrices. The second inequality in

(2-20) is understood in terms of Loewner ordering.

The ordering of nonnegative definite matrices, or Loewner ordering, is understood

as M ≥M ′, if M ′ = M + C, C ≥ 0, where the latter inequality means that the

square matrix C is nonnegative definite matrix of the same order as M and M ′

matrices, i.e., zTCz ≥ 0 for any vector z; see (Fedorov & Leonov 2013, p. 6).

2. Homogeneity.

Ψ(γM) = γΨ(M), (2-21)

where γ > 0.

3. Convexity. A function Ψ(M) defined on a convex set M is called convex if for

any α ∈ [0, 1], and any M1, M2 ∈M

Ψ(M) ≤ (1− α)Ψ(M1) + αΨ(M2), (2-22)

where M is a convex combination of M1 and M2, i.e., M = (1 − α)M1 + αM2.

The function Ψ(M) = detM−1 is not convex, but Ψ(M) = − log detM is convex.

Several specific functions have been suggested as optimality criteria and have letters of

the alphabet associated with them. Each optimality criterion identified a specific goal in

the experiment. The most well known and widely used “alphabetic” design optimality

criteria are:

• D-optimality: Ψ(M) = − log detM. It is the best known optimality criterion. D-

optimality maximizes log detM(ξ) or minimizes − log detM(ξ). It is an estimation

criterion which maximizes parameter information by minimizing variability of the

parameter estimates (Fedorov & Leonov 2013, p. 53).

• Ds-optimality: Ψ(M) = − log(detM/ detM22), where M22 is the (p−s)×(p−s)
lower right submatrix of M. Ds-optimal designs are appropriate when interest is

in estimating a subset of s of the parameters. The other p − s parameters are

then treated as nuisance parameters. The Ds-optimal design for the parameters of

interest minimizes the optimality criterion Ψ (Atkinson et al. 2007, p. 138).
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• A-optimality: Ψ(M) = −tr (M−1). This criterion minimizes the sum or average,

of the variances of the parameter estimates (Atkinson et al. 2007, p. 137).

• c-optimality: Ψ(M) = cTM−1c, where c is a known vector of constants. In this

criterion interest is in estimating the linear combination of the parameters cTθ

with minimum variance (Rodŕıguez Torreblanca & Ortiz Rodŕıguez 1999, p. 39).

• G-optimality: Ψ(M) = maxx∈X d(x, ξ), where d(x, ξ) is the standardized vari-

ance of the predicted response. For linear models this variance is equal to

d(x, ξ) = f (x)TM(ξ)−1f (x) (2-23)

and for nonlinear models it is equal to

d(x, ξ) = f (x,θ)TM(ξ,θ)−1f (x,θ). (2-24)

This criterion minimizes the largest possible value of the variance in the design

space X and is called G-optimal (Rodŕıguez Torreblanca & Ortiz Rodŕıguez 1999,

p. 43).

2.1.6. General Equivalence Theorem

The General Equivalence Theorem (Kiefer 1974) provides methods for the construction

of optimal designs, and then it allows to check the optimality of the resulting designs.

Theorem 2.1. Let X be a compact set. If Ψ is convex on M, the space of design

information matrices, and differentiable at M(ξ∗), then a Ψ-optimal design ξ∗ can be

equivalently characterized by any of the following three conditions (Atkinson et al. 2007,

p. 122):

(i) The design ξ∗ minimizes Ψ{M(ξ)}.

(ii) The design ξ∗ maximizes the minimum over X of φ(x, ξ).

(iii) The minimum over X of φ(x, ξ∗) = 0, this minimum occurring at the points of

support of the design. For any non-optimal design ξ the minimum over X of

φ(x, ξ) < 0.

Here φ(x, ξ) is the derivative of Ψ in the direction ξ̄, defined as

φ(x, ξ) = lim
α→0+

1

α

[
Ψ
{

(1− α)M(ξ) + αM(ξ̄)
}
−Ψ {M(ξ)}

]
, (2-25)

where the measure ξ̄ puts unit mass at the point x ∈X .

The Equivalence Theorem of Kiefer-Wolfowitz (Kiefer & Wolfowitz 1960) establishes

the equivalence between G- and D-optimality. This theorem provides methods for the

construction and checking of D-optimal designs.
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Theorem 2.2. If the set of information matricesM is compact, then the following three

statements are equivalent (Ermakov & Zhiglijavsky 1987, p. 109):

(i) ξ∗ = arg maxξ∈Ξ [det{M(ξ)}], i.e., the design ξ∗ is D-optimal.

(ii) ξ∗ = arg min
ξ∈Ξ

[maxx∈X d(x, ξ)], i.e., the design ξ∗ is G-optimal.

(iii) maxx∈X d(x, ξ∗) = p.

The information matrices of all designs that meet one of the three stated statements

coincide with each other. In points xi of these designs, d(xi, ξ
∗) = p.

Continuous designs that are D-optimal are also G-optimal, that is they minimize the

maximum over X of the variance d(x, ξ). It does not, in general, hold for exact designs.

One exact design will be D-optimal, but will not be G-optimal.

This theorem does not say anything about the number of support points of the optimal

design. Usually, optimal designs contain fewer points. For many D-optimal designs,

especially for models in one factor, the designs contain p points, each with weight 1/p,

where p is the number of unknown parameters in the model.

2.2. Design Augmentation

The addition of new trials to an existing experimental design is meant as design augmen-

tation. These designs are especially useful when found models are inadequate, as shown

in George & Ogot (2006). Their purpose is to construct an experiment that incorporates

existing data.

Let an initial design ξ0 with N0 prior observations (Atkinson et al. 2007, p. 315)

ξ0 =

{
x0

1 . . . x0
q

w0
1 . . . w0

q

}
, (2-26)

with information matrix N0M0 where

M0 =

q∑
i=1

w0
i f(x0

i )f
T (x0

i ), (2-27)

where the weights w0
i are multiples of 1/N0.

The design is increased by N additional observations. Augmentation of a design of size

N0 to one of size N + N0 provides the new information in the experiment that comes
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from the new N -trial design ξ with information matrix NM(ξ). Combining the prior

information with augmentation of N trials yields the posterior information matrix

M̃(ξ) = N0M0 +NM(ξ), (2-28)

where NM(ξ) is the information matrix of design ξ. The D-optimal designs maximize

det M̃(ξ).

Let weights

α =
N0

N0 +N
and 1− α =

N

N0 +N
. (2-29)

The normalized information matrix for a continuous design ξ is

Mα(ξ) = αM0 + (1− α)M(ξ). (2-30)

Maximizing Ψ{Mα(ξ)} for given α is equivalent to maximizing Ψ{M̃(ξ)} (2-28) for given

N0 and N .

The Equivalence Theorem states that the standardized variance for continuousD-optimal

augmentation designs ξ∗ fulfills (Atkinson, Bogacka & Zocchi 2000) for linear models:

dα(x, ξ∗) = (1−α)fT (x){Mα(ξ∗)}−1f(x)+α

q∑
i=1

w0
i f

T (x0
i ){Mα(ξ∗)}−1f(x0

i ) ≤ p (2-31)

for all x ∈X , where p is the number of parameters in the model, that is the dimension

of the information matrix Mα(ξ). The first variance term is the posterior variance at a

point in X and the second a weighted sum of posterior variances at the points of the

prior design.

Analogous expression of dα(x, ξ∗) is obtained for nonlinear models by replacing the vector

of basis functions f (x) in (2-31) with the vector of partial derivatives f (x,θ).

2.3. Bayesian Optimal Design

Any prior information is usually available for the experimentation. The idea of the

Bayesian optimal design is to use this prior distribution on the unknown parameters in

the optimal design process.

2.3.1. Utility Function

A Bayesian design problem is a problem of statistical decision (Chaloner & Verdinelli

1995), involving the design space, the utility function, and the distribution of the random
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variables. Lindley (1972) introduced a decision-theoretic approach. He provided a math-

ematical basis for selecting Bayesian optimal designs. The following is the argument of

Lindley.

A design ξ is selected from a set Ξ while the data Y are observed from a sample space Y .

Then, a decision d will be chosen from the decision set D based on the observation Y.

Thus, a decision consists of two parts: first, the selection of a design ξ, and second, the

choice of a terminal decision d. It is assumed that the unknown parameters are θ ∈ Θ,

where Θ is the parameter space. The utility function is of the form U(d,θ, ξ,Y).

Denoting by π(·) a prior probability density, the expected utility of the best decision for

any design ξ is given by

U (ξ) =

∫
Y

max
d∈D

∫
Θ

U (d,θ, ξ,Y) π (θ | Y, ξ) π (Y | ξ) dθdY. (2-32)

The Bayesian solution to the experimental design problem is the design ξ∗ that maximizes

the equation (2-32):

U (ξ∗) = max
ξ∈Ξ

∫
Y

max
d∈D

∫
Θ

U (d,θ, ξ,Y) π (θ | Y, ξ) π (Y | ξ) dθdY. (2-33)

Thus, according to Chaloner & Verdinelli (1995) Lindley’s argument suggests that a

good way to design an experiment is to consider the design as a decision problem.

The procedure consists in choosing a utility function that can adequately describe the

objectives of the experiment and then selecting a design that maximizes the expected

utility. Thereby, the Bayesian solution is to find the best design and the best decision

rule that maximizes expected utility.

2.3.2. Bayesian Optimality Criteria for Linear Models

Consider the problem of choosing a design ξ for a normal linear regression model defined

in (2-2). Suppose that a prior distribution π(θ, σ2) on θ, σ2 is given such that the con-

ditional prior distribution π(θ | σ2) of θ given σ2 is N (µ, σ2R−1), where R is a given

positive definite p× p “precision” matrix.

Under the mentioned assumptions the posterior conditional distribution π(θ | Y, σ2) of

θ given Y, σ2 is normal with mean vector (Chaloner & Verdinelli 1995)

θ̂B = E(θ | Y, σ2) = (X TX + R)−1(X TY + Rµ) (2-34)

and covariance matrix σ2(X TX + R)−1 (see Appendix B).
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The expected gain in Shannon information is extensively used as a utility function

(Bernardo 1979). The Bayesian design is chosen to maximize the expected gain in Shan-

non information or, equally, maximize the expected Kullback-Leibler distance between

the posterior and the prior distributions (Chaloner & Verdinelli 1995):∫
log

π (θ | Y, ξ)
π (θ)

π (Y,θ | ξ) dθ dY. (2-35)

The prior distribution is not dependent on the design ξ. Therefore, the design ξ maxi-

mizing the expected gain in Shannon information is actually the design that maximizes

the following integral:

U1 (ξ) =

∫
log π (θ | Y, ξ) π (Y,θ | ξ) dθ dY. (2-36)

This integral represents the expected Shannon information of the posterior distribution.

In the normal linear regression model

U1 (ξ) = −p
2

log(2π)− p

2
+

1

2
log det{σ−2 (NM(ξ) + R)}. (2-37)

After dropping the constant and multiplier terms in Equation (2-37), we can obtain the

optimality criterion

Ψ1 (ξ) = det

{
M(ξ) +

1

N
R

}
= detMB(ξ) (2-38)

and it is known as Bayesian D-optimality criterion for linear models, where non-Bayesian

D-optimality maximizes the determinant of M(ξ) and Bayesian D-optimality maximizes

the determinant of MB(ξ), which does not depend on the prior value µ. When the sam-

ple size N is large or the matrix R corresponds to imprecise information, the difference

between a Bayesian design and its corresponding non-Bayesian one can be small.

The equivalence theory (Kiefer 1974) supplies a method for verifying the optimality of

any particular design. If ξ∗ is the optimal design, the support points will be at the

roots of the function d(ξ∗, x), where d(ξ∗, x) = f (x)T MB (ξ)−1 f (x) is the directional

derivative and f (x) are the “basis” functions of the linear model.

Theorem 2.3. (Equivalence Theorem). Let X be a compact set. If Ψ is convex

on M, the space of design information matrices, and differentiable at M(ξ∗), where ξ∗

is the optimal design, then the following three conditions are equivalent (Pilz 1991, p.

140) :

(i) The design ξ∗ ∈ Ξ is Bayesian D-optimal in Ξ if and only if

sup
x∈X

f (x)T MB (ξ)−1 f (x) = tr M (ξ∗)MB (ξ∗)−1 . (2-39)
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(ii) For all ξ ∈ Ξ and ξ∗ ∈ ΞB it holds

1 ≥ detMB (ξ∗)−1

detMB (ξ)−1 ≥ 1 + tr M (ξ)MB (ξ)−1 − sup
x∈X

f (x)T MB (ξ)−1 f (x) . (2-40)

(iii) The design ξ∗ ∈ Ξ can be Bayesian D-optimal in Ξ only if

supp ξ∗ ⊆
{
x ∈X : f (x)T MB (ξ)−1 f (x) = tr M (ξ∗)MB (ξ∗)−1

}
. (2-41)

The proof of Theorem 2.3 can be found in Pilz (1991, p. 140).

2.3.3. Bayesian Optimality Criteria for Nonlinear Models

Experimental design is usually more difficult to find in nonlinear models than in linear

models. The reason is that their Fisher information matrix usually depends on the un-

known parameters, which can not be separated as a simple multiplier.

In non-Bayesian designs, the parameters in the Fisher information matrix are usually

replaced by supposed values of the parameters, called “guesses” (Chernoff 1953). In the

Bayesian optimal design approach, the assumptions do not concentrate on single values.

Instead, a prior distribution is assigned to each unknown parameter. These distribu-

tions can be centered around the assumed parameter values. The Bayesian optimality

criterion is to minimize the Bayes risk by integrating the risk function over the prior

distribution (Chaloner & Verdinelli 1995).

The asymptotic approximations can be used for the nonlinear models since their exact

posterior distributions are often intractable. The normal approximation to the posterior

distribution is usually used. For a nonlinear model with unknown parameters θ, a design

ξ and a sample size of N , the expected Fisher information matrix is denoted by NI(ξ,θ),

where

I (ξ,θ) =

∫
X

[
∂

∂θ
η(x;θ)

] [
∂

∂θ
η(x;θ)

]T
dξ (x) . (2-42)

The maximum likelihood estimate of θ is denoted by θ̂. One normal approximation can

be written as

θ | Y, ξ ∼ N

(
θ̂,
[
NI
(
ξ, θ̂
)]−1

)
, (2-43)

where NI
(
ξ, θ̂
)

is the observed Fisher information matrix inserting θ̂. In (2-43) the

posterior normal approximation only depends on the data through θ̂.
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If using this approximation in the Equation (2-36), U1(ξ) can be written as

U1 (ξ) = −p
2

log (2π)− p

2
+

1

2

∫
log det {NI (ξ,θ)} π (θ) dθ. (2-44)

The Bayesian optimality criterion can be obtained dropping the constant and multiplier

terms in Equation (2-44)

Ψ1 (ξ) =

∫
log det {NI (ξ,θ)} π (θ) dθ, (2-45)

and it is known as Bayesian D-optimality criterion for nonlinear models, where Bayesian

D-optimality maximizes the criterion Ψ1 (ξ).

In the general case, using normal approximation can be written Bayesian optimality

criterion as

ΨB (ξ) =

∫
Φ {NI (ξ,θ)} π (θ) dθ, (2-46)

where Φ {· · · } corresponds to the convex functional, defined in the set of expected Fisher

information matrices.

In order to examine whether a given design is Bayesian D-optimal or not, we use an

equivalence theorem given in Dette & Neugebauer (1997), which characterizes Bayesian

D-optimal design for nonlinear models.

Theorem 2.4. Let Ξ be not empty and |Ψ1 (ξ)| < ∞ for all ξ ∈ Ξ, then the following

conditions are equivalent:

(i) a design ξ∗ ∈ Ξ is Bayesian D-optimal within the class Ξ;

(ii) ξ∗ minimizes maxx∈X d (ξ, x);

(iii) maxx∈X d (ξ∗, x) = p, where

d (ξ, x) =

∫
Ω

f (x,θ)T I (ξ,θ) f (x,θ) π (θ) dθ (2-47)

and

Ξ :=

{
ξ | max

x∈X

∫
Ω

f (x,θ)T I (ξ,θ) f (x,θ)π (θ) dθ <∞
}
. (2-48)

The proof of Theorem 2.4 follows directly from Chaloner & Larntz (1989).
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2.4. Minimization Algorithms

The Bayesian methods for optimal design require numerical optimization and integration

because the searching the optimum of the Bayesian optimality criteria ΨB (ξ) cannot be

performed analytically. Therefore we need to use the corresponding software to find such

optimal designs. There are a lot of optimization algorithms. Three iterative algorithms

are presented here.

2.4.1. Linearization Method

The Gauss-Newton method is a commonly used iterative linearization method for min-

imizing an objective function. In our case, an optimality criterion is minimized. Given

(Lange 2010)

ξ(0) =

{
x0

1 . . . x0
n

w0
1 . . . w0

n

}
, (2-49)

as an initial design, a Taylor series expansion is used to approximate the optimality

criterion as follows:

Ψ(ξ) ≈ Ψ(ξ(a)) + ∆(a)(ξ − ξ(a)), (2-50)

where ∆(a) is the gradient of the criterion Ψ in the point ξ(a) in the direction (ξ − ξ(a)).

This direction is chosen with the objective of achieving the maximum decrease of the

criterion, Ψ(ξ) to obtain δ(a) = ξ − ξ(a). The algorithm sequentially computes approxi-

mations, ξ(1), ξ(2), . . . , where ξ(a+1) = ξ(a) + δ(a), until the value of δ(a) is negligible and

Ψ(ξ(a)) is minimized. The last iteration provides the optimal design ξ∗.

This algorithm is available using R software through some command lines as nlm, nlminb

and optim. These commands are included in the R Stats Package that is available in the

R standard installation (Team 2018). The nlm command carry out a minimization of

the function using a Newton-type algorithm. The nlminb command allows to make an

unconstrained and box-constrained optimization using PORT routines and finally optim

command makes optimization of the function based on several methods (quasi-Newton,

conjugate-gradient and Nelder-Mead algorithms) (Team 2018).

2.4.2. Direct Search Algorithm

The simplex algorithm by Nelder & Mead (1965) is one of the most well-known algo-

rithms for unconstrained multidimensional optimization without derivatives. It can be

employed for discontinuous function problems that are common in statistical research.

It is often used for statistical parameter estimation problems when the function values

are uncertain or noisy (Parker & Gennings 2008).
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The Nelder-Mead method is simplex -based. A simplex S ∈ Ru is defined as the convex

hull of u+ 1 vertices x0, x1, . . . , xu ∈ Rn. For example, a simplex in R2 is a triangle, and

a simplex in R3 is a tetrahedron.

A simplex-based direct search method begins with a set of u+1 points x0, x1, . . . , xu ∈ Ru

considered to be the vertices of a working simplex S and the corresponding set values

of the evaluation function at those vertices (Nelder & Mead 1965). The initial working

simplex S does not have to be degenerate, i.e., the points x0, x1, . . . , xu should not be

in the same hyperplane. Then, the process executes a transformation sequence of the

working simplex S in order to reduce the values of the function at its vertices. The trans-

formation is tested in each phase by calculating the function values at one or more test

points and comparing them with those at the vertices. This process is stopped when the

working simplex S becomes sufficiently small and fulfills the test criterion. The points

of the final simplex are proposed as optimal search points.

The Nelder-Mead method can be used in the optimal design theory to find the optimal

design. First, the user must specify starting values for design support points, x0
i , and

their weights, w0
i , to form an initial simplex, where i = 1, 2, . . . , n. The design criterion,

Ψ(x,w), is evaluated in these initial points and weights. Then the simplex moves to-

wards the minimum of the criterion in the 2n-dimensional space, following a set of rules

until convergence. The design criterion values, Ψ(x,w), are calculated and compared in

each step of this iterative process. The values of x and w, which correspond to the found

minimum value of the criterion, form the optimal experimental design ξ∗.

This algorithm is available through command lines such as nelminb and neldermead in

R software (Team 2018) with the packages adagio (Borchers 2018) and nloptr (Ypma,

Borchers & Eddelbuettel 2014) respectively.

2.4.3. Differential Evolution Algorithm

Differential Evolution (DE) algorithm is a stochastic, population-based optimization

method minimizing an objective function that was introduced by Storn & Price (1997).

DE belongs to the class of genetic algorithms (GAs) which are inspired by the princi-

ple of natural evolution and have advantages over traditional methods of optimization

(Holland 1992).

DE approach can be used to find approximate solutions to such problems where objec-

tive functions are non-differentiable, non-continuous, nonlinear, noisy, flat, multidimen-

sional or have many local minima, constraints or stochasticity. This approach eliminates

the need for explicit consideration of a set of initial points and can be used in highly
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constrained regions. Instead of the point-to-point search in traditional methods, this

algorithm moves from one population to another and thus traverses the design space in

many directions simultaneously, thus preventing local optimum from occurring.

The DE algorithm is an iterative optimization procedure like GAs using the similar three

main types of operators at each step to create the next generation from the current

population:

• Selection operators select the individuals, called parents, that contribute to the

population at the next generation.

• Crossover (recombination) operators combine two parents to form children for the

next generation.

• Mutation operators apply random changes to individual parents to form children.

The main difference is that the genetic algorithms are based on the crossover (recombi-

nation), while the DE is based on the mutation operation as a search mechanism.

