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Resumen

Se explora el uso de la Teoŕıa de Representaciones de Álgebras para construir
repositorios de imágenes emergentes, dichas imágenes se usan en diferentes
tipos de pruebas interactivas con humanos. Estos tests pueden diferenciar
humanos de bots o robots, con el fin de proteger ambientes en ĺınea (tales
como redes sociales, wikis, ventas de tiquetes, proveedores de correo gratis,
etc), de diferentes tipos de amenazas de seguridad.

Se introducen algoritmos novedosos para modelar imágenes emergentes y
multiestables a partir de órdenes tejados, configuraciones de Brauer, posets,
junto con herramientas y técnicas que provienen del Análisis topológico de
datos (nubes de puntos, complejos simpliciales, y triangulaciones del espacio,
entre otras), con el fin de crear formas que puedan ser reconocibles por los
humanos pero dif́ıciles para las máquinas.

Palabras Clave: (Configuración de Brauer, CAPTCHA, Emergencia,

Imágenes emergentes, Pruebas Interactivas con Humanos, Posets, Se-

guridad, Órdenes tejados, Teoŕıa de Representaciones de Álgebras).

Abstract

We explore the use of the theory of representation of algebras to construct
emerging image-repositories, such emerging images are used in different types
of human interaction proofs (HIPs). These tests are able to tell apart hu-
man from bots (or robots) in order to protect online environments (as social
networks, wikis, ticket sellers, free-email providers, etc) from different kind
of security threats.

We introduce novel algorithms to model emerging and multistable images
from tiled orders, Brauer configurations, posets together with tools and tech-
niques arising from TDA (point clouds, simplicial complexes and spatial tri-
angulations, among others), in order to create shapes which can be identified
by humans as recognizable images hard to detect by machines.

Keywords: (Brauer configuration, CAPTCHA, Emergence, Emerging

Images, Human Interaction Proofs, Posets, Security, Tiled Orders, The-

ory of Representation of Algebras).
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Introduction

In recent years, many applications of the theories of representations of posets
and algebras have emerged. These applications have allowed advances in
areas such as Number Theory, Combinatorics, Information Security and Big
Data Analysis, among others.

Representation theory is the study of the ways in which a given group may
act on vector spaces, so that, it studies the way of representing elements
of algebraic structures via linear transformations between vector spaces. It
allows to find relationships that expresses similarities between objects. In
this thesis we study the phenomenon of emergence from different points of
view of the theory of representation of algebras.

The term emergence generally refers to the process of becoming visible after
being concealed. In the context of images, emergence is the phenomenon by
which the object of the image is imperceivable through recognition of the
individual elements. Instead, the object is, only perceivable when viewed
as a whole, i.e. all at once. In small local neighbourhoods the elements of
the image look complex, random and therefore meaningless. However, when
observed in its entirety, the elements are aggregated and the main subject in
the image suddenly pops out, i.e. emerge and is thus perceived as a whole.
Thus, Emerging Images (EI) are images with the property of Emergence; this
property has been well studied by the Gestalt School [38].

The exact process of how such objects within emerging images are perceived
is currently unknown and thus it can be concluded that it is extremely chal-
lenging, if not impossible, to automate the recognition process [64]. For
this reason, emergence can be leveraged to make Human Interaction Proofs
(HIPs), i.e. systems with the main objective of distinguishing between var-
ious groups of users through a challenge/response protocol. HIPs protocols

1



2 Introduction

can be leveraged to distinguish human versus machine, or one person versus
another, etc [12].

In 2009, Mitra, et al. proposed a synthesis technique to generate emerging
images of 3D objects that are detectable by humans, but are difficult to
recognize by computer vision algorithms [64].

Informal Human Interactive Proofs were introduced by Naor (1996), who pro-
posed using a “Turing Test” to verify that queries to a service over the web
are being made by a human being rather than a machine [67]. Subsequently,
Von Ahn (2000) coined the term CAPTCHA (Completely Automated Public
Test to Tell Computers and Humans Apart). More specifically, CAPTCHAs
aim to discriminate between actions executed by computers and those exe-
cuted by humans [1].

Thus the primary aim of this research is to introduce the concept of Emer-
gency from different mathematical structures. This fact is very relevant be-
cause it is a concept that it only had been studied by the psychologists.

Taking into account the above, it is necessary to propose the generation of
emerging images in a way that it is not easy for the computational algorithms
to decipher the information. For this reason, this thesis aims to create emerg-
ing images from mathematical concepts and structures, such as semimaximal
rings known as tiled orders, posets, Brauer configurations and Topological
Data Analysis. Additionally, we present connections between emerging im-
ages and these mathematical structures. The practical application of these
results consists of using them in human interaction tests or proofs.

On the other hand, modeling means finding a mathematical representation
for an object, a process or a system not mathematical, constructing a theory
or mathematical structure that incorporates its essential features. The built
mathematical model, allows to obtain results about the process in question.
Currently, models are simulated in computers in order to predict results and
to contribute in the resolution of problems in other knowledge areas. In this
thesis a novel mathematical model for generating multistable and emerging
images is presented.

Furthermore, the presentation of novel algorithms for generating multistable
and emerging images that are constructed via 01-Tiled Orders, posets, Brauer



Contributions 3

configuration and homological persistence. This kinds of images may be used
to construct different and interesting Human Interaction Proofs.

0.1 Contributions

The main contribution of this thesis is:

“A key security application of the Theory of Algebra Representation”.

We introduce a novel strategy to produce HIPs exploiting tools of theory of
algebra representation . The proposed approach is based on the generation
of images of shapes, that can be identified by humans but hard to be recog-
nised by a computer program. Several experimental results are reported to
demonstrate the robustness and feasibility of the proposed approach.

In detail, the main contributions of this thesis are the following.

• Definition of a Brauer configuration associated to emerging images.

• Design and development of an efficient digits sequencing algorithm
(DSA).

• Schemes associated to some Visual Secret Sharing.

• A mathematical model for emerging and multistable Images.

• The introduction of length-variable error-correcting codes based on
Brauer configuration algebras and quivers.

• Design of an efficient algorithm to model multistable and emerging
images ATMMEI [26].

• Design and development of algorithm (ATGEI) to generate emerging
images via tiled orders.

• Definition of Emerging Equipped Posets.

• Definition of a Brauer configuration associated to multistable images.

• Design of an efficient algorithm (MGA) to generate random masks from
topological techniques.



4 Contributions

• Comparison between homological methods and Tiled orders methods
to generate emerging images.

• Human Interactive Proof: EmerCAPTCHA and experiment applied to
users.

• Algorithm to tell Apart Humans and Machines (ATTACH).

• Human Interactive Proof based on images obtained from Algorithms
MGA and ATTACH and experiment applied to users.

• Software called System REIADT.

• Repository of emerging and multistable images.

• Talk: “Matrix Problems to Generate Mosaic-Based CAPTCHAs”, ICDP
2015. London (UK).

• Poster: “Emerging Images-based CAPTCHAS”. MATH AMSUD. 2016.
Montevideo (Uruguay).

• Talk: “Algorithms of Differentiation and Its Applications”, 2017, CLA
Quito-Ecuador.

• Talk: “ Matrix Problems Associated to Some BCA and Its Applica-
tions”, CLA , México D.F. 2019

• Talk: “Human Interaction Proofs (HIPs) based on Emerging Images
and Topological Data Analysis (TDA) Techniques”, 3rd Cyber Security
and Networking 2019. Quito (Ecuador).

• Paper published: “Matrix Problems to Generate Mosaic-Based CAPTCHAs”
[26].

• Paper accepted: “Human Interaction Proofs (HIPs) based on Emerging
Images and Topological Data Analysis (TDA) Techniques” [5].

• Paper accepted: “Human Interaction Proofs (HIPs) Based on Multi-
stable Images and Brauer Configuration Algebras (BCA)” [6].

• Paper submitted: “Algebraic Tools for Multimedia Based Cryptogra-
phy and Security Applications” [7].
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• Paper submitted: “Brauer Configuration Algebras for Multimedia Based
Cryptography and Security Applications” [8].

0.2 Overview of the thesis

This thesis consists of eight chapters. Following the introductory chapter, the
Chapter 1 deals with the main concepts, principles and theoretical results of
Gestalt Theory. An overview of Human Interactive Proofs and CAPTCHAs,
background and related work about them are showed. Furthermore, defini-
tions about emerging images, Representation of algebras, Brauer configura-
tion algebras, representation of posets, tiled orders and homological persis-
tence are presented. And the basic concepts regarding visual cryptography
schemes are presented. At the end of this chapter, we present a first ap-
plication of the Brauer configuration algebras in the construction of length-
variable error-correcting codes.

In the Chapter 2 a Brauer configuration associated to emerging images is
presented, which allows to generate schemes from sequencing process of dig-
its. It also presents the Brauer configuration induced by some exchange rules
and schemes of color VSSS defined by suitable Brauer configurations.

The Chapter 3 deals with a novel mathematical model and its algorithm to
generate emerging and multistable images.

The Chapter 4 shows emerging images associated to tiled orders and posets,
an algorithm for generating emerging images is also presented.

In the Chapter 5 deals with a Brauer configuration associated to multistable
and emerging images.

Chapter 6 focuses on the using of theoretical concepts, tools and techniques
arising from Topological Data Analysis (points clouds, simplicial complexes
and spatial triangulation among others), in order to create random masks
which are used to generate emerging images.

In Chapter 7 an algorithm to tell humans and machines is introduced. In
addition, we describe experimental and statistical results. Additionally, it
presents both the experiments made to evaluate the usability, and the human
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friendliness and the results for these experiments. Screenshots about System
REIADT are showed, which allows to obtain computational results.

The conclusions and recommendations for future works are summarised in
Chapter 8. Finally, appendices and the list of author’s publications is given
at the thesis end along with the references used.



Chapter 1

Preliminaries

In this chapter, we present some theories and basic definitions which will be
used in the thesis. We start discussing some aspects regarding the under-
standing human psychology and the visual perception which are very impor-
tant factors to create successful Human Interaction Proofs (HIPs).

1.1 Gestalt Theory, Principles and Laws

Gestalt theory was developed in Germany by Max Wertheimer, Wolfgang
Köhler, and Kurt Koffka in 1923 [44], Wertheimer et al. believed that
people perceive a structure of components that they treat as a whole. This
theory arose in 1890 as a reaction to the psychological theory of the time
named atomism. Atomists believed the nature of things to be absolute and
not dependent on context [38].

The concept of gestalt, (the German word for “essence or shape of an en-
tity’s complete form”), was first introduced to contemporary psychology by
Christian Von Ehrenfels following the theories of David Hume, Johann Wolf-
gang Von Goethe, Immanuel Kant, David Hartley, Ernst Mach and Max
Wertheimer [44]. Subsequently, Fritz Perls, Laura Perls and Paul Good-
man created gestalt therapy by bringing together the diverse European and
American theories and backgrounds to synthesise a new psychotherapy and
social theory [20].

The basic principle of the Gestalt school is: “ The whole is other than the
sum of the parts” [60], i.e. the properties of the totality do not result

7



8 Gestalt Theory, Principles and Laws

from the constituent elements. Instead they emerge from the temporal space
relations of the whole and the human eye sees objects in their entirety before
perceiving their individual parts. Furthermore, the gestalt effect stipulates
that perception is the product of complex interactions among various stimuli,
and it depends on the form-generating capability of our senses to perceive
whole forms instead of a mere collection of simple lines and curves [56].

A. Desolneaux et al. (2006) described the Gestalt theory as a substantial
scientific attempt to state the laws of visual reconstruction [38]. In the
Wertheimer programme there are two kinds of organizing laws: grouping
laws, and those related to governance and conflict [38].

Grouping laws, starting from the atomic local level, recursively construct
larger groups in the perceived image. Each grouping law focuses on a single
quality (e.g. colour, shape, or direction, . . . ).

In the cases of principles governing the collaboration and conflicts of Gestalt
laws, groups are identifiable with subsets of the retina. In image analysis
we identify them with the points of the digital image. Whenever points (or
previously formed groups) have one or several characteristics in common,
they get grouped and form a new larger visual object: a gestalt.

The list of elementary grouping laws given by Gaetano Kanizsa in Gram-
matica del vedere (1980) is vicinanza, somiglianza, continuita di direzione,
completamento anodale, chiusura, largheza constante, tendenza alla conves-
sita, simetria, movimento solidale, esperienza passata [57]; i.e. vicinity, sim-
ilarity, continuity of direction, amodal completion, closure, constant width,
tendency to convexity, symmetry, common motion, past experience. This list
is very close to the list of grouping laws considered in the founding paper by
Wertheimer [44].

At the beginning of the 20th century, the school of Gestalt practised a series
of theoretical and methodological principles that attempted to represent the
subjective experience of perception [60,62], such as the following:

• Principle of totality: the conscious experience should be viewed
holistically, as a totality of the dynamic interactions of components
of the brain.
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• Principle of psychological isomorphism: there is a correlation
between the perceptual phenomena and the activity in the brain.

• Phenomenon experimental analysis: any psychological experiment
should have as a starting point a phenomena and not sensory qualities.

• Biotic experiment: stats the need of conducting real experiments on
natural situations and real conditions to reproduce with higher fidelity
the habitual situations of the subjects.

The Gestalt theorists have used four key gestalt properties to describe the
processes of visual perception: Emergence, Reification, Multistability and
Invariance [38,57,62,65,92]. The ubiquity of these properties in every aspect
of perception suggests that gestalt phenomena are fundamental to the nature
of the perceptual mechanism [62].

1.2 Key Gestalt properties

1.2.1 Emergence

Emergence is the process of complex pattern formation from simpler rules.
The main characteristic is that the final global form is not computed in a
single pass but continuously. An example can be observed in Figure 1.1.
The local regions of the image do not contain enough information to distin-
guish significant form contours from insignificant noisy edges, but as soon
as the subject is recognised, the perception of a dog is very vivid despite
the fact that much of its perimeter is missing. The Gestalt theory does not
offer any specific computational mechanism to explain this property in visual
perception [62].

1.2.2 Reification

Reification is the constructive or generative principle of perceptual process-
ing, by which the final form is perceived by filling-in of a more complete
and explicit perceptual entity based on a less complete visual input. The
Kanizsa’s figures shown in Figure 1.2 are of the most well known illusions
produced by the Gestalt theory. For example, in the figure, a triangle can
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Figure 1.1: Example of the Gestalt property Emergence: Dalmatian dog.
Google’s Repositories.

be recognised by filling-in perceptually, and producing visual edges in places
where there are none in the input [62].

Figure 1.2: Example of the Gestalt property: Reification showing the
Kanizsa’s images. Google’s Repositories.

