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In this work, the gravitational radiation emitted from a compact binary system is analyzed in
the context of general relativity and f(R) gravity based on linearized theory. Besides the two
standard polarizations of gravitational waves, an additional massive scalar mode is present in
f(R). At the Newtonian limit, it implies a Yukawa-like addition to the Newtonian potential.
This kind of potential interaction has been studied in other scenarios. Here, the quadrupole
radiation for the massless polarizations of a binary source in circular motion under such
potential is determined. The back-reaction effect due to the emission of gravitational waves
is discussed at linear and second order in T = 1/A\; where ), is the Compton wavelength of
the graviton. It is expected that in future measurements, slightly changes in the frequency
waveform pattern of those systems may be put better constraints on the space parameters of
alternative theories of gravity such as f(R).
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Chapter 1

Introduction

Einstein special theory of relativity has revolutionized the understanding of space and time. As
inseparable concepts, events takes place in a four dimensional entity: the spacetime. General
relativity states that it becomes participant in the dynamics when including gravity as a
geometrical structure with curvature. The Einstein field equations shows how matter and
energy distribution characterize the spacetime properties that can be noticed by the motion
of particles. In order to be compatible with the special theory, general relativity (GR) must
be causal: the information about the changes in a gravitational source must propagate no
faster than the speed of light, ¢ [1]. This leads to the idea of gravitational radiation. The first
theoretical intention to follow this idea was proposed by Einstein in 1916 and the strategy
was based on the framework of linearized theory [2| . He considered that the gravitational
field has the form of a slightly perturbed flat spacetime, g,, = 7., + €hy,, with ¢ < 1. This
assumption enables Einstein to derive a wave equation for the perturbation h,, by inserting
g in the field equations and retaining only the linear terms in . Since in vacuum the solution
are plane waves traveling at the speed of light, Einstein called this features of the spacetime
gravitational waves (GWs). He also showed that these waves carry energy and are radiated
by accelerated matter sources in a similar way as electromagnetic waves are produced due to
the accelerate motion of charges. However, a fundamental problem posed initially by himself
and later by others, was to proof their existence in the full theory of GR. After all, the theory
is essentially nonlinear and must describe physical phenomena without any approximations.
This issue bothered Einstein all his life and in fact he ended up believing against the real
existence of GWs. Actually, the first attempt to define a plane GW in the full theory was due
to Einstein and Rosen. They believed that they had found an exact solution of the vacuum
field equations representing a plane GW. They argued that their solution had some unphysical
singularities and so plane waves in linearized theory are merely a mathematical trick that does
not represent the physical reality [3]. The Einstein-Rosen paper was refereed by Howard P.
Robertson, who realized that the solution indeed was not coordinate independent. Only until
the subsequent developments of Bondi, Pirani and Roberston a well defined GW in the full
theory was in the right direction to be discovered. Their works gave an important advance
mainly in the concept of a plane wave in the whole theory, its solution to the field equations
and also their energy [4]. In spite of this progress, other questions remained unsolved, e.g.
the extension to nonplanar front waves and the existence of radiative solutions from bounded
sources. Andrzej Trautman was the person who deal with these subjects and established
the definition of a GW in the full Einstein theory. Its general idea was to impose boundary
conditions at infinity as a generalization of Sommerfled’s radiation conditions [5]. Along with
I. Robinson, they found a large class of exact solutions satisfying Trautman’s conditions which
can be interpreted as coming from bounded sources [6]. Additionally, further contributions
began to emerge over time to give a robust theoretical approach to GWs!.

One might think that if radiative metric solutions of the full Einstein field equations exist,
linearized theory should be valid in the weak field regime at very large distances from the

LA very detailed and documented review about the history of gravitational waves can be found in [7].
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sources [8]. Then, the approximate and the complete solution of the Einstein equations must
coincide in this limit [4]. For instance, the quadrupole formula first derived by Einstein within
the linearized gravity, trigger a very long discussion on its validity in this sense (among other
issues). It states that the leading contribution of the energy loss due to the emission of
GWs from a system, depends on the third time derivative of the quadrupole moment of the
source. Furthermore, it tells that this waves are very difficult to produce and high masses
moving at relativistic speeds are needed [1|. This means that the best candidates to generate
them are compact binary systems, where the time variation of the quadrupole moment is
a non-vanishing quantity. Unfortunately, linearized theory no longer stands for self-gravity
systems such as binaries and that was first pointed out by Eddington®. However, with the
advent of Landau & Lifshitz reformulation of the full Einstein equations in the 1980s, some
close similarities with linearized theory began to arise. At the weak field limit and at spatial
infinity, both theories agree in their equations. For self-gravity systems, this reformulation
allows to extend the applicability of linearized theory. On the other hand, although the
Landau & Lifshitz equations do not require any approximation method, so far there is no
closed and exact analytical solution of the two-body problem in GR. Other approximation
methods to face this problem like the post-Minkowskian and post-Newtonian formalisms are
founded in the basis of the better well-posed arguments of the Landau & Lifshitz scheme [9].
Indeed, the quadrupole formula is deduced more formally by iterating two times the relaxed
Einstein field equations in the post-Newtonian approach. From the practical point of view,
only if there is such a well theoretical support on GWs is worthwhile to expend effort, time
and money to detect them. If not, linearized theory by itself may be thought as a misleading
approach to GWs even though it has its similarities with the full theory at the weak field
limit. Notwithstanding, the first measurement of energy loss due to GWs emission in the
1980s, showed an indirect proof of the quadrupole formula by detecting the orbit decay of the
binary pulsar of Hulse-Taylor PSR B1913+16 [10]. This was a great triumph of linearized
theory because it was observed a rate of change in the orbital period which matches with the
theoretical predictions done by Peters and Mathews in 1963, based on linear approximations
and Keplerian orbits [11]. An interesting feature of the period formula is that it may be derived
also with the post-Newtonian formalism [8]. Perhaps, this is the reason why linearized theory
is still being used as a first description of GWs, because it behaves in agreement with many
theoretical aspects at the weak field limit but also with experiments. Nowadays, the recent
waves detected by LIGO (Laser Interferometer Gravitational-Wave Observatory) were so weak
that they were treated as GWs in linearized theory [4]3.

The theory of GR is not the only theory of gravity. Just a few years after Einstein equations
were published, new modifications to this theory started to be considered by including higher-
order invariant quantities in the Einstein-Hilbert action [17]. Although at that epoch, such
alternative theories have been studied for scientific curiosity or to understand the incoming
vision of gravity as geometry, the motivation on these ideas rapidly began to emerge. In the
1960s, the first attempts to construct a quantized theory of gravity suggested that additional
high-order terms corrections would allow the action to be renormalizable. More recently,
the breakthrough of observational cosmology over the years has increased the incentive of
modified theories of gravity. Various applications to recent problems such as inflation, dark
matter, dark energy, cosmological perturbations, and also GWs, indicate that this models are
worth alternatives that may be tested with experiments. Even if modifying GR is the way
to go, this it is not an easy challenge. In particular, f(R) gravity consists in not assume
the lagrangian density of the action to be R as in GR but rather a function f(R). For each
particular function f(R) a different model of gravity is obtained. Naturally, when f(R) = R,

2This will be explained in Chapter 6 with more detail.
3For more information about the recent detections of GWs see [12-16] .
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then GR is recovered. For this family of theories and for others like scalar-tensor, scalar-tensor
vector, Brans-Dicke, a natural Yukawa-like correction to the Newtonian potential arises at the
Newtonian limit. Following this direction, some authors have been working on this Yukawa
gravitational potential in other scenarios. Namely, the precession of bodies in the Solar System,
the orbit of the S2 around Sgr A* at the Galactic Center, anomalistic period of celestial bodies,
satellite dynamics, periastron shift, fifth force, GWs and so on [18-27].

This dissertation is based on the Yukawa-like potential applied to the gravitational radia-
tion of a binary system in linearized f(R) gravity [27|. The first part of the work is dedicated
to the fundamentals of GWs in GR linearized theory. As was mentioned previously, this is
a natural framework to study GWs in agreement with not only some aspects of the weak
field limit of GR, but also with the experiments. The mathematical formality of linearized
theory befall over the more deep understanding of perturbation theory in GR, which a brief
introduction is given at the beginning of Chapter 2. Then, in order to study GWs at the
weak field limit, perturbation theory is applied to flat Minkowski spacetime. The result is
a linear wave equation for a perturbed quantity h,,. The rest of this chapter deals with a
discussion about gauge constraints and physical radiative degrees of freedom. In Chapter 3,
the interaction of GWs with test masses is reviewed in order to see the effects of the two
independent GW polarizations. This would be a preamble to define the energy-momentum
tensor of GWs in Chapter 4. The generation of GWs in linearized theory is cover in Chapter
5, where some subtleties and assumptions about the sources and multipolar expansion tech-
niques are explained. The extension of this developments to bound systems as is the case for
a Newtonian compact binary is considered in Chapter 6. In Chapter 7, a discussion about
GWs in linearized f(R) gravity is presented in analogy to linearized GR. At the Newtonian
limit, the Yukawa potential is obtained to be included in the interaction of a binary system
at Chapter 8. Finally, some conclusions are exhibited in Chapter 9.






Chapter 2

Gravitational Waves in Linearized
Theory

General relativity is the actual theory of gravity and is described essentially by the Einstein’s
Field Equations (EFE). These can be obtained from a variational principle with a suitable
action S[g] [28]. The stationary condition 05 = 0, where the variation is taken with respect
to the metric g, gives rise to,

1 8rG
RNV - §Rg’“’ = 7TMV . (21)

To solve the EFE equations is a very hard task. Mathematically, is an impressive feat that
people have found a lot of solutions [29]. Physically, just a few of them are useful such as
the Schwarzschild, Kerr, FLRW, Vaidya, Weyl, etc. However, when natural phenomena is
very hard to described based on these idealized solutions, a different approach is required.
Perturbation theory is a useful technique to investigate realistic systems that are similar to
the exact solutions. This section provides a very brief introduction to the general relativistic
perturbation theory that will be of great significance for further developments.

2.1 Perturbation theory

Suppose one wish to know a slightly different solution of the Einstein’s Field Equations (EFE)
from a known one. This could be the case, for example, if one considers a system in which a
small gravitational radiation is incident on a Schwarzschild black hole or a tiny deformation
of it. In these cases, the effects could be viewed as perturbations of the original Schwarzschild
spacetime. Then, it makes sense to find an approximate solution by postulating that the
metric could be decomposed as

- 1 -
g\ 1) = Gu(0,2) + A (@) + AR (x) + - (2:2)
where g (M)
i) — Z 9\ T) 2.3
i N |, (2:3)

and g, (0, z) is the known solution called the background metric. The expansion parameter
A takes values from [0, €] where € < 1. The equation (2.2) defines a one-parameter family of
metrics [30]. Is usual to rewrite this equation in a more compact form as

1 ~
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and so each of h,(ﬁ,) gives the order of the perturbed metric. With this decomposition, the

Einstein tensor can be computed until the desired order of accuracy. Furthermore, if one
assumed for simplicity that the background metric satisfies the vacuum EFE, the problem
can be solved by expanding the energy-momentum tensor in the right hand side of (2.1) in
a similar way, setting A = € and solving order by order in e. However, the equation (2.2) or
(2.4) has a complication. The perturbed quantities must contain equal physical information
under general coordinate transformations of the form

ana:,/y,
9" h=o

ot ) =2 b @A+ N e = (25)

Or more formally, the solution needs to satisfy the diffeomorphism invariance of general rel-
ativity. To overcome this issue, a geometrical point of view of the perturbed solution is
discussed.

Imagine there are two manifolds that represent equivalent spacetimes by means of a diffeo-
morphism ¢. In each of the manifolds there are different tensorial fields, in one of them there
is the background metric g, (0, z) and in the other the full metric g, (A, z) for a fixed value of
A, e.g. A = €. They are often called the background spacetime My and the physical spacetime
Mp, accordingly [31]. Actually these are 4D submanifolds embedded in a 5D manifold M
(with boundaries) that contains the entire one-parameter family of spacetimes for A € [0, €].
Therefore, the whole 5D manifold may be thought as a foliation of spacetimes of different
values of A for \ € [0, €] as shown in figure 2.1. To compare points between the physical and
the background spacetimes, an identification map is required. This could be done through the
integral curves defined by a vector field u = 0. This vector field, called the generator of the
diffeomorphism ¢) belongs to the 5D manifold and it’s always transverse to each spacetime
hypersurface. Therefore, is possible to do comparisons in Mp(0) between tensors that lie in
Mp(A) via the integral curves. The perturbation of a tensor Q(0,x) in Mg is then defined
as

G(a) = 2907

O\ = Lu@

(2.6)

A=0 A=0

This quantity could be for example the Riemann tensor or the metric itself. There is nothing
to prevent the definition of the perturbation tensor in terms of another identification map Wy
associated to a different integral curves that are generated by other vector field v. Then, the
difference between two equivalent perturbed tensors through different identification maps are
related by

Qo] — QY] = LuQ —~ LvQ

= [’[u—v}Q
= LeQ (2.7)
where & := [u — v] - is tangent to Mp. In particular if h,, = h,,[¢] and I{’W = hyu[¥],

then the difference between the metric perturbation tensors is

o

uy h/,uu = ['ﬁg/u/
= 2V(,.6,) - (2.8)



2.2. Expansion around flat spacetime 7

Is important to mention the meanig of the lie derivative in the definition (2.6). It compares a
tensor in a point p(0) of Mp. Thus, the perturbed metric fLW is just the difference between the
background metric g,,, and the physical metric g, after a pullback of the latter through the
integral curves. Note that only if the gravitational fields in Mp are weak with respect to the
background, the components of the perturbation tensor would be small. If one restrict only
to those particular diffeomorphisms, then the physical metric g, would be slighlty different
of g when the coordinates of the background are fixed!. The previous discussion is the
geometrical view on what is called gauge transformations of perturbation theory.

Mp(e)

Figure 2.1: Schematic foliation of the spacetimes submanifolds in a 5D manifold M. The vector fields
u and v that defines de integral curves are within M. A point p(A) on Mp(A) is identified with a point
p(0) on Mg(0) if they lie in the same integral curve.

2.2 Expansion around flat spacetime

Consider the metric decomposition in (2.4) where the background is the flat metric. The first
approach to gravitational waves is to consider the spacetime in a very large region, as a very
slightly perturbation of the form

guu(x) = Nuv + hul/($) s (29)

where hy,(z) = h,(},,)(a:) = Eiz,(lly)(a:) with ¢ <« 1 and 7, = diag(—1,1,1,1). This kind of
linear perturbation in € around flat spacetime is the basis of linearized theory. By fixing
the background coordinates one breaks the invariance of general relativity under coordinate
transformations [32]. Moreover, the condition € < 1 requires the gravitational field to be
weak and the coordinate system to be approximately Lorentzian[1|. This assumption allows
us to discard all higher order quantities that are not linear in €. As a result, indices are raised
and lowered with 7,,. At linear order, the inverse metric g" is

g’ =t — b (2.10)
with h# = phonvh hag. This can be proven from
9" ga = 0, (2.11)

!Consider for example the Minkowski background with Nuv = diag(—1,1,1,1). The physical perturbed
metric deviates very little from the original 7., in those Lorentzian coordinates.



8 Chapter 2. Gravitational Waves in Linearized Theory

by using the equations (2.9) and (2.10) in (2.11) i.e.,
¢ gn = (0 = 1) (s + ho )
= 1" + 0 — WP — By,
S Ry Yy iy Y3
=", + O(e?)
~ ot . (2.12)

In the sense of special relativity, linearized theory is invariant under Lorentz transformations.
This means that if the spacetime coordinates changes as

= AM ¥ (2.13)
the metric in (2.9) transforms into
G (@) = AN gap()
= AN ap + hap(@)]

= N + NSNS heg (2.14)

where the flat metric satisfy 7, = A“aAl,ﬂnag. Using g,,,(¢") = nu + k), (z') then it is

concluded that h, is a tensor under Lorentz transformations?,

W (@) = ASAShag(a) (2.15)

From the geometrical point of view, one may think linearized gravity as a perturbed symmetric
tensor field propagating on a flat background spacetime®. Whereas the classical field approach
consider h,, as any other field inside the flat spacetime without interpreting it as a metric
perturbation. This work is based on the geometrical aspects of the linearized field equations
that governs general relativity and f(R) gravity. In order to obtain the linearized version of
the field equations, all quantities related to the geometry of the spacetime are computed up

to linear order in &?.

The connections

The connections are defined by

1
Fgu = igaa |:8;Lgal/ + 8Vga,u - 5ag;w . (216)

Replacing the metric (2.9) in this equation gives

2Tt is straightforward to prove that huy is also invariant under the Poincaré group.

3A further explanation will be given in the subsequent chapters.

4Unless the energy-mementum tensor of gravitational waves is considered, a second order terms needs to
be included.
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re, = %g“" O (o + ) + 0 (o + o) = O (s + by )|

1 -

= E‘gaO' aMnUV + 8[Ah0'l/ + al/nall + ayho—'u - 80—77uy - 8o'huy}
1 oo [

= 39° |Ouho + Bhay - 80hw,}
1 oo [

= 577 _a,LLh’O'V + al/ha'p - ao'h#y] + O<62) .

Thus, one obtains the linearized connections,

« 1 (6702

The Riemann tensor

The Riemann curvature tensor is built from derivatives and products of connections. The

only contribution will come from the derivatives of I's because the quadratic terms in T" are
of order O(?),

o _ o o o A o A
R, =05 — Ol 5 + T0AI0s — 05T
With all their covariant indices, the Riemann tensor could be also expressed as

Ry = G0o {0155 — 0,155}
= naa{aufi’g - 5VFZB} . [9ao = Nas at linear order in €]
= nao{au [%770)\ (&/hAB + 9ghxny — akhuﬁﬂ — 0y [%770)\ (8Mh)\5 + Oghy, — 6)]%5)]}

= 177%77“{8“(6”@5 + 3ﬂh)\y — 8)\]1,/5) — 81,(8uh>\5 + 8Bh)\u — 8)\h“5>}

[\)

(52 {au({),,h)\ﬁ + 8#85@1, — 8ua>\hl,,3 — 8,,(‘),;@5 — a,,aﬁh)\“ + 8,,8Ahw}

DO =

02 {0u0shns = 0uOhus — 0uOshry + DNz}

DO | =

Therefore, the Riemann curvature tensor is given at linear order by,

1
R = 5{@@5@ ~ OuBahvy — DuD3hay + Oudahs | - (2.19)
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The Ricci tensor

The Ricci tensor comes from contracting the first contravariant index with the second covariant
index of the Riemann tensor,

R,Bv = gMaRa,B;w = nuaRaﬁpu . (2.20)
Using (2.19) in (2.20) gives,

széwﬂm%my—@%mﬁ—@%mu+@%@@
= %{aaaﬁhw — (8“8a>hl,g — 0,03 (n“o‘hw> + 81,8‘%”5} i dummy index
= {0 0hes — Ohus — 0,030 + 0,0%has} o,

where h = n*¥h,,, is the trace of the perturbation tensor and [J is the d’Alembertian operator
in flat space, 0 = 9,0% = —(1/c*)0f 4+ 02 4+ 02 + 2. The Ricci tensor takes the form

1
Roy = 5{030%hay + 0,0%has — D50 — D }| (2:21)

which is clearly symmetric in 5 and v.

The Ricci scalar

The Ricci scalar is the trace of the Ricci tensor,

RY, = g" Rg, ~n"Rg, . (2.22)

Replacing (2.21) in (2.22) yields

1
R:iﬁﬂ%mmm+@m%5—%@h—D%&

:%@m%w+a%%w—mh—m* v B

R=0%"has —Oh| . (2.23)

The Einstein tensor

The Einstein tensor is defined as

1 1
Guy = Ruy — iRg'w/ ~ R‘uy — §R'I’]uy . (224)

From equations (2.21) and (2.23) for the Ricci scalar and the scalar curvature, it is obtained
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G = %{auaphpy + 00 hgy — 00k — Dby} = {090 hyo — Ol

1
2

1
G = 5{ 00 + 00 g = MO o = udh + Mk = Oy || . (2.25)

The linearized Einstein’s field equations

The Einstein’s field equations is given by

&rG

G[,I,V: oA T[,LV ) (226)

and using (2.25) in the left hand side of this equation gives the linearized version of the
Einstein’s field equations,

1

5{(‘mﬂh,w + O by = MO Mgy — Oudyh + MO = Oy} = = T | (227)

The form of the equations of motion in (2.27) can be simplified if it is introduced the trace-
reversed perturbation tensor A,

- 1

Py = hyw — §nuyh . (2.28)

The name of this tensor follows from the trace property,

1
h=n [h;u/ znuuh]
h=h—2h=—h . (2.29)

As a consequence, equation (2.28) can be inverted to get

_ 1 _
Py = Py = Suh (2.30)

Inserting h,, = EW + %n,u,h in the Einstein tensor (2.25) all terms with the trace h cancel
each other. That is,

1
G = §{aﬂaph,,y + O by — MO Ry — Budh + M TR — Oy |

= %{8“80 [FLPV + %npyh} + 0,0 [ﬁpu + %npuh — 1 0P° |:Bpo + %npah}

— 9,0uh + Ok — Dhu,,}
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1 _ 1 _ 1 _ 1
G = 5{auaphp,, + 500 + 0,0 Ry + 50,00k = 0O e — SO

— 8,0,h + nwOh — th}

_ _ _ 1
Oudhoy + 0,0y = MO s = 51D + 105 — Dh,w}

N

{
{auapﬁpy + 80N — N0 Ty + %Wmh - Dh,w}
{

N

B _ _ 1
0,0°h + 8,0°R — MO0 hpy — D(h,w _ n,wh)}

N =

2
1 _ _ _ _
Gy = 5{8M8phpy + 00 Ry = M0 ho — Ol } (2.31)

Finally, the linearized EFE can be rewritten in a more compact form as

1 _ - - - 87G
5{auaﬂhpy + 00 Ry = MOy — Oy | = T T (2.32)
ie.,
. - . - 16wG
Ok + 5w8°0°h,e — 0°0,h,, — 0°0,hyp = _7; Ty i (2.33)

Note that the trace-reversed hy, has reduced the number of terms in (2.27) as can be seen
in equation (2.33). Moreover, the form of this equation is almost a wave equation for l_lm,,
except for the 4-divergence terms of BW. The next section discuss how to obtain the wave
equation by imposing a convenient gauge condition to fix the coordinates.

2.3 The Lorenz gauge and the wave equation

In section 2.1 a geometrical interpretation on gauge transformations has been analyzed. The
freedom in the definition of an adequate mapping between the background and physical man-
ifolds leads to equivalent perturbation tensors. That means that two different perturbation
tensors are related by the gauge transformation given in equation (2.8). Since the background
spacetime in linearized theory is the flat metric 7,,, the relation between h,, and hi“, in this
context is given by

W = hu — 20,8 (2.34)

This is the gauge transformation of linearized theory [31|. Now, however, we shall
adopt a passive transformation perspective of linearized theory. This is to say that rather
than perform active manifold transformations by means of diffeomorphisms, the difference
between tensors is provided by an explicit coordinate transformation of the form given in
(2.5). Hence, at linear order, the coordinates change by an infinitesimal shift,

ot — 2 = 2# + M(x) , et =eth(x) . (2.35)
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Then, the metric transforms as

oz 928
G (') = D D 9ap(T) (2.36)
or equivalently by
oz’ 9x'P

This is called the gauge symmetry of general relativity [8]. Although the choice of the
Lorentizan coordinates of the flat metric 7, breaks the general invariance of general relativ-
ity, is expected to get a relation between the perturbation tensors hy, (x) and k), (z) which
depends on the spacetime coordinates®. To do that, is possible to use either of the two equa-
tions in (2.36) and (2.37). If one uses the first one, there is a subtlety. To linear order in €, the
inverse to equation (2.35) is z# = 2/* — ¢H(a’) just because the difference between £#(z) and
€H(2") is of order O(e?)[9]. Then, compute dz/dx’* to apply equation (2.36). Even though
is more straightforward to follow equation (2.37). Due to the relation

ox'*  Olz™ + &%) Ox® N e
oxh OxH - Ozt OQxk

=0, + Oue” |

from (2.37) the metric changes as

:(5,?; + auea) (55 + ayeﬂ) ]ggﬁ(gg')

G () =

= [0507 + 8500e” + 000, + 0”0, gl ()

= |0005 + 020,” + 300, + 0,07 | [ + Mius(a')
=N + N, (') + &,m/jsﬁ + hLB(m’)ﬁyeﬁ + Ounove”
+ i () 0ue™ + N0p0ue®ye” + yg(2)0,e% 0"
G () = M + B (2) + B + Dy + O(%) + O()

N + M (T) =N + hiw(x/) + Ouey + Ovey . (2.38)

Therefore, the gauge transformation of linearized theory shown in (2.34) is recover,

W (&) = hy(x) — [Oues + Ouey] | (2.39)

Bearing in mind the definition of h, in (2.28), the trace-reversed perturbation tensor change
as follows. First, take the trace of (2.39) to obtain

5Recall that the coordinate system in linearized gravity is quasi-Lorentzian. There is a freedom on how
the full metric deviates from the flat one and that’s encoded in hy,, = hy(2), but they must vary very slightly
because 7, is fixed as diag(—1,1,1,1).
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W' =n"h,,
=t [hW — (8M8V + &,EH)}

= h — 28,¢" . (2.40)

Then, insert this result in (2.28) to get

-~ 1
h/MV = h:“/ — inﬂyhl

=y — (e + 0uz) — Sl
=ty — (B + D) — g — 20,27)
=t — (uew + Qo) — S + 0’
W = by = (Ouu + 0u2) + e (2.41)

The importance of the gauge transformation in linearized theory given by equation (2.39) is
that it leaves the curvature of the spacetime unchange. After the gauge transformation, the
linearized Riemann tensor remains the same as shown below,

1
Rlpo = §{ayaph;w + 0,051, — DuDhly — ayagh;w}

_ %{ayap o — Bueo — O] + Budo lhwp — Doep — Dpes]
— 010y [hve — Oves — Doer] — 000y [hyp — e, — pgu]}

_ %{ayaphw 00,0020 — D0y0aey + DuBrhuy — DuDauey — DudDpes
=~ 0uphus + 040,00 + 00,0050 — Dudohyy + Ou0sDuzy + 00,07}

- %{ayaphw + 0u0shup — 0udphue — a,,ac,hﬂp} = Rupo - (2.42)

Since the Ricci tensor and the scalar curvature comes from the Riemann tensor, they are
invariant as well. Hence, the Einstein tensor is also invariant and the equations of motion
represent the same physics under an infinitesimal transformation of the coordinates [33]°.
Taking advantage of the gauge freedom that is present in linearized theory through equation

5This can be understood with an analogy from electrodynamics. The electromagnetic tensor F},, =
OuA, — 0, A, is left unchanged by a gauge calibration of the form A, — A, — 0.
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(2.39), one could simplify (2.33) by imposing the following constraint,

hy =0 | . (2.43)

This is called the Lorenz gauge’. To prove that this condition can always be imposed for
some coordinate system, we first take the 4-divergence of equation (2.41) to obtain,

811};/#1/ - 8V71MV - 8V (8M€y + 81,5“) + nuyayﬁpep

= 0"hy — 0,0%e, — 0"0ve; + 0,0,€”

Ny = hpy — Oey| (2.44)

Suppose that initially a coordinate system does not obey the Lorenz gauge (2.43). Therefore,
any perturbation tensor can be put into this gauge by performing an infinitesimal transfor-
mation provided that also the new "primed” system satisfy the relation

Oeu(z) = fulz)| 3 ful®)=0"hu . (2.45)

One can always find solutions of equation (2.45) and thus always exist a coordinate system
in which the Lorenz condition can be done [1, 8]. If G(z,2') is the Green’s function of the
d’Alembertian operator [, then it must satisfy

0.G(z,2') = 64z — ') . (2.46)
Thus, the solution €, () for the wave equation in (2.45) is
eu(z) = /G(w,x’) fu(@)d*s’ . (2.47)

This solution can easily be verified by applying the d’Alembert operator

Oe, = /DG(JE,:C') fua')d*a’!

— [ o= o) gyt

= fulz) (2.48)

and this completes the proof®. Having shown that is always possible to find a coordinate
system in which 0”h,, = 0, the linearized EFE in (2.33) for the trace-reversed perturbation

"There are other denominations for the same coordinate restriction such as harmonic gauge, Hilbert gauge,
De Donder gauge, Lorentz gauge, Einstein’s gauge or De Sitter gauge.

8Compare the Lorenz gauge of the linearized theory with the gauge fixing of the electromagnetic vector
potential giving by d, A" = 0. One can still make the gauge calibration A,, - A, — 0, and if ¢ is harmonic
the gauge is preserved.
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tensor is reduced to,

—Tu |- (2.49)

This is the gravitational wave equation in linearized theory. Because the metric g, is
a symmetric tensor, h,, and BW are also symmetric. In general, a second order symmetric
tensor has 10 independent components. However, our gauge condition gives 4 additional
constraints that can be used to reduce the number of independent components to 6. In the
next section we will see that from these 6 degrees of freedom only 2 are physical radiative
modes of propagation, the others depends actually on the choice of the coordinate system.
Taking the covariant derivative on both sides of (2.49) one gets

V¥R, = 16C7TGV” T
Dn”"vaﬁ,ﬂ, = 160LGV Doy T o
e (aoﬁ,w — Tk — Féyl_z,m) — 16”GnauvﬁT ap
00" Oy + O(2) = 16”GnauvﬁTaﬁ
00" hyw = 0 = 167TG770¢MV5T “%  |Lorenz gauge]  (2.50)

Equation (2.50) ensures the conservation of the energy-momentum tensor,
VT =0 . (2.51)

Neverthless, in linearized theory, the components of 7" must be very small. Otherwise, a
strong curvature in the spacetime produced by the source would not allow to make a good
approximation at linear order in the metric perturbation. Thus, the connection terms of the
form I'T" can be neglected at linear order in O(g). Therefore, an appropriate statement of
energy-momentum conservation in linearized theory is actually

TP =0 |. (2.52)

Physically, this equation implies that matter fields are allowed to exchange energy and momen-
tum between themselves but not with the gravitational field [9]. The information of gravity is
encoded in the connection terms. Hence, to include the effects of gravity, one must consider
the full expression in (2.51). But again, in linearized theory the connection terms doesn’t
contribute. In conclusion, in this theory the dynamics of matter couldn’t include exactly the
effects of gravity such as self-gravitating systems like binary stars. Moreover, equation (2.52)
as well as in special relativity, means that all bodies move on geodesics of Minkowski space-
time, i.e., straight lines [34]. The fact that the background metric is 7,,,, suggest that for those
gravitational bound systems one may introduce it’s dynamics with Newtonian gravity rather
than the full general relativity [8]. However, in the exact formulation of general relativity by
Landau & Lifshitz is possible to introduce the effects of gravitational binding energy that in
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case of very weak fields can be neglected”.
In particular, in the absence of matter, 7, = 0 and it is obtained the vacuum wave
equation

Oy =0 |, (2.53)

that can be expressed as
10w
2 o2

Clearly, equation (2.54) shows that the perturbation components of 7LW propagates at c, the
speed of light. The homogeneous wave equation admits the general solution

Vh = (2.54)

B (%, 1) = Re / A () 50 g | (2.55)

which are superpositions of plane waves moving in different directions. These solutions are
simply gravitational waves (GWs) [1]. Equation (2.55) is often written in a more compact
form,

P (%.1) = Re / Ay (k) ™ dkc (2.56)

where

k, = (—%7 k) ;o oatt = (ct,x) . (2.57)

The quantity A, is called the polarization tensor'’. Another way to show the speed of
GWs is by taking the d’Alembertian operator of the solution (2.56) and setting equal to zero,

Ohuw(x,t) = Re / Ay (k) Oetke™™ gk (0 := 9", ]
— Re / Ay (k) 0" [au (e“)} dk (0% = o d),]
= Re / A (K) P78, [e“ z‘kaaﬂxa} dk [0 = 67 ]

= Re / ik A (K) 17D, e |
= Re / ik, A, (k) nHo e ik, 0,2 dk

= Re / 2 [nﬁ“’kuka} Ay (k) ekt gk = 0 (2.58)

It follows that,

. (2.59)

9This problem is discussed in subsequent chapters.
10T he reason for this name will become clear in the next section.
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Thus, the wave four-vector k* is null and GWs propagates at c¢. Note that equation (2.59)
also implies that there is no dispersion. This means that all GWs travels at the speed of light
and from (2.57) the dispersion relation is given by

w = ck| . (2.60)

On the other hand, after applying the Lorenz gauge to the solution h,, (x,t) one finds that
these waves are also transverse,

hu(x,t) = Re / Ay (k) OFeFe™ gk

= Re/AW(k) N d, et dk

= Re / i A (k) " e*e™ k6% dk

= Re/in“pAW(k)kp ke gk = 0 [Lorenz gauge] . (2.61)

This equation automatically gives the transverse condition,

kA (k) = 0] (2.62)

2.4 The transverse-traceless (TT) gauge

As stated earlier, the metric perturbation tensor h,, is symmetric as well as Buy. Then, the
10 independent components can be seen from the following matrix representation,

hoo hor hoz hos
hot hit hiz  his )
hwl =1 _ _  _ ~ [10 independent components| . (2.63)
hoa  hi2 haa  hog
hos his has  has
The Lorenz gauge 8’%“1, = 0 allows us to reduce from these 10 to 6 independent components.
Now, imagine that in some initial coordinate system the Lorenz gauge can be imposed. One
might wonder if under an infinitesimal transformation the Lorenz gauge is still valid in the

new system. This can be done as long as the generator functions ¢, satisfy the homogeneous
wave equation. From (2.44),

Ny = 0"hy, — O,
= Ok, . (2.64)

Thus,

e, = 0 (2.65)
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and the new system will preserve the Lorenz condition. It is expected that in this frame the
linearized EFE also takes the same wave equation for A’,,. By applying the d’Alembertian
operator at both sides of equation (2.41), one can check that this is indeed true,

OR 0 = Ohyy — 8,06, — 8,06, + 110,077 De,
= Ohy, (2.66)

Therefore, the gravitational wave equation in linearized theory is invariant under an infinites-
imal coordinate transformation if and only if [le, = 0. Both conditions, Ue, = 0 and
8”7LW = 0, represent in total 8 constraints over the 10 independent components of EW. As a
result, there are only 2 components left, known as + and x polarizations of the gravitational
wave!l. To be convinced of this assertion, an explicit procedure is followed [35, 36]. First of
all, pick up a coordinate system in which the Lorenz gauge is satisfied. Clearly, in this system
the linearized EFE in vacuum is the homogeneous wave equation and the general solution
is given by (2.55). As mentioned before, the polarization tensor is subject to the transverse
condition k*A,, (k) = 0, which follows from the Lorenz gauge. Now, for simplicity without
loss of generality, consider a plane wave propagating in the +z-direction'?. In this case, the
components of the wave four-vector are

k] = (k,0,0, k) k) = (=k,0,0,k) , (2.67)
where & = w/c. The transverse condition, which in turn comes from the Lorenz gauge
automatically gives,

kFA, = KA, + K As,
= kAo, + kA3,
=0

- ' 265)

Due to the symmetry EH,, = 711,“, the polarization tensor is also symmetric. Thus, with
equation (2.68) one can express A, in terms of 6 independent components, namely Agg, Ao1,

Aoz, A11, A1z and Aj3:

[Au] = |6 independent components| . (2.69)

—App —Aor —Aee —Aoo

To simplify further the number of independent components in (2.69) one may perform an
infinitesimal gauge transformation of the form in (2.41). To preserve the Lorenz gauge, the

L At this stage, the 'plus’ and ’cross’ polarizations are just names for the two degrees of freedom that are
left. These names will gain meaning in the interaction of GWs with test masses in chapter 4.