The DE algorithm begins with a relatively large population that is randomly created

at the start. Then, mutation, crossover, and selection operations are iteratively applied

to the population in order to improve individual fitness of the individuals. Fitness can

be evaluated by the value of a suitable objective function. In our case, this objective

function is the design optimality criterion, Ψ, and the individuals are possible optimal

designs. Finally, these iterative procedures converge to the global optimum regardless of

the complexity of this objective function and the initial design.

The DE algorithm is available with the package DEoptim (Mullen, Ardia, Gil, Windover

& Cline 2016) in R software through command line as DEoptim (Team 2018). Cardona,

López & Correa (2012) implemented this DE algorithm for the construction of Bayesian

D-optimal designs for parameters estimation in pharmacokinetics maximizing the ex-

pected utility.

The GA is a stochastic optimization method so that in the limited number of iterations,

it hardly achieves the exact optimum. It can, however, usually reach near optimum.

Hamada, Martz, Reese & Wilson (2001) used GAs to find near-optimal Bayesian design

for several regression models. The found near-optimal design points can, therefore,

be used as the starting points for other local optimization algorithms. Concerning our

problem, the near-optimal design points of the GAs can be used as starting points, x0, for

the initial design of the Nelder-Mead algorithm to avoid the local optimum getting stuck.

Zhang (2006) implemented a hybrid method combining a GA and a local optimization

algorithm to find Bayesian D-optimal design for generalized linear models.



3. Penalized Optimal Designs

Desirability functions have been mainly implemented in the manufacturing and indus-

trial sectors. They are used by engineers to optimize product quality as the most

popular way to analyze several results simultaneously (Wu 2005, Becerra Rodŕıguez,

Zitzumbo Guzmán, Domı́nguez Domı́nguez, Garćıa Alcaraz & Alonso Romero 2014).

However, the desirability functions usually are not used in statistical procedures, partic-

ularly in the construction of optimal designs. This chapter contains basic information

about desirability functions and how to use them to obtain penalized optimal designs.

Section 3.1 provides a summary of the desirability function theory used in this disser-

tation. This summary is based on the works of Harrington (1965), Derringer & Suich

(1980), and Gibb (1998). The desirability function concept and methodology of its use for

optimizing quality characteristics were developed by Harrington (1965), and later they

were modified by Derringer & Suich (1980). Finally, the application of this methodol-

ogy was extended by Gibb (1998) introducing continuous and differentiable desirability

functions.

Section 3.2 presents an approach of penalized optimal design strategy using desirability

functions. This strategy enables the researcher to determine the specific characteristics

of the experimental design, which are considered important from a practical perspective.

As a result, the obtained design fulfills traditional optimal design criteria and also prac-

tical preferences imposed by a researcher. The penalized optimal criterion is described

and supported in Section 3.3. The methodology of choosing the appropriate desirabil-

ity functions is presented in Section 3.4, and it is also illustrated by an example of the

Michaelis-Menten model in Section 3.5. This example describes the detailed steps to fol-

low for obtaining the penalized optimal design with desired experimental characteristics.

3.1. Desirability Functions

Researchers in many areas of science are faced with the problem of simultaneously im-

proving multiple responses that depend on a common set of controllable variables. Desir-

ability optimization methodology addresses this problem. Harrington (1965) developed

the concept of a desirability function to solve a multivariate optimization problem. This
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concept combines the responses of several factors into a single function in order to opti-

mize the outcome of a process.

Responses of each factor, Xi, i = 1, 2, . . . , k, are converted to a dimensionless, ordinal

measure di, 0 ≤ di ≤ 1, where a value of 0 indicates that the response is undesirable and

a value of 1 denotes a desirable response. According to Harrington (1965) an abbreviated

summary of Harrington’s guidelines for associating Xi with di is provided in Table 3-1.

Table 3-1.: Abbreviated version of Harrington’s guidelines for transforming levels of Xi

to the desirability scale.

di Quality Equivalent

1.00 The highest quality

1.00 - 0.80 Acceptable and excellent

0.80 - 0.63 Acceptable and good

0.63 - 0.40 Acceptable but poor

0.40 - 0.30 Borderline

0.30 - 0.00 Unacceptable

0.00 Completely unacceptable

The index i represents the ith desirability function or the ith response of interest. The

shape of the desirability function is determined by whether one is trying to maximize or

minimize the response or target a range of values.

The “target” desirability function is designed for cases where lower and upper “specifi-

cation limits” exist, denoted by Xi,min and Xi,max, respectively. The goal is to maintain

Xi within these limits. A trivial “target” desirability function is given by

di =

{
1 Xi,min < Xi < Xi,max

0 otherwise.
(3-1)

This trivial desirability function has two shortcomings. First, a discrete change in desir-

ability at the specification limits is not realistic. Second, this function does not account

for uncertainty in the estimated response. Harrington (1965) formulated a more practical

desirability function given by

di = exp

(
−
∣∣∣∣2Xi − (Xi,max +Xi,min)

Xi,max −Xi,min

∣∣∣∣νi) . (3-2)
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The parameter νi, 0 < νi <∞, is specified by the researcher to control both the slope of

di and the interval over which di ≈ 1. As νi →∞, di converges to the trivial desirability

function.

Harrington’s “bigger-is-better” and “smaller-is-better” desirability functions are appli-

cable where a single “specification limit” exists. The goal is for Xi, or −Xi depending

on the problem, to be above this limit. Harrington (1965) considered the smooth shape

more appropriate. He formulated this shape using a special form of the Gompertz growth

curve

di = exp (− exp (− (ai + biXi))) , (3-3)

where ai and bi are specified so that di = 1/e at the specification limit and the slope

reflects the rate at which quality is affected by the level of the response.

Each single desirability function can then be combined into composite desirability, which

allows the simultaneous consideration of multiple constraints. Harrington (1965) em-

ployed the geometric mean of individual desirability functions to define the overall de-

sirability of the combined factors:

D = (d1 × d2 × · · · × dk)1/k . (3-4)

By defining overall desirability as a geometric mean, Harrington (1965) transformed the

multivariate optimization problem to a univariate maximization problem. Since the ge-

ometric mean heavily weights small di, this approach avoids factor levels unfavorable to

even a single response. It is clear that if any individual desirability function di is zero,

the overall desirability D will also be zero.

Derringer & Suich (1980) extended the methodology of Harrington by defining flexi-

ble, piecewise-continuous “bigger-is-better”, “smaller-is-better” and “target” desirability

functions with shape parameters specified by a user. For the “bigger-is-better” case, di
increases as Xi increases and is employed when Xi is to be maximized and defined as

di =


0 Xi < Xi,min(

Xi−Xi,min

Xi,max−Xi,min

)si
Xi,min < Xi < Xi,max, si > 0

1 Xi > Xi,max

.

(3-5)

and graphed in Figure 3-1(a).

The value Xi,min gives the minimum acceptable value of Xi. The value Xi,max gives the

highest value of Xi. The value of si used in the transformation would again be specified

by the user. Figure 3-1 indicates a large value of si would be specified if it were very
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Figure 3-1.: (a) “Bigger-is-better” desirability function in (3-5) and (b) “smaller-is-

better” desirability function in (3-6).

desirable for the value of Xi to increase rapidly above Xi,min. Xi must be considerably

greater than Xi,min. On the other hand, a small value of si would be specified if having

values of Xi considerably above Xi,min were not of critical importance.

For the “smaller-is-better” case, di decreases as Xi increases and is employed when Xi

is to be minimized y defined as

di =


1 Xi < Xi,min(

Xi−Xi,max

Xi,max−Xi,min

)ti
Xi,min < Xi < Xi,max, ti > 0

0 Xi > Xi,max,

.

(3-6)

and graphed in Figure 3-1(b).

The value Xi,max gives the maximum acceptable value of Xi. The value Xi,min gives the

lowest value of Xi. The value of ti used in the transformation would again be specified

by the user. The values of ti in the “smaller-is-better” function play the similar role as

si does in the “bigger-is-better” function.

The “target” desirability function is employed when there are lower and upper “specifi-

cation limits” designated Xi,min and Xi,max respectively, where ci is the target response.

The user-specified shape parameters, si and ti, determine the exact form of the desir-
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Figure 3-2.: “Target” desirability function in (3-7).

ability function as shown in Figure 3-2 and defined as

di =


0 Xi < Xi,min, Xi > Xi,max(

Xi−Xi,min

ci−Xi,min

)si
Xi,min < Xi < ci, si > 0(

Xi−Xi,max

ci−Xi,max

)ti
ci < Xi < Xi,max, ti > 0.

.

(3-7)

The value selected for ci would be that value of Xi, which was most desirable and could

be selected anywhere between Xi,min and Xi,max. The values of si and ti in the “target”

desirability function play much the same role as si does in the “bigger-is-better” function.

Derringer (1994) suggested employing a weighted geometric mean, as an extension of the

overall desirability. This mean allows each individual desirability function to be assigned

different importance. The weighted overall desirability has the following form, in which

an exponent, wj weights each of the k responses by importance:

D = (dw1
1 × dw2

2 × · · · × d
wk
k )1/

∑k
j=1 wj . (3-8)

Del Castillo, Montgomery & McCarville (1996) noted difficulties applying Derringer and

Suich’s desirability functions with common software applications, such as the electronic

spreadsheet, which use gradient-based optimization algorithms because Derringer and

Suich’s di contain nondifferentiable points. They solved the problem by redefining di in
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Figure 3-3.: Plots of the smooth “target” desirability function in (3-9).

nondifferentiable neighborhoods with cubic splines.

Gibb (1998) solves this problem differently by extending the desirability function method-

ology to comprise continuous and differentiable desirability functions. The responses of

each factor are converted into a continuous and differentiable function with a range from

0 to 1. Gibb proposed the normal and logistic densities as reasonable candidates for

desirability functions.

The desirability function defined in

di = exp

(
−1

2

(
Xi − ai
bi

)2
)

(3-9)

serves as a continuous, differentiable “target” desirability function. The parameter ai is

the target response level and the parameter bi controls the function spread. To facilitate

the specification of bi, the parameter bi is defined in terms of two other parameters, δi
and γi as given in

bi =
δi√

−2 log(γi)
, γi ∈ (0, 1). (3-10)

Under this parametrization di = γi when Xi = ai ± δi.
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Figure 3-4.: Plots of (a) the smooth “bigger-is-better” desirability function in (3-11)

and (b) the smooth “smaller-is-better” desirability function in (3-14).

Figure 3-3 presents plots of the smooth “target” desirability function, where ai = 5,

γi = 0.05, δi = 2 (solid line) and δi = 4 (dashed line). It observes that the interval width

of desirability function increases as δi increases.

Gibb proposed the logistic cumulative distribution function (CDF) for the “bigger-is-

better” desirability function:

di =

(
1 + exp

(
−Xi − ai

bi

))−1

, (3-11)

where

ai =
Xi,max +Xi,min

2
(3-12)

and

bi =
Xi,max −Xi,min

2 log

(
1− γi
γi

) , γi ∈ (0, 1). (3-13)

Under this parametrization di(Xi,min) = γi and di(Xi,max) = 1− γi.

Figure 3-4(a) presents plots of the smooth “bigger-is-better” desirability functions, where

ai = 5, γi = 0.05, (Xi,max, Xi,min) = (2, 8) (solid line) and (Xi,max, Xi,min) = (4, 6) (dashed

line). It observes that the slope of desirability function increases as the difference be-

tween Xi,max and Xi,min decreases.
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The “smaller-is-better” or minimizing desirability function is obtained by simply chang-

ing the sign of the exponential argument in the logistic CDF, having the resulting form

di =

(
1 + exp

(
Xi − ai
bi

))−1

. (3-14)

In such a case, the roles of Xi,min and Xi,max are reversed. Figure 3-4(b) presents plots

of the smooth “smaller-is-better” desirability functions. It is observed that the slope of

desirability function increases as the difference between Xi,max and Xi,min decreases.

An asymmetric “target” desirability function can be constructed as a product of a

“bigger-is-better” desirability function (3-11) and a “smaller-is-better” desirability func-

tion (3-14): di(target) = di(max)×di(min) (Gibb 1998). This procedure allows to incorporate

asymmetry into the desirability function.

3.2. Use of Desirability Functions in Optimal Designs

The optimal design theory can produce inadequate designs from a practical point of

view that can create conflict with common laboratory practice or other conventional

guidelines. Parker (2005) proposed to combine optimal design theory with desirability

functions integrating desired experimental characteristics into an optimal design.

An overall desirability function, D(x,w) = (d1 × d2 × · · · × dk)1/k, is defined in (3-4),

for any k experimental design preferences as functions of the support points, x, and their

weights, w. The function (1−D(x,w)) is designated as the penalty function, where its

value of 1 indicates an experimental design with undesirable properties.

Let Ψ(x,w) be an “alphabetic” optimality criterion for example, D-optimality criterion.

The penalty function, (1 − D(x,w)), is added to the optimality criterion to penalize

experimental designs. A user specified positive constant, Λ, is required to bring these

two functions to similar scales, since the minimum value of the “alphabetical” optimal-

ity criterion is numerically small, while the penalty function has a range from 0 to 1.

This constant can also control the penalty weight, relative to the minimum optimality

criterion. Parker (2005) proposed to find a penalized optimal design by minimizing the

new criterion

ΨP (x,w) = Ψ(x,w) + Λ(1−D(x,w)) (3-15)

with respect to x and w for a given value of Λ.

The iterative optimization algorithms, described in Section 2.4, are used to evaluate x

and w values that minimize the new criterion (3-15), given a value of Λ. The initial value
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of Λ is selected as Λ0 = |min {Ψ(x,w)}|, the absolute minimum value of the considered

“alphabetic” optimality criterion, e.g. the D-optimality criterion. Penalized optimal

designs are generated by minimizing the penalized optimal criterion (3-15) for values

of Λ in multiples o submultiples of Λ0. The final value of Λ is selected in the range

in which stability is shown in the responses of the overall desirability function. The

penalized optimal design obtained is determined by the x and w values associated with

the minimum value of the penalized optimal criterion (3-15) for a value of Λ in this

range. The resulting penalized optimal design is optimal according to the “alphabetic”

design criterion and also has the desired practical characteristics.

3.3. Justification of New Criterion

Penalized optimal designs are obtained by minimizing the penalized optimal criterion

(3-15) with respect to ξ ∈ Ξ for a given value of Λ > 0, i.e.,

ξ∗P = arg min
ξ∈Ξ

ΨP (ξ) = arg min
ξ∈Ξ
{Ψ (ξ) + Λ (1−D (ξ))} . (3-16)

The first term of the penalized optimal criterion in (3-16) represents an “alphabetic”

optimality criterion for example, the D-optimality criterion, Ψ (ξ) = − log det {M (ξ)},
that is a monotone and convex function (Fedorov & Leonov 2013, p. 61). The second

term of the penalized optimal criterion in (3-16) is a bounded function between 0 and

Λ (Harrington 1965), which is a penalty function representing constraints applied to

the D-optimal designs, where Λ is a user-specified positive parameter that controls the

balance between the overall desirability (or penalty) and optimality.

Minimization of the criterion (3-16) is similar to the constrained optimization of a

scalar-valued objective function of several variables using Lagrange multipliers (Gavin

& Scruggs 2012), where the objective function is modified by adding terms that describe

the constraints. Thus, the search for the penalized D-optimal design can be considered

as the minimization of the D-optimality criterion with respect to ξ ∈ Ξ subject to the

restrictions through an overall desirability function, D (ξ), for a given value of Λ.

In general, the penalized optimal criterion in (3-16) is not a convex function of ξ ∈ Ξ (X ).

However, this criterion is quasiconvex, i.e.,

ΨP [αξ1 + (1− α) ξ2] ≤ max {ΨP (ξ1) ,ΨP (ξ2)} , 0 ≤ α ≤ 1; (3-17)

see Fedorov & Leonov (2013, p. 113). For quasiconvex functions, most results used in

convex optimization stay valid (Avriel 2003, ch. 6.1). This fact determines the possibility

of finding the global minimum of the penalized optimal criterion (3-15).
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3.4. Choice of Desirability Functions for Optimal

Designs

The criterion of penalized optimality is based on desirability functions that summarize

the preferences of a researcher in the experimental design. The proposed technique may

include any design feature, that may be adjusted by defining some suitable desirabil-

ity functions. We discussed the choice of appropriate desirability functions involved in

obtaining penalized optimal designs with desirable characteristics in detail in the paper

Rudnykh & López-Ŕıos (2018).

Initially, the non-penalized optimal design is analyzed. The amount of individual desir-

ability functions is determined by the user, who chooses the number of required restric-

tions on the design. The design

ξ =

{
x1 . . . xn
w1 . . . wn

}
, (3-18)

is characterized by n points xi called support points of design and their respective weights

wi. Therefore, the restrictions can be applied to support points and their weights.

One of the common undesirable inconveniences of the optimal design is related to the

range of experimentation; for example, the maximum support point is outside the region

of experimental interest. The search region for the support points of design can be re-

stricted by using suitable desirability functions described in Section 3.1. If large values

of x are undesirable, a decreasing function is chosen. For example, the desirability func-

tions defined in (3-6) and (3-14) can be selected as possible candidates for this purpose.

If small values of x are undesirable, an increasing function is chosen and the desirability

functions defined in (3-3), (3-5) and (3-11) are appropriate in this case. If both small

and large values of x are not desirable, then the desirability function has a bell shape

(not necessarily symmetric). The “target” desirability functions defined in (3-2), (3-7)

and (3-9) reflect this practical concern. The user-specified maximum and minimum val-

ues of x help to define the explicit forms of the respective desirability functions. It is

recommended to plot the resulting desirability function to check levels of x.

Another undesirable inconvenience of optimal design is related to the support points

spacing. Accuracy constraints in the experimental method imply the minimum accept-

able spacing between adjacent design points. In this case, the small values of this spacing

are undesirable; therefore an increasing desirability function is chosen. The user-specified

maximum and minimum values of the acceptable spacing between adjacent design points

help to define the explicit form of this desirability function. A logistic function (3-11) can

be used as a possible candidate to generate the required desirability functions (Parker &
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Gennings 2008), but other functions can be used to obtain the appropriate form. This

fact can be verified by plotting them.

Preferences for the number of observations per design point is related to the weights wi
associated with the support points. The number of observations at each point should

be sufficient to estimate variability within them. A reasonable number of observations

is defined for the design point of interest, taking into account the total sample size of

the experiment. The “bigger-is-better” desirability function defined in (3-3), (3-5) and

(3-11), or increasing function, reflects that the allocation of less than this reasonable

number of observations to the design point is unacceptable. If the number of observa-

tions in the design point is restricted to a range of values, then the “target” desirability

function defined in (3-2), (3-7) and (3-9) is used in this case. The exact shape of desir-

ability functions can be obtained by defining the user-specified minimum and maximum

values of the number of observations at the given point.

The nonlinear model of study may contain one or more threshold parameters used for

defining two, or more, model regions. Researchers can be interested in placing a certain

number of design points in each region, or a certain percentage of the sample, in assessing

the model fitting.

The desirability function for the percentage of design points in the interest region, for

validation purposes, can be a “target” desirability function defined in (3-2), (3-7) and

(3-9) and has a bell shape (not necessarily symmetric). Yeatts et al. (2012) used an

asymmetric “target” desirability function to place certain dose groups below the inter-

action threshold. This desirability function can be constructed by multiplying a set of

logistic functions to obtain the resulting desirability function di(target) = di(max) × di(min)

(Gibb 1998), where di(max) is a maximizing desirability function defined in (3-11), and

di(min) is a minimizing desirability function defined in (3-14). This allows the researcher

to deal with asymmetric desirability functions. The appropriate numbers of design points

above and below the interaction threshold are defined to evaluate the model fitting. The

candidate design points are displaced through appropriate desirability functions. The

user-specified maximum and minimum values of these design points help to define the

explicit forms of the respective desirability functions.

The desirability function that defines the sample proportion below the threshold restricts

the weights of the points in this region. To ensure the model fitting in this region, it

is essential that the design allocates a sufficient amount of sample points below this

threshold. This desirability function can be a “target” desirability function that lim-

its a desirable number of observations above or below the interaction threshold (Yeatts

et al. 2012). The permissible maximum and minimum weight values of the points in this
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region help to define the explicit forms of the respective desirability functions.

In conclusion, the recommended steps to fulfill a specific design restriction are summa-

rized as follows:

1. Initially, identify the characteristic that is subject to restriction according to the

experimental design preferences.

2. Then, define the restriction according to the design preferences set by the researcher

(maximize or minimize the characteristic, or target a range of its values).

3. Next, determine the range of acceptable values of this characteristic according to

the design preferences.

4. To restrict this characteristic, select the appropriate desirability function among

the functions described in Section 3.1.

5. Determine the explicit form of the appropriate desirability function according to

the given restriction by replacing the permissible maximum and minimum values

of this characteristic.

6. In order to verify the desirability levels of restricted characteristics of interest, it is

recommended that the resulting desirability functions be plotted before they are

used in the penalized optimal design strategy.

The penalized optimal design technique using desirability functions, as described in

Section 3.2, is illustrated with the example of the nonlinear model proposed by Michaelis

and Menten (Bates & Watts 1988, p. 33).

3.5. Example: Michaelis-Menten Model

The Michaelis-Menten model is one of the most widely used models in pharmacology,

biology, and medical research. It is commonly used to describe saturation functions for

numerous physical and biological phenomena.

