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Resumen
El presente proyecto tiene como objetivo utilizar una extensión U(1)X no universal al modelo
estándar que permita explicar el problema de jerarquía de masas. Posteriormente, aplican-
do una simetría global axial tipo Peccei-Quinn U(1)PQ se pretende obtener un modelo que
permita además interpretar el problema CP -fuerte. El esquema propuesto permite distin-
guir entre familias fermiónicas sin introducir simetrías discretas adicionales, generando los
ansatz de matrices de masa correctos para obtener el espectro de masas fermiónico obser-
vado experimentalmente en el modelo estándar. El rompimiento espontáneo de las simetrías
del modelo es producido por dos dobletes escalares de Higgs y dos singletes, donde uno de
estos últimos tiene la excitación asociada con el axion, el cual posee una rica fenomenolo-
gía estudiada en la literatura. El sector exótico esta compuesto de un axion invisible a, un
quark pesado T tipo up y dos quarks pesados J1,2 tipo down, dos leptones pesados cargados
E, E y un neutrino derecho νe,µ,τR adicional por familia. Además, la gran escala de energía
asociada con el rompimiento espontáneo de la simetría de PQ permite generar masas para
los neutrinos derechos. Así, a través de un mecanismo see-saw tipo I, los neutrinos activos
adquieren masas del orden de los eV .

Palabras clave: Extensiones no universales, Simetría de Peccei-Quinn, Anomalías qui-
rales, instantones, teorías efectivas, axión.

Abstract
We present a non-universal U(1)X extension and an additional global anomala Peccei-Quinn
(PQ) symmetry to the standard model (SM). The scheme proposed allow us to distinguish
among fermion families without introducing additional discrete symmetries and generating
the correct ansatz of mass matrix to obtain the fermionic mass spectrum in SM. The sym-
metry breakdown is performed by two scalar Higgs doublets and two scalar singlets, where
one of these has the excitation associated with the axion-particle which turns out to be a can-
didate for dark matter. The exotic sector is composed of an invisible axion a, one up-type T
and two down-type J1,2 heavy quarks, two heavy charged leptons E, E and one right-handed
νe,µ,τR additional neutrino per family. In addition, the large energy scale associated with the
spontaneously breaking (SSB) of the PQ-symmetry provides a solution to the strong CP-
problem, also giving masses to the right neutrinos in such manner that the active neutrinos
acquire eV -mass values due to the see-saw mechanism implementation.
Non-universal extensions, Peccei-Quinn symmetry, chiral anomalies, instantons, effec-
tive theories, axion.
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1 Introduction
One of the most successful current physical models in the agreement between experimental
results and theoretical predictions is the standard model of particle physics (SM) proposed
by Glashow, Weinberg and Salam [1, 2, 3] in the decade of the ’60s. SM predicts with a high
degree of precision the interaction between the different particles, explaining a wide variety
of experimental results and predicting a large number of phenomena, such as the discovery
of the W and Z gauge bosons and the prediction of the Higgs boson [4]. Despite all the
successes in different fields, SM has some problems that can not be explained within the
context of the theory:

Within the framework of the SM, neutrinos appear as massless particles, contradicting
the observed experimental results [5]. The introduction of right- -handed heavy neu-
trinos in order of(1012 − 1015)GeV (See-Saw mechanism) [6] is a possible explanation.
Adding Majorana neutrinos it is possible to introduce smaller masses [7, 8]

The mass hierarchy of the fermions together with the concept of flavor and the existence
of three different families of particles (table 1-1) are known as the flavor problem
[9]. The SM requires particles without mass because due to the presence of chiral
interactions, the Lagrangian can not include them directly. The masses (table 1-2) are
generated via spontaneous symmetry breaking SU(2)L ×U(1)Y → U(1)Q through the
Higgs mechanism [10], ensuring a mass value for each of fermions on the same scale
(ν = 246GeV ). But experimentally it is observed there are three different hierarchies:

• Mass hierarchy among fermionic families i.e. mτ � mµ � me,mb � ms � md

and mt � mc � mu.

• The second kind of hierarchy is within the families i.e. md > mu,mc � ms and
mt � mb.

• The third hierarchy is associated with the values of the quark-mixing angles i.e.
sin θ12 � sin θ23 � sin θ13,

which requires a numerical adjustment of the coupling constants of Yukawa to obtain
a correspondence between the predicted values and the experimental values. This pro-
blem is known as the Fermionic mass hierarchy problem and is closely related to the
mechanism for generating masses. Within the theoretical structure of the SM it is not
possible to find a proccess to produce the observed fermionic mass spectrum (1-2).
Therefore, it becomes neccesary to use theories beyond the standard model. One of
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the first attepts to understand the three mass scales in the mass fermionic spectrum
by means of mass matrices with suited textures was proposed by H. Fritzsch [11, 12].
C. Froggatt and H. Nielsen presented a model in which the heaviest fermions acqui-
re mass through the vacuum expectation value (VEV) of the Higgs fields, while the
lighter ones obtain mass through radiative corrections using degrees of freedom hea-
vier than SM particles [13]. Another possibility to understand this problem is based
on assuming that the light neutrinos are the particles which acquires masses through
these radiative corrections [14, 15]. Similar methods involve analyzing the quarks mass
spectrum and the mixing angles of the CKM matrix [16], extra dimensions [17] and
anti-de Sitter space approaches in brane theories [18]. It is also possible to obtain the
mass spectrum by introducing discrete symmetry and an anarchic mass texture [19].
Finally, the detection of the Higgs boson has allowed new schemes involving exten-
ded scalar sectors (2HDM) [20] and some extensions through additional scalar fields
(N2HDM) [21], N3HDM [22]), which generate the additional VEVs required to produce
the correct masss matrices textures in order to generate the desired hierarchies in the
fermonic sector.

Another problem that does not allow a direct solution through SM is the existing
asymmetry between particles and antiparticles (baryonic asymmetry) in the universe.
In 1967 Sakharov [23] discovered that in addition to requiring a violation in a discrete
type C symmetry (symmetry of particle-antiparticle exchange), a violation of the CP
symmetry is required (C transformation plus a spatial reflection). Electromagnetism
and strong interactions are symmetric under C and P , while weak interactions are not
symmetric under C, in addition to presenting a small violation of CP [24]. But this
violation is not enough to explain the phenomenon of baryonic asymmetry, so it is
necessary to find sources CP - violation in other sectors.

There is an associated theoretical problem and it is the apparent absence of CP viola-
tion in the strong interaction. Quantum chromodynamics (QCD), which is the theory
that explains the processes of strong interaction, is a theory that is symmetric un-
der the group of transformations SU(3), which is a non-abelian Lie group. QCD is
in principle non-symmetric under CP , due to the presence of a term associated with
non-conservation of chirality, that is, QCD is not symmetric under U(1)A. The physical
parameter that involves the breaking of the CP symmetry comes from two contribu-
tions that differ in their origin, so it is necessary to explain how the combination of
these two anomalous terms that generate a particularly small (but not null) result can
be compatible with the experimental fact that no such violation is observed. This is
the so-called Strong CP -problem. Some of the most studied solutions in the literature
for this problem are:

• Non-conventional dynamics: Establish the fact that the θ-parameter is only a
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result of exotic vacuum periodicity conditions [25] or state that the θ-contribution
is due to the impossibility of selecting appropriate boundary conditions for the
vacuum [26],

• Spontaneous CP -braking: If CP -symmetry is spontanously broken, θ = 0 at tree-
level [27, 28, 29]. However, in this kind of process θ is re-induced to 1-loop level.
Then, to obtain the necessary limit θ ∼ 10−9 in order to solve the CP -problem,
it is required to ensure that θ is vanished at 1-loop. This situation requires com-
plex VEV for the Higgs fiels, which leads to situations (Flavor changing neutral
currents (FCNC) and domain wall problems [30]) that requires physical concepts
more complicated than the problem to solve [31, 32, 33, 34],

• Introduction of an additional chiral symmetry: Adding an additional symmetry,
it is possible to induce a spontaneous rupture process, generating an effective
theory in which the static angle θ is replaced with a CP -conserving dynamical
filed. This can be done at the limit where the mass of the lightest quark in the
model is exactly zero [35] or expanding the SM symmetry group [36, 37]. The first
option is ruled out mainly by an analisis of current algebra [38] and experimental
limits [39]. Then, the best option is introduce an additional global chiral U(1)
symmetry known as the PQ-symmetry, resulting in a mechanism to solve the
CP -problem known as the PQ-mechanism [37, 39, 40, 41]

The standard cosmological model requires the existence of dark matter and dark energy
([42], [43] )but the standard model of particles in its current form does not provide
a good candidate. Structure formation depends on wheter dark matter is hot (par-
ticles whose momentum is much larger then their masses) or cold (slow-moving par-
ticles). A successful dark matter candidate should be electrically neutral with small
self-interactions. It also should have a very long life-time. In order to quantify the
amount of the components of the universe, the density parameter is defined as [44]:

ΩX =
ρX
ρc
, (1-1)

where ρX is the density of the X-component (Dark matter, Dark energy, ordinary
baryonic matter), and ρc is the critical density

ρc =
3H2

8πG
, (1-2)

with H ≡ ȧ/a is the Hubble parameter [45] and G is the gravitational constant. Using
the reduced Hubble parameter h defined by H0 = 100h(km/s)/Mpc, (where H0 is the
current value of the Hubble parameter), it is possible to write a density parameter
based in the anisotropies of the Cosmical Microwave Background [46] for the baryonic
(b) and total amount of matter (m):

Ωbh
2 = 0,0226, Ωmh

2 = 0,133 (1-3)
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Therefore, the density parameter of non-baryonic dark matter (dm) is:

Ωdmh
2 = 0,112 (1-4)

In SM, neutrinos are the only particle that meets these requirements, but, their density
is not enough to satisfy the expected results (1-4) [47]:

Ωνh
2 < 0,066 (1-5)

1st Family 2nd Family 3rd Family

q1L =

(
u1

d1

)
L

q1L =

(
u1

d1

)
L

q3L =

(
u3

d3

)
L

u1R
d1R

u2R
d2R

u3R
d3R

`eL =

(
νe

ee

)
L

`µL =

(
νµ

eµ

)
L

`τL =

(
ντ

eτ

)
L

eeR eµR eRτ

Tab. 1-1: Flavor fermionic families in SM

Family Particle Mass

1
u

d

e

2,2+0,6
−0,4MeV

4,7+0,5
−0,4MeV

0,511MeV

2
c

s

µ

1,27± 0,03 GeV
96+8
−4MeV

105,7MeV

3
t

b

τ

173,21± 0,71GeV
4,18+0,04

−0,03GeV
1,776GeV

Tab. 1-2: Fermionic masses in the SM

The common feature of any scenario that allows a solution to the aforementioned problems
is the need to propose models beyond SM. The flavor problem addresses different situations
such as the number of families, the mass hierarchy for fermions among others. Although
these observations should be obtained naturally from the theoretical background model, SM
does not provide them, then the implementation of models beyond SM is necessary. The
simplest extension and one of the most studied is done through the addition of U(1)′ gauge
symmetries. There are many motivations to consider this type of models [48]. For example,
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supersymmetric extensions that provide mechanisms of effective mass generation through the
addition of scalar singlets [49], non-supersymmetric extensions associated to models with dy-
namic symmetry breaking, extra dimensions, etc. [50, 51], which includes flavor physics [52],
neutrino physics [53, 54], dark matter [55, 56] among others.

The present project proposes to use the non-universal extension U(1)′ to solve the problem
of mass hierarchy, to subsequently apply a Peccei-Quinn U(1)PQ symmetry to explain the
strong - CP problem. In addition, associated with the new energy scale introduced by the
PQ mechanism, it will be possible to implement a see-saw mechanism to give mass to the
active neutrinos. Chapter 2 reviews the concept of anomalies in Abelian theories, trying
to address the perturbative approach from the Adler-Bell-Jackiw anomaly (ABJ Anomaly)
and Fujikawa’s non-perturbative approach. Then, in chapter 3 the presentation of the ne-
cessary concepts to address the anomaly in non-Abelian theories is made and consists of
three parts. In the first part, an introduction to the basic concepts of quantum chromody-
namics is made. After that, the problem known as the “missing-meson” or U(1)A -problem
is addressed. A possible solution to this problem is shown by introducing the concept of
instanton, which will allow for a new analysis of the vacuum of quantum chromodynamics,
to continue with an analysis of the origin of anomalies in non-Abelian gauge theories. In the
last part, the formulation of the CP-strong problem is presented and the solution associated
with the Peccei-Quinn mechanism is shown. Chapter 4 presents the construction of an abe-
lian extenion of the Standard model in order to study two problems: the hierarchy fermion
spectrum and the strong CP -problem. The mass eigenvalues for the scalar and fermionic
sector are obtained and the process to calculate the charges associated with the introduction
to the Peccei-Quinn anomala symmetry. Finally, some conclusions are discussed related to
the obtained results.



2 QFT anomalies

In common terms, an anomaly is a symmetry that becomes manifest through a process of
conservation at a classical level, but, after performing the quantization process, it no longer
exists. It is of crucial importance the study of anomalies in physics, since the consistency of
a model depends exclusively on the appearance of some types of anomaly: global anomalies
allow to explain physical phenomena as the decay of π0, but the existence of local anomalies
can damage the gauge invariance and therefore the renormalizability of the theory, making it
totally inconsistent from the physical point of view. To build extensions beyond the standard
model to solve problems that have no solution within the original framework, it is necessary to
find conditions that require the total cancellation of anomalies of local type. We are interested
in studying the origin of such anomalies in order to build extensions to the standard model
that allows us to solve two specific problems: the strong CP problem and the mass hierarchy
in the fermionic sector. For this, we need to analyze the emergence of the so-called chiral
anomaly and understand from this the approach of conditions for anomalies of local type.

2.1. The chiral anomaly in 2 dimensions
Maybe a good strategy to build the anomaly into 3 + 1 dimensions is to approximate into
the 1 + 1 anomaly. Our problem is related to study the behaviour of the ground state of a
single-flavor theory with massless fermion in the presence of an electric field. This field is a
fixed background field, not a fluctuating one, so the action of switch on this field has to be
done adiabatically. The action related to the massless fermion if the background fixed field
Aµ is not turned on is:

S =

∫
d2xiψ̄ /∂ψ, (2-1)

where the two-dimensional massless spinors are:

ψ(x, t)i =
1√
2π

∫
dk exp [−ikx] ai,k(t),

ψ∗i (x, t) =
1√
2π

∫
dk exp [ikx] a∗i,k(t) (2-2)

(with i = 1, 2) and the a’s satisfies the anticommutation relations:{
a∗i,k(t), aj,l(t

′)
}
|t=t′ = δ(k − l)δij (2-3)
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For study this problem we construct a Clifford algebra with the following commutation rule:

{γµ, γν} = ηµν ; µ, ν = 0, 1, (2-4)

and we choose the 2-d Dirac matrices in the following way:

γ0 = σ2, γ1 = iσ1, γ5 = γ0γ1 = σ3, (2-5)

where σi denote the familiar Pauli matrices. Thus, at classical level, we found that the
lagrangian structure satisfies the expected conservation laws. Under the U(1) symmetry
ψ → eiαψ the vector current and the associated electric charge have the form:

jµ = ψ̄γµψ, ∂µjµ = 0, Q(t) =

∫
dxj0(t, x) → Q̇ = 0, (2-6)

and under the U(1)-axial symmetry ψ → eiαγ
5
ψ the conservation of the axial current and

the associated axial charge can be written as:

j5µ = ψ̄γµγ5ψ, ∂µj5µ = 0, Q(t)5 =

∫
dxj50(t, x) → Q̇5 = 0. (2-7)

The selected basis (2-5) allows to write the massless Dirac Fermions into independent chiral
components:

ψL =

(
ψ1

0

)
, ψR =

(
0

ψ2

)
, (2-8)

where the ψ1 component is a left-moving fermion and the ψ2 is a right-handed moving
fermion. Written in terms of this chiral components, the action (2-1) becomes:

S =

∫
d2xiψ†1∂−ψ1 + iψ†2∂+ψ2, (2-9)

with ∂± = ∂t ± ∂x. Then, the chiral fermions ψ1 satisfies the equation of motion ∂−ψ1 = 0

which has the solution ψ1 = ψ1(t+ x) (or, in other words, ψ1 is a left-handed fermion) and
ψ2 satisfies ∂+ψ2 = 0, corresponding to a right-handed fermion ψ2 = ψ2(t − x). The chiral
components have a chirality ±1:

γ5ψL,R = ±ψL,R. (2-10)

The chiral charges have the form:

QL,R =

∫
dxψ̄L,Rγ0ψL,R =

∫
dxψ†L,RψL,R, (2-11)

therefore, the vector and axial current can be written as:

Q = QL +QR Q5 = QL −QR. (2-12)
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The axial charge for a left- or right-handed fermion corresponds to:

Q5
L,R =

∫
dxψ̄L,Rγ

0γ5ψL,R = ±
∫
dxψ†L,RψL,R = ±QL,R. (2-13)

Thus, the number of left-moving fermions and the right-moving fermions are separately con-
served. This fact is known as a chiral symmetry.

Naively, we could expect these conservation laws to be maintained when the background
field is turned on. Deforming our theory to include Aµ, the action has to be written as
(considering Aµ as a not fluctuacting field):

S =

∫
d2xiψ̄ /Dψ, (2-14)

with Dµ = ∂µ− iAµ. In this context is really useful to choose our vacuum states in the Dirac
sea language: the vaccuum configuration consists of filling all negative energy states, and the
corresponding states with E < 0 are unfilled. It is possible to propose a compactification
over all the configuration space onto a 2−dimensional cylinder related to an x−space turning
around a S1 circle in order to provide a better analysis. The boundary conditions are [57]:

Aµ

(
t, x = −L

2

)
= Aµ

(
t, x =

L

2

)
ψ

(
t, x = −L

2

)
= −ψ

(
t, x =

L

2

)
. (2-15)

The antiperiodic condition in the wave function is only a matter of convenience in order
to reproduce the correct structure of the vacuum associated with the Dirac sea [58]. The
gauge field is chosen such that A0 = 0 and the electric field A1 = A1(t) can be turned on
adiabatically. This means that the field configuration is periodic inside the S1 circle with
length 2π/L. The associated Dirac equation is:(

i/∂ − /A
)
ψ = 0. (2-16)

Under the A0 = 0 and boundary conditions, we can rewrite:

(iσ2∂0 + iσ1 (i∂1 − A1))ψ = 0. (2-17)

Multiplying by σ2:
(i∂0 + σ3 (i∂1 − A1))ψ = 0. (2-18)

Expressing the fermion wave function (2-2) into the Fourier series:

ψ(t, x) =
1√
L

∑
k

u(k) exp (−iEkt) exp (ikx), (2-19)
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(where the u(k)’s have the expansion coefficients plus the contribution of the a’s, and E, k

are the corresponding energy and momentum of the fermions satisfying a dispersion relation)
and applying the boundary conditions (2-15), we have:

ψ(t, x) =
1√
L

∑
k

u(k) exp (−iEkt) exp

[
i
2π

L

(
k +

1

2

)
x

]
. (2-20)

Using

∂0ψ(t, x) = −iEkψ, (2-21)

∂1ψ(t, x) =

[
i
2π

L

(
k +

1

2

)]
ψ, (2-22)

we obtain the energy solutions for the left- and right-handed fermions:

EL
k =

2π

L

(
k +

1

2

)
+ A1, (2-23)

ER
k = −2π

L

(
k +

1

2

)
− A1, (2-24)

with k = 0,±1,±2, · · · . The energy spectrum are discrete because of the compactification
(the conditions (2-15) generate this specific structure). Then, we can see that when the
A1 = 0, the ground states are degenerated (this state represent the ground state). If we
turn on the field, the levels split: the left levels increase and the right levels decrease in the
same amount of the background field. When A1 = 2π/L, the structure arise to an equivalent
state to the initial configuration (as we expected for a gauge equivalence), but we produce
a left-handed particle and an right- handed hole. The electric charge of the left particle and
the right hole are opposite, then there is no change in the total electric charge and the vector
current is conserved:

∂µjµ = 0, Q̇ = 0. (2-25)

On the other hand, the axial charge (Q5 = QL − QR) is identical for both the left particle
(QL = 1, QR = 0) and the right hole (QL = 0, QR = −1). Therefore, the total axial charge
changes:

∆Q5 = 1 + 1 = 2. (2-26)

Taking into account that we increase the background field A1 from 0 to 2π/L (gauge equi-
valence), it is possible to write:

∆A1 =
2π

L
→ 2 =

L∆A1

π
. (2-27)

Thus:
∆Q5 = 2 =

L∆A1

π
, (2-28)
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Fig. 2-1: Energy levels associated with the A1 6= 0 fixed background field

hole

particle

Empty levels

Filled levels

where we have used the change associated with the background field. The rate of change per
time unit is:

∆Q5

∆t
=
L∆A1

π∆t
. (2-29)

Considering the local change in this rate, we have:

∂

∂t

∫ t

0

dxj50(t, x) =
1

π

∂

∂t

∫ L

0

dxA1(t). (2-30)

Thus, for the axial current we have:

∂0j
5
0 =

1

π
∂0A1, (2-31)

or written in a Lorentz invariant way, we arrive to the anomaly in 2-d [59]:

∂µj
µ
5 =

1

π
εµν∂

µAν . (2-32)

Therefore, the axial classical symmetry does not arise a conserved quantity under the new
background field assumption. These extra fermions come from the infinite associated with
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the structure of the Dirac sea. The only solution would be to truncate the structure of the
vacuum in some specific place, in order to compensate for the excess of effective fermionic
states with the exhaustion of right - moving states. The Dirac sea is a infinite structure itself,
so the origin of the anomaly expression is related with the infinite number of states.