1.2.3 Multistability

Multistability refers to the visual process of perception. Perception must
involve some kind of dynamic process which stable states represent the final
percept [62]. According to Sterzer et al. (2009) multistable perception is the
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spontaneous alternation between two or more perceptual states that occur
when sensory information is ambiguous [86].

As an example of multistability, the well known Old-woman/Young-woman
drawing which consists of a single set of lines is presented in Figure 1.3.
This single image involve ambiguity, so that the drawing can be visually
interpreted in at least two ways that are mutually exclusive, depending on
how the patterns or structures of the eyes interrelate those lines.

Figure 1.3: Example of the Gestalt property Multistability: Old woman and
young woman. Google’s Repositories.

The Figures 1.4 and 1.5 show other examples of images where it is possible
to perceive multistability property.

Figure 1.4: Multistability Example: Symmetry. Google’s Repositories
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Figure 1.5: Example of Multistability: Jesus. Google’s Repositories.

1.2.4 Invariance

Invariance is the property by which an object can be recognised regardless of
its rotation, translation, scale, change of lighting or background, or texture
and motion [62]. See Figure 1.6.

Figure 1.6: Example of the Gestalt property Invariance. Google’s Reposito-
ries.

1.3 Gestalt laws

The Gestalt principles of perception come from the Law of Pragnanz, the
German word for language. The principles describe the organization of per-
ceptual scenes. The Law of Pragnanz says that when we look at the world
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we usually perceive complex scenes composed of many groups of objects on
some background, with the objects themselves consisting of parts, which may
be composed of smaller parts, etc. and we tend to order our experience in a
manner that is regular, orderly, symmetric, and simple. The interpretations
of sensation that comes from the perception are called the ‘Gestalt Laws’
[44] which are presented below.

• Law of Proximity: Objects that are closer together are perceived as
more related than objects that are further apart, i.e. elements tend to
be perceived as aggregated into groups if they are near each other. For
example, in Figure 1.7, the first row is perceived as a sextuplet while
the second and third row, due to the change of distance between some
of the components. The patches are perceived not just collectively as
a sextuplet, but also as being subdivided into groups.

The objects do not need to be similar in any other way beyond be-
ing grouped near each other in space in order to be seen as having a
proximity relationship.

Figure 1.7: Law of Proximity Example. [77].

• Law of Similarity: Elements tend to be integrated into groups if
they are similar to each other. This similarity can occur in the form
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of shape, colour, shading or other qualities. For example, as shown
in Figure 1.8, the shapes have a constant distance between them, but
they are perceptually partitioned into three adjacent pairs; due to the
similarity of visual attributes.

Figure 1.8: Law of Similarity Example. Google’s Repositories.

• Law of Symmetry: The mind perceives objects as being symmetrical
and forming around a centre point. When two symmetrical elements are
unconnected the mind perceptually connects them to form a coherent
shape. Similarities between symmetrical objects increase the likelihood
that objects will be grouped to form a combined symmetrical object.

Figure 1.9: Law of Symmetry Example.
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• Law of Common Fate: Elements tend to be perceived as grouped
together if they move together. We perceive elements of objects to have
trends of motion, which indicate the path that the object is on. For
example, if there is a line of dots, and half the dots are moving upwards
while the other half are moving down, we would perceive the upward
moving dots and the downward moving ones as two distinct units.

Figure 1.10: Law of Common Fate Example. Google’s Repositories.

• Law of Continuity: Oriented elements or groups tend to be inte-
grated into perceptual wholes if they are aligned with each other. In
cases where there is an intersection between objects, individuals tend
to perceive the two objects as two single uninterrupted entities. Stimuli
remain distinct even with overlap. We are less likely to group elements
with sharp abrupt directional changes as being one object. Elements
arranged on a line or curve are perceived as more related than those in
neither case. An example is presented in Figure 1.11.

Figure 1.11: Law of Continuity Example [77].

• Law of Closure: Elements tend to be grouped together if they seem to
complete some entity. More specifically, when parts of a whole picture
are missing, our perception fills in the visual gap. In the Figure 1.12,



16 Gestalt laws

you probably see the shapes of a circle and rectangle because your brain
fills in the missing gaps in order to create a meaningful image.

Figure 1.12: Law of Closure Example [77].

• Law of Pragnanz: The word pragnanz is a German term meaning
“good figure”. The law of Pragnanz is sometimes referred to as the Law
of Good Figure or the Law of Simplicity. This law holds that objects in
the environment are seen in a way that makes them appear as simple
as possible. In the Figure 1.13, look more the images as a series of
overlapping circles rather than an assorment of curved, connected lines.

Figure 1.13: Law of Pragnanz Example.

• Law of Good Gestalt: Elements tend to be grouped together if
they are parts of a pattern which is a good Gestalt, i.e. given the
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input as simple, orderly, balanced, unified, coherent, regular, etc. as
possible. This law implies that as individuals perceive the world, they
eliminate complexity and unfamiliarity in order to observe a reality in
its most simplistic form. The Law of Good Gestalt focuses on the idea
of conciseness which is what all Gestalt theory is based on. See Figure
1.14.

Figure 1.14: Law of Good Gestalt Example.

• Law of Past Experience: Elements tend to be grouped together if
they were together often in the past experience of the observer. If two
objects tend to be observed within close proximity, or small temporal
intervals, the objects are more likely to be perceived together.

1.4 Human Interaction Proofs: Background

and Related Work

The rapid evolution of the internet, the World Wide Web (WWW) and its
use in all business sectors and aspects of life (such as education, web search,
emails, the purchase of goods or services), has led to the need to create secu-
rity mechanisms to avoid threats and infractions. Internet security has been
an important issue since the internet’s arrival in the 1980s [12]. For exam-
ple, websites that carry commercial or administrative applications commonly
require forms to be filled out to enable authorised people to use their ser-
vices. However, some users abuse these services by creating programs called
bots, (an acronym of robot), to register automatically to use the services for
malicious purposes [76].
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Figure 1.15: Law of Past Experience Example [77].

An internet bot, in its most generic sense, is software that performs an au-
tomated task over the internet. More specifically, a bot is an automated
application used to perform simple and repetitive tasks that would be time-
consuming, mundane or impossible for a human to perform. Although bots
can be used for productive tasks, they are frequently used for fraudulent
activities [89].

Malicious bots are typically blended threats that are part virus/worm, part
bot and are used in identity theft or to launch attacks for denial of services.
They can also generate spam, i.e. the sending of unsolicited email messages,
including for the purpose of identity theft or financial fraud. In addition,
spam can be used to attack personal computers through viruses, Trojan
horses or malicious software [12]. Other illegal bot uses include harvesting
email addresses for spam, scraping content, or manipulating comments/votes
on sites that allow user feedback [89].

In response to increasing threats, interactive tests have thus been proposed
to distinguish human users from automated processes. Such tests facilitated
the websites in providing security to the user when using their services.

This chapter presents the state of the art and the different strategies used
based on the HIPs and CAPTCHA Methodology. Furthermore, the concept
of Emerging Images is presented because they are the study object in this
thesis.
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1.4.1 Human Interaction Proofs

A HIP, or Human Interaction Proof or Human Interactive Proof, is a hu-
man authentication mechanism that generates and grades tests to determine
whether the user is a human or a malicious computer program [69].

Diverse systems of HIPs have been presented over recent years with their
main objective to distinguish between various groups of users through a chal-
lenge/response protocol, e.g., human versus a machine, one person versus
anyone else, etc [12].

Some researchers present Human Interaction Proofs, looking for an ideal
system that cannot be passed by the computers and other researchers look
for to create a system that can pass the test. Consequently, this situation
makes that HIPs also become difficult for potential users too. So there, is a
tradeoff between the usability and robustness in designing HIP tests.

The concept behind HIP tests comes from a methodology proposed by Alan
Turing, which tests the intelligence of a computer through an ‘imitation
game’. In the Turing test, a human judge asks questions to a human and a
computer (situated in different rooms). If the interrogator cannot determine
which room the computer is in, and which one the human, the computer has
passed the Turing test [93].

Naor (1996) proposed using a Turing Test for the purpose of verifying that
a human being is making a query to a service over the web, rather than an
automated process. Thus, before a request is processed, the user should be
presented with an instance of a chosen problem as a challenge easy for humans
to solve, but one that the best known programs fail on a non-negligible
fraction of the instances [67].

S. Shirali and M. Shirali studied available HIP systems, various applications
of HIP systems and attacks conducts on them [83].

In January 2002 ran the first workshop on HIPs, this indicate the importance
of research in this field. In 2005 the second workshop was held and in its
conclusions they suggest that the existing HIPs tried to maximize the diffi-
culty for automated programs to pass tests by increasing distortion or noise,
consequently it has also become difficult for potential users too [12].
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Therefore, some aspects that should be in the design and construction of
HIPs are the usability and robustness of tests.

For instance, ARTiFACIAL [78] works as follows: per each user request,
it automatically synthesizes an image with a distorted face embedded in a
cluttered background. The user is asked to first find the face and then click
on 6 points ( 4 eyes corners and 2 mouth corners) on the face. If the user can
correctly identify these points, it concludes the user is a human; otherwise,
the user is a machine, see Figure 1.16.

Figure 1.16: Images of ARTiFACIAL [78].

Chew and Baird (2003) [35] proposed BaffleText, a HIP which uses non-
English ‘pronounceable words’ to defend against dictionary attacks, and
Gestalt-motivated image-masking degradations to defend against image restora-
tion attacks, that exploits the difference in ability between humans and ma-
chines in reading images of text. They constructed website and invited 33
employers to visit and transcribe texts. Their experiments confirmed the
legibility and user acceptance of BaffleText Images.

Chellapilla presented two works where the friendly aspect is the most impor-
tant one [33,34].

The evolution of the Human Interaction Proofs and its applications are pre-
sented by Baird et al. (2005) [12].
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Some authors use the terms: Human Interactive/Interaction Proofs (HIPs),
Reverse Turing Tests (RTTs) and CAPTCHAs indistinctly, but others es-
tablish important differences. Chew [35] claims that a CAPTCHA is a kind
of HIP, but the first ejects an automatic evaluation. That is, CAPTCHA is
a type of HIP with additional features.

Ugochukwu et al. (2013) presented a review and evaluation of HIP in online
environment, given their lack of acceptance of users [71]. Furthermore, they
propose to use biometric authentication in conjunction with HIP, in order to
obtain better results.

Within the evolution of the Human Interactive Proofs, the most outstand-
ing to differentiate a human from a computer are CAPTCHAs, which are
described in the next section.

1.4.2 CAPTCHAs

The term CAPTCHA stands for Completely Automated Public Turing test
to tell Computers and Human Apart. It is perhaps the most expanded branch
of the HIP systems. A CAPTCHA is a software that generates graded tests
that most humans can pass but computers cannot. The origins derive from
1997 when Altavista developed a filter that generated images of printed ran-
dom characters to avoid automatic submission of Uniform Resource Locators
(URLs) to their search engine. Subsequently, Blum et al. (2000) created
the CAPTCHA project which was developed at Carnegie Mellon University
[18]. Blum et al. articulated the most desirable properties a CAPTCHA test
should have:

• the test’s challenges should be automatically generated and graded (the
judge is a machine)

• the test should be taken quickly and easily by human users

• the test should accept virtually all human users and will reject virtually
all machine users

• the test should resist automatic attack for many years in spite of tech-
nology advances or open test algorithms
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Von Ahn et al. (2003) defined formally a CAPTCHA, as a test C, (α, β)-
executable in the sense that at least a portion α of population has success
greater than β over C [1].

The test developed by Von Ahn in 2003 gives the user two words: one where
the answer is unknown and a second control word for which the answer is
known. If users correctly type the control word the system assumes that
they are humans [1]. Such a program can be used to distinguish humans
from computers and has many applications for practical security to prevent
unauthorised access to: online polls, free email services, search engine bots,
and prevent worms and spam and dictionary attack for example.

A second definition: CAPTCHA is a cryptographic protocol whose underly-
ing hardness assumption is based on an Artificial Intelligence problem (AI)
[1].

The essential exploitable concept of leveraging CAPTCHA is thus that most
humans can pass such tests but computers algorithms cannot [18]. CAPTCHA
programs can therefore protect internet companies and human users against
spam or bots, through the generation of graded tests. CAPTCHAs are thus
used to protect websites and services, including free email providers, ticket
sellers, social networks, wikis and blogs due to their capabilities of distin-
guishing human users from automated processes [2, 3].

Following a concept introduced by Von Ahn et al. (2003) [2], for a CAPTCHA
to be considered good currently, it should have the property of being asso-
ciated with a hard Artificial Intelligence (AI) problem. Calling a hard AI
reflects that it would not be solved by simple specific algorithm, i.e. it is dif-
ficult and complex for machines. This is in the sense that correct solutions of
a given CAPTCHA should only be attainable if the underlying AI problem
is solved, Von Ahn et al. define this characteristic as a win-win situation:
either the CAPTCHA is not broken and there is a way to differentiate hu-
mans from computers, or the CAPTCHA is broken and a useful AI problem
is solved [2].

Regardless of the type of method used in the CAPTCHAs, they share com-
mon characteristics that define them. First, the generation of the tests should
be completely automated by a machine. Only human intervention should
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be required to pass the test. Second, the code, the data, and the algo-
rithm should ideally be public since CAPTCHAs benefit from peer review,
which is normally successful at identifying weaknesses [66]. Finally, a robust
CAPTCHA should rely on a completely random generation system for choos-
ing the corresponding characters, images or other files. The solutions should
not be contained in databases because they could be cracked. Additionally,
the machine generating the tests should not be able to solve them. The aim
is to create a CAPTCHA that is immune to imminent attacks.

The primary application of CAPTCHA is to prevent malicious attacks to
the systems by spammers. However, they also serve to protect vulnerable
systems, such as Yahoo or Hotmail, against e-mail spam, automated posting
to forums, blogs and wikis as a result of commercial interests or harassment.
Another important function is bit rate limiting when excessive use of a service
is observed.

Many websites, including well known players such as Google, Gmail and
Yahoo mail, use CAPTCHAs to facilitate barring unauthorized access to
users accounts. CAPTCHAs are also commonly used in sites that provide
access to confidential information, such as bank accounts, credit cards, and
websites that take in payments for services or goods.

CAPTCHAs use for websites aids securely saving and protecting user data.
CAPTCHAs offer protection against remote unauthorised digital inputs,
since they facilitate ensuring that only a human being with the correct
password can access, rather than an automated process designed to crack
a password or example.