The Michaelis-Menten model for enzyme kinetics relates the initial “velocity” of an

enzymatic reaction to the substrate concentration x through the equation (Bates &

Watts 1988, p. 33)

η(x; θ) =
θ1x

θ2 + x
, x ≥ 0, θ1 > 0, θ2 > 0, (3-19)

where η is the predicted reaction rate, θ1 is the ultimate velocity parameter and θ2 is the

half-velocity parameter. Nonlinear least-squares provide the following estimation of the
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Figure 3-5.: Plot of the Michaelis-Menten model given in (3-19), where θ̂1 = 212.68 and

θ̂2 = 0.064.

parameters of the Michaelis Menten model: θ̂1 = 212.68 and θ̂2 = 0.064. The expected

Michaelis-Menten model shape is presented in Figure 3-5 .

The problem of designing experiments for the Michaelis-Menten model has studied by

many researchers (see, e.g., López-Fidalgo & Wong (2002); Dette & Biedermann (2003);

Trandafir & López-Fidalgo (2004); Dette, Kiss & Wong (2008); López-Fidalgo, Tommasi

& Trandafir (2008); Dette & Kunert (2014)). It was demonstrated that the D-optimal

design for this model is supported on two points and has equal weights at these points.

Iterative algorithms described in Section 2.4, are used to determine the D-optimal design

for the Michaelis-Menten model given in (3-19), that minimize theD-optimality criterion.

The resulting locally D-optimal design using the estimations of the unknown parameters

is obtained as

ξ∗D =

{
0.064 2.056 · 1013

0.5 0.5

}
. (3-20)

This design was obtained without taking into account an upper bound of x; therefore

the maximum support point has a very large value according to the required compu-

tational precision. Thus, this point provides little information about the model curve

(see Figure 3-5) and does not aid in the detection of a concentration-velocity in the low

concentration region. In practice, an upper bound is usually placed on the substrate
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concentration (López-Fidalgo & Wong 2002, Dette et al. 2008), although theoretically, x

is positive and unbounded. As an alternative approach to truncation, we use a desirabil-

ity function technique to generate experimental designs with good statistical inference

properties and practical characteristics defined by a researcher.

Given impractical features of the D-optimal design (3-20), a researcher wants to obtain

a more practical design, such as one with the following features: three support points,

where the first support point x1 = 0 with 50% of observations with total sample size 20,

the maximum design point within the region of experimental interest, and the minimum

difference between adjacent design points at least 0.1 concentration units apart.

Initially, the control point (third point) is added, and the following augmentation D-

optimal design is obtained:

ξ∗A =

{
0 0.064 8.40 · 108

0.0050 0.4975 0.4975

}
. (3-21)

The control point of this augmentation D-optimal design has a very small weight. A

penalized-optimal design strategy is developed using three desirability functions. The

function d1 determines the minimum number of observations in the control point, the

function d2 defines the placement of the maximum design point within the research re-

gion, and the function d3 characterizes the minimum difference between adjacent design

points.

Considering the total size of the sample of 20 observations with a three-point design, it

is reasonable to assume that at least six observations should be assigned to the control

group, i.e., r1,min = 6 and r1,max = 10. Substituting these values of r1 in (3-5), the

explicit form of the “bigger-is-better” desirability function is obtained:

d1 (r1) =


0 r1 ≤ 6(

r1−6
4

)4
6 < r1 ≤ 10

1 r1 > 10.

(3-22)

A large value of power s1 = 4 indicates that it is very desirable for the value of r1 to

increase rapidly above r1,min = 6. A plot of this desirability function, shown in Figure

3-6(a), confirms that assigning less than six observations to the control point is not

acceptable.

Figure 3-5 shows that the concentration-velocity curve plateaus around 3; therefore, the

maximum design point provides little information about this curve. Thus, it is reasonable

that a researcher would consider a maximum concentration greater than 3 unacceptable.
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Figure 3-6.: Plots of desirability functions: (a) d1 (r1), (b) d2 (x3) and (c) d3 (diff).

The desirability function of the Gompertz form (3-3), described by Harrington (1965),

reflects this practical interest:

d2 (x3) = 1− exp (− exp (9.25− 6.15x3)) , (3-23)

where a2 = −9.25 and b2 = 6.15 are specified such that d2 (3) = 0.0001 ∼= 0 and

d2 (1.5) = 1−1/e = 0.63212. A plot of this desirability function, shown in Figure 3-6(b),

exhibits that the maximum design point, x3, is considered undesirable as it approaches 3.

In order to keep the appropriate concentration points spaced from a practical perspective,

it is assumed that the adjacent concentration points would be optimally separated by

at least 0.1 units of concentration. The function of desirability based on the logistic

function (3-11), the smooth “smaller-is-better” desirability function proposed by Gibb

(1998)

d3 (diff) =
1

1 + exp (− (diff− a3) /b3)
, (3-24)

where the parameter a3 is an average of the upper (diffmax) and lower (diffmin) bounds

of the response level being targeted, b3 controls the function spread, and γ3 is such that

d3 (diffmin) = γ3 and d3 (diffmax) = 1− γ3.

If γ3 = 0.05 and diffmin = 0.01, diffmax = 0.19, then the desirability function d3 (diff) has

the form (3-24). A plot of this desirability function, shown in Figure 3-6 (c), shows that

the minimum difference between two adjacent design points is considered undesirable

when approaching a 0.1 units of concentration.
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Figure 3-7.: Plots of penalized optimal design responses from the lth submultiple.

The overall desirability function of the form given in (3-4), is defined by

D1(ξ) = (d1 × d2 × d3)
1
3 . (3-25)

The Nelder-Mead direct search algorithm (Nelder & Mead 1965) is used in R-project

(Team 2018) to minimize the penalized D-optimal criterion

− log {det M (ξ)}+ lΛ0 (1−D1(ξ)) (3-26)

for the Michaelis-Menten model given in (3-19), where Λ0 defines an absolute value of the

minimum non-penalized D-optimal criterion. Computer code implemented in R-project

(Team 2018) to generate penalized D-optimal designs may be found in Appendix B.

Below are the steps to follow to obtain the penalized D-optimal design:

1. Λ0 is determined by minimizing the penalized D-optimal criterion (3-26) for l = 0.

In this case Λ0 = |min {− log {det M (ξ)}}| = 12.04841.

2. Penalized D-optimal designs are generated by minimizing the penalized D-optimal

criterion (3-26) for different values l = 0.01, 0.02, . . . , 1.

3. Penalized optimal design responses from the lth submultiple are plotted to observe

their behavior. Figure 3-7 graphically presents the responses of the generalized

variance (GV) of θ̂, D1, x2, r1 and x3 of the penalized optimal designs from the

lth submultiple.
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Table 3-2.: Experimental designs for the Michaelis-Menten model given in (3-19) and

generalized variance.

x1 x2 x3

Design type (r1) (r2) (r3) GV of θ̂

D-optimal 0 0.064 2.056 · 1013 1.45 · 10−8

(0) (10) (10)

Equal spaced 0 0.60 1.20 2.35·10−6

(10) (5) (5)

Penalized optimal 0 0.127 1.278 1.09·10−7

(10) (5) (5)

4. The final value of l is selected within the range corresponding to the stability

exposed in the responses of the overall desirability function. Figure 3-7(a) shows

that the desirability function responses become stable in the range of l = 0.20.

Furthermore, when l = 0.20, the practical design characteristics improve with an

acceptable increase in the generalized variance of θ̂.

It is important to note that it is not essential to know the exact final value of l, as penal-

ized optimal designs are similar within the stability range of overall desirability function

responses.

A penalized optimal design from this range is

ξ∗penal =

{
0.0 0.127 1.278

10 5 5

}
. (3-27)

This penalized optimal design exhibits the desirable practical properties as three differ-

ent design points separated by at least 0.1 concentration units, and the first support

point contains 50% of all observations, i.e., ten observations.

An alternative way to include desired constraints might be to limit the experimental re-

gion to [0, 1.2] and place the three design points separated by the same distance. Thus,

the design of the equally spaced points is obtained.

Table 3-2 presents the three different experimental designs for the Michaelis-Menten

model, defined in (3-19) and their respective variances of the estimated parameters. It

is noted that the smallest variance has the D-optimal design. Although the penalized

design has a small increase in the variance of the estimated parameters as compared

to D-optimal design, it has the practical characteristics desired by the researcher and
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Figure 3-8.: Comparison of the functions of desirability: (a) d1 (r1) and d4 (r1); (b)

d2 (x3) and d5 (x3).

represents an improvement in terms of the generalized variance of θ̂ over the equally

spaced design, which is arbitrarily chosen.

The penalized optimal design (3-27) was generated using the individual desirability func-

tions d1, d2 and d3, defined in (3-22), (3-23) and (3-24) respectively. However, these

desirability functions are not unique to reflect similar desirability. Sensitivity to select

appropriate desirability functions has been tested by considering other functions of dif-

ferent shapes but with the same desirability requirements.

The logistic function, the form of the “bigger-is-better” or maximizing desirability func-

tion, defined by Gibb (1998) was used to restrict the minimum size of the control point.

Replacing the upper and lower limits of r1 in (3-11), (3-12) and (3-13), the explicit form

of this desirability function is

d4 (r1) =
1

1 + exp (− (r1 − 9) /0.34)
. (3-28)

It expresses similar desirability of the function d1 that restricts control group around

50% of all observations, see Figure 3-8(a).

The “smaller-is-better” desirability function

d5 (x3) =

{ (
3−x3

3

)2
x3 ≤ 3

0 x3 > 3
(3-29)
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Table 3-3.: Penalized optimal designs using the Michaelis-Menten model given in

(3-19) and generalized variance.

Desirability x1 x2 x3

function (r1) (r2) (r3) GV of θ̂

D1 0 0.127 1.278 1.09·10−7

(10) (5) (5)

D2 0 0.126 1.279 1.08·10−7

(10) (5) (5)

D3 0 0.110 0.978 1.10·10−7

(10) (5) (5)

D4 0 0.134 0.777 1.52·10−7

(10) (5) (5)

expresses a similar desirability of the function d2 for the maximum design point, x3,

where the maximum concentration greater than 3 is unacceptable, see Figure 3-8(b).

Using the new individual desirability functions, d4 and d5, the three new overall de-

sirability functions, D2(ξ) = (d4 × d2 × d3)
1
3 , D3(ξ) = (d1 × d5 × d3)

1
3 and D4(ξ) =

(d4 × d2 × d5)
1
3 , are defined. Computer code implemented in R-project (Team 2018)

using D2, D3 and D4 to generate penalized D-optimal designs may be found in Appendix

B. The optimal penalized designs generated by the desirability functions D1, D2, D3 and

D4 are given in Table 3-3. This table allows to verify the performance of these desir-

ability functions comparing resulting penalized designs using D1, D2, D3 and D4.

It is important to note the remarkable similarity between these four penalized designs.

It has been shown in this case that the penalized designs are similar for desirability func-

tions with similar shapes. In all cases, the penalized design technique has provided an

experimental design with the desirable characteristics established by the researcher. The

resulting penalized optimal designs have had a reasonable increment in the generalized

variance, but the design characteristics have been improved from a practical perspec-

tive, i.e., the control group has an adequate number of observations, and the maximum

support point is placed within the experimental region. It has also been shown that

the penalized optimal designs represent an improvement in terms of the generalized vari-

ance of the estimated parameters compared to an arbitrarily chosen experimental design.

The example of Michaelis-Menten model illustrates the proposed methodology that al-

lows the researcher to find the penalized optimal design with desirable properties. This
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example presents the procedure for selecting the appropriate desirability functions ac-

cording to the constraints of the experimental design from a practical perspective. The

practical characteristics are determined by a penalty function through an overall de-

sirability function that is the geometric mean of the individual desirability functions.

The penalty function is added to an “alphabetic” optimality criterion to penalize non-

practical optimal designs. The recommended steps to follow to obtain the penalized

optimal design are detailed. The resulting penalized optimal design is optimal according

to the “alphabetic” design criteria and also has the desired practical characteristics.



4. Penalized Bayesian Optimal Designs

for Linear Models

Optimal experimental designs for linear regression models continue to receive consider-

able attention in the statistical literature because these models are probably the most

popular in applications. Linear models are useful in the biological, physical, and social

sciences, as well as in business and engineering. Moreover, they are used in both stages

of research, such as planning and analysis of the resulting data. Therefore, although

this dissertation deals with optimal designs for nonlinear models, a chapter on penalized

Bayesian optimal designs for linear regression models may be useful to better understand

some features of these designs for nonlinear models better.

This chapter presents the construction methodology of penalized Bayesian D-optimal

designs for linear regression models. The Bayesian approach to experimental design

enables to incorporate available prior information of unknown parameters to the exper-

imentation, and the penalized optimal design strategy based on the use of desirability

functions helps to obtain optimal designs that fulfill practical design preferences imposed

by a researcher. The methodology presented here combines the use of desirability func-

tions and the Bayesian approach in the construction of optimal designs obtained through

utility functions associated with a Bayesian optimality criterion (Bayesian D-optimality)

for linear regression models.

The organization of this chapter is as follows. The linear model is introduced in Section

4.1. A summary of the Bayesian D-optimality criterion for linear models is provided in

Section 4.2. This summary is based on the work of Chaloner & Verdinelli (1995). The

Bayesian optimal design methodology for linear models is illustrated by an example of

the quadratic regression model in Section 4.3. In Subsection 4.3.2, the resulting Bayesian

designs are examined for different structures of the covariance matrix associated with

the parameter prior distribution under consideration.

Section 4.4 presents the new criterion proposed in this dissertation to obtain penalized

Bayesian D-optimal designs for linear regression models. The penalized Bayesian optimal

design methodology for linear models is illustrated by an example of the quadratic re-

gression model in Section 4.5. The penalized Bayesian D-optimal designs are obtained by
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using appropriate desirability functions, described in Section 3.1. Furthermore, the mean

square errors (MSE) are calculated via simulation in order to compare non-penalized and

penalized Bayesian optimal designs. The MSE results and discussion are presented in

Section 4.7. The procedure of the efficient design apportionment described in Pukelsheim

(1993, p. 309) is presented in Section 4.6.

4.1. Linear Model

Consider the linear regression model (El-Krunz & Studden 1991)

y = η(x,θ) + ε = f (x)Tθ + ε, (4-1)

where

• y is a continuous response (or dependent or observed) variable.

• x is a m × 1 vector of explanatory (or predictors or independent or control or

design) variables. Suppose that the vector x ∈ X called space or design region,

where X is a compact set in Rm.

• θ is a p× 1 vector of unknown parameters, where θ ∈ Θ, here Θ is an open convex

set in Rp.

• η(x,θ) is a known continuous in X linear function with respect to the model

parameters θ.

• f (x) is a p × 1 vector of known “basis” regression functions. They are p linearly

independent real-valued continuous functions on the design space X .

• ε is an uncorrelated normally distributed error term with zero mean and constant

variance σ2 and independent of x.

It assumes that an experiment is performed at points x1,x2, . . . ,xN ∈X (some of these

points can be repeated). An independent observation yi will be observed at each point

of xi, for i = 1, 2, . . . , N . In this case, the linear model can be written in the matrix

form (Ermakov & Zhiglijavsky 1987, p. 84):

Y = Xθ + ε, (4-2)

where Y = (y1, y2, . . . , yN)T is the vector ofN observations, X = (f(x1), f(x2), . . . , f(xN))T

is the N × p extended design matrix and ε = (ε1, ε2, . . . , εN)T is the vector of the errors.

Under the above assumptions

E(Y) = Xθ and (4-3)

Cov(Y) = σ2IN , (4-4)

where IN is the N ×N identity matrix.
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4.2. Bayesian D-Optimality Criterion for Linear Models

The idea of the Bayesian optimal design is to incorporate available prior knowledge

about a studied phenomenon into the design process. The Bayesian design approach

uses a prior distribution of unknown parameters rather than guessed single values. Now,

from a Bayesian perspective θ is taken as a random vector rather than a fixed vector.

Suppose that a prior distribution π(θ, σ2) on θ, σ2 is given such that the conditional

prior distribution π(θ | σ2) of θ given σ2 is N (µ, σ2R−1), where R is a given positive

definite p× p “precision” matrix.

Under the above assumptions the posterior conditional distribution π(θ | Y, σ2) of θ

given Y, σ2 is normal with mean vector (Chaloner & Verdinelli 1995)

θ̂B = E(θ | Y, σ2) = (X TX + R)−1(X TY + Rµ) (4-5)

and covariance matrix σ2(X TX + R)−1 (see Appendix B).

According to Chaloner & Verdinelli (1995) the Bayesian solution to the experimental

design problem is to find the best design and the best decision rule that maximizes ex-

pected utility U (ξ) in (2-32). More details are found in Section 2.3.2.

When the expected gain in Shannon information (2-35) is used as a utility function in

the normal linear regression model, this Bayesian solution is reduced to maximizing the

function

ΦB (ξ) = det

{
M(ξ) +

1

N
R

}
= detMB(ξ), (4-6)

and it is known as Bayesian D-optimality criterion for linear models.

Design ξ∗B that satisfies the following condition (DasGupta & Studden 1991)

ξ∗B = arg min
ξ∈Ξ

{
− log det

{
M(ξ) +

1

N
R

}}
= arg min

ξ∈Ξ
{− log detMB(ξ)} (4-7)

is the Bayesian D-optimal design for linear regression models.

A characteristic of optimal Bayesian design is the dependence on the sample size N .

If N is large, MB(ξ) is approximately equal to M(ξ), i.e., any differences between a

Bayesian design and its corresponding non-Bayesian one are not important. In this case,

the information provided by the data overwhelms the initial information contained in

the prior distribution. In contrast, if N is small, the prior information has an important

effect on the posterior distribution and determines the design.
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Figure 4-1.: Example: quadratic model (4-8). Bayesian D-optimality verification for

the three-point Bayesian optimal design (4-9).

The methodology of the construction of the Bayesian D-optimal design for linear models

is illustrated with an example of the quadratic regression model.

4.3. Example: Quadratic Model

Consider the quadratic regression model (DasGupta & Studden 1991)

E (y) = θ0 + θ1x+ θ2x
2 (4-8)

and suppose −1 ≤ x ≤ 1, where the parameters θ0, θ1 and θ2 are considered as random

variables from the Bayesian perspective.

4.3.1. Bayesian D-Optimal Design

If the prior variances of θ0, θ1, θ2 are 3, 5 and 1 with absent correlation, and if sample

size N = 9, then the Bayesian D-optimal design is

ξ∗B =

{
−1 0 1

0.369 0.261 0.369

}
. (4-9)

Figure 4-1 shows that the function d (ξ, x) = f (x)TMB(ξ)−1f (x) achieves its maximum

value tr M(ξ∗)MB(ξ∗) = 2.5335 at the design points x = −1, 0 and 1, demonstrating
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the D-optimality of the design ξ∗B according to the equivalence theorem for Bayesian

D-optimal designs for linear models (Pilz 1991, p. 140).

4.3.2. Optimal Designs for Different Structures of the Prior

Covariance Matrix

A characteristic of Bayesian D-optimal design for linear models is the dependence of the

structures of the prior covariance matrix, which can be observed in the example of the

quadratic regression.

First, some combinations of the values of the parameter correlation coefficients do not

generate a positive definite “precision” matrix R. For example, the combination of the

negative coefficients with absolute values greater than 0.5 generate the negative definite

matrix R.

Second, the majority of resulting Bayesian D-optimal designs have three support points,

where the extremes −1 and 1 are preserved for all designs, while the midpoint of the

design support x2 oscillates around zero. If ρ23 = 0, then the midpoint of the design

support x2 is zero or very close to zero. x2 > 0 if ρ12 > 0 and x2 < 0 if ρ12 < 0. In this

case the weights wi tend to be uniform. If the absolute value of ρ23 is large, then the

weight w2 of the midpoint x2 is small. The midpoint x2 > 0 if ρ23 < 0 and x2 < 0 if

ρ23 > 0.

Third, when the correlation coefficient ρ13 ≥ 0.7, and two other coefficients are approx-

imately equal, the Bayesian D-optimal design has only two support points and places

a half of the design runs at −1 and the other half at 1. For example, if the correlation

coefficients ρ13 = 0.9 and ρ12 = ρ23 = 0.5 the resulting Bayesian D-optimal design is

ξ∗B =

{
−1 1

0.5 0.5

}
. (4-10)

This is a surprising result since the optimal design to estimate a second-order model

with three parameters contains only two design points (Hamada et al. 2001).

Figure 4-2 illustrates the Bayesian D-optimality verification of the two-point design ξ∗B
according to the equivalence theorem for Bayesian D-optimal designs for linear models

(Pilz 1991, p. 140). The function d (ξ, x) only achieves its maximum value at two sup-

port points x = ±1.

Finally, with absent correlation the Bayesian D-optimal design contains three design

points, i.e., x = ±1 and x = 0. The weights of the support points depend on the prior
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Figure 4-2.: Example: quadratic model (4-8). Bayesian D-optimality verification for

the two-point Bayesian optimal design (4-10).

variances of θ0, θ1, θ2. When the variances increase, the weights wi tend to be uniform,

i.e., Bayesian optimal designs approximate the corresponding non-Bayesian ones. When

the variances decrease, the weights of the extremes −1 and 1 tend to 0.5, and the weight

of the midpoint tends to zero, i.e., the optimal Bayesian designs approximate the two-

point design (4-10).