2Because the metric perturbation is invariant under the Lorentz group, one can always align the z axis
with the wavevector direction by making a rotation.
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generators of the gauge transformation €, must satisfy the homogeneous wave equation L, =
0. The general solution to (2.65) is given by

e, = Re / bu(k) e dk (2.70)

for some functions b, that depends only on k. Inserting (2.70) and (2.55) on (2.41) gives,

Wy = hyw — Opgr — Ovey + 1uwd’e,y
Re / Ay (k) e dk = Re / A1) = kb, — kb + inukeby| o di
— | A, = A — ikub, — kb, + inw kP, (2.71)

Since in this new coordinate system the Lorenz gauge is preserved, there are initially the
same 6 independent components for A;W as in (2.69). However, from the equation Oe,, = 0,
we are able to choose 4 constraints over b, to further reduce from 6 to only 2 independent
components. Using (2.67) in (2.71), the initially 6 independent components of A;,, are

Afo = Aoo + ik(bg — b3),

Alll = A1 + ’ik‘(bo + bg),

Apy = Ao + ikby, Ay = Aja, (2.72)
Afy = Aoz + ikby, Aby = Agy + ik(by + bs3).
Now, by choosing the functions b, as
bo =i(2400 + A1 + Ag)/4k, by = iAo /k,
by =1Ap2/k, bs = —i(2A00 — A11 — Ago)/4k (2.73)
one finds that
o = Ay = Ay =0 and 1= A . (2.74)

Denoting by Aj; = A4 and A}, = Ay, the independent components of the polarization tensor
becomes

00 0 0
0 A, A, 0

[AL,] = [ATT] = - . (2.75)
00 0 o0/,

In conclusion, only two physical modes of the spacetime itself are propagating. They are called

the “plus” and “cross” polarizations. The new system in which the polarization tensor takes

this simple form (as shown in (2.75)), is called the transverse-traceless frame, or TT frame!?.

131n principle, one can use another coordinate system. However, the TT frame is extremely convenient
because it fixes completely the coordinate freedom [1]. This allows to extract the two physical radiative modes
of propagation.
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Evidently, the trace of AE,,T vanish and it’s transverse because of the condition k*A,, = 0,
which actually follows from the Lorenz gauge. Thereby, the complete solution in the TT
frame for a plane wave moving in the +z-direction is

0 O 0 0

B 0 A A 0

[hEE(27 t)] = ! * cos(kz — wt) . (2.76)
0 O 0 0 e

Note from (2.30) that the traceless condition means that hEE = BEVT , and these quantites
may be used interchangeably. What’s more, in vacuum the tensors h,, and h,, contain the
same physical information and one could use either, since h,, also satisfies the homogeneous

wave equation. To see this, we first take the trace of the wave equation (2.49),

O = 27
D(n’“'h;w _ %U’WWV}O - — 16;G T
O(h—2n) = 16mG
C
— Oh = 16CZGT . (2.77)

Then, the linearized EFE can be rewritten in the Lorenz gauge alternatively as,

Ohy, = —”%GTW
DRy — %Wmh = —16(:772GTW
Ohy = —]Li%GTW + %meh
O = 5 (T = )
Eha= —%—ZGTMV , (2.78)

where T, wv is the trace-reversed of the energy-momentum tensor 7),,. Outside the source,
T, = 0 and therefore 7, = 0. Hence, one gets the homogeneous wave equation for the
perturbation tensor h,,,

Ok, = 0] . (2.79)

The solution for A, can be put also in the T'T frame in a similar way as explained before. The
only difference is that instead of using the rule transformation for hy, in (2.41), one may use
the rule transformation for h,, in (2.39). Again, assuming a plane wave in the +z-direction,



22 Chapter 2. Gravitational Waves in Linearized Theory

one can use (2.39) to choose properly the functions b, to set Ajy = Aj3 = A3 = A%y = 0.
Likewise, by exploiting the Lorenz gauge in terms of h,,,, another 4 conditions can be obtained
between the other components. The result is the same TT structure as shown in (2.75) [36].
Hence, the trace h vanishes and by the definition (2.28) one arrives at the same statement,
EE,:P = h};f . In any case, the solution of the homogeneous wave equation whether for hy,, or
for h,,, can be expressed in the TT frame by demanding what is called the TT gauge that
is defined as follows,

hoy = 0 hij =0, hi=h=0 . (2.80)

7

There are 4 coordinate restrictions in the first equation of (2.80), 3 in the second one and
1 in the third one. These are the same 8 constraints that we had earlier with the Lorenz
gauge 9"h,, = 0 and Oe, = 0. Note that the first equation in (2.80) claims that all the
time dependence of h,, vanishes. Thus, Agg = Ag1 = Ag2 = Ap3 = 0. The second is just
the spatial part of the Lorenz gauge, that when considering a plane wave in +z-direction gives,

Othi1 + 9*hip + O3hiz = 0
K'Ay 4+ K2Ap + kA3 = 0

A3 =0, (2.81)
81}121 + 82h22 + 83h23 =0 81h31 + 82h32 + 83h33 =0
k‘lAQl + k2A22 + k3A23 =0 klAgl + k‘2A32 + k‘3A33 =0
A2z =0, Asz3 =0 . (2.82)

The traceless condition is,

hg =h=A11+Axn+A33 =0
= A1 + Ay =0
— A = —Ax (2.83)

and in addition to the symmetry property h,, = h,,, the T'T gauge ensures two independent
degrees of freedom, i.e, the physical modes of GWs.

One is left wondering if the TT frame can always be found. For globally vacuum space-
times, this is true [1|. Nevertheless, if ﬁw, # 0, is not possible to choose conveniently the
functions b, to reduce the polarization tensor to (2.75) [8]. To show the existence of the TT
gauge in vacuum, it’s enough to show that one can find a system in which hg, = 0 and h = 0,
From (2.71), that is to say, finding an explicit solution to the following set of equations,

!4 The other condition &’h;; = 0 is actually the spatial part of the Lorenz gauge, but we have shown earlier
that in fact this constraint can always be achieved under a infinitesimal gauge transformation.
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0= AL, = 1" Au + 2ikPh, (2.84)

0 = Ap, = Aou — ikoby — ikubo — 6y, (kPb,) . (2.85)

The solution is given by

Aaglalﬁ naﬁAag 1

b = S/t T i T Ziw)o)

s Auwl” (2.86)

where k* = (w/c, k) and I* = (w/c, —k) [37]. In conclusion, one can always make a trans-
formation to the TT gauge as long as T}, = 0. For instance, if the GW is moving along the
+z-direction or the +y-direction, a similar procedure will gives,

0 0 0 0 o 0 0 O
0O 0 0 0 0 A, 0 Ay
(4] = » [Aw] = (2.87)
0 0 A, A, 0O 0 0 0
Finally, the metric g,, = 1, + hyu can be written as
-1 0 0 O 0 0 0 0
0 1 0 0 0 Ay Ax O
G = + cos(kz — wt)
0 0 1 0 0 Ay —A, 0
0 0 0 1 0 0 0 0 s
-1 0 0 0
0 1+ Ajcos(kz —wt) Ay cos(kz — wt) 0
gib?) = (2.88)
0 Ay cos(kz —wt) 1 — Ay cos(kz — wt) 0
0 0 0 1
Thus, the line element becomes
ds?> = — Pdt? + [1 + Ay cos(kz — wt)]dz® 4+ [1 — A, cos(kz — wt)] dy?
+ 24, cos(kz — wt)dxdy + dz* . (2.89)

2.5 Projection onto the TT gauge

As has been exhibited in the previous section, a solution h,,(z) can always be put onto the
TT gauge. If a plane wave is moving along any of the coordinate axis, the polarization tensor
takes the simple form as shown in equations (2.75) and (2.87). In general, if a plane wave
solution outside the sources is propagating in the direction 0, one is able to find the form of
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the solution in the TT gauge as follows. First, define the tensor

This tensor has the properties of being symmetric, transverse, its trace is P;; = 2 and it’s also
a projector tensor. It’s straightforward to verify such properties from the definition (2.90),

Symmetric:
Pyj(h) = 6;j — nynj = 05 —njn; = Py(h) (2.91)
Transverse:
n'Py;(h) = ni&-j — ninmj
= ’I’Lj — (].)TLJ =0 (292)
Trace:
Pyi(h) = 6i; — niny
=3-1=2, (2.93)
Projector:

P; (fl)Pk](fl) = 5ik5kj - 5iknknj - 5kjnmk + ningngn;

= 51 — NNy — NNy + nin;
= 51’]’ — nmj
— Py(n) . (2.94)

Now, the TT projector tensor A}, is constructed from P;;(f) as

o 1
Aijlk:l(n) = ikle - §Pijpkl . (2_95)

This tensor is symmetric under the exchange between the first and second pair of indices, it
is transverse on all indices, its trace with respect to the indices ij and jk vanishes and is still
a projector tensor. These properties can be proven from the definition (2.95),

Symmetric:
1
Niji = PPy — §Pijpkl
1
= PyuPj — §PklPij
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Transverse:
i i L
n'Nijjp = n' PPy — on PPy = 0
iA j L
! Ajjip = Paen! Py — 3" P;jPy =0
k k Lk
nNjipg = n" PPy — §Pijn Py =0
I ! Lo
n Ay = Pun Py — ipijn Py =0 (2.97)
Trace:
1
Ny = PPy — §Piipkl =Py — Py =0
1
Aijiwr PirPir — 5PijPiw = Fij — Py = 0 (2.98)
Projector:

1 1
Akt Mgtpmn = <Pikpjl - §Pz'jpkz> (Pkmpzn - §Pklpmn)

1 1 1
= PP PP — ipikPjZPklen - §PiijlPkaln + Z—Pijpklpklpmn

1 1 1
= -sz]D]n - *-Pz'l-Plemn - §R]Pmkpkn + 1

5 Py Pry P

1 1 1
= Rmf)]n - §-Pz]Pmn - §B]Pmn + §P1]Pmn
1
_ Aij\mn (2.99)

In terms of the unit vector n, the T'T Lambda tensor is

Ajja() = Pi(8)Pa(h) — 2 Py (8)Pra(s)

= (@k - nmk) (5]- - njnl> - %(5@' - nmj) <5kl - nk”l)

= 6ik5jl — (5,-knjnl — 0NNk + Ningn;iny

1

— 5(5@'5“ — 5ijnknl — 5kmmj + nmjnknl)
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. 1
Ajji(B) = 04051 — §5ij5kl — njngdix — ningdji

1 1 1
+ annléij + Enm]ﬁkl + SN (2.100)

Therefore, given a plane wave solution h,, already in the Lorenz gauge but not in the TT
gauge, the gravitational wave in the T'T gauge is obtained by applying the Lambda operator,

h;l;'T = Ajjikihi . (2.101)

The TT gauge conditions in the spatial part gives,
« O'hii' =0 = n'h’ =0 (2.102)
« hit =0 . (2.103)

Note that the expression in (2.101) satisfies the T'T conditions in (2.102) and (2.103). By the
transverse and the trace properties of the Lambda tensor, then

- ‘
n'hy; = n'Ajhn = 0,

hi' = Agahi = 0 (2.104)

In general, given a symmetric tensor S;;, its transverse and traceless part is!?

Sit = NijSu | - (2.105)

v

Observe that in this equation the quantity SET remains symmetric.

5Recall that a tensor can be decomposed in a symmetric part plus an antisymmetric part. The action of
the Lambda tensor over the antisymmetric part will vanish.
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Chapter 3

Interaction of Gravitational Waves
with Test Masses

Having studied the two physical modes of gravitational radiation, the interaction of GWs
with a detector is given in the present chapter. A set of point particles will be assumed
as the makeup of the detector and the effects of the GW passage will be devised from two
coordinate systems, the TT frame and the detector frame. In order to accomplish this, the
geodesic motion and geodesic deviation of particles are revisited in first place. Finally, the
interaction of GWs with a ring of test masses is presented as an example to understand the
meaning of the plus and cross polarizations.

3.1 Geodesic equation

Consider in some reference frame, a temporal curve z#(7) parametrized by the proper time
7. This means that, at each point of such a curve, the tangent vector is timelike. From all
possible temporal curves that satisfies the stationary events z#(74) = z/; and z# (1) = /5,
the shortest path between these points is called a geodesic. For a free particle, it follows from
the action

B
S = —m/ dr (3.1)
A

where m is the particles’s rest mass. An extremal path is found when the variation of the
action vanishes, 65 = 0. If the spacetime is flat, one obtains the geodesic equation

d%azH

dr?
However, in general spacetime may have curvature. In this case, the geodesic motion for a
free particle comes from considering the spacetime line element,

0. (3.2)

ds? = g datdes” = —cdr? . (3.3)
Since x# = (1), then
da
dzt = %dT (3.4)

and equation (3.3) is written as

_ dat e
= I dr dr

ds? dr? = —c%dr? (3.5)
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which is equal to

dz# dz¥ 9
5 = —¢% . 3.
I dr dr ¢ (36)

The action (3.1) is now,

B B 1 dxzt dx” Bm dzt dx”
S = —m/TA (1) dr = —m/TA — 2w dT>dT / Cj(guyd—Td—T) dr . (3.7)

TA

Therefore, the geodesic motion is obtained if

o5 =5 [ ol ) or =
-5 ) [CZ”: CZC () +2gwd(2fu)cg] dr =0
- T:B [dg‘g gy S2° +2 Wd(jfu) CZCT] ir =0 . (3.8)
An integration by parts of the second term in (3.8) is performed by noting that
[ - A ot ()
WL, 9] (,85)

Replacing (3.9) in (3.8) one gets

v

m dzv |™® B [dxt dx¥ d dx”
8S = <4 202tg,— ————0a g0z — 2— | g—— | 02" | d
5 02{ I o * /TA [dT dr Oy dr <g” d7'> v } T}

m dx* dx¥ d dz¥
= — OnGu, 0 — 2— ,—— | ozt | dr =0 . 3.10
cQ/TA[de T 0% d7<9“ d7>$] T (310)

Expanding the term on the right hand side of the integrand results in

d (A gl |
dr G dr - dr dr Gpuw dr2
dz® dz¥ A2z
= g g A 3.11
S —— + Gn dr? (3.11)

and inserting (3.11) into equation (3.10) gives,
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0S5 = g T:B :ﬁﬁ@aguy&ca — 280[9”,,%{;1/5:3“ — ZgWC?:Z/(S:L'“] dr
- :3 :‘fﬁyaﬂgay - 2(‘3@9#,,%% - gw‘zw;] 5t dr
= g T:B :ifiliyaugau — 8aguu%% - Vgua%% — guff;ﬂ ozt dr
= g T:B :(augow — QoG — Ougua) CZE—:% - guycgf;} szt dr
- ;B [2gwcil2f;  (Ougu + Ovgua — Dugar) Cﬁf;‘g] Sabdr — 0 . (3.12)

The expression in (3.12) implies that

dQQZV dz® dz¥
zguuﬁ + (8aguy + 81/9;w¢ - augocu) W dr =0 (313)

1
and multiplying (3.13) by 3 gH? one arrives at

d*z” 1 dz® dx¥
7 —g" aa v 81/ a 8 av) 7 =0
) + 29 ( Juv + Ovgpu g ) dr dr
d?z° 1 dz® dx¥
7 9 =g" aoz " ay o a av) T =0 . 3.14
dr? + 29 (Oagus + vy, pgow) dr dr ( )

Taking into account the Christoffel symbols definition, the geodesic equation for a free
particle in a curved background is given by

d?z° dz® dz¥
e — =0 . 3.15
dr2 WY dr dr ( )

3.2 Geodesic deviation equation

In Euclidean geometry, the defining property of the flat space is the concept of parallel lines.
If initially close lines are parallel, the distance between them remains the same forever as
they extend over the entire space. In a curved manifold this is not true. For instance, two
initially lines over a sphere will approach each other and eventually cross together. In fact,
a straight line is merely a geodesic in flat space. Thus, a natural way to study the concept
of parallel lines in curved space is to measure how the distance is changing between nearby
geodesics. From a general relativistic perspective, free particles follow geodesic motions due to
the curvature of the spacetime produced by a source. Hence, the difference between geodesics
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in this context is interpreted as a manifestation of gravitational tidal forces!.

To understand the concept of geodesic deviation, first consider two nearby geodesic trayec-
tories. One is described by x#(7) and the other by z#(7) + £#(7), where & is a very slighlty
displacement. From (3.15) they must satisfy

d?at(T)

) + FZB(:I:) dr dr 0, (3-16)
Pt 280 1o+ O LEOMED L EDL g

Assume also |£#] smaller than the typical scale variation of the gravitational field. A Taylor
expansion of I’g ﬁ(:v + &) around x at linear order gives

s +&) = Thg(x) + €70, T 4(x) + - (3.18)

Making the substitution of (3.18) in (3.17) yields

FCRT crot dz®  deoN [(daf  deP
+ e 4oerprh | (B S (H LB
dr? dr? + [ af § O‘B] < dr + dr > < dr dr )

dQl,M d2£“
dr? dr?

datdof | datds? | denda® |\
dr dr dr dr dr dr -

+ [y + ema,rhy) (

A2zt dzer p dx® dzP o dz® deP

L B datdal dz® dg” Mdazadmﬁ
dr? dr? B dr dr B dr dr

o8 dr

+ 79,1 =0, (319

at first order in £. Substracting (3.19) from (3.16) the equation of the geodesic deviation
reads

dzer dz® dgP dz® dzP
E5 L ogpe WG oy pe BT ET ) 2
dr? B dr dr + 0 0 dr dr 0 (3.20)

Because the geodesic deviation has everything to do with curvature, is often used to rewrite the
expression (3.20) as a function of the Riemann tensor. To do this, consider a set of continuous
timelike geodesic parametrized by the proper time 7, where each geodesic is labelled by
a parameter «. This is called a congruence of timelike geodesics and is described by the
parametric equations z# = z#(7,«) [9]. The displacement is along some geodesic when « is
fixed and thus the tangent vector is u* = Jdx*/07. Conversely, the displacement is across
the geodesic when 7 is fixed and & = dx#/0a is a deviation vector that points from one
geodesic to the other (see figure 3.1). One might wonder what is the evolution equation for
the acceleration of £* when is transported along the vector field u. Remind that the covariant
derivative of a vector field V# along a curve z#(7) is,

!Contemplate the difference between geodesics of two particles in space that are in radial infall near the
Earth. An observer in free fall with the particles would detect the inhomogeneities of the gravitational field
by observing the geodesic deviation of such particles.
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VuV# = w’V,VF = P9, VF + TL V! o =——7"— . (3.21)
Let V# = V,&*, then equation (3.21) turns out to be
VuVué" = uf0, <U535§“ + Fgﬁﬁauﬂ) + Iy, (uﬁaﬂfy + F@;é%ﬁ) u?

= upapuﬁ(?gf“ + apfgﬁupgauﬁ + Fgﬁuﬁupapga

vpT o

+ Fgﬁgaupapuﬁ + F’V‘pupuﬁﬁgé" + T Fyﬁéauﬂup

d*¢r
= 2 + QF,ﬁ‘pupu'Baﬁﬁy + aprgﬁuﬂgauﬁ
+ Fﬁﬁéo‘up&puﬁ + Fﬁpfgﬁﬁo‘uﬁup (3.22)
Using (3.20) we have
a2
sz = —20h gutu’ 89,67 — €70, Th puu” (3.23)

and inserting this result in (3.22) yields

Va V!

—g”a,rgﬁu“uﬂ + 8pfgﬁup£auﬂ + rgﬂgauﬂapuﬂ + Fﬁpfzﬁfauﬂu’)

= 9,

d?aP
Buauﬁ + 8pfgﬁup§°‘uﬁ + I’Zﬁfa < de ) + Fﬁpfgﬁfauﬂup

¢ (agrgﬂ) wuP + (aprgﬂ) wPeuP — T €OTS u’uf + Th TY e ulu?

_ (aprgﬁ) uPEP — (aorgﬁ) w4 T T gule P — T T8 u’eur

(pcB)—(vp.0) (08— (ppo)  WpeB)—=Awpa)  (Banp)—(Ap0)
= 9, Th,u’¢Pu” — 9l uePu + T Tpu’ePu’ — Th T) u’¢Pu’
_ (apr,/jg — 9T, 4 TS, — r‘;;;g) P
= — Ry, u’ v (v<—o0)
= — RE _u"&Pu’ .

vpo

Finally, the equation of geodesic deviation is given by,

VaVat = — RE _uv¢Pu’ | . (3.24)

vpo

As expected, this equation says that the relative acceleration between two neighboring time-
like geodesics is proportional to the Riemann tensor, which has all the information of the
spacetime curvature.
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7 = constant

Figure 3.1: Congruence of timelike geodesics.

3.3 Local flatness

Before discussing the T'T frame and the detector frame, two local coordinate systems are of
great importance to develop further aspects in the interaction of GWs with test masses. These
are the Riemann normal coordinates and the Fermi normal coordinates. The main results is
that in the former at a selected event P in the spacetime, the metric is the flat metric 7, and
the connections I“;ﬁ vanish. In the latter, given a timelike geodesic v, at each point along
the geodesic the metric is given by the flat metric 7,,, and the connections vanish.

Riemann normal coordinates

Consider a curved spacetime with a metric g, in some arbitrary coordinates. Select an
event P in the spacetime and adapt a tetrad e?‘#) = {e?o), e?‘l), 6?2), e?‘g)} to this point. The
bracketed index (u) label each basis vector of the tetrad and the index « is refered to the
usual components of a selected basis vector. The orthonormality condition of the tetrad is
given by

e ew) = gaﬂe&)e(ﬁy) = N (3.25)

where 7, = diag(—1,1,1,1). Now, take another event Q. If P and Q lie in a small enough
region where the spacetime is almost flat, there exists a unique geodesic that connects both
events. The geodesic may be parametrized by the proper distance s if it’s a spacelike geodesic
and by the proper time 7 in case of a timelike geodesic. A unit and tangent vector fi to the
geodesic at P can be decomposed in terms of the basis vectors. Hence, the components of i
are

n®(P) = n'e(, . (3.26)

The Riemann normal coordinates of Q at P are defined as

for a spacelike geodesic

¢H(P) = wnt {ﬁ - fes (3.27)

k = Tg , for a timelike geodesic .

The following figure summarizes the construction of the Riemann normal coordinates at the
spacetime event P.
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€y

Q) = (kn?, knt, kn?, kn3)

€(u) " €w) = Nuv

(El

Figure 3.2: Definition of the Riemann normal coordinates about an event P.

The strong consequence of this coordinate system is that at the event P the metric g,
reduces to the flat metric 7, and the connections vanish,

g,ul/(C) = Ny > F/;/B(C) =0 . (3'28)
P P

To show that g,,(¢) = 1, at P, bear in mind the fact that n* is a unit vector. In Riemann
normal coordinates this implies that g, (¢)n#n” = 1, which is valid along the entire geodesic
that goes from P to Q. However, in the initially arbitrary coordinates the invariant magnitude
of the tangent vector f is gog(z)n®n” = 1. But equation (3.25) can be inverted to get,

9o (@) = gy edey) . (3.29)

Thus, using (3.29) and (3.26) into gas(z)n*n” then,
G (QOn¥*n” = gap(x)nn’

= [t ] [noete] [y

_ o (V) B o
—-’RuxV>[€3”€<aJ [eﬁ egn}71 nf
= M) ()959,1"n”
G ()1 = mgpyntn” . (3.30)

Because n* is arbitrary, then g,,(¢) = 1., at P. To show that in Riemann normal coordinates
the connections vanish, consider the geodesic equation at the event P,

d2ch
dk?

dc® d¢?

+ dr dk

500

=0 . (3.31)

P P
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Inserting equation (3.27) in (3.31) gives
Tyl nn® =0 . (3.32)
P

Again, because n* si arbitrary one concludes that Fg B<< ) =0 at P. Observe that the partial
derivative of the metric can be obtained from [9]

Opgap = garl7s, + 9orI7%, (3.33)

and therefore is also true that d,g,3 = 0 at P. The metric can be expanded about the event
P in Riemann normal coordinates [9]. The result is,

1

g#u(C) = N — g RMAVp(C) PC/\Cp + O(CS> : (3'34)

From figure (3.2) clearly ¢(* = 0 at P. Then, the metric (3.34) becomes the flat metric 7, at
P. On the other hand, because there are not linear terms in (* in the metric expansion, each
term of the first derivative depend on (*. Then, the first derivative of the metric is zero at P
and the connections vanish at that point.

Fermi normal coordinates

To define the Fermi normal coordinates, select an entire timelike geodesic v parametrized by
the proper time 7 . Adapt a tetrad 6?#) = {e?‘o), e‘("l), 6?2), 6?3)}, which satisfies the orthonor-
mality condition (3.25) everywhere on . Assume that e?‘o) is aligned with ~’s tangent vector
and that all the basis vectors of the tetrad are being parallel transported along the geodesic
~. Now, consider an event Q away from =, and construct a spacelike geodesic segment 8 from
O to Q as shown in figure 3.3%2. This segment is orthogonal to v at O and is parameterized
by the proper distance s. Thus, s =0 at O and s = sg at Q. If n® is the tangent vector in

B, it can be decomposed in terms of the tetrad as,

n®(0) = nled, . 3.35
(4)

Observe that eaj are the spatial members of the tetrad in O. The basis vector ef, is not
involved in the decomposition of n® because § is precisely orthogonal to v at the event O.
The Fermi normal coordinates of Q at O is given by

&"Q) = (cro, Sin, sQnQ, sQn3) . (3.36)

Of course, the coordinates at the event O are £#(0) = (¢710,0,0,0). It can be shown that the
spacetime metric near  can be written in these coordinates as [9, 38|

2The orthonormality condition ensures that § is unique.
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€(u) " €w) = Nuv

gu((’)) = (CTOa 07 07 O) O €2

n

€1 6
Q
£"(Q) = (cto, sgnt, sgn?, sgn?)

Figure 3.3: Definition of the Fermi normal coordinates along a timelike geodesic. The segment 3 is a
spacelike geodesic and is orthogonal to .

et + 0(&%)

Y

900(§) = —1 — Ropoq(€Y)

et + 0(&°) (3.37)

Y

1
gik(€) = Sk — 3 Ripiq (€°)

2
ng(‘S) = g ijqo(ﬁo)

et + 0(&°)

Y

where the Riemann tensor depends on 7 = £ /c, it’s also evaluted on v and the indices p and ¢
are spatial. It should be noted that just like the coordinates at O, the spatial part of the Fermi
normal coordinates vanishes everywhere on . This implies that ggo (§)|7 = —1, goj (&) ‘7 =0,

gjk(é)}y = 6. Thus, g,,(§) = T and the metric reduces to the flat metric in the entire
timelike geodesic . Likewise, because the metric is constant in v and the components of the
metric in (3.37) does not depend on linear terms in &P, each term of the first derivative of the
metric components depends on £P. Therefore, the derivative of the metric in -y is zero and the
connections I' op(§) vanish in . These results are summarized as follows,

G (&) = M ) @) =0 | . (3.38)
v ¥

3.4 The TT frame

In chapter 2, it has been emphasized that in some coordinate system the plus and cross
polarizations of the GW represent the two independent radiative degrees of freedom. This
system was the TT frame. The present section discuss the physical implications of being in
the TT frame when a gravitational wave interact with a test mass. To understand the GW
effects on the motion of a point particle one must invoke the geodesic equation (3.15). Let
assume a test particle A initially at rest at time 7 = 0. Then, the spatial part of the geodesic
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equation in 7 =0 is

Eal| [ detder]

ar?|__, CPdr dr |y

d?z [ . [ da® 2

) + 1Loo <d’7‘> ] =0, (3.39)
7=0 L =0

where (dmi/dT)‘TZO = 0 because the particle is initially at rest. Using the TT gauge, the
connections T}, are obtained from (2.17) and gives,

. 1 .
00 = 577“7 (Oohos + Oohos — Ozhoo)

1
= 5515 (Oohoj + Gohoj — 9jhoo)

1
= 5 (280}101' — aihog) (3.40)

Keep in mind that in the TT gauge ho, = 0, so from (3.40) the connections [}, are zero at
7 = 0%. The conclusion is that if at time 7 = 0, da’/dT = 0, also d?z'/dr? = 0 and the
particle that is initially at rest before the passage of the GW, remains at rest even after the
arrival of the wave. Physically, this does not mean that there are no effects of the GW on the
particle. The interpretation is that the coordinates stretch themselves in such a way that the
position of the particle initially at rest doesn’t change with time.

Now, if two test masses are initially at rest, they will remain at rest for all times. Therefore,
their separation also does not change with time. This can be seen by employing the geodesic
deviation between two neighboring test particles. The spatial part of (3.20) reads

d?¢ - dx® deP - dz® d2P
o —— —— Tt g — = . 41
dr? t 2hag dr dr + &0l dr dr 0 (3.41)

Evaluating this expression at time 7 = 0 one finds,

dz¢ - da0 deP - dx® da
- p) [ pR—— 79y Ty —— —— =0
r? | __, * [ 0% dr dr :|’TO * [{ Odr dr|__,
d2¢ . dx® deP
- p) [ piu——— =0
ar? | __, * [ % dr dr | __,
i + | 2T Sl 0 (3.42)
dr? | _, % dr | o '

Again, from the first to the second line in equations (3.42), the quantity 60 = 0 in the
TT gauge. Furthermore, if the particle is initially at rest, its 4-velocity can be written as
(dz*/d7) = (c,0) at 7 = 0 and thus (d2z°/dr) = c. The connections Féj are obtained directly

3This is valid only at order O(e) in the connections. However, it is expected a value of h ~ 1072" in the
detection of GWs on Earth, so the linear order approximation is very worthwhile [8].
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from their linearized definition,

7 1 s
0 = 51" (Qohjo + Ojhos — 5ho;)

1
= 50u00h;k
1. . 6hw
= —Ny4 i = . A4
ks [=%2] (3.43)
The equation (3.42) results in
d2§i X dlfj
hij—— =0 . 3.44
dr? | i [ ’ dT]TO 849

As a consequence, if at time 7 = 0, d¢?/dr = 0, then d2¢?/dr? = 0 and the coordinate separa-
tion & remains constant at all times. Figure (3.4) shows a spacetime diagram for a single test
particle and for two test particles. In both cases, the worldline of each particle is a straight
line because they remain in the same spatial position at all times. Therefore, the evolution of
the geodesics is given along the temporal direction.

Is important to recall that although the position of the particles does not change with time,
this is just a particular feature of the T'T coordinates. What is not changing is the coordi-
nate separation, but indeed the particles physically move when the GW passes by. General
relativity is an invariant theory and all coordinate systems must represent the same physics.
Therefore, all frames of reference agree in what is actually changing is proper distances and
proper times.

& = constant

Geodesic

. ~

Figure 3.4: Interaction of GW with test masses in the TT frame. a) A test particle initially at rest
remains in the same position at all times even after the arrival of the GW, so its worldline is a straight
line. b) Two test particles initially at rest remains in the same position at all times, so the coordinate
separation £" between them does not change with time.
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Proper Time

The proper time of a timelike geodesic z#(7) can be determined by using the line element in
the TT frame,

gudat (T)dz" (1) = —c*dr?
(T]W + hEVT) dzt(T)dz" (1) = —c2dr?
—c*dt*(t) + (6 + h;ET) da'(t)da? (1) = —c*dr

dz'(7) dz'(7)

2 _ _ 2
T dr* = —c°dr . (3.45)

—c*dt* (1) + (655 + ;")
However, if a particle is initially at rest it will be in the same position forever in the TT frame
and (dx'/dr) = 0 for all 7. Then, from (3.45) it is concluded that,
—c2dt* (1) = —cPdr?
t(r) =71 . (3.46)

Hence, if an observer in the TT frame is sitting initially with a clock on the rest mass, the
measure of the coordinate time ¢ is the proper time 7.

Proper Distance

Consider two particles initially along the z-direction at (ct,z1,0,0) and (ct,x2,0,0). If the
spatial separation between these events is denoted by L. = xo—x1, the proper distance between
the particles is given by

L
s:/ V Guvdatdxy . (3.47)
0

If a GW is propagating in the +z-direction, from equation (2.89) the line element in the TT
frame reads,

gudrtds” = [I + Ay cos(wt)] dz? . (3.48)

Note that in the last expression, because initially the separation in the y and z directions is
zero, it will remain the same for all times in the TT gauge [1]. The only contribution comes
from the z-direction. Inserting this equation into (3.47) one obtains,

L
s :/ 1 +A+cos(wt)]1/2dx
0

= L1 + A, cos(wt)]/?

1
s~ L [1 + §A+ cos(wt) , (3.49)
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where in the last line was used the approximation (14 x)" « 1+ nx because Ay < 1. Recall
that the quantity L is the initial and unperturbed separation between the particles along the
x-direction before the GW arrival. This value is constant in the TT gauge and the axis move
with the GW in such frame.

More generally, if the particles are set down at coordinates (ct,x1,y1,21) and (ct, z2,y2, 22),
the initial separation between them is given by the vector L, which remains constant in time
for an observer in the TT gauge. The proper distance (3.47) can be obtained from the line
element given by,

s? =~ + (5 + hED) Az A

s? = 5ijA1:iij + h;FjTAziij

2 = Az + Ay2 + A%+ h;ijAmiAmj

s° = (z2— m1)2 + (y2 — y1)2 + (22 — z1)2 + h;gTAxiij

s? = L2 + L2 + L? + hl T Az Axd

s* = L* + hij LiL; | (3.50)

where L, = 29 — 21, Ly = y2 — y1, L. = 22 — 21 and L? = L?E + Lz + Lg. To linear order in
h, i.e O(e), the equation (3.50) becomes,

hii(t)L; L;
52:L2<1+ ]()2 .7>

L
5= (14 halOLiLs . o1 tuEdy (3.51)
N L2 - 212 ' '

Thus, the proper distance is

2L

s = L + hi(t) (LZLJ') . (3.52)

Differentiating the last expression with respect to ¢ one gets,

L;

. 1.
s == §hl](t) I

L . (3.53)
Writing (L;/L) = n; and defining s; from s = n;s;, equation (3.53) results in,
. 1.
nis; = ihij(t)niLj

. 1.
S; = ihm (t)Lj . (3.54)
Observe that L; = s; to lowest order in h [8]. Therefore, a geodesic equation in terms of the

proper distance is obtained,
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5i 2 —hy(t)s;]| . (3.55)

If the two particles are in fact test mirrors in which light travels back and forth, the proper
distance determines a complete cycle (see figure 3.5). Moreover, since the proper distance is
changing, is possible to compare the time of a cycle before and after the GW passes by.

Mirror 1 Mirror 2
(Test Mass (Test Mass)

s(t) I

Figure 3.5: Proper distance between mirrors in a GW interferometer.

3.5 The proper detector frame

As a worthwhile approximation, the proper detector frame uses a freely falling observer whose
coordinates are the Fermi normal coordinates. Extrictly speaking, for experiments on Earth
this is not completely true. The interferometer is subjected to an acceleration a = —g and also
rotates due to the Earth’s gravity and motion®. For this reason, the laboratory actually is not
in free fall [8, 32]. The exact metric that describes a system in which these effects are included
is quite complicated. Such a system is called the proper detector frame. However, thanks to
the arrangement of the experiment and the frequency window in which the GWs are detected,
is possible to extract the signal by neglecting such effects. Therefore, the approximate metric
that describes the local proper detector frame is given by a freely-falling observer in Fermi
normal coordinates. From (3.37) this metric is given by,

o T2 ) S 1
ds® ~ —c2dt? [1 + ROinxzx]} — 2cdtdx’ [3Rojikx]:vk] + dx'dx? [&-j — 3Rikjl:ckml] . (3.56)

To analize the interaction of GWs with test masses in this frame, is better to work with
the geodesic deviation equation. By choosing the Fermi normal coordinates, the connections
vanish everywhere in an entire timelike geodesic y. Due to this, and because the temporal
derivative is defined along the timelike geodesic, one obtains inmediately [38],

GOF‘;B =0 . (3.57)
¥

The previous statement also can be seen directly from the metric. As said previously in the
last section, the metric depends explicitly only on the spatial Fermi coordinates, but implictly
on the temporal Fermi coordinate through the Riemann tensor. Nevertheless, the Riemann
tensor always appears multiplied by a cuadratic term in the spatial coordinates as shown

4There are other effects that may be considered in the laboratory frame. For instance, see 8]
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n (3.56). Hence, taking the temporal derivative of the connections gives again terms with
spatial components, which in turns vanish when evaluating at ~.

Bearing in mind that FZ 3 and E?OFZ 3 vanish everywhere in +, the spatial part of the deviation
geodesic equation reads

d2¢ - dx® deP - dz® doP
21‘\1 0’ A —
iz L dr d7'+€ B dr O
—0
d25l+§08 - dx® daP | gor dz® dzP 0
oI’ a a =
dr? “—6'@ dr dr Bdr dr
dz¢ dz® dzP
I =0 . .
dr 12 + f a aB” 5 dr dT 0 (3 58)

If additionally one assumes that the detector performs a non-relativistic motion, then

dzt dzx?