CAPTCHA tests were designed to prevent fake registrations by computer
programs in websites [12], but the number of applications has increased
since then. Nowadays they are used to prevent email from worms and spam
such as Kartaltepe and Xi propose in [58], [81]. In addition to the email
spam problem, CAPTCHA tests are used to prevent fraud in online polls [1],
search engine bots reading web pages [4], bots playing online games [53],
[98] and dictionary attacks [31]. They are also used for detecting phising
attacks [32], [79] or user authentication [46], [81, 82]. In the last decade,
different type of methods have been developed to produce CAPTCHAs. In
2013, Romero proposed a detailed classification that starts with three main
branches and divides into sub-categories [75].
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In 2015 Reynaga in [73] claims most existing CAPTCHAs do not propertly
fit mobile devices which forces the user to abandon their tasks. They studied
the usability of four tests and identified design strategies for the development
of new CAPTCHA for smartphones.

Although nowadays there are several categories of CAPTCHAs including:
Text-based, Audio-based and Images-based, we will only focus in the first
and the last categories.

Text-based CAPTCHA

In a word-based CAPTCHA, the characters are distorted to make its recog-
nition more difficult for the bots. Among the basic distortions, it can use
translation, rotation (clockwise or counterclockwise) and scaling, among oth-
ers such as sight angle, lighting effects, context, and camouflage [33]. A
word-based CAPTCHA test consists on an image that contains distorted
and noisy characters or words. To solve this test, the user has to type the
characters presented in the image. Usually, the distortions applied to the im-
age are complicated enough to prevent a robot to recognise the word while
allowing humans to do so. Applications can be appreciated in Figure 1.17.

Von Ahn et al. proposed in 2008 reCAPTCHA. It was originally conceived
as a test based on the inability of some OCR-algorithms to identify distorted
text [3].

Perhaps a method similar to reCAPTCHA can be used to annotate or tag
large quantities of images. See Figure 1.18.

Image-based CAPTCHA

An image-based CAPTCHA contains primarily an image that the user has to
recognise. Amongst these tests, the user can be asked to implement different
kinds of actions; solve a quiz, match symbols, recognise faces, etc. Usu-
ally, the images do not appear straightforwardly, instead they can contain
warping, occlusion or lighting effects to avoid being recognised by machines.
The last type is a sound-based CAPTCHA, which was implemented in the
first place for those users that cannot solve visual CAPTCHAs due to an
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Figure 1.17: Image of Text-based CAPTCHA. Google’s Repositories.

impairment. The test presents an audio file that contains words, letters, or
numbers, mixed with background noise, that the user has to type correctly.

In 2013, a categorization of the available CAPTCHAs was presented by
Romero, according to their characteristics, difficulties and friendliness for
the user [77].

The three main groups are: OCR-Based, Visual Non-OCR-Based and Non
Visual. OCR stands for Optical Character Recognition and it is an artificial
intelligence program that is used for automatically reading scanned images
of handwritten, typewritten or printed text. Normally, they are calibrated to
recognise some specific character fonts and have difficulties when the image
has low resolution. The recognition rate drastically drops at recognising
cursive text, with recognition rates even lower than those of hand-printed
text. The disadvantages of the OCR systems can be used as an advantage if
applied to CAPTCHAs, so only human beings can recognise the text [33,34].
Nowadays, most of the methods to discriminate humans from computers are
based on optical character or image recognition or sound recognition.

For instance, Asirra is a test that presents cats and dogs. See Figure 1.19.
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Figure 1.18: Image of reCAPTCHA. Google’s Repositories

S. Woo in 2019 [95] presented CAPTCHA characters on 3D objects. In this
work, they exploit the difficulty that machines have in rotating 3D objects
to find the correct viewpoint and in further recognizing characters in 3D.
Participants agreed that their approach was usable in spite of the extra time
required for 3D model rotation.

1.5 Emerging Images (EI)

Images with emergent properties illustrate one of the main ideas of the
Gestalt School; Emergence is the phenomenon by which we perceive objects
in an image not by recognizing the object’s parts, but as a whole, i.e. all at
once.

N.J. Mitra et al. (2009) proposed a synthesis technique to generate emerging
images of 3D objects. Such images are gestalts with the property of to be
detectable by humans but difficult to process by computer vision algorithms
[64].

Figure 1.40 shows an example of the emergency property, on the left side the
image a Dalmatian dog can be perceived, whilst on the right side the dog
can be visualized more easily. Examples of images obtained by Mitra et al.
are presented in the Figures 1.21 and 1.22.

Features mentioned above make the emerging images suitable for building
Human Interaction Proofs (HIPs).
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Figure 1.19: Image of ASIRRA [95].

These ideas were used by Baird et al. in [13] to generate dynamic text
strings-based CAPTCHAs. In this work, they also reported an attack to
the famous NuCAPTCHA (see Figure 1.23) which has been considered the
most secure and usable CAPTCHA. In fact, the test of Baird et al. is an
improvement of NuCAPTCHA [13].

Remark 1.5.1. The main limitation with emerging images seems to be the
difficulty to create a large amount of recognizable models.

Based on the notion of Emergence, Xu et al. (2013) developed the first con-
crete instantiation of emerging-image moving object called EIMO CAPTCHA
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Figure 1.20: Emergence example: Dalmatian dog by R.C. James.

Figure 1.21: Emergence Example: Gorilla [64].

[96, 97], using 2D hollow objects (codewords), shown to be usable and to be
secure.

Gao et al. (2015) introduced a new class of built CAPTCHA on the notions
of Emerging Images and Dynamic Cognitive Games. Furthermore, they ap-
plied a series of countermeasures, such as pseudo 3D rotation, hidden edge
segments, etc. to resist automated object recognition [49, 50]. Gao et al.
(2017) showed the weakness of 2D EIMO CAPTCHA and they proposed a
different design based on 3D objects and examined its security as well as
usability [51, 103].
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Figure 1.22: Emergence Example: Horse [64].

Figure 1.23: Example of moving-image object recognition from NuCaptcha
[13].

Mosaic Images

Digital image mosaics are also built upon emergence. Mosaics are a form of
art in which a large image is formed by a collection of small images called
tiles.

Various mosaics can be created for an image depending of the choice of tiles
and the restriction in their placement.

Tile mosaic, for example, are images made by cementing together uniformly
coloured polygonal tiles carefully positioned to emphasize edges in the com-
posite picture. Battiato et al. (2006) defined mosaics, in essence, as images
obtained by cementing together small coloured fragments [14]. In Figure 1.24
one ancient mosaic, which was created manually, is shown; a modern mosaic
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image is shown in Figure 1.25. The latter was created with computational
tools.

Figure 1.24: Ancient mosaic image example. Google’s repositories

Mosaics are made of coloured tiles, called tessera or tesella, usually formed in
the shape of a cube of materials separated by a joint of mortar. The mosaic
surface exhibits irregular hollows (tesserae) and bumps (mortar) through the
scene. Mosaics have numerous forms of irregularities, which is typical of the
artwork style. Their shapes are irregular, from square shapes to polygonal
ones [63].

Battiato et al. have worked in the mosaic images field with the purpose of
reproducing the aesthetic essence of arts by means of computational tools
[14,15].

Di Blasi et al. (2006) presented a technique to produce composite images
called Puzzle Image Mosaic (PIM). Their method is inspired by Jigsaw Image
Mosaic (JIM), where images tiles of arbitrary shape are used to compose the
final picture. They proposed an algorithm that produces good results in
lower time [17].
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Figure 1.25: Example of modern mosaic image. Google’s repositories.

Computational methods have also been proposed to generate mosaic images
from Voronoi diagrams [39,47].

S. Ming-Shing et al. (2007) aimed for Human Recognition of mosaic im-
ages that tends to be subjective, and an ideal mosaic image is unknowable.
Human recognizes a mosaic image subjectively while computer vision algo-
rithms measure a mosaic image objectively [63]. Therefore, it is possible to
use mosaic images to make HIPs.

We must note that so far very little has been done in the investigation of the
use of digital mosaic and multistable images to confuse bots.

Nested Images

A nested image is a form of artistic expression in which one or more secondary
figures are embedded within a primary figure one by one. Contours of the
primary figure, especially the contours of its inner holes, as used to portray
a secondary figure. The secondary figure is totally inside the primary figure,
and it would use some inner holes of primary figure as part of itself, which
would produce and artistic effect [90,91].

In 2017, Kuo et al. [61] proposed Generating Ambiguous Figure-Ground Im-
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Figure 1.26: Examples of nested images. At right side, four ordered images,
i.e., b1 � b2 � b3 � b4 [90].

ages. Furthermore, they proposed an algorithm to match partially the con-
tent shape. See Figure 1.27.

Figure 1.27: Examples of nested images [61].

In chapters of results the advances related to the use of emerging images for
the design of HIPs will be presented.

Embedded images in this thesis are used to develop an interactive test with
humans. Furthermore, in the following sections we present some concepts
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related to the Brauer configurations, posets (partially ordered sets), poset
representation theory, tiled orders, and topological data analysis. These
structures will be used to obtain emerging images that will be used in human
interactive proofs.

1.6 Representation of Algebras

In this section, we describe the main definitions, notations and results regard-
ing classification of algebras which will be used throughout this document
[11,45,48].

Definition 1.6.1. A quiver Q = (Q0, Q1, s, t) is a quadruple consisting of
two sets Q0, whose elements are called vertices and Q1, whose elements are
called arrows, s and t are maps s, t : Q1 → Q0 such that if α is an arrow
then s(α) is called the source of α and t(α) is called the target of α.

Definition 1.6.2. Let Q be a quiver. A path of length l ≥ 1 in a quiver Q,
with source a and target b is a finite sequence (a | α1, α2, . . . , αl | b), where
t(αi) = s(αi+1) for any 1 ≤ i < l. For each vertex v ∈ Q0, we define a path
of length zero ev with s(ev) = v = t(ev).

Definition 1.6.3. If Q is a quiver and k is an algebraically closed field, then
the path algebra kQ of Q is the k-algebra whose underlying k-vector space
has as a basis the set of all paths of length l ≥ 0 in Q, and the product of
two paths is concatenation if exists or zero otherwise.

Example 1.6.4.
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A k-algebra A is said to be basic if it has a complete set {e1, e2, . . . , el} of
primitive orthogonal idempotents, such that eiA � ejA for all i 6= j. A
relation for a quiver Q is a linear combination of paths of length ≥ 2 with
same starting point and same ending point, and not all the coefficients being
zero.

Example 1.6.5.
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Let Q be a finite and connected quiver. The two sided ideal of the path
algebra kQ generated by the arrows of Q is called the arrow ideal of kQ and
is denoted by RQ, Rl

Q is the ideal of kQ generated as a k-vector space, by
the set of all paths of length ≥ l. A two sided ideal I of the path algebra kQ
is said to be admissible if there exists m ≥ 2, such that Rm

Q ⊆ I ⊂ R2
Q.

If I is an admissible ideal of kQ, the pair (Q, I) is said to be a bound quiver.
The quotient algebra kQ/I is said to be a bound quiver algebra.

Gabriel proved the following result [11,48]:

Theorem 1.6.6. Let A be a basic and connected finite dimensional k-algebra,
with k algebraically closed. There exists a quiver QA and an admissible ideal
I of kQA, such that A ∼= kQA/I.

Definition 1.6.7. A k-linear representation or representation M of a quiver
Q is a system of the form

M = ((Mx, ϕα) | x ∈ Q0, α ∈ Q1),

where Mx is a k-vector space for each x ∈ Q0 and ϕ : Ma →Mb is a k-linear
map associated to each arrow α : a→ b ∈ Q1.
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The main problem in the theory of representation of quivers consists of giv-
ing a complete description of indecomposable representations and irreducible
morphisms of the category of representations repk Q of a given quiver Q.

Gabriel also proved the following theorem [11,48]:

Theorem 1.6.8. Let Q be a finite, connected, and acyclic quiver; k be an
algebraically closed field, and A = kQ be the path k-algebra of Q.

1. The algebra A is representation-finite if and only if the underlying graph
Q of Q is one of the Dynkin diagrams An, Dn, E6,E7 and E8 with n ≥ 4.

2. If Q is a Dynkin graph, then the mapping dim : M → dimM induces
a bijection between the set of isomorphisms classes of indecomposable
A-modules and the set of positive roots of the quadratic form qQ of Q.

3. The number of the isomorphism classes of indecomposable A-modules
equals n(n+1)

2
, n2−n, 36, 63 and 120, if Q is the Dynkin graph An, Dn,

E6,E7 and E8 with n ≥ 4.

Definition 1.6.9. The Auslander-Reiten quiver ΓQ of a quiver Q is a transla-
tion quiver with indecomposable representations of the algebra kQ as vertices
and irreducible morphisms as arrows.

Below we show the Auslander-Reiten quiver of the algebra A = k(
−→
A4), ob-

tained by associating a linear orientation to the Dynkin diagram A4.d d d d
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1.6.1 The Drozd’s Theorem

Definition 1.6.10. Let C be a category of (finitely generated)-modules over
a k-algebra, where k is an infinite field, we say that C has tame type if
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C =
⋃
n

Cn and for every n, the indecomposable modules in Cn form a one

parameter family with maybe finitely many exceptions.

We say that C has wild type if C contains n-parameter families of indecom-
posable for arbitrary large n.

Theorem 1.6.11. Each finite-dimensional algebra A is either wild or tame
or finitely represented.

Definition 1.6.12. Let ∆ = (∆0,∆1) be a graph then the adjacency matrix
is the n× n-integer matrix A∆:

(A∆)i,j =

{
the number of edges between i and j, if i 6= j,

two times the number of loops at i, if i = j.

Definition 1.6.13. If Λ∆ is the set of characteristic values of A∆ then
max |λ|
λ∈Λ∆

is the spectral radius of ∆, denoted ρ(Q).

Theorem 1.6.14. The largest eigenvalue λ1 and the maximum vertex degree
δ∆ of a graph ∆ are related by the inequality

√
δ∆ ≤ λ1 ≤ δ∆.

Theorem 1.6.15. 1. A finite connected graph ∆ is a laced Dynkin dia-
gram if and only if ρ(∆) < 2.

2. A finite connected graph ∆ is an extended Dynkin diagram if and only
if ρ(∆) = 2.

The following result was proved by M.I. Platzeck and E.Fernández [45].

Theorem 1.6.16. If Q is a connected quiver without oriented cycles then:

1. kQ is of finite representation type if and only if ρ(Q) < 2,

2. kQ is of tame representation type if and only if ρ(Q) = 2,

3. kQ is of wild representation type if and only if ρ(Q) > 2.
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1.6.2 Brauer Configuration Algebras

Brauer configuration algebras were introduced by Green and Schroll as a way
of dealing with the research of algebras of wild representation type [54]. They
are associated to a suitable configuration which can be seen as a generaliza-
tion of a Brauer graph, its definition goes as follows:

A Brauer configuration is a tuple Γ = (Γ0,Γ1, µ, o) where Γ0 is a set of
vertices, Γ1 is a set of polygons, µ : Γ0 → N is a multiplicity function and o
is an orientation, such that the following conditions hold:

(C1) Every vertex in Γ0 is a vertex in at least one polygon in Γ1.