4.4. New Criterion

Experimental designs constructed with optimal design theory may not be appropriate

from a practical perspective. They can cause conflicts with the usual laboratory practice

and established guidelines. Parker (2005) proposed a technique described in Section 3.2

that penalizes optimal designs through the use of desirability functions. The resulting

penalized optimal design complies with the optimal design criterion and the practical

design preferences.

We suggest extending the use of desirability functions, described in Section 3.1, in

Bayesian optimal designs. Thus, the researcher can incorporate prior information of

the unknown parameters by using a Bayesian approach and also satisfy practical design

preferences imposed by a researcher.
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We propose to find a penalized Bayesian D-optimal design for linear models by minimiz-

ing the new criterion:

ΨBP (ξ) = ΨB (ξ) + Λ(1−D(ξ)) = − log {detMB(ξ)}+ Λ(1−D(ξ)) (4-11)

with respect to ξ ∈ Ξ for a given value of Λ, where Λ is a user-specified scale constant.

The first term of the penalized Bayesian optimal criterion in (4-11) represents a Bayesian

“alphabetic” optimality criterion for example, the Bayesian D-optimality criterion for

linear models, that is a monotone and convex function (DasGupta & Studden 1991). The

second term of the penalized Bayesian optimal criterion in (4-11) is a bounded function

between 0 and Λ > 0 (Harrington 1965), which is a penalty function representing con-

straints applied to the Bayesian D-optimal designs. The minimization of the criterion

(4-11) is considered as the maximization of the expected utility (2-37), restricted by the

penalty function.

The penalty function, (1 − D(ξ)), is added to the Bayesian D-optimality criterion for

linear models, − log {detMB(ξ)}, to penalize experimental designs. A user-specified con-

stant, Λ, is required to place these two terms on similar scales and manage the weight of

the penalty, since the minimum value of the Bayesian D-optimality criterion is numeri-

cally small or negative, while the penalty function has a range of 0 to 1.

Minimization of the criterion (4-11) is similar to the constrained optimization of a

scalar-valued objective function of several variables using Lagrange multipliers (Gavin

& Scruggs 2012), where the objective function is modified by adding terms that describe

the constraints. Thus, the search for the penalized Bayesian D-optimal design for linear

models can be seen as minimizing the Bayesian D-optimality criterion for linear models

with respect to ξ ∈ Ξ subject to the restrictions through an overall desirability function,

D (ξ), for a given value of Λ > 0.

The penalized Bayesian D-optimal criterion in (4-11) is not usually a convex function

of ξ ∈ Ξ (X ). However, this criterion is quasiconvex function (Fedorov & Leonov 2013,

p. 113). For quasiconvex functions, most results used in convex optimization stay valid

(Avriel 2003, ch. 6.1). This fact determines the possibility of finding the global minimum

of the penalized Bayesian optimal criterion (4-11).

Iterative algorithms described in Section 2.4 , are used to determine the optimal design

ξ∗P that minimize the new criterion (4-11), given a value of Λ. The initial value of Λ is

chosen by Λ0 = |min {− log {detMB(ξ)}}|, i.e., an absolute value of the minimum of the

Bayesian D-optimality criterion. Penalized Bayesian optimal designs are generated by

minimizing the penalized Bayesian optimal criterion (4-11) for values of Λ in multiples
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or submultiples of Λ0. The final value of Λ is selected in the range where stability is

exhibited in the responses of the overall desirability function. The resulting optimal de-

sign is determined by the x and w values of the penalized optimal design ξ∗P associated

with the minimum value of the penalized Bayesian optimal criterion for linear models

(4-11) for a value of Λ in this range. The resulting penalized Bayesian optimal design is

optimal according to the Bayesian D-optimal design criterion for linear models and the

practical design preferences.

The methodology of the construction of the penalized Bayesian D-optimal design for

linear models is illustrated with an example of the quadratic regression model.

4.5. Penalized Bayesian D-Optimal Design

4.5.1. The two-point design (4-10)

The Bayesian D-optimal design (4-10) contains only two design support points to esti-

mate a second-order model, which contains three unknown parameters. Therefore, we

want to have the three-point distinct D-optimal design with an acceptable number of

observations in new design point placed between −1 and 1.

Initially, the third point is added, and the following Bayesian D-optimal design is ob-

tained:

ξ∗A =

{
−1 1 1

0.494 0 0.506

}
. (4-12)

It is observed that this Bayesian D-optimal design is actually supported by two design

points, not three.

A penalized-optimal design strategy is developed using two desirability functions d1 and

d2. d1 characterizes the minimum number of observations in new design point x2 and

d2 depicts the location of this point. The logistic cumulative distribution function, the

form of the “bigger-is-better” or maximizing desirability function given in (3-11) is used

to create the desirability function d1. The normal density function, the bell shape or

“target” desirability function given in (3-9) is used to create the desirability function d2.

Considering the total sample size of 9 of for a three-point design, it is reasonable to

assume that at least two observations should be assigned to the new design point. Re-

placing the values of γ1 = 0.05 and r2(min) = 2, r2(max) = 3 in the formulas (3-11), (3-12)

and (3-13), the desirability function d1 (r2) is obtained:

d1 (r2) =
1

1 + exp (− (r2 − 2.5) /0.17)
. (4-13)
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Figure 4-3.: Plots of desirability functions for the two-point design (4-10).

A plot of this desirability function, given in Figure 4-3(a), shows that it is not acceptable

to assign less than two observations to the new design point.

In order to keep the new design point approximately equidistant from the extremes of

the design space, it is assumed that the target of value range of x2 is 0 and the interval

width of desirability function is 0.2. Replacing the values of γ2 = 0.05, a = 0 and δ = 0.2

in the formulas (3-9) and (3-10), the desirability function d2 (x2) is obtained:

d2 (x2) = exp

{
−1

2

( x2

0.082

)2
}
. (4-14)

A plot of this desirability function, given in Figure 4-3(b), shows that the location of

the new design point x2 outside the interval [−0.2, 0.2] is unacceptable.

The overall desirability function is

D2p(ξ) = (d1 × d2)1/2 . (4-15)

The Nelder-Mead direct search algorithm (Nelder & Mead 1965) is used in R-project

(Team 2018) to minimize the penalized Bayesian D-optimal criterion

− log {detMB (ξ)}+ lΛ0 (1−D2p(ξ)) (4-16)

for the quadratic model given in (4-8), where Λ0 defines an absolute value of the min-

imum non-penalized Bayesian D-optimal criterion of the two-point design (4-10). The

minimization of the criterion (4-16) is considered as the maximization of the expected
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utility (2-37), restricted by the penalty function. Computer code implemented in R-

project (Team 2018) to generate penalized Bayesian D-optimal designs may be found in

Appendix B. The steps to follow to obtain the penalized D-optimal design are described

in detail in Section 3.5.

Penalized BayesianD-optimal designs are generated by minimizing the penalized Bayesian

D-optimal criterion (4-16) for different values l = 0.01, 0.02, . . . , 1, where the user-

specified constant Λ0 = |min {− log {detMB (ξ)}}| = 0.3794315 represents the absolute

minimum value of the non-penalized Bayesian D-optimal criterion.

Initially penalized Bayesian D-optimal design is only supported by two extreme design

points. The third distinct design point appears when l = 0.72. Figure 4-4 graphically

displays the responses GV of θ̂ and D2p(ξ) of the penalized Bayesian optimal designs

from the lth submultiple. It shows the balance between the penalty imposed for Bayesian

designs without the desired properties and the generalized variance. Figure 4-4 indicates

stability in the responses of the overall desirability function around l = 0.75. The

penalized Bayesian D-optimal design from this range is

ξ∗BP =


−1.000 0.000 1.000

0.354 0.278 0.368

3 3 3

 , (4-17)

where the last row represents the number of observations at each design point for the

sample size N = 9. The resulting design includes three distinct design points, and the

new point placed between −1 and 1 has three observations. In summary, the properties

of this penalized design are improved from a practical perspective, while the generalized

variance is acceptably increased.

4.5.2. The three-point design (4-9)

Consider the Bayesian D-optimal design (4-9) for quadratic regression model (4-8). This

design contains three design support points. We want to have the four-point distinct

D-optimal design with the minimum two observations in new point placed between 0

and 1. Besides, the minimum difference between adjacent support points should be 0.3

units apart.

Initially, the fourth point is added to the initial design (4-9), and the following Bayesian

D-optimal design is obtained:

ξ∗A =

{
−1 0 1 1

0.369 0.261 0.369 0.000

}
. (4-18)
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Figure 4-4.: Tradeoff between overall desirability D2p and the generalized variance (GV)

of θ̂ from the lth submultiple using the criterion given in (4-16).

Clearly, this Bayesian D-optimal design is actually supported by three design points, not

four.

A penalized-optimal design strategy is developed using three desirability functions to

characterize the minimum number of observations in new point (d1) and the minimum

difference between adjacent points (d2 and d3). A logistic cumulative distribution func-

tion, of the type described by Gibb (1998), is used to create the desirability functions,

though other functions can be used to achieve the appropriate shape. The logistic func-

tion, the form of the “bigger-is-better” or maximizing desirability function given in

(3-11), captures the experimental design preferences.

Considering the total sample size of 9 for a four-point design, it is reasonable to assume

that at least one observation should be assigned to the new design point. Replacing the

values of γ1 = 0.05 and r3(min) = 1, r3(max) = 2 in the formulas (3-11), (3-12), and (3-13),

the desirability function d1 (r3) is obtained as:

d1 (r3) =
1

1 + exp (− (r3 − 1.5) /0.17)
. (4-19)

A plot of this desirability function, given in Figure 4-5(a), it is not acceptable to allocate

less than one observation to the new support point.
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Figure 4-5.: Plots of desirability functions for the three-point design 4-9.

It is assumed that the adjacent support points should be optimally spaced at least

0.1 units apart in order to have four distinct support points. Replacing the values of

γ2,3 = 0.05, diff23(min) = diff34(min) = 0.1, and diff23(max) = diff34(max) = 0.3 in the formulas

(3-11), (3-12), and (3-13), the desirability functions d2 (diff23) and d3 (diff34) are obtained

as:

d2(diff23) = d3(diff34) =
1

1 + exp (− (diff− 0.2) /0.034)
. (4-20)

A plot of these desirability functions, given in Figure 4-5(b), shows that the spacing

between support points of less than 0.1 units apart is unacceptable.

The overall desirability function is

D(ξ) = (d1 × d2 × d3)1/3 . (4-21)

The Nelder-Mead direct search algorithm (Nelder & Mead 1965) is used in R-project

(Team 2018) to minimize the penalized Bayesian optimal criterion

− log {detMB (ξ)}+ lΛ0 (1−D(ξ)) (4-22)

for the quadratic model given in (4-8), where Λ0 defines an absolute value of the min-

imum non-penalized Bayesian D-optimal criterion of the three-point design (4-9). The

minimization of the criterion (4-22) is considered as the maximization of the expected

utility (2-37), restricted by the penalty function. Computer code implemented in R-

project (Team 2018) to generate penalized Bayesian D-optimal designs may be found
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Figure 4-6.: Tradeoff between overall desirability D(ξ) and the generalized variance

(GV) of θ̂ from the lth submultiple using the criterion given in (4-22).

in Appendix B. The procedure follows the steps, described in detail in Section 3.5, to

obtain the penalized D-optimal design.

The minimum Bayesian D-optimal criterion defines Λ0 = |min {− log {detMB (ξ)}}| =

1.365036. Penalized Bayesian D-optimal designs are generated by minimizing the penal-

ized Bayesian D-optimal criterion (4-22) for different values l = 0.01, 0.02, . . . , 1.

Initially penalized Bayesian D-optimal design is supported by only three design points.

The fourth distinct design point appears when l = 0.25. Figure 4-6 graphically displays

the responses GV of θ̂ and D(ξ) of the penalized Bayesian optimal designs from the lth

submultiple. It exhibits the balance between the imposed penalty for Bayesian designs

without the desired characteristics and the generalized variance. Figure 4-6 indicates

stability in the responses of the overall desirability function around l = 0.4. A penalized

Bayesian D-optimal design from this range is

ξ∗BP =


−1 0 0.295 1

0.367 0.115 0.167 0.351

3 1 2 3

 , (4-23)

where the last row represents the number of observations at each design point for the

sample size N = 9. The resulting design contains four distinct design points at least 0.3
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units apart, and the new point placed between 0 and 1 has two observations.

Although this design has a small increase in the generalized variance of the estimated

parameters (4.232) as compared to Bayesian D-optimal design (4.008), this penalized

optimal design has the practical characteristics desired by the researcher: four distinct

support points with an acceptable number of observations assigned to each support point.

4.6. Efficient Design Apportionment

Continuous designs are an approximate solution to the original problem of design from

the perspective of a practical experiment. For the continuous design ξ, given in (2-12), to

become realizable for a fixed sample size N , the weights wi must be rounded to integers

ri which sum to N . The usual approach is to calculate the quota Nwi, and then round

Nwi to the closest integer ri. However, the numbers ri so obtained may not sum to N .

This section presents another method of rounding the weights of a continuous design

which performs much better. This procedure called efficient design apportionment has

the smallest loss of efficiency due to discretization under a wide family of optimality

criteria (Pukelsheim 1993, ch. 12).

The procedure of efficient design apportionment is essentially the following. According

to Pukelsheim (1993, p. 309), its implementation has two phases.

First, the multiplier of the efficient design apportionment is defined as

ν = N − 1

2
n, (4-24)

where N and n are sample size and number of design support points, respectively. This

multiplier is used to calculate the frequencies (number of observations at each support

point)

ri =

⌈(
N − 1

2
n

)
wi

⌉
, i = 1, 2, . . . , n, (4-25)

where wi are the weights of a continuous design and d·e denotes ceiling function that

maps a real number to the smallest following integer.

Second, the discrepancy defined as

d =
∑
i≤n

ri −N (4-26)

is calculated. In case d is negative, a frequency rj such that rj/wj attains mini≤n ri/wi
ought to be augmented to rj +1. Similarly, in case d is positive, a frequency rk for which
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(rk − 1) /wk attains maxi≤n (ri − 1) /wi ought to be reduced to rk − 1. The procedure is

repeated until d = 0.

The procedure of the efficient design apportionment is illustrated by the example of

the quadratic model (4-8). The Bayesian D-optimal design with absent correlation for

the sample size N = 9 (see (4-9)) has three support points: ±1 and 0 with their re-

spective weights 0.36946 and 0.26108. In this case, the multiplier of the efficient design

apportionment is

ν = N − 1

2
n = 9− 1

2
3 = 7.5. (4-27)

The respective frequencies are

r1 = r3 = d7.5 · 0.36946e = d2.77095e = 3, r2 = d7.5 · 0.26108e = d1.9581e = 2.

(4-28)

Thus the discrepancy is

d = 3 + 3 + 2− 9 = −1 < 0. (4-29)

Now ri/wi are calculated:

r1

w1

=
r3

w3

=
3

0.36946
= 8.11996,

r2

w2

=
2

2.77095
= 7.66049. (4-30)

The frequency r2 attains the minimum value of ri/wi, where i = 1, 2, 3. Hence the

frequency r2 would increase to r2 + 1 = 2 + 1 = 3. The discrepancy with new frequencies

ri is 0. Finally, the given Bayesian D-optimal design ξ∗B rounded by the efficient design

apportionment to a design ξ∗B,N for sample size N = 9 is

ξ∗B,N =

{
−1 0 1

3 3 3

}
, (4-31)

i.e., three observations at each design point.

4.7. Mean Square Error as an Evaluation Measure for

Optimal Designs

In statistics, the mean squared error (MSE) of an estimator evaluates the average of

the squares of the errors and measures the quality of an estimator; it is always non-

negative. If the MSEs are close to zero, then it implies closeness between the estimator

and the parameter. Values of MSE may be used for comparative purposes, for example,

to compare the performance of optimal designs. This comparison is illustrated with an

example of the quadratic regression model (4-8). The MSE associated with the estimated

parameters of the quadratic model (4-8) are calculated via simulation in order to compare

non-penalized (4-30) and penalized (4-23) Bayesian optimal designs.
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4.7.1. MSE of the estimated parameters of prior distribution

Let the conditional prior distribution of unknown parameters vector θT = (θ0, θ1, θ2)

given σ2 is the multivariate normal distribution N3 (µ, σ2Σ) with mean vector µT =

(1, 1, 1), variance-covariance matrix Σ = diag (3, 5, 1) and σ2 = 0.01. For sample size of

9 observations, then exact designs are

D-optimal: x∗D = {−1,−1,−1, 0, 0, 0, 1, 1, 1} , (4-32)

Bayesian D-optimal: x∗B = {−1,−1,−1, 0, 0, 0, 1, 1, 1} , (4-33)

Penalized Bayesian D-optimal: x∗BP = {−1,−1,−1, 0, 0.295, 0.295, 1, 1, 1} . (4-34)

The experimental observations of three designs are simulated according to the quadratic

model (4-8) in the assigned design points (4-32), (4-33) and (4-34), respectively. Then

the parameters are estimated from the simulated samples according to each design. The

algorithm to fit linear models is available using R software through the command line

as lm. It can also be used to estimate unknown parameters in linear models. Later the

squared differences between estimated parameters and parameters generated according

to the multivariate normal distribution N3 (µ, σ2Σ) are calculated. Finally, the results

of the MSE are obtained by averaging the squared differences mentioned above.

The algorithm implemented to calculate the MSE of the estimated parameters of the

quadratic model (4-8) is illustrated in Figure 4-7. The results of the MSE calculations

of the estimated parameters in these three designs are presented in Table 4-1.

Table 4-1.: Results of the MSE calculations of the estimated parameters for the prior

covariance matrix Σ.

XXXXXXXXXXXXXParameter

Design
D-optimal Bayesian D-optimal Penalized Bayesian

θ0 0.003254675 0.003254675 0.00372378

θ1 0.001617000 0.001617000 0.00160155

θ2 0.004948199 0.004948199 0.00561510

‖θ‖ 0.001132752 0.002402986 0.002618802

From Table 4-1 it is observed that the MSE values of the parameters θ0, θ1 and θ2 of

the D-optimal and Bayesian D-optimal designs are equal. For linear models, the MSEs

do not depend on the parameters. They only depend on design points and experimen-

tal errors. The design points xi, i = 1, 2, . . . , 9, of the D-optimal (4-32) and Bayesian
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Figure 4-7.: Diagram of MSE calculations of the estimated parameters of the prior

distribution in the Bayesian optimal design.
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D-optimal (4-33) designs are the same, therefore, it is logical that the MSE values of

both designs are equal. However, the norm of the parameter vector θ has different MSE

values of both designs because the quadratic model does not depend linearly on this

norm vector.

From Table 4-1, it can be seen that the MSE values of the penalized Bayesian design

are greater than respective MSE values of the two previous designs, except for the MSE

value of parameter θ1. The D-optimal and non-penalized Bayesian designs contain three

observations in each design support point x = {−1, 0, 1}, while the penalized Bayesian

design has only one observation in the design midpoint. Two other observations are

placed at 0.295. These observations are displaced from the optimal point 0. Therefore,

this is expected to improve the accuracy of the parameter estimation θ̂1 in the penalized

Bayesian design.

The D-efficiency of the penalized Bayesian D-optimal design (4-34) with respect to the

non-penalized Bayesian D-optimal design (4-33) is equal to 0.96244. Here the efficiency

is defined as the ratio of the Bayesian D-optimality criterion evaluated for non-penalized

design (4-33) and penalized Bayesian D-optimal design (4-34) such that this ratio is in

the interval [0, 1]. The efficiency value shows that the penalized design is somewhat less

efficient than the non-penalized design in question. A small loss of efficiency is observed

when using the penalized design rather than the non-penalized design, but the penalized

design fulfills the practical design preferences imposed by a researcher.

4.7.2. MSE for Different Prior Covariance Matrices

In Section 4.3.2, it is mentioned that Bayesian D-optimal design for linear models de-

pends on the structures of the prior covariance matrix. In order to compare the per-

formance of non-penalized and penalized Bayesian optimal designs, the MSEs of the

parameters and D-efficiencies of penalized designs are calculated for two other prior

covariance matrices:

Σ1 =

 1 0 0

0 5/3 0

0 0 1/3

 and Σ2 =

 9 0 0

0 15 0

0 0 3

 . (4-35)

The non-penalized Bayesian D-optimal designs corresponding to the prior covariance

matrices Σ1 and Σ2 are, respectively,

ξ∗1 =

{
−1 0 1

0.434 0.133 0.434

}
and ξ∗2 =

{
−1 0 1

0.346 0.308 0.346

}
. (4-36)
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It is observed that the points of the designs do not change, but the weights do change.

When the variances increase as in the case of Σ2, the weights wi tend to be uniform;

this can be seen in the design ξ∗2 . When the variances decrease as in the case of Σ1, the

weights of the extremes −1 and 1 tend to 0.5, and the weight of the midpoint tends to

zero; this can be seen in the design ξ∗1 .

The procedure of the efficient design apportionment (Pukelsheim 1993, p. 309) helps to

obtain the respective exact designs for finite sample size N = 9:

ξ∗1,N=9 =

{
−1 0 1

4 1 4

}
and ξ∗2,N=9 =

{
−1 0 1

3 3 3

}
. (4-37)

Thus, the exact design corresponding to the matrix Σ2 is the same design of the matrix

Σ, i.e., three observations in each support point. However, the exact design correspond-

ing to the matrix Σ1 is different. It has four observations in each extremal support point

and only one observation in the design midpoint.