2.2. Classical conservation laws
In the previous section, we have seen that the origin of the anomaly term is related to
the non-conservation of the axial charges in the presence of background electromagnetic
fields. This affirmation seems to contradict the Noether’s theorem, which affirms that the
axial charge is a conserved quantity [60]. In this section we will remember the Noether’s
theorem, to later try to deduce the origin of the unconserved terms. For this, we will start
with a general theory for scalar fields and then generalize to fermionic fields by finding the
corresponding axial symmetry. Considering an infinitesimal transformation of the scalar field
φ:

δφ = αX(φ), (2-33)

where α is a infinitesimal small parameter. We consider this trnsformation as a symmetry if:

δL = 0. (2-34)

L is the lagrangian density as usual. If the parameter α is an space-time dependent function
α = α(x), the lagrangian changes as:

δL =
∂L

∂(∂µφ)
∂µ(αX(φ)) +

∂L
∂φ

αX(φ) (2-35)

= (∂µα)
∂L

∂(∂µφ)
X(φ) +

[
∂L

∂(∂µφ)
∂µX(φ) +

∂L
∂φ

x(φ)

]
α. (2-36)

When α is constant, δL = 0, therefore the square brackets must vanish. The remaining
expression is:

δL = (∂µα)J
µ with Jµ =

∂L
∂(∂µφ)

X(φ). (2-37)

Therefore, the action changes as:

δS =

∫
ddxδL =

∫
ddx(∂µα)J

µ = −
∫
ddxα∂µJ

µ, (2-38)

which holds for any field configuration. Then, if the parameter α(x) decays asymptotically
it is possible to ignore surface contributions. In addition, if the field φ satisfies the classical
equations of motion, δS = 0 for any variation δφ including (2-33) with α = α(x), resulting
in the conservation law:

∂µJ
µ = 0. (2-39)
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Considering the QED lagrangian

L = ψ̄(i/∂ −m)ψ − 1

4
FµνF

µν . (2-40)

Then, it is possible to build the currents

Vectorial jµ = ψ̄γµψ, (2-41)
Axial j5µ = ψ̄γµγ5ψ, (2-42)

Pseudoescalar P = ψ̄γ5ψ, (2-43)

from the equations of motion associated with Lagrangian (2-40) (Dirac’s equations)

(i/∂ −m)ψ = 0, (2-44)

ψ̄(i
←
/∂ +m) = 0, (2-45)

It is possible to write the following conservation laws:

∂µjµ = ψ̄
←
/∂ψ + ψ̄ /∂ψ

= iψ̄mψ + iψ̄(−m)ψ

= 0, (2-46)

∂µj5µ = iψ̄mγ5ψ − iψ̄γ5(−m)ψ

= 2imP, (2-47)

where the definition of currents and the property of anticonmutativity of Dirac matrices have
been used:

{γ5, γµ} = 0.

Then, it can be observed that the vector current is conserved. The axial current is preserved
for massless fermions:

∂µj5µ = 0 for m = 0.

2.3. Ward Identities
The laws of conservation in QFT are generated by explicit relationships between Green’s
functions. These relations, which also include the functional generator, are known as Ward
identities and allow an internal consistency of the theory. It is possible to study the origin
of the conservation laws in QFT through the Euclidean path integral, where the euclidean
time is defined as:

τ = it. (2-48)
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This transformation is known as a Wick rotation. Then, the path integral can be written as:

Z[K] =

∫
Dφ exp

(
−S[φ] +

∫
ddxKφ

)
, (2-49)

where K(x) is a background source for the fields φ [60]. Under the transformation (2-33)
written as:

φ→ φ′ = φ+ α(x)X(φ), (2-50)

the partition function (2-49) transforms as:

Z[K] =

∫
Dφ′ exp

(
−S[φ′] +

∫
ddxKφ′

)
. (2-51)

Then, as the field is a dummy variable, the transformation leaves the same partition function.
Using (2-38) and (2-50), we can rewrite:

Z[K] =

∫
Dφ′ exp

(
−S[φ] +

∫
ddxKφ

)
exp

(
−
∫
ddxα(x)(∂µJ

µ −KX)

)
≈
∫

Dφ exp
(
−S[φ] +

∫
ddxKφ

)[
1−

∫
ddxα(x)(∂µJ

µ −KX)

]
, (2-52)

where we assume that the symmetry is conserved in the measure i.e. Dφ = Dφ (but the
reality is completely different (2.6)). The first term in the squared brackets are the original
partition function, therefore we obtain:∫

Dφ exp
(
−S[φ] +

∫
ddxKφ

)[∫
ddxα(x)(∂µJ

µ −KX)

]
= 0. (2-53)

Since α(x) is an arbitrary parameter, we can lose the integral and obtain an expression for
each spacetime point:∫

Dφ exp
(
−S[φ] +

∫
ddxKφ

)
(∂µJ

µ −KX) = 0. (2-54)

Setting K = 0, we get:
〈∂µJµ〉 = 0 (2-55)

We can derive correlation functions between ∂µJµ and φ differentiating with respect to K(x′)

before setting K = 0:
∂µ 〈Jµ(x)φ(x′)〉 = δ(x− x′) 〈X(φ)〉 (2-56)

If we differentiate more times, we get:

∂µ
〈
Jµ(x)φ(x1) . . . φ(xn)

〉
= 0 for x 6= xi. (2-57)

Then, if x matches one of the insertion points xi, the expression (2-56) pick up a term pro-
portional to δφ on the righr-hand side. these expressions are known as Ward identities. These
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identities remark the fact that ∂µJµ = 0 inside any correlation function when its position
does not coincide with the insertion point of the other fields.

Then, in general, for any set of arbitrary operators Oi the correlation function has the form:〈
0|TJµ(x)O1(y1) · · ·On(yn)|0

〉
. (2-58)

Differentiating this expression is obtained

∂xµ
〈
0|TJµ(x)O1(y1) · · ·On(yn)|0

〉
=
〈
0|T∂xµjµ(x)O1(y1) · · ·On(yn)|0

〉
+

n∑
i=1

〈
0|T

[
j0(x), Oi(yi)

]
δ(x0 − yi0)O

1 · · ·Oi−1Oi+1 · · ·On|0
〉
, (2-59)

where the commutator and the Dirac delta come from the derivatives associated with the
step function Θ in the temporal ordering (then x0, yi0 corresponds to the temporal coor-
diantes) and the super-index x in the partial derivative corresponds to the insertion point.
Inserting the conservation laws for the vector current (2-46), we obtain the Ward identity
for general operators (2-59). These relations associated with the Green’s functions must be
satisfied in order to guarantee the renormalizability of the theory [57],[61].

To see more clearly the result in a particular process that will be of vital importance in
the analysis of the anomaly, we will study a certain type of one-loop Feynman diagrams
known as “triangle diagrams”. These kind of diagrams are special because they involve both
U(1)V current jµ = ψ̄γµψ and the axial U(1)A current jµA = ψ̄γµγ5ψ. The anomaly arise in
the fact that even in the free theory these diagrams need to be regulated, but any process
of regularization implies the violation either the U(1)V symmetry or the U(1)A symmetry:
there is no way to preserve at the same time both symmetries. In order to build the necessary
background to study these diagrams, let us study the 3−point correlation function:

τµ(x, y, z) =
〈
0|Tjµ(z)ψ(x)ψ̄(y)|0

〉
, (2-60)

where jµ corresponds to (2-41). Therefore, to obtain the Ward identities we require the
commutator to equal times:[

j0(z), ψ(x)
]
δ(z0 − x0) =

[
ψ†(z)ψ(z), ψ(x)

]
δ(z0 − x0)

= −
{
ψ(x), ψ†(z)

}
ψ(z)δ(z0 − x0)

= −ψ(z)δ4(z − x). (2-61)

Further
[
j0(z), ψ̄(y)

]
δ(z0 − y0) = ψ̄(z)δ4(z − y). Now, imposing the current conservation

condition (2-46), we get using (2-59):

∂zµτ
µ(x, y, z) = ∂zµ

〈
0|Tjµ(z)ψ(x)ψ̄(y)|0

〉
=
〈
0|T∂zµjµ(z)ψ(x)ψ̄(y)|0

〉
+
〈
0|T

[
j0(z), ψ(x)

]
δ(z0 − x0)ψ̄(y)|0

〉
+
〈
0|Tψ(x)

[
j0(z), ψ̄(y)

]
δ(z0 − y0)|0

〉
. (2-62)
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Using the commutators (2-61), we get:

∂zµτ
µ(x, y, z) = −

〈
0|Tψ(z)ψ̄(y)|0

〉
δ4(z − x) +

〈
0|Tψ(x)ψ̄(z)|0

〉
δ4(z − y)

= −iSF (z − y)δ4(z − x) + iSF (x− z)δ4(z − y), (2-63)

where SF is the usual fermion propagator [60]. The Ward identity for the conserved vector
current takes a particularly simple form in the moment space:

(pµ − p′µ)τ
µ(p, p′) = SF (p)− SF (p

′). (2-64)

Taking only the contributions of the amputated diagrams (that is, keeping only the vertices):

− τµ(p, p′)

SF (p)SF (p′)
≡ Γµ(p, p′). (2-65)

which allows us to finally express the principle of conservation as the Takahashi’s identity
[57]:

(pµ − p′µ)Γ
µ(p, p′) = S−1F (p)− S−1F (p′). (2-66)

Then, taking the limit when p→ p′:

Γµ(p, p′) =
S−1F (p)− S−1F (p′)

pµ − p′µ

p′→p
=

∆SF−1

∆pµ
, (2-67)

Γµ(p, p) =
∂

∂pµ
S−1F (p), (2-68)

we get Ward’s identity.

2.4. Triangle diagrams
We are interested in the 3−point correlator function involving two vector currents (2-41)
and one axial current1 (2-42):

Γµνρ(x1, x2, x3) = 〈0|T (jµ(x1)jν(x2)jρA(x3)|0〉 (2-69)

where T denotes again time-ordering. It is much easier to work in the space of the moment
as we saw before. The Fourier transformation is:∫

d3x1d
3x2d

3x3Γ
µνρ(x1, x2, x3)e

ip1.x1+ip2.x2+iq.x3 = Γµνρ(p1, p2, q)δ
3(p1 + p2 + q) (2-70)

where the delta function on the right-hand side indicate the fact that our theory is transla-
tional invariant. According to (2-69), the momenta p1 and p2 are related to the vector current

1The relevance of this function is that in the end, the anomaly equation includes an axial current jA and
two gauge fields, which couple to the vector currents jµ
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while q refers to the axial current. We naively expect from the classical behavior that the
currents are conserved. Consider:

k1µΓ
µνρ(k1, k2, q) = −i

∫
d3x1d

3x2d
3x3Γ

µνρ(x1, x2, x3)
∂

∂xµ1
eik1.x1+ik2.x2+iq.x3 (2-71)

= +i

∫
d3x1d

3x2d
3x3

∂Γµνρ(x1, x2, x3)

∂xµ1
eik1.x1+ik2.x2+iq.x3 . (2-72)

The Ward identity (2-56) tell us that ∂µjµ = 0. Then, using the fact that jµ and jµA does not
transform under the symmetry (2-50), we obtain a really simple form for the Ward identity
in the momentum space:

k1νΓ
µνρ(p1, p2, q) = 0, (2-73)

and
k2µΓ

µνρ(p1, p2, q) = 0. (2-74)

Using the same strategy for the conservation of the axial current (2-47) we find:

qρΓ
µνρ(k1, k2, q) = 0 ↔ −(k1ρ + k2ρ)Γ

µνρ(k1, k2, q) = 2mΓµν , (2-75)

where the equivalence of these expression arise form the 4-momentum conservation k1+k2+
q = 0 and the expresion Γµν is:

Γµν(x1, x2, x3) = 〈0|T (jµ(x1)jν(x2)P (x3)|0〉 , (2-76)

with P corresponding to the pseudoscalar current (2-43). The leading order contribution
comes from one-loop triangle diagrams showed in Fig. (2.4). Following the usual Feynman

q

p k1

k2

p− q

+

q

k2p

p + k2

k1

p− q

p+ k1

Fig. 2-2: Triangle Diagrams

rules, we can write the amplitudes associated with the diagrams as in [57]:

−iΓµνρ = −
∫

d4p

(2π)4
Tr

i

/p−m
γργ5

i

/p− /q −m
γν

i

/p+ /k1 −m
γµ +

(
k1 ↔ k2
µ↔ ν

)
, (2-77)

−iΓµν = −
∫

d4p

(2π)4
Tr

i

/p−m
γ5

i

/p− /q −m
γν

i

/p+ /k1 −m
γµ +

(
k1 ↔ k2
µ↔ ν

)
, (2-78)
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where has been taken again k1 + k2 + q = 0. In order to establish the Axial Ward Identity
(2-75) , we use the relation:

/qγ
5 = γ5(/p− /q −m) + (/p−m)γ5 + 2mγ5. (2-79)

Replacing in (2-78) and (2-77) we obtain:

−iqρΓµνρ(k1, k2, q) = i

∫
d4p

(2π)4
Tr

[
1

/p−m
/qγ

5 1

/p− /q −m
γν

1

/p+ /k1 −m
γµ
]
+

(
k1 ↔ k2
µ↔ ν

)
= i

∫
d4p

(2π)4
Tr

[(
1

/p−m
γ5 + γ5

1

/p− /q −m

)
γν

1

/p+ /k1 −m
γµ

+

(
1

/p−m
γ5 + γ5

1

/p− /q −m

)
γµ

1

/p+ /k2 −m
γν
]
+ 2mΓµν (2-80)

We gather the terms before like:

qλTµνλ = 2mΓµν +∆µν
1 +∆µν

2 , (2-81)

where:

∆µν
1 = i

∫
d4p

(2π)4
Tr

[
1

/p−m
γ5γν

1

/p+ /k1 −m
γµ + γ5

1

/p− /q −m
γµ

1

/p+ /k2 −m
γν
]

= i

∫
d4p

(2π)4
Tr

[
1

/p−m
γ5γν

1

/p+ /k1 −m
γµ − 1

/p+ /k2 −m
γ5γν

1

/p− /q −m
γµ
]

(2-82)

and

∆µν
2 = i

∫
d4p

(2π)4
tr

[
γ5

1

/p− /q −m
γν

1

/p+ /k1 −m
γµ +

1

/p−m
γ5γµ

1

/p+ /k2 −m
γν
]

= i

∫
d4p

(2π)4
tr

[
− 1

/p+ /k1 −m
γ5γµ

1

/p− /q −m
γν +

1

/p−m
γ5γµ

1

/p+ /k2 −m
γν
]
, (2-83)

where we have used the ciclicity of the trace and the commutator of the γ’s matrices (2-61).
Apparently, under a shift of the integration variables (e.g. k → p + k2 in the first term of
∆µν

1 , p → p + k1 in ∆µν
2 and using the momentum conservation) we see that the two terms

in each ∆-term cancel. But, looking more closely at the expressions, we see that they are
linearly divergent, so it is not possible to make such a shift. That is to say, Ward’s identities
receive a net contribution from these rest-terms. It is possible to see that these differences
between divergent integrals have the general form:

∆̃ = i

∫
d4p

(2π)4
[f(p)− f(p+ a)] , (2-84)

where each integral is linearly divergent. Using a Taylor expansion for small a, we get:

∆̃ = −i
∫

d4p

(2π)4

[
aµ∂pµf +

1

2
aµaν∂pµ∂pνf + . . .