(C2) Every polygon has at least two vertices.

(C3) Every polygon in Γ1 has at least one vertex α such that µ(α)val(α) > 1.

In this case, every polygon is a multiset consisting of vertices, occ(α, V )
denotes the frequency of the vertex α in the polygon V and the valency
val(α) of the vertex α is defined in such a way that:

val(α) =
∑

W∈Γ1

occ(α, V ).

The cyclic ordering at vertex α is obtained by linearly ordering the list (i.e.,
Vi1 < · · · < Vit and by adding Vit < Vi1). Such a list is said to be the
successor sequence at α.

A vertex α ∈ Γ0 is said to be truncated if val(α)µ(α) = 1, that is, α occurs
exactly once in exactly one V ∈ Γ1 and µ(α) = 1. A vertex is non-truncated
if it is not truncated.

Remark 1.6.17. Often, the notation V (n) will be used to represent a suc-
cessor sequence of a vertex α if occ(α,V) = n.

Let Γ = (Γ0,Γ1, o, µ) be a Brauer configuration then Γ is said to be dis-
connected if there are two Brauer configurations Γ′ = (Γ′0,Γ

′
1, o
′, µ′) and

Γ′′ = (Γ′′0,Γ
′′
1,O

′′, µ′′) such that:

1. {Γ′0,Γ′′0} is a partition of Γ0,

2. for every polygon V ∈ Γ1, the vertices of V are either all in Γ′0 or are
all in Γ′′0,



38 Representation of Algebras

3. {Γ′1,Γ′′1} constitutes a partition of Γ1,

4. µ′ (resp, µ′′) is a restriction of µ to Γ′0 (resp, Γ′′0) and

5. The orientations o′ and o′′ are induced by o.

In this case we write Γ = Γ′ ∪ Γ′′, otherwise Γ is said to be connected. Note
that, any Brauer configuration is uniquely written as a union of connected
Brauer configurations.

The Quiver of a Brauer Configuration Algebra

The quiver QΓ of a Brauer configuration algebra is defined in such a way
that the vertex set {v1, v2, . . . , vm} of QΓ is in correspondence with the set
of polygons {V1, V2, . . . , Vm} in Γ1, noting that there is one vertex in QΓ for
every polygon in Γ1. Arrows in QΓ are defined by the successor sequences.

For each non-truncated vertex α ∈ Γ0 and each successor V ′ of V at α, there
is an arrow from v to v′ in QΓ where v and v′ are the vertices in QΓ associated
to the polygons V and V ′ in Γ1, respectively.

For example, consider a configuration Γ = (Γ0,Γ1, µ, o) such that

1. Γ0 = {1, 2, 3, 4},

2. Γ1 = {U = {1, 1, 2, 3, 3, 4}, V = {1, 2, 3, 4, 4, 4}},

3. At vertex 1, it holds that; U < U < V , val(1) = 3,

4. At vertex 2, it holds that; U < V , val(2) = 2,

5. At vertex 3, it holds that; U < U < V , val(3) = 3

6. At vertex 4, it holds that; U < V < V < V , val(4) = 4,

7. µ(α) = 1 for any vertex α.

Figure 1.6.2 shows the quiver QΓ associated to this configuration and corre-
sponding indecomposable projective modules PU and PV .
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Figure 1.28: QΓ and corresponding indecomposable projective modules
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The Ideal of Relations and Definition of a Brauer Configuration
Algebra

Fix a polygon V ∈ Γ1 and suppose that occ(α, V ) = t ≥ 1 then there are t
indices i1, . . . , it such that V = Vij . Then the special α-cycles at v are the
cycles Ci1 , Ci2 , . . . , Cit where v is the vertex in the quiver of QΓ associated to
the polygon V . If α occurs only once in V and µ(α) = 1 then there is only
one special α-cycle at v.

The ideal of relations IΓ of the Brauer configuration algebra associated to
the Brauer configuration Γ is generated by three types of relations:

1. Relations of type I. For each polygon V = {α1, . . . , αm} ∈ Γ1 and
each pair of non-truncated vertices αi and αj in V , the set of relations
ρΓ contains all relations of the form Cµ(αi)−C ′µ(αj) where C is a special
αi-cycle and C ′ is a special αj-cycle.

2. Relations of type II. Relations of type II are all paths of the form
Cµ(α)a where C is a special α-cycle and a is the first arrow in C.

3. Relations of type III. These relations are quadratic monomial rela-
tions of the form ab in kQΓ where ab is not a subpath of any special
cycle unless a = b and a is a loop associated to a vertex of valency 1
and µ(α) > 1.

Let k be a field and Γ a Brauer configuration. The Brauer configuration
algebra associated to Γ is defined to be kQΓ/IΓ, where QΓ is the quiver
associated to Γ and IΓ is the ideal in kQΓ generated by the set of relations
ρΓ of type I, II and III.

The following results give some description of the structure of Brauer config-
uration algebras [54].

Theorem 1.6.18. Let Λ be a Brauer configuration algebra with Brauer con-
figuration Γ.

1. There is a bijective correspondence between the set of projective inde-
composable Λ-modules and the polygons in Γ.
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2. If P is a projective indecomposable Λ-module corresponding to a polygon
V in Γ. Then rad P is a sum of r indecomposable uniserial modules,
where r is the number of (non-truncated) vertices of V and where the
intersection of any two of the uniserial modules is a simple Λ-module.

3. A Brauer configuration algebra is a multiserial algebra.

4. The number of summands in the heart of an indecomposable projective
Λ-module P such that rad2 P 6= 0 equals the number of non-truncated
vertices of the polygons in Γ corresponding to P counting repetitions.

Proposition 1.6.19. Let Λ be the Brauer configuration algebra associated to
the Brauer configuration Γ. For each V ∈ Γ1 choose a non-truncated vertex
α and exactly one special α-cycle CV at V then

{p | p is a proper prefix of some Cµ(α) where C is a special α−cycle}
⋃
{Cµ(α) |

V ∈ Γ1} is a k-basis of Λ.

Proposition 1.6.20. Let Λ be a Brauer configuration algebra associated to
the Brauer configuration Λ and let C = {C1, . . . , Ct} be a full set of equiva-
lence class representatives of special cycles. Assume that for i = 1, . . . , t, Ci
is a special αi-cycle where αi is a non-truncated vertex in Γ. Then

dimk Λ = 2|Q0|+
∑
Ci∈C
|Ci|(ni|Ci| − 1),

where |Q0| denotes the number of vertices of Q, |Ci| denotes the number of
arrows in the αi-cycle Ci and ni = µ(αi).

1.7 Partially Ordered Sets (Posets)

In this section we introduce some basic definitions and notation regarding
posets (see [24,27,29,37] for more detailed definitions) which can be used to
describe more ahead nested emerging and multistable images.

Definition 1.7.1. An ordered set (or Partially ordered set or poset) is an
ordered pair of the form (P,≤) of a set P and a binary relation ≤ contained
in P×P, called the order (or the partial order) on P, such that ≤ is reflexive,
antisymmetric and transitive [37]. The elements of P are called the points of
the ordered set. We will write x < y for x ≤ y and x 6= y, in this case we will
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say x is strictly less than y. An ordered set will be called finite (infinite) if
and only if the underlying set is finite (infinite). Usually we shall be a little
slovenly and say simply P is an ordered set. Where it is necessary to specify
the order relation overtly we write (P,≤).

Let P be an ordered set and let x, y ∈ P we say x is covered by y if x < y
and x ≤ z < y implies z = x.

Let P be a finite ordered set. We can represent P by a configuration of
circles (representing the elements of P) and interconnecting lines (indicating
the covering relation). The construction is as follows.

(1) To each point x ∈ P, associate a point p(x) of the Euclidean plane R2,
depicted by a small circle with center at p(x).

(2) For each covering pair x < y in P, take a line segment l(x, y) joining the
circle at p(x) to the circle at p(y).

(3) Carry out (1) and (2) in such a way that

(a) if x < y, then p(x) is lower than p(y),

(b) the circle at p(z) does not intersect the line segment l(x, y) if z 6= x
and z 6= y.

A configuration satisfying (1)-(3) is called a Hasse diagram or diagram of P.
In the other direction, a diagram may be used to define a finite ordered set;
an example is given below.

Example 1.7.2.

For the ordered set P = {a, b, c, d, e, f}, in which a < b < c < d < e, and
f < c. (See Figure 1.29)
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Figure 1.29: Example of Poset.

We have only defined diagrams for finite ordered sets. It is not possible to
represent the whole of an infinite ordered set by a diagram, but if its structure
is sufficiently regular it can often be suggested diagrammatically. Of course,
the same ordered set may have different diagrams. Diagram-drawing is as
much an art as a science, and, as we will see, good diagrams can be a real
asset to understanding and to theorem-proving.

An ordered set C is called a chain (or a totally ordered set or a linearly
ordered set) if and only if for all p, q ∈ C we have p ≤ q or q ≤ p (i.e., p and
q are comparable). If any two of points of C are incomparable then C is said
to be an antichain [10,37,80].

1.7.1 Equipped Posets

In this section, we define equipped posets and the category of representations
of this kind of posets [24, 74].

A poset (P,≤) is called equipped if all the order relations between its points
x ≤ y are separated into strong (denoted x � y) and weak (denoted x � y)
in such a way that

x ≤ y � z or x� y ≤ z implies x� z. (1.4)

i.e., a composition of a strong relation with any other relation is strong.
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In general relations � and � are not order relations. These relations are
antisymmetric but not reflexive. In particular � is not reflexive (meanwhile
� is transitive) [24, 74].

We let x ≤ y denote an arbitrary relation in an equipped poset (P,≤). The
order ≤ on an equipped poset P gives raise to the relations ≺ and � of strict
inequality : x ≺ y (respectively, x� y) in P if and only if x � y (respectively,
x� y) and x 6= y.

A point x ∈ P is called strong (weak) if x � x (respectively, x � x). These
points are denoted ◦ (respectively, ⊗) in diagrams. We also denote P◦ ⊆ P

(respectively, P⊗ ⊆ P) the subset of strong points (respectively, weak points)
of P. If P⊗ = ∅ then the equipment is trivial and the poset P is ordinary.

Remark 1.7.3. Note that if x � y in an equipped poset (P,≤) and there
exists t ∈ P such that x ≤ t ≤ y then x, y ∈ P⊗, x � t and t � y. Otherwise,
if x� t or t� y then by definition it is obtained the contradiction x� y.

If P is an equipped poset and a ∈ P then the subsets of P denoted a∨, a∧,
aO, aM, aH, aN, ag and af are defined in such a way that:

a∨ = {x ∈ P | a ≤ x} , a∧ = {x ∈ P | x ≤ a} ,
aO = {x ∈ P | a � x} , aM = {x ∈ P | x � a} ,
aH = a∨ \ a, aN = a∧ \ a,
ag = {x ∈ P | a � x} , af = {x ∈ P | x � a} .

Subset a∨ (a∧) is called the ordinary upper (lower) cone, associated to the
point a ∈ P and subset aO (aM) is called the strong upper (lower) cone
associated to the point a ∈ P. Whereas subsets aH and aN are called truncated
cones (upper and lower) associated to the point a ∈ P.

In general, subsets ag and af are not cones. Note that, if x ∈ P◦ then
xg = xf = ∅.

The diagram of an equipped poset (P,≤) may be obtained via its Hasse
diagram (with strong (◦) and weak points (⊗)). In this case, a new line is
added to the line connecting two points x, y ∈ P with x � y if and only if
such relation cannot be deduced of any other relations in P.
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Example 1.7.4.

In Figure 1.30, an example of this kind of diagrams is showed.

Figure 1.30: Example of equipped Poset [24]

For an equipped poset (P,≤) and A ⊂ P, we define the subsets, AO, Ag and
A∨ in such a way that

AO =
⋃
a∈A

aO, Ag =
⋃
a∈A

ag, A∨ =
⋃
a∈A

a∨

Subsets AM, Af and A∧ are defined in the same way.

If P is an equipped poset then a chain C = {ci ∈ P | 1 ≤ i ≤ n, ci−1 <
ci if i ≥ 2} ⊆ P is a weak chain if and only if ci−1 ≺ ci for each i ≥ 2.
If c1 ≺ cn then we say that C is a completely weak chain. Moreover, a
subset X ⊂ P is completely weak if X = X⊗ and weak relations are the only
relations between points of X. Often, we let {c1 ≺ c2 ≺ · · · ≺ cn} denote
a weak chain which consists of points c1, c2 . . . , cn. An ordinary chain C is
denoted in the same way (by using the corresponding symbol <).

For an equipped poset P and A,B ⊂ P we write A < B if a < b for each
a ∈ A and b ∈ B. Notations A ≺ B and A/B are assumed in the same way.
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1.8 Poset Representation Theory

The theory of representation of Posets (partially ordered sets) was developed
at the 1970’s in Kiev by Nazarova, Roiter and their students. The main
goal of their investigations was to obtain a complete classification of the
indecomposable objects of the additive category rep P for a given poset P

[10, 48,55,70,84].

In this case, a representation U of a given poset (P,≤) over a commutative
ring k is a system of the form:

U = (U0, Ux | x ∈ P) (1.5)

where U0 is a finite dimensional k-vector space and for each x ∈ P, Ux is a
subspace of U0 such that Ux ⊆ Uy provided x ≤ y [23].

The direct sum of U and V is defined by formula

U ⊕ V = (U0 ⊕ V0;Ux ⊕ Vx | x ∈ P) (1.6)

A representation U ∈ rep P is said to be indecomposable if U 6= 0 and is
not a direct sum of two non-zero representations. Actually, the propose of
studying the theory of representation of posets is to give a complete descrip-
tion of the indecomposable objects of the Krull-Schmidt category rep P.

Attached to each representation U there exists its matrix presentation M =
MU choosing some basis B0 in U0 and for each x ∈ P, some system Bx of
linearly independent generators of Ux module rad Ux = Ux =

∑
y�x

Uy. Then

M = Mx1 Mx2 . . . Mxn

with entries in k, partitioned horizontally into n = |P| (vertical) blocks (also
called strips) [55,84].

Two representations A and B of a poset (P,�) are isomorphic if and only
if their matrix presentations can be turned into each other with help of the
following admissible transformations:
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1. elementary transformations of rows of the whole matrix A;

2. elementary transformations of columns within each vertical strip;

3. additions of columns of a strip Ai to columns of a strip Aj if i � j in P.

The following result regarding classification of posets of finite representation
type was obtained by Kleiner [55,59].