- 3.59
dr < dr ( )
As a consequence, equation (3.58) turns out into
251 dx

This equation can be expressed in terms of the Riemann tensor. For this, observe that the
components Rio;’o evaluated at the timelike geodesic 7 results in®

0j0 = 0T — ol = 0T (3.61)
=0

and after inserting (3.61) in (3.60) yields

d2§Z de 2
dT + 5] 0]0 (d’]’) == O . (362)

On the other hand, when considering the metric nearly flat at the position of the detector,
the time coordinate and proper time are related by

Nuwdatds” = —c*dr?* . (3.63)
If a test particle is initially at rest, then acquires a velocity of order (dz’/dr) = cO(e?) when
the GW passes by [8]. Then, expanding (3.63) gives,
—Adt* + 5¢jdxid:rj = —c?dr?
Adt? = Fdr? + 5ijdxid:pj

dt? = dr* + 5de@de

5The I'T terms in the definition of the Riemann tensor can be set to zero at + in these coordinates.
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1 . dxtdal
dt* = dr* |1 + 56— ——
T { + 2 dr dT:|
1 dxt dx’
2 2
= 1+ ==
dt dr [ + 2 dr dT:|

dt* = dr* [1 + O(h?)]
= t=7 . (3.64)

From (3.64) one has dz°/dr = c and the equation (3.62) can be rewritten as

. . . d2e
gl + CQRleogj =0 5 |:§Z = dtfz :| . (365)

Measurements of GWs at the detector are of order h ~ O(1072%). Thus, linearized theory is
appropriate in this context and one is able to compute the Riemann tensor at linear order in
the equation (3.65). As mentioned before, apart from being covariant, the Riemann tensor is
also invariant in linearized theory. So, is more suitable to compute it in a simple system, the
TT frame. The result is,

1
Ripjo = 5{80@- h;%T ~+ 0;00 thT — 0;0; hg‘(;l‘ — aoaoh;l;-T}
iy g g
= =0 =

1
Rinjo = 2C2h;1;T : (3.66)

Finally, using (3.66) in (3.65) one obtains

& = thTgﬂ . (3.67)

In conclusion, in the freeling-falling frame the effect of a GW on a test mass can be described
as a Newtonian force given by,

Fy = —hTTgﬂ (3.68)

3.6 Ring of test masses

In this section we shall study the interaction of GWs with a ring of test masses. This will allow
to understand the meaning of the plus and cross polarizations. Consider a GW propagating
along the +z-direction and a ring constituted by test particles as is shown in figure 3.6. The
ring is located at the zy plane, so is expected that the particles do not move in the direction
of the wave®. Conversely, the particles will stretch in the zy plane and the task is to describe
the motion of the deviation vector & = (&;,&,) in the proper detector frame.

5This is because GWs are transverse waves.
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=
>

Zzz

Figure 3.6: Ring of test masses located at the xzy plane. The free-falling frame is attached to the center
of the ring and the GW is propagating along the +z direction.

In the TT gauge, a general GW in the +z-direction could be expressed as

A+ AX O
h;S.T(t, z) = | Ax —Ay 0] cos(kz —wt+ ) (3.69)
0 0 0

where ¢ is a phase that depends on the initial conditions. Inserting this solution in the
equation (3.67) we have

. P
£ = Shijfe =0 [hzy = 0]
€. = constant . (3.70)

If initially the particles are at rest, then SZ(O) = 0 and therefore fz(t) = 0. This is just the
statement of the transversality property. If initially the particles set down at z = 0, they will
remain in the plane even after the GW arrival. Moreover, assume that at the instant ¢ = 0 the
GW has not yet reached the particles and so h;ro(O) = 0. By imposing this initial condition
over (3.69) one gets

A+ AX 0 T
h;ij((),O) =[Ax —Ay 0| cos(¢) =0 = cos(¢) =0 [qb = —5}
0 0 0
A+ AX 0 T T
h,L-TjT(t,O) =[Ax —-Ay O cos(wt — —) ; [cos (wt - —) = sin(wt)]
0 0 0 2 2

Hence, the solution (3.69) when the particles are initially at rest in the plane zy becomes
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A+ AX 0
WEE(E,0) = [ Ax —Ap 0] sin(wt) (3.71)
0 0 0

It’s appropriate to split this solution as a sum of the plus and cross contributions,

1 0 0 0 1 0
hi (t,0) = [0 =1 0] Aysin(wt) + [1 0 0| Axsin(wt) (3.72)
0 0 0 0 0 0
hiP (1) IO

The ring will be deformed in the xy plane after the GW arrival. The changes in the relative
positions of the test particles are described by the deviation vector & that can be written as

&(t) = (w0 + 6(t), 3o + 3y(t), 0) . (3.73)

where zg and yg are the unperturbed initial position of the particles at ¢ = 0. The deviation
vector at this instant is simply &;(0) = (20, yo,0) before the wave reach the ring. The prob-
lem consists to find the functions dx(t) and dy(¢) to see the effects of the GW. In order to
accomplish this, the polarizations are considered first separately.

Plus Polarization (+)
Suppose an incoming GW with only the plus polarization. Equation (3.67) reads as follows,
1.

o = §h§;)§j
E = o[ e + e
Eo= e o =0, &=0
d;ff = —%wQAJr sin(wt) [z + x| dz ~ Ole)
d;t? o) _%WQ.%'OAJ,_ sin(wt) . (3.74)
Solving for dz in (3.74) yields,
or = %ng+ sin(wt) . (3.75)

Similarly, for the y component one gets,
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.. | R
fy = §hg(,j)§]

.. 17 .
& = 5| hre" + ey

2
§ =g o A= =0
T L)l + ] 5y~ O)
d?5y 1 5 .
2 = v YoA4 sin(wt) . (3.76)

After integration of (3.76) one finds,

1
oy = f§yoA+ sin(wt) . (3.77)

Using (3.75) and (3.77) in (3.73) it is obtained the displacement & of the particles that make
up the ring with respect to the origin,

1 1
& = (:co + §$OA+ sin(wt) , yo — §y0A+ sin(wt) , 0) : (3.78)

The behaviour of a GW only with the plus polarization is shown in figure 3.7. At the
instant ¢ = 0, the ring is a perfect unperturbed circle. At later times for wt = (0,7/2], the
ring starts to deform along the z-direction until it reaches the time given by wt = 7/2, in
which the ring is at its maximum elongation. After that, the ring shrinks along the same
x-direction between the phase values wt = (7/2, 7], recovering its original shape at wt = 7.
Then, at times given by wt = (m, 37/2], the wave stretches the ring along the y-direction and
the maximum elongation occurs at wt = 37 /2. Finally, from wt = (37/2, 27| the ring shrinks
in the same y-direction until the time given by wt = 27, in which the ring is again a perfect
circle and starts the cycle over again. Observe that the overall shape that is taking the ring
with time, is an oscillatory (4) pattern and the name plus polarization is now justified.

Cross Polarization (x)

If the GW only has the cross polarization, equation (3.67) gives for the z component,

& = %'fz;j)gj - % RCOem 4+ REOgn
& = %7‘%)5‘1’ ;o W =0, &=0
d;fzx B —%WQAX sin(wt) [yo + dy] 5 Oy~ O(Ay)
A%z - —EWQyoAx sin(wt) 5.79)

dt? 2
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wt=0 ——

wt=m/2 —e—

3

Figure 3.7: Deformation of a ring of test masses under the effect of the plus polarization.

Solving for dz from (3.79) gives,

6z = %yoAX sin(wt) . (3.80)

For the y-component we have

& = LhUeid = I RGOE 4 hGer

2 i

- Li 0 o () B

éyzihymg ) h‘yy :07 é.:()
2

1

dd—;y = —§w2AX sin(wt) [z + dz] dz ~ O(Ax)
d26y 1 2 .
— v ——wrgAy sin(wt) . (3.81)

dt? 2
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From (3.81) it is obtained,

1
dy = §x0AX sin(wt) . (3.82)

Using (3.80) and (3.82) in (3.73) the solution of the deviation vector £ is now,

1 1
& = (360 + 5Y0Ax sin(wt) , yo + 5%0Ax sin(wt) , 0) : (3.83)

The situation here is similar to the plus polarization case. The only thing to bear in mind
is the stretching directions in which the GW is acting on the ring. In the plus polarization,
this axis were the z and y axis. In this case, the axis are perpendicular each other as well but
are rotated 45° with respect to the z and y directions (see figure 3.8).

2 I I I
wt=0 ——
wt=7/2 —e—
wt=m —e—
wt =312 —e—
1k _

3

Figure 3.8: Deformation of a ring of test masses under the effect of the cross polarization.

Of course, if the GW has both polarizations, the equations to solve becomes in
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d?6x 1 5.

e sin(wt) [A+xo + Axyo (3.84)
d%5y 1 )

W ~ 50)2 Sln(wt) [A+y0 — Axxo] y (385)

The deviation vector £ in this case is

1 . 1.
& = (900 + §Sln(Wt)[A+ﬂfo+Axy0] Yo — §SIH(W75) [Atyo — Axao] 0) , (3.86)

and figure 3.9 illustrates the effect of both polarizations.

wt=0 —e—

Figure 3.9: Plus and cross polarizations contributions on a ring of test masses.
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Chapter 4

The Energy-Momentum Tensor of
Gravitational Waves

The previous chapter demonstrates that GWs carries energy and momentum. The proper
distance between particles are indeed changing in the laboratory. If these particles are joined
together by a spring with friction, the kinetic energy may dissipate into heat. This means that
GWs can do work and therefore the kinetic energy of the test particles must come from the
energy of GWs. General relativity predicts the curvature of the spacetime by the presence of
energy and matter. If the energy of a GW is propagating through space, the curvature of the
spacetime itself is propagating. Neverthless, there is no local measure of the gravitational field
in general relativity. As has been mentioned before, is always possible to turn off gravity at
one point in spacetime through an appropiate coordinate system®. This implies that there is
no local gravitational energy. To extract the energy of GWs, the way to proceed is to consider
a region of the spacetime that is large enough to capture many wavelengths of the wave, but
small enough so the associate energy in this region comes only from the small ripples that
generates the wave and not from the background curvature. This is only possible when there
is a clearly distinction between the curvature scales of the perturbations and the background.
A good example is an orange. As a whole could represent a S? sphere, but locally it has tiny
lumps. The overall sphere plays the role of the smooth background and the tiny lumps the
ripples of the GWs. In the case of linearized theory, this was a straightforward task beacause
any disturbance of the spacetime was interpretated as GWs. However, if there is an incoming
GW near a spherical symmetric object is not easy to distinguish between the Schwarzschild
curvature and the ripples.

4.1 The shortwave approximation in perturbation theory

To ensure the separation of scales and identify the ripples from the smooth background one
must impose the condition
AL Lpg (4.1)

where Lp is typical scale of variation of the background and X is the reduced wavelength of
the GW [8]. Alternatively a formulation in terms of frequencies is also valid,

F>fs (4.2)

The length scales and the frequency scales between the waves and the background are apriori
unrelated and one may use equivalently equation (4.1) or (4.2) to extract the energy of the
GW. The formalism that allows to separate the background from the ripples is called the
shortwave approximation. At the heart of this formalism, is to capture enough physical

'The Riemann normal coordinates and the Fermi normal coordinates at one point in the spacetime is the
flat metric and thus there is no gravitational field.
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curvature in a small region by implementing an average scheme [31|. The inability to define
a local measure of the gravitational field energy, suggest to consider a neighborhood about
a point in spacetime such that the typical size | should be of many wavelengths but not too
large compare to the background scale of variation,

A<I<Lg . (4.3)

If an average procedure is perform over a volume of size [, the radiative contributions of GWs
may be distinguish as follows,

1) Slowly-varying modes in spacetime of order Lp remains constant when averaging,
2) Rapidly-varying modes in spacetime of order X average to zero.

The formal details of the spacetime average process are not as important as their properties
[33, 39]. For a spacetime with a general background described by a metric g,,, the shortwave
averaging linear operator (-) satisfied the following useful properties. For general tensors A
and B, then

a) Covariant derivatives conmute, (V,V,(A4)) = (V,V,(4)) . (4.4)
b) Gradients average to zero, (V,(A4)) =0 .
c) As a corollary of the above property, (A(V,B)) = —(B(V,A)) . (4.6)

A formal justification of such properties can be found in [40, 41]. However, when computing
explicitly the energy-momentum tensor in a flat background, these properties will gain mean-
ing?. For the moment, we shall focus on how would be the energy-momentum tensor of GWs
when a clearly separation of scales are given from the beggining in the shortwave approxima-
tion. An intuitive strategy to imagine the schematic form that should take this tensor, may
be inspired by the energy-momentum tensor from other fields [31]. In electromagnetism or
scalar field theories, the energy-momentum tensors are constructed from quadratic terms in
the relevant fields®. If one is interested in extracting the energy-momentum tensor of GWs,
the relevant field in this case must be h,,. Thus, our framework of perturbation theory must
be extended beyond the linear order?. With this motivation, a natural way to express the
metric decomposition should be as,

Gur(7) = Guo(x) + hi)(@) + h)(z) + O(%) . (4.7)

One is actually interested in studying the energy of GWs when they are propagating in
vacuum curved background. Therefore, by using the perturbed metric in (4.7), all geometrical
quantities can be obtained at order O(g?). This allow us to expand the vacuum EFE as,

_ (1) (2) (1)
Culg) = Curlg) + Guu[hM] + G W] + G [h?] +O(*) = 0 . (48)
—_— Y Y=
O(e) 0O(e2) 0(e?)

The notation of each term in (4.8) is explained as follows,

2This work is based on a flat background, so this properties will be justified later in this context.
3For instance, the electromagnetic energy-momentum tensor is quadratic in Fj,,.
4Ts expected a nonlinear behaviour of the gravitational field with itslef due to the energy of GWs.
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C_}W: Is the usual Einstein operator acting on the background metric g, .
G Is a linear operator in their covariant derivatives acting on a perturbation tensor hﬂ;)
of some order O(").

wv: Is the quadratic part in their covariant derivatives, acting on a perturbation tensor hl(fy)
of some order O(c").

Thus, the term of order O(¢g) in (4.8) has terms of the form ?Q?Bhﬁ). The first term of

O(£?) has terms as vahf})%hﬁ,}) and hf},}?avﬁhﬁ). The second term of O(e) has terms

of the form @aﬁghfﬁ)f’. Then, the next step is to solve the EFE order by order in €. By
the initial assumption, the background Einstein’s tensor must satisfy by itself the equation
Gw[g] = 0°. The first and second order perturbative equations are [31, 42],

GV =0, (4.9)

Gulh?] = =G [hY] . (4.10)
Solving this equations, gives the first order (hf}V)) and second order (hg,)) corrections to the
background metric. In particular, if such background is flat, the first order equation in (4.9)
is just the linearized EFE with the Einstein’s tensor given by (2.25). However, if one retained
the metric expansion up to second order, the quantity at the right hand side of (4.10) acts as
a source term for the second order metric perturbation hfl,) . Therefore, one may write (4.10)
as

(1)
Guln®] = 275, (4.11)
C

where,

A @
t = —%Gw[h(l)] : (4.12)

Then, t,, is interpretated as the energy-momentum tensor created by the first order metric
perturbation hf},,) or GWs. According to our initial motivation, the expression for ¢, in (4.12)
is a symmetric tensor as all energy-momentum tensors and is also quadratic in the relevant
field hE},,) that describes the GW. Moreover, is a conserved quantity by the Bianchi identities.
Nevertheless, this is not a gauge invariant quantity”. What is gauge invariant is the shortwave

averaging of ¢,,,. Thus, the effective energy-momentum tensor of GWs is defined as,

c4 (2)
b = =g (Gt ) | (4.13)

®Note the functional form of the equations given in (A.26) and (A.30).

6 Actually, the background Einstein’s tensor is of order 0(52). We will retake this statement in section 4.2.

If the background is flat, this is refered to infinitesimal gauge transformation in linearized theory. In
general one may consider the propagation of a GW in a curved background. This can be done by solving the
EFE in vacuum, RE}V) = 0 by choosing a suitable gauge.
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4.2 The coarse-grained form of the Einstein’s Field Equations

In the last section, it was mentioned the shortwave approximation to clarify the distintion
between the typical scales of the background and GWs. The construction of the energy-
momentum tensor ¢, was given through the perturbative EFE based on a formal expansion
of the metric. From the beggining, this was made without any assumption about the scale
variation of each term in (4.8). Only at the condition of gauge invariance, the shortwave
averaging was required. This section explains how to split the EFE at first glance, when
the radiative modes of propagation are classified into high and low frequencies. At the end, a
macroscopic version of the EFE are obtained in which ¢,,,, works as a source of the background
curvature. This is called the coarse-grained form of the EFE.

Rather than using the vacuum EFE given in (4.8), is better to rewritte these equations in
terms of the Ricci tensor. Note that the trace of the EFE is given by

817G .,

1
guVR,ul/ - §Rgqulw = 79 T;w
1 8tG
— —R(4) = —T
R 2R( ) "
8tG
= — T . 4.14
R A ) ( )

where T is the trace of T}, Using (4.14) in (2.1), an alternative form of the EFE is

_ 8rG 1

Ry CT(T,W _ 5gWT) . (4.15)

Considering the perturbative metric up to second order, the left hand side of (4.15) can be
expanded as

_ €Y (2)

Ruwlgl = Ruwlgl + Rw/[h(l)] + Rw[h(l)] + error . (4.16)

The quantity Ruu is the usual Ricci tensor definition refered to the background metric. The
other terms are the Ricci tensor at first and second order in €. However, for the purpose of
this procedure, one may include just the terms of the form RE?,,) [A()] and not Rf},,) [h)] [33]8.
They have the following characteristics according to their frequency,

RW : 1t is constructed from the metric gy, which has a low frequency scale variation. Then,
this term contains low-frequency modes.

R, : By definition is linear order in hy, which has a high frequency scale variation. Therefore,
this term contains high-frequency modes.

R, - Contain terms of the form h,,h,e and may have low and high frequency scales variation.
For instance, the superposition of two waves of high-frequency in opposite directions can
results in a low-frequency wave.

In view of (4.16), the EFE in (4.15) reads,

8This can be obtained by considering the metric g, at order O(¢) but g"* up to order O(g?). This is the
lowest expansion next to leading order in . For more details, see appendix B.
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_ ey ) 87 1

Rulg) + RV + Ru,pO) = =2 (TW - fgWT) . (4.17)
~—— —— —— Cc 2

Low f High f Low & High f

Low & High f

These equations can be split into low and high modes as follows,

_ (2) qLowf 81G 1 Lowf
R = —[RW} n CT[TW — §gw,T} , (4.18)
o) () 1Highf e 1 Highf
Ry = —[ W} + 7[TW — 5gWT] . (4.19)

The equation (4.18) is the projection of the EFE onto the low frequency modes. This can be
formalized by introducing the shortwave approximation. By recalling the properties given in
the last section and the frequency distintion given in (4.17), the average of the EFE over a
volume [ turns out to be,

_ (€)) (2) 81 1
(1) (i (i) - 2 o)
—_ Y= ==

~Lp ~X ~Lp & X ~Lp & X

_ (2) qLowf Y& 1 Lowf
R;w + |:R;w] = T[Tw/ - §guuT ]

; , (4.20)

and equation (4.18) is recovered. In vacuum, the EFE projected onte the low frequency modes
implies that,

R, = —|Ruw

_ [@) }Lowf (4.21)

This expression suggest that R, is of order O(g?). Likewise, comparing with (4.15), equation
(4.21) also tells that the term at the right hand side is a source term for the background
curvature. Denoting the low frequency modes of the right hand side in (4.20) by

1 _ 1 -
<TW — 29WT> =T — §9WT , (4.22)

where T = QWT # . By definition, Tw, is a low frequency quantity and thus can be interpre-
tated as macroscopic version of T}, when the scales of variation are fixed?. The expression
for t,,, in (4.13) yields,

1 (2)

4
b =~ { B h®) = Lg RO (4.23)
. 8rG \ " 27K ’

(2) (2)
where R = g" Ry, . The trace of (4.23) is

9Remember that the bracket operation is catching the information over I. Then, the resulting low frequency
modes is just an average or macroscopic version of T}, .
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t=g"tw
_ ! b ()] 1 %)[h(l)]
-9 8rG \ M 9 Im
@) 1 @)
= < WRW _ QQWQWR[h(l)]>

. < > (4.24)

Inserting (4.24) into (4.23) we get

A /e 1 @

- - M1y — 25 (1)

o =~ | (R} = a0 (RVT) |

/e 1_ &G

- _ - (1) g
87rG|:<RMV[h ]> S } (4.25)

(2)
Now, solving for <RW[h(1)]> it is obtained,

(2) 8rG 1
<RW[h( >]> = _&[t*‘” - Zgu,,t] (4.26)

Using (4.26), the projected EFE onto the low frequency modes are given by

_ ©) 8rG 1
R,uu = - <R,uu[h(1)]> + % <T,u1/ - 2g,ul/T>

87G [ 1_ 8rG 1
= —I t//"/ - 2guyt:| + CT <T/“/ - 2g/“’T>

871G | 1_ 871G [ - 1 -
= 04 -t;“/ - 29/“/1{| + CT |:T/“/ - 29MVT:|

- = :<TW + tW) - %g,w (T + t)] . (4.27)

Taking the trace of (4.27) one obtains,
_ 817G | /= —
R=-F [(T t) —2<T+t)]
T+1) (4.28)

Finally, substituting (4.28) into (4.27) and reorganizing terms, the coarse-grained version
of the EFE is obtained,
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_ 1 - L C.
R,uzz - ig,ul/R = CT(T;W + t,uzz) . (429)

These equations determined the background dynamics and represent a macroscopic version
of the EFE. Observe that t,, acts a source for the background spacetime. By virtue of the
Bianchi identities, from (4.29) one ensures the conservation of the total energy-momentum
tensor,

VY (T + t) = 0 (4.30)

This implies that there is in general an exchange of energy and momentum between the matter
sources and GWs.
As a final remark, consider for simplicity a nearly flat background!’. Note from (4.21) that

Ry ~ O(g%) because the right hand side of this equation has terms of the form 8uh&1/6),8yh§,? ,

hsgaﬂayhﬁ) and both terms are of order O(g?). Apart from that, g,, has a scale of variation
Lp and h,, vary as X. Now, keeping in mind that R, comes from the second derivatives of
the background metric it is true that,

= _ 1 = e\’
Rp P~ gy and B~ (00 ~ (5) (431)
B
Therefore, it is concluded that
X .
e~ 71— (Curvature determined by GWs) . (4.32)
B

If T,,, # 0 and the contribution of GWs to the background is very weak compared to matter
sources, then

1 ( £ ) 2 . 2%
— ~ (v ] + Typical value of T}, > <> . (4.33)
L A A
In this case we have,
A :
e K ™ (Curvature determined by matter) . (4.34)
B

From the previous expressions, is possible to understand why linearized theory is not possible
to be extended beyond the linear order in a systematic way. If g,, = 1., then (1/Lg) — 0
and equation (4.32) implies that ¢ — 0. Even if ¢ is arbitrarily small, equation (4.34) is not
valid. This means that general relativity can not be promoted in a systematic expansion of
e if the background is the flat metric [8]. The notion that ¢ < 1 is also understood from
the previous discussion. If one assumes that ¢ = 1, from X/Lp there is no distintion between
GWs and the background. Thus, GWs are slightly ripples in the fabric of spacetime and there
is nothing like a GW with an arbitrary amplitude.

OFor example, consider the background metric as Guv = Npv + Juv (52),
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4.3 The energy-momentum tensor of gravitational waves

An explicit expression for ¢, at the detector is obtained in this section. Very far away from
the source, i.e, at the laboratory, xthe background spacetime may be consider as flat. This
implies that g, = 1, and V = 0. Recalling the definition of the energy-momentum tensor
from the previous sections, the energy momentum-tensor is given at the detector by,

C

4 /@ 1 @
- _° Wy _ = (1)
tuw e <RW[h | = SRl ]> : (4.35)

Because the second order perturbation tensor h,(f,,) is not involved in this computations, from

(1)

now on h,ulu = h;,,. Based on the calculations shown in appendix B the first term that is
required from (4.35) gives,

(é)lw %77/)077&5 Bauhpaavhoﬁ + (8phl/oc> (30}1#,3 - 8ﬁhua>]

+ Ppa (aya“hgﬁ + O0shy — sy — aﬁaﬂhw)

+ (%aahpg ~ Bphar) (Buhus + Buhus — Oshi ) (4.36)

1
= [Qauhﬂﬁayhgﬂ + 8°h, 0sh,5 — 07, Ogh,,

DN =

+ hP0,0,hes + h7P0,05h,, — hP0,05hu, — h7P0,05h,,

1 1 1
+ §6ﬁh01,hug + 5aﬁhaﬂhyﬁ - 5aﬁhaﬂhw
— 0,050, h,5 — 95 70,hyp + OshP7Oghy | (4.37)

In general, £, is a symmetric tensor, so it has 10 independent components. Only two of them
are physical modes that comes from the plus and cross polarizations. The other components
depends on the choice of coordinates. To throw out spurious degrees of freedom, is worthwhile
to impose the Lorenz gauge. By doing this, 6 independent components remains, 2 physical
modes and 4 gauge modes that depends on ¢, through O, = 0 (see equation (2.65)). If
initially the functions €, are choosen such that h = 0, then

B,u,u = h,uzz and ayhuy = a”h/“, =0 . (438)
Therefore, the last six terms in (4.37) vanish and t,,, becomes,

@ 111
R = 5 §auhoﬁayhc,ﬁ + 0°hPOsh,s — 070, sh,

+ h?P0,0,hos + h7P0,05h,, — h°P8,05hu, — h7P0,05hy0 | (4.39)

The bracket operator (-) that appears in (4.35) implies that the shortwave average of some
terms in (4.39) is given by,
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1
= F’/vaah”ﬁa”h“ﬁ @z Oehyupdh, = 0, (huﬁaahg) — hyup0h,?
1 1
T o ﬁ — B 3 = — o B 2 ~
l_3 /V |:8o' (hlﬁﬁa hV ) hﬂ/BE\h’y_/} d X l3 o hﬂﬁa h,/ d xr ~ O (440)
1
5 [ OB O Pa o ON 0ub = 05 (ot hS) = s
1 1
5 [85 (h,wé)"hf) — yed” aghﬂ d'a = 5 7{ hyuedh,fd?z =~ 0 (4.41)
' = o
1
* l?’/vhaﬁagaﬂh/w &’z ) hoﬁaaaﬂhlw = aﬁ (hgﬁaahul/> o 8Bh0580h,ul/
1 - " 1 i
l‘;g/v {85 (h ’Baah,w) — O0gh ﬁaahw} dr = i avh ’B(%hwd% ~ 0 (4.42)
=0
Similarly,
. 1 o 3 . 1 B 3
B ZT)’ Vh 8V85h,w d°z = 0 B ﬁ Vh 81165}11/0' d°x = 0 . (443)

Is important to remark that although to average is spatial, it could be done also over the
temporal component due to the Lorenz gauge. In this reference frame one has the wave
equation Uh,, = 0, whose solution depends on the agument (z° — 2). The action of the
temporal derivative over the solution h,,, (z° — z) implies that Oyl (2° —2) = —0,hy (20— 2).
As a consequence, the integration by parts is also possible when a temporal derivative is
involved by changing dy — —3d,. The resulting surface integral drops to zero by assuming
that the size of the box in which the integration takes place is infinitely larger than X [8]. By
(4.39) one is left with,

@ 1/1
<RW> =3 <26Mhaﬁayhgg - h”ﬂauayhgﬁ>

1/1
= {5000 has + 0u(RTPOuhop) — Buh70,hos
2\ 2
—_——
boundary term
@ 1
= —— UB
<RW> ; (0h7 Dhs) (4.44)

Equation (4.44) gives the first term in the definition of ¢, as shown in (4.35). To obtain the
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other term, one must contract the result in (4.44) with the background metric, 7, as follows,

2 1
e <Ra5> = —4naﬁ<aahdpaﬁhgp>
(03 @) 1 g (0%
< ﬂRa5> = —4<6ah PO h0p>

(2) 1
<R> - —<aa(haﬂaahgp) _por Dh0p> —0 . (4.45)
4 ——
—_——
bound =0
oundary

Finally, inserting (4.44) and (4.45) into (4.35) one gets,

by = 32; = (0h7 Ohog) | - (4.46)

The conditions given by the Lorenz gauge and h = 0 allowed to obtain equation (4.46).
However this 5 constraints reduce from 10 to 5 independent components. These are 2 physical
and 3 gauge dependent. Is possibe to check that the 3 residual gauge modes that comes from
¢, do not contribute to the expression (4.46). This can be done by veryfing that (4.46) is
gauge invariant in the linearized theory or computing the variation dt,,. As mentioned in
chapter 2, the invariance gauge in linearized theory is,

Shyy = hyy — h;w = Ouer + Ovey - (4.47)

Applying the Leibniz rule, the variation of t,, gives,

4

Ot = 332 (070, 0hy + OOy Dihos) (4.48)
Therefore,
St = 32WG <a 1789, (aggﬂ + aﬁsg) +a (a" 8 4 9P U)a h0ﬂ>
= 327TG <8uh 58,0565 + 8,h°°0,0pc5 + 0,0°€"0,hyp + 0,0°70 haﬂ>
= o <2& B00,0525 + 20,07 Dyhog)
_ of
=== <8Mh Oudozy + 0,07 Dyhas )
— B _ B o B _ B o
: GW = Ouh®?0,25) — 0, 9h™ Dy + |07 (04 Dhos) — 0ue"0, 0 haﬁ}>
boundary =0 boundary =0
_ 0 (4.49)
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The previous result shows that t,,, depends only on the physical modes. Thus, equation (4.46)
can be put as,

C4

_ ij 5 pTT
b = 5o (0 dhTT) | - (4.50)

In particular, the tgy component is the energy density and reads,

2
c
t (W hTT) 451
"= e (4.51)
This expression can be rewritten in terms of the two physical degrees of freedom. For simplic-
ity, consider a generic TT-wave propagating along some of the spatial axis, e.g., +2z-direction'!.
Hence, tgp becomes

2
_ TT; T 22
tog_gzﬂG<h Wb+ ATTR2, o+ ATTR2L 4+ BT hTT>
2
_ ¢ ) )
too = 167TG<h++hx> : (4.52)

where h{;l = hy and hi;' = hy. For instance, let’s compute the energy-momntum tensor ¢,
for a plane wave travelling along the +z-direction. This wave is described by

hy  hx 0 hy = A cos(kz — wt)
hig (t,z) = [hx —hy O ; i i . (4.53)
0 0 0 hy = Ay cos(kz — wt)

Observe in (4.53) that h};T depends on the argument (kz —wt). As a consequence, one obtains
immediately,

othl; =0 , &bt =0 . (4.54)
Thus,

4 4

TT\ __
for = 55 G<a°h 01hi; > =0 e =g

<80h agh;FjT> —0 . (455

For the tg3 component, first note that

oo (2 - )] = ~LanT (2 )] - (450

C C

Therefore,

1 This may be a plane wave in vacuum or a wave generated by a source like a binary system.
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fos = 320;(; <a°hiTjT83h;5'T>
tog = 326; = (DohiEe( = 0ohTET)) = ~too - (4.57)

Using (4.56) the t33 component gives,

4

ty = = (Dshil 0T
i = = ((—ounity) (— b)) =t - (4.59)

Lastly, note that (sin?z) =1/2, so <h%r + h2x> = w?(A% + A%). Thus,

1 00 —1
2,2
+2) c"w ) 2 0 0 0 0
o = 167rG(A+ + A%) 0 00 0] (4.59)
-1 0 0 1
1 0 0 1
2, .2
w  Cw 9 9 0 0 0 O
o = 1™ %) 0 0 0 o (4.60)
1 0 0 1

Likewise, similar expressions can be obtained for a plane wave propagating along the x and
y-directions.

The energy-momentum tensor of gravitational waves is in general an invariant gauge quantity.
The preceding development was calculated specifically in the TT frame and at the location of
the laboratory. The usage of the T'T conditions was done not only to simplify the expressions,
but also to extract the physical degrees of freedom. However, this does not mean that one
cannot use other coordinate systems. Certainly, these systems must describe perturbations in
the sense of gauge transformations (see chapter 2). For this reason, a well defined momentum-
tensor is requiered under these types of gauge transformations that represent perturbations.
If one chooses a coordinate system without fixing a gauge, the tensor t,, at the position of
the detector is given by [31, 33]|'2,

A

ty = ——
327G

_ _ 1 - _ _ _ _ _
<auhpaayhpa = S0uhdh = Oph Dby aphﬂaauhya> . (4.61)

It can be shown that equation (4.61) with the bracket operation, is indeed invariant under
infinitesimal gauge transformations. More generally, if the background is not flat, the energy-
momentum tensor yields [33],

12T perform this explicit computation, one may use the shortwave average properties as well as the
propagation equation, i.e, the linearized EFE in vacuum.
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C4

ty, =
’ 321G

LG, b 273h°“5?(,,hu)a> L e

<vuhagvyha6

N

where ﬁaﬁ = hag — %gaﬁh. The expression (4.62) is also invariant under perturbed gauge
transformations (see equation (2.8)). This means that t,, is also a well defined quantity
in a curved background spacetime. To proof equation (4.62), one should use the general
definition of t,, in (4.13), the equation (A.30) and the propagation equation for waves on
curved background. This latter equation is given by setting to zero the expression (A.26) that
can be rewritten also in terms of BW. The result is,

On the other hand, besides it’s gauge invariance, the energy-momenutm tensor ¢,, is also a
conserved quantity in vacuum. If one is outside the matter sources, then 7}, = 0. Thus, from
(4.30) one obtains,

V% =0 | . (4.64)

At the detector location gy, = 1, and V = 9. Therefore, equation (4.64) becomes,

'ty = 0] . (4.65)

As a final comment, it is important to mentioned that the energy-momentum tensor can
be also studied from other approaches. For instance, if one considers linearized gravity as
a classical field theory, is possible to obtained ¢,, from Noether’s theorem by taking the
shortwave average at the end. Another way to get the same expression for t,, is from the

Landau-Lifshitz pseudotensor. After making the operation <t’ﬁlﬁ> results the same expression
as in (4.46)13.

4.4 The energy flux of gravitational waves

In terms of its components, the energy-momentum tensor t*? represents the flux of momentum
« across a constant surface x° = (ct, x) [43]. The component o = 0 of momentum is the energy
and the constant surface z° is some instant ¢. This means that the component t% is just the
energy density of GWs. Thus, the energy F that is contained within a volume V reads,

Ey = / 90 B (4.66)
\%

At large distances from the source, the conservation equation for t*¥ is given by the equation
(4.65). Then, the energy E may be expressed as,

1dE 1 10t%
LBy _ d/too dx :/ O s _/87500 &>z
c dt cdt Jy ve ot

13For more details on different approaches, see [39].
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1dE , :

-— = - / 9t d*x ot* + 0;t" = 0]

c dt v

1dFE .

Ldby = — / tY%n; dA [Divergence theorem| |, (4.67)
c dt Vv

where n; is the outward pointing unit normal vector field of the boundary 0V. The integration
volume V' is assumed to be a spherical shell centered on the source that generates the GW,
where the boundary is located at spatial infinity [8, 31]'4. If n; = #; is the radial unit vector
at each point of the shell which has a surface element dA = r2d€Q, the equation (4.67) turns
out to be,

dE
= = —cr2/ 9) (4.68)
dt ov
where o7
o = e : 4.
327G <8 T or > (4.69)

Let’s anticipate that for a GW propagating radially outwards at the far-field zone, the per-
turbation solution has a functional dependence given by'?,

1
hiTjT(t,'r) = ;fij(t —rjc) . (4.70)
First, note that

8fij(t — T‘/C) _ _lafij(t — 7"/0)

or c ot = —Oofij(t—r/c) . (4.71)

Then, at very large distances one has

onLr(t,r) 1 10fi(t —r/c)
B e Y S —ZJuyN e
or r2 fi(t =r/e) + r or
| —
O(1/r2)~0

TT

Therefore, using this result in (4.72) it is obtained,

TT TT
tOT‘ — C4 80 h’b] 8h2] — C4 80 hl] _ 1 ah’b]
327G T or 327G T c Ot

4

4
C ii C ii
~ 327G <8OhTJT<_ 30h;5'T>> = 359G <80hTZT80h;5T> =t =ty . (4.73)

14 At spatial infinity the gravitational field is given only by GWs. This allows to neglect the contributions
of the matter sources and capture only the energy of GWs.
15 A detailed explanation of this functional form can be found in Chapter 5.
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Now, by taking into account the expression for toy previously mentioned in (4.52), the energy
flux yields,

E
by _ —cr2/ t% dQ
dt oV

637‘2 . .
= — h2 + k2 dQ . 4.74
167TG av< + + ><> ( 7 )

The minus sign in the previous equation means that the energy E inside the volume V is
decreasing with time. From the energy conservation principle, the energy loss per unit time
inside the volume implies that GWs carry an energy per unit time given by'6

dEy
pW = 7 | 4.75
o (4.75)
Thus, the power emitted by GWs is
dECW c3r? . .
= P2+ i) ae | . 4.76
dt 167G Joy (% + 1 (4.76)

Likewise, the energy flux carried away by the waves reads,

dESW 3 . )
GW 2 2
= = PR 477
d A = Tong (I + B (4.77)
The total energy across the surface dA from the instant t = —oo to t = oo is, 7
dEgw 3 * ., )
= PR i) e
dA 167TG/OO< + ) e
dEow _ / h (h2 + h2) dt (4.78)
dA 167G J_ o\ T x ) '

With a similar procedure, is possible to calculate the flux of linear momentum across the
boundary AV that delimits the volume V. The total momentum within the volume V reads,

1
Pk = / % B . (4.79)
\%

c
Thus,

16Tn Chapter 6 the mechanical energy loss of a compact binary system due to the emission of GWs is
discussed. A balance energy condition will gives a description on how is increasing the binary frequency when
the compact objects approach each other.