The same desirability functions (4-19) and (4-20) are used for designs ξ∗1 and ξ∗2 for the

purpose of obtaining designs with the same practical characteristics desired as the ones

of the penalized design (4-23). The respective penalized exact designs for sample size

N = 9 are obtained as

ξ∗1P,N=9 =

{
−1 0 0.307 1

3 1 2 3

}
and ξ∗2P,N=9 =

{
−1 0 0.294 1

3 1 2 3

}
. (4-38)

It can be observed that the resulting designs have the practical characteristics desired

by the researcher, i.e., four distinct design points separated at least 0.3 units apart and

new design point placed between 0 and 1 with two observations.

The results of the MSE calculations of the estimated parameters for the two prior vari-

ance matrices Σ1 and Σ2 are presented in Tables 4-2 and 4-3, respectively.

From Table 4-2, it can be seen that the MSE values of the penalized Bayesian design

are less than respective MSE values of the non-penalized Bayesian design, except for

the MSE value of parameter θ1. It is greater than the respective MSE value of the

non-penalized Bayesian design. In this case, the MSEs have an opposite behavior of

the MSEs of the estimated parameters for the prior variance-covariance matrix Σ. A

possible explanation of this behavior is the distribution of the points of both designs.

The non-penalized Bayesian design has four observations in each extremal support point

±1 and only one observation in the design midpoint, while the penalized Bayesian design

has three observations around zero in two different points. Therefore, the 2 out of 3
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parameters of the penalized Bayesian design have more accurate estimations than the

parameters of the non-penalized Bayesian design.

Table 4-2.: Results of the MSE calculations of the estimated parameters for the prior

covariance matrix Σ1.

XXXXXXXXXXXXXParameter

Design
Bayesian D-optimal Penalized Bayesian

θ0 0.009946392 0.003765882

θ1 0.001221735 0.001600057

θ2 0.011233774 0.005673496

‖θ‖ 0.003741527 0.002141959

From Table 4-3, it can be seen that the MSE values of the penalized Bayesian design

are greater than respective MSE values of the non-penalized Bayesian design, except

for the MSE value of parameter θ1. It is less than the respective MSE value of the

non-penalized Bayesian design. In this case, the MSEs have a similar behavior of the

MSEs of the estimated parameters for the prior covariance matrix Σ. The non-penalized

Bayesian design contains three observations in each design point x = {−1, 0, 1}, while

the penalized Bayesian design has only one observation in the design midpoint. Two

other observations are placed at 0.294; they are displaced from the optimal point 0.

This affects the accuracy of the estimation of the parameters.

Table 4-3.: Results of the MSE calculations of the estimated parameters for the prior

variance-covariance matrix Σ2.

XXXXXXXXXXXXXParameter

Design
Bayesian D-optimal Penalized Bayesian

θ0 0.003254675 0.003720369

θ1 0.001617000 0.001601671

θ2 0.004948199 0.005610360

‖θ‖ 0.002624297 0.002869813

In summary, the MSE values of the penalized Bayesian designs are equal for these two

prior variance-covariance matrices because the penalized exact designs are the same.

While the MSE values of the non-penalized Bayesian designs are not equal for these the

prior variance-covariance matrices.
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The D-efficiencies of the penalized Bayesian D-optimal designs (4-38) relative to the

non-penalized Bayesian D-optimal designs (4-37) are equal to 0.83048 and 0.95422,

respectively. Here the efficiency is defined as the ratio of the Bayesian D-optimality

criterion evaluated for non-penalized design (4-37) and penalized Bayesian D-optimal

design (4-38) such that this ratio is in the interval [0, 1]. These D-efficiency values show

that the penalized Bayesian designs for these two covariance matrices are somewhat less

efficient than respective non-penalized Bayesian designs. Furthermore, the penalized de-

sign’s D-efficiency corresponding to the covariance matrix Σ1 is lower than the design’s

D-efficiency corresponding the covariance matrix Σ2. The possible explanation for this

result is the very different form of the first non-penalized Bayesian design with respect

to the penalized one.

4.7.3. MSE of the estimated parameters of posterior distribution

In the normal linear regression model given in (4-2) under the assumptions mentioned

in Section 4.2 the posterior distribution of θ is also normal with mean

θ̂B = (X TX + R)−1(X TY + Rµ) (4-39)

and covariance matrix σ2(XTX+R)−1, according to Chaloner & Verdinelli (1995). More

details are found in Section 2.3.2.

The MSEs associated with θ̂B are calculated via simulation in order to compare the per-

formance of non-penalized and penalized Bayesian D-optimal designs for the quadratic

regression model given in (4-8).

The experimental observations of non-penalized and penalized Bayesian D-optimal de-

signs are simulated according to the quadratic model given in (4-8) in the assigned design

points of each design given in (4-33) and (4-34), respectively.

The mean vector θ̂B of the posterior distribution is estimated according to (4-39) from

the simulated samples according to each design. Later the estimations θ̂B are compared

with parameters generated by the conditional prior distribution. The estimations θ̂B are

also compared with parameters previously estimated by the least-squares method (LSM)

from the same simulated samples according to each design.

The algorithm implemented to calculate the MSE of the estimated parameters of the

posterior distribution is illustrated in Figure 4-8.

The results of the MSE calculations of the estimated parameters of the posterior distri-

bution are presented in Table 4-4.
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Figure 4-8.: Diagram of MSE calculations the estimated parameters of the posterior

distribution in the Bayesian optimal design.
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Table 4-4.: Results of the MSE calculations of the estimated parameters θ̂B of the

posterior distribution.

XXXXXXXXXXXXXParameter

Design
Bayesian D-optimal Penalized Bayesian

θ0Bgen 0.063436953 0.077407304

θ0Best 0.061664155 0.075681830

θ1Bgen 0.006403749 0.006720553

θ1Best 0.004916254 0.005248749

θ2Bgen 0.117668875 0.137847546

θ2Best 0.116274093 0.136663884

‖θB‖gen 0.07007669 0.08036217

‖θB‖est 0.06915855 0.07959425

From Table 4-4, it can be seen that

• The MSE values of parameter θ1B of both designs are less than the respective MSE

values of the other parameters, while the MSE values of parameter θ2B are greater

than the others.

• The MSE values of the estimations θ̂B compared with the parameters generated

θ are greater than those compared with the estimated parameters θ̂ by LSM for

both non-penalized and penalized Bayesian designs.

• All the MSE values of the penalized Bayesian design are greater than the respective

MSE values of the non-penalized Bayesian design. This result confirms a small

increase in the generalized variance of the estimated parameters (4.232) in the

penalized Bayesian D-optimal design as compared to non-penalized design (4.008).

The penalized Bayesian optimal designs change global Bayesian optimality in favor

of practical design characteristics.

The example of the quadratic model, given in (4-8), illustrates the methodology that

allows the researcher to find the penalized Bayesian D-optimal design for linear regres-

sion models. The penalized Bayesian optimal design technique allows to incorporate

available prior information of unknown parameters to the design process and specify

desirable characteristics of the experimental design that are essential for the researcher.

These practical characteristics are defined by an overall desirability function that is

the geometric mean of the individual desirability functions. The penalty function that

is one minus the overall desirability function is added to an “alphabetic” optimality
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criterion to penalize not practical optimal designs. The resulting penalized Bayesian

D-optimal design is optimal according to the Bayesian D-optimal design criterion for

linear regression models and also fulfills the practical design preferences. As a result, the

penalized Bayesian D-optimal design provides the appropriate balance between Bayesian

D-optimality and desirability.



5. Penalized Bayesian Optimal Designs

for Nonlinear Models

Nonlinear regression models are widely used to describe the dependencies between

a response and an explanatory variable (Bates & Watts 1988). They arise in scientific

experiments in a variety of areas, such as pharmacology, biology, and agriculture. An

important feature of nonlinear models is that, unlike for linear models, the Fisher in-

formation matrix and hence the optimal design depend on the values of the unknown

parameters. Chernoff (1953) suggests adopting a “best guess” for the unknown param-

eters which leads to locally optimal designs. The problem may arise when that guess is

not close enough to the true parameter vector because the design obtained may not be

optimal. Bayesian design methodology has a lot to offer to experimental design prac-

tice, whereby prior knowledge of unknown parameters can always be used for the design

process.

This chapter describes the methodology used to find penalized Bayesian D-optimal de-

signs for nonlinear regression models. The Bayesian approach to experimental design

allows to incorporate available prior knowledge (previous studies, literature, expert opin-

ions) about unknown parameters into the design; and the penalized optimal design strat-

egy based on the use of desirability functions helps to obtain optimal designs that fulfill

practical design preferences imposed by a researcher. The methodology presented here

combines the use of desirability functions and the Bayesian approach in the construction

of penalized Bayesian D-optimal designs for the nonlinear regression model.

The organization of this chapter is as follows. The nonlinear model is introduced in

Section 5.1. A summary of the Bayesian D-optimality criterion for nonlinear models is

provided in Section 5.2. This summary is based on the work of Chaloner & Verdinelli

(1995). The Bayesian optimal design methodology for nonlinear models is illustrated by

an example of the two-parameter exponential regression model in Section 5.3. In Subsec-

tion 5.3.1, Bayesian designs are constructed for a series of prior distributions: gamma,

lognormal, and uniform. The equivalence theorem for Bayesian D-optimal designs for

nonlinear models is used to verify their design optimality. Design efficiency of these

Bayesian designs are examined by comparing them with non-Bayesian designs.
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The new criterion proposed in this dissertation is considered in Section 5.4. This crite-

rion is used to obtain penalized Bayesian D-optimal designs for nonlinear models. The

penalized Bayesian optimal design methodology for nonlinear models is detailed in Sec-

tion 5.4. Then, this methodology is illustrated by an example of the two-parameter

exponential regression model in Section 5.5. The penalized designs are constructed for

different prior distributions of unknown parameters. Design D-efficiency and MSEs are

evaluated based on simulation studies.

5.1. Nonlinear Model

Consider the nonlinear regression model

y = η(x,θ) + ε, (5-1)

where

• y is a continuous response (or dependent or observed) variable.

• x is a m × 1 vector of explanatory (or predictors or independent or control or

design) variables. Suppose that the vector x ∈ X called space or design region,

where X is a compact set in Rm.

• θ is a p× 1 vector of unknown parameters, where θ ∈ Θ, here Θ is an open convex

set in Rp.

• η(x,θ) is a known continuous nonlinear function in X with respect to the model

parameters θ.

• ε is an uncorrelated normally distributed error term with zero mean and constant

variance σ2 and independent of x.

It assumes that an experiment is performed at points x1,x2, . . . ,xN ∈X (some of these

points can be repeated). An independent observation yi will be observed at each point of

xi, for i = 1, 2, . . . , N . Under the above assumptions E (yi) = η(xi,θ) for i = 1, 2, . . . , N

and Cov(Y) = σ2IN , where Y = (y1, y2, . . . , yN)T is the vector of N observations and

IN is the N ×N identity matrix.

5.2. Bayesian D-Optimality Criterion for Nonlinear

Models

If the study model is nonlinear, it is usually harder to find the experimental design,

than it is for a linear model. The search for optimal Bayesian designs is complicated in
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nonlinear models because Equation (2-35) does not have an analytical solution. In this

case, the asymptotic approximations may be used.

The normal approximation to the posterior distribution of θ is often used. Using normal

approximation (2-43) to the posterior distribution of parameters θ in the Equation (2-

36), the expected utility U1 (ξ) can be written as

U1 (ξ) = −p
2

log (2π)− p

2
+

1

2

∫
Θ

log det {NI (ξ,θ)} π (θ) dθ, (5-2)

where NI(ξ,θ) is the expected Fisher information matrix for nonlinear model with un-

known parameters and π (θ) is the prior distribution of parameters θ.

The Bayesian D-optimality criterion for nonlinear models can be obtained by dropping

the constant and multiplier terms in Equation (5-2), as follows

ΦB (ξ) =

∫
Θ

log det {NI (ξ,θ)} π (θ) dθ. (5-3)

According to Chaloner & Verdinelli (1995), the Bayesian solution to the experimental

design problem is to find the best design and the best decision rule that maximizes ex-

pected utility. Hence, when the criterion (5-3) is maximized, the expected gain in the

Shannon information of the posterior distribution (5-2) is also maximized or, equiva-

lently, the variance of the posterior distribution is minimized.

Design ξ∗BD that satisfies the following condition (Zhang 2006)

ξ∗BD = arg min
ξ∈Ξ

∫
Θ

{− log det {I (ξ,θ)}} π (θ) dθ (5-4)

is the Bayesian D-optimal design for nonlinear regression models with respect to the

prior distribution π (θ) of parameters θ. More details for Bayesian optimal designs for

nonlinear models is found in Section 2.3.

To evaluate the integral in (5-4) the technique called the Monte Carlo (MC) method

is used. The principle of the MC method for integral approximations in statistics is

based on computer simulations of random variables according to the prior distribution

of θ to produce an approximation of integrals converging with the increasing number of

simulations. Its justification is based on the Law of Large Numbers.

A random sample of parameters (θ1,θ2, . . . ,θG) is generated from respective prior dis-

tribution π (θ), and then the empirical average

ΨG (ξ) =
1

G

G∑
j=1

Ψ (ξ,θj) =
1

G

G∑
j=1

[− log det {I (ξ,θj)}] , (5-5)
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is proposed as an approximation of integral in (5-4). This average is computed in R

software (Team 2018) through command lines as mean, since ΨG (ξ) converges almost

surely to Ψ (ξ) by the Strong Law of Large Numbers (Albert 2009).

The methodology of the construction of the Bayesian D-optimal design for nonlinear

models is illustrated by an example of the exponential growth regression model with two

parameters.

5.3. Example: Exponential Growth Model

Exponential functions are useful in modeling many biological, chemical and physical

phenomena, such as populations growth, chemical reactions, radioactive decay, and drug

concentration in the bloodstream.

Consider the exponential regression model with two parameters

η(x;θ) = θ1 exp (−θ2x) , x ≥ 0, θ1 > 0, θ2 > 0, (5-6)

where θ = (θ1, θ2)T denotes the unknown vector of parameters.

Mukhopadhyay & Haines (1995) show that the non-Bayesian D-optimal designs for the

exponential model (5-6) are balanced on exactly two support points for all values of the

parameters θ and do not depend on the parameter θ1, i.e.,

ξ∗ =

{
0 1/θ2

0.5 0.5

}
. (5-7)

However, the Bayesian D-optimal designs for the exponential model (5-6) are not neces-

sarily based on exactly two support points. The number of support points of Bayesian

designs increases as the prior distribution for θ becomes more dispersed (Firth & Hinde

1997, Duarte & Wong 2015). This behavior will be illustrated in the next Subsection

5.3.1.

5.3.1. Bayesian D-Optimal Design

Let π denote a bivariate prior distribution for θ = (θ1, θ2)T with independent marginal

distributions π1 and π2. A design ξ∗B is called Bayesian D-optimal (with respect to the

prior π) if ξ∗B maximizes

Φπ (ξ) = Eπ [log det {I (ξ,θ)}] =

∫
Θ

log det {I (ξ,θ)} dπ (θ) (5-8)
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and Φπ (ξ∗B) <∞. Suppose that, this prior distribution π is sufficiently regular such that

there exists at least one design ξ with Eπ [ |log det {I (ξ,θ)}| ] <∞.

For the model (5-6) a straightforward calculation (see Appendix A) gives

Eπ [log det {I (ξ,θ)}] = 2Eπ [log (θ1)] + Eπ [log det {I (ξ,θ∗)}] , (5-9)

where θ∗ = (1, θ2)T . Consequently the Bayesian D-optimal design for the model (5-6)

depends on the prior distribution only through the marginal distribution π2 of θ2.

We begin to investigate the conditions under which the Bayesian D-optimal design for

the exponential model (5-6) is based on two points. The following theorem gives the

best Bayesian D-optimal design in the class of all designs supported at two points.

Theorem 5.1. For the exponential model (5-6), the Bayesian D-optimal design among

all designs with two support points puts equal masses at the points

x1 = 0, x2 = [Eπ2 (θ2)]−1 , (5-10)

where Eπ2 [·] denotes the expectation with respect to the marginal distribution π2 of the

prior π.

The proof of Theorem 5.1 can be found in Dette & Sperlich (1994).

This theorem shows that if a Bayesian D-optimal design for the exponential model in

(5-6), supported at two points exists, then it must be of the form given in Theorem 5.1.

Moreover, this design is also Bayesian D-optimal in the class of all two-point designs.

It is noted that the Bayesian D-optimal design is not dependent on the parameter θ1.

The resulting Bayesian optimal design depends on the marginal prior distribution π2 of

θ2 and can vary substantially when different marginal prior distributions are used. The

Bayesian D-optimal designs are constructed for a range of marginal prior distributions

π2(θ2): gamma, lognormal, and uniform with different hyperparameters, in order to

examine the influence of this marginal prior distribution. These designs are obtained,

minimizing the following criterion of Bayesian D-optimality

ΨB =

∫
Θ

{− log det {I (ξ,θ)}}π (θ) dθ. (5-11)

To evaluate the integral in (5-11), the random vectors θ are generated according to the

prior distribution π with the marginal prior distribution π2(θ2). Then the MC method

is used to calculate this integral.
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Since θ2 is a scale parameter for the exponential model (5-6), it is admissible to adopt a

gamma distribution for its prior (Mukhopadhyay & Haines 1995), i.e.

π2 (θ2) =
βαθα−1

2 exp (−βθ2)

Γ (α)
, θ2 > 0, (5-12)

where the hyperparameters α and β are positive and known.

If the hyperparameter α is sufficiently large (α ≥ 3), the two-point design of The-

orem 5.1 is globally Bayesian D-optimal design in the class of all designs (Dette &

Sperlich 1994, Mukhopadhyay & Haines 1995, Dette & Neugebauer 1997).

The Equivalence Theorem for nonlinear models given by Chaloner & Larntz (1989) helps

to check the D-optimality of resulting Bayesian designs. For any fixed prior π a design

ξ∗B is Bayesian D-optimal if and only if

Eπ

[
tr
(
I (ξ∗B,θ)−1 I (x,θ)

)]
= Eπ2

[
tr
(
I (ξ∗B,θ

∗)−1 I (x,θ∗)
)]
≤ 2 (5-13)

for all x in the design space X , with equality in (5-13) occurring if x belongs to the

support of ξ∗B.

The hyperparameters α and β in the gamma prior distribution (5-12) are chosen such

that Eπ2 (θ2) = 1, that is, α = β in all cases. If the hyperparameter α = 4, that is,

according to Dette & Sperlich (1994), this hyperparameter has a sufficiently large value,

therefore, the resulting Bayesian D-optimal design is balanced at two points: x1 = 0 and

x2 = [Eπ2 (θ2)]−1. In this case the variance of θ2 is equal to 0.25. The hyperparameters

of the other prior distributions of θ2, lognormal and uniform, are chosen in such a way

as to preserve the same mean and variance of θ2 of the gamma prior distribution (5-12),

i.e., Eπ2 (θ2) = 1 y Varπ2 (θ2) = 0.25.

The continuous prior distributions of θ2 (gamma, lognormal and uniform) are constructed

through simulations in R (Team 2018). The number (1000) of simulations refers to the

amount of θ2 values generated from the respective prior distribution. These values of the

gamma, lognormal and uniform prior distributions of θ2 are generated via simulation by

functions rgamma, rlnorm and runif in R (Team 2018), respectively. The gamma and

uniform distributions are simulated with hyperparameters specified in Table 5-1, while

the lognormal distribution is simulated with hyperparameters meanlog = −0.1115718

and sdlog = 0.47238073, which correspond to the mean equal to 1 and variance equal to

0.25.

The Nelder-Mead direct search algorithm (Nelder & Mead 1965) is used in R-project

(Team 2018) to minimize the Bayesian D-optimal criterion (5-11) to find the Bayesian
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D-optimal two-point design for each prior distribution of θ2: gamma, lognormal and uni-

form. The resulting Bayesian D-optimal two-points designs for these prior distributions

are presented in Table 5-1.

Table 5-1.: Bayesian D-optimal two-point designs and the efficiency of the D-optimal

design (5-7) with respect to them for different prior distributions of θ2.

Prior distribution of θ2 Gamma (4,4) Lognormal (1,0.25) Uniform(0.134,1.866)

Support points xi 0.0000; 0.9925 0.0000; 1.0131 0.0000; 0.9876

Weights wi 0.5000; 0.5000 0.5000; 0.5000 0.5000; 0.5000

Efficiency 0.99998 0.99995 0.99995

The second row of this table shows the support points of the Bayesian D-optimal two-

point design, while the third row contains the corresponding weights. It is noted that the

resulting Bayesian two-point designs have the same characteristics of the two-point de-

sign of the Theorem 5.1. The inequality (5-13) of the Equivalence Theorem for nonlinear

models is used to verify the D-optimality of these two-point designs. Figure 5-1 shows

that the function d (x, ξ∗B) achieves its maximum value 2 at the support points 0 and 1,

demonstrating the D-optimality of the resulting Bayesian two-point designs according to

the Equivalence Theorem for Bayesian D-optimal designs for nonlinear models (Chaloner

& Larntz 1989).