Theorem 1.8.1. A finite poset P is of finite representation type if and only
if P does not contain as subposet one of the following list

d d d d
K1

d d ddd dd dd
K2

d d dd dd
d

dd
d

K3

d d dd dd dd
dd
d

K4

d d d�
�dd dd dd

dd

K5

Often, posets K1 . . . , K5 are called the Kleiner’s critical.

1.9 Tiled Orders

In this section, semimaximal rings also called tiled orders are introduced, this
type of rings were introduced and classified by Zavadskij and Kirichenko [27,
100,101]. In this work, semimaximal rings are used to build emerging images.

A field T is said to be of discrete norm or discrete valuation if it is endowed
with a surjective map [100,101]

ν : T → Z ∪ {∞},

which satisfies the following conditions :
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(a) ν(x) =∞ if and only if x = 0,

(b) ν(xy) = ν(x) + ν(y),

(c) ν(x+ y) ≥ min{ν(x), ν(y)}.

We let O denote, the normalization ring of the field T , such that

O = {x ∈ T | ν(x) ≥ 0}.

An element π ∈ O such that ν(π) = 1 is a prime element of O. For each
x ∈ O, we have that x ∈ O if and only if x = επm, for some m ≥ 0 and
ε ∈ O∗. Moreover, x ∈ T if and only if x = επm for some m ∈ Z and ε ∈ O∗.

Ring O is such that O ⊃ πO, where πO is the unique maximal ideal, therefore
ideals of O generate a chain of the form

O ⊃ πO ⊃ π2O ⊃ · · · ⊃ πmO ⊃ . . .

A tiled order or semimaximal ring Λ is a subring of the matrix algebra T n×n

with the form

Λ =
n∑

i,j=1

eijπ
λijO =


O πλ12O . . . πλ1nO

πλ21O O . . . πλ2nO
...

...
...

...
πλn1O πλn2O . . . O

.

Λ consists of all matrices whose entries ij belong to πλijO, in this case the
eij ∈ T n×n are unit matrices such that eijekl = δjkeil (δjk = 1, if j = k,
δjk = 0 otherwise). Numbers λij are integers which satisfy the following
conditions:

(1) λii = 0, for each i,

(2) λij + λjk ≥ λik for all i, j, k.

An order Λ is said to be Morita reduced or reduced if it satisfies the additional
condition:
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(3) λij + λji > 0, for each i 6= j. In such a case, projective modules are
pairwise non-isomorphic, that is, in the decomposition of Λ = P1⊕P2⊕
· · · ⊕ Pn via projective modules (i.e., the rows of Λ) all indecomposable
projective summands are pairwise not isomorphic, i.e., Pi 6' Pj if i 6= j.

The main problem for tiled orders consists of describing all finitely generated
torsionless Λ-modules which are called admissible modules.

A Λ-admissible right module (not null) is said to be irreducible if it is a
submodule of the unique simple module (up to isomorphism). For instance,
any indecomposable projective module Pi is irreducible. Thus,

Pi = (πλi1O, πλi2O, . . . , πλinO),

is a finitely generated irreducible Λ-module without O-torsion.

We denote Λ = (λij)i,j=1...n, note that Λ ⊂ T n×n = Q = Λ⊗O T , where Q is
the rational hull of Λ, Rad Q = 0 and Λ has an unique right simple T -module

(up to isomorphism) denoted SR = (T, T, . . . T ) =
n∑
i=1

eiT , {ei | 1 ≤ i ≤ n}

is the standard basis such that eiejk = δijek. We assume the notation SL =
(T, T, . . . , T )t for left modules.

Any irreducible right Λ-module A has the form

A = (πα1O, πα2O, . . . , παnO),

where αi + λij ≥ αj, αi ∈ Z, 1 ≤ i ≤ n. If A is a left module then we have
that λij + αj ≥ αi.

Henceforth, we denote a right (left) moduleA in the formA = (α1, α2, . . . , αn)
((α1, α2, . . . , αn)t, respectively).

Note that, A ' A′ if and only if αi = α′i + k, for some k ∈ Z and any
1 ≤ i ≤ n.

Irreducible right modules which are contained in a Q-simple module of a Λ
order constitute a lattice denoted LR(Λ).

We denote P(Λ) = PR(Λ) the subposet of LR(Λ) which consists of irreducible
projective modules, the projective modules Pi are called principals where
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Pi = (λi1, λi2, . . . , λin) = P 0
i , P 0

i ∈ PR(Λ)

In this poset there are as many projective modules as infinite chains. In such
a case, modules of the form

P k
i = (λi1 + k, . . . , λin + k), k ∈ Z

are projective modules isomorphic to P 0
i . Therefore:

P(Λ) = {P k
i | 1 ≤ i ≤ n}

where

P k
i ≤ P l

j if and only if

{
k − l ≥ λij, PL(Λ),

k − l ≥ λji, PR(Λ).

Thus, the poset P(Λ) is infinite, periodic and the sum of n chains with the
form {P k

i | 1 ≤ i ≤ n, k ∈ Z}, with width w (P(Λ)) ≤ n. For instance, the
tiled order

Λ =

 0 2 2
2 0 2
2 2 0

 =

 O π2O π2O
π2O O π2O
π2O π2O O

,

is associated the poset of projective modules presented in Figure 1.31.
The map σ : PR(Λ) → PL(Λ) given by σ(P k

i ) = P−ki is a natural poset
antiisomorphism, thus the pair {O,P(Λ)} defines the tiled order Λ up to
isomorphism, in the following sense:

Λ ' Λ
′
if and only if {O,P(Λ)} ' {O′ ,P(Λ

′
)},

i.e. O ' O′ and P(Λ) ' P(Λ
′
) which means that there exists a poset iso-

morphism ϕ : PL(Λ)→ PL(Λ
′
) such that A ' B if and only if ϕ(A) ' ϕ(B).

It follows that Λ and Λ
′

are Morita-equivalent provided that ϕ preserves
isomorphisms.

The following result characterizes isomorphic orders via matrix problems
[55].
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Figure 1.31: Associated poset of irreducible projective modules [27].

Theorem 1.9.1. Two orders Λ and Λ
′

are isomorphic if the corresponding
exponents matrices λij and λ

′
ij can be turned into each other with the help of

the following admissible t-transformations:

1. To add an integer n to each entry of a given row i and simultaneously
subtract n to each entry of the column i.

2. To transpose simultaneously rows i and j and columns i and j.

The following is the finite-representation type criterion for tiled orders intro-
duced by Zavadskij and Kirichenko [100,101].

Theorem 1.9.2. A tiled order Λ is of finite-representation type if and only
if P(Λ) 6⊃ K1, . . . , K5.

For m ≥ 1 a (0, 1, 2, . . . ,m)-tiled order is a tiled order Λ = (λij), 1 ≤ i, j ≤ n,
where λij ∈ {0, 1, 2, . . . ,m}. In particular, if Λ = (λij) is a (0,m)-tiled order
then Λ has associated a finite poset

(N,≤) = N(Λ) = ({1, 2, . . . , n},≤)

where
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i ≤ j if and only if λij = 0.

For instance, see Figures 1.32 and 1.33 in which the isomorphic (0, 1)-orders
are presented.

Example 1.9.3.

Figure 1.32: Tiled (0,1) orders and associated poset [28].

Example 1.9.4.

Actually, infinite families of isomorphic (0, 1)-tiled orders of these types Λn,
Γn can be constructed.

In such a case, if we denote SΛ↗n
(respectively, SΓ↙n

) the size of the support
of the upper diagonal (respectively, lower diagonal), then

Supp(Λ↗n ) =
n−2∑
r=0

Br
n,

where {Br
n | 0 ≤ r ≤ n− 2} is a set-partition of Supp(Λ↗n ) such that:

1. for each n ≥ 0, | Br
n | is a sum of consecutive positive integers

T rn∑
k=0

grn−k;
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Figure 1.33: Tiled (0,1) orders and associated poset Λ3 [28].

2.

grn =


2n−1 − 1, if r = 0,

hrn =
n−r−1∑
s=1

[c(s, n− s)− c(s, n− s− r − 1)], if r ≥ 1

tn−1 = (n−1)n
2

, if r = n− 1;

3.

T hn =

{
c(h+ 1, n), if 0 ≤ h ≤ n− 3,

n− 1, if h = n− 2,

where c(k, n) =
(
n+k
k

)
.

Remark 1.9.5. For each r and n fixed, Br
n consists of subsets ρrk with | ρkr |=

grn − k, which defines uniquely a projective module P 0
k (r) ⊂ Λn.

We recall that A.M. Cañadas et al. used posets Λ and Γ in order to find a
formula for the number of two-point antichains in some special posets [28].

1.10 Homological Persistence

Weinberger in [94] made the following statement regarding some open prob-
lems in Artificial Intelligence; “Consider the art of Seurat or a piece of old
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newsprint. The eye, or the brain, performs the marvelous task of taking the
sense data of individual points and assembling them into a coherent image
of a continuum-it infers the continuous from the discrete” [94]; where the
importance of passing since discreet to continuous is presented. See Figure
1.34. This problem is also of our interest. In this section we study some
elements of persistent homology.

Figure 1.34: Landscape: passing since discreet to continuous [94].

The topological data analysis (TDA) is a field that blend computer science,
algebraic topology and statistics. This field is founded on the assumption
that scientific dates sets carry information in their internal structure and
that sometimes this structure is topological.

The modern theory of persistence is built on three pillars:

1. The persistence diagram and an algorithm for computing it, were in-
troduced by Edelsbrunner, Letscher and Zomorodian. This gives a
compact representation of the size function and an effective way to
compute it [40–42].

2. Zomorodian and Carlsson defined abstracting persistence modules, in-
dexed by the natural numbers and viewed as graded modules over a
polynomial ring [105].
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3. Cohen-Steiner, Edelsbrunner and Harer formulated and proved the sta-
bility theorem, which guarantees that the persistence diagram is robust
to changes in the input data. Robustness is measured in terms of a bot-
tleneck distance between persistence diagrams [36].

The question ¿What is the geometric information that can be gleaned from
a data cloud? is studied by Topological Data Analysis.

The principal themes of the work of Carlsson, de Silva, Edelsbrunner, Harer,
Zomorodian, and others [30, 42,104,105] are the following:

• It is beneficial to replace a set of data points with a family of simplicial
complexes, indexed by a proximity parameter. This converts the data
set into global topological objects.

• It is beneficial to view these topological complexes through the lens of
algebraic topology specifically, via a novel theory of persistent homol-
ogy adapted to parameterized families.

• It is beneficial to encode the persistent homology of a data set in the
form of a parameterized version of a Betti number: a barcode.

To compute information about a topological space using a computer, we
need a finite representation of the space, due to their structural simplicity,
simplicial complexes are currently a popular representation for topological
spaces, so we describe their construction and the important concepts.

Below are some concepts as point cloud, simplicial complex, homology, fil-
tration, barcode diagram, among others.

1.10.1 Point Cloud Dataset

A point cloud dataset usually represents a large finite dataset sampled from
a geometrical object in a n-dimensional space, possibly with some noise. In
general, a point cloud can be sampled in a n-dimensional metric space [52].
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Figure 1.35: Example of points cloud.

1.10.2 Simplicial Complexes

Graphs are not adequate to represent the multifaceted higher dimensional
relations in data. A better combinatorial gadget for that is the simplicial
complex. They can be constructed using simplices, that is, points, line seg-
ments, triangles and tetrahedra.

Definition 1.10.1. A simplicial complex K is a set of objects, V (K), called
vertices and a set, (S(K)), of finite non-empty subsets of V (K), called sim-
plices such that if σ ⊆ V (K) forms a simplex, then any non-empty subset
of σ does as well (so not just edges, possibly higher dimensional things as
well) [42,105].

Simplicial complexes are one way to define topological spaces combinatorially.
More precisely, a simplicial complexK consists of vertices (0-simplices), edges
(1-simplices), triangles (2-simplices), tetrahedra (3-simplices), and higher-
dimensional k-simplices (containing k+1 vertices, see Figure 1.36) such that:

1. if σ is a simplex in K then K contains all lower-dimensional simplices of
σ, and

2. the non-empty intersection of any two simplices in K is a simplex in K.
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Figure 1.36: Example of simplices.

Example 1.10.2.

V (K) = {0, 1, 2, 3, 4}

S(K) = {{0}, {1}, {2}, {3}, {4}, {0, 1}, {0, 2}, {1, 2}, {2, 3}, {3, 4}}

Figure 1.37: Example of simplicial complex.

1.10.3 Homology

By using some algebra, taking formal sums of simplices in a complex, one can
get some computable algebraic and numerical invariants of the complex, for
instance, the homology groups are defined asHi(K) = Ker σi+1/Imgσi, where
σi and σi+1 are k-linear transformations associated to a simplicial complex
K at the ith level. These are typically vector spaces or similar structures,
and their dimension tells us the number of holes of different dimension in the
space.
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1.10.4 Filtration

A filtration of a topological space X is a sequence of subspaces

φ = K0 ⊂ K1 ⊂ K2 · · · ⊂ Km = X (1.7)

Figure 1.38: Example of filtration.

Definition 1.10.3. Given a simplicial complex K, a filtration is a totally
ordered set of subcomplexes Ki of K, indexed by the nonnegative integers,
such that if i ≤ j then Ki ⊆ Kj . The total ordering itself is called a filter.

1.10.5 Goals of the Homological Persistence

Homological persistence provides a way to relate topological features between
different complexes. First we must formalize what types of complexes can be
compared.

We assume that our sample of visual data Kcontains finitely many points.

Homological persistence is an algebraic method for discerning topological
features of dates (components, graph structure, holes) [40]. Homological
persistence is also used as an algebraic tool to determine the most persis-
tent topological characteristics of space over time. So that, the purpose
of homological persistence is to capture the birth and death times of these
components (0−dimensional homology classes) and holes (1− dimensional
classes) and more generally, higher dimensional homology classes). By birth,
we mean a homology class comes into being; by death, we mean it their
becomes trivial or becomes identical to some other class born earlier. The
persistence or lifetime of a class is the difference between its death and birth
times.
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Moreover, homological persistence is a mathematical tool from topological
data analysis, which performs multi-scale analysis on a set of points and iden-
tifies clusters, holes, and voids therein. These latter topological structures
complement standard feature representations, making homological persis-
tence an attractive feature extractor for artificial intelligence [102].

1.10.6 Barcode Diagram

Produce barcodes or interval graphs. For each dimension i get a set of closed
intervals above an axis parameterized by d.

Definition 1.10.4. A barcode is a collection of half-open subintervals [bi, dj) ⊂
[0,∞), which describes the homology of the family as it varies over ε.