"The shortwave average can be ommited for the following reason. Recall that the operation (-) may be
done over many wavelenghts but also over a few periods if one assumes f > fg. Thus, by performing first the
integral over dt from —oo to 0o one eliminates the temporal dependence (i.e. the result is a constant) and the
average is the same argument. Hence, the (-) symbol can be ignored.
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dP* 1d
= o [ % By = / 80t0k d3x
dt cdt \7a V4
= —/ &'tik A3z ; [aotOk + aitik =0
v
= — / t*n; dA [Divergence theorem|
ov
= —/ tk r2dQ (4.80)
ov

The quantity t"* follows from (4.50) and (4.72), i.e.,

o= 326;(; (ornizohi") = SZC;G (orngronl")
N 326;:0 (= awnitr )0 nT)
- 32C;G (O n2 O NET) = 1% (4.81)

Replacing (4.81) into (4.80) gives the momentum’s rate of change carried away by the GW in
the outward direction. The result is,

dpéw Ar? i TT ok, TT
W <hij O*h > aa | . (4.82)
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Chapter 5

(Generation of Gravitational Waves in
Linearized Theory

In this chapter, the generation of GWs in linearized theory is revisited. So far, the discussions
made in previous chapters shows that at linearized level, the perturbation of the metric could
be interpreted as GWs that carries energy and momentum. It was mentioned that the solution
of the homogeneous wave equation is in general a superposition of plane waves that travels at
the speed of light. However, it was assumed that this waves indeed exists in vacuum and one
can detect them at spatial infinity. The following sections intend to review the main aspects
of the production of GWs to linear order at very large distances from the sources, i.e., at the
far-field zone.

5.1 Solution of the wave equation in linearized theory

If one is interested in study how the waves are produced, is not possible to assume vacuum.
The matter sources generates the curvature in spacetime which is propagating itself due to
the dynamics of the source. At linear order, this is to solve the linearized EFE in the presence
of matter or the inhomogeneous wave equation given by
- 167G

Dh/“’ = _TT,LLI/ . (51)
To solve equation (5.1), the Green’s function method is implemented as follows. A Green’s
function in 4-dimensions is some function G = G(z — 2’) that satisfies the following equation,

0.G(z —2') = 6%z —2') . (5.2)
Thus, the solution of (5.1) is given by
- 1
() = —207C / Gl — )T (2') d*a’ . (5.3)
c

This can be checked as follows,

Ohyy = —HZG/DG(x—m')TMV(x’)d4x'
167G 167G
= -8 [ - Tl ate’ = T

The aim of this method is to find the Green’s function by solving equation (5.2) and then
use it in (5.3) to find the solution h,, (). To do this, is easier to solve the partial differential
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equation (5.2) in the Fourier space. This means that the Green’s function and the Dirac delta
function may be expressed as,

Gz —2) = (21)4 / Gk — k)etha@=2") g4} (5.4)
T
8z —a') = (2;)4 / eiha(@®=2") g4} (5.5)

Replacing these definitions into (5.2) gives,

1
(2m)*

~ . o o ]_ . o fe%
I RAYN Y ko (z—x'*) j47, _ tko(x*—x'®) 74
/G(k K 9,0, a'k = G /e d*k

/ Gl — K 0 ik =] @tk = / ik @ —e) gy,

/ Gk — k’)[—nﬂukﬂky} etkal@®=a") gdf, — / etkal@® =) g4f. (5.6)

Recall that the 4-wavevector reads as k* = (w/c, k). Then,

2
kb, = k'k, = —%2 + K (5.7)

and using (5.6) one obtains,

~ 1

CGlh—k) = ———— (5.8)

-3

2
The Green’s function is found by substituting (5.8) into (5.4) ,
Gz —1') = )t ] K2 — w2/ d’k
1 ei[k(x—x/)—w(t—t')]

- d(w/c) d®k . 5.9
ot | (/o) (5.9

L (k%z _ wz)

Defining R = x—x’ and 7 = t —t’, the integral in (5.9) may be solved in spherical coordinates,
le.

, c ei(chosO—wT) 5 .
Gz —2') = — @)t / [ k* sin 0dfdkdpdw (5.10)
where R = |x — x| and 6 is the angle between R and k after aligning the z-axis with the

vector R. Now, making the substitution

u = ikRcos0 = du = —ikRsin0do (5.11)
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the integral in (5.10) becomes,

—iwT —ikR
, c e
- = Ydul| kdk dw . 12
Gz —a) (277)31'R//~c2c2 - wQ[ZﬁR ¢ u] v (5.12)

Thus, the Green’s function in (5.12) simplifies to

__ ¢ e T —ikR _ kR
G(x—2a') = (277)3iR/k202 — <e —e )k:dkdw

c o0 o0 e*l’UJT kR efium- kR
_ e O RR| Lakd
(2m)3iR /—oo/@ [wQ — k22 W2 — k22° } “
¢ I e s T e R
= - —_ kdk — O B kdk | d
(2m)3iR ZOO _/0 02— k2E2C /0 W — k22 } v
o r r0 —iwT S —iwT
¢ € —ikR € —ikR
= —— —_ kdk —_ kdk | d
(2m)%iR /OO _/Oo W2 — K22° * /0 W2 — k2c2C } n

¢ % o0 —iwr ,
= —— ——d —kER Lk 5.13
(27r)3iR/ _[Oo w? — k2¢2 w]e ( )

—00

The integral inside the square brackets may be solved in the complex plane and using the
residue theorem!. The result is,

c e8] ,L'ﬂ.eikCT kR
Glz—12) = — @n)iR [ [ o }e kdk , 7>0
_ 1 i OO —ik(R—cT)
 4nR [2# [oo ‘ an
= —ﬁé(R*CT) = *ﬁ&(CT*R) ;o [0(m) = 6(—x)]
Y sle(t—x x| e) — et
- 47r]x—x’]6[c(t |x X’/C) ct] . (5.14)

Finally, the Green’s function yields

Gz —2') = ¥(5($?et - :c'o) , (5.15)

0

et 15 defined as

where x

—
20, = ctyey = c(t — |XX|> . (5.16)
c

LA more general integral of this kind is solved with more detail in chapter 7.
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Having the Green’s function, the solution is obtained from (5.3). Hence,

- 167G
hu(z) = — = / Gz — )T, (') d*s’

167G 1
= / q ) (xo x’o) Ty () de"d3s’

A 47t|x — x ret

_ 4G o0 1 0 /0 0/ 0l 3 0
a ct /|:/00’X_X/’5<xret_l' )TMV(:E ’X)d:U Bz

4G 1
=7 / mTﬂy(ctret,X’) d3x!
Finally, the retarded solution reads,

- 4G 1 x —x/
h/“/(l') = &/‘X—X"Tlul(t_ ’c’,X/> dSZL'/ . (517)

Of course, as well as in electrodynamics, another solution is also acceptable for 7 < 0°.
However, this solution violates causality. It’s important to remark the interpretation of the
retarded solution in (5.17). The disturbance in the gravitation field at (ct, x) is the sum of all
influences from the sources present in T}, at the point (ctret,x’) on the past light cone [35].
This is depicted in figure 5.1.

(ct,z?) .
. (ct,x')

ct

e
(Ctret 9 x/l)

Figure 5.1: Retarded solution of the perturbation in terms of the past light cone. Adapted from [9, 31].

As mentioned before, outside the sources the solution may be projected onto the T'T gauge
using the tensor A;j;;. Observe that,

hit = Nijpahi = Ngjpihu - (5.18)

v

The previous expression follows from the explicit definition of hy; in terms of the trace-reversed
form and the trace-free property of the Lambda tensor,

2This is called the advanced solution.
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_ 1 -
Ajirihir = Nijjp (hkl - §5klh>
_ 1 _

= Ngjjihi — §Aij|llh

= Ajjihur (5.19)

Therefore,

-
BT (%) = =L Ayjp(i /‘ <t— [x CX ‘,x') B | . (5.20)

Furthermore, a Taylor expansion of |x — x/|” " is

= aan(3) + g e (et os (1) +

|x — x/| r

r r3 rd
Then, the solution in (5.20) becomes,
TT 4G NE ki 3,/ Kl i 33,0
hij (t,x) = C—4Am|kl(n) ; T (reta )d T + T (tret,x)x d’z
3 — 128 o
+ M/Tkl(tret,x/)x”m/] 3z + } ) (5.22)
r
The multiple moments of the energy-momentum tensor of the source are defined as

G2 (¢, x) = / TR (t, X )2 a2 2 da (5.23)

Then, the solution in (5.22) yields

hQ@T(t,x)z Aijipa (R Z i )6L<1> , (5.24)

=0

where L = j1j2...j;. The fall-off with distance depends on 1/r*! for each Ith multipole
moment. Thus, the gravitational field at large distances is well approximated by a few terms
of the expansion [35].

5.2 Weak-field sources and the far-field zone

Let’s consider a weak gravitational field generated by a source, so the linearized approximation
in the metric perturbation is justified at spatial infinity [8]. One may wonder what is the
solution that connects the gravitational radiation very far away from the source with the
internal dynamics of the objects that generate it. This is called the far-field zone solution [42].
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At these distances, is reasonable to approximate the expression given in (5.22) by retaining
just the first term contribution of the expansion. The next to leading term falls-off as 1/r3 so
can be neglected as well as the subsequents. Therefore,

14G . x — x|
hiq;'T(@X) = T&Aijkl(n)/Tkl (75— zj/ &’z (5.25)

If is not possible to neglect the relative retardation effects of one region of the source from
another, a slow motion of the constituents fails [42|. Thus, the retarded time cannot be
approximated properly as t,ot = t — r/c. Instead, consider figure 5.2 in which the far-zone
region from the source is illustrated. Assume an isolated source in the spacetime with a typical
size d. At the far away region, the distance between any point located at the source and the
point in which the field is evaluated is much larger than the typical size d.

[
+

At r > d one can expand

2
]x—x/\:r—x"ﬁ—l—O(d?)

Source

Figure 5.2: Graphical illustration of the far-field zone approximation. The particles that makeup the
whole source can move with arbitrary velocity.

Then, a good approximation to the solution for a source with arbitrary velocity is

14G . r  x-n
hit(t,x) ~ rc4A”|kl(n)/| ‘ dil (t— -+ ,X') &’z | . (5.26)
x/|<

C

Is better to rewrite (5.26) in terms of the frequency of the source w by performing a Fourier
transform of the energy-momentum tensor,

1 .
T(t.) = / T, K)eikx—st) gy (5.27)

M1 00) - g el e oo ()
R )

and
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! H
frfe-smt )
c c
1 ~ I .
= W//Tkl(w,k) exp{i[(k— w:) 'Y —w(t - Zﬂ}dwdi;k:d‘g:c' . (5.28)

With the Dirac delta definition

/exp{i(k —~ “’:) -x’} B’ = (2m)36®) (k - “cn) : (5.29)

the integral in (5.28) yields
I s
/Tkl<t_r+x D7X/>d3x’
c c

__1 [ 35() (1 W O 3
= on)ic /Tkl(w, k)(2m)°6" | k o) expy —w t c dwd’k
= 1 / /Tkl(w,k)é(‘g) (k — wn) exp{—iw <t — 7’) } dwd®k

2me | . c c

1 - wh . r

= T | w,— |expy —iw|t—— | pdw . (5.30)

2rme c c

Inserting (5.30) in the solution (5.26) gives,

14G * . wi r dw
TT ~ .

The expression in (5.31) is valid for sources with arbitrary velocity. No assumptions has been
made about the internal motion of the source and thus it may be relativistic or non-relativistic
as long as linearized theory applies. Recall the energy per unit area in equation (4.78),

dECW 3 0o | i 3 o0 . .
—— - 327rG/_ WETRE L dt = 3277G/_ (hi n hi) dt . (5.32)

The area element is just dA = r2dQ2 and so the energy per unit solid angle is

@ B 7,203 00
dQ 321G J_

hi b dt (5.33)

We wish to get an explicit expression for (5.33). From equation (5.31) is possible to determine
T
¥i Y
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. 14G . wi r dw
TT . ) .
hij (t,x) = ;CTAijlkl(n) /_OO T (M c> GXP{—M<t— C)}(—zw) or (5.34)

The integrand in (5.33) results as follows,

AT 4G \? R wh r
TTj _ ~ . .
hij b = <2m5r> Aiji () /_OO Thi <w, C) eXp{—lw (t— E>}(_M) dw

% A m (B) /Oo Toom (w, wcn> exp{—iw (t - 2) }(—iw) dw . (5.35)

—00

Making the substitution @w = —w’ in the second integral of (5.35) gives

—— 4G \? . wi r
TT _ ~ . .
hij hip = (277057,> Aijla (D) /oo Ty <w7 ; )eXp{—Zw (t— E>}(_W) dw

% A (B) / . <—w/, JJ;“) exp{iw (1= 1) baw!) (~aw') .

4G \? . .
= <2m5r> Aij|kl<n)Aij|mn(n)

[e.9] o ~ A
X / / T <w, wn) T, <w’, wn> e~ U@ e W=Dty dwda , (5.36)
oo oo c c

where T*(w, wii/c) = T(—w, —wii/c). After using (5.36) in (5.33) it is obtained,

Sl 4G \? . .
/ h;g'Thqudt = () At (B) A j g, (1)

2w edr

~ 2N
X /OO /OO /oo Ty <w, wn> T;m <w', hd n> e Wi mwIr/e i@ =Wt dudu’ dt
—00 J —o0 J—o0 ¢ ¢

SR 4G \? . X
/ hi hifep dt = <> A1 () A (1)

2mcdr
o0 o0 /
X / T <w, w) T, <w’, wn) e (w/*”)”c%ré(w — www’ dwdw’
o —0oQ
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Hence,

L 4G \? . o whn\ =, wil
/_OO it by dt = (m) Agtjmn (B) /_oo Tw <w, C) T <w,c> onw?dw . (5.37)

The integral at the right hand side of equation (5.37) is rewritten as
[e.e] A~ A
/ Thi <w, wn) ., (w, wn) 2w’ dw
oo c c
o wil\ =, wil 9 * - wil\ =, wil 9
= T lw,— | T, | w, — | 2nw dw + T (w,— ) T | w, — | 2mw*dw
o c c 0 c c

0 N ~ ) ~ ~
= / T <—w, _wn) ., (—w, _wn> 21 (—w)?d(—w) + / T (w, wn> T <w, wn) 2mw?dw
0o c c 0 c c

0o ~ ~ 0o ~ -
= / T4 (w, wn) T (w, wn) 2rw?dw + / T (w, wn) T, <w, wn> 2rwldw .
0 C C 0 C C

Using this last result into (5.37) one gets,

4G \? [ s wi\ =, wi 9
<27TC5T> Akl|mn(n) /oo T <w; C) Tmn <w7 C) 2rw*dw

:< 16 )2/\m|mn(ﬁ)

2mcdr

o0 - -~ o0 ~ A~
X { / Ty (w, wn) Toin (w, wn) 2rwldw + / T <w, wn) . (w, wn) 27rw2dw}
0 C & 0 C &

Due to the contraction of the indices kl and mn between the Lambda tensor and the energy-
momentum tensor of the sources in the frequency domain, they represent dummy indices.
This means that by relabelling the indices of the first term as kl <> mn yields,

oo, . 4G 2 oo (/Jﬁ 5 wﬁ
TT A~ * 2
1 [4G\? [ wi\ =, wh
= ; (c5r> Ak”mn(n)/o Tkl (w, C) Tmn (w, C) w2dw . (538)

Finally, replacing (5.38) into (5.33) one obtains the energy of GWs per unit solid angle,

dECW @ 2 wi =, wh
o = 2W2C7Akl|mn(n)/0 Tw <w,c> T, (w, C) widw | . (5.39)

Differentiating equation (5.39) with respect to w and then integrating over the solid angle, it
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is obtained the espectral energy of GWs,

dECW Guw? o wil\ =, wil
dio = 271'207 /Aklmn(n)Tkl (w, > Tmn (w,) dQ| . (540)

5.3 Low-velocity expansion

So far, nothing has been assumed about the internal motions of the source. In this section a
slow motion approximation is considered. To do this, some scaling quantities that describe
the system are defined.

d : Size of the source.
ws : Typical frequency of the internal motions of the source.
v : Typical internal velocity of the source v ~ wgd.
w : Gravitational radiation frequency emmited by the source.
We shall see later that the dominant contribution to the gravitational radiation comes from

the lowest multipoles. For those, the frequency of the radiation are the same order of the
frequency of the source, i.e., w ~ we>. Thus,

A c c c c
2r 2nf w  ws W ( )

For a non-relativistic source v < ¢ and equation (5.41) implies,

A>d (non-relativistic sources) . (5.42)

The scenario for a non-relativistic source is illustrated in figure 5.3. When the condition X > d
is fulfilled is not neccesary to know the exact details of the internal motions of the particles,
but only the coarse features of matter [8]. Thus, the leading contributions to the radiation
are the lowest multiple moments of the energy-momentum tensor®. To see this, first consider
the Fourier version of the solution given in (5.26),

’ r  x'h

r x' -1 1 ~ i[k-xlfw(tffﬁ’ )]
T, ——4+— X = — | T k ©c o A4
kl <t - + c X) (27‘1’)4 / kl(w, )6 d*k (5 3)

Recall that the energy-momentum tensor is non-vanishing only in the integration domain for
x| < d. Therefore, low velocities means that £x’-fi < 1. This can be seen because,

d d
Ix a8t oDy (5.44)
C C C C

3For instance, the radiation frequency for a binary system is w = 2ws. For more details see Chapter 6

4This can be compared with the Newtonian case. In the two-body problem if the separation between the
objects is very large, the mutual effects due to the non-sphericity and the internal dynamics that are encoded
in the higher mutipole moments are negligible.
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Source

Figure 5.3: Schematic representation of a non-relativistic source. The wavelength of the radiation is
much larger than the typical size of the source (X > d).

Then, is suitable to expand the exponential term with “x’ -1 in (5.43). The Taylor series
for the exponential is

. 2 .3
e =1 — iz — 937 + f%;f TR (5.45)
Thus,
e_iw<t_£+xén> = e_iw(t_g)e_iwx;.ﬁ
—iw(t—7) (W LrwN2 4 4
= e c 1—1(—):1: ni—f(—) z"znin; + ---| . (5.46)
c 2 \c
Replacing the expansion (5.46) into (5.43) gives,
r x' -7 1 ~ ; / r
T lt— 2 ry — T k z[kx —w(t— )] d4k
(1= £+ 550 ) = e [ Bt ”’
1 ~ et r )
+ U/Q%Aw,kyﬂkx_wa_ZH[—i(w)aﬂnJ dik (5.47)
(2m)4 c

1 ~ e/ r 1 2
g Tt () ]

Observe that from the definition of Fourier transform,
r 1 ~ ; / r
Ta(t—2x) = —— [ Tulw kel ==l gt 4
kl( C,X> @)t / ki(w, k)e (5.48)

Then, the expression in (5.47) is equivalent to
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X/'ﬁ 17

xrn;

r
T <t - p + P X/> = [ Tkl(t,X) + p 8tTkl(t,X)
1 1,19 2
+ 22T ® niniO; T (t,x) + - (5.49)
¢ (t—r/c,x’)
Is possible to verify that indeed, the equations (5.47) and (5.49) are the same,
1 T —twt+ik-x
Tkl(t,X) = W/Tkl(w,k)e t+ik d4k
(t—r/c,x’) (t—r/c,x’)
1 - ikex! —iw(t—L
= (27T)4/Tkl(w,k)€k (t C) d4ki 5
x''n; 1 a'n; [ - —iwttikx A
c O Tkl(t,x) = (2 )47 Tkl(w,k)é?te d*k
(t—r/c,x’) n (t—r/c,x’)
1 . o .
= 1 /Tkl(w, k)e—zwt+zk-x |: — i<w)$/zn{| d*k
(27T> c (t—r/c,x’)
1 ~ ikx! —iw(t=2) | (W i | 4
= (2ﬂ)4/Tkl(w,k)e 1 - "n;| d°k
L:c”'a"r:c’jv”r@? Tra(t, x)
2C2 ) 1Yt kl\Y,
(t—r/c,x’)
= 113:'in‘a:'jn-/fkl(w k)ath—iwt—i—ikx Ak
(27T)4 2c2 ! ’ (t—r/c,x’)
1 ~ S 1 2
— - /Tkl(w’k)ezwﬂrzk-x |:_ (f) x/zx/jninj:| d4k‘
(27T) 2 \c (t—r/c,x’)
. o 2
_ (21)4 /Tkl(w’k)ez[k.x —w(t—r/c)] |:_; (%) x”x”nmj} d4k )
T

Note that the result in (5.49) could be obtained as well by making a formal Taylor expansion
in the parameter x’ - i/c. However, this procedure emphasize the explicit condition of low
velocities given by £x’-fi < 1. If one uses such a result into the solution hiTjT in (5.26) yields,

14G . x''n;
hit(t,x) = T&Aijkl(n)/ {Tm(tjxl) + = DT (t,x')

1 . . 9 3
+ g R Taltx) + | d
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14G 1 d .

hit (t,x) = T&Aijlkl(ﬁ>[/Tkl<t7X/) d*a’ + Cmdt/Tkz(t,X/)m” d*z’ (5.50)
1 d2 INAJEIT 33,0

+ 22" g3 T (t,x)z"z"” &2 + - . (5.51)

t—r/c

Remind the multiple moments of the energy-momentum tensor in (5.23)°. The first moments
are given by

SU(t) = / T9(t,x)d%z (5.52)
Siik(y) = / T x) P (5.53)
SUHR() = /Tij(t,x)wkxl Bz . (5.54)

Using these expressions in (5.51), the solution hiTjT(t,x) is written as an expansion of the
multiple moments of the energy-momentum tensor,

14G 1 0 A 1 D) A3
hiTjT(t,X) = *TAiﬂkl(ﬁ) |:Skl + *niskl’l + ﬁmankl’” + :| . (555)
rc c c t—r/c

Observe that in the expression (5.51) the moment S* has an additional factor of 2 ~ O(d).
Furthermore, each time derivative gives a factor O(w) ~ O(ws) as can be seen for example in
(5.47). One concludes that,

gkl - L gkt v
$ Owsd) =OW) = —mi§ O (C) (5.56)
G . O [(w d)ﬂ 00 = GO <”2> (5.57)
s N 2c27" c2) '

Therefore, the solution given in (5.55) is actually an expansion in v/c where the first term
is the leading term. An important remark of this procedure is that the correction in v/c
in the expanded solution is only possible if the internal velocities of the source and the flat
background can be treated independently [8]. For instance, consider a compact binary in
orbital motion due to the mutual gravitational interaction. Extrictly speaking, this system
would not be possible in linearized gravity. The reason is that the objects will follow geodesics
in the flat spacetime due to 0“7}, = 0%. As we shall see later, in the exact formulation of
general relativity by Landau & Lifshtiz, weak gravitational fields implies the same equations
of linearized theory, but instead of having only the energy-momentum of the matter sources,
it is included the pseudotensor that accounts for the motion of bounded orbits [1, 32, 34]. If
the binding energy of the self-gravity interaction can be neglected in this formulation, then
at leading order one can argue to use the first term in (5.55). If this is the case, note that
even if the binary system is Newtonian, from the virial theorem one has

584 = 89" due to TY = T, Also ¥k = itk giikl — qitkl — gitlk  However, §1F £ §FLIT
5This equation will be discussed for a closed system of particles at the end of this chapter.
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L o

1G > R

5.58
2/“] 2 r c2 % ( )

where 4 is the reduced mass of the system, m is the total mass and Ry is the Schwarzscild
radius associated to the mass m. Hence, a weak gravitational field means Rs/r < 1, so
v < c¢. In this case, the velocity of the source is related directly with the strength nature
of the gravitational field. If the velocity of the system is high compared with the speed of
light, the background cannot be assumed as flat and linearized theory is no longer valid.
Even if more terms are considered in the (v/c) expansion, is not reasonable to matained
the background as flat because this contributions means strong fields. In conclusion, for the
binary system exmaple, if one uses the equation (5.55) at leading order, the gravitational field
must be weak to approximate the background spacetime as flat, but also the objects requiere
slow motions to preserve a systematic expansion in (v/c) while the background remains flat.
An example to use equation (5.55) for a source with arbitrary velocity should be a beam of
charged particles accelerated by an electric field, where the particles do not contribute to the
background curvature [8]. In this case, the particles can move at relativistic speeds. Thus,
more terms in the expansion (v/c) must be considered.

As a final comment, note that at leading order the approximation of weak gravitational field
at the far-field zone and slow motion of the source can also arise from the solution given in
(5.22). Weak field at spatial infinity means that the leading term is the first one that depends

on 1/r and slow motions means that ¢ — ‘x;cxl' ~ t—* over the entire source, i.e., disregarding
the relative retardation effects of one region of the source relative to another [42]. From (5.23)
it follows that,

14G

hg (1, %) = T&Aijlkz(ﬁ)/Tkl(t_r/Ca x)d’z’ . (5.59)

5.4 Conservation equations

The physical interpretation of the expansion (5.55) becomes more clear if the solution is
expressed in terms of the multipole moments of the energy density and the multiple moments
of the momentum density. These are defined as,

1 ) 1 )
M= / T%(t, x) d3x Pl = - / T (t,x) d3x (5.60)
. 1 ‘ 1 . .
M 2 T, x)2' d*x pPY = C/TO’(t,x)wj 3z (5.61)
g 1 o . 1 . .
MY = Q/Too(t,x)xzxj Bz Pk — /TO’(t,x)a:Jxk B (5.62)
c c
g 1 o . 1 . .
Mk — Q/Too(t,x)le’jl‘k A3z phikl /Toz(t,x):vjxkxl d3x (5.63)
c c

Consider a volume V' delimited by a boundary OV such that T}, vanishes at V. Then, by
the conservation of the energy-momentum tensor in linearized theory it follows that,

HT® = —o,T" .

(5.64)

Integrating over the volume V' and using the definition of M in (5.60) then,
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/80T00(t,x)d3$ = —/ ;T (t,x)d3x

v v
1£<02]\4) = —j{ TO%(t,x) dS; [Divergence theorem)]
cdt v ’ !

cM =0 [T% =0 in 9V] . (5.65)

Thus, one obtains the conservation of the total mass M of the system’,

M=0 |. (5.66)

Similarly, multiplying equation (5.64) by 2% and integrating over the volume V yields

/xiaoTOO(t,x) Br = —/ 20, TV (t,x) d*x
\% Vv

1d
cdt

C% [(}2 /V Tt x)a' d%] _ /V {aj (@'T%(t,x)) — (9;2") Toj(t,x)] e

/xiTOO(t,x) A —/ 20, TY (t,x) d*x
1% v

dM’ 0 .
c = —f 2T (t,x) dS; + / T%(t,x) d*z (5.67)
dt ov v

and one get the identity

M =P | (5.68)

Now, multiplying equation (5.64) by z‘2z’ and integrating over the volume V/,

/:J:ixjé?oTOO dr = —/ 22 0, TO™ d3x
1% 1%

1d - o o
- 2ipd 0 By = _/ O (xzx]TOm) — O (IL‘Z.T}]) TOm:| B
Cdt \4 v L
ci [2/ o' T d3l‘] = —/ O (2'27T) — (Oma’) /T — 2 (&nx])Tom} d3x
dt|c v v L
(] i o o Lo
ch = —/ Om (a:’a:]TDm) — T — x’TD]] dz
dt v
MY = —7{ 2?7 dS,, + ¢P + cPt . (5.69)
ov

"This is valid only at linear order. In general, a system that radiates gravitational waves lose mass.
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Hence,

MY = pv 4 pit | (5.70)

By multiplying (5.64) by z’z7z* and integrating over the volume V gives

/acixjxk(?oTOO Bz = —/ 2l %8, TO™ d®x
1% 1%

1d o o o
o 2 P T By = / [(‘)m <xzxjka0m) — Om (wzx]xk> Tom} A3z
c 1% v
c% [2/ id 00 de] = —?{ 22l P10 4SS, + / Om (azza:]wk> T B
cJv )% 1%
dMIk Nk ) Nk o &
c—— = / [(87”1:1) b T 4 gt (amxj) ZFT0m 4 gy <8mx )Tom] 3z
1%
cMIF = / [:ijkTOi + 2tk T 4 :UizanOk] , (5.71)
v

and another identity is obtained,

MUk — piik | piik | pkiij . (5.72)

Other identities for the multipole moments of the mementum density may be derived with a
similar procedure. The temporal part of 9,T*” =0 is

T = —9;T" (5.73)

An integration of (5.73) over the volume V' leads to,

| ar®ds = - [ ot
\% \%4
P = — j{ T dS; [Divergence theorem] . (5.74)
ov

As a consequence,

Pi=0 |. (5.75)

If equation (5.73) is multiplied by z7 and integrated over the volume V one obtains,
/ 20, TO Pz = —/ 210, T"™ dz
\% \%

d[l/ 22T de] = —/ [&n (J:jTim) — (amxj) Tim] 3z

Cc

dPHI o -
_ jq{ 2T S, + / T s (5.76)
dt oV v
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Therefore ,

Pk — g | (5.77)

Another identity is deduced by making,
/ P2k 9T dPx = —/ 212k 0, T Pz
\%4 \%4

At frme] <= [ peorae) <o)
14

dphik
dt

= /V [(amxj) T 4 gl (&nazk) Tim} (5.78)

ie.,

piok — giik 4 giki | (5.79)

The angular momentum is also conserved. This can be seen from the symmetry property of
S and using (5.78). The result is,

d 1 o L
P = PPt = o [ / (mJTOZ - x’TOJ> d%}
&

—0 . (5.80)

Is also possible to write the multipole moments of the energy-momentum tensor in terms
of the multiple moments of the energy density and the momentum density. For instance,
taking (5.77) and using the symmetry property of S¥, after differentiating equation (5.70) it
is obtained

MY = Ph 4 Pit = 5§ 4 gt = 95

or,
P
Si — §MJ ) (5.81)
From equations (5.72) and (5.79) we have
MUk — pidk o piki 4 pkiij (5.82)
piik — giik Gk (5.83)

and substituting (5.83) into (5.82) gives,
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Mz]k — S‘vij,k + S'vik,j + Sjlc,i + S'vji,k + Ski,j + S’vkj,i
= 28Uk 1 9Giki 4 ggiki (5.84)

Thus,

Aridk — 2<5z‘j,lc + Stk SJIH> ) (5.85)

A last expression may be deduced by first solving S%* from (5.85) and rewriting it as,

gk _ Lk _ gikg _ giki
2
T
— Nk 4 Zjpidk _ Gikd o Giki
6 3
le]k n 12<Sz’j,k 4 Gikd Sykz) _ ik _ Giki
6 3
1 1.., . 1.., . 2 ...
— szk _ 751]{17] _ 75’_]]6,1 7Sz],k’
6 3 3 + 3
| R i 1/ oy 1/ -
— MZ] 4+ — (SZ ) 2S Zv]) + — (S.] o 25 ]77’) + — (Sljv + Sjlv >
6 3 3 3
_ é ik é (5% 4 gika 4 Gk g Giki 98kt gghia) (5.86)

Using the identity in (5.83), the previous result becomes

gk = Lirsk g 3 (Bik g pik gphu) | (5.87)

Similar relations can be obtained for higher order multipole moments. In particular, the
identities (5.81) and (5.87) allows us to rewrite the solution hiTjT in terms of the energy and
mementum densities multipole moments.

5.5 Mass quadrupole radiation

We shall focus only on the leading term contribution of the radiation. Recall that for weak
gravitational fields and slow motions the solution of the inhomegeneous wave equation in the
far-field zone is given by

14G 1 1 ’L
h;l;T(taX) = vy Awlkl( f) Skt + nSkl 2 2nznjskl T4 e . (5.88)

The leading term in the expanded solution shown in (5.88) comes from S*. By using the
identity (5.81) the leading contribution takes the form



5.5. Mass quadrupole radiation 83

12G
hg'T(taX) ey

Ay () NTH (t - f) : (5.89)

C

The tensor M* may be decomposed as a traceless part plus the trace part®,
ki Y L chl

1
= Q" + §5klMii ; (5.90)

where the quantity Q¥ is called the quadrupole moment and is defined as
1
QM = MM — §5MMM : (5.91)
Clearly, the trace of Q¥ in (5.91) vanish, i.e.,

TT‘(QM) =Tr <Mkl — ;5kle‘i> =Tr <Mkl) — %TT ((5“) M;;

= M — 5(3)M;i = 0 . (5.92)

On the other hand, due to the traceless property in their first and second pair of indices of
the Lambda tensor, one has

1
Agjia M = Ay <le + 35MM¢¢>

1

= Ay @ + 5

A Mii
=A@ . (5.93)

This results implies that Aij|kl(ﬁ)]\2f ko — Aij‘kl(ﬁ)le and the leading contribution of the
solution in (5.89) is equivalent to

12G

[h?jT(taX)]quad = ;CTAz‘j\kz(ﬁ)le (75 - g) : (5.94)

The equation (5.94) is called the Einstein’s quadrupole formula®. The name of the tensor
Q"' is more clear when is written in its explicit form,

QM — Z/Tooxkxld% B ;5k112/Tooxixid3x
C C

= /2T00 <a:kxl - 35kla:’aﬁl) B . (5.95)
c

8Formally, this is the irreducible representation of a symmetric tensor of two indices under SO(3).

9 After a long history of debate, this formula was confirmed with the observation of the Hulse-Taylor binary
in 1974. A formal derivation in the post-Newtonian formalism is a better scenario to justify this formula. For
more details see [9].
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Recall that 79 /c? is the energy density and z'z’ = |l’|2 = 72. Thus, the quadrupolar moment
yields

QM = /p(t,x) [a:kxl - ;)5“7“2] Br | . (5.96)

Observe that the first and leading contribution of the gravitation radiation is related to the
variation of the quadrupole moment. This is not the case for electromagnetic radiation in
which the leading contribution comes from the variation of the dipole moment. This result
can be understood by appealing to Einstein’s equivalence principle and the conservation laws
discussed earlier [37|. The radiation h;ro depends on derivatives of the multipole moments.
For a system of point masses, the monopole term is just the total mass which is conserved.
Thus the time derivative of the total mass M vanish as is shown in equation (5.66) and thus
there cannot be monopolar radiation. The dipole moment of a system of point masses is

d = ngg)xi == Zmix,- s (597)

(9)

where m,
dipole moment gives,

is the gravitational mass and m; is the inertial mass. The time derivative of the
d=) m% =P . (5.98)

The second time derivative of the dipole moment vanish due to the conservation of linear
momentum of isolated particles'®. If a magnetic-dipole analog of gravitation radiation is
considered, the second time derivative vanish because of the conservation of the total angular
momentum,

n = le (mjv;) = L . (5.99)

The absense of the monopolar radiation can be understood also from the Birkhoff’s Theorem
[44]. The monopolar term means a spherically symmetric source. But any spherically sym-
metric solution of the EFE must be static so there cannot be changes in the field outside the
source and monopolar gravitational radiation is not emmited'!. In conclusion, there cannot
be monopolar nor dipolar gravitational radiation of any sort in GR!? [8].

5.6 Angular distribution of quadrupole radiation

One is able to obtain the functional waveform of the quadrupole radiation from (5.94) by using
the explicit definition of the Lambda tensor and making the contraction with Q. However,
in order to get the gravitational radiation emitted in an arbitrary direction fi is worthwhile
to proceed as follows. Consider first a GW propagating along the +z-direction. This means
that i = (0,0, 1). Recall that the projector tensor P;; is defined as

Pij = (Sij — nmj . (5.100)

loEquivalently, the dipole moment can be also rewritten as d = ZZ m;x; = MRcwu, i.e., is proportional to
the center of mass position. For an insolated body, due to the conservation of the total linear momentum, the
center of mass moves with uniform velocity and thus the second time derivative of the dipole term vanish.

YThis is also true even if the source is pulsating spherically symmetric. Thus, a perfect spherically sym-
metric collapse of a star does not emit GWs.