The fourth row of this table presents the efficiencies of the locally D-optimal design ξ∗

given in (5-7) with respect to the Bayesian D-optimal two-point designs given in Table

5-1. Here the efficiency is defined as the ratio of the Bayesian D-optimality criterion

(5-11) evaluated for the Bayesian D-optimal two-point designs and the locally D-optimal

design (5-7) such that this ratio is in the interval [0, 1]. It is observed that the D-efficiency

of the locally D-optimal designs relative to the Bayesian D-optimal two-point designs

are all greater than of 99.99%. Thus, the Bayesian D-optimal two-point designs coincide

with the respective locally D-optimal designs.

If the hyperparameter α in (5-12) is not sufficiently large (α < 3), the two-point design

of Theorem 5.1 cannot be globally optimal with respect to the gamma prior (5-12). In

this case, the Bayesian D-optimal designs have at least three support points because

the variance of parameter θ2 increases as hyperparameter α of the gamma prior (5-12)

decreases. Therefore, more support points are required for the design of more dispersed

prior distributions of θ2.
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Figure 5-1.: Expected variance d (x, ξ∗B) for different prior distributions of θ2 for the

Bayesian D-optimal two-point designs given in Table 5-1.

The hyperparameters of each prior distribution of θ2, gamma, lognormal, and uniform,

are chosen so that Bayesian D-optimal three-point design is obtained for each prior.

The gamma and lognormal prior distributions have the same mean of the parameter θ2,

i.e., Eπ2 (θ2) = 1, but the mean of the uniform prior can not have the same value. The

uniform distribution is symmetric, unlike the gamma and lognormal distributions. The

maximum admissible variance for θ2 > 0 is equal to 1/3, but the three-point designs for

the uniform prior with the variance equal to 1/3 are not globally optimal. Therefore, the

mean of the uniform prior should be increased to 2. The gamma and lognormal prior dis-

tributions have the same variance of the parameter θ2, Varπ2 (θ2) = 0.4, but the variance

of the uniform prior is equal to 1.08. The gamma and uniform distributions of θ2 are sim-

ulated with hyperparameters specified in Table 5-2, while the lognormal distribution is

simulated with hyperparameters meanlog = −0.1682361 and sdlog = 0.58006227, which

correspond to the mean equal to 1 and variance equal to 0.4. The resulting Bayesian

D-optimal three-point designs for these prior distributions are presented in Table 5-2.

The second row of this table shows the support points of the Bayesian D-optimal three-

point design, while the third row contains the corresponding weights. Its fourth row also

contains the efficiencies of the locally D-optimal designs ξ∗ given in (5-7) with respect

to the Bayesian D-optimal three-point designs given in this table. Here the efficiency

is defined as the ratio of the Bayesian D-optimality criterion (5-11) evaluated for the

Bayesian D-optimal three-point designs and the locally D-optimal design (5-7) such that

this ratio is in the interval [0, 1]. The efficiency values show only a minor improvement
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Figure 5-2.: Expected variance d (x, ξ∗B) for different prior distributions of θ2 for the

Bayesian D-optimal three-point designs given in Table 5-2.

in the efficiency when one uses a Bayesian three-point design instead of the locally D-

optimal two-point design.

Table 5-2.: Bayesian D-optimal three-point designs and the efficiency of the D-optimal

design (5-7) with respect to them for different prior distributions of θ2.

Prior of θ2 Gamma (2.5,2.5) Lognormal (1,0.4) Uniform (0.2,3.8)

Support points xi 0.000; 0.937; 1.351 0.000; 0.287; 1.017 0.000; 0.493; 2.011

Weights wi 0.497; 0.373; 0.130 0.497; 0.010; 0.493 0.495; 0.484; 0.021

Efficiency 0.99964 0.99917 0.99922

The inequality (5-13) of the Equivalence Theorem for nonlinear models is used to ver-

ify the D-optimality of the resulting Bayesian three-point designs. Figure 5-2 shows

that the function d (x, ξ∗B) achieves its maximum value 2 at the three respective support

points, verifying the D-optimality of these Bayesian three-point designs according to the

Equivalence Theorem for nonlinear models (Chaloner & Larntz 1989).

If the hyperparameters α = β = 1.5, the Bayesian D-optimal three-point designs are not

globally optimal with respect to the gamma prior (5-12). Here the Bayesian D-optimal

design has at least four support points. This result is verified by inequality (5-13) of the

Equivalence Theorem for nonlinear models.
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Table 5-3.: Bayesian D-optimal four-point designs and the efficiency of the D-optimal

design (5-7) with respect to them for different prior distributions of θ2.

Prior of θ2 Gamma (1.5,1.5) Lognormal (1,1.2)

Support points xi 0.000; 0.675; 1.726; 6.431 0.000; 0.274; 0.752; 2.094

Weights wi 0.463; 0.307; 0.177; 0.052 0.447; 0.094; 0.207; 0.253

Efficiency 0.96706 0.94561

The parameters of each prior distribution of θ2, gamma and lognormal, are chosen so

that Bayesian D-optimal four-point design is obtained for each prior. The gamma and

lognormal prior distributions have the same mean of the parameter θ2, i.e., Eπ2 (θ2) = 1,

but the variances are different of each prior distribution: σ2
Ga = 0.6667 y σ2

LN = 1.2.

The gamma distribution of θ2 is simulated with hyperparameters specified in Table 5-3,

while the lognormal prior is simulated with hyperparameters meanlog = −0.39422868

and sdlog = 0.887951215, which correspond to the mean equal to 1 and variance equal to

1.2. The Bayesian D-optimal four-point design can not be obtained for the uniform prior

distribution of θ2 for the exponential model (5-6), because this distribution is symmetric

and their mean and variance increase simultaneously.

Bayesian D-optimal four-point designs for gamma and lognormal prior distributions of θ2

are given in Table 5-3, which also contains in its fourth row the efficiencies of the locally

D-optimal designs ξ∗ given in (5-7) with respect to the Bayesian D-optimal four-point

designs given in this table. The efficiency values show that the Bayesian designs for these

two prior distributions are more efficient than respective locally D-optimal designs. A

small improvement in the efficiency is observed when the Bayesian four-point designs are

used instead of the locally D-optimal two-point designs.

Figure 5-3 shows that the function d (x, ξ∗B) achieves its maximum value 2 at the four

respective support points of design, verifying the D-optimality of the resulting Bayesian

four-point designs for the gamma and lognormal prior distributions of θ2 according to the

Equivalence Theorem for Bayesian D-optimal designs for nonlinear models (Chaloner &

Larntz 1989).

This example shows that the number of support points of Bayesian design for the expo-

nential model (5-6) is not fixed. If the variance of the prior distribution of θ2 tends to 0,

then the Bayesian D-optimality criterion is reduced to the non-Bayesian D-optimality,

and the Bayesian D-optimal design for a one-point prior is equal a the locally D-optimal

design (5-7). When the prior distribution of θ2 has support only over a small region,
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Figure 5-3.: Expected variance d (x, ξ∗B) for different prior distributions of θ2 for the

Bayesian D-optimal four-point designs given in Table 5-3.

the Bayesian D-optimal designs have the same number of support points as locally D-

optimal design, and that the number of support points increases as the prior becomes

more dispersed. A prior distribution with significant variance requires more support

points for the Bayesian D-optimal design than a distribution with smaller variance. The

same result is obtained for the gamma, lognormal, and uniform prior distributions. Sim-

ilar behavior was observed by Chaloner & Larntz (1989) in the case of logistic regression.

5.4. New Criterion for Nonlinear Models

In Section 4.4, the new criterion was introduced to find the penalized Bayesian optimal

design for linear models. The resulting penalized design is optimal according to the

Bayesian optimal design criterion and meets the practical design preferences. Further-

more, the Bayesian approach allows incorporating the available prior information of the

unknown parameters into the design process.

The methodology proposed in Section 4.4, that combines the use of desirability functions

and the Bayesian approach, can also be used in the construction of penalized Bayesian

optimal designs for nonlinear regression models. The optimal design for nonlinear mod-

els depends on the unknown parameter values. The non-Bayesian approach commonly

uses a “best guess” of the parameter values to design an experiment, which leads to

“locally optimal” designs (Chernoff 1953). The problem may arise when that guess is
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not close enough to the true parameter vector because the design obtained may not be

optimal. In the Bayesian approach, the initial guesses of the unknown parameters do

not concentrate on single values. Instead, a prior distribution, which can be centered

around the guessed value, is assigned to each unknown parameter. If the optimal design

obtained is inadequate from a practical perspective, the penalized technique based on the

use of desirability functions can help to construct optimal designs that fulfill traditional

optimal design criteria and also practical design preferences imposed by a researcher.

We suggest extending the use of desirability functions described in Section 3.1 in Bayesian

optimal designs for nonlinear models. Thus, the researcher can incorporate prior infor-

mation of the unknown parameters by using a Bayesian approach and also satisfy prac-

tical preferences. We propose that a penalized Bayesian D-optimal design for nonlinear

models may be found by minimizing the new criterion:

ΨBP (ξ) =

∫
Θ

{− log det {I (θ, ξ)}}π (θ) dθ+Λ(1−D(ξ)) = ΨB (ξ)+Λ(1−D(ξ)) (5-14)

with respect to ξ ∈ Ξ for a given value of Λ, where Λ is a user-specified scale constant.

The first term of the new criterion in (5-14) represents the Bayesian D-optimality crite-

rion for nonlinear models, where Ψ (θ, ξ) = − log det {I (θ, ξ)} is the D-optimality cri-

terion for each θ ∈ Θ. It follows from Jensen’s inequality that if the functional Ψ (θ, ξ)

is convex then the Bayesian D-optimality criterion ΨB (ξ) is also convex (Ermakov &

Zhiglijavsky 1987, p. 202). The second term of the new criterion in (5-14) is a bounded

function between 0 and Λ > 0 (Harrington 1965), which is a penalty function repre-

senting constraints applied to the Bayesian D-optimal designs. The minimization of

the criterion (5-14) is considered as the maximization of the expected utility (2-44), re-

stricted by the penalty function.

The penalty function, (1 − D(ξ)), is added to the Bayesian D-optimality criterion for

nonlinear models (5-11) to penalize experimental designs. The Bayesian D-optimality

criterion (5-11) and the penalty function have very different values, so a user-specified

positive constant, Λ, is required to place them on similar scales. In addition, this con-

stant makes it possible to control the penalty weight in the new criterion (5-14).

Minimization of the criterion (5-14) is similar to the constrained optimization of a

scalar-valued objective function of several variables using Lagrange multipliers (Gavin

& Scruggs 2012), where the objective function is modified by adding terms that describe

the constraints. Thus, the search for the penalized Bayesian D-optimal design for non-

linear models can be considered as minimizing the Bayesian D-optimality criterion for

nonlinear models with respect to ξ ∈ Ξ subject to the restrictions through an overall
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desirability function, D (ξ), for a given value of Λ > 0.

The penalized Bayesian D-optimal criterion in (5-14) is not usually a convex function

of ξ ∈ Ξ (X ). However, this criterion is quasiconvex function (Fedorov & Leonov 2013,

p. 113). For quasiconvex functions, most results used in convex optimization stay valid

(Avriel 2003, ch. 6.1). This fact determines the possibility of finding the global minimum

of the penalized Bayesian optimal criterion (5-14).

The methodology for the construction of penalized Bayesian D-optimal designs for non-

linear models is proposed as follows:

1. A non-penalized Bayesian D-optimal design is constructed by minimizing the

Bayesian D-optimality criterion (5-11). To evaluate the integral in (5-11), the

random variables θ are generated according to respective prior distribution, and

then the MC method, described in Section 5.2, is used to calculate this integral.

2. Appropriate desirability functions are chosen according to the methodology de-

scribed in Section 3.4. A function, D(ξ), defined in (3-4) as the geometric mean

of individual desirability functions, represents the overall desirability for several k

practical design preferences (Harrington 1965).

3. A penalized Bayesian D-optimal design is constructed by minimizing the new cri-

terion (5-14), given a value of Λ, where the first term in (5-14) is evaluated by the

Monte Carlo (MC) method, described in Section 5.2.

4. Iterative algorithms described in Section 2.4 , are employed to determine the pe-

nalized Bayesian D-optimal design ξ∗P . The initial value of Λ is chosen by Λ0 =

|min {ΨB (ξ)}|, which is an absolute value of the minimum of the non-penalized

Bayesian D-optimality criterion (5-11), because Λ is required to bring the two

terms in (5-14) to similar scales.

5. Penalized Bayesian D-optimal designs are generated by minimizing the penalized

Bayesian D-optimal criterion (5-14) for values of Λ in multiples or submultiples of

Λ0.

6. The final value of Λ is selected within the range in which stability is shown in the

responses of the overall desirability function, D(ξ). These responses can be plotted

to better observe their behavior.

7. A penalized Bayesian optimal design is determined by the values of x and w of the

resulting design ξ∗P . These values are associated with the minimum value of the

penalized Bayesian D-optimal criterion (5-14) for a given value of Λ in the stability

range of D(ξ). The resulting penalized Bayesian D-optimal design for a nonlinear
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model is optimal according to the Bayesian D-optimal design criterion (5-14) and

also fulfills the practical design preferences.

The methodology for the construction of penalized Bayesian D-optimal designs for non-

linear models is illustrated with an example of the exponential growth regression model.

This methodology used here for penalized Bayesian design construction can be readily

extended to other nonlinear models.

5.5. Penalized Bayesian D-Optimal Design for

Exponential Model

This section describes the methodology used to find penalized Bayesian D-optimal de-

signs for nonlinear regression models and illustrates this methodology through an ex-

ample of the two-parameter exponential model (5-6). General guidelines for choosing

appropriate desirability functions are presented to obtain penalized Bayesian optimal

designs with desirable characteristics. Resulting penalized Bayesian designs are exam-

ined for a range of prior distributions of θ2: gamma, lognormal, and uniform.

5.5.1. Penalized Designs with Three Support Points

The Bayesian two-point designs in Table 5-1 are examined. It is noted that these de-

signs are balanced on exactly two support points: x1 = 0 and x2 = [Eπ2 (θ2)]−1, i.e., the

number of support points of design is the same as the number of unknown parameters

of the exponential model (5-6).

We want to have the three-point distinct Bayesian D-optimal design with the minimum

two observations in new point and the minimum difference 0.3 units between adjacent

design points for three prior distributions of θ2: gamma, lognormal, and uniform.

Initially, the third point is added, and the following Bayesian D-optimal design for the

gamma prior distribution of θ2 is obtained:

ξ∗A =

{
0.0000 0.9925 0.9925

0.5000 0.3208 0.1792

}
. (5-15)

Clearly, this Bayesian D-optimal design is actually supported by two design points, not

three.

A penalized-optimal design strategy is developed using two desirability functions d1 (r3)

and d2 (min (diff23)) to identify the minimum number of observations in the new point x3

and the minimum difference between the design points x2 and x3. A logistic cumulative
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Figure 5-4.: Plots of desirability functions for the exponential model (5-6).

distribution function, of the type described by Gibb (1998), is used to generate the re-

quired desirability functions, but other functions can be used to obtain the appropriate

shape. The logistic function, the form of the “bigger-is-better” or maximizing desirabil-

ity function given in (3-11), captures the experimental design preferences.

The desirability functions d1 (r3) and d2 (min (diff23)) are defined analogously to the de-

sirability functions (4-19) and (4-20) of the penalized Bayesian design (4-23) for quadratic

regression model. Replacing the minimum and maximum values of r3 and diff23 in the

formulas (3-11), (3-12) and (3-13), the desirability functions d1 (r3) and d2 (min (diff23))

are obtained as:

d1(r3) =
1

1 + exp (− (r3 − 1.5) /0.17)
, (5-16)

d2(min (diff23)) =
1

1 + exp (− (min (diff23)− 0.2) /0.034)
. (5-17)

Plots of these desirability functions can be found in Figure 5-4. The plot of d1(r3),

given in Figure 5-4(a), shows that the allocation of less than one observation to the new

design point x3 is unacceptable, and the plot of d2(min (diff23)), given in Figure 5-4(b),

shows that the spacing between design points x2 and x3 of less than 0.1 units apart is

unacceptable.

The overall desirability function is

D1(ξ) = (d1 × d2)1/2 . (5-18)
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The Nelder-Mead direct search algorithm (Nelder & Mead 1965) is employed in R-project

(Team 2018) to minimize the following penalized criterion∫
Θ

{− log det {I (θ, ξ)}} π (θ) dθ + lΛ0(1−D1(ξ)) (5-19)

for the exponential model given in (5-6), where Λ0 defines an absolute value of the

minimum non-penalized Bayesian D-optimal criterion of the two-point design (5-15).

Computer code implemented in R-project (Team 2018) to generate penalized Bayesian

D-optimal designs may be found in Appendix B. Procedure follows the steps, described

in detail in Section 3.5, to obtain the penalized Bayesian D-optimal design for the ex-

ponential model (5-6).

The minimum Bayesian D-optimal criterion defines

Λ0 =

∣∣∣∣min
ξ∈Ξ

∫
Θ

{− log det {I (θ, ξ)}} π (θ) dθ

∣∣∣∣ = 3.401431. (5-20)

Penalized BayesianD-optimal designs are generated by minimizing the penalized Bayesian

D-optimal criterion (5-19) for different values l = 0.01, 0.02, . . . , 1. The overall desirabil-

ity function D1 responses become stable from approximately l = 0.10. A resulting

penalized Bayesian D-optimal design is given in Table 5-4 in its second column.

The same penalized-optimal design procedure is performed for lognormal and uniform

prior distributions of θ2, using the same two desirability functions d1 (r3) and d2 (min (diff23))

defined in (5-22) and (5-23), respectively. The resulting penalized Bayesian D-optimal

designs for these prior distributions are given in Table 5-4 in its third and fourth columns,

respectively.

Table 5-4.: Penalized Bayesian D-optimal two-point designs of Table 5-1 for different

prior distributions of θ2.

Prior of θ2 Gamma (4,4) Lognormal (1,0.25) Uniform(0.134,1.866)

Support points xi 0.000; 0.867; 1.222 0.000; 0.881; 1.256 0.000; 0.851; 1.245

Weights wi 0.496; 0.296; 0.208 0.496; 0.296; 0.208 0.494; 0.297; 0.208

Efficiency 0.99726 0.99692 0.99699

The second row of this table shows the support points of the penalized Bayesian D-

optimal two-point designs while the third row contains the corresponding weights. The

efficiencies of these designs with respect to the non-penalized Bayesian D-optimal two-

point designs given in Table 5-1 can be found in the fourth row of the table. Here the
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efficiency is defined as the ratio of the Bayesian D-optimality criterion (5-11) evaluated

for the non-penalized Bayesian designs and corresponding penalized Bayesian designs,

such that this ratio is in the interval [0, 1]. It is observed that the D-efficiency of the

penalized Bayesian designs relative to the non-penalized Bayesian D-optimal two-point

designs are all greater than of 99%, indicating the irrelevance of the loss in this efficiency.

In summary, the penalized Bayesian D-optimal designs in Table 5-4 are as efficient as

non-penalized designs in Table 5-1 but they also have experimental characteristics de-

sired by a researcher.

The MSE associated with the estimated parameters of the exponential model (5-6) are

also calculated via simulation in order to compare the performance of non-penalized and

penalized Bayesian optimal designs for several prior distributions of θ2.

The non-penalized Bayesian D-optimal designs are the balanced two-point designs and

presented in Table 5-1. For a sample size of 12, then exact designs have 6 observations

at each support point. The penalized Bayesian D-optimal designs are presented in Ta-

ble 5-4. The procedure of the efficient design apportionment (Pukelsheim 1993, p. 309)

helps to obtain the distribution of observations for finite sample size 12 as follows: 5, 4, 3.

The experimental observations of all designs are simulated according to the exponen-

tial model (5-6) in the corresponding assigned design points. Then the parameters are

estimated from the simulated samples according to each design. The algorithm to fit

nonlinear models is available using the package minpack.lm in R software through the

command line as nlsLM (Team 2018), implementing the Levenberg-Marquardt nonlinear

least-squares algorithm. It can also be used to estimate unknown parameters in nonlin-

ear models. Later the squared differences between estimated parameters and parameters

generated according to the respective prior distribution of θ2 (gamma, lognormal, or

uniform) are calculated. Finally, the results of the MSE are obtained by averaging the

squared differences mentioned above.

The algorithm implemented to calculate the MSE of the estimated parameters of the

exponential model (5-6) is similar to the algorithm used in Section 4.7.1. The results of

the MSE calculations of the estimated parameters in these six designs are presented in

Table 5-5.

It is observed that the MSE values of the parameter θ1 of the Bayesian D-optimal designs

are practically equal for the different prior distributions of θ2 for the same type of design.

It is a logical result that these MSE values are equal because the parameter θ1 is the

linear term in the exponential model (5-6). The MSEs do not depend on the parameter

values for linear terms. They only depend on design points.
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Table 5-5.: Results of the MSE calculations of the estimated parameters for different

prior distributions of θ2.