An interval [bj, dj) represents a homological feature which is born at time bj
and dies at time dj .

Long intervals correspond to large holes and thus to genuine features. Small
intervals are usually regarded as noise.

Figure 1.39: Example of Barcode Diagram.

1.10.7 Some Applications of the Theory of Homologi-
cal Persistence

Some applications of homological persistence are the following, among others:
data analysis, coverage of sensor networks, biological networks, medical data
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analysis, geometric modeling [40].

The first application of Computational Topology methods presented by Edels-
brunner et al. was to the images segmentation. The segmentation problem
is to identify regions of interest in an image [42].

Taking images is an efficient way to collect data about the physical world. It
can be done fast and in detail. By definition, image processing is the field that
concerns itself with the computation aimed at harnessing the information
contained in images [85].

In [43] Edelsbrunner claimed that homological persistence is a useful method
to quantify and summarize topological information, building a bridge that
connects algebraic topology with applications and they showed four techni-
cal developments in the overlap between homological persistence and image
processing.

One of the first applications of homological persistence to natural language
processing is presented by Zhu in [102]. More precisely, Zhu presented an
algorithm that identifies holes that can be interpreted as semantic “tie-backs”
in a text document, providing a new document structure representation.

1.11 A First Application: Brauer Configu-

ration Algebras to Define a Variable-

Length Code

In this section, as a first application of the theory of representation of alge-
bras, we introduce a Brauer configuration whose polygons can be interpreted
as codewords of a suitable variable length code (VLC) [22,87].

Definition 1.11.1. Let k and n be positive integers, k ≤ n, An [n, k] code
C, is a k-dimensional subspace of Zn2 , the vector space of all binary n-tuples.

A generating matrix for an [n, k]-code C is a k×n binary matrix whose rows
form a basis for C.
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Definition 1.11.2. Let x, y ∈ Zn2 , where x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn). Define the Hamming distance d(x, y) as follows:

d(x, y) = |{i | 1 ≤ i ≤ n, xi 6= yi}|. (1.8)

i.e., the number of coordinates in which x and y differ.

Definition 1.11.3. Let C be an [n, k] code. Define the distance of C to be
the quantity:

d(C) = min{d(x, y) | x, y ∈ C, x 6= y}. (1.9)

An [n, k] code with distance d is denoted an [n, k, d] code.

It is worth to note that the parameter n determines the sufficiency of the
code, k allows to determine how fast the code is, and d measures the capacity
of the code to correct possible errors in a communication. The purpose
of an error-correcting code is to correct random errors that occur in the
transmission of (binary) data through a noisy channel.

Let G be a generating matrix for an [n, k, d] code. Suppose x is the binary k-
tuple we wish to transmit. Then Alice encodes x as the n-tuple y through the
channel. Bob can decode y by using for instance a nearest neighbor decoding
method which generates at most (d− 1)/2 errors.

Definition 1.11.4. If X is an alphabet with cardinality q then a finite
sequence w = x1x2 . . . xl of code symbols is called a word over X of length
|w| = l where xi ∈ X for all i = 1, 2, . . . , l.

We let X+ denote the set of all finite length words over X. The empty word
is denoted as λ and X∗ = X+ ∪ {λ}. A set of words is called a code.

Definition 1.11.5. Let a code C have s codewords {c1, c2, . . . , cs} and let
li = |ci|, i = 1, 2, . . . , s. Without loss of generality assume that l1 ≤ l2 ≤
. . . ,≤ ls. Let σ denotes the number of different codewords of positive length
in C. If σ = 1 then C is said to be a fixed-length code, and if σ > 1 then C
is said to be a variable-length code.

An encoded message could either be given as a sequence of source symbols
or a sequence of codewords.



62 A First Application: BCA to Define a Variable-Length Code

In order to retain both the spatial and amplitude information sometimes it
is useful to associate to the VLC-codes a rooted tree. In such a case, the root
node of the tree represents the start of the message. Each node in the tree
is connected to the other s nodes, the s branches connecting these nodes are
each labelled with different codewords of C.

In this work, we assume that a quiver Q can be used to define a VLC. In such
a case, to each vertex v ∈ Q0, it is associated a suitable codeword; a message
is given by a path P in Q, in such a way that each indecomposable projective
module over the algebra kQ can be interpreted as a message generated by
the code proposed.

The general setting is defined as follows:

Definition 1.11.6. A variable-length code CQ associated to a quiver Q is a
code whose source symbols are given by the English alphabet {a, b, c, . . . , z}
with codewords associated to the vertices of Q.

In this case, CQ is a matrix whose entries cij are sequences of source symbols
(CQ has as many rows as |Q0|), and the codewords label vertices of Q. In
particular, they are decoded by entries of rows of CQ. The message space is
generated by paths in Q, i.e. the algebra kQ is generated by messages of the
code CQ.

As in the case of autokey in Cryptography goes each sequence x1x2 . . . xl at
each entry of CQ is part of the message making of CQ a stream code with set
of entries (CQ)i0,j0 as the initial state.

Definition 1.11.7. Two codes CQ and C ′Q associated to the same quiver Q
are said to be equivalent, denoted CQ ∼ C ′Q, provided that they share the
same codewords.

The following result regarding codes associated to quivers is easy to prove.

Theorem 1.11.8. If CQ ∼ C ′Q, then C ′Q can be obtained from CQ by using
row and column permutations.

In the sequel, we define a code associated to the quiver of a Brauer configu-
ration algebra.
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Example 1.11.9. Let us to consider the following Brauer configuration:

At vertex a; K < R < K

At vertex b; K < Q < R < Q < K

At vertex c; Q < S < K < R < S < Q

At vertex d; S < R < N < S

At vertex e; N < Q < T < N

At vertex f ; N < O < O < N

At vertex g; O < O < T < O

(1.10)

Then the associated graph is:

Figure 1.40: A Brauer configuration generating a code CQ.

The variable-length code CQ can be defined as follows:
Sequences of Source Symbols Codewords

bj hd ic ccg K
icc jd fgb dcah N
gi dfg jdc jdca O
hdg gic gbj hj Q
bjh dgi cgj jdf R
gicc gjd jj cahj S
jhd dgic ccgj bjj T
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Note that the following message,

g0f0e2e1e0d1d0c3c2c1c0b2b1b0a0a1 = KRKQRQSKRSRNQTNOO

is associated to a sequence of source symbols of the form

bj bjh hd hdg dgi gic gicc ccg cgj gjd jdf fgb gbj bjj jd jdca jdca.

If we apply the assignment a → 0, b → 1 . . . (in Z26), then CQ has the
following form

Source Symbols Codewords
1, 9 7, 3 8, 2 2, 2, 6 10

8, 2, 2 9, 3 5, 6, 1 3, 2, 0, 7 12
6, 8 3, 5, 6 9, 3, 2 9, 3, 2, 0 14

7, 3, 6 6, 8, 2 6, 1, 9 7, 9 16
1, 9, 7 3, 6, 8 2, 6, 9 9, 3, 5 17

6, 8, 2, 2 6, 9, 3 9, 9 2, 0, 7, 9 18
9, 7, 3 3, 6, 8, 2 2, 2, 6, 9 1, 9, 9 19

and which induces 4 partitions of numbers 10, 12, 14, 16, 17, 18, 19 (consider-
ing 0 as a part).

If we consider as initial states sequences at entries (CQ)1,1, (CQ)5,1, then the
message is the integer number

c = 197368226935619932079 = KRKQRQSKRSRNQTNOO (1.11)

c appears as decimal expansion of the irrational number α =
√

2 + 2
√

2,
which is very useful to classify algebras.

We have the following result as a consequence of Theorem 1.6.16.

Theorem 1.11.10. If Qn is a quiver without oriented cycles and such that
the underlying diagram Qn has the shape given below, then kQn is of wild
representation type.
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d
dd Qn

�
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�
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@

@

�
�
�
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@
@
@

d...

1

23

5

4

Proof. If ρ(Qn) denotes the spectral radius of Qn then

Lim
n→∞

ρ(Qn) = α.

Actually, ρ(Q2n−1) is a Cauchy subsequence of ρ(Qn). �

1.12 Visual Cryptography

Visual Cryptography(VC) proposed by Naor and Shamir [68] is a paradigm
for cryptographic schemes that allows the decoding of concealed images with-
out any cryptographic computation. Particulary, in a k-out-of n visual secret
sharing scheme (VSS), a secret image is cryptographically encoded into n
shares. Each share resembles a random binary pattern. The n shares are
then xeroxed onto transparencies respectively and distributed among n par-
ticipants. The secret images can be visually revealed by stacking together
any k or more transparencies of the shares and no cryptographic computa-
tion is needed [9]. The following figure 1.41 shows an example of this type
of scheme.

1.12.1 Visual Cryptography Schemes

Let P = {1, · · · , n} be a set of elements called participants and let 2P denote
the set of all subsets of P . If a participant in not essential, then we can
construct a visual cryptography scheme giving him nothing as his share. A
nonessential participant does not need to participate actively in the recon-
struction of the image.

Visual Secret Sharing (VSSS) is characterized by two parameters: the pixel
expansion γ, which is the number of subpixels on each share that each pixel
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Figure 1.41: Example of a 2-out-2 visual secret sharing scheme.

of the secret image is encoded into, and the contrast α, which is the measure-
ment of the difference of a black pixel and a white pixel in the reconstructed
image [19].

VSSS can be applied to access control, so that, they can be used in different
types of authentication processes.

The information presented in this chapter will permit to understand how
VSSS can be defined via some suitable Brauer configuration algebras. In
chapters 2 to 7, we will give more details regarding these processes.



Chapter 2

Emerging and Multistable
Images Associated to Brauer
Configuration Algebras

In this chapter, we give a Brauer configuration associated to emerging im-
ages. This mathematical structure allows us to obtain a good generalization,
in order to explain more precisely the relationship between the Brauer con-
figuration algebras and the process of emerging images extraction.

2.1 Brauer Configuration associated to emerg-

ing images

If n =
k∑
i=1

αj10j is a positive integer then we can see n as a Brauer configura-

tion follows the same procedures as described in Section 1.11. In this case,
numbers αj are considered vertices of a Brauer configuration Γs and to each of
these numbers it is associated a number 0 or 1, f(αk = 1), f(αk−1 = 0) and so
on. Where f is the assignment rule, in such a way that Γs = {Γs0 ,Γs1 , µs, os}
is defined as follows:

(i) Γs0 = {α1, α2, · · · , αk};

(ii) Γs1 = {V0 = {α | f(α) = 0}, V1 = {α | f(α) = 1}};
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(iii) µs(Vi) = 1 for all i;

(iv) the orientation is given by the index j for each αj defining the number
n.

A quiver sketch of the Brauer configuration is shown in figure 2.1, where:

c1
i corresponds to the number of loops in the polygon V0;

c1
j corresponds to number of transitions of V0 to V1;

c2
h corresponds to number of loops in the polygon V1; and

c2
k corresponds to number of transitions of V1 to V0.

V0 V1

c2
k

c1
j

c2
hc1

i

Figure 2.1: Quiver QΓs associated to Γs

2.2 Schemes generating from sequencing pro-

cess

In this section, we present an algorithm of sequencing DSA that allows to
take a series of digits and to convert them in a array of 1 or 0, which is
associated to Brauer configuration Γs. This array constitutes a scheme to
generate emerging and multistable images.
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Algorithm 2.2.1: DSA: digits sequencing algorithm

1. Read digits of a fixed integer number.

2. Choose the position to select a digit.

3. Define the flag f of the searching process. That is, define a digit to be
detected throughout the fixed number.

4. Associate either 1 (black) or 0 (white) alternatively to each occurrence of
the flag.

5. Define blocks Bi.

6. If Bi is a block of digits between two consecutive flags fi and fi+1, then
each digit di ∈ Bi has the same colour as the assigned to fi.

7. Determine transitions or colour changes.

8. Determine successor sequences.

For instance, the number 2756.838(2756.839−1) corresponds to the 32th perfect
number and has 455.663 digits. Figure 2.2 shows the generated bitmap by
using Algorithm 2.2.1. This scheme was obtained computationally by system
REIADT (see Experimental Results).

Figure 2.2: Binary master share obtained from a private database encoded
by the perfect number 2756.838(2756.839 − 1). It is obtained after a recursive
feature level fusion.
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2.3 Brauer Configuration associated to digits

sequencing

Consider a Brauer configuration Γd = {Γd0 ,Γd1 , µd, od}, such that:

(i) Γd0 = {x1, x2, · · · , xn} is a finite integer sequence.

(ii) Γd1 = {U = {xf1

1 , x
f2

2 , · · · , xfnn }V = {xg1

1 , x
g2

2 , · · · , xgnn }}, fi, gi ≥ 0.

(iii) At a vertex xi, it holds that U(i1) < V(i2) < U(i3) · · · ; val(xi) =
occ(xi,U) + occ(xi,V).

(iv) µ(α) = 1 for any vertex.

Remark 2.3.1. By definition the elements in Γd0 constitute the number
n = x1x2 · · ·xn with x1 6= 0. Furthermore, the schemes obtained with the
sequencing process contain encrypted information obtained by applying re-
cursively a feature level fusion method. And each vertex (block) corresponds
to a sequence of integer numbers defining in this way a variable-length code
induced by the private database.

2.4 Induced Brauer Configuration

Definition 2.4.1. A Brauer configuration Γ′ = E(Γ) = (Γ′0,Γ
′
1, µ

′, o′) is said
to be induced by the configuration Γ = (Γ0,Γ1, µ, o) if

Γ′0 = E(Γ0) = Γ0,
Γ′1 = E(Γ1) = {E(U), E(V)},
µ′ = µ,
o′ = o.

 (2.1)

where for some multisets X0 ⊂ U, Y0 ⊂ V we have:

E(U) = (U\X0) ∪ Y0;
E(V) = (V\Y0) ∪X0

}
(2.2)

are obtained via an exchange rule.



Emerging and multistable images associated to BCA 71

Definition 2.4.2. Γ and its induced Brauer Configuration E(Γ) define the
configuration

Γ⊗ E(Γ) = (Γ0,Γ
⊗
1 , µ, o),

Γ⊗1 = {U⊗,V⊗},
U⊗ = U\X0,
V⊗ = V ∪X0.

 (2.3)

U V

c2
hc1

i

0 1

c2
hc1

i

Figure 2.3: Specializations of Brauer Configurations

The specializations of Brauer configurations (see Figure 2.3) allow us to ob-
tain applications in visual sharing schemes, which will be presented in the
next section.

2.5 Shares associated to some VSSS

A VSSS can be defined in terms of Brauer configurations as follows.