120f course, these results are also valid for extended bodies.
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Thus, the matrix representation of P;; is

[Pij] = (5.101)

S O =

0
1
0

o O O

The effect of applying the projector tensor in (5.101) on any vector is to substract the z-
component. This means that if v; = (a,b, c) is a generic vector in space, then v} = Pjv; =
(a,b,0). Thus, P;; projects the vector onto the zy plane which is perpendicular to fi. Then,
the TT projection of a generic tensor A;; can be computed by using the definition of the
Lambda tensor,

1
AijimAr = <Pikpjl — 2Pz'jpkl> Al

1
= P Ap P — §PijpkkAkl
1
= Py AnP; — ipz'jPlkAk:l
1
Al = (PAP),; — 3P Tr (PA) (5.102)

In matrix form, the first term of (5.102) gives,

1 00 An A12 A13 1 00
[PAP] =10 10 Agr Aoy Asg 010
0 0 0 Az Aszp  Asz 0 0 O
A Ap Az /1 0 0
= [ A1 Az A 010
0 0 0 0 00
A A 0
= [ A Ay 0 (5.103)
0 0 O
and the second term
1 1 A A Agg 1 00
_iTT [PA} [P] = —§T’l“ A21 A22 A23 01 0
0 0 0 0 00
1 00
A A
= - % 01 0| . (5.104)
0 0 0
By adding equations (5.103) and (5.104) one obtains AEJ‘-T,
(App — Ago) /2 Aoy 0
[ATT] = Aoy — (A1 —A%)/2 0 . (5.105)

ij
0 0 0

]
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Since Amlekl = Aij‘k.lel and making A = @ in equation (5.105) results in

1 /. . .
3 (Mn - M22> M, 0
|:AQ:| i = Mo —5 (M11 - M22> 0 (5.106)
0 0 0

i

and the quadrupolar radiation contribution is given by

1/ . . ;
3 <M11 — M22) Mo 0
quad 126G
BTt t,x} _ = v e . (5107
[ (t,%) } e Mg > (MH M22> 0 (5.107)
0 0 0

t—r/c

Therefore, the radiation of the two polarizations in the quadrupole approximation for a GW
propagating in the +z direction gives,

hy = ig[ml(t— g) - M22<t— 2)} , (5.108)
hy = %C%Mu(t— g) : (5.109)

The next step is to find out the quadrupole radiation of a GW propagating in a generic
direction fi with respect to a coordinate system (x,y, z). From figure 5.4, the components of
the unit vector i1 in the system (z,y, z) are

n = (sinﬁsingb, sinf cos ¢ , cos«9> (5.110)

=

Figure 5.4: Two reference frames describing the direction f of a GW.
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Note that these components can also be obtained after making two rotations in order to align
the axis of the systems (2,4, 2') and (z,y, z). Such rotations are described as follows,

R, (0) : Align the axis 2’ with z.
R.(¢) : Align the axis 2’ with z and ¢y’ with y.

Then, the unit vector A is given by n; = an; with R;j = [RyR.]ij. i.e.,

Ng cos¢ sing 0 1 0 0 Tyt
ny | = | —sing cos¢ 0 0 cosf sinf Ny
., 0 0 1 0 —sinf cosf Ny

cos¢ cosfsing sinfsing 0

= | —sin¢ cosfcos¢ sinfcos¢ 0
0 —sinf cos 6 1
sin @ sin ¢

= | sinfcos¢ (5.111)
cos 0

as expected. Furthermore, rotation matrices are orthogonal and thus their inverse are just
their transpose. Therefore, n} = R;Sn] with T\’,L = [Rx/RZLTj = [RTR]i;. Then,

Ny 1 0 0 cos¢ —sing 0 Ny
ny | = [0 cosf —sind sing cos¢p 0 Ny
Ty 0 sinf cos6 0 0 1 Ny
cos ¢ —sin ¢ 0 sin # sin ¢
= | cosfsing cosfcos¢p —sinfb sin @ cos ¢
sinfsin¢g sinfcos¢ cosf cos 6
0
=]o] . (5.112)
1

In a similar way, is possible to extend these results to tensors. The coordinates of a tensor
MP* changes between the two references frames under a rotation R as

MK = RE T\’,lj M’ [In the (z,y,2) frame] ,
MY =R, R, NI* [In the (2/,y/,2") frame] . (5.113)

with
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cos¢ cosfsing sinfsin¢ cos ¢ —sing 0
R j = | —sing cosfcos¢ sinfcose | Rij = | cosfsing cosfcos¢p —sing
0 —sin6 cos 6 sinfsing sinflcos¢ cosf

Since the +z/-direction is align with fi, the aim is to find the solution [hTT}?;ad in the (2/,y/, 2')
frame using the expression (5.113). For this, observe that from equations (5.108) and (5.109)
only the quantities M''*, M'** and M’'? are required. Expanding (5.113) yields

M/ll _ Rll RllMll + R21 Rl1M2l + R31 R[lM?}l

_ (Rll RN + RIR M + R Ry M13) i

<R21 Rll e R21 R21 N2 4 R21 R31 M23) i

( Ry RN + R R N + R R, M33)

— RMRA TN 4 2R RN 2R11%1/M13+
R R M2 1 2R, %r N2y %1/ Ryl N33
— RARANMY 1 2R R M2 + R R, M2
= cos? oM™ — 2cospsin pM*? + sin? pM?? | (5.114)
M = R2RP? M"Y + 2R R NI'? + R R M™ +
RZR2N® 4 2R2R2N? + RZ2R2 M
= cos? Osin? pM' + 2cos? 0 cos ¢ sin pM12 — 2 cos 0 sin 0 sin pM P

+ cos? 0 cos® pM?*? — 2cos O sin § cos pM? + sin? M3 | (5.115)

a2 = (Rll R12 " Rll R22 M2 4 R11 R32 M13) +
<R21 R12 M2y R21 R22 M2 4 R21 R32 M23) +
<%rR12 N %YRQQ N2+ %rR?)z M33)
- Rll R12 Mll + Rll R22 M12 + Rll R32 M13 +
R21 R12 M21 + R21 R22 MQZ + R21 R32 M23
= cosfcospsin pM + cos B cos® pM'2 — sin 6 cos oM

— cosfsin® pM?' — cosf cos psin pM?? + sinfsin pM?* . (5.116)

Now,
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MM — M = cos? SMM — 2cos psin M2 + sin? g M2
— cos? Osin? oM — 2cos® 6 cos gsin @M + 2 cos O sin 0 sin GM 3
— cos? 0 cos® pM* + 2cos B sin 6 cos pM?> — sin® ON33
= MY ( cos® ¢ — sin? ¢ cos? 0) + M22<sin2 ¢ — cos? ¢ cos? 9)
— M*®sin?0 — M12(2005¢Sin¢ + 2cos? HCoqu)sinqb)
+ M (2 cos 6 sin 6 sin gb) + M3 (2 cos 0 sin 6 cos gb) (5.117)
Using the relation sin(2¢) = sin ¢ cos ¢ + sin ¢ cos ¢ = 2sin ¢ cos ¢ then,
2cos gsing + 2cos® fcos ¢sin g = sin(2¢) + sin(2¢) cos? 4

= sin(26)(1 4 cos®0) . (5.118)

Thus,

MM - M = M11(0082¢ — sin? ¢ cos? 9) + M22(sin2¢> - cos2¢00520>

— M*sin?0 — M2 sin(2¢)(1 + cos?8) + M3 sin ¢sin(26)
+ M? cos ¢sin(26) . (5.119)
The component M2 in equation (5.116) can be simplified to

M2 = <M11 — M22) cosfcos psing + M12(605900s2¢ — cos@sin2gz5)

— M"sinfcos¢ + M??sinfsin ¢

M2 = 3 [(M11 - M22) sin(2¢) cos @ + 2M*2 cos(2¢) cos 8

— 2M ™3 cos psinf + 2M %3 sin ¢sin 0} . (5.120)

Finally using (5.119) and (5.120) into (5.108) and (5.109) yields,

hi(t;0,0¢) = %g [MH(cosz(b — sin? ¢ cos? 0)
+ .7\222<sin2 ¢ — cos? ¢ cos? 9)

— M3*3sin26 — M2 sin(2¢)(1 + cos? 6)

+ M3 sin ¢sin(20) + M3 cos¢sin(20)] : (5.121)
t—r/c
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hy(t;0,0) = %?4 [(Mll — M22> sin(2¢) cos 0

+ 2M 2 cos(2¢) cos @ — 2M™3 cos ¢ sin 6

+ 2M?3sin ¢ sin 9] : (5.122)
t—r/c

5.7 Radiated energy

Using (4.73) into (4.68), the power radiated per unit solid angle is given by

= T <hTJThij > . (5.123)

The quadrupolar radiation was obtained previously as shown in (5.94). Then,

; 12G r
TT _ .

[hij (t’X)i|quad = A (0) @ (t— E) : (5.124)

Replacing (5.124) into (5.123) and using the Lambda projection property, the quadrupolar

power per unit solid angle gives'?,

(5.125)

AP G o )l
(dQ) L 787TC5Akl|mn(n) <Q Q >
qua

t—r/c

Power

To get the total radiated power one must perform an integration of (5.125) over the entire
solid angle,

Paa = gz (GG

/ A (B) A2 (5.126)
t—r/c

The integral that appears in (5.126) may be computed by using two useful properties. Writing
the unit vector i as in equation (5.110), is possible to show that

4
47
/nmjnknl dQ) = ﬁ (6ij5kl + 5ik5jl + 5i15jk;) . (5.128)

From the explicit definition of Ay, (1) in terms of the propagation unit vector #i, the integral
to be found is

1 1 1 1
/ |:5km5ln - iéklémn - nlnnékm - nknméln + §nmnn5kl + inknldmn + inknlnmnn} aQ .

13The average (-) is over several periods of the GW.
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Employing the properties (5.127) and (5.128) the integration reads as follows,

4 4
/Akl|mn(ﬁ) dQ) = AmogmOin — 2m0k10mn — §5m5km - §5km5ln

Sk10mn + OkmOin + Oknlim)

27 27 47
+ §5mn5kl + ?5kl5mn + 20 (
227 81 2

T
- T55km5ln - ﬁéklamn + 15 5kn5lm

27
- (115,%51” Y 6kndlm) . (5.129)
Retaking the equation (5.126) and using the result in (5.129) one obtains the total quadrupolar

power,

Pyaa = <5 (@MQ™) 2 (110kmtn — 4G + Sy
quad = g Q"Q s 15 kmOl Kl + Orndy
= (00w ) - 4 (Bham) + (@Y
60c t—r/c
= & 11 <lele> + <leka>
6065 t—r/c
ie.,
B G ekl
Pauad = 5 <Q le> e (5.130)
In some cases is more convenient to express (5.130) in terms of My,
Qr = My — §5kzMu‘ - (5.131)
Inserting (5.131) into (5.130) it is obtained,
G 1 ot /o 1. .
Prad = — (Mkl - féklM“) (M - 30 M)
quad = 55 < 3 K.~ 30Kl e
= O (AT, — 2812+ Lo
be2 3 9 e
G 2 .. 1 ..
= — ( MMM, — SME + S ME
5¢2 < kl 37 + g3 —_
and therefore,
G ] e 1.y
Poad = —s { MMMy — - M2 5.132
was = g0y (14 = 02| (5.132)
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To obtain the emitted energy per unit solid angle, first consider the Fourier transform of the
quadrupolar moment,

Qu(t) = / Qu(w)e ™ dw . (5.133)
On the other hand, it is also true that
L[>~ C N3 jwt W= —w
Gult) = - [ Qui) (i a4 (5.134)
21 J_o dw’ = —dw

= / Qui(—') (i) e du’
= 2/ Qu(—w') (iw') e du’ . (5.135)
™ —0oQ

From (5.125), the energy per unit solid angle is given by

/(Zg)quad dt = 87?C5Akl|mn( )/<le( )Qmn(t)) dt

(;lg)quad _ 87% Akt () < / Q1 (t)Qrmn (1) dt>

— s M) [ BusO1Gn(0)

. di(—) (i) Q dowryt o, do d
= o M@ [ [ [ Qua) () Qo) (i " a5 52

= &TGCE)Aklmn(ﬁ)//le(_w’) (iw/)3 an(w) (—1 ) zms(w _w)é%%:
- 8G5 mn\kl /an 6le( )dw ’ (5.136)

where all the previous integral symbols have limits from —oco to co and Qf,(w) = Qi (~w).
The integral in (5.136) is twice the same integral from 0 to co. Thus,

dE
<d(2>quad 87r2 5 Aynnjk (B / Qrn (W)W’ Qfy (w) dw (5.137)

Finally, integrating equation (5.137) over the whole solid angle gives the total radiated energy

G

8m2cd

- ¢ /Oo & |:11an( )W6Q;knn(w) + an(w)(x)ﬁ@;’;m(w)] dw (5138)
0

E, quad —

A (2) d2 /0 O () Oy (o) e

8med 15
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Hence,
G R ~
Equad = 73 /0 Qmn (W)WP Qi (W) dw (5.139)
Therefore, the spectral energy is
dE ~ ~ .
(%) = Gm() @) (5.140)
w quad

5.8 Conservation of T" for a closed system of particles

This section shows the conservation of the energy-momentum tensor TH” for a closed system
of particles. We first construct the tensor T#” assuming an isolated set of non-interacting
particles in flat spacetime. The four-momentum density of the system is defined as [36]

Ov X "
u ZmauZ(T) 5(3)(X_Xa(t))
a=1

C

= Xn: [%ma dm;’t(t)} 53 (x — x4(t))

a=1
= 305 (x — xa(t)) .
a=1

where the four-momentum of a particle is given by

dz¥ dz¥ dt dz¥

p¥ = V= =m — =m =(E/c,p) .

dr at dr "

On the other hand, the current density of the four-momentum reads

TH (x,t) Zp“ —22 60 (x — x4(t))

= Z{ dt )]dxdt( L5696 = (1)

The equations (5.142) and (5.144) can be rewritten in a compact form as

= plp”,
T (x,t) = > :V“ma 53 (x — x4(t))
CL:]. a a
- dx dx”
— E: SPaPa 6(3) (y
po ’yama dt dt (X Xa(t))

In particular, the components 7% and 7% are

(5.141)

(5.142)

(5.143)

(5.144)

(5.145)

(5.146)

(5.147)
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T%(x,t) = Z Yamac?6®) (x — x4(t)) (5.148)
a=1
T%(x, 1) Z Yamaci' 63 (x — x4(t)) (5.149)

Is tmportant to recall that the energy-momentum tensor is conserved only if each of the free
particles of the isolated system moves along geodesics in the flat spacetime. This can be seen
by taking the divergence of equation (5.144).

o1 (x,) = S e 0500 (1)

a=1

S (e [

o )  /dai(t) D
= AGI ) 5= (e ) - G

Furthermore, notice that

B [P0 = xa(0)] = PO 6~ xal0) + ) 1090~ )
PO 50 = xa(0) = g1 [P0 xu(0)] - OO x - xa)  G15)

and substituting this result in the expression (5.150) one obtains,

o) = = 3 { 51 P00 - xa(0)]| — O3V x - a0}

a=1
) 9 S 3 3
@T’L(X»t):—at;p 4 (£)01) (x — xq t +ZP ()% (x — xa(t))
T (x,t) = —EQTMO (x,t) + Zp” ()6 (x — x4()) .
’ c Ot

a=1

Thus, the 4-divergence of the energy-momentum tensor may be written as

AT (x,t) + 0T (x,t) = znj P ()63 (x — x,(t)) (5.152)

a=1

~
Force Density

From the previous equation is clear that only if p/y(#) = 0 for all a then

10,7 (x,1) = 0] . (5.153)
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The statement ply(t) = 0 means that the particles follow geodesics in the flat spacetime, i.e,
straight lines. Therefore, in principle is not possible to estimate the energy-momentum tensor
for a set of interacting particles only just with the expression (5.146). To ensure the full
conservation of the energy-momentum tensor one should include terms that describe all types
of interactions and also external forces that change the geodesic trajectories of the particles.
A priori, is not valid to use a general arbitrary trajectory x(¢) and inserting it into (5.146)
because the energy-momentum wolud not be conserved. For instance, if a single particle
follows a trajectory that is not a geodesic of the flat spacetime then there must be and external
force which needs to be included in the full definition of the energy-momentum tensor of the
system to guarantee the conservation equation (5.153). If the force is the electromagnetic
force, then the term at the right hand side of equation (5.152) does not vanish and thus the
conservation ot the total energy-momentum of the system is

O, (T + Ty) =0 . (5.154)

In the next chapter we will discuss the construction of the energy-momentum tensor for a
binary system which is gravitational bound at linear order in v/c.
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Chapter 6

Newtonian Binary System

The goal of this chapter is to discuss the quadrupole radiation of GWs due to the accelerate
motion of compact objects in a binary system. As a first approach, the objects will be treated
as point particles in mutual Newtonian gravitational interaction. The formalism developed
in Chapter 5 would be extended for a binary source in which each particle does not follows a
geodesic in the flat spacetime. First off, the emitted gravitational radiation for a fix circular
orbit motion is considered. Then, the back-reaction of GWs will be included by means of the
energy balance equation which represents the energy loss that causes the circular radius to
skrink and the orbital frecuency to increase. At the end, the waveforms for the hy and h
polarizations are obtained during the inspiral phase of the binary at Newtonian order until
the plunge of the particles is reached.

6.1 The effective one-body problem

The problem of finding the motion of two interacting point masses under the influence of a
mutual central force is equivalent to solve the problem of two fictitious particles with masses
m = mq + my and p = nﬁfﬁ% To see this, let be x; and x5 the vector positions of the
particles with masses m; and mqy as depicted in figure (6.1). The relative coordinate that

points from m; to mq is given by

X — X2 — X1 (61)
and the position of the center of mass of the system is

miXip + moXsg
X = - 6.2
M mi + ms (62)

X0
X1

ma

X2

T

Figure 6.1: The two-body problem diagram
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The position vectors of the particles x; and xo may be expressed in terms of the relative
coordinate x( and the position of the center of mass xcy by using equations (6.1) and (6.2),

ma mi
X1 =XcoM — ————X0 , X2 =XCM + ——X0o - (63)
mi + mg mi + mg

In terms of the six generalized coordinates from x¢ and xcp the lagrangian is expressed as

1 . 1 .,
L= §m1x% + imgx% — U(‘Xg — X1D
1 .9 L/ mima \ .o
= 5(7”1 +ma)kon + §<m)xo — Ul([xol)
1 .« 2 1 .
= Sy + ik — Ullxol) (6.4)
The Euler-Lagrange equations are
d /oL oL
2 = 6.5
dt <83’3a) Ox® (65)
For xcnm we get
d . . .
o7 [mXcm] = 0 = XcM = constant (6.6)

and the center of mass of the system is at rest or moves with constant velocity. Using the
Newtonian potential energy the lagrangian becomes

pm

1
L = constant + —ux3+ G
2 %0l

(6.7)
An additional constant in the lagrangian does not affect the equations of motion. Therefore,
the problem is to find and solve the equations of motion for the fictitious particle of reduced
mass 4 under a central gravitational potential generated by another fictitious particle of mass
m = mj +me. In particlar, in the center of mass reference frame xcy = 0 and the lagrangian
takes the form

1

L= —pxi+

wm
e laiiad
2

|xo]

(6.8)

Solving the Euler-Lagrange equations for the relative coordinate, the solutions x; and x5 can
be obtained by using the equations in (6.3).

6.2 Radiation from sources with non-negligible self gravity

In previous chapters, it was emphasized that the formalism that describes the generation
of GWs in linearized theory cannot be applied to systems that are gravitationally bound.
The reason is that the conservation of the energy-momentum tensor for the matter sources is
given by the expression 0, T* = 0. As it was shown in Chapter 5, this conservation statement
implies that for an isolated and free system of particles, each one of these are forced to move
along geodesics of the flat spacetime. For a binary system, the particles are bound together by
the mutual gravitational interaction and thus the particles do not follow geodesic motions!.

In order to take into account sources with non-negligible self gravity as in the case of binary

LThis issue was first pointed out by Eddington.
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systems, one must rewrite the EFE in the Landau-Lifshitz formulation. With a suitable global
gauge fixing, the EFE reduces to a nonlinear wave-like equation called the relaxed EFE.

The Landau-Lifshitz formulation of general relativity

Hereunder a very concise summary of the EFE in the Landau-Lifshitz formulation is presented.
The framework of this development is based on a new quantity called the gothic inverse metric
and is defined as®

g = V=g9" , (6.9)
with g the metric determinant and g* the inverse metric®. From the definition in (6.9) a new
object is built as follows,

HomBy — gaﬁg’“’ — ga”gB“ ) (6.10)
An essential identity in this formulation is given by [9]

167G

O, = 2(—g)G + =1

(—9)t7r (6.11)

where G*? is the Einstein tensor and (fg)tgg is the Landau-Lifshitz pseudotensor [45],

4
c 1
(—g)tet = {@9‘1‘3 Oug™ — O\g* 0" + ggaﬁgmapg”@yg””

167G

- ga)\guuapgﬁyakgup - gﬂ)\guuapgaya)\gup + g)\,ugypauga/\apgﬁu

1
+ 3 <2ga*gﬁ“ — g*P gk“) (290p90r — GpoGur) ONG" 700" "} . (6.12)

The identity (6.11) implies that the EFE can be rewritten as

onBy 167G o o
8,0, H ¥ = =2 (—g) (T 8y tLﬁ) . (6.13)

The right-hand side of the previous equation suggest that tﬁg represent the gravitational field
pseudotensor which is added to the matter distribution energy-momentum tensor®. Further-
more, from the definition of H** in (6.10) clearly H**#" = —H**"B  Using the fact that
partial derivatives commute one obtains,

930,0, HO = 0 . (6.14)
Applying the partial derivative at both sides of equation (6.13) then,

95 [(—g) (T“B + tﬁf)} =0 (6.15)

and this equation is the conservation of the total energy-momentum pseudotensor which is
equivalent to VgTaﬂ = 0°.

2Tensor quantities that have a prefactor of /—g are known as tensor densities and transform diferent.

3Note that from equation (6.9) if the gothic inverse metric is known, then the metric itself may be deter-
mined. This is due to the relation det(g"”) = g.

4Remind that the quantity tﬁf does not transform as a tensor. Likewise, the quantity at the left-hand
side of equation (6.13) is also a pseudotensor.

5 Actually, this equation is more fundamental than (6.15) in the sense that it is independent of the validity
of GR [9].
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The relaxed Einstein’s Field Equations

The previous development is an exact reformulation of general relativity. Now, if a new
potential is defined as [1]

hof .= B — gof (6.16)

where % = diag(—1,1,1,1) and g*? follows from equation (6.9). The EFE in the Landau-

Lifshitz formulation takes a nonlinear wave-like form with a suitable global coordinate condi-

tion. To see this, such a condition is introduced,

g™ =0 . (6.17)

This is a coordinate constraint and is called the harmonic or deDonder gauge. Observe that
in terms of the potential in (6.16), the expression in (6.17) reads

dsh*? =0 . (6.18)

Using the harmonic gauge and the definition of the potential h*? it is obtained
8u6,,H°‘“5” = 9,0, <gaﬂgm/ _ gavgﬂu>

= (g“”c?ugaﬁ + ¢*70,0" — ¢™0,0" — ga”aygﬁ“)
= 00" 9,0 + 089,0,0%" — 0,9 0,8"" — g°" 0,0, g™"
— g’“’aﬂa,,gaﬁ _ Hgavaygﬁu _ go‘”(?#&,gﬁ’“‘
= — (" — W) 9,0,h* — §,h W 4 (Y — h*Y)§,8,h "
= —0Oh*? + h"9,8,h*" — §,h*d,h"" + 1°v,d,h""
= —0Oh*? + h"9,8,h*® — §,h*a,h1 . (6.19)

Thus, the EFE in the Landau-Lifshitz formulation becomes [9, 46, 47|,

1
—Oh*? 4 h9,0,h*® — 9,h* 9, ho" = 6;G(—g) (Taﬁ + tfﬁ) (6.20)
or,
« 167TG (6% (0% v « (0974
Oh? = =2 (=g) (T by tL€> + W 9,0,hF — 9,h 9, h (6.21)
Defining (—g)t%ﬁ as
4
af  _ C av B v afs
(ot = o= ((‘Lh ah — h9,8,h ) (6.22)
the relaxed EFE are
Oh*f = —1%6:7@5 (6.23)

where 7% is the effective energy-momentum pseudotensor,

7 = (—g) (T%[m, g] + #710] + 6[0]) (6.24)
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The wave-like equation in (6.23) is still equivalent to the exact Einstein equations but rewritten
in terms of the potential h*? and using the harmonic gauge. One might wonder if this gauge
can always be imposed over some reference frame to get the expression (6.23). To prove
that indeed this gauge exist first consider a system in which 8590‘5 # 0. By making a
transformation to a new coordinates z'# = f#(z®), then in the new system we have [9]

AghV = /=g Oy f*(z%) , O, :=g"'V,V, . (6.25)

Choosing each of the four scalar functions f# to be harmonic, then U, f# = 0 and the harmonic
gauge will holds in the new coordinate system. Thus, in harmonic coordinates the EFE in
the Landau-Lifshitz formalism are given by equation (6.23).

An interesting coincidence between the Landau-Lifshitz formalism and linearized theory in
the weak field limit will allow us to extend the derivation of the quadrupole formula to sources
with non-negligible self-gravity [1, 32, 34]. The first thing to point out is that the definition
of the potential h*’ in equation (6.16) is the same definition of the trace-reversed of the
perturbation tensor in linearized theory for weak fields [8]. So far, no approximations have
been made. But if one considers weak fields, the metric is defined as gog = 10 + hag With
|hap| << 1. The weak field limit expansion of the term y/—g that is involved in the definition
(6.16) can be computed as follows. First, write the metric as

g5 =05 +hz=0U + H)} . (6.26)

Note that g.z = napg% and so

—det(gag) = —det (napgpﬁ)

—g = —det(nap)det<g%)
—g = det(I + H) (6.27)

For a non-degenerate matrix A the identity logdet(A) = Tr(log A) holds. Furthermore, if A
is sufficiently close to the identity matrix, then

logA = (A—1) — (A;DZ + (A;I)g — (6.28)

Hence, the right-hand side of (6.27) may be expanded as,

—g = exp{logdet(I + H)}

= exp{Trlog(I + H)} Using the identity
= exp{Tr [H + O(HQ)]} Expanding log A
=1+ h+ OKR? Expanding e” (6.29)

and thus /=g = 1+ 2h + O(h?). Then, the potential h? that is defined in 6.16 coincides
with the ususal definition of the trace-reversed perturbation tensor in linearized theory as is
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shown,

= n* — gaﬂ
=" - <1 + ;h> (naﬁ - haﬁ) + O(h?)

= = (07— 7))~ %h (n + n?) + o(n?)

= h - %naﬁh + O(h?)

= "’ + O(h?) (6.30)

Observe that after inserting the potential h®’ in (6.30) into (6.18), the Lorenz gauge of
linearized theory is recovered at linear order,

9shf =0 . (6.31)
Finally, the relaxed Einstein equations at leading order in the weak gravitational field limit
yields,
= 167G
DR = - =22 (72 + &) (6.32)

where t%ﬁ = tﬁg + t%’B . By virtue of the harmonic gauge condition, the effective energy-
momentum pseudotensor 77 is conserved. This can be seen after taking the 4-divergence of
the wave-like equation in (6.23),

st =0 . (6.33)

The same argument for the weak field limit in equation (6.32) gives,
95 (T + 137) = 0. (6.34)

This conservation equation implies that the particles in a gravitationally bound system no
longer moves along geodesics of the flat spacetime®. Indeed, particles follow non-geodesic
trajectories due to the gravitational interaction that is encoded in t%ﬁ . Recall that to derive
the quadrupole formula in linearized theory one uses the Lorenz gauge, the wave equation
and energy momentum tensor conservation equation. In the weak field limit of the relaxed
Einstein equations, the same expressions were recovered, except for the important fact that
the energy-momentum tensor 77 is replaced by T8 + t%ﬂ . Then, the mass density moment
M that is involved in the quadrupole formula changes to

y 1 o
M) = L / Tt %) + 80(t,x)] #'e/d*s . (6.35)
c
Roughly speaking the term tOBO represents the gravitational binding energy between the par-
ticles [1]. Nevertheles, for weak fields this term is negligible in comparison with 7% which

describes the rest mass distribution of the system. Thus, one is left with the same definition

SCompare this conservation equation with the one in linearized theory BﬁTO‘B =0.
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for M mentioned before in linearized theory,

g 1 o
Mi(t) = = / T, x)z'a? dx . (6.36)
In conclusion, the quadrupole formula is still valid in the more general situation for gravita-
tionally binding objects”. But is important to insist that this is possible due to the strong

analogy between the weak field limit at linear order of the relaxed EFE and linearized theory.

6.3 The mass density moment M of a binary system

The mass density moment for a binary system can be computed assuming that the binding
gravitational energy between the point particles is negligible in comparison with 79, From
equation (6.36) one has

MY = ;/Too(t,x)xixj 3z
c12/ [m1025(3) (x —x1(t)) + mac?6®) (x — xo(t)) |2'a? dx

— myah (D (8) + muzh(B)ai(t) - (6.37)

This relation can be expressed in terms of the relative coordinate of the binary xg and the
coordinate position of the center of mass of the system xcy as follows,

MU(t) = muah (D] () + maah(t)h(t)

; mo ; mo ; ; my : mi

7 7 J J 7 7 7 J
= m1<l‘ — —X )(l‘ — —X )—f—mg(:u +7CC )(CC —X )

CM m 0 CM m 0 CM m 0 cm m 0

— ) J ) J % .. 1,0
= M1TemToym — HToMTy — HToToy T Nﬁxo%‘i‘

7 J ) J % .. )
MmaZopmToy T BEomTy + Mooy + uﬁxoxo

(m—myq) j

. . . mi
= (m1+mo)xoyaly + B Tox) + ,uﬁxgx

= m:cZCMa:]CM + pabal (6.38)

Remind that the quadrupole radiation approximation depends on the second derivative of the
mass density moment. From equation (6.38) is clear that if the the system is isolated, then
XoM Is moving at constant velocity and the first term does not contributes to the production
of GWs. In the center of mass reference frame the previous expression turns out to be

M = pal(t)z(t) (6.39)

and the mass density that give rise to (6.39) reads,

p(x,1) = u6® (x = xo(1)) - (6.40)

"Formally, to obtain the quadrupole formula from the relaxed EFE see references [9, 48] for discussion.
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Circular orbits

Consider a binary system with masses m; and mg in circular orbits. This means that each
particle follows a circular motion around the barycenter of the system. As was discussed
before, the two-body problem of the real particles is equivalent to the effective one-body
problem of two fictitious particles of masses 1 and m as shown in figure 6.2. At the center of
mass reference frame and by using equations (6.3), the particles of mass m; and mgy moves in
circles of radius

ma mi

i R 7 Py = — 1R (6.41)
mip + my mip + ma

where r; = |x1|, r2 = |x2| and R = |xg|. Of course the radius of the particle of mass mo will
be always greater than the radius of the circle followed by the particle with mass m; provided
that ma < m1%. The problem translates to the trivial motion of a fictitious particle of mass
m = m1 +me which is at rest or moving with constant velocity, and another fictitious particle
of mass p = ;7472 moving around the particle of mass m in a circle of radius R = [xo|.
Due to the conservation of angular momentum, the motion of the real particles occurs in a
plane. Let this plane to be the (z,y) plane, then the fictitious particle of mass y experiences

a circular motion with coordinates

xo(t) = Rcos(wst + g)
yo(t) = Rsin(wt + %) (6.42)
zo(t) =0,

where wyg is the angular frequency of the binary, R is the separation between the particles and
an initial phase of 7 has been taken for convenience.

a) Real scheme b) Effective one-body scheme

Figure 6.2: a) A real binary system moving in circular orbits. The relative coordinate always passes
through the center of mass position and perform a circular path of radius R = |x¢|. The particles of
masses my and meo follow circular motions of radius r; = m1m2 R and 7 = mﬁlmz R, respectively.
b) An effective one-body representation of the real two body problem for circular orbits. The fictitious
particle with reduced mass p follows a circular motion due to the potential generated by another fictitious
particle of mass m which is fixed at the center of the circle of radius R or at least is moving with constant

velocity.

8From equations (6.41) we have ro = %rl.
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In the center of mass reference frame, the mass density moment can be computed by using
equations (6.39) and (6.42). Each component of the tensor M% gives,

M (t) = pR? cos?(wst + ) M*(t) = pR?sin®(wst + 3)
1+ cos(2wst + ) 1 — cos(2wst + )
— 2 _ 2
1 — cos(2wst) 1 + cos(2wst)
_ P2 _ . p2
M™(t) = pR?sin(wst + 5) cos(wst + 3) MB(t) = M3 (t) =0, (6.43)
1
= §MR2 sin(2wst + ) M?(t) = M*%(t) = 0,
1
= —§,uR2 sin(2wgt) = M2 (t), M3(t) =0 .

The quadrupole radiation depends on the second derivative with respect to time of the mass
density moment. Thus, the non-vanishing contributions to the emission of GWs come from

M1 (t) = 2uRw? cos(2wst) | (6.44)
M?2(t) = —2uR*w? cos(2wst) , (6.45)
M2(t) = 2uR*w? sin(2wst) . (6.46)

6.4 Quadrupole radiation from a binary in circular motion

The quadrupole radiation for a binary system moving in circular orbits is obtained by eval-
uating the expressions (6.44), (6.45) and (6.46) at the instant ¢, = ¢ — ~ and inserting them
into the equations for hy and hy in (5.121) and (5.122). Since the motion of the particles
is restricted to the (x,y) plane there is no mass distribution along the z-direction and all
components of M% with i,j = 3 are zero. This simplifies the equations for hy and hy. The
radiation for the plus polarization yields,

hi(t;0,0) = %094 [MH((:OSQ ¢ — sin? ¢ cos? 9) + M22<sin2 ¢ — cos® ¢ cos? 0)
— M'25in(2¢)(1 + cos? 9)]
tr
= 1% [M” <Cos2 ¢ — cos? 0sin? ¢ — sin? ¢ + cos? 0 cos® qb)
rc
— M*'2sin(2¢) (1+ cos? 0) }
tr
= %094 []\le<cos2 10) (1 + cos? 9) —sin? ¢ (1 + cos? 9) — M2 sin(2¢) (1 + cos? 9) L
1G 2 il 2 .2 - 12
hy(t;0,0) = " (1+ cos®8) | M (cos® ¢ — sin® @) — sin(2¢) M
123
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Using the explicit functions for M and M'? from equations (6.44) and (6.46) we get

hy(t;0,0) = L& (14 cos? ) |:2/LR2(JJS2 cos(2wsty) (cos2 ¢ — sin” ¢)

rct

— sin(2¢)2uR%*w? sin(QwStr)]

14 2 p2 1 2
s GMCZSR < + ;OS 0) [cos(QwStr) (COS2 ¢ — sin’ )

r C

— sin(26) sin(2wstr)]

r ct

_ 14GMWS2R2 <1 + (;os2 0) |:COS(2wstr) COS(2¢) — Sln(2¢) sin(2wstr)]

ie.,

14Guw?R? (1 20
ho(t:0,0) = “::S ( +‘;°S )[cos(zwstrJrz(;s)] . (6.47)

Similarly, the cross polarization is

hy(t;0,0) = %g [4,uw§R2 cos(2wst; ) sin(2¢) cos 0

+ 4pw? R? sin(2wst, ) cos(2¢) cos 9}

14 2 p2
= ;% [cos(2wstr) sin(2¢) cos 0 + sin(2wst;) cos(2¢) cos 9}
then,
14 2 p2
hy(t;0,¢) = ;%(COS 9) [sin(2wstr + 2925)} . (6.48)

The results obtained in (6.47) and (6.48) shows that the frequency of the quadrupole radiation
is twice the frequency of the source [8]. It is important to highlight that the angular distri-
bution dependence of the polarizations are hy ~ 1+ cos? 6 and hy ~ cosf. This is a general
outcome provided that M3 = M?* = M33 =0 and M2 = 19,

The functions hy and hy can also be rewritten in terms of the frequency of the circular
orbital motion. Solving for the separation distance R from the Kepler’s third law one obtains,

R= <Gm>1/3 . (6.49)

2
Wy

Inserting equation (6.49) into (6.47) and (6.48) gives,

9There are other problems in which the angular dependence of the polarizations are the same. For instance,
consider a rotating rigid bar in the (z,y) plane or a rigid body rotating around one of its principal axis [8, 42,
49] .
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A4Gu (Gm\*? 1+ cos?6
hy(t) = ?Tf <w2> W2 <2> COS(27 fauty + 20) (6.50)
2/3
hy(t) = %% <Cj;n> wg(cos 9) sin(27 fewtr +2¢) . (6.51)

Moreover, if a new quantity called the “chirp mass” is introduced as

3/5
M, = u3/5m?/5 = M 6.52
utm (m1 + m2)1/5 ( )
and using the fact that wew = 27 fgw = 2ws then,

4 (GMN? (7feu \*? 1+ cos?6

hy(t) = . ( 2 ) ( . ) ( 5 ) cos(27 fgwtr + 2¢) (6.53)
4 (GMNP o 2/3 .

hy(t) = . < 2 > < . > (cos 9) sin(27 fewtr + 29) (6.54)

Note that in this Newtonian approximation, the amplitudes of hy and hx depend on the
masses my and meo through the combination M.. From the observational point of view, the
gravitational radiation is measured along the line of sight as is depicted in figure 6.3.