XXXXXXXXXXXXXParameter

Prior
Gamma (4,4) Lognormal (1,0.25) Uniform(0.134,1.866)

θ1 non-penalized 0.001655299 0.001635315 0.001646491

θ1 penalized 0.001984625 0.001951534 0.001947285

θ2 non-penalized 0.023267231 0.026202415 0.018681273

θ2 penalized 0.021190210 0.024442046 0.017512663

‖θ‖ non-penalized 0.01777523 0.02031373 0.01360342

‖θ‖ penalized 0.01686706 0.01973333 0.01340609

The MSE values of the parameter θ2 of the Bayesian D-optimal designs are not equal

for the different prior distributions of θ2, because the exponential model (5-6) does not

depend linearly on this parameter. The MSE values of the parameter θ2 are the greatest

for the lognormal prior distribution, while the MSE values of this parameter are the

smallest for the uniform prior distribution. The skewness of these distributions has the

same behavior.

From Table 5-5, it can be seen that the MSE values of the parameter θ1 of the non-

penalized Bayesian designs are less than respective MSE values of the penalized Bayesian

designs, while the MSE values of the parameter θ2 have an opposite behavior. This

behavior is observed for all prior distributions considered for the parameter θ2. The

non-penalized Bayesian designs contain six observations in each design support point

x = {0, 1}, while the penalized Bayesian designs have only five observations in x = 0.

Hence, it is expected that this affects the accuracy of the parameter θ1 estimation in

the penalized Bayesian design, because the observations at point x = 0 determine the

estimation of this parameter. While the observations at point x = 1 determine the

estimation of θ2. The penalized Bayesian design has 7 observations distributed around

x = 1; therefore the most accurate estimates of θ2 are obtained in the penalized design.

5.5.2. Penalized Designs with Four Support Points

The penalized Bayesian D-optimal design with four support points is constructed to

compare the penalized and non-penalized Bayesian designs. We want to obtain the pe-

nalized Bayesian D-optimal four-point design with similar characteristics of the designs

in Table 5-3.
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Initially, two new points are added, and the following Bayesian D-optimal design for the

gamma prior distribution of θ2 is obtained:

ξ∗A =

{
0.000 0.000 1.006 1.006

0.392 0.108 0.259 0.241

}
. (5-21)

Clearly, this Bayesian D-optimal design is actually supported by two design points, not

four.

A penalized-optimal design strategy is developed using four desirability functions d1 (r2),

d2(min (diff23)), d3 (x2), and d4 (x4). A logistic cumulative distribution function, of the

type described by Gibb (1998), is used to generate the required desirability functions

d1 (r2) and d2(min (diff23)), but other functions can be used to obtain the appropriate

shape. The logistic function, the form of the “bigger-is-better” or maximizing desirability

function given in (3-11), captures the experimental design preferences of the minimum

number of observations in the point x2 and the minimum difference between the support

points x2 and x3. The normal density function, the bell shape or “target” desirability

function given in (3-9) is used to create the desirability functions d3 (x2) and d4 (x4) to

characterize the locations of x3 and x4, respectively.

Taking into consideration the characteristics of the non-penalized four-design in Table

5-3, the minimum and maximum values of r2 and diff23 are defined. Replacing the

values of γ1,2 = 0.05, r2(min) = 2, r2(max) = 3, diff23(min) = 0.8, and diff23(max) = 1 in the

formulas (3-11), (3-12) and (3-13), the desirability functions d1 (r2) and d2 (min (diff23))

are obtained as:

d1(r2) =
1

1 + exp (− (r2 − 2.5) /0.17)
, (5-22)

d2(min (diff23)) =
1

1 + exp (− (min (diff23)− 0.9) /0.034)
. (5-23)

Plots of these desirability functions are shown in Figure 5-5. The plot of d1(r2), given

in Figure 5-5(a), shows that it is unacceptable to allocate less than two observations to

the support point x2; and the plot of d2(min (diff23)), given in Figure 5-5(b), exhibits

that the spacing between design points of less than 0.8 units apart is not acceptable.

In order to keep the support point x2 close to 0.675, it is assumed that the target of

value range of x2 is 0.675 and the interval width of desirability function is 0.2. Replacing

the values of γ3 = 0.05, a3 = 0.675 and δ3 = 0.2 in the formulas (3-9) and (3-10), the

desirability function d3 (x2) is obtained:

d3 (x2) = exp

{
−1

2

(
x2 − 0.675

0.0817

)2
}
. (5-24)
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Figure 5-5.: Plots of desirability functions for the exponential model (5-6).

A plot of the last desirability function, given in Figure 5-5(c), shows that the location

of the design point x2 outside the interval [0.475, 0.875] is not acceptable.

In order to keep the support point x4 close to 6.5, it is assumed that the target of value

range of x4 is 6.5 and the interval width of desirability function is 2. Replacing the

values of γ4 = 0.05, a4 = 6.5 and δ4 = 2 in the formulas (3-9) and (3-10), the desirability

function d4 (x4) is obtained:

d4 (x4) = exp

{
−1

2

(
x4 − 6.5

0.817

)2
}
. (5-25)

A plot of the last desirability function, given in Figure 5-5(d), exhibits that the location

of the design point x4 outside the interval [4.5, 8.5] is unacceptable.
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The overall desirability function is

D2(ξ) = (d1 × d2 × d3 × d4)1/4 . (5-26)

The Nelder-Mead direct search algorithm (Nelder & Mead 1965) is employed in R-project

(Team 2018) to minimize the following criterion∫
Θ

{− log det {I (θ, ξ)}}π (θ) dθ + lΛ0(1−D2(ξ)) (5-27)

for the exponential model given in (5-6), where Λ0 defines an absolute value of the min-

imum non-penalized Bayesian D-optimal criterion (5-20) of the two-point design (5-15).

Computer code implemented in R-project (Team 2018) to generate penalized Bayesian

D-optimal designs may be found in Appendix B. Procedure follows the steps, described

in detail in Section 3.5, to obtain the penalized Bayesian D-optimal design with similar

characteristics of the respective four-point design in Table 5-3.

Penalized BayesianD-optimal designs are generated by minimizing the penalized Bayesian

D-optimal criterion (5-27) for different values l = 0.01, 0.02, . . . , 1. The responses of the

overall desirability function D2 become stable from approximately l = 0.97. A resulting

penalized Bayesian D-optimal design is

ξ∗PB =

{
0.000 0.677 1.779 6.502

0.478 0.336 0.181 0.005

}
. (5-28)

It is observed that this design has similar characteristics of the Bayesian D-optimal four-

point design for gamma prior distribution of θ2 with the hiperparameters α = β = 1.5.

The D-efficiency of the design (5-28) with respect to the non-penalized Bayesian D-

optimal four-point design given in Table 5-3 is equal to 0.99143. Here the efficiency

is defined as the ratio of the Bayesian D-optimality criterion (5-11) evaluated for the

Bayesian D-optimal four-point design and the penalized Bayesian D-optimal design (5-

28) such that this ratio is in the interval [0, 1]. It is observed that the D-efficiency of

the penalized Bayesian D-optimal design relative to the Bayesian D-optimal four-point

design is greater than 99%, indicating the irrelevance of the loss in this efficiency.

The MSEs associated with the estimated parameters of the exponential model (5-6) are

also calculated via simulation in order to compare the performance of non-penalized and

penalized Bayesian D-optimal designs. The procedure of the efficient design apportion-

ment (Pukelsheim 1993, p. 309) helps to obtain the distribution of observations for finite

sample size 12 for both designs as follows: 5, 4, 2, 1.

The algorithm implemented to calculate the MSE of the estimated parameters of the

exponential model (5-6) is similar to the algorithm used in Section 4.7.1. The results
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Table 5-6.: Results of the MSE calculations of the estimated parameters.

XXXXXXXXXXXXXParameter

Design
Non-penalized Penalized

θ1 0.001876112 0.001933713

θ2 0.058906095 0.027197434

‖θ‖ 0.05154846 0.02136317

of the MSE calculations of the estimated parameters in non-penalized and penalized

designs are presented in Table 5-6.

It is observed that the MSE values of the parameter θ1 are practically equal for both

designs because this parameter is the linear term in the exponential model (5-6). The

MSE values of the parameter θ2 of the penalized Bayesian design are less than corre-

sponding MSE values of the non-penalized Bayesian design. The non-penalized Bayesian

four-point design was constructed for gamma prior distribution of θ2 with the hyperpa-

rameters α = β = 1.5, while the penalized design (5-28) was obtained for gamma prior

distribution of θ2 with the hyperparameters α = β = 3. Therefore, the parameter θ2 with

the larger variance of the non-penalized design has the MSE values larger than the one

with the smaller variance of the penalized design. Thus, greater uncertainty produces

greater errors in parameter estimation of θ2.

In summary, the penalized Bayesian D-optimal design (5-28) has the same character-

istics as the non-penalized Bayesian D-optimal four-point design; it is equally efficient,

and its MSEs of the parameter θ2 are lower compared to the non-penalized design.

Two impractical characteristics of the experimental design (5-28) are evident. First, the

maximum support point is outside the experimental region. As a result, it provides little

information about the model curve. Second, this support point has only one observation.

A penalized-optimal design strategy is developed using five desirability functions d1 (r2),

d2(min (diff23)), d3 (x2), d4 (x4), and d5 (r4). The first three desirability functions do not

change with respect to the previous design. But the fourth desirability function d4 (x4)

is modified by changing the target of value range of x4 and the width of the interval of

this function.

Figure 5-6 shows that the model curve plateaus around 4, therefore, the maximum

support point of the design (5-28) provides little information about this curve. Thus, it is



5.5 Penalized Bayesian D-Optimal Design for Exponential Model 89

Figure 5-6.: Plot of the exponential regression model given in (5-6), where θ1 = 1 and

θ2 = 1.

reasonable that a researcher would consider a maximum x4 greater than 4 unacceptable.

In order to keep the support point x4 close to 3, it is assumed that the target of value

range of x4 is 3 and the interval width of desirability function is 1. Replacing the values

of γ4 = 0.05, a4 = 3, and δ4 = 1 in the formulas (3-9) and (3-10), the desirability function

d4 (x4) is obtained:

d4 (x4) = exp

{
−1

2

(
x4 − 3

0.4085

)2
}
. (5-29)

A plot of this desirability function, given in Figure 5-7(a), shows that the location of

the design point x4 outside the interval [2, 4] is unacceptable.

Considering the total sample size of 12 for a four-point design, it is reasonable to assume

that at least one observation should be assigned to the new design point x4. Replacing

the values of γ5 = 0.05, r4(min) = 1, r4(max) = 3 in the formulas (3-11), (3-12) and (3-13),

the desirability functions d5 (r4) is obtained as:

d5(r4) =
1

1 + exp (− (r4 − 2) /0.34)
. (5-30)

The plot of d5 (r4), given in Figure 5-7(b), shows that the assignment of less than one

observation to the support point x4 is not acceptable.
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Figure 5-7.: Plots of desirability functions for the exponential model (5-6).

The overall desirability function is

D3(ξ) = (d1 × d2 × d3 × d4 × d5)1/5 . (5-31)

The Nelder-Mead direct search algorithm (Nelder & Mead 1965) is employed in R-project

(Team 2018) to minimize the following penalized criterion∫
Θ

{− log det {I (θ, ξ)}} π (θ) dθ + lΛ0(1−D3(ξ)) (5-32)

for the exponential model given in (5-6), where Λ0 defines an absolute value of the min-

imum non-penalized Bayesian D-optimal criterion (5-20) of the two-point design (5-15).

Computer code implemented in R-project (Team 2018) to generate penalized Bayesian

D-optimal designs may be found in Appendix B. Procedure follows the steps, described

in detail in Section 3.5, to obtain the penalized Bayesian D-optimal four-design with

desired practical characteristics.

Penalized BayesianD-optimal designs are generated by minimizing the penalized Bayesian

D-optimal criterion (5-27) for different values l = 0.01, 0.02, . . . , 1. The overall desirabil-

ity function D3 responses become stable from approximately l = 0.30. A resulting

penalized Bayesian D-optimal design is

ξ∗PB =


0.000 0.678 1.711 2.920

0.437 0.257 0.180 0.126

5 3 2 2

 , (5-33)
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where the last row represents the number of observations at each support point for the

sample size N = 12. It is observed that this penalized optimal design has the desired

practical characteristics since two observations are assigned to the new support point

and the maximum support point, x4 = 2.920, is within the experimental region. The

D-efficiency of the design (5-33) with respect to the non-penalized Bayesian D-optimal

four-point design given in Table 5-3 is equal to 0.99. It is observed that the D-efficiencies

of the penalized Bayesian D-optimal designs, (5-28) and (5-33), relative to the Bayesian

D-optimal four-point design are practically equal, indicating the irrelevance of the loss

in this efficiency.

The MSEs of the estimated parameters are also calculated for the penalized design (5-

33). The MSE value of the parameter θ1 is equal to 0.001877552; it is approximately

equal to the MSE value of the penalized design (5-28). It is logical because this param-

eter is the linear term in the exponential model (5-6). The MSE value of the parameter

θ2 is equal to 0.035074111; it is less than respective MSE value of the non-penalized

Bayesian design, but it is greater than respective MSE value of the penalized Bayesian

design (5-28).

In summary, the penalized Bayesian D-optimal design (5-33) has the desired practical

characteristics, since two observations have been assigned to the maximum support point

and also this point, x4 = 2.920, is within the active experimental region. Although the

MSE value of θ2 is greater than in the penalized Bayesian design (5-28), both penalized

Bayesian designs are almost equally efficient.

This example illustrates the methodology that allows the researcher to obtain the penal-

ized Bayesian D-optimal design for nonlinear regression models. The penalized design

technique proposed allows specifying particular characteristics of the experimental de-

sign without losing the efficiency of the design. If the optimal design theory leads from

a practical perspective to an inappropriate design, this penalized technique may be used

to improve the practical characteristics of the initial design. Thus, the resulting penal-

ized Bayesian optimal design is optimal according to the corresponding Bayesian design

criterion and fulfills the practical design preferences imposed by a researcher.





6. Conclusions, Recommendations, and

Future Works

This last chapter provides general conclusions of the dissertation, suggests recommenda-

tions that should be taken into account in obtaining the penalized designs, and outlines

possible lines of research for future work.

6.1. Conclusions

This research has suggested penalized optimal design strategy with the Bayesian ap-

proach to reduce issues related to experimental designs for linear and nonlinear models.

The primary goal was to establish a procedure that would allow the construction of pe-

nalized Bayesian optimal experimental designs for these regression models.

A new optimality criterion was constructed with two simultaneous objectives: to incor-

porate the prior information of the unknown parameters and to satisfy practical design

preferences imposed by a researcher. The proposed criterion combines the use of desir-

ability functions and the Bayesian approach in the construction of penalized Bayesian

D-optimal designs, which have good statistical inference properties and desirable practi-

cal characteristics. The justifications of the proposed criteria corresponding to each case

were presented in their respective chapters.

The practical characteristics of experimental designs are delimited by a penalty function.

This function includes an overall desirability function that is the geometric mean of the

individual desirability functions. It is added to an “alphabetic” optimality criterion to

penalize not practical optimal designs. The methodology of choosing the appropriate

desirability functions according to the practical design preferences was proposed and

illustrated with an example of the Michaelis-Menten model. The steps to follow to ob-

tain the penalized optimal design were detailed in this example. The resulting penalized

optimal design had a reasonable increment in the generalized variance but smaller com-

pared to an arbitrarily chosen experimental design, and also there was an improvement

in the practical design characteristics. This example additionally showed that resulting

penalized designs were similar employing comparable shaped desirability functions.
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The proposed penalized Bayesian optimal design methodology was illustrated by two

examples of regression models: quadratic and exponential. The recommended steps to

follow to obtain the penalized Bayesian optimal design for nonlinear models were de-

tailed in Chapter 5. Corresponding routines were developed in the statistical software

R (Team 2018) to calculate the penalized designs. It was shown that the D-efficiencies

of the penalized Bayesian D-optimal designs relative to the Bayesian D-optimal designs

were practically equal, indicating the irrelevance of the loss in this efficiency.

The mean squared errors (MSEs) of the parameters, which were calculated via simulation

in order to compare the performance of non-penalized and penalized Bayesian optimal

designs, showed that their values were comparable for linear terms. They are equal if

the numbers of observations are equal in the corresponding support points. The lowest

MSE value corresponds to the largest number of observations and vice versa. The MSE

values of the scale term depend on the variance and skewness of the parameter prior

distribution. They increase with the increase of these characteristics.

Finally, the proposed methodologies allowed the construction of penalized Bayesian D-

optimal designs that provide a suitable balance between Bayesian D-optimality and

overall desirability. In all examples, this proposed penalized methodology has provided

an experimental design that was optimal according to the Bayesian criteria and with the

design preferences established by the researcher.

6.2. Recommendations

The following recommendations are hereby made basing on the study findings. These

recommendations relate to the issue of the penalized Bayesian design construction.

• The Bayesian design process involves the choice of a prior distribution for the sta-

tistical models. In the case of linear models, several values of the parameter cor-

relation coefficients of normal prior distribution were considered for the quadratic

model. It is recommended to check the combinations of these values because some

combinations do not generate a positive definite “precision” matrix R.

In the case of nonlinear models, several hyperparameter values of gamma, lognor-

mal, and uniform prior distributions of the parameter θ2 were also examined for the

exponential model to obtain the Bayesian optimal designs. Our findings suggest

that the choice between gamma and lognormal prior distributions of θ2 has little

consequences for Bayesian D-optimal designs. However, uniform prior distribution

with comparatively large variances produces very different Bayesian optimal de-

signs due to the symmetry of this prior. If a researcher has poor information about
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parameter mean values, then a prior distribution with comparatively large variance

should be chosen. In contrast, if reasonable prior information is available about

them, Bayesian designs based on this kind of prior distributions may direct to a

loss of design efficiency. On the other hand, it must be taken into account that the

number of support points for nonlinear models increases as the uncertainty of the

prior distribution increases (Firth & Hinde 1997). Therefore, the prior distribution

must be chosen with great prudence before implementing the Bayesian design.

• The proposed penalized optimal design criterion includes two terms, where the

first term represents an “alphabetical” optimality criterion, and the second term is

a penalty function that represents the constraints applied to impractical optimal

designs. A parameter, Λ, specified by the researcher, manages the penalty and

optimality contributions in the penalized optimal criterion. The procedure for se-

lecting Λ in the penalized optimal design process is presented in Sections 3.5 and

5.4. The initial value of Λ is suggested as an absolute value of the minimum of the

corresponding non-penalized optimality criterion. It is recommended to choose the

final value of Λ in the range corresponding to the stability exposed in the overall

desirability function responses, which can be plotted to observe their behavior bet-

ter. It is emphasized that because resulting penalized optimal designs are similar

in the range of Λ that produces stable responses of the overall desirability, it is not

important to know the exact final value of Λ.

• If regression model under study is not linear, the first term of the penalized

Bayesian optimality criterion has quadrature form. The non-Bayesian D-criterion

is integrated over the parameter prior distribution, thereby giving more weight

to more probable parameter values and less weight to improbable values. Ran-

dom variable values are generated according to corresponding prior distribution,

and then the MC method is used to calculate this integral. It is recommended to

generate more than 1000 parameter values to guarantee the best fit to the integral.

• The proposed penalized design procedure permits the researcher to define practical

characteristics of the experimental design through individual desirability functions.

The methodology of choosing the appropriate desirability functions according to

the practical design preferences is presented in Section 3.4. After defining the

analytical expressions of these desirability functions, it is recommended to plot

them to verify desirability levels of design characteristic subject to restriction; and

then, it is suggested to use them in the proposed strategy. This allows for avoiding

unpleasant errors when applying them in the penalty procedure.
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6.3. Future Works

In light of this dissertation, the following lines of research are proposed.

• Our investigation was oriented to the study of the Bayesian D-optimality criterion.

However, our proposed penalized design process could also be used for all other

design criteria, such as Bayesian A-optimality. The penalized Bayesian A-optimal

design could, therefore, be constructed in an analogous manner for both linear and

nonlinear models.

• The Bayesian approach is appropriate for the sequential design process. It uses

currently available data to choose the next design points, and can be divided into

two categories: (i) sequential non-Bayesian approach where at each stage the local

optimal design is computed at the current estimations of the parameters (Ford &

Silvey 1980), and (ii) sequential Bayesian approach where at each stage the optimal

design is obtained by optimizing the Bayesian optimality criterion over an updated

prior distribution for the parameters (Roy, Ghosal & Rosenberger 2009).

In our research, we have only studied the non-sequential Bayesian optimal designs.

In some cases with poor prior information, sequential design can improve design

efficiency with additional information introduced consecutively in the design con-

struction process (Zhang 2006). Thus, the penalized Bayesian two-stage design

procedure could be used to increase initial design efficiency.

• It is proposed to extend the developed penalized design methodology to generalized

linear models, particularly, to the logistic and Poisson regression models. These

models are widely used to model binary and count data in biological, pharmaco-

logical, and medical research (Bender 2009).

• It is interesting to incorporate the proposed penalized design methodology into

mixed-effects models, where the applied restrictions could improve the practical

characteristics of the optimal designs for these models.

• In this research, it was assumed that the error variance is constant. However, in

practice, there are cases where this assumption is not satisfied necessarily. There-

fore, it is proposed to extend the proposed penalized design methodology for het-

eroscedastic models.

• In this research, we have considered penalized experimental designs for parameter

estimation. This work could be extended for model discrimination between two or

more rival models.
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A. Deduction of the formula (5-9)

The Fisher information for θ in the exponential regression model (5-6) for a single

observation at x ≥ 0 is given by the matrix

I (x,θ) =

[
∂

∂θ
η(x;θ)

] [
∂

∂θ
η(x;θ)

]T
=

[
exp (−2θ2x) −θ1x exp (−2θ2x)

−θ1x exp (−2θ2x) θ2
1x

2 exp (−2θ2x)

]
,

(A-1)

where ∂
∂θ
η(x;θ) denotes the gradient of η(x;θ).