1. A master share is obtained from a Brauer configuration Γ = (Γ0,Γ1, µ,O),
where:

(i) Γ0 is a finite sequence of integer numbers (If n1 =
k1∑
j=1

αj10j ∈ Γ0

and n2 =
k2∑
i=1

αi10i ∈ Γ0 then αk1 = αk2 );
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(ii) Γ1 = {0, 1} = {white pixels, black pixels};

(iii) µ(x) = 1, for any vertex;

(iv) successor sequences are defined according to the place that each
vertex has in Γ0;

(v) slave shares are given by Brauer configurations of the form E(Γ, Xi, Yi),
1 ≤ i ≤ t;

(vi) the stacking process is given by the Brauer configuration Γ ⊗
E(Γ, Xi, Yi), 1 ≤ i ≤ t.

Images in these kind of schemes can be obtained after a stacking process
(given by the configuration ⊗) as in the case of visual sharing schemes. In
VSSS images are obtained after such stacking process without any compu-
tation. Only the Human Visual System (HVS) should be used to obtain the
output-image which generally are emerging images.

For the sake of accuracy, a noise-deletion process is carried out. In order to
do that, (see Figure 2.4), it is considered an universal (or master) share and
each image is obtained after the following two main steps:

(i) Stacking with a suitable share (slave share).

(ii) Noise deletion. In this step an integer sequence is associated to each
share, two different shares have associated different sequences. Such
integer sequences allow us to determine which black blocks must be
deleted in the corresponding image.

We must bear in mind that, only the dealer (the qualified participant with
the master share) can recover totally the integer sequence (or encoding num-
ber A(n) associated for a set of vertices in a Brauer configuration) delivered
to the participants. A(n) is obtained from a share-integer sequence by con-
catenation, in such a way that there is a bijection between the vertices of the
associated Brauer configuration (black and white blocks) and digits of A(n).
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Figure 2.4: Examples: two master binary shares and corresponding slave
shares.

2.6 Algebraic Master Share in a Gray-Level

and Color VSSS

We next define VSSS for gray-level and color images by using BC’s and
lattices as follows.

Consider a Brauer configuration Γ = (Γ0,Γ1, µ, 0) such that the following
conditions are satisfied:

(i) Γ0 is a finite lattice with a finite feature-lattice associated Γ2. Under
these circumstances each vertex x ∈ Γ0 is denoted in the form (x, y)
with y ∈ Γ2;

(ii) for 1 ≤ t ≤ k0 a polygon

Ut = {(P t
it , P

t
jt) | P

t
it ∈ Γ0, P

t
jt ∈ Γ2};

(iii) µ((P t
it , P

t
jt)) = n0, n0 ∈ {1, 2, 3, 4} fixed; and
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(iv) a successor sequence U1 < U2 · · · < Um at a vertex (P s
is , P

s
js) is inter-

preted as the joint
k0∨
i=1

P s
ji
∈ L2.

Example 2.6.1.

The following example assumes that colours constitute a lattice.
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Example 2.6.2.

The following example shows a 2-out-2 color based VSSS defined by the
Brauer configuration Γ.

The following result (given by A.M. Cañadas et al. [29]) defines admissible
transformations, which guarantees the existence of equivalent lattice-color
matrix representations. Therefore, it guarantees the construction of different
types of (k, n) lattice-based VSSS. In this case, admissible transformations
correspond to exchange rules in Brauer configurations as defined above.

Theorem 2.6.3. Let M and M ′ be two lattice matrix representations of a
given lattice L then M and M ′ are equivalent if M and M ′ can be turned one
into each other by applying the following transformations:
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(i) row permutations of the whole matrix;

(ii) column permutations within a given vertical stripe;

(iii) multiplication of a given column j in the stripe Mx by some scalar
z ∈ (λxj )

O, where λxj is the maximum of all entries in such a column;

(iv) addition of a given jth column in the stripe Mx to the jth column in
the stripe My with coefficients in (δyj )M, where δyj is the minimum of all
entries in the column of My, provided that x ≤ y in L.

More experimental results regarding Brauer configuration algebras induced
by large numbers and its relationships with VSSS are presented in Chapter
7.





Chapter 3

A Mathematical Model for
Emerging and Multistable
Images

In this chapter, we present an important result of this thesis: a novel math-
ematical model which uses the Poset Representation Theory for generating
emerging and multistable images.

In the following model, each binary image can be seen as a finite poset.
The noise in this case is represented by antichains. Therefore, noise in these
schemes is deleted by applying successively a completion process.

3.1 Mathematical Model

If M is a k-module, then a model ν of an image repository D is a map (not
necessarily injective) ν : D → M which applies to each element I ∈ D an
element ν(I) = v. In this case, the element v can be seen as the image I and
v is said to be a M -model of I. Henceforth, if a model ν that has been defined
on a repository D, then we shall assume that each M -model ν(I) ∈ M is
again an image giving at least the same visual information provided by I.

As a matter of fact, model ν(I) is the image obtained from I after appli-
cations of some image operations as noise addition, rotation, magnification,
translation, reflection, contraction or deformation.

77
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Given an ordered database of binary images:

(B,�) = {b1, b2, . . . , bk},

where

bi � bj if image bi is embedded in image bj,

it is defined a X-model of B with the form:

S = (X, bi, χ, {Xb
ji
i
} | 1 ≤ ji ≤ ti, 1 ≤ i ≤ k), (3.1)

where for m,n fixed, X ⊂ Mm×n(Z2) is a finite k-vector space and χ ∈ X
fixed.

Analogously, (3.1) can be written as:

S = (Γ, bi, χ, {Xb
ji
i
} | 1 ≤ ji ≤ ti, 1 ≤ i ≤ k), (3.2)

where Γ is a matrix algebra, χ ⊂Mm×n(Z2) is a specialization of ΛΓ.

In fact, entries of matrix χ are pixels induced by B (i.e., χij ∈ Z2 for each
1 ≤ i ≤ m, 1 ≤ j ≤ n).

B = {X
b
ji
i
} is a finite generator of χ acting as a simplicial complex for

image bi. More generally, if k is a commutative ring with unit then, any
χ ∈Mm×n(k) can be expressed as a sum of the form:

χ =
k∑
j=1

h∑
i=1

Eij ⊗ χij (3.3)

where Eij ∈Mn×m(k) is an unitary matrix, and for each i, j, χij ∈Mni×mj(k)
is associated to a model of an image repository Bij with
k∑
ni

i=1

= n and
h∑
mj

j=1

= m.

This setting implies that each matrix χ associated to a model of an image
repository is a mosaic.
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Observe that B is a finite generator of χ such that:

Xr
bi
∩Xs

bi
= ∅ if r 6= s

Xm
bi
∩Xn

bj
= ∅ for all i, j,m, n,

bi =
ti∑

ji=1

ajiX
ji
bi

for any i, aji ∈ Z2, 1 ≤ i ≤ k.

 (3.4)

The identities (3.4) allow us to write χ in the form:

χ =
k∑

h=1

th∑
jh=1

ajhX
jh
bh

, ajh ∈ k, (3.5)

and thus, B is a tessellation of χ induced by B.

Definition 3.1.1. If bi � bj then bj can be written in the form

bj = bi +Wj,

where Wj is a complementary subspace of bi in bj. In such a case, a chain
C = bi = bi1 ≺ bi2 ≺ · · · ≺ bij−1

≺ bij = bj,

with bij =
j−1∑
h=1

bih , defines bj as an emerging image. Therefore, an emerging

image can be defined by a k-linear representation of a finite chain.

Definition 3.1.2. If B′ = {b′1, b′2, . . . , b′s} is an ordered database of binary
images, and for some h with 1 ≤ h ≤ s, there exists br ∈ B such that

b′h =
tr∑

jr=1

ajrX
jr
br
, (3.6)

then the system of binary images (br, b
′
h) is a multistable image.

This definition can be generalized by considering a collection B = {Bh : 1 ≤
h ≤ p} of binary images. Thus, if for each fixed Bh, it is defined a model
νh : Bh →M with M a fixed k-module.

Thus, a system of images (νh, νi) is a multistable image provided that there
exists v ∈M such that νh(I) = νj(I

′) = v for some images I ∈ Bh, I ′ ∈ Bj.

If there exists a polynomial-time algorithm (or function) A such that for
some positive integer n, A(n) = χ, then we say that n encodes or encrypt
the repository D.
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3.2 Algorithm ATMMEI

Algorithm to Model Multistable and Emerging Images ATMMEI allows to
obtain models of type ν(I) from a binary images database. Actually, the
procedure can be generalized to gray-level and RGB images.

Algorithm 3.2.1: Algorithm ATMMEI

1. Choose a binary images Repository D.

2. Define M = Mn(Z2) a Z2-vector space of matrices with binary entries and
a suitable basis B = {bi | i ∈ S}, where S is a fixed finite set of indices.
bi ∩ bj = ∅ if i 6= j. That is, distinct elements in B have no common
entries.

3. Define a matrix representation χ ∈M de P as follows:

(a) Choose a suitable large positive integer n = t1 × t2, a corresponding
t1 × t2-rectangular array A for its digits and a security parameter t.

(b) Choose a sequence S of consecutive pairs of blocks (Bi, Bi+1), Bi =
(ni1 , ni2 , . . . , nili), Bi+1 = (n(i+1)(1), n(i+1)(2), . . . , n(i+1)l(i+1)

), nj ∈ A,
i ≤ j ≤ l(i+1), ni1, n(i+1)1 6= 0, li+ l(i+1) = t. t is the minimum positive
integer such that:

li∑
h=1

nih =
li+1∑
m=1

n(i+1)m.

(c) Construct χ as a t1 × t2-bitmap via the function γ :
S → Zt2 defined in such a way that γ(Bi, Bi+1) =
(ci1, ci2, . . . , cili , d(i+1)1, d(i+1)2, . . . , dl(i+1)l(i+1)

), where cij = 1 and

d(i+1)s = 0, 1 ≤ j ≤ li, 1 ≤ s ≤ l(i+1).

4. Write χ =
∑
i∈S
bi.

5. For each image I ∈ D write ν(I) =
∑

h∈T⊂S
bh,

i.e., each image ν(I) is obtained from χ by applying on it admissible
transformations.
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The mathematical model permits to obtain the following important result.

Theorem 3.2.1. There is an infinite number of emerging images induced by
digits of positive integers.

Proof. Let M = (B, χ,B, ν) be a fixed system of models arising from a
database of binary images B, where χ is a vector of the vector space Mp(Z2)
generated by Algorithm 3.2.1 with digits of the decimal expansion of an
irrational number r, p = t1 × t2, B is a generator of χ and ν is a model
defined on B.

Let {Mi | 1 ≤ i ≤ n2} be a sequence of models with Mi = (Bi, χi,Bi, νi),
Mi = M, χi ∈ Mp(Z2), χi 6= χj if i 6= j. Then for a database D, B ⊂ D,
we define a system N of models defined by D in such a way that N =

(D, ψ,D, δ1), where ψ =
n2⊕
i=1

χi is a n2(t1×t2)-bitmap generated by Algorithm

ATMMEI 3.2.1 with n2(t1×t2) consecutive digits of r. In this case, nB ⊂ D,
i.e., magnifications by a factor n of elements of B are used to generate ψ
and thus if ν(I) is a model of an image I then δ1(ν(I)) is a model of the
magnification nI of I. Since this process can be repeated infinitely many
times with all images I ∈ B modeled by ν, that is, . . . δk(. . . (δ2(δ1(ν(I)))) . . . )
is a sequence of distinct emerging images generated by I, then there exists
an infinite number of images of this type. This proves Theorem 3.2.1. 2

Remark 3.2.2. A model G of a binary image repository D is said to be
generated by a matrix representation M of a Poset P, provided that χ ∈
O(M).

Remark 3.2.3. Algorithm 3.2.1 also works when the sequencing process in
steps (b) and (c) is modified by determining the different locations of the
first digit n1 in the large integer n and assigning a binary pixel value. In this
thesis, we assign pixel value 0 to all digits d ∈ n in an interval F1 ≤ d < F0,
where Fi, i ∈ {0, 1} denotes consecutive occurrences of the first digit n1 and
F0 is an odd location of this number.
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3.3 Multistable and Emerging Images-based

HIPs

The proposed model for creating emerging and multistable images and the
automated solution of HIPs is described in Algorithm 3.2.1.

It allows us to construct artificial patterns with digits in the decimal ex-
pansion of some irrational numbers. In this work, we use questions in the
HIPs posed by ARTiFACIAL, BONGO and reCAPTCHA with the following
characteristics:

1. ARTiFACIAL: we ask to the user to interpret a given model in order
to locate, eyes, nose, mouth, hands and feet by clicking on some points
of the image.

2. BONGO: An user must to identify the difference between two blocks
of emerging or multistable images.

3. reCAPTCHA: An emerging-text resistant to segmentation must be
recognized by an user. The disadvantage observed in this case is that
sometimes is very tricky to identify the proposed text.

In the experimental results we show the HIP used. Furthermore, processes
and algorithms to extract images are presented in next chapters.



Chapter 4

Emerging Images Associated to
Tiled Orders and Posets

In this chapter, we use 01-tiled orders or semimaximal rings to generate mod-
els of images associated to a repository D. We also define emerging equipped
posets, whose structure allow us to order images arising from different repos-
itories and encoded by a Brauer configuration associated to large integer
number.

This chapter also describes the system REIADT (Reconstruction of Emerging
Images by Restricted Admissible Transformations) which is an algorithm to
efficiently extract images from master shares.

Initially we analyzed the way that 01-tiled orders allow us to interpret images
as posets. This result is very relevant and will be explained as follows.

Any 01- tiled order has an associated finite poset P, such that if Λ = (ai,j),
then

ai,j =

{
0, if i ≤ j,

1, otherwise.

Example 4.0.1. Let Λ be the 01-tiled order

Λ =


a1 a2 a3 a4

a1 0 1 0 0
a2 0 0 0 0
a3 1 1 0 0
a4 1 1 1 0

,


83
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where 1 indicates that there exists connection and 0 indicates otherwise, such
that, the first are comparable points and last are incomparable points.

The Poset PΛ associated to Λ is presented in Figure 4.1.

a1

a2

a3

a4

Figure 4.1: Poset PΛ associated to the 01-tiled order Λ

Example 4.0.2.

From 01-tiled order Λ1 can be constructed subposets, which is very important
when we associate them with the images.

Λ1 =


a1 a2 a3 a4

a1 0 0 0 0
a2 0 0 0 0
a3 0 1 0 0
a4 1 0 0 0



a1

a4

a2

a3

Figure 4.2: Poset PΛ1 associated to 01-Tiled order Λ1
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Example 4.0.3.

In Figure 4.3, an example about different subposets from 01-tiled order Λ1

is presented.

a1

a4

a2

a3

a1

a4

a2

a3

a1

a4

a2

a3

a1

a4

a2

a3

Figure 4.3: Example of subposets generation
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The following results show the way of generating emerging images from a
repository D.