]
, (2-85)
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but, each term in the expansion is less and less divergent. Then, we need to keep only the
first of these terms because our integral is linearly divergent:

∆̃ = −
∫
S3
∞

dp̂µ
(2π)4

aµ|p|3f(p), (2-86)

where we consider that, in fact, each term in the integral is a boundary term so the integral
is taken over the boundary S3 at |p| → ∞. To see what is the contribution of this new
surface term associated with divergent integrals, we have to modify the triangular diagrams
as shown in Figure (2.4). Then, the final answer with the surface contributions depends on

q

p k1

k2

p− q

+

q

k2

k1

p+ k1

p + β

p+ k2 + β

p− q + β

Fig. 2-3: Modified Triangle Diagrams

this new arbitrary parameter β that will allow us to solve the apparent ambiguity. Then, the
Axial Ward identity take the form:

− iqρΓ
µνρ(k1, k2, q) = 2mΓµν + ∆̃µν

1 + ∆̃µν
2 (2-87)

where

∆̃µν
1 = i

∫
d4p

(2π)4
Tr

[
1

/p−m
γ5γν

1

/p+ /k1 −m
γµ − 1

/p+ /β + /k2 −m
γ5γν

1

/p+ /β − /q −m
γµ
]

(2-88)
and

∆̃µν
2 = i

∫
d4p

(2π)4
tr

[
− 1

/p+ /k1 −m
γ5γµ

1

/p− /q −m
γν +

1

/p+ /β
γ5γµ

1

/p+ /β + /k2 −m
γν
]
,

(2-89)
where each of these contributions has the form (2-84). For ∆̃µν

1 , we have the difference of
two divergent integrals with integrand:

fµν(p) = Tr

[
1

/p−m
γ5γν

1

/p+ /k1 −m
γµ
]

=
Tr
[
(/p−m)γ5γν(/p+ /k1 −m)γµ

]
(p−m)2(p+ k1 −m)2

. (2-90)
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Using the gamma matrix identity [61]:

Tr
(
γνγργµγσγ5

)
= −4iενρµσ, (2-91)

to write:
fµν(p) = −4iενρµσ

(p+ k1)
ρpσ

p2(p+ k1)2
= −4iενρµσ

kρ1p
σ

p2(p+ k1)2
, (2-92)

where the anti-symmetry of the epsilon tensor was used in order to cancel the pρpσ term.
For ∆̃µν

1 the off-set is given by a = β + k2, then:

∆̃µν
1 = −4

∫
S3
∞

dp̂λ

(2π)4
ενρµσ(β + k2)λk1ρpσ

|p|3

p2(p+ k1)2
. (2-93)

Using the integration formula:∫
S3

dp̂λpσ =
1

4
δλσVol(S3), Vol(S3) = 2π2, (2-94)

we find:
∆̃µν

1 = − 1

8π2
ενρµσk1ρ(β + k2)σ (2-95)

We can go over the same steps to evaluate ∆̃µν
2 in (2-89) with the off-set a = k1 − β. Then

we obtain:
∆̃µν

2 = +
1

8π2
ενρµσk2ρ(k1 − β)σ (2-96)

Therefore, the Axial Ward identity has the form:

− iqρΓ
µνρ(k1, k2, q) = 2mΓµν − 1

8π2
ενρµσ [2k1ρk2σ + (k1 + k2)ρβσ] (2-97)

Under the inclusion of β and making the same procedure as with the Axial Ward identity,
we realize that the Vector Ward identities (2-73, 2-74) have the form:

−ik1µΓµνρ =
1

8π2
ενρµσk1µ(β − k2)σ,

−ik2νΓµνρ =
1

8π2
ερµνσk2ν(β + k1)σ. (2-98)

Therefore, all the three Ward identities depend on the arbitrary 4-momentum β. Then, it is
possible to fix the β-value insisting that the vector current survives quantization. Our choice
of β must be such that the two vector Ward identities are non-anomalous. For this, we must
have:

β − k2 ∼ −k1 and β + k1 ∼ k2 ⇒ β = k2 − k1. (2-99)
With this choice

− ik1µΓ
µνρ = −ik2µΓµνρ = 0 (2-100)

and the Axial Ward identity (2-97) becomes:

− iqρΓ
µνρ = 2mΓµν − 1

2π2
ενρµσk1ρk2σ, (2-101)

turns out to be the anomaly.
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2.5. Pauli-Villars Regularization
It is possible to understand the emergence of the anomaly through the regularization of the
triangular diagrams analyzed in the previous section. In this case we will use Pauli-Villars
(PV) regularization process. We closely follow the development of [57] The amplitude of
regularized PV is the difference between the amplitude generated by the diagrams and the
amplitude evaluated at a regulator mass M :

Γµνλ
reg = Γµνλ(m)− Γµνλ(M). (2-102)

The physical amplitude follows from take M → ∞ in the regularized amplitude:

Γµνλ
phys = ĺım

M→∞
Γµνλ

reg . (2-103)

In the case of Γµν amplitude (2-78), we have:

Γµν
phys = ĺım

M→∞
Γµνλ

reg = ĺım
M→∞

[Γµν(m)− Γµν(M)] = Γµν(m), (2-104)

since Γµν ∼ 1
M

in the replacement m → M in (2-78). Then, Γµν is convergent and does
not require regularization. The vectorial Ward identities (2-98) are automatically fulfilled
because there are not an explicit dependence of the mass term, thus:

Γµνλ(m) = Γµνλ(M) → T reg
µνλ = 0,

T phys
µνλ = 0,

then:
− ik1µΓ

µνρ = −ik2µΓµνρ = 0. (2-105)

For the Axial Ward identity we have:

qρΓ
µνρ
phys = ĺım

M→∞
qρΓ

µνρ
reg = 2mΓµν(m)− ĺım

M→∞
2MΓµν(M). (2-106)

It is possible to prove that the anomaly is generated in the limit:

ĺım
M→∞

2MΓµν(M) = −Aµν . (2-107)

For develop this, we rewrite here the amplitude Γµν (2-78):

− iΓµν = −
∫

d4p

(2π)4
Tr

i

/p−m
γ5

i

/p− /q −m
γν

i

/p+ /k1 −m
γµ +

(
k1 ↔ k2
µ↔ ν

)
. (2-108)

For the denominator we introduce the Feynman integral [57]:

1

a1a2a3
= 2

∫ 1

0

dx1

∫ 1−x1

0

dx2
1

[a1x2 + a2(1− x1 − x2) + a3x1]
3 , (2-109)
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thus:

Γµν =−
∫

d4p

(2π)4
2

∫ 1

0

dx1

∫ 1−x1

0

dx2×

×
Tr(/p+m)γ5(/p− /q +m)γν(/p+ /k1 +m)γµ

[(p2 −m2)x2 + [(p− q)2 −m2](1− x1 − x2) + [(p+ k1)2 −m2]x1]
3 +

(
k1 ↔ k2
µ↔ ν

)
.

(2-110)

Recalling that axial traces (involving γ5) with 1, 2, 3, or 5 matrices γµ are canceled and
replacing the identity:

εµναβpαpβ = 0, (2-111)

only remains the term:

mTr γ5/qγ
ν/k1γ

µ = 4imεβναµk2βk1α +

(
k1 ↔ k2
µ↔ ν

)
. (2-112)

Therefore:
Γµν =

∫
d4p

(2π)4
2

∫ 1

0

dx1

∫ 1−x1

0

dx2
2m4iεβναµk2βk1α

[p2 − 2pk − m̄2]3
, (2-113)

with:

k = q(1− x1 − x2) + k1x1, (2-114)
m̄2 = m2 − q2(1− x1 − x2). (2-115)

In this expression are already included the terms associated with the exchange k1 ↔ k2 and
µ↔ ν. Taking the ’t Hooft-Veltmann integration formula:∫

dnp

(p2 − 2pk − m̄2)α
= i1−2απn/2Γ(α− n/2)

Γ(α)

1

(k2 − m̄2)α−n/2
≡ J0. (2-116)

In our case α = 3 y n = 4, so we obtain:

J0 =
π2

2i

1

m2 + f(x1, x2)
, (2-117)

where f(x1, x2) does not depend of m. In the large masses limit:

ĺım
M→∞

J0(M) =
π2

2i
ĺım

M→∞

1

M2
. (2-118)

Replacing we get:

ĺım
M→∞

2MΓµν(M) = ĺım
M→∞

1

(2π)4
π2

2i

1

M2
2M2M4iεµναβk

α
1 k

β
2 2

∫ 1

0

dx1

∫ 1−x1

0

dx2

=
1

2π2
εµναβk1αk2β = −Aµν , (2-119)
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which coincides with (2-101) in te limit m → 0. In the coordinate space the anomalous
divergence of the axial current is expressed as:〈

0|∂µjµ5reg(x)|0
〉
= 2im 〈0|P (x)|0〉+A(x)

→ ∂µj
µ
5reg(x) = 2imP (x) +A(x), (2-120)

with
A(x) =

e2

16π2
εµναβFµν(x)Fαβ(x). (2-121)

2.6. Non-perturbative approximation to the anomaly
Another way to understand the chiral anomaly comes from analyzing the law of conservation
of the axial current from the functional integral for the fermionic field. Starting from the
functional generator:

Z =

∫
DψDψ̄ exp

[
i

∫
d4xψ̄(i /D)ψ

]
. (2-122)

Performing the chiral transformation:

ψ(x) → ψ′(x) =(1 + α(x)γ5)ψ(x), (2-123)
ψ̄(x) → ψ̄′(x) =ψ̄(x)(1 + α(x)γ5). (2-124)

Then:∫
d4xψ̄′(i /D)ψ′ =

∫
d4x

[
ψ̄(i /Dψ − ∂µα(x)ψ̄γ

µγ5ψ
]
=

∫
d4x

[
ψ̄(i /D)ψ + α(x)∂µ(ψ̄γ

µγ5ψ)
]
,

(2-125)
(where part integration has been applied to obtain the last equality). Then, varying the
Lagrangian with respect to α(x) we derive the classical conservation law for the axial current:

dS =

∫
α(x)∂µ(ψ̄γ

µγ5ψ) = 0 (2-126)

→ ∂µ(ψ̄γ
µγ5ψ) = 0, (2-127)

since α is an arbitrary parameter of the transformation. It is clear that to obtain this result,
we assume that the measure is conservative under the change ψ → ψ′, but it is possible
to verify that the measure is not invariant under axial transformations. To test this, let’s
expand the fermion fields in an eigenstate base of /D:

ψ(x) =
∑
n

anϕn(x) =
∑
n

an 〈x|n〉 , (2-128)

ψ̄(x) =
∑
m

ϕ†mb̄m =
∑
m

〈m|x〉 b̄m. (2-129)
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The coefficients an, b̄m are independent Grassmann variables. In addition, the Dirac operator
/D accomplish the eigenvalue equation:

/Dϕn(x) = λnϕn(x) λn ∈ R. (2-130)

Since the eigenfunctions are orthonormal, it is possible to show that:

ϕ′m(x)
∑
n

a′nϕn(x) = ϕm(x)
∑
n

amϕm(x) + ϕm(x) (iα(x)γ5)
∑
m

amϕm(x). (2-131)

Integrating we get:

a′m = am +
∑
n

i

∫
d4xϕ†m(x)α(x)γ5ϕm(x)an. (2-132)

Then, it is possible to express the independent Grassmann variables as:

a′n =
∑
n

Cnmam, (2-133)

where:
Cnm = δnm + i

∫
dxβ(x)ϕ†n(x)γ5ϕm(x), (2-134)

and analogously for the rotated spinor ψ̄.

b̄′m =
∑
n

Cnmb̄n. (2-135)

Now, taking into account the transformation of the Grassmann variables, we obtain for the
axial transformation: ∏

n

da′n =(detC)−1
∏
n

dan, (2-136)∏
m

db̄′m =(detC)−1
∏
m

db̄m, (2-137)

it is possible to express the transformation of the functional measure in the path integral as:

dψ′dψ̄′ = (detC)−2 dψdψ̄ = J [α]dψdψ̄, (2-138)

where J [α] represents the Jacobian of the transformation. It is possible to rewrite this Jaco-
bian as:

J [α] = (detC)−2 = exp [−2Tr lnC] , (2-139)
where detC = expTr lnC has been used. Replacing the value of Cmn and using the first-order
approximation for the logarithm lnx ≈ x we have:

J [α] = exp

[
−2Tr ln

(
δmn + i

∫
dxα(x)ϕ†n(x)γ5ϕm(x)

)]
=exp

[
−2Tr i

∫
dxα(x)ϕn(x)

†γ5ϕm(x)

]
=exp

[
−2i

∫
dxα(x)

∑
n

ϕ†n(x)γ5ϕn(x)

]
. (2-140)
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Although at this point it would seem that the problem of the transformation had been solved,
the sum within the exponential is not well defined, since it would give something similar to:∑

n

ϕ†n(x)γ5ϕn(x) ≈ Tr γ5 · δ(0), (2-141)

thus, it is necessary to regularize it. Fujikawa [62] proposed a regularization based on a
Gaussian cut-off that allows reducing the large eigenvalues contributions. This cut-off has
the form:

∑
n

ϕ†n(x)γ5ϕn(x) → ĺım
M→∞

∑
n

ϕ†n(x) exp

[
−
/D
2

m2

]
γ5ϕn(x)

= ĺım
M→∞

∑
n

ϕ†n(x) exp

[
− λ2

m2

]
γ5ϕn(x), (2-142)

(2-143)

where the limit over M allow us to regularize the sum. Introducing the Fourier components:

ϕn(x) =

∫
d4x

(2π)2
eikxϕ̃n(k). (2-144)

Using again the completeness of the eigenfunctions:∑
n

ϕ̃†n(l)Γϕ̃n(k) = TrΓδ(l − k), (2-145)

and integrating over the momentum l, we have

∑
n

ϕ†n(x)γ5ϕn(x) = ĺım
M→∞

∫
d4ld4k

(2π)4

∑
n

ϕ̃†n(l)e
−ilxγ5 exp

[
−
/D
2

M2

]
eikxϕ̃n(k)

= ĺım
M→∞

∫
d4k

(2π)4
Tr e−ikxγ5 exp

[
−
/D
2

M2

]
eikx. (2-146)

The trace is taken over the Dirac matrices and the group generators T a. Now, we decompose
the Dirac operator:

/D
2
=

1

2
{γµ, γν}DµDν +

1

2
[γµ, γν ]DµDν

= DµD
µ − ig

4
[γµ, γν ]Fµν , (2-147)

moving e−ikx through the differential operator:

e−ikxf(∂µ)e
ikx = f(∂µ + ikµ), (2-148)
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and rescaling the momentum like Kµ →Mkµ, we have:

∑
n

ϕ†n(x)γ5ϕn(x) = ĺım
M→∞

∫
d4x

(2π)4
Tr γ5 exp

[
−(Dµ + ikµ)(D

µ + ikµ)

M2
− igγµγνFµν

M2

]
= ĺım

M→∞
M4

∫
d4x

(2π)4
ek

µkµ Tr γ5 exp

[
−2ik − µDµ

M
− DµD

µ

M2
− igγµγνFµν

M2

]
. (2-149)

Under the trace properties of the Dirac matrices:

Tr γ5 = Tr γ5γ
µγν = 0, (2-150)

Tr γ5γ
µγνγαγβ = −4εµναβ. (2-151)

Then, expanding the exponential function, the only contribution different from zero is the
Fµν term on the second order. So:

∑
n

ϕ†n(x)γ5ϕn(x) = ĺım
M→∞

(ig)2

2!

M4

4M4

∫
d4x

(2π)4
e−kµkµ Tr γ5γ

µγνγαγβFµνFαβ, (2-152)

where kµkµ = −kµkµ under the usual euclidean conventions. Thus, replacing the Gaussian
integral, we have: ∑

n

ϕ†n(x)γ5ϕn(x) =
1

8

g2

16π2
(4εµναβ) Tr[FµνFαβ]

=
g2

32π2
Tr[εµναβFµνFαβ]. (2-153)

Finally, the jacobian for the chiral transformation is:

J = exp

[
−2i

∫
d4xα(x)

g2

32π2
Tr[εµναβFµνFαβ]

]
. (2-154)

The axial ward identity could be written as (without sources):

∂µ
〈
ψ̄γµγ5ψ

〉
=

〈
2imψ̄γ5ψ + 2i

g2

32π2
Tr[εµναβFµνFαβ]

〉
. (2-155)

The concepts addressed in this section should be sufficient to be able to study some of the
problems present in the QFT, associated with the impossibility of canceling anomalous terms
within the theory, both in its abelian and non-abelian form. This will allow us to recognize
the strong CP -problem and its possible solutions.Then, the final answer with the surface
contributions depends on this new arbitrary parameter β that will allow us to solve the
apparent ambiguity



3 Strong CP-problem + U(1)A
«symmetry» and missing meson
problem

3.1. QCD introduction
Quantum chromodynamics (QCD) is a gauge theory that is invariant under the SU(3) group
of symmetry. In this theory every quark field comes in three different colors (red, green and
blue). The lagrangian density for such a theory with different fermions can be written as:

LGlobal = ψ̄ (iγµ∂µ −m)ψ, ψ =

ψ1(x)

ψ2(x)

ψ3(x)

 . (3-1)

In this particular case, the unitary transformation has to be a 3× 3 matrix. This lagrangian
is invariant under global transformation, but it is not the situation under a local one. To
build the correct form of the lagrangian we must take into account the structure of the
transformation: SU(3) is non - Abelian group defined by 3 × 3 matrices with determinant
1. The vector of the 3 quark colors transforms under the fundamental representation of
the group conformed by this matrices. This representation can be parameterized by 8 real
numbers, ζa, a = 1, · · · , 8. The local transformation can be specified by 8 real fields:

ψ → U(x)ψ, U(x) = exp

(
iζa

λa

2

)
, (3-2)

where T a = λa/2 are the generators of the group. This generators satisfied the algebra:[
λa

2
,
λb

2

]
= ifabcλ

c

2
, (3-3)

where fabc are the structure constants of SU(3). But the global lagrangian (3-1) is not
symmetric under local SU(3) transformations:

LGlobal = ψ̄ (iγµ∂µ −m)ψ → L′ = ψ̄ (iγµ∂µ −m)ψ + iψ̄U †(x) (γµ∂µU(x))ψ. (3-4)

The problem is the derivative does not transform in the same way as the field vector. We
can construct a covariant derivative:

Dµ = ∂µ − igT aAa
µ ≡ ∂µ − igAµ, (3-5)
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where we define the 3× 3 matrix as:

(Aµ)αβ =

(
λa

2

)
αβ

Aa
µ. (3-6)

The construction of a covariant derivative implies that under the U(x) transformation:

Dµψ → (Dµψ)
′ = U(x)Dµψ. (3-7)

Then, using the properties of U(x), we have:

Dµψ → (Dµψ)
′ = D′µψ

′ = U(x)Dµψ (3-8)
D′µUψ = UDµψ (3-9)

→ D′µU = UDµ. (3-10)

Therefore, the transformation rule for a covariant derivative is:

Dµ → (Dµ)
′ = UDµU

† (3-11)

Replacing the expression for the covariant derivative we can see easily the transformation
law for the gauge field Aµ:

Aa
µT

a = Aµ → A′µ = U(x)

(
Aa

µT
a +

i

g
∂µ

)
U †(x). (3-12)

Thus, the covariant derivative transforms as:

Dµψ → (Dµψ)
′ = (∂µ − igA′µ)ψ

′

=

[
∂µ − ig

(
U(x)

(
Aµ +

i

g
∂µ

)
U †(x)

)]
U(x)ψ

= ∂µ (U(x)ψ)− igU(x)Aµψ + U(x)
(
∂µU

†(x)
)
U(x)ψ

= U(x) (∂µ − igAµ)ψ +
[
∂µU(x) + U(x)(∂µU

†(x))U(x)
]
ψ

= U(x) (∂µ − igAµ)ψ, (3-13)

where in the last line we use the unitarity of U(x):

∂µ(U(x)U
†(x)) = (∂µU(x))U

†(x) + U(x)
(
∂µU

†(x)
)
= 0

→ ∂µU(x) = −U(x)
(
∂µU

†(x)
)
U(x),

that coincides with the way that the field vector transforms. Replacing the covariant deriva-
tive in the global lagrangian we obtain an invariant lagrangian under SU(3) transformation.
But, we can add more terms to the new lagrangian. If we maintain the renormalization
criteria (not involving terms of order higher than four) and the Lorentz invariance, we can
add combinations of the covariant derivative and fermion fields that also be invariant under



3.1 QCD introduction 29

SU(3). Our first attempt to mix terms might be taking the commutator of the covariant
derivative. We define the 3× 3 matrix F µν as:

Fµν = − i

g
[Dµ, Dν ] ≡ T aF a

µν . (3-14)

Then, the structure of the Fµν matrix is:

Fµνψ = − i

g
[∂µ − igAµ, ∂ν − igAν ]ψ

= − i

g
[(∂µ − igAµ) (∂ν − igAν)ψ − (∂ν − igAν) (∂µ − igAµ)ψ]

= − i

g

{
∂µ∂νψ − g2AµAνψ − ig [∂µ (Aνψ) + Aµ∂νψ]− ∂ν∂µψ + g2AνAµψ+

+ ig [∂ν(A
µψ) + Aν∂µψ]}

= {∂µAν − ∂νAµ − ig (AµAν − AνAµ)}ψ. (3-15)

Thus, we can write Fµν as:

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (3-16)

From (3-14), we easily see the way in which way Fµν transforms. Taking the transformation
of the covariant derivative (3-11):

Fµν → − i

g
[D′µ, D

′
ν ]

= − i

g
[UDµU

†, UDνU†]

= UFµνU
†. (3-17)

Therefore we have two options to build our Lorentz invariant quantity contracting the indices.
One way is to take the trace of the product of two strength matrices:

Tr(F µνFµν) → Tr(F ′µνF ′µν) = Tr
(
UF µνFµνU

†UFµνU
†)

= Tr
(
UF µνFµνU

†)
= Tr

(
U †UF µνFµν

)
= Tr (F µνFµν) , (3-18)

which turns out to be a scalar. The other option is built taking the trace over contraction with
a Levi-Civita tensor resulting in a pseudoscalar term Tr (εµνρσFµνFρσ). This pseudoscalar can
be written as a full derivative:

∂µK
µ
CS = Tr (εµνρσFµνFρσ) , (3-19)
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where Kµ
CS = 2εµνρσ Tr[Aν∂ρAσ− 2ig

3
AνAρAσ] is known as the Chern-Simons term. Therefore,

we can write down in the euclidean space, using the Gauss theorem in 4−d:∫
d4xTr[εµνρσFµνFρσ] =