Figure 6.3: Observation of a binary system at a distance r from the source. The quantity ¢ is the
inclination angle for a fixed value of constant #. The line of sight is align with the direction &z and the
unit vector that describes the orientation of the orbital plane is denoted by 7.

Besides the constant value of 6 = ¢, the azimuthal angle ¢ could be fixed if the proper motion
of the source is negligible. In such a case, the argument of the temporal dependence in
equations (6.53) and (6.54) turns out to be

Yoty + 20 = 2 (t— f) + 2
c
= 2wt + 2, (6.55)
where

WewT

a=-"E"19. (6.56)
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The origin of time can be shifted by assuming a constant value of ¢. In particular, if ¢ =
—wgwr/c, then a = 0 and 2wst, + 2¢ — 2wst. The observer would detect the polarizations
of the radiation as

1 2
hi(t)=A <+;OSL> cos(2wst) (6.57)
hy(t) = .A( cos L) sin(2wst) (6.58)
with 5/3
4 (GM, 2/3
A== ( - ) (“’—) . (6.59)
r\ c c
Depending on the orientation and the line of sight to the source, there are two extremal cases
to be considered as explained in figure 6.4. If the source is edge-on, i.e. ¢t = 5 only the plus

polarization is detected and the radiation arrives with linear polarization. But if the source
is face-on, i.e. ¢+ = 0 and the radiation comes with circular polarization. For other values of ¢
the GW has an elliptical polarization.

Edge-on: . = 3 Face-on: 1 =0
{2% hy(t) = gcos(Zwst) {‘—’\ hy(t) = Acos(2wst)
, hy(t)=0 , hx (t) = Asin(2wst)
- Linear polarization Circular polarization
f éB é3 =n
L &o — ’fL P2 \

Figure 6.4: Extremal cases for the orientation of the binary system when is observed.

Radiated power

From equation (5.123), the radiated power per unit solid angle reads

quad 12 72
= h h :
o = lerg U+ X>quad (6.60)
For the binary system we have
: 1+ cos? 6 :
i2(0.0,0) = A (7550 (n ) sin Crfinte +20) (6.61)

h2(t,0,¢) = A(cos ) (27 faw) OS (27 fawtr 4+ 2¢) . (6.62)
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Hence,
dPGW 3,.2 1 20 2
quad _ CT 2 19 + cos .
i 16ec P e) A [ (—2 > (sin® (2 fgwt; + 2m))
+ (0052 9) <c032 (27 fawts + 27T)>:| . (6.63)

If the average (-) is taken over several periods of the GW then,

<sin2 (27 fowtret + 27r)> = <Cos2 (27 fowtret + 27r)> = % (6.64)

and the radiated power is given by

dPGW 3 9 1 29 2
quad c’r 2 192 + cos )

_ 9 - 7 + . .
o 39mG (2] A ( 2 ) cos™0 (6.65)

With a little of algebra, one gets

3,.2 5 10/3
c’r 2 o 2¢ [(GMwgy
29 (2 =—=\"53 6.66
327rG< mfew)” A TG ( 203 g (6.66)
and therefore the power per unit solid angle produced by a binary system is
dp(?u\;\/d 20 (GMowgy 03171+ cos?6\> 2 .
a0 xa\Tas B — + cos . (6.67)

Figure 6.5: Angular distribution of the power emitted from a binary source.

Finally, integrating this expression over the entire solid angle it is obtained the total radiated
power,

3265 [ GMwgy \'?
oW, = 22 (T . (6.68)
5 G 2c3
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This result is often rewritten in terms of the symmetric mass ratio v = pu/m and the dimen-
sionless variable z = (Gmws/c®)%/? as

32¢°
ol = an%g’ . (6.69)

6.5 Evolution of the circular orbit under back-reaction

As we have seen, a binary of point masses is a source of GWs. Due to the mutual interaction of
gravity, the particles are being accelerating and the variation of the mass quadrupole moment
of the system is a non-vanishing quantity. The energy loss of the binary when gravitational
radiation are emitted means that there must exist a back-reaction force which acts on the
point masses producing the necessary work to account for such energy loss'’. At linear
approximation there is no back-reaction of GWs. However, this effect will be included by
assuming that there exist a balance between the total orbital energy of the system and the

energy carried away by GWs'!. Mathematically this is described by the balance equation,

dEorbit GW
= —-P . .
2 (6.70)

The minus sign in (6.70) clearly indicates that the rate in the orbital energy decreases as GWs
(which carry energy) are emitted away from the source. The left-hand side of the balance
equation at the quadrupole approximation is given by (6.68) whereas the right-hand side can
be computed from the mechanical energy of the circular orbit,

Eorbit = EO + Ekin + Epot

1
= mc® + Q‘sz — 7GZL# co? = 7G};n
1Gmp
2
2L , 71
me” =5 —p (6.71)

Inserting equation (6.49) for the separation distance R into the orbital energy Fopit, by using
the chirp mass M, definition in (6.52) and considering wgyw = 2wy one obtains

a2z \ V3
Eorbit = m02 - (S);g;w (672)
and the mechanical power of the binary is expressed as,
1/3 .
1/3 :
dt 3\ 32 wild(t)

Time evolution of the gravitational wave frequency wg

Using (6.73) and (6.68) in the balance equation (6.70) gives

10This fact follows from the conservation of energy.
"¥or a formal derivation of the energy balance equation in the post-newtonian formalism see [Blanchet &
Faye 2018].
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2 (GEMA\'? Ggu(t)  32¢° [ GMewgy ()| '/
3 13, n  5G\ 923 (6.74)
3 32 wah (£) 5 G 2¢
and solving for Wey (t) a differential equation for the GW frequency is obtained,
_ 12 aM.
enlt) = 225 (55 )l (6.75)
which can be rewritten as
, 96 GM.\**
foult) = 700 (S5) i (6.76)

By integrating the previous expression with respect to time we get the time dependence of
the GW frequency,

1[5 1 3/8 1M\ ~5/8
Few(t) = — [256 o t)] ( 3 > (6.77)

where t.y,1 is an integration constant. Observe that for ¢ = t¢oa then fg, — 0o and therefore
teoal corresponds to the coalescence time. Therefore, the time to coalescence is defined as
T := teoal — t. Inserting the numerical constants in (6.77) and assuming a typical value for a
binary system conformed by neutron stars with masses m; = mg = 1.4 M, then,

1,2Mo\ % 15\ %/®

or

130Hz\*? /1,2M.\%/3
r = ( ?;? Z) < o @> s . (6.79)
gw ¢

For the frequency values of 10Hz, 100Hz and 1000Hz, equation (6.79) predicts times to co-
alescence of ~ 17min,2s and 1ms [32, 34]. The separation distance R for such frequencies
gives ~ 711, 153 and 33 km and can be estimated from Kepler’s third law in (6.49) with
Wgw = 2ws. Furthermore, if the period of the GW is a function that varies very slowly with
time, the number of cycles in an intervale dt is found from dNye = % = fow(t)dt. Hence,

tmax fmax
Noye = / Fou(t)dt = / Jow g (6.80)

tmin fmin fgw

Using (6.76) to express fgw as a function of fgy and substituting the result in (6.80) yields,

1 GM. o -5/3 -5/3
Ncyc == <63> <fmin - ma)é )

3278/3
10Hz\*? /1.2M,\
~ 1.6 x 10* : 6.81
o () () 031
where f;?n/?’ — ;2/3 o f;ﬁl/g. For the LISA (Laser Interferometer Space Antenna) detector,

fmin ~ 107* Hz and signals in this frequency band correspond to the inspiral of supermassive
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black holes with masses of order O(10°)Mg,. For black holes with masses mj = mg = 106 M,
the number of cycles is J\/’CyC ~ 600, but for m; = 106M® and mo = 10Mg the number of
cycles is Noye ~ 107. In such cases, very precise predictions beyond the Newtonian order must
be considered in the modelling of the GW signal.

Time evolution of the separation distance R

In order to compensate the energy loss of the system, the separation distance R between the
mass particles must decrease in time as long as GWs are radiated away from the source. From
the Keplerian frequency relation in (6.49) and the radiated power in (6.68) the coalescence
process is understood as follows. Since wg o R™3/ 2 if R decreases then ws increases. As
Pyuaa o (QwS)w/ 3. the increment of ws leads to a rise in Pyuaa- But if the power Pyyaq
becomes greater, the separation distance R decreases much further generating a coalescence
process. The change in R could be obtained by differentiating the Keplerian frequency,

R
2 ] .s -3 2=
WsW, Wy R
ie.,
2 Wy

If ]R| < wgR the change in the separation distance is much less than the tangencial speed
and the result is a quasi-circular orbital motion. From (6.82) this is possible as long as

Ws € w? . (6.83)

Recall that the time to coalescence is 7 = tcoa1 — t so d(+)/dt = —d(-)/dr. Moreover, using
the fact that wgw = 2ws along with the equation (6.77), the time evolution of the separation
distance R is described by the following separable differential equation,

TAR _ 2 1 df(n)
R dr 3 fow dr

- = . (6.84)

The solution of (6.84) gives R(1) = Ro(T/To)1/4 with 79 = teoa — to and the temporal
dependence of the separation distance is given by

1/4
teoal — T > /
teoal — to

R(t) = Ro ( , (6.85)

where Ry is the value of R at the initial time ¢ = t. Evaluating the equation (6.77) at the
instant 79 and using the Keplerian frequency then,
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1 /5 1\ /am N\ am
w2 \ 256 1 c3 N ™R3
or -
5 Ry
= —— 6.86
0 = 956 GBum? (6.86)

Finally, the initial radius Ry may be expressed in terms of the initial period Ty = 27 /ws(70)
by means of Kepler’s third law, i.e., R3 = Gm(Ty/2r)?. From (6.86) it follows that

2/3
70 ~ 9.829 x 10%yr <TO> (M®> <M®>

1hr

m 0

800

(6.87)
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Figure 6.6: Time evolution of the separation distance R for a binary in circular motion.

6.6 The waveform of a binary source in circular motion

It was discussed that the back-reaction effect in a binary system of point masses increases the
orbital frequency of the circular motion over time and thereby the GW frequency evolves as
shown in (6.77). In addition, the emitted gravitational radiation at the quadrupole approx-
imation is described by the functions hy(¢) and hy(t) in equations (6.53) and (6.54). One
might note that the amplitudes and phases of such functions depend directly on the frequency
wgw which indeed is increasing with time. As the particles approach to each other, the wave-
form signal of the emitted radiation begins to rise not only in frequency but also in amplitude.
Hereafter, we shall describe these changes in the plus and the cross modes of propagation.
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Consider an effective one-particle with reduced mass p moving in a quasi-circular orbit of
radius R = R(t) with frequency ws = ws(t) due to the gravitational potential generated by a
particle with mass m. If the motion of the fictitious particle of mass p occurs in the (x,y)
plane its cartesian coordinates are given by

g) , (6.88)

where the phase 7 is included for convenience and the quantity ®(¢) is defined as

B(t) = 2 / "t dt’ = / ST (6.89)

to to

The mass density moment of the system is M¥ = ux%(tﬂg (t) which gives

B 1 — cos[®(t)]
M2 (t) = MRQ(t)f )
M2(1) = MRQ@)HCO;[‘I’@], (6.90)
MY(t) =~ R (1) sin [(1)]

The quadrupole radiation depends on the second deerivative with respecto to time of the mass
density moment. Thus,

-1 — cos(P)

: P
M"Y = 2uRR + pR*— sin (®) (6.91)

2 2
N = R+ RE| [1 = cos(@)] + pREbsin (@)

.. 1 1 .
+ u [RR@ + 2R2<D] sin (®) + §uR2<I>2 cos (®) (6.92)
If a quasi-circular motion assumption is imposed, then R(t) is negligible as long as wy < w2.
From (6.76) this condition translates into 8]

G M wq
3

<05 , (6.93)

or in terms of the binary frequency,

(6.94)

1.2M,
fs < 13kHz< ®>

C

The so-called plunge phase of the binary where the bodies are very close together before the
merger occurs earlier than the given condition in (6.94). The underline reason is that when the
objects approach to each other, the gravitational field near those objects are very strong and
the dynamics of the system is more complicated because the background cannot be considered
as flat. Actually, circular orbits are forbidden beyond the Innermost Stable Circular Orbit
(ISCO) and one should stop the quasi-circular approximation at this point. In a Scharzschild
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background, the ISCO reads in Schwarzschild coordinates as

6Gm
2

rISCO = (6.95)

C

An upper limit estimation of the frequency at the inspiral phase where the emission of GWs
in the quasi-circular approximation can be found by using Kepler’s third law. Thereby,

1 3

6+/6(27) Gm

For a binary neutron star with masses m; = my = 1.4Mg, then (fs)isco ~ 800 and the
upper limit for the inspiral is less than the condition (6.94). In conclusion, the cuasi-circular
approximation is suitable provided that the blnary frequency is far from reach (f5)isco during
the inspiral phase'2. In this case the terms R and Wew involved in the expression (6.92) can
be neglected. Since & = Wew, then the terms that have ® do not contribute i.e.,

(fohsco = (6.96)

B (1) = R (02(1) cos [B(0)] = 2R ()2 (1) cos [0(1)] (6.97)

Likewise, for the other components one obtains'

NV() = 2R ()wd(t) cos[D(1)]
M2(t) = —2pR?(t)wd(t) cos [B(1)] (6.98)
N2() = 2uR2(t)wd (1) sin [D(t)] |

and therefore the functions hy (t) y hy (t) yields,

ha(t) = % (GC]‘fC)wS (”fgvcv(tr))m <1+C20529> cos [0(1)] (6.99)
ha(t) = % (ch)g)/g (Mfgz(tr))w (cose) sin[0(t)] . (6.100)

In terms of the time to coalescence 7 measured by the observer, the amplitudes in equations
(6.99) and (6.100) are rewritten by using (6.77) where

W _ 1[5 1) (GM oo
c c \ 256 T 3 ' '
Similarly, using (6.77) in the definition for ®(¢) in (6.89) one finds,
5GM,\ /8
(I)(t) = -2 ( 3 > [tcoal - t]5/8 + ®q (6.102)
where,
5GM,\ /8
Py = 2< 3 > [tcoal - t0]5/8 . (6.103)

120f course, for better predictions of the inspiral phase when the bodies are approaching one must use the
post-Newtonian formalism rather than only a Newtonian approach [9, 48].
13Compare these results with equations (6.44), (6.45) and (6.46).
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Finally, inserting (6.101) into the expressions (6.99) and (6.100) it is obtained the time evo-

lution for the emitted radiation at the quadrupole approximation,

—_

ha(t) = & (Gf")m (coe t)>1/4 (”2) cos [B(1)] .

hlt) = - (G¥C)5/4 (C(t ° t))1/4 (cos ) sin [ (1)

c coal —

<
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Figure 6.7: Time evolution of GWs as the orbit of a binary system decays. Since the frequency and
the amplitude sweeps upwards with time, this plot is often known as the chirp waveform. The data to

reproduce this figure was obtained from the source GW150914 [13].
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Chapter 7

GWs in Linearized f(R) Gravity

This chapter aims to investigate the linearized equations of f(R) gravity as a natural initial
framework to study GWs, following essentially the work done in [27|. A massless wave equa-
tion for a modified perturbation potential 7LW would be discussed with some similarities and
differences with the procedure developed in Chapter 1. Unlike the two polarizations that arise
in GR, an extra scalar and massive radiative degree of freedom appears in this theory for the
Ricci scalar at linear order. The solution of the gravitational radiation emitted by a station-
ary point source at the Newtonian limit is presented. As in GR this kind of source does not
generates radiation for the massless propagation modes. However, the solution for the massive
mode exhibit a Yukawa-like functional dependence. As a consequence, it is shown that the
metric for a stationary point mass in f(R) gravity to first order, implies that such a source
generates a Yukawa gravitational potential. The form of this potential consists in an addition
of an exponential term to the usual Newtonian potential. At the end, the energy-momentum
tensor of GWs will be revisited in this context in order to give a consistent description of a
binary system in Chapter 8 with some assumptions.

7.1 Brief introduction to f(R) gravity

At the beginning of Chapter 1 it was mentioned that the EFE could be derived from a
variational principle. The full action that leads to the EFE is [38, 50|,

51,6 = o (Tulg] + Tofo)) + Iul¥.q] | (7.1)

K
with k = 87mGc™3. The quantity Iy[g] along with Ig[g] represents the action of the gravi-
tational field g,,, and consists in the Einstein-Hilbert term plus the Gibbons-York-Hawking
boundary term. The contribution Iy[¥, g] is the action of the matter fields, which are collec-
tively denoted by W. Explicitly, the GR action reads as

R 1
(U, g] = / (2 + c) J=gd'z + f K |h|2dPy | (7.2)
Y \ 4k K Jay

where
Iy = / Ry/—gd'z Iy = 2% 6K|h|1/2d3y , Iy = / L/ —gd x| (7.3)
1% oV 1%

Here, R is the Ricci scalar on V, g = det(g,, ) is the determinant of the metric, K is the
trace of the extrinsic curvature, ¢ takes the value of +1 if 9V is timelike and —1 if 9V is
spacelike, h is the determinant of the induced metric on the hypersurface 9V and L is some
matter lagrangian density. Coordinates are denoted as x® and y® on V and 0V, respectively.
The EFE are obtained by varying the action (7.2) with respect to g when the condition
(59“1,‘ gy = 0 is imposed. The role of the surface integral term in the gravitational action is
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to cancels out exactly a surface term that appears in the variation of the Einstein-Hilbert
functional. The result is the EFE equations given in (2.1).

It has been accepted that GR is the actual theory of gravity. The EFE describe a widely
astronomical phenomena tested with a high level of accuracy in different regimes. However,
a great variety of alternative theories have been proposed even since the birth of GR in order
to explain the behavior of gravity in other scenarios |17, 51|. The simplest modification is
not to consider the Ricci scalar R as the lagrangian density of the Einstein-Hilbert action,
but a general function f(R). The result is a family of gravity theories, each one with some
functional form f(R)!. A well-defined variational action in this context is given by [50]

(f(R) + ‘) v=adte + 7£V KS(R)BPdy, (74)

2K K

Ser[¥, 9] = /

1%

where f' = %. Since the action includes higher-order derivatives of the metric one has
the freedom to impose the additional condition 6R’ 5y = 0 In order to subtract a boundary
term similar to GR [27, 50]. Varying the action (7.4) with respect to g"” gives the f(R) field
equations in the metric formalism?,

1 8rG

f,R;w - v,uvl/f/ + g;wljf/ - if.g,uu = ?T,uu . (75)

In analogy to GR, defining a modified Einstein’s tensor by

1
G = 'Ry = VuVuf' + 9uBf" = 5f9m (7.6)
the field equations in (7.5) are written as
8tG

gp,y - TT,UJV (77)

so that in vacuum G,, = 0. In particular, when f(R) = R the EFE are recover from (7.5).
In vacuum, the trace condition of the field equations in (7.5) gives

9" Ry — "'V Vo f + ¢ g 0f — %fg“” =0
f'R+30f —=2f =0 . (7.8)
If one assumes that f(R) is analytic about R = 0, it can be expressed as a power series”,
f(R)=ag + a1R + %}? n %R?’ T (7.9)
and for a uniform flat spacetime (R = 0), equation (7.8) implies that

ag = 0 . (7.10)

'This means that GR. is a particlar case when f(R) = R.

2There are other approaches to obtain the field equations in f (R) which may yield different results [17,
51]. For instance, in the Palatini formalism the metric g* and the connections I'f,, are treated independently
because the connection is not the Levi-Civita connection [27, 52]. Moreover, the metric-affine formalism not
only consider the independence between the metric and the connections, but also assumes that the matter
lagrangian density depends on the connections.

3The dimensions of f(R) must be the same as of R and thus [a,] = [R]*~™).
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Conservation of the Energy-Momentum tensor 7},

From the geometrical point of view, the energy-momentum tensor 7),, is conserved in GR due
to the Bianchi identities. In this sense, the conservation of such tensor in f(R) gravity is also
ensured by means of an additional identity. The contraction of the field equations in (7.5)
with the covariant derivative gives,

VH (f’RW - V.V, + 9,0f — ;fgw,> = 87GVH'T,,

(V”f’) R, + f’V“RW — aOv,f + g,WV“Df’ — %g,wV“f = 8rGVHTy,,
RVt + IR, — %ngl‘f — OV, f" + v, 0f = 8rGVH'T,,
R,,/VHf + fINVFR,, — %g,wf’V“R — @OV, - v,0) f = 8rGVH'T,,
R,VEf 4 f'VH <R,“, - ;gwR> —(OV, — v,0) f' = 87GV T,

R,V*f —(OV, — Vv, 0) f = 8GV*T,, , (7.11)

where in the last step we applied the Bianchi identities. The left-hand side in (7.11) vanish
because of the identity

@v, - v.0) f = R,V"f . (7.12)

This relation can be proved as follows. Recall that the covariant derivative of a scalar field ¢
is just the partial derivative, V,¢ = 0,¢. Hence,

VoViud = Vo (00) = 0,06 — 2,000

= 0u0y¢ — I, 0a¢ [no torsion]
=V,V,¢ . (7.13)
Additionally, the Riemann curvature tensor is related by [V, V,]V* = Wvﬁ Therefore,
Ry, V' = (OV, = V,O) f
= (V,V*V, — V,V,V*) [
= (Vi yVu) VIS
= [vuv vl/] v“f
= a,ul/vaf
= Ra, V[ . (7.14)

Then, the left-hand side in (7.11) is zero and the energy-momentum tensor is conserved in

f(R) gravity,
| o
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7.2 Linearized f(R) gravity

The field equations in (7.5) are even more complicated than the EFE. If we consider a very
weak gravitational field, the metric decomposition within the framework of the perturbation
theory, allows us to linearized the field equations in f(R) gravity*. If the background is the
Minkwoski spacetime, a linear perturbation to the metric reads,

g,uzz(x) = N + h/,w(x) . (7.16)

The perturbation tensor is defined as h*¥(x) = h,(}l,)(x) = ¢h,, with e < 1 and N =
diag(—1,1,1,1). To order O(e) the inverse metric is as usual given by,

g = — pv (7.17)

and indices are raised and lowered with 7,,. We recall here the linearized connection, Rie-
mannn tensor, Ricci tensor and Ricci scalar,

&) 1
FZV = 577’)’\ (a;th)\u + azzh/\u - 6)\huu) ’ (7.18)
o= Y. +0an 90,1, — 9 d,h
RMVP_§<HVP+ plipy — Cubplty — Vup)7 (7-19>
o) 1
RNV = 5 (8M8Php1/ + a'/aphpy - a,ual/h - Dhuu) s (720)
(1)
R = 8,0,k — Oh . (7.21)

where the d’Alembertian operator is U = 7#9,0,. In order to get the linearized version of
the field equations in (7.5), the function f(R) to order O(e) and its first derivative is required.
From (7.9) this is,
(1)
f(R) = ap + CL1R + - (722)

f,(R) =a; +aR + - . (723)
A linear perturbation to the Minkowski metric implies that the spacetime is slightly different
from the flat where the Ricci scalar vanishes. This means that the Ricci scalar is almost zero

and one can assume that ap ~ 0 as mentioned in (7.10). Additionally, to link the results in
this theory with GR we will set a; = 1°. Thus, equations (7.22) and (7.23) becomes

f(R)y =R+, (7.24)

FR) =1+ asR + - . (7.25)

Inserting (7.25) and (7.24) into G,,, given by (7.6) then,

(D 1) (1) (1) 1@
G = (1 + a2R> Ry — VY, (1 + a2R> + g0 (1 + agR) ~ SR + -

Inserting the metric decomposition (7.16) in this expression and using the fact that at linear
order the covariant derivative of a quantity of order O(e) is the same as its partial derivative,
the modified Einstein tensor to first order in ¢ is,

4See Chapter 2 for a review on perturbation theory.
5 Any rescaling can be absorbed into the definition of the gravitational constant G.
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(1) (1) (1) 1@
QW = R,W — agf) 0, R + GQT]M,/DR RT],W . (7.26)

and the field equations in linearized f(R) gravity are®

eh) o 1w 81G
R, — a20,0, R + aonu R — Rnu,, =

T}U/ 9 (727)

where the Ricci tensor and the Ricci scalar are given in equations (7.20) and (7.21). Observe
that if aa — 0, linearized theory in GR is recover as can be seen from equations (7.24),
(7.25) and (7.27). Taking the trace of equation (7.27) we get

(1) (1) 1) 76
B a0 R+ das0R — oR = =T
C
o» O 81G
3as0R — R = — T (7.28)
C

Defining the parameter Y? = the previous equation is rewritten as

3a’

(D B TZ) }1{) 8rG

T . (7.29)

C

This is just the inhomogeneous Klein-Gordon equation for the Ricci scalar at linear order. It
represents a massive wave equation for a new scalar degree of freedom in the theory [53-57].
In vacuum, 7' = 0 and then

(O - 1?) R=0. (7.30)

In GR the trace-reversed form of h,,, satisfies the wave equation in the harmonic gauge. One
might wonder if there is a massless wave equation for the perturbation tensor h,,, in linearized
f(R) gravity as in GR. A clever way to do this is to propose the following ansatz,

- 1
hy = <huv — Qnuyh> + B, (7.31)

(1)
with B, = baanw,7. Thus,

>

(1) 1
o = huy + (b(IQR — 2h> 7’]“1, (732)
which can be inverted to obtain
_ (1) _
hyw = by + <ba2R— h) N - (7.33)

The constant as has been included in the ansatz to ensure dimensional consistency and b is a
dimensionless number. Contracting equations (7.32) and (7.33) with n*¥ yields,

5The energy-momentum tensor should be of order O(¢). Otherwise, is not possible to consider a perturbed
Minkowski metric.
7Again, when az = 0 the usual trace-reversed form in linearized GR is recovered.
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_ (1)
h = 4basR — h , (7.34)

(1) _
h = dbaR — h . (7.35)

The Lorenz gauge can also be imposed in this context over the the new perturbation potential
tensor hy,. To see how, remind that the invariant gauge in linearized theory is
h;w = h;w - (8/L€V + 8u§u) (7'36)

and the trace of this equation gives
' = h — 20,&" . (7.37)

It was mentioned in Chapter 2 that the Riemann tensor is an invariant quantity under the
gauge of linearized theory and the Ricci scalar also inherits this property. Using equations
(7.36) and (7.37) into the linearized Ricci scalar in (7.21) it follows that

(1)
R = 8,0,k — ON

— 0,0, [W — (9" + 07€M)] — O (h — 20,£)
= 9,0 h" — 00,6" — 00,6 — Oh + 2000,

(1)
= 0,0,k — Oh = R (7.38)

and the Ricci scalar is indeed invariant under the gauge of linearized theory. Now, the
perturbation potential h,, defined in (7.32) changes as

_ 1 (1)
W =h, — §h’77/“, + basR'ny

_ (1)
= h;w - <8p€u + &/éy) =+ nuuapgp + GQbRn,uu (7-39)

Then,
_ _ (1)
OMN = OFhyy — 08 + baxdy R . (7.40)

Assume that in an initial system the Lorenz gauge is not satisfied and at the right-hand side of
(7.40) we have 0*h,,, # 0. The gauge transformed system must satisfies the Lorenz condition
if

0&, = gu (7.41)

_ (1)
with g, = 0"h,, + ba20, R. This equation can always be solved with a well defined boundary
conditions. Therefore, the Lorenz gauge can be achieved in some coordinate system and

auﬁuu =0 ) (742)

where hy,,, is given by (7.32). Analog to GR, the way forward is to simplify the field equations
in (7.27) using the Lorenz gauge condition over the new potential h,,. The first term at the
left-hand side in (7.27) is the linearized Ricci tensor. Then,
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R = %{auaphﬂy + OO0, — Budh — Ol }
1 7P PR 70 @12\ o
= 2{8M(9p |:h v + (bCLQR - 2h> 0 I/:| + 8yap |:h u + (bCLQR - 2h> ) u:|

o _ _ ®» 1-
9,0, <4ba2R— h> _0 [hw + (bagR - 2h>} }

1 _ 1) 1- _ (1) 1-
= 24 0,0,h%, + 0,0, (basR — ~h) + 0,0,h", + 0,0, (basR — h
2| Ly 2 . L 2

=0 =0
(1) — — 1) 1-
— 9,0, <4ba2R - h) O [hw + (bagR - 2h>] }
1 (L - 1 - 1)
= —2{20@1)8“8,/]% + ] <huy — 277uyh) + a2bDRan} . (743)

Observe that the left-hand side of (7.28) is just the trace of the modified Einstein tensor G at
linear order. Thus, from this expression we have

O 1/ W
as R = 3 <g + R) (7.44)

and using this result in (7.43), the linearized Ricci tensor becomes

(1) 1 (1) _ 1 _ b /@ (1)
RNV = —5 2a2b8N8VR —+ ] huy — 57’]1“/}7/ + g g + R 77/“/ . (745)

Using (7.45) and once again (7.44) into (7.26), one obtains the modified Einstein tensor G,
at linear order,

(1) (1) (1) (1) 1@
g,uy = R,uu - a28uauR =+ GZUMVDR - iRnuu

1 (1) _ 1 _ b (1) (1)
= —3 |:2a2b8u&,R + 0O <hﬂl’ - 2nHVh> + g (g + R) 77#1/:|

&) o 1w
— 20,0, R + asn,, R — ian,

1 - CORNEY)

o 1 - b
= —CLQbauayR — 5‘:’ (h/“/ - 277,th> — 6 (g + R) nMV

(1) 1 1) €Y 1w
— agaual,R + gnuu Q + R) — QEU/W
1) 2—-bQ 1 _ 1 _ (1) 1@
g‘w/ = Tgn“y — §D huy — 57’]”1/]1 — (b+ 1) a28ual,R — an,LLU (746)
By setting b = —1 in (7.46) the final term vanishes and then

(1) 1@ 1 - 1 -
g,w = §g7’]ﬂy - 5\:‘ h#l, — §nuyh . (747)
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The expression in (7.47) is almost the left-hand side of a wave equation. To show that actually
the first and the last term cancel each other, consider the linearized Ricci tensor. From (7.21),

_ o
h) n“p] + 0 <4a2R + h)

1
2
_ ) 1- o
= 0,0,h"* -0 (agR + h) + 0 <4a2R + h)
N e’ 2

€Y

R = 8,0,h" — Oh

= 0,0, |:Bup — (azR +

(1) 1 -
= 30 <a2R> + 50h . (7.48)

Comparing (7.48) with (7.28) it is concluded that
1) 1 -
G = —50h (7.49)
and inserting (7.49) into (7.47) the modified Einstein tensor G, at linear order gives,
1) 1 -
g,ul/ = _Qljh;w . (750)

Finally, using the result in (7.50) into the field equations in (7.7) we obtain a wave equation
for the potential h,,

- 167G
Dhul/ = _CTT;U/ (751)
with
- w1
Py = Py — <a2R + 2h> T (7.52)

7.3 Gravitational waves in vacuum

In the previous section two wave equations have been found as shown in (7.29) and (7.29).
This section seeks to identify the physical radiative degrees of freedom in linearized f(R)
gravity [27, 53, 57]. If we specialize in vacuum, it follows that 7}, = 0 and therefore we
obtain

Ohyw = 0, (7.53)
9 (1)
O-"T)R=0 . (7.54)
The general solution of the equation in (7.53) is a superposition of plane waves of the form
B = ()" (7.55)
Certainly, by inserting the solution ?LW in the wave equation one gets

k k=0 (7.56)



7.3. Gravitational waves in vacuum 125

and the wave four-vector is null. This means that GWs propagates at the speed of light as in
GR. Explicitly, using k* = (w/c, k) this is to say that there is no dispersion,

w=ck . (7.57)

Observe that in this case the phase velocity v, and the group velocity v are the same,

w ow
p == , Vg = g = C (7.58)
For the scalar mode, the solution of (7.54) gives,
oo .
R = R(qu)e"™* (7.59)

and inserting (7.59) into the homogeneous Klein-Gordon equation yields
1°00a0s | R(g)e ™ | — T2 [ R(g)e "] = 0

Z‘2na,8qaqﬁ [R(qu)eiqux“] _ 2 [R(qﬂ)eiquxﬂ} —0

ie.,

q"q, = —T* . (7.60)

Thus, there is dispersion and ¢ is time-like. If ¢* = (Q2/¢, q) where 2 is the angular frequency
and q is a wave vector of this scalar mode, the expression in (7.60) gives

2
q = \/% -T2, (7.61)

Using the dispersion relation in (7.61), the phase velocity and group velocity are given by®

\/m
oo vy = B _ VP Z (7.62)
q V2 — 272 g Q
and the plane wave packet of the massive particle propagates at vy, < c. Instead, if one
assumes that %22 < T? an evanescent wave is found. However, an important remark about the
propagation of the scalar mode arises at the limit of GR when as — 0, so that T? — oo.
From equation (7.61), if indeed Y2 — oo then it is required an infinity frequency Q to excite
this Ricci scalar mode to propagate and evanescent waves would decay infinitely fast [27].
Thus, the Ricci mode should not be detectable and one is left only with the massless modes.
In fact, as well as in GR, the perturbation tensor h,, has only two polarization massless
radiative modes that actually comes from l_”Lu,jg. To show this, consider the perturbation

tensor hy, by inverting equation (7.52). Then,

_ 1- &)
hm/ - (h/w - 2h77/w) - GQRnl“’ : (7'63)

The term in brackets represents the massless radiative modes and the remain term the massive
scalar mode. We will show that the tensor h,, can be put into the TT form to extract the
plus and cross polarizations. As a consequence, h = 0 and the solution for the perturbation

8Observe that if T = 0 the wave propagates at the speed of light.
9The massive scalar mode of propagation comes from the Ricci tensor.
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tensor hy, will remain only with two massless radiative modes plus a massive scalar mode.
To extract the polarizations, is worthwhile to introduce a new quantity,

_ 1
H,, = hy — 577Wh (7.64)

where H,, represent the trace-reversed form of Bﬂym. Using this definition, the independent
components of h,, are the same of H,,. This can be shown by writing the vacuum wave
equation in terms of H,, and using the expression (7.49),

Ohyy = 0

1 -
O <HW + Qn,“,h> =0 (7.65)

(1)
UHu — G0 = 0

OH,, =0 . (7.66)

Then, the problem is equivalent to find out the independent components of H,,. To achieve
this, consider the following infinitesimal diffeomorphism

at — at — (7.67)

With this transformation the quantities ﬁw, h and H uv change as

B;(Fuew) = B;w + (0u& + 0,€,) (7.68)
Re) — h 4 29,60 (7.69)
H;(J,?IGW) = H,uV + augl/ + 8l/§u - nuyapfp (770)

With a similar argument explained in Chapter 2, the Lorenz gauge 0" H,, = 0 exists in the
transformed coordinate system and therefore always can be imposed by choosing this new
frame. Taking the 4-divergence of equation (7.70) one gets

MHE™ = 0'H,, + 08, (7.71)

and the Lorenz gauge in the new system always is satisfied provided that (0§, = s, with s, =
—0O*H #,,11. Now, suppose that this new coordinate system is chosen so that the Lorenz gauge
is valid. If one wish preserved the Lorenz condition under the transformation in (7.67) in other

coordinate system, only if (1§, = 0 then 0*H ,(j;ther) = 0'2. Of course in all systems the physics
is the same and the vacuum wave equation is preserved under coordinate transformations!'3.
Selecting a coordinate system that preserves the Lorenz gauge, the rule transformation (7.70)

reads explicitly as

~ A~

H o = Ha + i(kﬂéy + ke, — nwkﬁg}) . (7.72)

where

A~ ~

H,, = H,,(k,)e** , €, = Eulky)ee (7.73)

9This means that H = —h with H = " Huy.

1This wave equation for the functions &, always can be solved and the right-hand side of (7.71) vanishes.
2Note that 9* HCther) = gr gH@ew) | e, = [¢,,.