The information matrix of an approximate design ξ is

I (ξ,θ) =

∫ ∞
0

I (x,θ) dξ (x) . (A-2)

For the model (5-6) the calculation shows

Eπ [log det {I (ξ,θ)}] = Eπ

[
log det

{∫ ∞
0

I (x,θ) dξ (x)

}]
= Eπ

[
log det

{∫ ∞
0

[
1 −θ1x

−θ1x θ2
1x

2

]
exp (−2θ2x) dξ (x)

}]
= Eπ

[
log det

[ ∫∞
0
e−2θ2xdξ (x) −θ1

∫∞
0
xe−2θ2xdξ (x)

−θ1

∫∞
0
xe−2θ2xdξ (x) θ2

1

∫∞
0
x2e−2θ2xdξ (x)

]]
= Eπ

[
log

{
θ2

1 det

[ ∫∞
0
e−2θ2xdξ (x) −

∫∞
0
xe−2θ2xdξ (x)

−
∫∞

0
xe−2θ2xdξ (x)

∫∞
0
x2e−2θ2xdξ (x)

]}]
= Eπ

[
log

{
θ2

1 det

(∫ ∞
0

[
1 −x
−x x2

]
exp (−2θ2x) dξ (x)

)}]
= Eπ

[
log

{
θ2

1 det

(∫ ∞
0

I (x,θ∗) dξ (x)

)}]
= Eπ

[
log
{
θ2

1 det {I (ξ,θ∗)}
}]

= 2Eπ [log (θ1)] + Eπ [log det {I (ξ,θ∗)}] .

Therefore, it follows that

Eπ [log det {I (ξ,θ)}] = 2Eπ [log (θ1)] + Eπ [log det {I (ξ,θ∗)}] , (A-3)

where θ∗ = (1, θ2)T .





B. Deduction of the posterior

distribution of θ in the normal

linear regression model

Consider the linear regression model

E
(
Y|θ, σ2

)
= Xθ, (B-1)

where Y|θ, σ2 ∼ N (Xθ, σ2I) and the conditional prior distribution of θ given σ2 is

N
(
µ, σ2R−1

)
with θ ∈ Rp, where R is a given positive definite p×p “precision” matrix,

i.e.,

π(θ) ∝ exp

[
− 1

2σ2
(θ − µ)T R (θ − µ)

]
. (B-2)

The likelihood probability density function is

L(Y|θ, ξ) ∝ exp

[
− 1

2σ2
(Y−Xθ)T (Y−Xθ)

]
. (B-3)

In order to calculate the posterior distribution of θ, we use Bayes theorem

π (θ|Y, ξ) ∝ π(θ)× L(Y|θ, ξ)

∝ exp

{
− 1

2σ2

[
(θ − µ)T R (θ − µ) + (Y−Xθ)T (Y−Xθ)

]}
∝ exp

{
− A

2σ2

}
,

where

A = (θ − µ)T R (θ − µ) + (Y−Xθ)T (Y−Xθ)

= θTRθ − θTRµ− µTRθ + µTRµ+ YTY− θTXTY−YTXθ + θTXTXθ

= θT
(
XTX + R

)
θ − θT

(
XTY + Rµ

)
−
(
YTX + µTR

)
θ + YTY + µTRµ.

For convenience, let V =
(
XTX + R

)−1
a p×pmatrix and θ∗ =

(
XTX + R

)−1 (
XTY + Rµ

)
a p× 1 vector. Hence,

A = θTV−1θ − θTV−1θ∗ − θ∗TV−1θ + YTY + µTRµ

= (θ − θ∗)T V−1 (θ − θ∗)− θ∗TV−1θ∗ + YTY + µTRµ.
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Finally, dropping terms that do not involve θ, the posterior distribution for θ is given

by

π (θ|Y, ξ) ∝ exp

{
− 1

2σ2

[
(θ − θ∗)T V−1 (θ − θ∗)

]}
∝ exp

{
− 1

2σ2

[
(θ − θ∗)T

(
XTX + R

)
(θ − θ∗)

]}
,

(B-4)

where

θ∗ =
(
XTX + R

)−1 (
XTY + Rµ

)
.

Therefore, the equation (B-4) shows that the posterior distribution π (θ|Y, ξ) of θ is

proportional to the kernel of the N
(
θ∗, σ2

(
XTX + R

)−1
)

.



C. Computer codes implemented in R

for obtaining the penalized designs

Example: Michaelis-Menten Model in Section 3.5

## Penalized D-optimal designs for Michaelis-Menten model

# The model is theta1*x/(theta2+x)

require(nloptr)

# 1. The function gradients for Michaelis-Menten model are defined as

fx <- function(t)

{

f1 <- t/(theta[2]+t) # derivative with respect to theta1

f2 <- -theta[1]*t/((theta[2]+t)^2) # derivative with respect to theta2

return(as.matrix(c(f1,f2),ncol=1))

}

# 2. Function that calculates the information matrix M(xi)

Mom <-function(xi)

{

x <- as.matrix(xi[1,]); w <- xi[2,] # points and weights of design xi

X <- t(apply(x,1,fx)); W <- diag(w)

Mom <- t(X)%*%W%*%X

return(Mom)

}

# 3. Function that calculates the penalty function

L=(12.04841) # Absolute value of

# the minimum non-penalized D-optimal criterion

k<-0.20 # 0.35 for D4

Pen<-function(xi)

{

p1<-xi[2,1];x3<-xi[1,3];x2<-xi[1,2];x1<-xi[1,1]

diff<-abs(x2-x1); n1<-round((20*p1),0)

if(n1>10) d1=1 else
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if(n1<6) d1=0 else

d1<-((n1-6)/4)^(4) # desirability function d1

d2<-1-exp(-exp(9.25-6.15*x3)) # desirability function d2

d3<-1/(1+exp(-(diff-0.1)/0.03)) # desirability function d3

#d4<-1/(1+exp(-(n1-9)/0.34)) # desirability function d4

#d5<-((3-x3)/3)^(2) # desirability function d5

D1<-(d1*d2*d3)^(1/3) # overall desirability D1

#D2<-(d4*d2*d3)^(1/3) # overall desirability D2

#D3<-(d1*d5*d3)^(1/3) # overall desirability D3

#D4<-(d4*d5*d3)^(1/3) # overall desirability D4

Pen1<-L*(1-D1)

return(Pen1)

}

# 4. The functional of the information matrix is defined in (3-15) as

phi<-function(xi)

{

M=Mom(xi); Psi<-(-log(det(M)))+k*Pen(xi)

return(Psi)

}

# 5. The appropriate function to minimize is defined as

G<-function(dis)

{

ss<-length(dis); m<-ss/2

xi<-matrix(c(dis[1:m],dis[(m+1):ss]/sum(dis[(m+1):ss])),ncol=m,byrow=T)

au<-phi(xi)

return(au)

}

# 6. The initial values of the start design are given as

xi0<-c(0,0.1,1,0.3333,0.3333,0.3333)

ssm=length(xi0); m=ssm/2

# The local values of the parameters are

theta=c(212.68,0.064) # theta=(theta1,theta2)

# 7. The process of minimization restricted to the regression range

# is performed by Nelder-Mead direct search algorithm

resp=neldermead(xi0,G,lower=c(rep(0,3),rep(0.01,3)),

upper=c(0,rep(Inf,2),rep(0.99,3)))
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# 8. Penalized D-optimal design is

soportep<-round(c(resp$par[1:3]),3)

pesosp<-c(resp$par[4:6]/sum(resp$par[4:6]))

n=20; obsp<-round(n*pesosp,0)

xioptimopen<-matrix(c(soportep,obsp),ncol=3,byrow=T)

xioptimopen

Example: Quadratic Model in Section 4.5

## Penalized Bayesian D-optimal designs for quadratic model

require(nloptr)

# Bayesian two-point design

#1. Function f(x) for quadratic model is defined as

fx <- function(x) as.matrix(c(1,x,x^2))

#2. Function that calculates the information matrix

Mom <- function(xi)

{

x <- as.matrix(xi[1,]); w <- xi[2,] # points and weights of design xi

X <- t(apply(x,1,fx)); W <- diag(w)

Mom <- t(X)%*%W%*%X

return(Mom)

}

#3. Function that calculates the "precision" matrix R

n<-9 # sample size

var1<-3; var2<-5; var3<-1

ro12<- 0.5; ro13<- 0.9; ro23<- 0.5

cov12<-ro12*sqrt(var1*var2)

cov13<-ro13*sqrt(var1*var3)

cov23<-ro23*sqrt(var2*var3)

V<-matrix(c(var1,cov12,cov13,cov12,var2,cov23,cov13,cov23,var3),ncol=3)

R<-solve(V)

#4. Function that calculates the penalty function

L=(0.3794315) # Absolute value of

# the minimum non-penalized D-optimal Bayesian criterion

k<-0.75 # submultiple of L
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Pen<-function(xi)

{

x1<-xi[1,1]; x2<-xi[1,2]; x3<-xi[1,3]

p2<-xi[2,2]; n2<-round((9*p2),0)

d1<-1/(1+exp(-(n2-2.5)/0.17)) # desirability function d1

d2<-exp(-((x2/0.082)^2)/2) # desirability function d2

D<-sqrt(d1*d2) # overall desirability D

Pen1<-L*(1-D) # penalty function

return(Pen1)

}

#5. The functional of the information matrix is defined in (4-16) as

phi <- function(xi) -log(det(Mom(xi)+R/n))+k*Pen(xi)

#6. The appropriate function to minimize is defined as

G <- function(dis)

{

ss <- length(dis); s <- ss/2

xi <- matrix(c(dis[1:s],dis[(s+1):ss]/sum(dis[(s+1):ss])),ncol=s,byrow=T)

au <- phi(xi)

return(au)

}

# 7. The initial values of the start design are given as

x0<-c(-1,0,0.9,0.4,0.3,0.3)

ss <-length(x0); s <-ss/2

# 8. The process of minimization restricted to the regression range

# is performed by Nelder-Mead direct search algorithm

resBp<-neldermead(x0,G,lower=c(rep(-1,s),rep(0,s)),upper=c(rep(1,ss)))

# 9. Penalized Bayesian D-optimal design is

soportexiBp<- round(resBp$par[1:s],3)

pesosxiBp <- round(resBp$par[(s+1):ss]/sum(resBp$par[(s+1):ss]),3)

DesignBp<-rbind(soportexiBp,pesosxiBp)

n=9; obsBp<-round(n*pesosxiBp,0)

DesignBp; obsBp
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# Bayesian three-point design

#1. Function f(x) for quadratic model is defined as

fx <- function(x) as.matrix(c(1,x,x^2))

#2. Function that calculates the information matrix

Mom <- function(xi)

{

x <- as.matrix(xi[1,]); w <- xi[2,] # points and weights of design xi

X <- t(apply(x,1,fx)); W <- diag(w)

Mom <- t(X)%*%W%*%X

return(Mom)

}

#3. Function that calculates the "precision" matrix R

n<-9 # sample size

var1<-3; var2<-5; var3<-1

ro12<- 0; ro13<- 0; ro23<- 0

cov12<-ro12*sqrt(var1*var2); cov13<-ro13*sqrt(var1*var3)

cov23<-ro23*sqrt(var2*var3)

V<-matrix(c(var1,cov12,cov13,cov12,var2,cov23,cov13,cov23,var3),ncol=3)

R<-solve(V)

#4. Function that calculates the penalty function

L=(1.365036) # Absolute value of

# the minimum non-penalized D-optimal Bayesian criterion

k<-0.4 # submultiple of L

Pen<-function(xi)

{

x1<-xi[1,1];x2<-xi[1,2];x3<-xi[1,3];x4<-xi[1,4]

p2<-xi[2,2];n2<-round((9*p2),0)

p3<-xi[2,3];n3<-round((9*p3),0)

diff2<-abs(x3-x2);diff3<-abs(x4-x3)

d1<-1/(1+exp(-(n3-1.5)/0.17)) # desirability function d1

d2<-1/(1+exp(-(diff2-0.2)/0.034)) # desirability function d2

d3<-1/(1+exp(-(diff3-0.2)/0.034)) # desirability function d3

D<-(d1*d2*d3)^(1/3) # overall desirability D

Pen1<-L*(1-D) # penalty function

return(Pen1)

}
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#5. The functional of the information matrix is defined in (4-22) as

phi <- function(xi) -log(det(Mom(xi)+R/N))+k*Pen(xi)

#6. The appropriate function to minimize is defined as

G <- function(dis)

{

ss <- length(dis); s <- ss/2

xi <- matrix(c(dis[1:s],dis[(s+1):ss]/sum(dis[(s+1):ss])),ncol=s,byrow=T)

au <- phi(xi)

return(au)

}

# 7. The initial values of the start design are given as

x0<-c(-1,0,0.3,0.9,0.2,0.3,0.3,0.2)

ss <-length(x0); s <-ss/2

# 8. The process of minimization restricted to the regression range

# is performed by Nelder-Mead direct search algorithm

resBp<-neldermead(x0,G,lower=c(-1,0,-1,-1,rep(0.01,s)),

upper=c(1,0,1,1,rep(1,s)))

# 9. Penalized Bayesian D-optimal design is

soportexiBp<- round(resBp$par[1:s],3)

pesosxiBp <- round(resBp$par[(s+1):ss]/sum(resBp$par[(s+1):ss]),3)

DesignBp<-rbind(soportexiBp,pesosxiBp)

n=9; obsBp<-round(n*pesosxiBp,0)

DesignBp; obsBp
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Example: Exponential Growth Model in Section 5.5

## Penalized Bayesian D-optimal designs for exponential model

# Model is theta1*exp(-theta2*x)

# theta=(theta1,theta2)

require(nloptr)

# Bayesian two-point design

# 1. The function gradients for exponential model are defined as

fx <- function(t,theta1,theta2)

{

f1 <- exp(-theta2*t) # derivative with respect to theta1

f2 <- -(theta1*t*exp(-theta2*t)) # derivative with respect to theta2

return(as.matrix(c(f1,f2),ncol=1))

}

# 2. Function that calculates the information matrix M(xi,theta1,theta2)

Mom <-function(xi,theta1,theta2)

{

x <- as.matrix(xi[1,]); w <- xi[2,] # points and weights of design xi

X <- t(apply(x,1,fx,theta1,theta2))

W <- diag(w); Mom <- t(X)%*%W%*%X

return(Mom)

}

# 3. The simulated sample of prior distributions of theta is imported

theta<-read.table("C:/MuestrasTes/MuestraGA-2p.txt") # with Gamma(4,4)

#theta<-read.table("C:/MuestrasTes/MuestraLN-2p.txt") # with Lognormal

#theta<-read.table("C:/MuestrasTes/MuestraU-2p.txt") # with Uniforme

theta<-as.matrix(theta)

theta1<-theta[,1]

theta2<-theta[,2]

# 4. Function that calculates the penalty function

# for Gamma(4,4):

L=3.401431 # Absolute value of

# the minimum non-penalized D-optimal Bayesian criterion

k<-0.1 # submultiple of L

#L=3.360336; k<-0.2 # for Lognormal(1,0.25)

#L=3.411332; k<-0.3 # for Uniforme(0.134,1.866)
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Pen<-function(xi)

{

x1<-xi[1,1];x2<-xi[1,2];x3<-xi[1,3]

diff23<-abs(x3-x2)

p3<-xi[2,3];n3<-round((12*p3),0)

p2<-xi[2,2];n2<-round((12*p2),0)

d1<-1/(1+exp(-(n3-1.5)/0.17)) # desirability function d1

d2<-1/(1+exp(-(diff23-0.2)/0.034)) # desirability function d2

D1<-(d1*d2)^(1/2) # overall desirability D1

Pen1<-L*(1-D1)

return(Pen1)

}

# 5. Function that calculates the utility function (5-19)

phi<-function(xi,theta1,theta2)

{

N<-length(theta1)

j<-0

detM<-integer(N)

for(j in 1:N){

detM[j]<-det(Mom(xi,theta1[j],theta2[j]))

j<-j+1

}

phi1<-c(log(detM))

phi1<- -mean(phi1)+k*Pen(xi) # Monte Carlo

return(phi1)

}

# 6. The appropriate function to minimize is defined as

G<-function(dis)

{

ss<-length(dis); m<-ss/2

xi<-matrix(c(dis[1:m],dis[(m+1):ss]/sum(dis[(m+1):ss])),ncol=m,byrow=T)

au<-phi(xi,theta1,theta2)

return(au)

}

# 7. The initial values of the start design are given as

xi0<-c(0,1,2,0.4,0.3,0.3)

ss=length(xi0); m=ss/2
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# 8. The process of minimization restricted to the regression range

# is performed by Nelder-Mead direct search algorithm

set.seed(1234)

res3Bp=neldermead(xi0,G,lower=c(rep(0,3),rep(0.01,3)),

upper=c(rep(Inf,3),rep(0.99,3)))

# 9. Penalized Bayesian D-optimal design is

soporte3Bp<-res3Bp$par[1:3]

pesos3Bp<-res3Bp$par[4:6]/sum(res3Bp$par[4:6])

xioptimo3Bp<-round(matrix(c(soporte3Bp,pesos3Bp),ncol=3,byrow=T),3)

xioptimo3Bp

# Penalized Designs with Four Support Points

# 1. The function gradients for exponential model are defined as

fx <- function(t,theta1,theta2)

{

f1 <- exp(-theta2*t) # derivative with respect to theta1

f2 <- -(theta1*t*exp(-theta2*t)) # derivative with respect to theta2

return(as.matrix(c(f1,f2),ncol=1))

}

# 2. Function that calculates the information matrix M(xi,theta1,theta2)

Mom <-function(xi,theta1,theta2)

{

x <- as.matrix(xi[1,]); w <- xi[2,] # points and weights of design xi

X <- t(apply(x,1,fx,theta1,theta2))

W <- diag(w); Mom <- t(X)%*%W%*%X

return(Mom)

}

# 3. The simulated sample of prior distributions of theta is imported

theta<-read.table("C:/MuestrasTes/MuestraGA-2pb.txt") # with Gamma(3,3)

theta<-as.matrix(theta)

theta1<-theta[,1]

theta2<-theta[,2]
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# 4. Function that calculates the penalty function

L=(3.37449) # Absolute value of

# the minimum non-penalized D-optimal Bayesian criterion

k<-0.97 # submultiple of L

# k=0.30 para D3

Pen<-function(xi)

{

x1<-xi[1,1];x2<-xi[1,2];x3<-xi[1,3];x4<-xi[1,4]

diff2<-abs(x3-x2)

diff3<-abs(x4-x3)

p4<-xi[2,4];n4<-round((12*p4),0)

p3<-xi[2,3];n3<-round((12*p3),0)

p2<-xi[2,2];n2<-round((12*p2),0)

d1<-1/(1+exp(-(n2-2.5)/0.17)) # desirability function d1

d2<-1/(1+exp(-(diff2-0.9)/0.034)) # desirability function d2

d3<-exp(-(1/2)*((x2-0.675)/0.0817)^2) # desirability function d3

d4<-exp(-(1/2)*((x4-6.5)/0.817)^2) # desirability function d4

#d42<-exp(-(1/2)*((x4-3)/0.4085)^2) # desirability function d42

#d5<-1/(1+exp(-(n4-2)/0.34)) # desirability function d5

D2<-(d1*d2*d3*d4)^(1/4) # overall desirability D2

#D3<-(d1*d2*d3*d42*d5)^(1/5) # overall desirability D3

Pen1<-L*(1-D2)

return(Pen1)

}

# 5. Function that calculates the utility function (5-27) o (5-32)

phi<-function(xi,theta1,theta2)

{

N<-length(theta1)

j<-0

detM<-integer(N)

for(j in 1:N){

detM[j]<-det(Mom(xi,theta1[j],theta2[j]))

}

phi1<-c(log(detM))

phi1<- -mean(phi1)+k*Pen(xi) # Monte Carlo

return(phi1)

}
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# 6. The appropriate function to minimize is defined as

G<-function(dis)

{

ss<-length(dis); m<-ss/2

xi<-matrix(c(dis[1:m],dis[(m+1):ss]/sum(dis[(m+1):ss])),ncol=m,byrow=T)

au<-phi(xi,theta1,theta2)

return(au)

}

# 7. The initial values of the start design are given as

xi0<-c(0,1,1.5,6,0.3,0.2,0.3,0.2)

ss=length(xi0); m=ss/2

# 8. The process of minimization restricted to the regression range

# is performed by Nelder-Mead direct search algorithm

set.seed(1234)

res4Bp=neldermead(xi0,G,lower=c(rep(0,4),rep(0.01,4)),

upper=c(rep(Inf,4),rep(0.99,4)))

# 9. Penalized Bayesian D-optimal design is

soporte4Bp<-res4Bp$par[1:4]

pesos4Bp<-res4Bp$par[5:8]/sum(res4Bp$par[5:8])

xioptimo4Bp<-matrix(c(soporte4Bp,pesos4Bp),ncol=4,byrow=T)

n<-12; obs4Bp<-round(n*pesos4Bp,0)

xioptimo4Bp; obs4Bp

nu<-10;obs4ef<-ceiling(nu*pesos4Bp);obs4ef
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