∫
d4x∂µK

µ
CS =

∫
S3

dAµK
µ
CS, (3-20)

where S3 is the 3−sphere in the euclidean space. Therefore, if Kµ(x) → 0 fast enough as
x→ ∞ the integral vanish and the contribution associated to this term could be left out of
the lagrangian. Under this structure, seems very reasonable to assume that the Aµ potentials
vanish at infinity. In that way, every infinite integral related to gauge field configurations
does not contribute to the path integral e.g. the term FµνF

µν in the two-point-two function
contributes like:

ĺım
T→∞(1−iε)

exp

[
−i
∫ T

−T
d4xTr[FµνF

µν ]

]
. (3-21)

After Wick rotation, the domain of integration belong to the euclidean space. It is possible
to write this term in the form:

exp

[
−
∫
d4xTr[FµνF

µν ]

]
. (3-22)

Then, the contribution of divergent terms to the path integral is zero, so, we are only in-
terested in field configurations that result in finite contributions to the path integral. Thus,
under the naive assumption that field configurations on the form (3-19) do not generate any
finite contribution to the path integral (but as we will see later, this condition is not true),
the most general lagrangian that we could write under the analyzed conditions has the form:

L = ψ̄(i /D −m)ψ − 1

4
Tr[F µνFµν ]. (3-23)

3.1.1. QCD symmetries
The QCD lagrangian density for N quark flavors can be written in a very compact form like:

L = −1

4
F a
µνF

µνa + ψ̄
(
i /D −M

)
ψ, (3-24)

where, in the most general case, the mass matrix M is flavour-diagonal with complex entries:

M =

(
mue

iθλ 0

0 mde
iθλ

)
. (3-25)

ψj are the quark fields and F a
µν is the gluon field-strength tensor. The term /D = γµDµ

represents the covariant derivative and transform in the same way as the field vector itself:

Dµ = ∂µ − igAa
µT

a.
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We can define new conserved currents in function of left- and right - handed quark fields:

ψR = PRψ, ψL = PLψ, (3-26)

with
PL =

1

2
(1− γ5), PR =

1

2
(1 + γ5). (3-27)

The lagrangian density can be rewritten in the massless approximation as:

L = ψ̄i /Dψ − 1

4
F a
µνF

µνa = ψ̄Ri /DψR + ψ̄Li /DψL − 1

4
F a
µνF

µνa. (3-28)

Restricting our analysis only to two flavors N = 2, we see that the QCD lagrangian is
invariant under the global unitary transformation U(2)L⊗U(2)R, where U(N) is the unitary
group associated to the N × N unitary squared matrices. Each Dirac spinor with different
chirality transform in a different way:

ψLαi → Uk
LiψLαk (3-29)

ψ̄Rαj → U∗jRmψ̄
Rαm (3-30)

where α’s are spinor indices and i, j are flavor indices. Another set of symmetries in the
massless approximation are:

ψR =

(
uR
dR

)
SU(2)R : ψR → ψ′R = e−iΘ

a
RTa

(
uR
dR

)
, (3-31)

ψL =

(
uL
dL

)
SU(2)L : ψL → ψ′L = e−iΘ

a
LTa

(
uL
dL

)
. (3-32)

This SU(2)L × SU(2)R symmetry group is generated because the right- and left-handed
component on the massless lagrangian does not mix1.

Using the Noether’s theorem (2.2), we can define six currents that are conserved:

jµH = ψ̄Hγ
µTaψH , (3-33)

where H = L,R. The linear combinations define the vector currents:

jµa = jµLa + jµRa = ψ̄γµTaψ, (3-34)

and the axial currents:
jµ5a = jµLa − jµRa = ψ̄γµγ5Taψ. (3-35)

This vector and axial currents transform under parity as their name indicate. The vector
transformations are given by:

SU(2)V : ψ → ψ′ = e−iα
aTaψ. (3-36)

1This symmetry is also known as chiral symmetry.
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We also can define U(1) flavor transformations for each specific flavor (e.g u-quark):

U(1)u : u→ u′ = eiδu, (3-37)

and an equal U(1) transformation on every flavour is defined as a U(1)V :

U(1)V : ψ → ψ′ = eiδ ⊗ I2ψ. (3-38)

where I2 corresponds to the 2 × 2 identity matrix. Also, it is possible to define a U(1)A
transformation (1):

U(1)A : ψ → ψ′ = eiδγ5 ⊗ I2ψ. (3-39)
Therefore, our QCD lagrangian is invariant under certain mix of symmetries depending on
how the quark masses appears (3-1). In order to obtain quantum amplitudes related with

Condition Symmetry
mu,md (Arbitrary) U(1)u ⊗ U(1)d

mu = md (Degenerate) SU(2)V ⊗ U(1)V
mu ∼ md ∼ 0 (Massless approximation) SU(2)L ⊗ SU(2)R ⊗ U(1)V ⊗ U(1)A

Tab. 3-1: Symmetries QCD Lagrangian

this lagrangian, we use path integral formalism, but the process is only approximate (It is
necessary to take perturbative approximations). An approximate method is taking pertur-
bations on the minimal energy point and expand over the coupling constant gs, under the
assumption that higher order terms in the expansion contributes less and less.

We are interested in hadronic physics, so we can manage a energetic limit under Λ < 1GeV .
Since the confinement limit of QCD is ΛQCD < 0, 2GeV [63], it is possible to begin our
study with the approximation ΛQCD � mu ∼ md ∼ 0. In this case, the QCD lagrangian is
symmetric under the general unitary group2:

U(2)⊗ U(2) ∼ SU(2)L ⊗ SU(2)R ⊗ U(1)V ⊗ U(1)A, (3-40)

where the 2 in the unitary group comes from the number of flavors studied in the theory.
If the quarks have masses, the mass term ψ̄Mψ breaks chiral symmetry explicitly. Writing
the mass matrix as:

M =

(
mu 0

0 md

)
=

1

2
(mu +md)

(
1 0

0 1

)
+

1

2
(mu −md)

(
1 0

0 −1

)
=

1

2
(mu +md)I2 +

1

2
(mu −md)τ3. (3-41)

2This separation are related with the structure of the generators more than with the formal irreducible
decomposition [60]
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The vectorial subgroup represents a manifestly symmetry of the QCD Lagrangian when
mu ∼ md. This is equivalent to make θR = θL in (3-32):

SU(2)L ⊗ SU(2)R
θR=θL−−−−→ SU(2)V . (3-42)

In fact, we can write:
SU(2)V ⊗ U(1)V = SU(N)I ⊗ U(1)B, (3-43)

where I is for isospin symmetry and is related with the hadronical spectrum: For N = 2

the lightest spin-1
2

hadrons form a doublet (proton-neutron) while te lightest spin-0 hadrons
form a triplet (π±, π0). The U(1)B is associated with the conservation of the baryon number.

On the other hand, the axial subgroup:

SU(2)L ⊗ SU(2)R
θ†R=θL−−−−→ SU(2)A, (3-44)

does not seem to produce a multiplet classification different from the SU(2)V sector. Thus,
the only possibility is that the axial generators are spontaneously broken for an unknown
operator. We are looking for some operator that acquire VEV under this transformation,
but we have to avoid the breaking of Lorentz symmetry and SU(3)-gauge color symmetry.
Our best chance is to build a scalar color-singlet operator. Since we have not singlet scalar
states with VEV, the best option is generate a composite field. The simplest combination is
[61]: 〈

0|ψLαiψ̄
Rαj|0

〉
6= 0. (3-45)

This “quark-condensate”formation can be explained in a similar way than cooper pairs for-
mation. In superconductivity theory, the electron-fonon interaction allows that two electrons
are attracted one to each other in a interaction mediated by a positive ion. In QCD, quarks
and anti-quarks have strong attractive interactions. In the massless quark limit, it is possible
to create quark-antiquark pairs with a relatively small energy cost, with zero total linear and
angular momentum. It is possible to see that this chiral condensate vaccum configuration
changes under U(2)L ⊗ U(2)R group as:〈

0|
(
ψLαiψ̄

Rαj
)′ |0〉 = −Uk

LiU
∗j
Rm

〈
0|ψLαkψ̄

Rαm|0
〉

(3-46)

= −v3Uk
LiU

∗j
Rmδ

m
k , (3-47)

where i, j, k,m are flavor indices. v3 is a constant with mass dimensions related with the
renormalization scheme. It is easy to see that the chiral condensate breaks the axial sector
(Uk

Li = U∗jRm) but is invariant under the vector transformation (Uk
Li = U j

Rm). Then, it is
needed to consider the axial sector as a spontaneously breaking sector in order to reproduce
the last analysis.
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According to the Goldstone theorem, every spontaneously broken symmetry must have asso-
ciated massless Goldstone bosons. However, the mass term explicitly breaks axial symmetry
and the Goldstone bosons acquire masses (they are pseudo-goldstone bosons). The number
of broken axial generators for N = 2 is 4 (3 for SU(2)A and 1 for U(1)A) so the mass spec-
trum should have 4 particles. But, even when the (π±, π0) pions are really light, there are no
signs of more light particles in the same spectrum, because mη′ � mπ. The fact that there
is no goldstone boson associated with the U(1)A breaking is known as the problem of the
missing meson or U(1)A problem [64].

3.2. Effective Chiral symmetry
As mentioned in the previous section, the quark condensates breaks chiral SU(2)L⊗SU(2)R
symmetry as just as U(1)A symmetry. Is is possible to construct a low-energy effective theory.
When the quark condensate break the axial generators at low energies, the quark- gluon
interaction behave in a non-perturbative way, so the relevant degrees of freedom are the
pions (pseudo-Goldstone bosons) and not the quarks or gluons. The trick [65] is make the
VEV associated to the quark condensate a function of spacetime:〈

0|ψLαkψ̄
Rαm|0

〉
= −v3U(x), (3-48)

where U(x) is a spacetime dependent unitary matrix:

U(x) = exp

{
iπ0

f0
+
iπaσa

fπ

}
. (3-49)

f0, fπ are parameters with dimension of mass. In principle there are no differences between
this two constants, so we take f0 = fπ = f . The σa with a = 1, 2, 3 are the generators of
SU(2)A symmetry and the πa are related with the pseudo-Goldstone bosons to be identified
with the pions. The π0 field is proportional to the identity and would be correspond to the
pseudo-Goldstone boson associated with the U(1)A group. We require detU(x) = 1 and
U †U = 1 in order to ensure U(x) is a unitary transformation. Due to the above conditions,
the lagrangian related with this new U(x)-field only have derivatives. We can write down all
the terms in the form:

L = −1

4
f 2Tr ∂µU †∂µU. (3-50)

(All the other terms result equivalents after integration by parts). Upon expanding U in
terms of the pion field, the kinetic and quartic - interaction terms for pions are:

L = −1

2
∂µπa∂µπa +

1

6
f−2π

(
πaπa∂µπb∂µπ

b − πaπb∂µπb∂µπ
a
)
+ · · · (3-51)

We can realize that the interaction term generate vertices that contain factors of the form
p/f , which can be thought as an expansion parameter. This f -parameter is known as the
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pion decay constant and has an approximate experimental value f ≈ 92,4MeV [66]. If we
compare this value with the informed value for the mass of the pions seem low. However,
the real cutoff for each loop momentum diagram is imposed in the value 4πf ≈ 1GeV due
to the fact that tree and loop diagrams contribute to any process in this particular scale.
What happens with the mass term in this new regime? This term transforms under U(x),
providing a potential for the pseudo-Goldstone bosons. We can write:

Lmass = ψ̄Mψ →
(
ū d̄

)
U †MU

(
u

d

)
. (3-52)

The mass matrix M is a complex matrix. Under a SU(2)L ⊗ SU(2)R chiral transformation,
is possible to bring M to the form:

M =

(
mu 0

0 md

)
e−iθ/2, (3-53)

but, we cannot remove the phase θ, because this would require a type U(1)A transformation
that is prohibited. For this particular basis we will set θ = 0 (This is valid under this first
approach since there is no explicit dependence on θ in the Lagrangian). On the other hand,
the expansion of the Lmass-term do not require all our expertise: due to the fact that the
quark condensate is flavor-diagonal (is only dependent to color indices and we are working
in the flavor basis, therefore the only non-zero components are in the diagonal) we can see
that:

〈ūd〉 =
〈
d̄u
〉
= 0. (3-54)

Then, taking

Σ ≡ U †MU =

(
M11 M12

M21 M22

)
, (3-55)

the only terms that contribute are in the diagonal of the M matrix. It is possible to write:

Lmass =
〈
d̄d
〉
M11 + 〈ūu〉M22

= 〈ūu〉TrΣ
= −v3Tr

(
U †MU

)
= −v3Tr

(
MU2

)
, (3-56)

where we use the fact that
〈
d̄d
〉
∼ 〈ūu〉. Then, any shift under the pseudo-Goldstone bosons

costs energy. In fact, this Lmass corresponds to a potential term, because does not appear
derivatives. In this potential it is necessary to take into account the contribution of the right
quarks (〈q̄q〉 = 〈q̄LqR〉+〈q̄RqL〉) so we must write the h.c part. The charged sector is obtained
making π0 = π3 = 0 and

π1, π2 → π± =
1√
2
(π1 ± iπ2). (3-57)
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In this approximation, we see that all the odd-exponent terms vanish when we sum up the
terms of the h.c part. The product in the U(x)-matrix it is written as:

U(x) = exp

{
iπ0

f0
+
iπaσa

fπ

}
→ exp

{
i

f
(π1σ1 + π2σ2)

}
= exp

{
i

(
0 θ−
θ+ 0

)}
≡ exp iΘ, (3-58)

with θ± := π±
f

. It is easy to see that the O(2) in the exponential expansion generate a
diagonal matrix:

O(Θ2) ∼
(
θ−θ+ 0

0 θ−θ+

)
. (3-59)

The remaining terms in the exponential addition (3-58) can be written as:

eiΘ + e−iΘ =
∑

n-even

(iΘ)n

n!

=
∑
n

(−Θ2)n

(2n)!

=
∑
n

(
−
√
Θ2
)2n

(2n)!

= −
(
cos
√
θ+θ− 0

0 cos
√
θ+θ−

)
, (3-60)

and the mass potential is:

V = −(mu +md)v
3 cos

√
θ−θ+ ≈ (mu +md)v

3 +
(mu +md)v

3

2f 2
π−π+ + · · · (3-61)

Taking the quadratic term, we can set the charged pion mass:

m2
π± =

(mu +md)v
3

f 2
. (3-62)

The neutral sector mass spectrum is calculated doing π± = 0. We write θ0 = Π0

f
, θ3 = Π3

f
.

Due to σ3 is diagonal, the cosine argument is a sum with different sign in each component:

V03 = −muv
3 cos (θ0 + θ3)−mdv

3 cos (θ0 − θ3). (3-63)

In order to generate the mass spectrum we expand the potential over the minimum:

M2 =
∂2V03
∂π0∂π3

=
v3

f 2

(
mu +md mu −md

mu −md mu +md

)
. (3-64)
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Diagonalizing, we obtain:

TrM2 = m2
η′ +m2

π0
=

2(mu +md)v
3

f 2
. (3-65)

Then, comparing (3-62) with (3-65), we obtain:

2m2
π± = m2

η′ +m2
π0
. (3-66)

But, taking the experimental values3 [66]

mη′ = 957,78± 0, 06MeV, (3-67)
mπ0 = 134,9770± 0, 0005MeV, (3-68)

mπ± −mπ0 = 4, 5936± 0, 0005MeV, (3-69)

it is impossible for this equality to be satisfied. Even if we take f0 6= fπ, β = fπ
f0

, the relation
obtained:

m2
η′ +m2

π0
= (1 + β2)m2

π± , (3-70)

could adjust the mass difference, but seems very unnatural think that β � 1 because f0
and fπ have the same origin. So the only natural explanation is to think that exists another
source of U(1)A-violation that contributes to the m2

η′-term. the theoretical way to understand
the origin of the η′-meson is introducing to our model the contribution of the strange quark:

U = exp

{
i

fπ

(
8∑

a=1

πaλa + I3×3
η0√
2

)}
with

8∑
a=1

πaλa =

π
0 + η8√

3

√
2π+

√
2K+

√
2π− −π0 + η8√

3

√
2K0

√
2K−

√
2K̄0 −2 η8√

3

 ,

(3-71)
where λa-matrices are the Gell-Mann matrices related with the SU(3) group. There are
no relevant contributions associated to the π0 state (because the new mixing terms are
proportional to the factor (mu−md)). The physical states η and η′ has the form (associated
to the rotation of the previous ones):(

η

η′

)
=

(
cos θm − sin θm
sin θm cos θm

)(
η8
η0

)
, (3-72)

with θm ≈ 17o [67]. Even with a effective contribution of kaons for the η′ mass, the real value
is even larger. So there is no possible to identify even in this situation the η′ meson with the
Goldstone boson of the U(1)A symmetry.

3The electromagnetic interaction explain raise up the masses of the charged pions
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3.3. QCD vacuum
The missing messon problem does not have a true solution between the context of the classic
theory. t’ Hooft realized that this problem has a clear solution in the axial anomaly. In the
last section we calculate the pion mass associated with the term that break explicitly axial
symmetry but in the classical regime. We obtain that the η′-meson does not have the correct
value of mass, so we are looking for a new source for the correct value. As we mention in
(3.1) the contribution of the εµνρσ Tr[FµνFρσ] term can not be ignored. We are going to study
why it is necessary to take this term into account

3.3.1. Homotopy classes
There are one mathematical notion that could be allow us to analyze the behavior of the
gauge fields corresponding to the different configurations in the ground state. Under the
gauge transformations, we saw that the strength tensor to obtain a finite-euclidean action
is:

Fµν = 0 as r → ∞. (3-73)
Thus, this imply that our most general conjecture over the Aµ = Aa

µT
a is that this corres-

ponds to a gauge transformation of zero. Fixing our temporal gauge to the condition A0 = 0,
we are restricting our attention to the gauge transformation independent of time U = U(x).
Therefore, the condition

Aµ = 0, (3-74)
is too general. It is possible to impose the same boundary condition under the strength field
only making the U(x) matrix approaches to a constant matrix as |x| → ∞. This condition is
equivalent to adding a spatial “point at infinity”. Therefore, the space has the same topology
than S3-sphere (because U has a definite value regardless the direction).
But, can we establish an equivalence between the different configurations associated by the
selection of different values for U? To study this possible equivalences, we parameterize the
different kind of functions through classes. Thus, a class of functions is defined by the set
of functions that can be deformed in other by a smoothly continuous transformation, e.g. it
is possible to identify all the points under the unity circle S1 via a map that identify each
point with a complex number of module 1. Each possible function can be expressed as:

f(θ) = exp [i (νθ + α)] . (3-75)

Every function with the same value of α belong to the same homotopic class:

H(θ, t) = exp [i (νθ + (1− t)α1 + tα2)] , (3-76)

such that, changing the value of t we obtain equivalent homotopic classes e.g. for t = 0, t = 1:

f0(θ) = exp [i(νθ + α1)] , (3-77)
f1(θ) = exp [i(νθ + α2)] . (3-78)
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Thus, the transformation is equal to map a circle into another [68]. But the situation is
different for different values of ν: we can think on a map associating n points of the first circle
with 1 point of the second circle. Then, the ν-number characterize the number of winding of
one function around another and each homotopic class has its own winding number. From
(3-76) it is possible to obtain the value of ν as:

ν =

∫ 2π

0

−i
2π

[
dθ(f(θ))−1

df(θ)

dθ

]
. (3-79)

For our analysis we require transformations from S3 to representations in SU(3). In general,
maps V that provide this kind of transformations are labeled by one integer ν, that could
be expressed as [69]:

ν = − 1

24π2

∫
d3θεijk Tr[(V (θ)∂iV (θ)†)(V (θ)∂jV (θ)†)(V (θ)∂kV (θ)†)], (3-80)

which is invariant under smooth deformations and change of coordinates [63]. It is possible
to compound individual maps under product to obtain a new map