13This can be proved by taking the d’Alembertian of the rule transformation between systems in (7.70).
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As developed in Chapter 2, the Lorenz gauge reduces the 10 initial independent components
to 6 and the functions &, simplify further to only two independent components. By assuming a
GW propagating in the +z-direction, the Lorenz condition gives H'g, = —Hs,. Additionally,
from equation (7.72) one can choose the functions &, in order to get finally'*

EW} (7.74)

where fLW is the polarization tensor of hy. Observe from (7.74) that the trace vanishes, i.e,
h = 0 and the tensors H,, and h,, are equivalent as expected!®. Therefore, the perturbation

tensor hy,, becomes [27],
_ (1)

h;w = hp,l/ - a2R77,u1/ (775)
and can be written as |53, 54|
(1)
G 2) = h+(t—z/c)el(;;) + hx(t—z/c)e/(fy) — agR(t — vgz/cH)nuw (7.76)
with
00 0 O 00 0O
@ _ (o1 0 0 o _ |00 10
Ch 00 -10 o O 0100 (7.77)
00 0 O 0 0 0O

A remarkable consequence of the Ricci scalar mode in linearized f(R) gravity is that is im-
possible to set the trace h equal to zero. Actually, only A = 0 can be fixed in some reference
frame. Indeed, is not necessary to choose a TT frame to set h = 0. For instance, setting
b= —11n (7.39) and taking the trace it is obtained,

_ _ (1)
W = h + 20,6" — 4a3R (7.78)

and the condition A’ = 0 could be fixed with adequately choosing the functions &* by imposing
the relation

o 1-
0" = 2R — Sh . (7.79)

However, even choosing h = 0 in any coordinate system, h # 0 as long as the Ricci mode is
nonzero. This can be proved after taking the trace in equation (7.52) and assuming that in
some reference frame h = 0. Then,

(1)
h = —dayR . (7.80)

This is a great difference with linearized theory in GR where always is possible to set A =0
in some reference frame!S. In particular, from equations (7.76) and (7.80) when as — 0 the
GR limit is recovered.

In summary, the main purpose of this section was to highlight the differences that arise
in linearized f(R) gravity in contrast to gravitational radiation in GR. The conclusion is

14The procedure is very similar as was done in Chapter 2 with some changes in the signs of the expressions.
15This follows from equation (7.64)
16Not necessary only in the TT frame.
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that aside from the plus and cross polarizations, there is another extra Ricci scalar mode of
propagation of a massive wave. Moreover, the trace of the perturbation tensor h,, is always
nonzero but one is able to fix h = 0 in some reference frame. At the end of this chapter, a
coordinate system where h = 0 will be assumed in order to simplify the computations of the
energy-momentum tensor ¢, in this context.

7.4 Newtonian limit of f(R)

In vacuum, all propagating modes of GWs in linearized f(R) gravity are described by plane
waves. Nevertheless, to understand how this waves are produced one has to include the
energy momentum tensor 7}, of the matter sources. The inhomogeneous wave equation that
describes the massless GWs is shown in (7.51). This equation is exactly the same as in
the case of GR and thus all methods and developments that were introduced in Chapter 5
can be applied in this context [27|. Unfortunately, to find a solution of the inhomogeneous
Klein-Gordon equation for the massive propagating mode is not an easy task. The goal of
this section is to find a general solution of the Klein-Gordon equation and investigate the
gravitational field generated by a stationary point source at the Newtonian limit. In general,
an explicit solution for other sources like a binary system is very demanding [56].

Green’s function for the Klein-Gordon equation

To express a general solution of the Ricci scalar mode in an integral form, the Green’s function
method is implemented. If Gy (z, 2) is a Green’s function of the inhomogeneous Klein-Gordon
equation, it must satisfies the following relation,

(O — Y?) Gy (z,2) = 6W(z—2a') . (7.81)

Then, the solution of (7.29) is given by
0
R(x) 87TGT2 / Gro(w, ) T(2) d* . (7.82)

Is straightforward to check that indeed this a solution to the problem. By acting the Klein-
Gordon operator ([0 — Y2) over the previous expression yields

O, + T)R() = 27

/(D — TG (z, 2T (a) d*s’
= 87TGT2/5 (z — 2T (2') d*z’
= —YT(x) , (7.83)

as expected. In the Fourier space, the Green’s function and the Dirac delta function are

1 ’i Iaim/a jod
Gy(z,2') = (%)4/6’?&( )Gy (k, k) d'k (7.84)
]. i xa_x/a
sz -2 = @ / e'kal ) d*k (7.85)

and inserting them into the Green’s equation (7.81) gives
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(0, — Tz) [(271#1 /eika(r"‘—x’a)@T(kjk/)& } _ (o — ) gy,
[(2;)4/(—77;%“@ _T2) ehela =) G (h, ) } _ ik (@ — o) iy
Thus,
Gr(k,¥) = - 1 (7.86)

oz

Replacing equation (7.86) into the definition (7.84) one gets the Klein-Gordon propagator
[58],

Gy(z,2') = — ! / . )d4k (7.87)
’ i) K — @2 ’
where ©? = (w?/c?) = Y2, R =x—x" and 7 = t — /. If we align the z axis with the direction

of R, the integrand takes an azimuthal symmetry and it is possible to perform the integration
in spherical coordinates for the variable k,

1 e szeikRCOSG . w
Grlar.a') = ~ 5 / 5k sin0dddadkd () (7.88)

with |R| = R. Making the substitution u = ikRcosf and du = —ikRsinfdf, the integral
becomes

_ 1 efin —ikR
N = “du| kdkd
Grie,o) (277)3iR0/k2 - @? M'kR ‘ u] “

1 ) 0 ,—iwT L.,—tkR 0 ,—iwT L. ,tkR
e e,
(2m)3iRe J_o | Jo k2 — &2 0 Kk*— &2

k—s—k
_ W/_Z — [/_Z Imdk] dw (7.89)
The integral in brackets can be solved in the complex plane if we consider the following integral

around the closed path shown in figure (7.1). The second integral in equation (7.90) vanish
by virtue of the Jordan’s lemma [59]. It says that if m < 0 and P/Q is the quotient of two
polynomials such that degree @Q > 1 + degree P then,

P
im [ e L3 g g (7.91)
p=o0 Jos Q(z)

where € is the lower half-circle of radius p.
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Im(z)

Figure 7.1: Closed loop for complex integration.

The poles of the integral are located at z = +(@ + i€). Using the Jordan’s lemma along with
the residue theorem, the integral is simply

Ze—izR dz ) P Ze—izR dk ) ~ )
7{~, = lim — —— = —2miRes[— (@ + ie€)]
22 — (W +ie)?  pooo J_, [z — (@ +ide)][z + (@ + i€)]
ZefizR
= 2mi lim [z + (& +ie 0 ~
z—>[—(w+z’e)][ ( ) [z — (@ +ie)][z + (@ + i€)]
(5 4 i) ei(@+ieR
= —2m lim @+ Zf)e -
o= (@tie)])  —2(0 + te)
= —riegl @R (7.92)
Taking the limit where ¢ — 0, the integral in (7.89) gives
00 k,e—ikR . ioR
/Oo m dk = —mie
= —mieil@?/)-T2R (7.93)

Finally, the Green’s function for the Klein-Gordon equation is [27]

Gr(wa) = — — / piw(t—t) il(w?/c?) T2 2| B (7.94)

Arx — ¥|e 27

Especially, when Y2 = 0 the Green’s function simplifies to

Golw, 2/) = 1 /e—iw(t—t’)eiw|x—x’/cdw

drmlx —x/|e 27
_ _1/eiw[xx’|cl(tt’)]dw
4r|x — x/|c 27
1 x—x'|
= 5 { > — (t— t’)}

drlx — x/|c

_ 1 |X — X/| /
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where in the last step we have used the properties §(z) = §(—x) and d(cz) = |c| *6(2). This
is the same Green’s function that was found in equation (5.15) for the wave equation. Now,
substituting (7.94) into (7.82) one obtains the integral solution for the massive scalar mode,

R(x) = T2 / [1 / ¢ttt il =T 2| W g (7.96)

o dmr|x — x'|c 27

A stationary Newtonian point source

The energy-momentum tensor of a stationary source has the property that is constant in time,
i.e. 9pTH = 0 [35]. This does not necessarily mean that the particles that make up the source
are not moving!”. A particular case of a stationary source is a static source. In this case, the
velocity field of the matter distribution is zero and the particles actually are not in motion.
As a consequence, the energy-momentum tensor must be also invariant under a time reversal
transformation ¢t — —t, i.e. TH”(t) = TH”(—t). In such a case, the only contribution of the
energy-momentum tensor comes from the rest energy of the matter distribution. In fact, the
Newtonian limit of a source is when the only important contribution of the energy-momentum
tensor is Ty and thus,

Too = p(X)02 , ’To()‘ > ’T()i‘ , ‘T00| > ‘T,]’ . (7.97)
The advantage when finding solutions for this kind of sources is that the time dependence of

the energy-momentum vanishes and 7),, = T),,(x’). From equation (5.17), it follows that'®

_ 4G [ T, (x'
huw(x) = a |xu—(x’)|d3$/ . (7.98)

For the Newtonian source limit the components in (7.98) read

40 - -

hoo = - hio =0, hij =0 (7.99)
where .
=G / &d%’ . (7.100)

As mentioned in Chapter 2, the quantity BW is known as the trace-reversed of the perturbation
tensor h,, in linearized GR. Thus the perturbed metric g,,, = 7, + by may be rewritten as

_ 1 _
v = M + My — §nuvh : (7.101)
Since our signature is (— + -+-), then for the Newtonian limit point source we have h = —hgg

and the line element from the metric in (7.101) gives,

29 2®
ds? = — <1 T C2> Adt? + (1 — 62> (dz® + dy* + d2*) . (7.102)

This equation is often referred to as the line element in the Newtonian limit. In particular,
the density distribution of a point mass is given by p(x’) = Md(x’) and therefore equation

"For example, a uniform rotating sphere is a stationary source and still is moving. What is constant is the
matter distribution at each point in space.
8This expression is also valid for stationary sources.
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(7.98) yields,

4G [ MF(x)

hoo = A ‘X—X/‘ d°x hOz 0,
4GM _
= = hij = 0, (7.103)

with » = |x|. Then, the Newtonian line element becomes,

2GM 2GM
ds? = — <1 - C2r> Adt* + (1 + =3, > (dz® + dy* + d2*) . (7.104)

which is identical as the expansion of the Schwarzschild line element to first order in M.
Observe that the definition for the quantity ® makes sense because it corresponds to the
Newtonian potential of a point particle. Nevertheless, if one extends the previous results to
linearized f(R) gravity, the metric solution should be different because of the extra scalar
mode present in the theory. Indeed, the perturbation tensor does not follow a trace-reversed
form with BW. As we saw in the last section, the form of hy, is given by equation (7.63).
Consequently, the metric solution in linearized f(R) gravity is given by

B 1 - )
Guv = M + h,uu - imwh - GQRTI;W . (7.105)

The massless sector in this theory is the same as in GR. So, the solution BW given in equation
(7.103) for a static point source is the same. On the other hand, using T'(z') = —Mc?6(x’) in
equation (7.96) one obtains the solution of the Ricci scalar propagating mode!”

%)(x) _ 87TGT2/[ 1 /eiw(tt’)ei[(w2/02)T2]1/2|xx’ ;ﬁﬂ] M2 (x') da

A 4r|x — x'|c T

L 2OMT [ ([ ) e 42) 906
2 27 | |x — x|

2 3) (!
_ QG]\gT / |:/ eiwtei[(wz/CQ)T2}1/2xx’|5(w)dw:| 6( )(X/) B3 (7106)
c x — x|
2 —T|x—x'
_2GMYE e )
c? |x — x/|
ie.,
€ 2GMY2 e~ 7
R=-""2F (7.107)
c r
Finally, using Y2 = ﬁ and inserting equations (7.107) and (7.103) into the metric g,, in
(7.105) one obtains?’,
2GM 1 2GM 1
ds? = — [1- 1+ Lot )] a4 1 - 1— L) a2 | . (7.108)
02?” 3 C2T 3
9The minus sign in T'(z') = —Mc*5(x’) is due to the trace in our signature convention.

2°Here we have defined di? = da? + dy? + dz>.
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7.5 The Energy-Momentum tensor of GWs

In Chapter 3, the interaction of GWs with test masses has been examined. The physical
implications of the massless modes shows that in fact GWs carry energy. For linearized f(R)
gravity, the extra scalar mode implies not only a transverse contribution but also a longitudinal
force [60]. This means that massive GWs can do work on point particles. Thus, it is expected
that the total energy of GWs should be the energy of the massless modes plus a correction
that comes from the Ricci scalar. Since this information is contained in the energy-momentum
tensor, we shall derive it by following the same approach given in Chapter 4. As in GR, one is
able to use perturbation theory to solve the field equations order by order. At second order,
the energy of GWs act as a source for the gravitational field itself, i.e.

(1) h(2)] B 871G -

= =l (7.109)

where
P A ®
W &G
Indeed, the quantity fw, is conserved by means of the Bianchi identities and equation (7.12)!.
However, this is not an invariant tensor under gauge transformations unless a shortwave
average is performed and

Y] . (7.110)

~ A /@
—— <gw[h<1>]> , (7.111)

Henceforth, an expression for fu,, will be deduced. Lets begin with the full modified Einstein
tensor from equation (7.6). It is equivalent to

- 1
G = f/RlW - Vyu (auf/) + 99’ V(9 f') — §f9;w (7.112)
One might expand up to second order the connections, the Ricci tensor, the Ricci scalar, the
function f(R) and its derivative in the following form??
_ (1) (2)
o, =150 + 0 + T, (7.113)
_ (1) (2)
Ruy == R,uy + R,u,y + R,u,y 5 (7114)
_ (1) (2)
R=R+R+ R, (7.115)
_ (1) (2)
f(R) = f(R) + f(R) + f(R), (7.116)
(0) _ (1) (2)
f(R)=f + f(R) + f(R) + f(R) . (7.117)

where the terms with an upper bar at the righ-hand side of these equations are referred to
the background spacetime. These expressions are obtained explicitly in Appendix B. To get
G, to second order, we will focus on each of the terms of equation (7.112) separately. For
simplicity, the following computations assumes a reference frame at spatial infinity from the
sources such that the metric is written as

Juv = G + h;u/ (7.118)

21This is proved after contracting equation (7.109) with the covariant derivative.
22The zero order in the first term of equation (7.117) is introduced for convenience but is actually equal to
the unit. See Appendix B.
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with
G = M + Ju(€) . (7.119)

From the discussion in Chapter 4, since G, is of order O(?), the term j,, in (7.119) is of
order O(g?) to ensure that R, is of order O(¢?) from which G, is constructed. The first
term in (7.112) gives

(0) - 1 (2 _ €Y (2)

f/R,ul/ = <f/ + f, + f/ + f,> <Rw/ + R;w + Ruu) + oo

_ (€)) (2 - = - - (2)
= R/I,l/ + Ruy + R#l/ + f/R'U,I/ + f/R/J,l/ + f,RIUJl/
~N N N Y= Y~ =

(B) O() 0(?) 0O O(e?) O(*)

(1 (1) (1) (1) (2) (2) _ (2) (1) (2)(2)

+ f/RM]/ + f/RH‘V + f/RMV + f/Ruy + fIRM]/ + f/RMV + ttt
e~ = = Y= = =
O(e?) O(e?) O(e?) O(e) O(e?) O(e)

Retaining only the second order terms yields

(2) (1) (1)
[f'Ru]® = R + f'Ry (7.120)

The second term in (7.112) is
VY (0uf) = —0,0uf + 0,0,
(0) _ (1) (2)
— _auay (f/ + f/ + f/ + f/> +
_ (1) (2) (03 - (13 (2;
<F£N+F5ju+r§“)ap<f + 14+ f +f>+--- (7.121)

After expanding (7.121) and leaving only the second order terms then,

n(2) @ DL %
[~V Y = =0u0uf" + T0,0,f" (7.122)

At second order, is equivalent to write the background metric as 7, if it appears multiplying
a term of order O(e) or greater?®. Thus, from now on and for clarity, when an expression
includes a product with the background metric, the order of g,, is not taking into account
in the following notation. Making the order of the background metric to be O(0), then
an expression of order O(n) is equal to the order of such expression without counting the
background metric order. So for example, a term of order O(2) consist actually in two terms,
one of order O(g?) and other of order O(g*) 2*. The third term in (7.112) is given by

g;w‘:’f/ = guuvg (aaf/)
= guugpgapaafl - guugmri‘,p@\f’ . (7123)

Then,

ZFor instance, Guh* h§ = (N + jun )R RE™ = 0 h?°he + O(eh).
24We follow the work in [27] using the background metric instead of the flat one by retaining all terms of
order O(2) that are not fully from the background as in GR.
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(0) _ (1) (2)
guugpaapaof, = (gw/ + h,ul/) (gpa — hP7 + hpéhg)apao <f/ + f, + f/ + f,>

Z(WWWW+WWW+WWWW+WWW)
~—— Y~ Y Y~ Y~ Y~
0(0) o) 0(2) o) 0(e?) O(e%)
_ 1) (2)
X 0p0o (f’ + 1+ f’)

@ @
= Guw3"”’ 005 (f’ + '+ f’) — G’ 0,05 (f’ + 1+ f’)

_ (1) (2) _ (1) (2)
+ Guh”hy 9,0, (f’ + f+ f’> + huwg”? 0,05 <f’ + f+ f’)

_ (1) (2) 5 _ 1) (2)
— hyuwh?? 9,0, ( =+ + f’) + Py h? hs” 0,0 (f’ + 4 f’)

(1) (2)

g;wgpgapaaf/ = gw/gpgapaaf/ + g,ul/gpoapaaf/ + guugpgapaaf/ - gul/hpaapaafl
Background (9?1) 0(2) O‘(r?))

(1) (2) _ (1)
- g/ﬂ/hpoapaaf/ - g,uuhpaapaof/ —+ guuhpéhgaapacrf, + g;whpéh(sgapaaf/

o(2) o(3) o(4) o(3)

(2) _ (1) (2)
+ §Wh”5h5"8paaf' + hyw g™ 0,00 f' + hywd” 0,00 f" + g’ 0,05 f'
o(4) o(3) o) o(3)

_ ) (2) _
— hywh?? 0,05 " — hyuh?? 0,05 ' — hyuh? 0,0, f" + hw,h”‘sh(;"ap@gf’

O(4) o(3) O4) o(5)

(1) (2)
+ My h? 0,05 + hyuh? h’ 0,0, f

o) o)
) (2) (1) (1)
(9,097 0,05 '] = 5108 0,05 ' — Guh? 0,00t + v 0,00 f (7.124)

The second term in (7.123) is a bit longer, but there is only one contribution at second order.
The reader can check it in a similar way like the previous one. The result is,

POTA ! - —po po pdy o A (1))\ (2))\
09" T 00 = G + Py (g — 1T 4 hPOh ) M, + T2, + 12,

(0) _ (1) (2)
Xa}\<f/+f/+f/+f/>

} () W, O '

= — 9wg”Ly,00f (7.125)

[_gﬂl’gpo—l—v\o’pa)\ f/
Therefore,

(2) (1) (1) (1) (1)
900f 1 = Gwd” 0,0 f' — Gl 0p0sf" + My 0,05 f — Guug” Ta,00f . (7.126)
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The last term in (7.112) yields,

1 o ey
_§fg;w = <f + f + f+ f> (gw/ + h;w)
1 . _ (1) (1) (2) (2)
:*5 Guv f +fguu+fh/w+fguu+fhuu
v v NN N N
(B) O(e3) o) O(e?) 0(2) O(e?)
1 (2) 1) 1@
[_fg/u/:| = - §fh;w - 9 Guv (7.127)

Now, inserting equations (7.127), (7.126), (7.122) and (7.120) into (7.112), it is obtained the

modified Einstein tensor at second order,
(1)

(2) (2) (1) (1) (2) 1) (1) (2) (1) \
9w’ Ty 8,\f’ (7.128)

Guv = Ruw + [' Ry — 0,0,F + T0,0,f" + Gud” 0,0 —
I L
- guuhp apaaf + hul/gp apaof fhw/ - ifguy .

From Appendix B, using the equations for f, f’, ffjl,, Guv» hy which are shown in (B.35),
(B.37), (B.3), (7.119) and (7.63) along with the Klein-Gordon equation in (B.31), it follows

that
(2) (2) (1)(1) (2) 1 (1)2 1 _ _ _
Guv = Ry + a2BRy — 20,0, R — 5as0,0,8° + 3 (auhpy + By aphw)

(1) _ (2 1 _ (1)
agapR + GQgIU,VDR + 2&39;WDR

- O O )
—a2| GpuOv R + G OuR — gu0,R

1 - - - O . , 5sY
- ng/gpa (8crh<5p + aphéa - 8(Shcrp> - 02R<80]6p + ap]éa - aé]op) (128 R
_ () ,. W_ 1@ 1 W
— aggu,,h 70,05 R + a2gWRDR + aghu,, DR —a3guwRUOR — iRgW — Zan/WR
(KG)
10 1,
— Rh‘uy + —aoR” . (7.129)

2
To further simplify the result in (7. 129) we choose a reference frame where the Lorenz gauge
0"h v = 0 and the traceless condition h = 0 are valid. Thus,

1- @

@ 1@ as _ W,
~ 0u0,) R — 5B + 5 (gWD — 0u0, ) R? — R

(2) (2)
g,uzz = ,uzz + a2 (g,uu

(1)(1) 1(1)
RR,, + ;R gW>

—  7po ) a o - - —
— s 0,0, R + 20 R(auhpy + Oyhpy — a,,h/w) i aQ(

(0,0, + S50 RO,R) + g (0hs, + P iy — 05 )as B + O
~ ol + 590" RO R) +§g“,,<a hisp + 0Ty — O5h )axd®R + O(Y)
=0 =0 =0

The modified Einstein tensor G, with only second order terms are given by
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@) (2) @ 1@ as (- - w1 O
g;w = ;u/ + ag (g,uz/ 6 0, )R Rg,uz/ 9 (g,uuD - 6/.L8V>R *h,uuR

_ (1) _ _ _ (1)(1) 1Q)
— a2 h*9,0,R + 98PR<auhpy + Oy — aphw) ¥ as <RRW n RQQMV)

1) Q) 1 1) @)
~ a2 (a RO,R + 550" RO R) . (7.130)

The energy-momentum ,,, can be obtained using the equation (7.130) into (7.111). Thereby,

A /@
t,ul/ = _% g,uz/

At @ @ 1@ as [ - W, 1. O
— oo (B + a2 (900 = 940, ) B = SR + 5 (50 — 0,0, ) B — hyu kRt

_ ipo (1) a9 p(l) _ _ (1)(1) 1(1)2
— @005 + 50 R((‘)uhpu + Ol — aph,w) + ay (RRW + ;R g,w)

1 (@ 1 (1 @)
. (a RO,R + 550" RO R) (7.131)

where (-) is the linear integral operator that average over several wavelengths. We compute
each term in equation (7.131) using the properties

(0,V) =0 , (Uo, V) = —(Vo,U) (7.132)
along with the gauge condition and wave equations. This allows us to simplify many terms

n (7.131). Using the Ricci tensor and the Ricci scalar to second order given in Appendix B,
each term in (7.131) are calculated as follows,

(2)
<RW> = < OuhapOyhoP — fa VhopOhT? — DghoP8h, + 22 = G070, R
%,_z %,_/

=0 =0
1 _ _ (1)
v LR,k — 22 g,,0,h°P0, R +3 Lo hr0, R — 2 > 3o 0,h7° 0, R
2 N—_———— 2 ———— %,_/ %,_/
=0 =0 =0 =0
1- __ 1- _ ag - _ o @
— 2 1% Ohgy + = B°,0,0°hp, + — ROhy, —a30,RO,R
22—l 20— 2
=0 =0 =0
3az . W_ W g2 @)
+ 78MR8VR + ?R OR guy>
(KG)
1 - _ o 3 oW )
- <_ 1 Ouhopd,h7" — a30, RO, R + 5030, RO, R + ‘;29,“,32>

©) 1 - _ 5 W W gy Q)
R, ) = —Zauhop&,h”p+ —0,RO,R + Gf_luvR , (7.133)



138 Chapter 7. Gravitational Waves in Linearized f(R) Gravity

_ (2) _(2) (2)
<a2 (gﬂ,,m - a#a,,)R> - <a2§wDR — agaﬂauR>
(2) (2)
= <aggW8,) <8PR> > = — <a26’)R8pgm,> =0, (7.134)

13 3 zoper Lo opn 7ou W 7w
~ 3R ) = ( = T F 0oy + 5 70 05h™ + 2030, RN

=0 =0 =0

(1)2 3 2(1) _
+ 2a2R — §a2R DR

(KG)

3 @)
= <— 4a2R2§;w> ) (7'135)

(1)_ _
. <“223%> “0 . (7.137)

az ()0, e e
T\ RORp + 07ROy — O Rphias

(1) _ (1) _ 1) _ _
_ <a22 (R@u 8°hp, + RO, 0°hyy — RDhW> > =0, (7.138)
=0 =0 =0
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(1)(1) (1) (1) 1 (1)2
CLQRRMV = as CLQRauajR + EQ#VR

LW gy ),
— a28,R0,R + IR ) (7.139)

1 @) 1) (1) 1 @) a%7 1) _ (1)
— a2| 9, R0, R+ gWa RO,R| ) = ( —a30,R,R + g, ROR

o @ a% ),
= —a28 ROR + —=guR . (7.140)

Finally, adding all previous nonvanishing terms in the definition of the energy momentum
tensor gives,

ct a3, W O ap Wy  Bay O
— Lop 72 —~ 2 2 2
@@ IR 2 )
— a20,RO,R + 2 gWRQ + 2 G R — 20, RO, R + %gwR>
¢t L T 0 — 2 29, R, R
B e A R
Thus,
! ! uhop0, R + 6 aé)a}%) 7.141
w= 3xG \ Hier + 6a; : (7.141)

In the limit az — 0 the GR expression for ¢, is recovered as expected. This result is also
obtained when R(Y) = (0 as would be the case if the Ricci mode of propagation was not excited
[27]. The last expression can be also rewritten in terms of the original perturbation tensor
Py,

C4

b = 397 G<8 hepOLh7P + (9 ho, h> : (7.142)
The main conclusion of this chapter is that the energy-momentum tensor f/“, at spatial infinity
has an extra contribution that comes from the Ricci scalar mode. Therefore, the energy as
well as the power radiated from a source is not exactly as in GR. However, is worthwhile
to assume that the frequency of the Ricci mode is below the cutoff frequency Y as a good
approximation?. In this case, one are left with the same expressions as in GR but with a
modified potential at the Newtonian limit.

25This is reasonable because the GR limit is recovered with as — 0 so that T — oo
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Chapter 8

Yukawa-like Binary System

The main goal of this chapter is to introduce the Yukawa-like gravitational potential in a
binary system. The solution of the two-body problem is presented with an approximation
method, showing that it admits circular trajectories as expected. The two polarizations for
the massless modes of linearized f(R) gravity for a circular orbit in a binary system, is plotted
initially without back-reaction. Likewise, the chirp waveform by the emission of GWs from
this source is obtained only at linear order in Y. In a similar way, GWs emitted by elliptical
orbits may be extended in the basis of the Yukawa-like two body solution for future works.

8.1 Yukawa-like potential

The Newtonian limit of f(R) gravity for a static point particle was devised in section 7.4 of
Chapter 7. The line element in (7.108) has the same functional form of (7.102). Thus, it can
be rewritten as

AV 20
ast = - <1 = ) - <1 2 > (da? + dy? + d2?) (8.1)
where a 1
m
U=—""(1+2eT) . 2
: ( + ge ) (8.2)

Furthermore, realize that in the Newtonian limit the spatial part of the geodesic equation is
given by

dz’ 1,
7 = 5° Oihoo - (8.3)

From the line element in (8.1) it follows that hgg = —2W¥/c? and thus the equation (8.3) reads
in vectorial form as

This is just the equation of motion of a particle in a potential W. Therefore, the expression
in (8.2) represents the potential of a static point particle at the Newtonian limit of f(R)
gravity. Observe that this potential is very similar to the Newtonian one but with a Yukawa-
like addition. In fact, this type of potential has been studied in other contexts||. We shall use
this modified potential in the mutual interaction of a two point particles in circular motion.

8.2 The two-body problem

In Chapter 6 it was mentioned that the problem of two interacting bodies under a mutual
gravitational interaction is equivalent to an effective one body problem. If the bodies are
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point particles with masses m; and me, the Lagrangian in the center of mass of the binary
system is
1

L= S — pv (8.5)

where xg is the relative coordinate between the particles, p is the reduced mass and ¥ is the
Yukawa-like potential generated by a particle with mass m = mj + ms9. In polar coordinates,
equation (8.5) reads

1 .

L= —p (7'“2 + T2¢2) — pu¥(r) . (8.6)
2

The Euler-Lagrange equations for the radial and polar coordinates are
.. : d¥(r

pit = pre? — udi ),
p (8.7)
@24 —
dt (’“‘ " ¢) 0.

The first equation in (8.7) describes the dynamics of the particle in the radial direction and
the second is the conservation of angular momentum L = pr?¢ in the z-direction. Eliminating
¢ as a function of L, the radial equation becomes

L? d¥(r)
F=— — 8.8
W= s TR (8.8)
Multiplying (8.8) by 7 and integrating with respect to time gives
L 4 L7 + p¥(r) tant (8.9)
—ur r) = constant . .
la 2ur? a

This is just the conservation of the total energy of the system. This can be seen by recovering
the same equation in terms of L = ur2¢?, i.e.

1 .
oH <1'"2 + 7‘2¢2) + p¥(r) = constant = FE . (8.10)
The expression in (8.9) only involves the radial coordinate and so is almost the total energy of

the particle of reduced mass p in one dimension, if it was not for the term with L. However,
such term can be recast into an effective potential and thus the energy F yields

1
E = 5’"”;2 + Uegr (1) (8.11)

with )
Ueti (r) = S + p¥(r) (8.12)

For convenience, rather than work with F is usual to define the energy and angular momentum
per unit reduced mass as &€ = E/u and h = L/u. Then,

1
£ = 57‘«2 + Vg (r) (8.13)

where

Ver(r) = — + U(r) . (8.14)
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The quantity £ may be interpreted as the total energy of a fictitious particle moving in one
dimension with a reduced mass equal to the unit under an effective potential W*.
Circular orbits

In particular, if the trajectory is a circular orbit, the distance from the origin to the particle
does not change with time and so 7 = 0. From (8.13) this implies that £ = Vg(r) and thus?,

dVe
V;(T) =0 [Circular motion condition] . (8.15)
,
Replacing (8.14) into (8.15) yields
ar) _ g (8.16)
dr '

and solving for wy = ¢) one obtains de angular frequency of the binary system,

oy — (1d\11(7’)>1/2 . (8.17)

r dr

This is a general result for an arbitrary central potential W(r). In particular, the circular
frequency for the Yukawa-like gravitational potential in (8.2) is®

wy = {(”” P+—;eTTU+-Tr4 }Uz : (8.18)

r3

Nevertheless, a circular motion may be unstable. To guarantee its stability the effective
potential must satisfy the additional condition,

d*Vg (r)

R 0 [Circular motion stability] . (8.19)

The condition (8.19) means that a circular orbit is stable as long as exists a minimum in
the effective potential V. To explore the orbit stability, is suitable to consider a linear
perturbation approach. Suppose initially a stable circular orbit of radius R. A slightly
perturbation on this orbit could give variations on the radius affecting the motion of the
particle. If the perturbation produce tiny oscillations around the radius R then the orbit may
be stable. By contrast, if the perturbation makes the initial radius to expand arbitrarily with
time, the orbit would be unstable. Mathematically, this is to say that the solution r(t) that
describes the circular motion can be written as

r(t) = R + €(t) | (8.20)

where €(t) is a small linear perturbation on the initial orbit of radius R with €2(t) < R2.
Since the unperturbed circular orbit is stable then,
AV (1)

—— =0 . 8.21
dr R 0 ( )

'The term h?/2r? prevents the particle to approach very close to the origin of the central force. This is
known in the literature as a centrifugal potential energy [61, 62].

2Observe that the motion is allowed provided that £ > Vg (r) which follows from 72 > 0 from equation
(8.13).

3If the potential is the Newtonian one, we get the Keplerian frequency w = (Gm/r3)1/2.
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To analyze the behavior of the function €(t), we shall use the energy equation (8.13) in terms
of (8.20). First, expand the effective potential as a Taylor series around r = R,

dVeg (1)

1
Ve (R = V(R e
#(R + ) w(B) + — e T |57

1 dPVeg(r)| o
_ 1 22
Vet (R) + 5 2 Re + (8.22)

and using this result in (8.13) along with €2 < R? we have
— = = Z . 2

E — Ver(R) 5¢ (t) + Ver(R) + 5 g2 Re + (8.23)

Note that the left-hand side of (8.23) is a constant. Hence, differentiating this equation and
dividing by ¢ yields

dQVQﬁv(r)

(4
€t + dr?

ety =0 . (8.24)
R

Identifying the radial frequency of the perturbation as

d*V,
W2 = Verr ()

r dr2 ’ (825)

R

the expression in (8.24) is just the equation of a simple oscillator with frequency wy, i.e.
E(t) + wie(t) =0 . (8.26)

Depending on the sign of w? is possible to have oscillatory solutions or exponential ones. To
ensure stability, the perturbation must vary between the central value of radius R. This is
the case when w? > 0 which is the same equation in (8.19). Replacing (8.14) in (8.19), the
stability condition reads

h?  d*W
W2 = [3 (r)

d?W(r)

2

wi + 2
' rt dr? ]R {3 ¢ dr? ]R (8:27)

and using wi from (8.17) into (8.27) one obtains,

d*W AW
w? = (r) + 3d¥(r) >0 [Circular stable orbit] (8.28)
dr? rodr g

For the Yukawa potential, their first and second derivatives are

dv Gm 1Gm _~v, 1Gm_ _y,
T Ty g Te
(8.29)
d>U Gm 2Gm _~ 1Gm 1Gm 1Gm
i :_7_777r_finrr_firfrr_fiTsz
dr? r3 373 ¢ 3,2 © 3 r2 ¢ 3 r €

Thus, using w? > 0 it is obtained the following constraint

1
2= Gmly + ge*” (1+Yr—71%%)| >0 (8.30)

T 7,‘3
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which implies that

1+ Yr —Y%2%> -1 (8.31)
and thus,

V543

Yr <
" 2

(8.32)

This is a remarkable result. Some recent works in f(R) boundings about the mass of the
graviton suggest an associated Compton wavelength of Ay > 1.6 x 10' km from the orbital
decay of the Hulse-Taylor binary system[25, 63, 64]. Although it was not mentioned before,
the Klein-Gordon equation in Chapter 7 means that T = mgyc/h = 1/X,. The Hulse-Taylor
binary system has a semi-major axis equal to r ~ asin: = 7 x 10° km [65-67]. Hence,
Yr = 2.7 x 10~* and the condition in equation (8.32) is satisfied.

Equation of motion

The common configuration of an astrophysical system such as binary pulsars or planetary
motion around the Sun, occurs when the typical size of the system is much smaller than the
Compton wavelength of the graviton [25]. This justifies an expansion of the Yukawa potential
in a Taylor series because Yr is very small. To make a link with the Newtonian case, we
introduce a new varible § in the Yukawa potential as,

vy = M <1 + e T’") (8.33)
r 3
where
1 Yukawa potential ,
5 = (8.34)
0 Newton potential .

This does not affect the equations of motion of a particle under a Yukawa interaction when
setting § to 1, but one can compare the results with the Newtonian case making § = 0.
Remind that the Taylor expansion of the exponential function is of the form

2

<1 x4 % + O (8.35)

and therefore the effective potential Vog(r) in (8.14) is expanded as

h? Gm 1Gm
Veg(r) = 53 e T3 § [1 - Tr + T%Q + O0(1?)
h2 0\ Gm 0 4] 2 3
=53 <1 + 3> - + gGmT — gGmT r+ O(1°) (8.36)

With the potential in (8.36), one can construct the orbit equation that describes the motion

of a particle with reduced mass p under the influence of a Yukawa interaction?. Inserting
(8.36) in the energy equation given in (8.13) yields
1., h? o0\ Gm 0 0 9 3
= - — —([1+ <) — 4+ =GmY — —-Gm7Y ) . :
& 57 T 53 ( + 3> —t 3Gm 6Gm r+ O(Y?) (8.37)

4This is an approximation method to the original problem provided that r < Ag. For more details see
[25].
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Since r = r(¢) we have

dr dr h ,
=0~ %4 2T (8.38)

and the expression for the energy &£ in (8.37) becomes

7',

1h?, ., h? 0\ Gm 9 0 9
= —— — — 1+ =) — 4+ =GmY — —-Gm7Y T3 :
& 54 (r") 53 < + 3> " + 3Gm 6Gm r+ O(1?) (8.39)
Defining,
! = 1 (8.40)
— — = — T .
U= u 2

the energy equation is rewritten as

2
£ = %h2(u’)2 + %h%ﬂ - <1 + g) Gmu + gGmT _oGmT

o + O(13) (8.41)

Differentiating the previous equation and dividing by h?u’ one gets,

5\ Gm 6§ GmY?
W+ u = (1 + 3> T T 6 I : (8.42)

Observe that when § = 0 the orbit equation for the Newtonian case is obtained.