V1(θ1, θ2, θ3)V2(θ1, θ2, θ3) ≡ V (θ1, θ2, θ3), (3-81)

which has a winding number resulting of sum the individual winding numbers of the initial
maps ν1 + ν2 = ν. So, if we going back to the euclidean action

SE = −1

2

∫
d4xE Tr(FµνF

µν) =

∫ ∞
0

drr3
∫
dΩTr[Fµν(r,Ω)F

µν(r,Ω)], (3-82)

where we divide the radial (r) and angular (Ω). Therefore, in order to maintain only finite
contributions, we require that Gµν go to zero faster than 1/r2, so Gµν ∼ O(1/r3) for r → ∞.
Then, the Aµ ≡ aaµT

a must remain fixed under gauge transformation conserving the wanted
boundary conditions. t’ Hooft realized that Aµ must be a pure gauge field [70] (a pure gauge
transformation of zero) is the most general boundary to produce zero strength fields:

Aµ =
i

g
V (Ω)∂µV (Ω)−1 +O

(
1

r2

)
, (3-83)

where V (Ω) is a continuous and differentiable map which is only function on the angular
variables:

V (Ω) : S3 → SU(3). (3-84)

Applying a gauge transformation under the boundary condition for Aµ (3-12), we have that
the euclidean potential transforms as:

V (Ω) → U(Ω)V (Ω) +O(1/r2). (3-85)

Then, the only way to reestablish the boundary condition is assuming that U(Ω) = V (Ω)−1

Aµ ∼ O(1/r2) at r → ∞. But the problem is that the nature of each transformation are
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really different: U(Ω) is a truly gauge transformation, so has to be continuous and well
defined in every point. This mean that has to be independent of the angular variables in the
origin to be continuous and should be constant in the point. So it is possible to establish
a continuous deformation from r = 0 to r → ∞. This is equivalent to say that every map
belongs to the trivial homotopic class ν = 0. Then, the only way to put the equivalence
between U and V is that they has the same winding number, or, in other words, that they
belong to the same trivial homotopic class. But, V (Ω) can be of any homotopic class because
is a explicit function of the angular variables. Therefore, it is not possible to accomplish the
needed condition, so we can not vanish the contributions related to the Tr[GµνG

µν ]-term. The
presence of this non-trivial potentials that cannot be obtained from gauge transformation
to trivial field configurations i.e. O(1/r2) does not generate any problem in abelian theory.
because there is only one trivial map S3 → U(1), but affect extremely the structure of
the non-abelian theories. These non-trivial potentials are characterized by non-zero winding
numbers. It is possible to write explicitly the winding number as a integral of V (Ω). To see
how, we write the Chern-Simmons current in a different way:

KCS
µ = 2εµνρσ Tr

[
Aν∂ρAσ −

2ig

3
AνAρAσ

]
= 2εµνρσ Tr

[
Aν

2
(∂ρAσ − ∂σAρ)−

ig

3
Aν [Aρ, Aσ]

]
= εµνρσ

[
AνFρσ +

2ig

3
AνAρAσ

]
r→∞−−−→ 2

3g2
εµνρσ Tr

[
(V ∂νV

−1)(V ∂ρV
−1)(V ∂σV

−1)
]
,

(3-86)

where we have used the asymptotic limit for Fρσ, Aµ. Replacing the last result into the
winding number definition (3-80), we can rewrite the winding number in the euclidean space
as:

ν = − 1

24π2

∫
dSEµεµνρσ Tr

[
(V ∂νV

−1)(V ∂ρV
−1)(V ∂σV

−1)
]
. (3-87)

Making the definition of the dual-strength field F̃µν through:

Tr
[
FµνF̃µν

]
=

1

2
εµνρσ Tr

[
FµνF̃ρσ

]
, (3-88)

it is possible to write: ∫
d4xE Tr

[
FµνF̃µν

]
= −16π2ν

g2
. (3-89)

Therefore, our boundary conditions are only valid for ν = 0. But, what happen with the Aµ

potentials if ν 6= 0?

3.3.2. Non-trivial vacuum configurations
We are concerned about the possibility of different gauge transformations of the potential
fields could be transformed smoothly or not into another non-trivial configurations. As we
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have seen, in general there is no possible to define such trivial transformations. For example,
considering two different gauge transformations of zero [63]:

Aµ =
i

g
U∂µU

†, Ãµ =
i

g
Ũ∂µŨ

†. (3-90)

The consequence related with the impossibility of develop trivial transformations between
different homotopic classes are intrinsically related with the behavior of the vacuum states.
If we try to deform Aµ into Ãµ, the transformation involves pass through vector potentials
that belong to different homotopic classes (so they are not gauge transformations of zero).
Therefore, the associated strength tensors do not vanish and there will be different energy
eigenstates associated with each configuration. so, each vector potential represent two dif-
ferent vacuum states in the quantum field theory separated by energy barriers (each Aµ is
associated with a different minima of the hamiltonian). It is possible to see a similar behavior
in the semi-classical theory for a scalar potential of the form:

V (ϕ) = λv4
[
1− cos

(
2πϕ

v

)]
,

where the transition probability amplitude has the form [68]:

〈n′|V |n〉 ∼ e−SE . (3-91)

S is the euclidean action related to the classical solution of the field equations. This action
mediates the configurations from n at t → ∞ to n′ at t → +∞. In this classical situation,
the action increases at the infinite limit volume, so the probability amplitude vanishes at the
infinity. Therefore the minima of V remain degenerate. But the situation is really different
in QCD: the presence of classical solutions that can mediate between two vacuum states of
different winding numbers generate a transition probability that is not zero. This non-trivial
configuration allow tunnelling between states even in the limit of large volume space. To see
how to arise this kind of configurations, we can start analyzing the object:

1

2
Tr

[
d4xE

(
Fµν ± F̃µν

)2]
=

∫
d4xE

(
Tr[FµνFµν ± Tr[F̃µνFµν ]

)
≥ 0, (3-92)

(where we have used εµνρσεµναβ = 2 (δραδσβ − δρβδσα), therefore F̃µνF̃µν = FµνFµν . The left-
hand side of (3-92) is non negative, so:

−
∫
d4xE Tr[FµνFµν ] ≥

∣∣∣∣∫ d4xE Tr[F̃µνFµν ]

∣∣∣∣ . (3-93)

The left-hand term corresponds to the euclidean action times 2. The right hand part can be
rewritten in function of the winding number using (3-89), so we can write:

SE ≥ 8π2|ν|
g2

, (3-94)
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where ν = n′ − n implies the action stays fixed and finite in the infinite volume space. For
ν = 1, the solution is the instanton. For ν = −1 the solution is known as the anti-instanton.
For |ν| > 1 the solution is a dilute gas of |ν| instantons or anti-instantons if ν < 0. For ν = 1,
the vector potential has the form [71]:

Aµ =

(
x2

x2 + a2

)
U(x)∂µU

−1(x), (3-95)

where a is the size of instanton. Far away from the center of the instanton, the potential
behave as:

Aµ(x) → U(x)∂µU
−1(x). (3-96)

Thus, the contribution to the action is equal to 8π2

g2
(in the case when |ν| > 1, it is possible

to build solutions putting instantons together, whose centers are separated by their sizes).
Calculating the instanton solution in the temporal gauge A0(x) = 0, we have [68]:

Aµ(x) → V (x)Aµ(x)V
−1(x) + V (x)∂µV

−1(x). (3-97)

Then, the condition A0(x) = 0 implies:

∂

∂x0
V −1(x) = −A0(x)V

−1(x) =
−ix · σ

x20 + x2 + a2
V −1(x), (3-98)

where we have used the identity map in the boundary like U(x) = x0+ix·σ
|x| . It is possible to

determine the explicit form of V satisfying the boundary conditions as:

V (x0 → −∞) = exp

[
iπ

x · σ√
x2 + a2

n

]
, V (x0 → +∞) = exp

[
iπ

x · σ√
x2 + a2

(n+ 1)

]
.

(3-99)
Then, the instanton solution ν = 1 connects vacua which differ by one unit of winding
number.

3.3.3. θ-vacua
If we replace the saturation condition of (3-94) in (3-91), we see that transition amplitu-
de depend exclusively of the field instantons. Moreover, there is a explicit dependence on
the g coupling constant. We can see easily that the tunnelling process is relevant for the
non-perturbative regime, so (g � 1). In order to construct an invariable vacuum structu-
re under gauge transformation , we are interested in take some general state labeled by
time-independent quantity, with states labeled in such a way that they do not overlap. For
a non-trivial Gm gauge transformation (non-trivial in the toplogical sense, its mean that
connects states which differ by a winding number m) on the vacuum state |n >,we have a
change in the vacua winding number:

Gm |n〉 = |n+m〉 . (3-100)
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It is possible to build a good vacuum state as a sum over winding-number vacua:

|θ〉 =
∑
n

einθ |n〉 . (3-101)

The states are labeled by a real parameter θ as we desired. So, it is easy to see that this kind
of state is invariant under gauge transformation

Gm |θ〉 =
∑
n

einθ |n+m〉 = e−imθ
∑
n′

ein
′θ = e−imθ |θ〉 , (3-102)

up to a change of phase. Also, the different vacua states do not overlap:

〈θ′out|θin〉 =
∑
n,m

e−imθ′einθ 〈mout|nin〉

=
∑
ν,k

e
i
2
(θ′+θ)νe

i
2
(θ′−θ)k 〈νout|0in〉 = δ(θ′ − θ)

∑
ν

eiθν 〈νout|0in〉 . (3-103)

Using the definition for winding number, we can write the integration over all euclidean field
configurations in the vacuum to vacuum transition as:

〈θ′out|θin〉 ∝
∑
ν

eiθν 〈νout|0in〉 =
∑
ν

∫
[dAµ]νe

iνθe
∫
d4xLE

=
∑
ν

∫
[dAµ]ν exp

[∫
d4x

(
LE − iθg2

32π2
Tr[εµαρσFµαFρσ]

)]
. (3-104)

We have been working in the euclidean space, so we need back away to the Minkowski
space. To do this we need to do an anti-Wick rotation taking into account that we will
get an extra i factor from the four space measure, an extra −i factor associated with the
time-like derivative term in Tr[FµαF̃

µα] and a minus sign related with the Levi-Civita term,
because ε4123 = −1 but ε0123 = 1. So, under this new ideas, the presence of instantons make
mandatory to take account the contributions of the Tr (εµνρσFµνFρσ) term in the lagrangian:

Leff = L+
θg2

32π2
Tr[FµαF̃

µα]. (3-105)

Therefore, the only way to avoid the instanton contributions is related to use a simple vacuum
(ν = 0) in order to avoid non-trivial topological transitions. But if we sum over all possible
vacuum configurations, θ is a new parameter related to a topological property of the vacuum.

3.4. Chirality issues
As we have seen in the Chapter 2, the fact that there is a manifest symmetry in the La-
grangian does not necessarily imply that it remains at quantum level. The conservation laws
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implies some modifications in the Ward-Takahashi identities (??, ??) and the linear diver-
gent integrals related to the triangular diagrams do not allow axial and vector currents to
be conserved at the same time. To study that bad behavior in the non-perturbative level, it
is impossible to study the problem from perturbative methods. To make this generalization,
we have to study the generating functional Z[J ] that results to be the fundamental object
instead of lagrangian. For a theory with one fermion, the lagrangian density has the form
(3-23)

L = ψ̄(iγµDµ −m)ψ − 1

4
Tr[FµνF

µν ]. (3-106)

The chiral transformation (3-39)

ψ → eiαγ
5

, (3-107)

ψ̄ →
(
eiαγ

5

ψ
)
†γ0 = ψ̄eiαγ

5

, (3-108)

leaves invariant the classical lagrangian:

L = ψ̄(iγµDµ −m)ψ − 1

4
Tr[FµνF

µν ], (3-109)

when m = 0. If the chiral transformation is local i.e. α = α(x), the lagrangian density with
m = 0 transforms in the following way:∫

d4xL →
∫
d4x[L+ α(x)∂µ(ψ̄γ

µγ5ψ)]. (3-110)

Since the Lagrangian must be stationary under α(x) variations, we obtain

∂µ(ψ̄γ
µγ5ψ) = 0. (3-111)

The last expression represents the conservation of the chiral current:

jµ5 = ψ̄γµγ5ψ. (3-112)

This chiral current can be written as (3-35). The zero-component has the form:

j05 = ψ†RψR − ψ†LψL, (3-113)

which represents the difference between the number density of handed particles. The asso-
ciated conserved charge is:

Q5 ≡
∫
d3xj05, (3-114)

is the difference of right handed particles minus left handed particles. According to the
previously studied topics, it is easy to guess that the behavior for the QFT will be different
The conservation laws can be derived of the generating functional:

Z =

∫
[dψ][dψ̄][dAµ]e

i
∫
d4xL. (3-115)
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As we saw in (2-154), the measure change under the local chiral transformation. Then, the
aditional contribution spoil the classical symmetry transforming as:

[dψ][dψ̄] → exp

[
i

∫
d4xα(x)A(x)

]
[dψ][dψ̄], (3-116)

where A is the anomaly function:

A(x) = − g2

16π2
εµναβTr[FµνFαβ]. (3-117)

Therefore, the chiral transformation over Z is determined adding the contribution of the
transformation law for the action plus the effect on the functional integral:

Z →
∫

[dψ][dψ̄][dAµ] exp
i
∫
d4xL+α(x)∂µjµ

5
+α(x)A(x) . (3-118)

Again, the functional Z has to be stationary under arbitrary variations of α. This condition
generates a expectation value for the divergence of the chiral current:

δZ

δα(x)

∣∣∣∣
α=0

=

∫
[dψ][dψ̄][dAµ]i(A(x) + ∂µj

µ5)ei
∫
d4xL = 0, (3-119)

〈
∂µj

µ5
〉
= −〈A〉 = g2

16π2

〈
εµναβTr[FµνFαβ]

〉
. (3-120)

The expression (3-120) allow us to see that, even in absence of mass terms, the divergence of
the chiral current does not correspond to a exact symmetry of the theory and the expected
value turns out to be equal to the anomaly ABJ studied previously. Perhaps we could think
that the result is canceled at higher orders in the perturbative contributions associated with
the triangular diagrams, but in this case, we use a different treatment that does not involve
lower order corrections. Considering now the charge associated with the axial current:∫

d4xj05 = Q5
f −Q5

i =

∫
d4x

g2

16π2
εµναβ Tr[FµνFαβ]. (3-121)

Comparing with (3-89), we have:

Q5
f −Q5

i = −2ν, (3-122)

where = Q5
f − Q5

i represents the change of chirality in function of the final and initial
difference in right and left handed particles respectively. So, the presence of instantons make
that particles change their chirality converting right handed particles into left handed. The
expectation value is the divergence of the chiral current vanish only when we take into
account trivial gauge field configurations. It is worth noting that the contribution associated
with the chiral transformation has the same form as the term added to the Lagrangian
because of the non-trivial structure of the QCD vacuum. This fact will be important for
later analyzes.
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3.5. Non-Abelian generalization
Considering the action of a non-abelian group symmetry over non-abelian gauge fields, it is
possible to generalize the previous results. For example, making a non-abelian transformation
like (3-32) over Weyl spinors:

ψL → eiΘ
a
Lτ

a

ψL, ψR → eiΘ
a
RτaψR, (3-123)

(τa are the generators of some arbitrary group), the transformation associated to non-abelian
gauge fields generates an extra term on the anomaly contribution:

g2

16π2
εµναβF c

µνG
d
αβ Tr[τ

aT cT d]. (3-124)

The object that allows us to really know if a transformation represented by the generators
τa coupling with spinor fields presents or not quantum corrections is then the factor:

dabc = Tr[τa
{
T a, T b

}
], (3-125)

where we use:
εµναβ Tr[τaT bT c] =

1

2
εµναβ Tr[τa

{
T b, T c

}
]. (3-126)

We use the anticommutator expression because the presence of fermions induce different
signs. In general, if dabc = 0, there are no anomalies and the classical symmetry associated
with τa can be extended to the quantum level. But if dabc 6= 0, the current is not conserved at
quantum level. It is possible to see that the SM is an anomaly free theory, and this criterion
will be used to construct our U(1)X extended model.

3.6. Solution to the U(1)A problem: more problems
Then, it is possible to analyze under the behavior of dabc if the axial group SU(2)A ⊗
U(1)A takes or not quantum correction when interact with gluon fields. For SU(2)A, the
corresponding generators τa = σa/2 and for the gluonic fields the generators are the Gell-
Mann matrices T c = λc. therefore, the behavior of this isospin axial current is:

∂µj
µ5a =

g2

16π2
εµναβF c

µνF
d
αβ Tr[τ

aλcλd], (3-127)

where F c
µν is a gluon strength field, τa is an isospin matrix and λc is a color matrix. The

trace is taken over colors and flavors:

Tr[τaλcλd] = Tr[τa] Tr[λcλd] = 0. (3-128)
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Then, as we have seen, the axial current associated to SU(2)A is only broken explicitly for
quark mass terms and does not have quantum correction. For the U(1)A subgroup, the τa
generator corresponds to the identity on flavors (3-39), then the axial singlet current :

∂µj
µ5(x) =

g2nf

32π2
εµναβF c

µνF
c
αβ. (3-129)

Therefore, the singlet axial current has quantum corrections and is not conserved. The quan-
tum correction is directly associated with the tricky structure of QCD vacuum (after all
Tr[FµνFαβ] is nothing but the instanton topological term). So, the solution for the U(1)A
problem has to be related with the anomaly term itself. Indeed, the anomalous triangle
diagram which couples to jµ5 will directly provide mass to the golsdtone-boson η′. To see
how, we have to analyze one more thing. If we raise again the mass terms into the QCD
lagrangian, the divergence of the singlet axial current read as:

∂µj
µ5 = −2muūiγ5u− 2mdd̄iγ5d+ 4

αs

8π
F a
µνF̃

µν
a , (3-130)

where we replace the definition of the dual strength field and define αs =
g2

4π
for our nf = 2

theory. The first two terms remain us that the mass terms violate the symmetry too. Thus,
the most general QCD lagrangian can be written as:

L = −1

4
F a
µνF

µν
a + iq̄ /Dq − (q̄mqe

iθY qR + h.c.)− αs

8π
F a
µνF̃

µν
a θQCD, (3-131)

where θY = θ in (3-53). We expect that the FF̃ term that violates the U(1)A symmetry
generate mass for the π0-field as mu generates mass for the θ0 + θ3 combination. Under a
U(1)A transformation,

qL → e−iβ, qR → eiβqR, (3-132)

leading to an anomaly contribution of

LAnom = Ngβ
αs

4π
Tr[F a

µνF̃
µν
a ]. (3-133)

If β = θY we can shift the phase θY to θQCD through an axial transformation. So, the
combination

θSM = θQCD + 2θY , (3-134)

appears now multiplying the GG̃ term for Ng = 2. As we have mention, this term violates
P and T parities, as:

εµναβFµνFαβ
P,T−−→ −εµναβFµνFαβ. (3-135)

This implies that QCD theory is invariant under P−, T− and CP− iff θ = −θ, i.e. θ mod
π = 0. But we do not have any restriction on θ, therefore QCD does not naturally conserve
CP . Thus, every CP violation observable has to depend on the physical θSM . So, this term
impose a CP-violation in QCD (we talk more about this fact later).
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As a last ingredient, we need to remember that when we defined the transformations (3-32),
we are effectively making a local U(1)A shift. Thus, we have another contribution to the
lagrangian that can be read as:

αs

8π
FF̃ × 2θ0. (3-136)

Under this new ideas, we can write new contributions for the meson potential (3-63) as

V ∼ −muv
3 cos(θ0 + θ3)−mdv

3 cos(θ0 − θ3)− Λ4
QCD cos(2θ0 − θSM), (3-137)

where the new contribution relies the fact that has a minimum in the additional factor that
accompanies the anomalous structure, it has to give a large mass to η′ so must have a non-
zero second derivative at the minimum and has to be periodic. Thus, the meson mass matrix
has the form [72]:

M2 =
v3

f 2

(
mu +md mu −md

mu −md mu +md

)
+ 4Λ4

QCD

(
0 0

0 1

)
. (3-138)

Thus, η′ takes its mass from the new term and pions from the chiral symmetry breaking by
quark masses and the quark condensate:

m2
π0 =

(mu +md)v
3

f 2
; m2

η′ ∼ 4Λ4
QCD +O(mqv

3). (3-139)

Then, we were able to solve the problem associated with the meson η′ mass, but we introduced
another problem: Our QCD theory is now CP violating because we add a new CP-violating
term.
Another method to isolate anomalous contributions in a single term is rotating the fermions
with a phase −θQCD/Ng, to be able to cancel the θ- term leaving a complex mass quark
matrix. Then, there are two phases with independent origins, which, when mixed, generate
an explicit violation of the CP symmetry in strong interactions. This is the origin of the
so-called strong CP-problem: From the experimental point of view QCD preserves CP, that
is, all bound states must be eigenestates of the parity operator. This leads to the fact that
if parity is conserved, Neutron Electric Dipole Momentum (NEDM) must be equal to zero.
Therefore, the presence of the θ - term contributes to NEDM. From chirality techniques [73],
we have:

dn = 2,4× 10−3θefm, (3-140)

where e is the charge of the electron. Compared with the experimental boundary |dn| <
3,0× 10−13efm [39], we have an upper bound of:

|θ| < 1,3× 10−10. (3-141)

This is a tiny value. θ can carry inside the [0, 2π] interval. Therefore, the CP-problem could
be enunciated as: Why is it possible to think that this small value, which comes from two
totally different phases, is compatible with zero?
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3.7. Vafa-Witten Theorem
The proposition associated to make the θ̄-term related to the spontaneously breaking of the
U(1)A group a dynamical field is related with the CP -conservation in vector-like theories.
Following the Vafa - Witten theorem [74], in parity-conserving vector like theories such as
QCD, parity conservation is not spontaneously broken. We are allowed to use the same way
to proof the necessity of use a dynamical field instead of a static parameter.
The effective euclidean action in the QCD θ-vacuum has the form:

e−V4E(θ) =
∑
ν

[dAµ]ν exp

[
−
∫
d4x

(
1

4
Tr [FµνF

µν ] +
iθg2

32π2
εµνρσ Tr [FµνFρσ]

)]
. (3-142)

It is possible to see that there are a specific order in the values for the energies in this
integral:

For θ = 0 the (3-142) is real

For θ 6= 0 the θ factor is only a phase that reduce the value of the integral

so we can write in general:
E(θ) ≥ E(0) ∀θ. (3-143)

But, θ-term is a explicit CP violation term, so we can not use the Vafa-Witten theorem
in order to generate the later affirmation, because θ is only a fixed parameter. But, if we
change the nature of theta to be now a dynamical field, this could relax itself until reach the
minimum state of energy, corresponding to θ = 0. That is the basis of a good mechanism to
avoid the CP violation in QCD

3.8. Peccei-Quinn Mechanism
An elegant way to avoid the CP problem was proposed by Robert Peccei and Helen Quinn in
1977 [40]. The propose is based in the assumption of a new U(1) global anomalous symmetry.
The symmetry has to be anomalous in order to cancel the θ-term using the color anomaly
produced by the rotation of the fields. The spontaneously broken of this new symmetry
at certain energy scale produce an extra degree of freedom associated with a new goldstone
boson. But, because this U(1) is anomalous at quantum level our boson obtain mass through
topological effects associated with the interaction with instanton fields and couple with
gluons. This additional particle is called axion, and its detection depends on the energy scale
of the particular model. So, in the same way as we do for the pion fields, we can write an
effective lagrangian below the energy breaking scale for the axion field a(x):

La =
1

2
∂µa∂

µa+

(
θQCD +

a

fa

)
αs

8π
F a
µνF̃

µν
a . (3-144)
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Then, we can suppose that the U(1)PQ acts in the same way as the usual axial symmetry
making θa = a

fa
as in (3-49). So, the new symmetry adds a new contribution to the meson

scalar potential

V ∼ −muv
3 cos(θ0 + θ3)−mdv

3 cos(θ0 − θ3)− Λ4
QCD cos(2θ0 − θSM + θa). (3-145)

Thus, in the minimum, we can avoid any possible value of θSM making θ0 = θ3 = 0 and
θa = θSM . But, the spontaneously breaking of the U(1)PQ symmetry can destroy our model,
because it can induce again CP violating terms. However, considering that a(x) is a dyna-
mical field, the Vafa-Witten theorem ensures that the axion field evolves towards 〈a〉 = 0, so
there is no new CP violating phases. Even in the presence of external sources of CP violation
(as complex phases in CKM matrix), observables associated to θ- term imposes constrictions
over the maximum possible value

∑
|θk| < 1, 3× 10−10.

3.9. Extensions to SM
It is easy to see that is impossible to implement this model into the SM. Writing the anomala
PQ symmetry as

φ→ eixφα, uR → eixuαuR, dR → eixdαdR. (3-146)

We assume that the left-handed quarks does not transform under PQ (this assumption
maintain the condition of the anomala nature for the PQ symmetry).Writing down the SM
yukawa lagrangian:

LY = −yuq̄Lφ̃uR − ydq̄LφuR, (3-147)

where we use the usual definition for the fields (q̄L corresponding to the left quarks and ψ

to the higgs field are SU(2) doublets and qR are right-handed fields that are singlets to the
isospin symmetry. In this way, under the definition ψ̃ = iσ2ψ

∗, we see that the PQ symmetry
is accomplished by all the terms under the condition:

− xφ + xu = 0, xφ + xd = 0. (3-148)

Therefore, the anomalous term transforms as:

αsθQCD

8π
F a
µνF̃

µν
a → αs [θQCD − α(xu + xd/2]

8π
F a
µνF̃

µν
a . (3-149)

Thus, there is no possibility to absorb the θ- term. through the PQ mechanism, Also, there
is no enough degrees of freedom to put the axion field. Therefore, is necessary to extend the
usual SM with extra fields.
The first attempt to implement the PQ mechanism in a extended SM was proposed by
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Peccei, Quinn, Weinberg and Wilzeck (PQWW). They added an extra Higgs doublet to the
original content of SM fields. Thus, the yukawa term has the form:

LY = −yuq̄Lφ2dR − ydq̄Lφ̄1uR. (3-150)

The VEV developed by the two higgs fields must fulfill the relationship
√
v21 + v22 = v =

246GeV in order to reproduce the electroweak scale. Two higgs doublets correspond to 8
degrees of freedom, then it is possible to introduce a non-trivial PQ charges assignment as:

φi → eixiα, uR → eixuαuR, dR → eixdαdR. (3-151)

Then x1 = xu and x2 = −xd. Three degrees of freedom are eaten by the gauge bosons
and the axion corresponds to the pseudoscalar state among the added higgs, then the axion
decay constant fa in the PQWW model is proportional to the electroweak scale v . Axion
interactions are proportional to the factor 1/fa, which implies that a lighter axion interacts
more weakly than a heavier one. Experimentally, the value fa ≈ v turns out to be to small,
generating an axion that interacts too strongly with matter, which is completely ruled out
by experimental results such as the branching ratio [75]:

B(K+ → π+ + nothing) < 7,3× 10−11 (3-152)

but, the so-called visible axion predicts a significant larger value ∼ 10−8, then, the PQWW
axion is excluded.

Additional constraints can be obtained from astrophysical considerations. The energy loss
in process associated to axion emission by hot dense plasma is inversely proportional to f 2

a .
Axions have to interact weakly enough in order not to affect the stellar evolution. Therefore,
the lower bound on the axion decay constant has the value [76]:

fa < 107GeV, (3-153)

which, for proper PQ axions can be translated to an upper bound on its mass ma < 0,1eV.
On the other hand, cosmology places an upper bound of fa. Even if the axions are not the
main component of dark matter, their density can not exceed the observed dark matter
density (1-4. The axion density parameter takes the form [77]:

Ωah
2 = κa

(
fa

1012GeV

)7/6

. (3-154)

Imposing that Ωa ≤ Ωdm, we get:
fa < 1011GeV, (3-155)

or, in terms of the mass ma > 10−5eV. Then, a window for dark matter axions could be:

107GeV < fa < 1011GeV, 10−5eV < ma < 0,1eV (3-156)
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But these limits should not be taken too strict, since they are model dependent [76]. This
scale is larger than v preventing a strong coupling of the axions with ordinary matter. This
kind of axions are so-called invisible axions.
One of those invisible axion models was proposed by Kim, Schifman, Vainshtein and Zak-
harov (KSVZ) [78], [79]. In this model the exotic added fields are a complex scalar singlet
coupling to a new heavy additional quark. the only fields charged through the PQ transfor-
mation are the exotic ones and the scalar acquires VEV through a “Mexican-hat”potential.
Another type of extension proposed by Dine, Fischler, Srednicki and Zhitnitsky (DFSZ) [80],
[81]. This model increase the PQWW model with a scalar singlet, requiring that all fields in
the theory have a PQ charge (except the gauge bosons). This extension is the one used in
this work to solve the CP-problem.



4 GSM ⊗ U(1)X × U(1)PQ model

In order to solve some of the problems of the SM (mass hierarchy, massive neutrinos, strong
CP - problem, etc), study scenarios beyond the standard model. As mentioned in chapter
(1), one of the most preferred extensions to the SM the enlargement of the scalar sector
by adding new Higgs doublets (and also Higgs singlets) in order to understand some facts
such as the top/bottom mass ratio or to provide the spontaneously breaking of new sym-
metries. A new model is built assuming the existence of a new abelian interaction U(1)X .
In addition, as was explained in (3.8), the solution of the strong CP - problem requires the
introduction of an anomalous U(1)PQ symmetry that allows canceling the term associated
with the CP - violation by means of the color anomaly. Then, the scalar sector is extended
in order to break the new symmetries and, under the premise of the existence of invisible
axions, a DFSZ-type extension will be used which involves an additional Higgs doublet (3.9).

As mentioned in (3.9), in order to the pseudo-Goldstone boson associated with the axion
would be invisible, the PQ-symmetry has to be broken at an scale energy much greater than
the electroweak scale and in fact much larger than the U(1)X scale. The introduction of the
PQ symmetry guarantees, after spontaneously symmetry breaking (SSB), the existence of a
remanent Z2 symmetry [82] that will be used in order to distinguish between doublets with
the same X charge, where the mass matrices fermionic textures are produced in a suitable
way, producing the necessary zeros in order to obtain the observed mass fermionic hierarchy.

4.1. Scalar sector
The model consists on a DFSZ type axion on which the additional symmetry U(1)PQ is
structured. Some properties of the scalar sector are:

The scalar singlet that allows the SSB of the U(1)X is χ with VEV in order ∼ TeV

and the the singlet that generates the SSB of U(1)PQ-symmetry is S ∼ fa as was
mentioned in (3.9).

The need for two additional Higgs doublets φ1, φ2 is shared by the DFSZ model and
the search of suitable fermionic mass matrices texture. The VEV are v1, v2 respectively
in such a way that are related to the VEV electroweak scale by v =

√
v21 + v22.
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Scalar bosons X U(1)PQ

Higgs Doublets

φ1 =

 φ+
1

h1 + v1 + iη1√
2

 2/3 x1

φ2 =

 φ+
2

h2 + v2 + iη2√
2

 1/3 x2

Higgs Singlets

χ =
ξχ + vχ + iζχ√

2
−1/3 xχ

σ −1/3 xσ

S =
ξS + vS + iζS√

2
−2/3 xS

Tab. 4-1: Non-universal X quantum number and U(1)PQ for Higgs fields.

An additional scalar singlet σ is introduced. It will useful later to produce masses
through radiative corrections.

In order to give suitable texture in the fermionic mass matrices, we will use the argu-
ment of [13] related to the imposition of restrictions in the mass structures through
the assignation of X and PQ charges. Following the model proposed in ref [20], it is
possible to create hierarchical mass structures identifying zero-type mass matrices that
allow production of hierarchycal mass eigenvalues related to the vacuum expectation
values of the scalar field involved in spontaneously symmetry breaking. Our model is
based in the same yukawa lagrangians, but we impose restrictions over the yukawa
couplings through PQ charges instead of a Z2 discrete symmetry with the same values
of the X-charges in order to differentiate among different families.

The table (4-1) shows the scalar content of the model, including the two doublets φ1 y φ2

and the three singlets χ, σ, S in addition to the U(1)PQ labels.

4.1.1. Gauge boson masses (W 3
µ , Bµ, Z

′
µ)

We can write the associated kinetic lagrangian as:

Lkin =
∑
i

(DµΨi)
† (DµΨi) , (4-1)
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where Ψi = φ1,2, χ, S The covariant derivatives are:

Dµφi = ∂µφi − igW a
µTaφi − ig′

Y

2
Bµφi + igXXZ

′
µφi,

Dµχ = ∂µχ− igχ
3
Z ′µχi, DµS = ∂µS, Dµσ = ∂µσ. (4-2)

After the symmetry breaking, the W±
µ = (W 1

µ ∓W 2
µ)/

√
2 acquires masses MW = gv

2
. The

neutral gauge bosons (W 3
µ , Bµ, Z

′
µ) masses are obtained for the following matrix:

M2
0 =

1

4

g
2v2 −gg′v2 −2

3
ggXv

2(1 + c2β)

∗ g′2v2 2
3
g′gXv

2(1 + c2β)

∗ ∗ 4
9
g2Xv

2
χ

[
1 + (1 + 3c2β)

v2

V 2
χ

]
,

 ,

The M2
0 has null determinant as is expected because the existence of the photon Aµ, which

is a massless gauge boson So, the neutral masses are given by:

MZ ≈ gv

2 cos θW
, MZ′ ≈ gXvχ

3
, (4-3)

The matrix that diagonalized M0 is given in [20] and has the form:

R0 =

 sW cW 0

cW cZ −sW cZ sZ
−cW sZ sW sZ cZ

 , (4-4)

where tan θW = g′

g
is the Weinberg angle and sZ is the mixing angle between Z and Z ′ gauge

bosons:

sZ ≈
(
1 + s2β

) 2gXcW
3g

(
mZ

mZ′

)2

. (4-5)

In order to define the mass eigenstates associated with the Goldstone bosons of the Z and
Z ′ gauge fields (4-3), it is necessary to use the bilinear terms Zµ∂

µGZ that coming from the
kinetic term of the scalar fields. These contributions are expected to be canceled out with
the bilinear terms originated in the gauge fixing. The gauge fixing condition has the form:

LGF = −1

2
(∂µZ

µ +MZGZ)
2 − 1

2

(
∂µZ

′µ +MZ′GZ′

)2
. (4-6)

But, we are only interested in the mixed terms:

−MZGZ∂µZ
µ −MZ′GZ′∂µZ

′µ. (4-7)

Integrating by part we have the relevant components as:

MZZ
µ∂µGZ +MZ′Z ′µ∂µGZ′ . (4-8)
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These terms are expected to be canceled with a contribution from covariant derivative. In
order to get the Goldstone boson mass eigenstates it is necessary to rotate the expression
(4-2) in function of the mass eigenstates as:

Dµ = ∂µ − ig
(
sWAµ + cW cZZµ − cW sZZ

′
µ

)
T3L

− ig
sW
cW

(
cWAµ − sW cZZµ + sW sZZ

′
µ

) Y
2

− igX
(
sZZµ + cZZ

′
µ

)
,

= ∂µ − igsW

(
T3L +

Y

2

)
Aµ

−
(
ig

cW
cZ

(
c2WT3L − s2W

Y

2

)
+ igXsZX

)
Zµ

+

(
ig

cW
sZ

(
c2WT3L − s2W

Y

2

)
− igXcZX

)
Z ′µ.

where we take into account the relation g′/g = tanW = tW . Ignoring the associated photon-
term and taking c2WT3L − s2W = T3L − s2WQ, we have:

Dµ = ∂µ −
(
ig

cW
cZ
(
T3L − s2WQ

)
+
gX
g
cW sZX

)
Zµ

− igX

(
− g

gX

sZ
cW

(
T3L − s2WQ

)
+ cZX

)
Z ′µ. (4-9)

Taking the scalar φ1 field, the contribution of the covariant derivative applied to the neutral
components of the scalar fields (since the charged components contribute nothing to the
neutral Goldstone) is:

Dµφ1 =
i∂µη1√

2
+

(
−igcZ
cW

(
T3L − s2WQ

)
− igXXsZ

)
Zµφ1

+

(
igsZ
cW

(
T3L − s2WQ

)
− igXXcZ

)
Z ′µφ1.

In order to obtain the mass contributions, we can avoid the radial components, leaving
only the contributions related to the VEV of the fields. Thus, taking into account that the
action of the Q operator over the neutral components is equal to zero and replacing the
corresponding values of the T3L and hypercharge quantum numbers, it is possible to write:

Dµφ1 =
i∂µη1√

2
+

(
− ig

cW
cZ

(
−1

2

)
− igX

(
2

3

)
sZ

)
Zµ

v1√
2

+

(
ig

cW
sZ

(
−1

2

)
− igX

(
2

3

)
cZ

)
Z ′µ

v1√
2
.



4.1 Scalar sector 57

In the same way we have:

(Dµφ1)
† = −i∂µη1√

2
+

(
ig

cW
cZ

(
−1

2

)
+ igX

(
2

3

)
sZ

)
Zµ

v1√
2

+

(
− ig

cW
sZ

(
−1

2

)
+ igX

(
2

3

)
cZ

)
Z ′µ

v1√
2
.

In the kinetic term (Dµφ1)
2, we are only interested in the mixing products:

(Dµφ1)(D
µφ1)

† ≈− v1Zµ∂µη1

(
− g

2cW
cZ +

2gX
3
sZ

)
− v1Z

′
µ∂µη1

(
g

2cW
sZ +

2gX
3
cZ

)
. (4-10)

Similarly:

(Dµφ2)(D
µφ2)

† ≈− v2Zµ∂µη2

(
− g

2cW
cZ +

gX
3
sZ

)
− v2Z

′
µ∂µη2

(
g

2cW
sZ +

gX
3
cZ

)
, (4-11)

and, for the singlet χ

Dµχ ≈i∂µζχ√
2

− igX

(
−1

3

)
sZ

vχ√
2
Zµ − igX

(
−1

3

)
cZ

vχ√
2
Z ′µ (4-12)

(Dµχ)
† ≈− i∂µζχ√

2
+ igX

(
−1

3

)
sZ

vχ√
2
Zµ + igX

(
−1

3

)
cZ

vχ√
2
Z ′µ (4-13)

(Dµχ)(D
µχ)† ≈− vχZµ∂µζXgX

(
−1

3

)
sZ − vχZ

′
µ∂µζXgX

(
−1

3

)
cZ . (4-14)

Thus, matching the contributions of the covariant derivatives with the bilinear terms from
the gauge fixing and replacing MZ =

gv

2cW
, MZ′

µ
=
gvX
3

, we obtain for Zµ and Z ′µ:

∂µGZµ =
2cW cZ
gv

[
g

2cW
(v1∂µη1 + v2∂µη2)

]
+

2cW sZ
gv

[
−gX

3
(2v1∂µη1 + v2∂µη2)

]
+

2cW
gv

vχ∂µζχ
gX
3
sZ , (4-15)

∂µGZ′
µ
=

3

gχvχ

[
g

2cW
sZ (−v1∂µη1 − v2∂µη2) +

gχcZ
3

(
−2

v1
vχ
∂µη1 −

v2
vχ
∂µη2

)]
+

3

gχvχ

(
vχ∂µζχ

gX
3
cZ

)
. (4-16)

Under the approximation sZ ∼ 0, cZ ∼ 1, it is possible to write:

GZµ = sβη1 + cβη2 +
MZ′

MZ

sZζχ, (4-17)

GZ′
µ
= ζχ − 2

v1
vχ
η1 −

v2
vχ
η2. (4-18)
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The definition of Goldstone bosons allows us to impose new conditions for PQ-charges in
order to decouple the axion.