8.3 Solution of the orbit equation

To solve the orbit equation (8.42) we follow an approximate method based on a similar
procedure given in a recent work [25]. The strategy is to make an ansatz solution with the
same functional form as the solution in the Newtonian case,

u= ]1) (1 4+ ecos¢) . (8.43)

Then, the semilatus rectum and the eccentricity are found by using the orbit and energy
equations up to some order. Although the solution has the same structure as in the Newtonian
problem, the orbital parameters p and e contain the information of the Yukawa strength
mediated by the constant Y. Here we solve (8.42) at first and second order in Y.

First order solution

The orbit equation (8.42) to first order in T is obtained by expanding the effective potential
to linear order in Y and using the energy equation to build the differential equation for the
variable u. Note from (8.41) that the linear term in Y is a constant and after taking the
derivative of this expression the resulting orbit equation does not depends on T,

0\ Gm
" =[(14+<=-)—. 8.44
U+ u ( + 3) 72 ( )
This equation differs from the Newtonian one only by a factor of (4/3) when setting § = 1 for
the Yukawa interaction. Inserting the ansatz solution in (8.44) gives

—gcosqﬁ + ;(1 + ecos¢) = <1 + g) C;;—T (8.45)
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and solving for the semilatus rectum we have,

h2

Gl (8.46)

p:

This is the same semilatus rectum for the Newtonian limit when 6 = 0 [61]. However, for the
Yukawa case we have

_ 3h?
~ 4Gm

P (8.47)

To obtain the eccentricity, the energy equation in (8.41) is required. A further substitution
of (8.43) into (8.41) and using (8.46) one get at first order,

_ Lo oo 4 g
5—2h(u) +2hu 1+3 Gmu+3GmT

2 2 2
= %hQ (;sinqﬁ) + %hz B(l + ecoS¢)] - Zg(l + ecos¢) + gGmT

h2e? h? h? h? 0

= 07 + 27 + p—Qecosqﬁ — p—2(1 + ecos ) + gGmT
h2e? h? 0

= — — — -GmT . 8.48
2p? 2p? * 3~ (8.48)

Solving for e and substituting p from (8.46) we obtain,

214 2Eh? AR
G*m? (1 + g)2 3Gm (1 + g)Q

(8.49)

Unlike the semilatus rectum p, the eccentricity e has a linear dependence on T at first order.
Again, equation (8.49) recovers the Newtonian eccentricity when § = 0. While for 6 = 1, the
Yukawa eccentricity to first order in T yields,

9ER? 3Yh?

2
g 1 —
€ + 8G2m? 8Gm

(8.50)

Second order solution

The full differential equation at second order in Y is shown in (8.42). Inserting the ansatz
solution in this equation produces

L (1, 0)n g0n T
p 3) h? 6 h? (1 4 ecos @)

This is not an easy equation to solve for p but one can proceed using a trick. Is convenient
to rewrite this equation as

(8.51)

0\ G 0G
(1 + ecos¢)® — <1 + > 7m(1 + ecosd)p + ETZLTQP:S =0

3) h?

(1 + 2ecos¢ + e*cos’ ¢) [1 — <1 + g) C;;np] + éG—mTQp‘g =0 (8.52)
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or equivalently,

[1—<1+g>i2p}e cos ¢+2[1—<1+§>C::;1p]ecos¢

o (1 ) Gmy,  00m
3) n2?

6h2T23}:0.

(8.53)

(8.54)

Since the ansatz solution must satisfied the orbit equation in every point of the trajectory,

lets evaluate (8.54) in the apsides ¢ = 0 and ¢ = 7 to get two equations,

0 Gm 9 0 Gm 0\ Gm
{1—<1+3h2 >]e +2{1—(1+3h2p>]6+[1—(1—3>h2p+

4] Gm 9 4] Gm 0\ Gm
Substracting these equations implies that

6\ Gm

and for e # 0 we obtain the semilatus rectum

h2

Pmem(1+9)

(8.56)

This is the same answer as in (8.46) for the first order solution. Similarly, to obtain the
eccentricity we use the same trick by inserting the ansatz solution into the energy equation.

The result is,

1 1 § ) § GmY?
E = R () + Zh%u? — <1 >Gmu + 2amy - 271
2 2 6 wu
2.2 2 T2
:he—h——l—éGmT 6 Gmp '
2p? 2p2 3 6 (1 + ecos )
Lets express this equation as
2 _q 4 5Gm2 282_(5Gm3 T2 _ 0
3 h? 2P 3 h2? (1 4+ ecos o)
Gm 2& 0 Gm
2 2 32
(1+ecos¢))[e—1+35h2pT—h2p —gﬁpT—O
ie.,
G 2F
eScosgp + 2 + |—1 —|— 3 thQ 2 p2 €cos ¢
Gm 2F 6 Gm ]
5 2T o 2 Y M 3T2 —
L A A W 0

Evaluating (8.58) at the apsides, ¢ = 0 and ¢ = 7 we obtain

(8.57)

(8.58)
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Gm 2& 2 Gm 2& o Gm
3 2 2 2 P 32|
e+e+[ 5h2pTh2p} +[1+ G P L =g 3h2pT]—0,
2 Gm 28 o Gm 2& o Gm
e+ e? — |1+ 65 p* T — < p? ~1 PPY =S - SN2 =0
e’ +e [ +35h2 2P e+ +35h2 2P T3P 0

Adding these equations and solving for e? gives the eccentricity up to second order in Y,

Gm Gm
2 _ 2 3 2
e =1+ —hZ - §5 h2 T + 35 h2 T (8.59)

Replacing the solution for p shown in (8.56) into this expression yields

5 N 2Eh? B 2Yh26 T2ht§
2 (1+ 9% 36m(1+ 27 3¢Pm2(1 + 9)

- (8.60)

For the Yukawa case 6 = 1 and the eccentricity becomes,

9ER? 3Th? 9Y2p4

2
-1 _
¢ t8GZm2 T sGm T 64GEm2

(8.61)

With the semilatus rectum and the eccentricity in hands, is also possible to find the major
semi-axis a using the relation [61, 62],
p

Plugging the eccentricity in (8.59) into (8.62) yields

h2
0 = ~ . (8.63)
—2Ep + 56GmpY — 36Gmp?Y?

and using p from (8.47) we have the major semi-axis for the Yukawa case up to second order,

3€ 1 3h2 -t
a—<—2Gm+2T Toer > . (8.64)

8.4 Quadrupole waveform

Using the results in Chapter 6, the quadrupole radiation from a compact binary in circular
motion is obtained for linearized f(R) gravity. We have seen that for sources with non-
negligible self gravity, an appropriate extension to these systems require the inclusion of a
bounding interaction term in the total energy-momentum tensor of the system. In linearized
GR, this was possible due to the great analogy with the weak field limit of the EFE in the
Landau & Lifshitz formalism. However, is worth to consider another argument to justify the
validity of linearized techniques in the generation of GWs for bounded sources in this context.
Recall from Chapter 5 that a weak gravitational field implies slow velocities and thus terms
of order O(v?/c?) may be neglected. The energy-momentum tensor of a binary system should
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be of the form

H v
T ;%ma% d:;ta B (x —x4(t) + In(tir?;:tj)on , (8.65)

where the order of the interaction term can be seen from the virial theorem as is shown in
equation (5.58). Thus, is reasonable to disregard the interaction term. Furthermore, for the
components of the energy-momentum tensor we have,

T%(t, %) Z’yama —x4(t)) ~ O(v") (8.66)

T%(t, %) Z'yamacx 53 (x — x4(t)) ~ O(v/c) (8.67)

TY(t,x) = Z%m i i 60 (x — x4(t)) ~ O(w?/c?) (8.68)
a=1

The quantities 7% and T% can be obtained at lowest order. However, T% is a quadratic
order term, but this is not essential for the following reason. Consider the solution hTT for
the inhomogeneous wave equation in terms of the multiple moments of the energy- momentum
tensor,

er 4G, . 1 aam
PET = A8 [sH + St L (8.69)

with
SH(t) = / TR (x,t) d3x (8.70)

SHLm(1) = / TH (x, t)a™ b3z . (8.71)

Since T* is of order O(v?/c?) and also is required to compute S* and S*™ in principle the
full expression of the energy-momentum tensor is needed. Nevertheless, from the conservation
equation 0,T*” = 0 it was proven in Chapter 5 the identities,

1
SH = 2Mkl (8.72)
ik — éM”"‘ ; (Bk o pik— PRl (8.73)
where
1 g 1 o
MF = — /Toomkxl Br . MIF = Q/Toomlm]xk B3z (8.74)
c c
and
. 1 o
piik — = /Tozxjrrk B . (8.75)
c

The conclusion of this analysis is that to first order is not necessary to know explicitly the form
of the interaction term. At the end, the quantities S¥ and S*™ do not depend on T% and
may be computed to lowest order. In addition, note also that the expression 9gT + ;7% = 0
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is satisfied independently of the trajectory, i.e.

dx!, 0
x

1 9 Th
80T00 == E Z mac2a5(3) (X - Xa(t)) - Z MmaC dt a ) 6(3) (X - Xa(t))

==Y macdh 08P (x — x4(t)) = 0T . (8.76)

Thus, at linear order the quadrupole radiation of the massless modes hy and hy in f(R)
gravity is obtained following the same procedure of Chapter 6. The only difference is that
rather than use the Keplerian frequency for the circular orbit motion, one must use the
Yukawa-like frequency wy given in (8.18). Then, we have

_ 1 4Guw2R2 1 + cos?.

hy(t) = - C4y ( 5 >cos(2wyt) : (8.77)
_ 1 4Guw? R?

B (t) = ;% (cos o) sin(2uwyt) . (8.78)

The functions (8.77) and (8.78) for the Hulse-Taylor binary are plotted in figure 8.1 using the
data in [67]. An upper limit for the value of T in this theory at this scales is taken from [56].
Note that at first order, the back reaction of GWs does not appear naturally and therefore
both, the amplitude and the phase of the radiation are constant in time.

—22
9.0 x10
Hulse-Taylor Binary
1.5
1.0F
0.5
=
X 0.0
+
<
—0.5F
—-1.0r
—15F
_20 1 1 1 1 1 1
0 2500 5000 7500 10000 12500 15000 17500
t sl

Figure 8.1: Waveform for the plus and cross polarizations in f(R) linearized gravity for the Hulse-Taylor
binary system. The value of T was fixed using Ay = 1.63 x 10" [m] based on [63, 64]. The back-reaction
of GWs does not arise in linearized theory.
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When GWs are emitted away from a binary system moving in a circular orbit, the frequency
starts to increase because the particles takes less time to perform a complete revolution as
the radius begins to shrink. To account for the change in frequency, the back-reaction effect
is introduced by means of the energy balance equation that we recall here,

dEorbit GW
= -P . 8.79
o (8.79)
The left-hand side of this equation can be obtained from the total mechanical energy of the
orbit Eg.1,;; which is

1
Eoit = mc?® + §uv2 + p¥(r) . (8.80)

To second order in T, the Yukawa potential ¥ and the frequency wy are

6\ Gm 1) )
Ur) ~ — (14 - | — 4+ -GmY — —GmY? 81
(r) <~|—3> . —|—3Gm 6Gm r, (8.81)
6\ Gm 6 Gm
2~ (14 o) 2 - 222 .82
wy <+3> 3 6 r (8.82)

For circular orbits we have v? = r%w?. Inserting (8.82) and (8.81) into (8.80) and evaluating
at the radius of the orbit r = R yields,

1 0\ Gm 0 o
Eorvit = me? — B <1 + 3> T'u + gGmMT - ZGTTLHTZR . (8.83)

Is possible to write this expression only in terms of wy. For this, realize that the equation
(8.82) may be put into Cardano’s form [68|. Defining = 1/R then,

3 — 3pr — 29 =0 (8.84)

where

52 w;
P= o775\ ) 9= o7 6y
3

18 (1 + 2) (8.85)

The solution to (8.84) is given by x = a + b with

ad =q+ Vg2 — p3 and b3 =q — Vg2 — p3 . (8.86)

This means that R = (a + b)~! and substituting this result in (8.83) one can express the
energy FEobit in terms of the Yukawa frequency. In addition by assuming that wy, = wy (),
the left-hand side of equation in (8.79) is obtained when performing the time derivative of
FEomit. For the right-hand side, we assume that the massive scalar mode is not excited so only
the massless radiative modes hi and hyx are important. This implies to consider the same
emitted energy from those modes as in the case of GR, i.e.

32 [ GM.w,\ "?
GW __ cHy
Foa = 56 ( = ) . (8.87)

Equating (8.87) with the time derivative of Eqrbit = Eorbit(wy) in (8.83) through the balance
equation (8.79), gives a differential equation for wy at second order in Y. However, this
equation is not easy to solve, even numerically. For simplicity, we stop the expansion up to
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linear order in T. At the end, we are interested in typical astrophysical systems where r > A,.
In this case, the total energy of the orbit is

1 0\ Gmpu o
Eoit ~ mc® — =1+ = | —% + = T .
orbit ~ MC 5 < + 3> 7 + 3Gmu (8.88)
and the Yukawa frequency
0\ Gm
2 ~Y

Solving for R in (8.89) and replacing the result in (8.88) we obtain

2/3
Eoit(t) = me® — g [<1 + g) Gmwy(t)} + gGmuT : (8.90)

In terms of the chirp mass M, = ,u?’/ 5m?/> and the GW frequency wew = 2ws this equation is
rewritten as,

1/3

S\2 G2MBW2, (1) B
FEorbi = 2 _ 1 -] —= 87 - T . 91
orbit (t) = me [( + 3> 3 + 3Gmu (8.91)
Thus, taking the time derivative we have
/3.
dEOI“bit(t) _ _g 1 -+ é ? GQM(? Wgw(t) (8 92)
a3 3 32 1/3 '
Wew
On the other hand, the GW power is given in (8.87) that in terms of wgy is
3265 [ GMwgy \ '
Poa(t) = e <223g ) : (8.93)
Using (8.79) the differential equation for wgy reads
2 ~aa5] 3 5 10/3
2 0\*G°M Wew(t) 32 ¢ [ GMwgyw(t)
— 1 + — ¢ g — o | ZTemewh
3 3 32 wév/vi”(t) 5G 2¢3
o 5/3 2/3
: 96 GM. 0\~
few(t) = EWSB (Cg) (1 + 3> a2 (8.94)
Integrating by parts, the solution of (8.94) gives
175 1 3/8 1 G\ T/ s\ /4
W) = = |— 1+ - .
Few(t) = — [256 (teoal — t)} < = > < + 3> (8.95)
Following a similar procedure of Chapter 6 we find that
BGM,\ /8 g\
Dy(t) = —2( 3 ) (1 + 3) (teoal — 1)°/% + Byo (8.96)

and

—5/8 1/4
Dy = 2 <5ié\4‘3> <1 + g) (teoal — t0)*/® . (8.97)
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Finally, the quadrupole radiation for the plus and cross polarizations at linear order in T is

given by
B ) () (|
ho(t) = % (Gc]‘fcf/ ! (C(tcoj - t)>1/4 (1 n g)w (cos ¢) sin[@, ()] (8.99)

In particular, for § = 0 the expressions for the Newtonian case is recovered as is shown in
equations (6.104) and (6.105). We see that at this order the Yukawa-like potential affect

the quadrupole radiation only as a numerical factor

in the amplitude and in the phase. The

following figure shows the chirp waveform evolution for source GW150914.

5 x10721
L=T
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l— GW150914
| |
= 0
+
=
b u W
_2 - w
_8).00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
t [s]

Figure 8.2: Chirp waveform for linearized f(R) at linear order in T when § = 1. The data to reproduce

this figure was obtained from the source GW150914 [13].
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Conclusions

The gravitational radiation from the inspiral of a compact binary source was studied in GR
and f(R) gravity. The theoretical tool to achieve this problem was based on the framework of
linearized theory which represents a first approach to GWs. It was shown that two massless
physical modes of propagation arise in both theories of gravity, namely the plus and cross
polarizations. However, an extra massive mode emerge naturally in f(R) directly from the
field equations. A strong consequence of this difference befall on the Newtonian limit of a
static point particle. Unlike GR, the result is a Yukawa-like addition to the usual Newtonian
potential. Such modified potential has been studied in many different scenarios. Here, we have
considered its application to the emission of GWs from a binary source in circular motion.
If the Compton wavelength of the graviton is much greater than the scale of the source
(Ag > 1), or at least of the same order, circular orbits are guaranteed. For many astrophysical
phenomena this condition is satisfied. For instance, the waveform without back-reaction for
the Hulse-Taylor binary system was obtained. To compute the radiation with the back-
reaction effect, the exponential function of the Yukawa potential was expanded in a Taylor
series. It was found a differential equation for the Yukawa frequency at second order in
T = 1/\,, however the solution was not easy to handle even numerically. In spite of this and
for simplicity, a first order solution in Y was presented for the hy and hy polarizations. In
order to extend these results to elliptical orbits, an approximate method was implemented to
solve the two-body problem under the Yukawa-like interaction. It is expected that slightly
changes in the frequency waveform pattern may be measured by future experiments from
those kind of sources. This would allow to put better constraints in the space parameters of
alternative theories of gravity such as f(R) and in particular the validity of the Yukawa-like
interaction. Finally, is important to mention that in all calculations it was assumed that the
scalar mode was below the cutoff frequency T and thus it was not excited. Nevertheless, if
this mode of propagation is not negligible, it will carry additional energy-momentum away
from the source. In this case, the total power of GWs will not be the same as in the case
of GR in it should be taken into account in the construction of the frequency time evolution
through the balance equation.
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Appendix A

Second order perturbative expansion

The main goal of this appendix is to compute the quantities R,(},,) [AM] and R,(fy) [h(M]. Setting
the former to zero gives the first order perturbation EFE in vacuum (see equation (4.9))%.
The latter is required to compute the energy-momentum tensor of GW (see equation (4.13))2.

Because these quantities only depends on hfbl,,), the identification hf},,) = hy, is assumed to
simplify the notation. Likewise, for this procedure only the inverse metric is required to second

(1)

order in hyy. A general computation of the mentioned tensors for a curved background is
obtained.

Inverse metric at O(g?)

The inverse metric at second order reads,

g =g — B+ WhY (A1)

where gM” is the inverse background metric. The metric expansion in (A.1) is justified as
follows,

7gov = (87 = W7+ W07 ) (Gou + ho)
= 01 + h*, — B — h*hy, + WGy, 4+ O(E3)
= 0" — W'hgy, + Wby, + O
= + O (A.2)
where indices are raised and lowered with g, .

Connections at order O(g?)

The connections are given by

a L o
Fw/ = 59 |:8ugm/ + &Jgau - (%guu (Ag)

Inserting g, = gy + hyuw and the inverse metric (A.1) into (A.3) gives,

'The EFE in vacuum is given by R,, = 0. Therefore, the first order perturbation EFE in vacuum is given
by R4 [AM] = 0.
2Recall that G!(fl,) [hV] = Rf,,) [hV] — %gwaﬁ) [AV] is requiered in the computation of t,,,.
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(63 1 oo —= — —
I = 39 [augay + Ouhoy + OvGon + Ohop — OoGuy — aghw}
1
§|:gaa — oo 4 ha)\h)\U:| [(aHgUV + 31/@(7“ — 809#1/) + (8uh0’y + al/hgu — 8ghm,):|
1] 1—040' 1 oo — — -
e, + =g (@Lhw + Oyhoy — aahﬂ,,) — 5h (aﬂgw + Oufou — 8Ugm,>

2

1 1
_ 5hoea <8ﬂhm, + 81/h0u _ acfhuv> + 5hOé)\h)\U (@@ou + &,goﬂ — 8057“”) + (’)(53)

Qo
F/w

1]
re,

1
2

T

v

1, 1 5 ) ) )
+ i(jad (auhﬁu + 81/h/3’,u - 8ﬁh,u,u> - 5.(] ‘dg 6h,35 (a,ugcn/ + 81/90# - 809#1/)

1- 1-
S (aﬂhw Y Oyl — a(,hw) + SRR, (aﬂgw + B,Gan — a)\g;w) + O

+ %gw[(ﬁyh@, + Oy = Ogh) = 2h, s

Baa[(a#hgy + Oyhoy — &,h,w) — g (ému + Dy — a)\guu)htm] + O(*)
+ %g”»e[(a#hﬁy + Byhg, — aﬁhw) - 2ffwh55}

_ %}‘Lw[@uhw + Doy = Ooby) — 2T hon | + O() (A.4)

The terms in square brackets of the last result can be rewritten in a covariant form. For the
first term in (A.4), observe that

Vuhgy = Ouhgy — Toghsy — T9,has (A.5)
vVhﬂﬂ = a’h/jﬂ - fiﬂh’fm - ffwhﬁ(s ) <A6)
Vah = 0y — Ty — Thhus (A7)

Therefore, using (A.5), (A.6) and (A.7) one obtains,

Vihey + Vihgy — Vahy = 0uhgy + 0uhgy — Ophy — 20, hss (A.8)

Smilarly, for the second term in (A.4),

Vihoo + Vihoy — Vohy = Ophoy + Ovhoy — Oshpy — 21, hoy . (A.9)

Using (A.8) and (A.9) into (A.4) we have,

« Do 1 —a = = = 1 —ap =06 = v =
A #(Vuhsw + Vb = Vahu) - 5975 hys (Vihov + Vihion = Vohu) -

Relabelling ¢ — 3, the connections up to order O(g?) are given by,
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@ Qo —Q v W W 1 —Qp— v v v
L =T+ 59 ﬁ<vuhﬁv + Vuhg, — Vﬁhw’> - 59 pgﬁéhw (vuhﬁv + Viohg, — Vﬁhw) .

Now, if the following tensors are defined as®

W, 1 /e _ _
w — 59 6(vuhﬁll + vuhfﬁu - vﬁh,ul/> (A].O)

(2)04 1704 B _ _ _

r u ig pgﬁéhp(s (vuhﬁu + Vyhﬁp, - Vﬁhw) ; (All)

equation (A.10) is expressed in a compact form as

N NN @
re, =T, + 1%, + T, , (A.12)

0

o) @
where 'Y, is of order O(e) and I'%,,, of order O(e?).
The Riemann tensor at order O(c?)

The Riemann tensor comes from terms like I' and I'l'. Therefore, is suitable to make the
following splitting,

Roﬂul/ = Uﬁ,uu + Rgﬂ/w + R/};LV . (A]'S)
S—— S—— SN——
Background O(e) O(e?)

Using the connections (A.12) into the definition (2.18) gives,

o _ o o o T
R, = 0I5 — 0,155 + T\ — T,

€ (2) (1) (2)
= 0u(T25 + I%5 + 1%;5) = 0,(Tis + T + 1)
= (1)0 (2)0 A\ (2)>\
+<I‘W\—|—I‘M +FM)(Fﬂ+F IR )
1) (2) — (1) (2))\
— (T + 1%, + 1% (Ths + s + s)

1)

— @ (2) _ ( (2)
= 0,095 + 0,075 + 8,0%5 — 0,195 — 0,15 — 0,174

(1) _ (1) (1) (2) _
+ FM/\FV5+F AFVB+FW\FVB+I‘M/\FVB+FMI‘VB+F”AF

_ _ (2) @ (1) (1)>\ @2  _
- FVAFuﬁ _FuAruﬂ _]‘—‘I/)\F/LB _FV)\FM,B _FV/\Fuﬁ _Fu)\l_‘uﬁ )

3These objects are tensors because are formed by covariant derivatives.
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_ (1) (1) (1) (1) _ _ (1) (1) _
(aﬂrg — O + DO + T, — D905 — 9,1, )

(1) (1)

(2) (2)
+ (6MF"VB—8FW+FMAF s+ T2 T 4 T P

_ (2) (1) (1) (2) _
— Tl = Tl = Ta0,) (A.14)
The quantities defined in (A.13) are given from (A.14) as

<l)(r (1)0 ( (1) _ _ (1) (1) _

(2)0 (2)0 (2) (1) (1) (2)0 - (2)

R /.3/“, - au]._‘ l, - 8 F /3 + F IJ)\F Vﬂ + F M}\]._‘ VB + F )\F - F )\F

(1)0 (1))\ U

ST, - T P (A.17)

Is desirable to express (A.16) and (A.17) in terms of the background geometry. To do this,
remind that the quantities given in (A.10) and (A.11) are actually tensors. As tensors, their
covariant derivatives are well defined. In particular,

_ @ (1) (1)
Vil = 0.17%,5 + FMI"\ - T r v — Dngl% s (A.18)

and solving for the first term at the right hand side of this equation, one gets the first term
of (A.16). With a similar argument is obtained the second term. Then, these terms yields,

<1>cr v (1)0 o (1 )\ @ )\ O’

(1) - (1)
8,,F0uﬁ = VVFJ/L,B FI/)\F uB + ]‘—‘I/;,LF )\5 + FV,BF :U‘)‘ . <A20)

Substituting the equations (A.19) and (A.20) into (A.16), the Riemann tensor at order O(e)
is obtained when using the definition in (A.10). The result is,

(1) _ @) — o Dy
T = VL% —FH,\F’\5+F’\FAB+F[3P VFBJrFV/\P#ﬁ
(1) (1) _ (1> (l)a - (1) (1) _
— T3, 0% — Dogl % + T 5 + T 5 — T, 5 — T,
_ _ (1)
= VI \v8

— ?u[%g")‘(vyh,\,@ + Vgha — vAh”ﬁ)]

- v, [%g”(mhw + Vsl = Valys)] - (A.21)
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Thus,
(1>cr 1—0)\ Vv VARV, VARV,
s = 59 (V,N,,hm + VuVsha — VVahus
= Vo Vg — Vi Vsha, + vmhuﬁ) . (A.22)

The Riemann tensor at order O(e?) follows from a similar procedure. The first terms of (A.17)
are expressed as

(2)0 _ (2)0 - (2)>\ =\ (2>U -\ (2)0

QLF l/ﬁ — V/‘LF I/,B _ F//'/\F VB + F,uVF )\/5 + FM,BF A (A23)
(2)0 _ (2)0 o (2>)\ —\ (2>(7 — (2)0

aVF Mﬂ == V,,F HB - FV)\F ,Uﬂ + FWF )\B + FVBF 'u)\ . (A24)

Inserting equations (A.23) and (A.24) into (A.17) it is obtained,

(2)0 _ (2>U =0 (2))\ = (2)0 = (2)0 _ (2)0
Buv - VMF v - FMAF vp + ]‘_‘,LLVF A8 + FNBF N V,,F N/B
) _, 2 _y 2 _ (2) [COINCY)
o A A o A T0o o A o A
+ FVAF uwB Fuu AB Fuﬁr LA + T ,u)\F vp + I MAF 1261
(2) _ )] 1 (1) (2) _
o A o A o A o A
T T = O = 0T s = T
(2)0_ _ (2>0 _ (2)0 (1)0 (1)>\ (l)a (1>>\
Bl“j - VMF IJ,B - V,,T Mﬂ + F M)‘F VB - F I/)\F /"/B . (A25)

From the definitions (A.10) and (A.11) one is able to rewrite (A.25) in terms of the background
geometry.

The Ricci tensor at order O(g?)

Contracting ¢ and g in (A.22) we get the Ricii tensor at order O(£?), i.e.,
1) 1/ - = = _ _ _
Rg, = §(vkvth + VAVshy, — VAVahg — Vi,V hyg — V,Vgh?\ + vvaﬁ)

Now, making [0 := VAV, and h := hﬁ = g’\“h,\“, the previous equation becomes,

&) 1/che e _ _
Ralh) = 5 (Y Vuhas + VAVgho, — V,Vgh — Ohug) | - (A.26)

Observe that when comparing (A.26) with (2.21) the equation given in (2.21) is recover when
the background is flat. On the other hand, the Ricci tensor at order O(g?) can be found from
the contraction of the Riemann tensor given in (A.25). Using (A.10) and (A.11) one has,
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(2) O] _ (2 (1) (1)/\ (1) (1))\
R, = Vol%5 — YV, 5 + 7T, — 9,

Ry = {0 (17 (Fats + Do = o)) = Ta[17 (Tuhs + Tty = Tots)] |
+ %g"“g“(?ghw\ + ?,\hao — vahg)) (?Vh,yg + ?5h,w — ?Wh,ﬁ)

_ lgmgm (?th + Vahaw — ?ahyx) (@ahwﬁ + Vhao — @Vh”ff)

=~

Il
N =
——

[wfw (Vohas + Vishno = Vahos) + b7 (Vi Vohas + ViVishne = Vi Vihos )|

l—|

W7 (Tuhos + Vo = Vos) + K7 (VoVuhos + VoVshy — vgww)}}
%(W + V' = i) (Vb + Vahoy = Vahug)

[Tk 4 9, — ) (Vohos + Vo — Vahos) (A.27)

The underlined terms in the previous expression cancel each other by relabelling some indices
and using the symmetry property of h,,

B (Vi Vohos) = B (ViVahos) = b7 (ViVahos) = 107, (VuVahos) =0
A Symmetric

Then, from (A.27) the Riemann tensor at order O(g?) yields,

@) 1(._ _ _ _ _ _ _ _
R = Q{VVh‘” (vghw + Vihoo — vvhgg) — VU, h (vth + Vahy — vyhyg)

+ 07 (VuVshas = VoVihys = VoVahay + VoVahys)

1. _ _ _
+ ivm(vth + Vsl = Vahug)

_ %(@Vh” + Vh, — @Uh7y> (ﬁgh’yﬁ + Vghae — ?vhch)}

212

_ 1{1%;107(% + Vahao — Vahos) + (%Wh = Voh) (Vg + Vshow = Vohys)
+ RO (vyvﬁhw — VoVihos — VoVshyy + vmhyﬁ)

(0, = 9, (Fahos + Tt — vyhgﬁ)} (A.28)
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Rsy, = ;{;vﬁhmvyhﬂ n ( Vh — vgh‘”) (%hwg + Vghy, — %h,@

1
2
+ 07 (VuVihos = VoVihys = VoVahay + VoVahys)

+ %?U}ﬂy (Vohas + Vahys = Vahos) — %@Wy (Vohas + Vahoo = Vahos) |

(y¢<—o0)

_ ;{;vﬁhmvyhm £ (590 = Voh®) (Tuhs + Tshow — Tyhus)

+ 87 (VuVshao = VoVihys = VoVshay + VoVyhys)

1, _ _ _ _
+ 5V, (Vahos + sk = Vohag — Vahas = Sabez + Vohos) }

1
2

( Vih - ¥ h”)( hys + Vahy = Vahug) b . (A.29)

1_ _ _ _ _
Rsy[h] = gaugw{Qvﬁhmvth + Vihay (vghw - vwhoﬁ)
+ e (Vo Vhne = VoVihog = VoVghy + Vo Tyhus)

+ (1?ah;w - ?o’hua) <ﬁyh75 + Vghy, — ?’thlﬁ)} . (A.30)
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Appendix B

Second order perturbative expansion
in f(R) gravity

Here we develop a detailed computation of the required quantities to find the energy-momentum
tensor fu,, in f(R) gravity. To the order of accuracy, the partial and the covariant derivatives

are indistinguishable because v# may commute and so behaves like 0,,[27]. For simplicity we

also assumed that in some reference frame the Lorenz gauge and the traceless condition are

valid. This means that

_ (1) _ _
hyw = hyy — a2Rgu, ,  0huw =0 , h=0 . (B.1)

The connections at order O(g?)

The connections to second order in € are given by

_ (1) (2)
r, =10, +Ih, + T, (B.2)
where,
_ 1_ 3 _ B
PZZ/ = §gp)\ (aug)\u + 8Vg/\u - 8)\g;w) ) (Bg)
a) 1
F/u/ = ig (a,uh)\y + al/h)\u - a)\h,ul/)
1_, - - _ @ _ o8

= igp Ou | haw —a2Rgxy | + 00 | hay — a2Rgy, | — O | hyw — a2RG || ,  (B.4)
(2)p 1 PA
F,Lu/ = _§h (8uhz\u + auh)\,u - 8)\huy)

1 _ W _ W
= *5 h? *CLQRgp 8/1 hy, — a2Rgy, | + 0y h’)\ﬂ *QQRgAu

_ €Y
0y (i )] ®9

The Ricci tensor at order O(g?)
The Ricci tensor to order O(€?) can be decomposed as

_ (1) (2)
R, = Ry, + R + R (B.6)
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with
Ry = 0,1, — 9,19, + T9,I}, — T,T7, (B.7)
(1) 1
Ry = 5 (0u0p", + 0,051, — 0,0k — Ohy) (B-8)
(2) 11 op op op op op
Ry = 2 §8ﬂh0p8uh + h7P0u0vhep — h7PO,Ophoy — WP OuOphay + 17PO5Ophyu

0PhC,Dphoy — 0PN, Dghpy — Dph” Oyhap + Do Oohyn — Oph™ e,
1 o 1 a 1 g
— 30 hOshyy + 507 hOuhou + 50 hé),lhw} (B.9)

Explicitly, the expression in (B.8) are given in (7.45). Furthermore, to simplify we use equa-
tions (7.50) and (7.49). Then,

€Y €Y 1 _ 1- 1 /@ 1)
Ruy = 8H6V CLQR — §D huy — §hguy + 6 R + g g’u,y

(1) 1 1
= a28y,ayR + GRQW - Dh/u/ + Dhgp,y + gg/uz

(1) 1M (1) 21)
— GQauayR + gRguy + g;,“/ - gguy .

Assuming vacuum, so that G,,, = 0 then,

(1) (1) 1
R, = a20,0,R + 6Rg,w . (B.10)

Now, inserting the definition of h,, into the equation (B.9) one obtains,

@) 171 /- . . W . W &)
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)
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(i
(1 -
(i

(i

- (1) 1) - (1)
i) (o o) — (50— i) 0,

(h
_ (1) _ (1)
+ <h0p — agRgUp> 808/, <hl“/ — azRgW> + o° < — a2R5 >

0
0y
_ (1) _ (1) _ (1) (1)
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0

(1) _ (1) (1)
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- 58 h —4asR ) Oy h,w —a2Rg | + 53 h—4asR ) 0, (hgu —asRgsy

1 (1) (1)
—|—23 h — 4asR O hoy — a2 RGoy (B.11)
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Expanding each term of equation (B.11) gives

1 _ 1 _ (1) 1 B @ - "
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1, 56 1. pn U 1 cop (oW m_ W
ziﬁuh,,pa,,h —§8uhgp asg°PO, R —53,,h 200 p0u R +2a8R3R

1 - ey 1 Y © @
= S0uhapOuh" — Jaxduh,R aza RO.R + 2020, RO, R . (B.12)
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_ _ _ (1) (1) _ (1)
= 0P8, 0phay + azh?,0,8,R + asR,0,h", — 2R,0,R (B.14)
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Adding all the terms from equation (B.12) to (B.24) and consider the Lorenz gauge, h = 0
and vacuum spacetime. The result is,
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Finally, the Ricci tensor to order O(g?) is given by

(2) 1(1_ - _ _ _ . 1)
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The Ricci scalar is obtained when contracting the Ricci tensor with the full metric,
_ (1) (2)
R=R+R+R
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where,
B R (B.28)
1) (1)
"= "R, (B.29)
(2) (2) (1)
R = g,u,uRw/ _ h'uVR/u/ X (B30)

The equation (B.28) is just the Ricci scalar of the background. Equation (B.29) reproduce
the Klein-Gordon equation with respect to the background

o
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L m 1w
= g" | a0, 0, R + 6ng,

e 2
= GQDR + gR y

ie.,

(O - 1?) R=0 |. (B.31)
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The Ricci scalar to second order is obtained as follows,

CORC) e
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after inserting the full definition of %y, from equation (7.52) with g,,. Using the the Lorenz
gauge, the trace free of hy,,, the wave equation and the Klein-Gordon equation one obtains,
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Hence,
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For the function f(R) we have,

1
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where
(1) (1) (2) (2) 1 @

f=R, f=R, f:R+§a2R2. (B.35)

To find the corresponding derivatives at each order, we need to expand the function f(R) up
to the third power in R. After differentiate with respect to R one have

1
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