4.1.2. PQ coupling to gauge bosons
The only PQ charged objects in the present model are the fermions and the higgs fields. There
are no direct PQ coupling with the gauge bosons, so this implies that the phases eaten by
these bosons are PQ neutral.Under the U(1)PQ symmetry, the scalar fields transforms as:

φ1 → eix1αφ1, φ2 → eix2αφ2, χ→ eixχαχ, S → eixSαS, σ → eixσασ, (4-19)

and the current associated with the PQ-transformation is given by:

JPQ
µ =

δL
δ∂µφ1

+
δL

δ∂µφ2

+
δL
δ∂µχ

δL
δ∂µS

+ h.c

= xSvSi∂µζS + xχvχi∂µζχ + x2v2∂µη2 + x1v1∂µη1, (4-20)

which must be orthogonal with neutral currents at low energy〈
JPQ
µ |GZ

〉
= x1v1sβ 〈∂µ|η1〉+ x2v2cβ 〈∂µη2|η2〉+

mZ′
µ

mZµ

sZxZvχ 〈∂µζχ|ζχ〉 = 0, (4-21)〈
JPQ
µ |GZ′

〉
= −2v1

vχ
x1v1 〈∂µη1|η1〉 −

v2
vχ
x2v2 〈∂µη2|η2〉+ xχvχ 〈∂µζχ|ζχ〉 = 0. (4-22)

We can simplify the last expression using sZ using (4-5):

mZ′

mZ

sZ ≈
(
2v21 + v22

v2

)
v

vχ
. (4-23)

Therefore, we can write the following restrictions:

0 = v21x1 + v22x2 + (2v21 + v22)xχ,

0 = 2v21x1 + v22x2 − v2χxχ. (4-24)

In addition, the λ14 term in the scalar potential (4-28) generates the following equation:

xχ − xS − x1 + x2 = 0. (4-25)

So using eqs. (4-24), (4-25) and choosing the normalization condition

xS − xχ = 1, (4-26)

it is possible to write:

x1 = −
v22(2v

2
1 + v22 + v2χ)

(2v21 + v22)
2 + v2v2χ

, xχ = − v21v
2
2

(2v21 + v22)
2 + v2v2χ

,

x2 = 1 + x1, xS = 1 + xχ. (4-27)
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4.1.3. Higgs potential
The most general potential that could be written with the particle content showed in (4-1)
and the scalar PQ-restrictions (4-27) is:

V = µ2
1φ
†
1φ1 + µ2

2φ
†
2φ2 + µ2

χχ
∗χ+ µ2

σσ
∗σ + µSS

∗S + λ1

(
φ†1φ1

)2
+ λ2

(
φ†2φ2

)2
+ λ3 (χ

∗χ)2 + λ4 (σ
∗σ)2 + λ5

(
φ†1φ1

)(
φ†2φ2

)
+ λ′5

(
φ†1φ2

)(
φ†2φ1

)
+
(
φ†1φ1

)
[λ6 (χ

∗χ) + λ′6 (σ
∗σ)]

+
(
φ†2φ2

)
[λ7 (χ

∗χ) + λ′7 (σ
∗σ)] + λ8 (χ

∗χ) (σ∗σ) + λ9(S
∗S)2

+ (S∗S)
[
λ10

(
φ†1φ1

)
+ λ11

(
φ†2φ2

)
+ λ12 (χ

∗χ) + λ13 (σ
∗σ)
]

+ λ14

(
χS∗φ†1φ2 + h.c.

)
. (4-28)

where the term proportional to λ14 is necessary to avoid trivial PQ charges for the scalar
sector. At this point it is worth mentioning that the VEV of S singlet is the one that generates
the mass of the right-handed neutrinos.

4.1.4. Potential minimization
Replacing the definition of the scalar fields in (4-28), we obtain the following minimization
conditions:

−µ2
1 = λ1v

2
1 +

1

2

(
λ̄5v

2
2 + λ6v

2
χ + λ10v

2
S + λ14

v2vχvS
v1

)
,

−µ2
2 = λ2v

2
2 +

1

2

(
λ̄5v

2
1 + λ7v

2
χ + λ11v

2
S + λ14

v1vχvS
v2

)
,

−µ2
χ = λ3v

2
χ +

1

2

(
λ6v

2
1 + λ7v

2
2 + λ12v

2
S + λ14

v1v2vS
vχ

)
,

−µ2
S = λ9v

2
S +

1

2

(
λ10v

2
1 + λ11v

2
2 + λ12v

2
χ + λ14

v1v2vχ
vS

)
. (4-29)

with λ̄5 = λ5 + λ
′
5. The scalar mass spectrum is obtained expanding the scalar potential to

second order terms around the VEV given by the above conditions.

4.1.5. Charged scalar sector
The mass matrix for the charged scalar bosons expressed in the

(
φ±1 , φ

±
2

)
basis is

M2
C =

1

4

λ′
5v

2
2 − λ14

v2vχvS
v1

λ
′
5v1v2 + λ14vχvS

∗ λ
′
5v

2
1 − λ14

v1vχvS
v2

 , (4-30)
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which is a Rank 1 matrix, so there are two Goldstone bosons which provides mass to the
W±

µ gauge bosons and two physical massive states corresponding to charged higgs bosons:

m2
G±

W
= 0, (4-31)

m2
H± =

1

2

(
λ

′

5v
2 − λ14

2vχvS
s2β

)
≈ v2

2
λ

′

5 +m2
A0
, (4-32)

that corresponds to two physical charged Higgs.

4.1.6. CP-even scalars (h1, h2, ξχ, ξS)

The CP-even sector has the mass matrix:

M2
R =



λ1v
2
1 −

λ14
4

v2vχvS
v1

λ̄5
2
v1v2 +

λ14
4
vχvS

λ6
2
v1vχ +

λ14
4
v2vS

λ14
4
v2vχ +

λ10
2
v1vS

∗ λ2v
2
2 −

λ14
4

v1vχvS
v2

λ7
2
v2vχ +

λ14
4
v1vS

λ14
4
v1vχ +

λ11
2
v2vS

∗ ∗ λ3v
2
χ −

λ14
4

v1v2vS
vχ

λ14
4
v1v2 +

λ12
2
vχvS

∗ ∗ ∗ λ9v
2
S − λ14

4

v1v2vχ
vS


.

(4-33)
This matrix has Rank M2

R = 4 and we define λ̄5 = λ5+λ
′
5. In order to obtain the eigenvalues,

we use the VEV hierarchy vS � vχ � v to calculate them perturbatively. Through the
scaling of couplings in the scalar potential in eq. (4-28), it is possible to made our model
technically natural generating an explicit decoupling between SM and the neutral singlet on
the PQ-scale. So, requiring the relations:

λ6 ≡ a6
v21
v2χ
, λ7 ≡ a7

v22
v2χ
, λ10 ≡ a10

v21
v2S
, λ11 ≡ a11

v22
v2S
,

λ12 ≡ a12
v2χ
v2S
, λ14 ≡ a14

v2

vχvS
,

is possible to build a natural hierarchy between the PQ and electroweak scale, without
unpleasant fine tuning [83]. Thus, the leading contribution to the M2

R-matrix can be appro-
ximated by the contributions related to the terms & O2:

M 2
R =


λ1v

2
1 −

a14
4

v2v2
v1

λ̄5
2
v1v2 +

a14
4
v2 0 0

λ̄5
2
v1v2 +

a14
4
v2 −a14

4

v2v1
v2

+ λ2v
2
2 0 0

0 0 λ3v
2
χ 0

0 0 0 λ9v
2
S

 , (4-34)
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Then, at LO, the heavier eigenvalues can be written as λ3v2χ and λ9v2S. In order to obtain the
largest eigenvalue of O ∼ v2 it is possible to neglect non-dominant terms from the condition
vχvS � v21, v

2
2, v1v2 in the 2× 2 superior matrix:

MO∼v2|vχvS�v21 ,v
2
2 ,v1v2

= −a14v2
(
cot β −1

1 tan β

)
. (4-35)

The largest eigenvalue can be written as:

m2
H ≈ Tr

[
MO∼v2|vχvS�v21 ,v

2
2 ,v1v2

]
≈ −a14

v2

sβcβ
, (4-36)

and the lightest eigenvalue correspond to:

Det [MO∼v2 ]

Tr
[
MO∼v2|vχvS�v21 ,v

2
2 ,v1v2

] = λ1v
2, (4-37)

where (4-37) can be identified as the SM Higgs, tβ = v1/v2, λ1, λ3, λ9 > 0 and a14 < 0.

4.1.7. Cp-odd scalars (η1, η2, ζχ, ζS)

The neutral pseudo-scalar in the basis (η1, η2, ζχ, ζS) has the mass matrix:

M2
I = −λ14

4



v2vχvS
v1

−vχvS −v2vS v2vχ

−vχvS
v1vχvS
v2

v1vS v1vχ

−v2vS v1vS
v1v2vS
vχ

−v1v2

v2vχ −v1vχ −v1v2
v1v2vχ
vS


, (4-38)

where Rank M2
I = 1, so there are three zero modes, which implies the existence of th-

ree would-be Goldstone bosons associated with the bosons “eaten”by the vector bosons Zµ

and Z ′µ and the other corresponding to the axion related with the breaking of the U(1)PQ

which obtains mass by non-perturbative QCD effects. The massive state is related with the
pseudoscalar boson A0 with mass:

m2
A0 =

λ14
2

(
2vχvS
s2β

+
v2(v2χ + v2S)s2β

2vχvS

)
≈ −a14v

2

s2β
. (4-39)
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4.2. Fermionic sector

The fermionic sector is build taking into account the cancellation of the local anomalies
associated with the interaction term arising from the non-universal U(1)X and suppressed
by the remanent symmetry after the breaking of the U(1)PQ. The best method to implement
the breaking U(1)PQ → Z2 is to break the PQ symmetry by the VEV of the S - singlet. The
singlet associated with the spontaneous breaking contain the axion field:

S =
1√
2
(fa + ρ)eia(x)/fa , (4-40)

where, under the same effective mechanism described in (3-50) and adding the mass term in
(3-144) it is possible to obtain the axion mass value:

m2
a =

mu +md

(mu +md)2
m2

πf
2
π

f 2
a

= 5,70µeV
1012GeV

fa
. (4-41)

This is the reason for take fa ∼ vS . The SSB of the U(1)PQ through the VEV of the
S-singlets generates a condition of periodicity of the effective potential in the variable a/fa
under a proportionality relation ∼ sin

(
NDW

as
2vS

)
. The effective potential is minimized for a

collection of vacua:

〈
aS
2vS

〉
= 0,

π

NDW

, · · · π(NDW − 1)

NDW

∈ [0, π], (4-42)

with NDW associated with the remain Z2 symmetry. The hierarchical groups present in the
fermionic sector induce us to think that the methods for mass acquisition for every group
has to be the same, so our extension promotes the formation of mass textures that restrict
the lagrangian terms to achieve this structure using the quantum numbers X,XPQ, and Z2.
The constraints over the X - quantum number for the fermion sector have the origin in the
behaviour of the scalar sector plus the cancellation of the chiral anomalies. Therefore, the
non - universal X charges must vanish under the interaction with the other group generators
presents in the theory. The restrictions coming from the triangular diagrams analyzed in
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chapter (2) taking into account the U(1)X and the exotic particles contribution reads as:

[SU(3)C ]
2U(1)X → AC =

∑
Q

XQL
−
∑
Q

XQR
, (4-43)

[SU(2)L]
2U(1)X → AL =

∑
`

X`L + 3
∑
Q

XQL
, (4-44)

[U(1)Y ]
2U(1)X → AY 2 =

∑
`,Q

[
Y 2
`L
X`L + 3Y 2

QL
XQL

]
−
∑
`,Q

[
Y 2
`R
XLR

+ 3Y 2
QR
XQR

]
,(4-45)

U(1)Y [U(1)X ]
2 → AY =

∑
`,Q

[
Y`LX

2
`L

+ 3YQL
X2

QL

]
−
∑
`,Q

[
Y`RX

2
`R

+ 3YQR
X2

QR

]
,(4-46)

[U(1)X ]
3 → AX =

∑
`,Q

[
X3

`L
+ 3X3

QL

]
−
∑
`,Q

[
X3

`R
+ 3X3

QR

]
, (4-47)

[Grav]2U(1)X → AG =
∑
`,Q

[X`L + 3XQL
]−
∑
`,Q

[X`R + 3XQR
] . (4-48)

The last set of equations is accomplished by the fermionic spectrum showed in table (4-2),
where the XPQ charge are showed. The values of this quantum number are restricted by the
XPQ charges obtained by the scalar sector and the normalization condition for the S - singlet.
The basis of our model is to restrict the values of the PQ-charges necessary to produce a
Lagrangian that allows obtaining mass matrices with the appropriate texture according to
what is studied in [20] to generate the SM fermionic mass hierarchy.

4.2.1. Quark sector lagrangian
According to the SU(2)L⊗U(1)Y ⊗U(1)X ×U(1)PQ symmetry, the most general lagrangian
for the quark sector that produces suitable fermionic mass textures in order to produce the
SM fermionic hierarchy is [20]:

−LQ = q1L

(
φ̃2h

U
2

)
12
U2
R + q1L

(
φ̃2h

T
2

)
1
TR + q2L(φ̃1h

U
1 )22U

2
R + q2L(φ̃1h

T
1 )2TR

+ q3L(φ̃1h
U
1 )31U

1
R + q3L(φ̃1h

U
1 )33U

3
R + TL

(
χhUχ

)
2
U2
R + T̄L

(
σhUσ

)
1,3
U1,3
R

+ TL
(
χhTχ

)
TR + q1L(φ1h

J
1 )1nJ

n
R + q2L

(
φ2h

J
2

)
2n
Jn
R + q3L

(
φ2h

D
2

)
33
D3

R

+ Jn
L

(
σ∗hDσ

)
n(1,2)

D1,2
R + Jn

L

(
χ∗hJχ

)
nn
Jn
R + h.c., (4-49)

with n = 1, 2 and φ̃1,2 = iσ2φ
∗
1,2 are conjugate fields. The table 4-2 shows the fermionic

content of the model and the notation used for the U(1)PQ charges.
In the last lagrangian we do not have take account terms like q3L

(
φ2h

D
2

)
33
D

(1,2)
R because the

charge for the D1,2
R quarks is generated by another mechanism will be explained later (related

to the term Jn
Lσ
∗D1,2

R ). The quark lagrangian (4-49) plus the scalar potential (4-28) restrict
the values of the PQ charges. Then, in order to calculate the most general set of PQ-charges
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Quarks X PQ-label Leptons X PQ-label
SM Fermionic Isospin Doublets

q1L =

(
U1

D1

)
L

+1/3 xq1L `eL =

(
νe

ee

)
L

0 x`eL

q2L =

(
U2

D2

)
L

0 xq2L `µL =

(
νµ

eµ

)
L

0 x`µL

q3L =

(
U3

D3

)
L

0 xq3L `τL =

(
ντ

eτ

)
L

−1 x`τL

SM Fermionic Isospin Singlets
U1,2,3
R

D1,2,3
R

+2/3

−1/3

xU1,2,3
R

xD1,2,3
R

ee,τR

eµR

−4/3

−1/3

xee,τR

xeµR

Non-SM Quarks Non-SM Leptons

TL
TR

+1/3

+2/3

xTL

xTR

νe,µ,τR

EL

ER

1/3

−1

−2/3

xνe,µ,τR

xEL

xER

J1,2
L 0 xJ1,2

L
EL −2/3 xEL

J1,2
R −1/3 xJ1,2

R
ER −1 xER

Tab. 4-2: Non-universal X quantum number and PQ-labels for SM and non-SM fermions.
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that allow the lagrangian (4-49), it is necessary to calculate the PQ-charges that restrict the
model. Taking into account the restrictions imposed by (4-49), (4-28) and the values of the
scalar PQ-charges (4-27), it is possible to write for the up sector:

−xq1L − x2 + xu2
R
= 0, −xq1L − x2 + xTR

= 0, (4-50a-b)
−xq2L − x1 + xu2

R
= 0, −xq2L − x1 + xTR

= 0, (4-50c-d)
−xq3L − x1 + xu1

R
= 0, −xq3L − x1 + xu3

R
= 0, (4-50e-f)

−xTL
+ xχ + xu2

R
= 0, −xTL

+ xχ + xTR
= 0, (4-50g-h)

−xTL
+ xσ + xu1

R
= 0. (4-50i)

From eqs (4-50a), (4-50b), (4-50c) and (4-50d) it is possible to infer that xu2
R
= xTR

and from
(4-50e),(4-50f) we have xu1

R
= xu3

R
. Leaving the terms xq1L and xq3L free and without loss of

generality we can use xq1L = xq3L . Replacing this conditions in the system we have:

xq1L = −x2 + xu2
R
= −x1 + xu1

R
, (4-51)

xq2L = −x1 + xu2
R
, (4-52)

xTL
= xχ + xu2

R
= xσ + xu1

R
. (4-53)

Solving in function of the free parameters adding the last restrictions and the equation
(4-50f), we can write:

xq2L = −x1 + x2 + xq1L , xu1
R
= xq1L + x1, (4-54)

xu2
R
= xq1L + x2, xu3

R
= xq1L + x1, (4-55)

xTL
= xχ + xq1L + x2, xTR

= xq1L + x2, (4-56)
xσ = xχ + x2 − x1 = xS. (4-57)

Therefore, we get the set of PQ-charges related to the up-sector. The values of the PQ-
charges allow the TLσU1

R-vertex which is used to induce radiative corrections to 1-loop and
generate the up quark mass.

In the same way (4-49) and (4-28) enforce the following restrictions for the down-sector:

−xq1L + x1 + xJa
R
= 0, −xq2L + x2 + xJa

R
= 0, (4-58a-b)

−xq3L + x2 + xD3
R
= 0, −xJa

L
− xχ + xJb

R
= 0, (4-58c-d)

−xJa
L
− xσ + xD1

R
= 0, −xJa

L
− xσ + xD2

R
= 0. (4-58e-f)

where a, b = 1, 2. The JLσDR couplings are necessary to find the masses of the down and
strange quarks at 1-loop level. From eqs. (4-58a),(4-58c), (4-58d) and (4-58e-f) we obtain,
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respectively:

xJ1
R
= xJ2

R
= xq1L − x1, (4-59)

xD3
R
= x2 − xq3L , (4-60)

xJ1
L
= xJ2

L
= xJa

R
− xχ = xq1L − x1 − xχ, (4-61)

xD1
R
= xD2

R
= −2x1 + x2 + 2xq1L − xq3L , (4-62)

where we use the value of the xσ charge given in (4-57).

Using the fact that the PQ-current is axial, we can put xq1L = xq3L = 0 without loss of
generality. Therefore, we can obtain the whole set of the values of the PQ-charges in the
fermionic sector as is shown in table (4-3).

PQ-label PQ-charge PQ-label PQ-charge
SM Fermionic Isospin Doublets

xq1L 0 x`eL −xS
2

− x2

xq2L 1 x`µL −xS
2

− x2

xq3L 0 x`τL −x1 +
xS
2

+ xχ

SM Fermionic Isospin Singlets
xU1,3

R

xU2
R

xD1,2
R

xD3
R

x1
x2

1− x1
−x2

xee,τR

xeµR

−x1 − x2 + xχ +
xS
2

−xS
2

− 2x2

Non-SM Quarks Non-SM Leptons

xTL

xTR

xχ + x2
x2

xνe,µ,τR

xEL

xER

−xS

2

−x1 − x2 + xχ −
xS
2

−x1 − x2 −
xS
2

xJ1,2
L

−x1 − xχ xEL −2x2 +
xS
2

xJ1,2
R

−x1 xER −2x2 + xχ +
xS
2

Tab. 4-3: Fermionic PQ-charge assignement according to the proposed lagrangian densities
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4.2.2. Leptonic sector lagrangian
The most general lagrangian for the charged plus neutral leptonic sector that produces
suitable zero textures for the mass matrices following the structure of ref. [20] is:

−LY,E = g2eeµ`
e
Lφ2e

µ
R + g2eµµ`

µ
Lφ2e

µ
R + g2eτe`

τ
Lφ2e

e
R + g2eττ`

τ
Lφ2e

τ
R + g1Ee`

e
Lφ1ER

+ g1Eµ`
µ
Lφ1ER + hσeE ELσ

∗eeR + hσµE ELσeµR + hστE ELσ
∗eτR + hχEELχER

+ hχEELχ∗ER + hνi2e`
e
Lφ̃2ν

i
R + hνi2µ`

µ
Lφ̃2ν

i
R + hνjSiν

i C
R SνjR, (4-63)

with i, j = e, µ, τ . The main difference with the cited reference is that we do not introduce the
Majorana fields N e,µ,τ

R and νe,µ,τR get masses through the VEV of the S scalar field at PQ scale.

For the charged leptonic sector, the restrictions followed from the Yukawa lagrangians asso-
ciated with the PQ-charges are:

−x`eL + x2 + xeµR = 0, −x`τL + x2 + xeeR = 0, −x`eL + x1 + xER
= 0, (4-64a-c)

−x`µL + x2 + xeµR = 0, −x`τL + x2 + xeτR = 0, −x`µL + x1 + xER
= 0, (4-64d-f)

−xEL
− xσ + xeeR = 0, −xEL + xσ + xeµR = 0, −xEL

+ xχ + xER
= 0, (4-64g-i)

−xEL
− xσ + xeτR = 0, −xEL − xχ + xER = 0. (4-64j-k)

In this case we take x`µL , x`eL as free parameters. Thus, the other additional charges will
be expressed in function of these ones. From eqs. (4-64a) and (4-64d) it is possible to see
that x`µL = x`eL and from eqs (4-64b) and (4-64e) we obtain xeeR = xeτR . In table (4-3), we
summarize the PQ charges for charged leptons.

In order to give masses to neutrinos, the restrictions over the PQ-charges are:

−x`eL − x2 + xνeR = 0, −x`µL − x2 + xνeR = 0, (4-65a-b)
−x`eL − x2 + xνµR = 0, −x`µL − x2 + xνµR = 0, (4-65c-d)
−x`eL − x2 + xντR = 0, −x`µL − x2 + xντR = 0, (4-65e-f)
xνiR + xS + xνjR

= 0. (4-65g)

From eqs. (4-65a), (4-65c) and (4-65d) we conclude easily that xνeR = xνµR = xντR . The eqs.
(4-65b), (4-65d) and (4-65f) are equivalents because x`eL = x`µL . Therefore:

xνiR = x2 + x`µL , i = e, µ, τ, (4-66)

xνiR = −xS
2
, (4-67)

x`µL = x`eL = xνiR − x2 = −xS
2

− x2. (4-68)

Finally, a set of PQ-charges that reproduce the same Lagrangian densities given in [20] due
to the Z2-symmetry are obtained as shown in Table 4-3.
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4.3. Mass matrices

4.3.1. Quark mass matrices
The restrictions imposed by the scalar potential (4-28) theX-charges and the U(1)PQ-charges,
allow us to build after the symmetry breaking the following mass matrices with zero struc-
tures:

MU =
1√
2

 0 (hU2 )12v2 0

0 (hU1 )22v1 0

(hU1 )31v1 0 (hU1 )33v1

 , MUT =
1√
2

(hT2 )1v2
(hT1 )2v1

0

 ,

MTU =
vχ√
2

(
0 (hUχ )2 0

)
, MT =

vχ√
2
(hTχ)1. (4-69)

and the down sector is structured like:

MD =

0 0 0

0 0 0

0 0 (hD2 )33v2

 , MDJ =
1√
2

(hJ1 )
1
11v1 (hJ1 )

1
12v1

(hJ2 )
2
21v2 (hJ2 )

2
22v2

0 0

 , (4-70)

MJ =
vχ√
2

(
(hJχ)

χ
11 (hJχ)

χ
12

(hJχ)
χ
21 (hJχ)

χ
22

)
, MDJ = 0. (4-71)

Then, we obtain the following extended matrices

MU =

(
MU MUT

MTU MT

)
=

1√
2


0 (hU2 )12v2 0 | (hT2 )1v2
0 (hU1 )22v1 0 | (hT1 )2v1

(hU1 )31v1 0 (hU1 )33v1 | 0

− − − − −
0 (hUχ )2vχ 0 | hTχvχ

 (4-72)

MD =

(
MD MDJ

MJD MJ

)
,=

1√
2



0 0 0 | (hJ1 )11v1 (hJ1 )12v1
0 0 0 | (hJ2 )21v2 (hJ2 )22v2
0 0 (hD2 )33v2 | 0 0

− − − − − −
0 0 0 | (hJχ)11vχ 0

0 0 0 | 0 (hJχ)22vχ


. (4-73)

4.3.2. Up sector
Considering the extended matrix structure MU , we can calculate the symmetrical quadratic
form as M2

U = MU(MU)
T :

M2
U =

(
A B

BT C

)
, (4-74)
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where

A =
1

2

av22 bv1v2 0

∗ cv21 0

∗ ∗ dv21

 , (4-75)

B =
1

2

 ev2vχ
mv1vχ

0

 , C = n
1

2
v2χ. (4-76)

Thus, as each block have the order A ∼ v21,2, B ∼ v1,2vχ and C ∼ v2χ it is possible to use a
see-saw mechanism to obtain the block diagonalized matrix:

m2
U = V T

U M
2
UVU =

(
m2

u 0

0 m2
T

)
, (4-77)

with m2
U ≈ A − BC−1BT and m2

T ≈ D. Because C is only a number, we obtain the first
mass eigenvalue from the exotic heavy T quark:

m2
T ≈ 1

2
nv2χ. (4-78)

In order to obtain the other eigenvalues, we see that the m2
U is a matrix with the form:

m2
U =

1

2

h21v22 h1h2v1v2 0

∗ h22v
2
1 0

∗ ∗ dv21

 . (4-79)

The (m2
U)33 component is decoupled, so we can assume that corresponds to the mass of the

top quark:
m2

t =
1

2
dv21, (4-80)

leaving a 2× 2 matrix

m2
UC =

1

2

(
h21v

2
2 h1h2v1v2

∗ h22v
2
1

)
, (4-81)

which has null determinant, associated to the fact that in this model mu = 0. The only
eigenvalue correspond to the mass of the charm quark is proportional to the trace of the
m2

UC matrix:
m2

c ≈
1

2
h22v

2
1, (4-82)

where we choose v1 � v2 to generate the correct hierarchy.

In order to generate mass for the lightest quark is necessary to consider radiative 1-loop
correction as indicate the first diagram in the fig. (4-1).



70 4 GSM ⊗ U(1)X × U(1)PQ model

σ φ2

T̄L TR Ū 1
L

〈χ〉

T̄LU 1
R T̄L

φ2φ2φ2φ2φ2

J̄n
L D̄

1,2
L

σ

(a) (b)

〈χ〉

〈σ〉 〈φ2〉

φ1, (φ2)

〈σ〉 〈φ1〉 , (〈φ2〉)

D
1,(2)
R

Jn
R

Fig. 4-1: Radiative corrections for generate mass to the (a) up and (b) down sector

The 1- loop contribution obey the analytical expression given by:

Σ
(u)
11 =

−1

16π2

λ
′
7 〈σ〉 v2

(
hUσ
)
1

(
hT2
)
1√

2MT

C0

(
M2

MT

,
Mσ

MT

)
, (4-83)

where:

C0 (x1, x2) =
1

(1− x21) (1− x22) (x
2
1 − x22)

[
x21x

2
2 ln

(
x21
x22

)
− x21 lnx

2
1 + x22 lnx

2
2

]
, (4-84)

adding new entries to the (m2
U)11,13,31 components. The 1 − 3 and its symmetrical partner

component only add corrections to the top-mass quark, but the correction is really small
compared with the obtained value, so we neglect the correction. This leave us only with
corrections in the 11 component, leading to a net contribution from (4-83) for the mass of
the up quark. Going back to the original Lagrangian variables and summarizing:

m2
u ∼ Σ

(u)
11 , m2

c ≈
1

2
v21

(hU1 )2h
T
χ − (hT2 )1(h

U
χ )2

((hUχ )2)
2 + (hTχ)

2
,

m2
t ≈

1

2
v21
[
(hU1 )31)

2 + ((hU1 )33)
2
]
, m2

T ≈ 1

2
v2χ
[
((hUχ )2)

2 + (hTχ)
2
]
. (4-85)

4.3.3. Down sector
Under the same approach for the up- sector, we obtain a quadratic extended matrix MDM

†
D

with similar structure to the matrix obtained in the up-sector:

M2
D =

(
A B

BT C

)
, (4-86)

Then, after block diagonalization making

m2
D ≈ A−BC−1BT . (4-87)
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We can write M2
D as:

M2
D =

(
m2

D 0

0 m2
J

)
. (4-88)

Thus, there are two uncoupled components that corresponds to the mass of the two heavy
exotic quarks J1,2:

m2
J1 =

1

2
v2χ
[
(hJχ)11

]2
, m2

J2 ==
1

2
v2χ
[
(hJχ)22

]2
. (4-89)

The matrix m2
D only has one eigenvalue corresponding to the bottom quark:

m2
b =

1

2

[
(hD2 )33

]2
v22. (4-90)

Then, there are two massless particles corresponding to the lightest d and s quarks. In order
to assign finite values to this masses, we again use a radiative 1-loop correction as the shown
in the diagram (b) of the figure (4-1). This diagram generates non-null entries for the m2

D

matrix through the interaction with the σ-singlet. The self-energies generated at one-loop
for down and strange quarks have the form:

Σ
(d)
1a =

−1

16π2

∑
n=1,2

λ
′
6 〈σ〉 v1

(
hJ1
)
1n

(
hDσ
)
na√

2MJn

C0

(
M1

MJn

,
Mσ

MJn

)
, (4-91)

Σ
(d)
2a =

−1

16π2

∑
n=1,2

λ
′
7 〈σ〉 v2

(
hJ2
)
2n

(
hDσ
)
na√

2MJn

C0

(
M2

MJn

,
Mσ

MJn

)
, (4-92)

with a = 1, 2. Thus, we can summarize the down quark masses as:

md ∼ Σ
(d)
1a , ms ∼ Σ

(d)
2a , (4-93)

mb =
1√
2
(hD2 )33v2, mi

J =
1√
2
(hJχ)iivχ. (4-94)

4.3.4. Charged leptonic sector

After the spontaneous symmetry breaking, the lagrangian (4-63) allow to build the following
extended mass matrix:

MLC =



0 g2eeµ 0 | g1Ee 0

0 g2eµµ 0 | g1Eµ 0

g2eτe 0 g2eττ | 0 0

− − − − − −
0 0 0 | hχE 0

0 0 0 | 0 hχE


. (4-95)
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The squared mass matrix calculated as MLCM†
LC generates a E term decoupled. Then we

can separate the terms in the flavor basis E = (ee, eµ, eτ , E) as:

− LY,E = ELMEER +
H2vχ√

2
ELER + h.c. (4-96)

The see saw mechanism produces one massless lepton. Thus, it is necessary again use radia-
tive 1-loop correction taking in account the interactions with the σ-singlet as showed in the
figure (4-2) which add a contribution:

∆ME =
v2√
2


Σ11 0 Σ13 | 0

Σ12 0 Σ23 | 0

0 0 0 | 0

− − − − −
0 0 0 | 0

 . (4-97)

After the corresponding rotations, it is possible to diagonalize the squared mass matrix
MEM†E to obtain the following eigenvalues:

me ≈ Σ11, mµ =
v2√
2

[(
g2eeµ
)2

+
(
g2eµµ
)2]1/2

,

mτ =
v2√
2

[(
g2eτe
)2

+
(
g2eττ
)2]1/2

, mE =
(
hχE

) vχ√
2
, (4-98)

mE =
(
hχE
) vχ√

2
.

where the self-energy is given by:

Σ
(e)
11 = − 1

16π2

λ
′
6 〈σ〉 v1(g1Ee)(h

σe
E )

ME

C0

(
M1

ME

,
Mσ

ME

)
. (4-99)

4.3.5. Neutrino sector
Due to the energy scale of the energy break of the U(1)PQ, the mass of the right neutrinos
is in the order of vS, so it is possible to find the mass of the active neutrinos through a
typical see-saw mechanism. The mass lagrangian for the neutral leptonic sector in the basis
N =

(
νe,µ,τL , (νe,µ,τR )C

)T
has the form:

− L = hνi2e
¯̀e
Lφ̃2ν

i
R + hνi2µ

¯̀µ
Lφ̃2ν

i
R + hijS ν̄

Ci
R SνjR, (4-100)

where i, j = e, µ, τ . After the SSB, the mass lagrangian has the structure:

− Lmass = hνi2e
v2√
2
ν̄eLν

i
R + hνi2µ

v2√
2
ν̄µLν

i
R + hijS

vS√
2
ν̄Ci
L νjR. (4-101)
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enR

σ

ĒL ER ēkL

〈χ〉

〈σ〉 〈φ1〉

φ1

Fig. 4-2: Radiative 1-loop correction for charged leptons

Without loss of generality, we consider hijS a diagonal matrix, where:

hijS vS√
2

=M iδji , (4-102)

is the right-handed neutrino mass. Thus, in the
(
νL, ν

C
R

)
basis the mass matrix can be written

down as:

Mν =

(
0 mT

D

mD MM

)
, (4-103)

where

mD =
v2√
2

hνe2e hνµ2e hντ2e
hνe2µ hνµ2µ hντ2µ
0 0 0

 , (4-104)

MM =
vS√
2

h1 0 0

0 h2 0

0 0 h3

 . (4-105)

Then, under the see-saw mechanism, the light masses are of the form mν = MT
DMSMD ∼

O
(

v22
vS

)
. The diagonal of Mν determine the mass eigenvalues where the light states has

eigenvalue 0 and the squared mass differences ∆m2
12,∆m

2
23 depend on the Yukawa couplings.

By diagonalizing Mν , the mixing θ-angles that allows diagonalize the PMNS matrix are
obtained. Using experimental data is possible to find a parameter region consistent with the
neutrino oscillations. Performing the see-saw mechanism, the active neutrino mass matrix is
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given by:

mlight ≈ −mT
DM

−1
M mD

≈ v22√
2h1vS

 (hνe2e)
2 + (hνe2µ)

2ρ ∗ ∗
hνe2eh

νµ
2e + hνe2µh

νµ
2µρ (hνµ2e )

2 + (hνµ2µ)
2ρ ∗

hνe2eh
ντ
2e + hνe2µh

ντ
2µρ hνµ2e + hντ2eρ (hντ2e )

2 + (hντ2µ)
2 + (hντ2µ)

2ρ

 .

(4-106)

In the reference [20], light neutrinos obtained mass through inverse see-saw mechanism and
in this case through see-saw type I mechanism. It is possible to identify the parameters of
the two models (inverse with type I) in the following way:

µNv
2
2

hNχ1v2χ
→ v22√

2h1vS
≈ m2

τ

M1

. (4-107)

Assuming that v2 ≈ mτ and vS ≈ 1010GeV , then light neutrinos will have a mass of the
order of eV and the squared mass differences will be fixed by the hνi2e(µ) Yukawa couplings.
We define the ρ-parameter as:

ρ =
M1

M2

=
h1
h2
, (4-108)

where we assume the hierarchycal behaviour M1 < M2 < M3, so the light-neutrino masses
does not depend on the M3 component. Taking into account this labelling, the neutrino
oscillation treatment is reduced to that already studied in [?]. Thus, in order to make the
model consistent with the neutrino oscillation data, the values of the Yukawa parameters
are restricted to the same region. In particular for NO, we have:

ρ = 0,5, (4-109)

and, for IO:
ρ = 0,625. (4-110)

The tables (4) and (5) in [20] show the NO and IO respectively, where is obtained assuming
that |h2| ≈ 0,1 and the right-handed neutrinos obey the mass hierarchy:

M1 ≈ 1010GeV = 0,5M2. (4-111)



5 Conclusions

The standard particle model presents some problems (fermion hierarchy, strong CP -problem,
massless neutrino, etc.) that require the use of extended scenarios. During the develop of
this work we have reviewed the concepts associated with the origin of the chiral anomaly, its
emergence and subsequent development in the frames of abelian and non-abelian theories in
order to explain the origin of the strong CP -problem and the origin of the axion. The need
to use BSM theories was evident due to the impossibility of implementing an additional PQ
type symmetry in the SM. We present a model BSM with an additional U(1)X ⊗ U(1)PQ

symmetry in order to solve the three mentioned problems.

The U(1)X was built in such a way that the chiral anomalies was cancelled, guaranteeing the
renormalizability of the theory. This model contains an extended scalar sector including 2
Higgs doublets φ1,2 with VEV on electroweak scale and 3 singlets χ, S, σ with VEV in order
TeV, 109GeV, 0 respectively. The singlet χ allows the SSB of the additional U(1)X symmetry
giving mass to the new Z ′µ-boson. The S-singlet breaks the U(1)PQ symmetry generating
a pseudo-Goldstone boson that is identified with the axion that obtain mass under non-
perturbative methods . In order to forbid the interaction of the axion with the gauge bosons,
a ortogonalization condition is imposed to guarantee that the phases eaten by this sector
are neutral PQ charged . The scalar potential that is restricted by the judicious assignment
of PQ loads allows us to find the mass spectrum analytically.

The fermionic sector was constructed as the usual SM adding exotic species that generate
the complete cancellation of the chiral anomalies. The exotic set get heavy because the
interactions with the χ-singlet generating the correct mass matrix textures for obtain three
different energy scales: First, after SSB of the U(1)X symmetry, we obtain heavy masses to
the exotic quarks Jn and T , with MJn ≈ MT ≈ vχ. At tree level,the masses of the c, t and
b quarks was obtained, with Mc,t,u ≈ v1,2. And using radiative corrections, we obtain masses
for the u, d and s quarks, with Mu,d,s ≈ v21,2/vχ. For the leptonic sector, we also obtain the
same hierarchical structure, where the extra leptons mE,mE ≈ vχ, mµ,mτ ≈ v and the me

was obtained through loop corrections suppressed as v21,2/vχ . The neutrino interact with the
heavy S, so was possible to use a see-saw mechanism, generating masses on the order v2/vS.
Thus, adding this two new symmetries to the SM lagrangian and a set of exotic particles, it
was possible to solve three of the most important problems of fine tuning of the SM. In the
case of active neutrinos, we changed the original inverse see-saw mechanism of the model
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by a see-saw type I mechanism, eliminating the Majorana fields N e,µ,τ
R . The neutrino νe,µ,τR

acquires mass through VEV of the scalar field S at the PQ scale i.e. 〈S〉 ∼ 1010GeV. The
mass structure of active neutrinos is the same as the presented in [20] if we identify:

µN

hNχ1v2χ
→ 1√

2h1vS
. (5-1)

Therefore, the regions allowed for the Yukawa couplings hνj2e, h
νj
2µ in the NO and IO orderings

is the same as that obtained in Tables (4) and (5) of ref. [20], respectively.

As possible extended scenarios to continue developing this type of models, this work did not
analyze the problem of the formation of domain walls. As we mention, the Z2 symmetry
is related to the formation of a collection of vacua, that could generate an interpolation
between two different regions associated with different NDW . This kind of field configuration
is called a domain wall. Thus, it is necessary to implement several restrictions in order to
solve this kind of non-trivial domains. There are possible solutions to this problem [77], that
could contribute to the necessary restrictions to be able to generate masses at tree level
in the complete model, besides being in complete agreement with cosmological restrictions,
allowing a greater predictive power of the model.
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