Theorem 4.0.4. Let D be an image-repository and Λ be a 01-tiled order.
Then Λ models D provided that any element I ∈ D can be represented as an
element of Λ.

Proof

Let I ∈ D be an image. The corresponding associated polygon PI has the
form

PI =
t⋃

i=i0

k⋃
h=0

[ai, ajih ],

where each point x is an interval [ai, ajih ] ∈ PΛ. In fact, the intervals allow us
to establish where the portion of the restricted image to the ith row begins
and ends.

The model ν(I) is obtained from PI by applying suitable completions. Fi-
nally, I is calculated from ν(I) through a filtration process. This finishes the
proof of Theorem 4.0.4 2.

Remark 4.0.5. Any element of D is a linear combination of basic elements
of a finitely generated Λ-module.

In case of a repository R is modeled in the sense of M.A.O. Angarita [26]
by using a 01-tiled order, then each model ν(I) of an image can be viewed
as a subposet of PΛ associated to Λ.

We will say that the model ν(I) is a polygon associated to the image I.
Therefore, each model ν(I) can be extracted from PΛ by the following steps.
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1. Polygon P(I) identification.

2. Noise elimination.

Polygon P(I) identification allows us to give information about the edge of
ν(I), while the process of completion eliminates noise of salt and pepper
type, which is included in ν(I) . That is, by elimination of some relations in
P(I).

Remark 4.0.6. The noise is constructed in the model to increment the
capability of storing (so that, the number of images that can be modeled by
Λ).

A polygon is defined by the following expression:

P(I) =
t⋃

i=i0

k⋃
h=0

[ai, ajih ],

such that, all images can be seen in this way.

We have the union of intervals as follows.

a1 = [a1, aj11 ] ∪ [a1, aj12 ] ∪ · · · ∪ [a1, aj1k ],

a2 = [a2, aj21 ] ∪ [a2, aj22 ] ∪ · · · ∪ [a2, aj2k ],

...
...

...
...

ai = [ai, aji1 ] ∪ [ai, aji2 ] ∪ · · · ∪ [ai, ajik ],

Let Λ be the 01- tiled order, which is composed by Λ1 and Λ2, that represent
chains and they are defined as follows.
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Λ1 =



0 1 0 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0 0
1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0
1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0
1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0
0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1
0 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1
0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 1 0
0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1
0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 1
0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0
1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1
1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1
0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1
0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1
0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0
1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0
1 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0
0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1
1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1
1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1
1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1
1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1
1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0
1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0
1 1 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0
1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0
0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0
0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1
0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0


Figure 4.4: Tiled Order Λ1 associated to scheme 1
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Λ2 =



0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0
1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0
1 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1
1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0
1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0
1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0
0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1
0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1
0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1
1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1
0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 0
1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0
0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1
1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1
0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1
0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1 0 0 1
0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0
1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0
0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0
1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1
1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 1
0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1
0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0
1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0
0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0
1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0
0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1
1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1
1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1
1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1
0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0
1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0
1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0
1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0
1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0
1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0


Figure 4.5: Tiled Order Λ2 associated to scheme 1
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The chains Λ1 and Λ2, previously presented, are suitable transformed to
obtain Λ3 and Λ4 to generate the corresponding bitmap.

So that, the generated bitmap or scheme 1 (Figure 4.6) will be used to obtain
experimental results from the proposed algorithms.

Figure 4.6: Bitmap associated to 01-tiled order.

Since the poset PΛ has many features, it follows that its representation is not
easy to obtain.

In the following section, the algorithm that allows us to extract the images
from the bitmap is described in detail.
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4.1 Generation of Emerging Images via Tiled

Orders

From a 01-tiled already established the corresponding bitmap is then gener-
ated. For example, the presented scheme in Figure 4.6 is a matrix of 1’s and
0’s, so that, it is a subposet of 01-tiled order. Thus, by performing different
stages described below, we will obtain images that have already been set by
default in the repository R.

Definition 4.1.1. An image repository R is said to be associated to a 01-
tiled order if all of its images can be obtained after applying some restricted
admissible transformations.

In the next section, we present an algorithm to establish the bitmap region
and to extract the emerging images. This algorithm is contained in system
REIADT.

4.2 Algorithm to generate Emerging Images

ATGEI

The objective of this procedure is to obtain the border of each image that
generates the bitmap of size m× n.

Let Xk a binary image that has a set of ordered couples of pixels associated,
which are not necessarily different.

The algorithm for generating emerging images has two main stages:

Algorithm 4.2.1: Algorithm ATGEI

1. Region recognition.

2. Image extraction.
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4.2.1 Region recognition

Region recognition is the process for which a subset I of points is chosen from
the poset P associated to the 01-tiled. I contains the pattern-image T which
can be obtained after some restricted transformations. The points m ∈ I are

called markers, which are denoted as
→
mi,j,

←
mi,j,

↑
mi,j or mi,j

↓
. In this case, the

arrows point out for which entries in columns or rows of the tiled order must
be changed to extract the image.

These markers determine a sequence M = {mi1,j1 ,mi2,j2 , . . . ,mik,jk}, which
detects the pattern-image boundary. To do the pattern-image recognition,
the procedure that is described in Algorithm 4.2.2 below is carried out.

Algorithm 4.2.2: Algorithm

1. If ms = mis,js and mt = mit,jt are consecutive markers with is < it,
then both ms and mt belong to the boundary of T and have pixel value
p(m) = 1.

2. Compute the l1-distance d = d(ms, R
w
is+1) and let mis+1,jk the pixel or

block of pixels such that d = d(ms, R
w
is+1) and mis+1,jk belongs to the

boundary of T . This process continues until the marker mit,jt is reached.

3. If there are two pixels or block of pixels m,m′ such that d = d(ms,m) =
d(ms,m

′), then the vertex in the direction determined by the marker must
be chosen.

Remark 4.2.1. In the boundary detection process there are some pixels or
block of pixels belonging to the boundary of T with pixel value p(m) = 0.
Such kind of pixels are said to be bridges with the main role of preserving
the visual connectedness of the boundary. Formally, the boundary of T is an
union of components determined by the markers.
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4.2.2 Image extraction

Image extraction is the process that allows to construct in detail the emerging
image. In the image extraction stage the pattern-image is obtained after
application of the following restricted admissible transformations :

1. row and column permutations;

2. additions of entries in columns at the left (right) of
←
xi (

→
xi);

3. additions of entries in rows above (below) of
↑
xi, (xi

↓
);

4. completion (changing the value of an entry);

5. image rotation.

The Completion step is a way of reducing the width of the poset associated
to 01- tiled order. It is applied to the pixels within the region determined
by the markers. Via rotation, the detection boundary algorithm is defined
similarly for any class of markers.

As an example, in the Figure 4.7, we show the images associated to an array
induced by a 01 tiled order.

A. Zavadskij [99] defined the completion procedure, (i.e. by adding a suitable
relation between two special points a and b) as follows.

The completion or (a, b)-completion of the set Q with respect to the special
pair (a, b) consists in joining to Q the relation a < b. The obtained completed
poset is denoted by Q(a,b).

In this research we present the completion to any point in the poset, which
differs from that due to Zavadskij who defined the completion as a process
of adding relations between special points.

Figure 4.8 shows the filtered image, which can be used in HIPs.
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Figure 4.7: Subset of points induced by a 01−tiled order and image obtained
after an extraction process.

Figure 4.8: Bitmap associated to 01-tiled order.
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For the development of the Algorithm 4.2.2, three processes are required:

1. Movement.

2. Appendices elimination.

3. Pruding.

Movement

In this stage the Algorithm 4.2.2 goes through the array from the markers
and it selects a temporal border for the image Xk. We denote it by X ′. In this
case, is enough to describe the behavior of the algorithm in vertical direction.
We assume the bitmap a(X) is divided in the blocks Bi, as mentioned below.

These blocks are constituted by mi arrows, listed below upwards and ni
columns listed from left to right. By the features of this algorithm every
stage will be realized block by block from the corresponding marker.

Definition 4.2.2. X ⊆ a(X) is arc-connected if every pair of points ai, aj ∈
X, with pixel values p(ai) = p(aj) = 0 can be connected by means of a
permissible path σ with the property that if at ∈ σ, then p(at) = 0.

Remark 4.2.3. The path σ, with initial point ai and final point aj, can be
written as σ = aiaj; the set of admissible paths that connect ai with aj is
denoted S.

Definition 4.2.4. If d is the distance of the taxicab and σ ∈ S, then the
length of σ, is denoted by ‖σ‖ = d(ai, aj).

Remark 4.2.5. Let a(X) a rectangular bitmap, A ⊆ a(X) and aij 6∈ A with
pixel value p(aij) = 0. Then hi is the element of A in the i-th arrow with pixel
value p(hi) = 0 such that d(aij, A) = ‖σ‖ for some admissible path σ, aijhi.
If such σ does not exist, then hi ∈ A satisfies that d(hi, aij) = d(A, aij).
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The definitions and remarks above allow us to describe a movement in the
i-th block in the following way.

Let m be a marker of X ′ in the position ij and Rk the k-th arrow of the k-th
block. Then the generated set H on which the algorithm acts is

H = {ht : ht ∈ Rt, i+ 1 ≤ t ≤ ni}.
If we denote A(aij) = p(aij) the output of algorithm in any of its stages,
then during a movement if σ is aijhi+1-admissible of minimum length, then
for each aik ∈ σ, whenever pixel value p(ai+1k) = 0 and the curve A(σ) is
admissible, then:

A(aik) =

{
p(aik), j ≤ k or p(aik) = 1,

p(aik) + 1, p(aik) = 0 and k � j.

Afterwards, we do the change hi+1 ←→ aij and the algorithm is applied to
Ri+1.

In general, this condition has to be for ht, i + 1 ≤ t ≤ ni, ht ←→ aij.
The algorithm must be applied to each row of the i-th block .

Remark 4.2.6. H ⊆ X ′, for each ht ∈ H is associated to a curve σt, aijht-
admissible, this curve is of lesser length such that hs ∈ σt, i ≤ s ≤ t.
Admissibility also implies that the stretch of σt, which connects the points,
ht−1 with ht, corresponds to the form at−1j or atj, this implies that elements
ht are all contained in the same arc-connected component of X ′.

The elements aij ∈ X ′ which are generated by a movement, are classified
into three categories: bridges, appendices and growths. These categories are
defined as follows.

Definition 4.2.7. A bridge is the element atj ∈ b(X) where ht ∈ H, δ =
Min{d(ht, ht−1, d(ht, ht+1)} 
 2 and j =Max{j1, j2} if ji, i = 1, 2 is the col-
umn that corresponds to element ht±1 in the array.

A bridge changes temporally its pixel value to extend the arc-connectivity of
the component that belongs to ht−1.
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Definition 4.2.8. An element aij ∈ X ′ with pixel value p(aij) = 0 is an
appendix if p(ai+1j) = p(ai−1j) = 1 and for akj the first in the jth column
with pixel value p(akj) 6= 1, Supp{alj : i + 1 ≤ l ≤ k} ≥ 2 or aij, with pixel
value p(aij) = 0 satisfies

aij ∈ {amj ∈ b(X) : d(amj, X
′) 
 2}.

Definition 4.2.9. An element aij ∈ X ′ with pixel value p(aij) = 0 is a
growth if p(aij+1) = 0.

Remark 4.2.10. The characterization given in the definition 4.2.7 is ad-
justed to the movement and the marker that are being taken from the be-
ginning. Any another growth obtained from a different type of marker, is
analogously defined.

Appendices and growths elimination

Eliminating appendices and growths is the appropriate way to obtain the
definitive boundary Xn of a binary image generated by the system REIADT.

Appendices elimination

If ni is the number of arrows in the i-th block and L y C are the set of
appendices and growths respectively, which are obtained by one movement,
then for each aik ∈ X ′,

A(ht) =

{
p(aik), if aik 6∈ L ∪ C,
p(aik + 1), if aik ∈ L.

(4.1)

Remark 4.2.11. If the position of ht ∈ H generates a bridge in the places:
atj0 , ht−1 , at−1,j1 and ht+1 in the place at+1j2 , jo = Max{j1, j2}, then {at±1j :
Min{j1, j2} ≤ j ≤ j0}, are appendices.
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Pruning (Growths elimination )

If ht ∈ H is a growth, then A(ht) = p(ht) + 1, whenever p(ht) + 1 does not
generate an appendix. Furthermore, if X ′′ is the obtained boundary from X ′

by the growth elimination, then Supp(X ′′) <= Supp(X ′).

Once the algorithm is applied, it is possible to recover some growths that
would allow a greater association of the obtained image by the algorithm
from the original image.

The extracted image, presented in Figure 4.9, is an interpretation of the face
of Jesus.

Figure 4.9: Extracted Image.

The markers and bridges used to obtain Figure 4.9 are:

←(21, 0), ←(13, 23), ←(13, 47), ←(13, 47),←(14, 60), ←(14, 60),←(14, 76), ←(14, 76),

↓(28, 60), (29, 63)→, ↓(28, 60), (31, 63)←, (30, 63)←, (46, 24)→, (46, 24)→,(30, 64)→,
(13, 47)b, (8, 29)b, (14, 60)b, (31, 57)b, (31, 55)b, (38, 44)b, (45, 31)b, (46, 36)b,
(16, 67)b, (44, 31)b.

Each arrow indicates how movement is applied. For example, ← indicates that
pixels at the left of the markers will be eliminated, whenever b in subindex
indicates there is a bridge in that position.
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Figure 4.10 shows an example of a sequence of images obtained after applying
Algorithm 4.2.2 from scheme 1.

Figure 4.10: Sequence: Extraction of Images.
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Theorem 4.2.12. Poset P generates a repository D, which means that all
images in R can be described as a linear combination of subposets of P.

Proof

It is enough to use Algorithm 4.2.2 �.

Remark 4.2.13. A poset P is a sum of chains or subposets, which permits
to have an interpretation of each image.

P = aO + bM + c : P = P1 + P2 + · · ·+ Pt

In Figure 4.11 an example of subposet is presented.

Figure 4.11: Example of subposet Pt associated to scheme showed in Figure
4.6
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Remark 4.2.14. Some images of repository R correspond to the Davinci’s
drawings (see Figure 4.12), the images that will be extracted corresponds to
interpretation of such drawings.

Figure 4.12: Davinci’s Drawings.
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All images contain noise, which is understood as incomparable points in the
poset. A filter to eliminate noise is interpreted as reduction of antichains in
the associated poset.

Other images of repository R correspond to the Rembrandt’s drawings (see
Figure 4.13).

Figure 4.13: Rembrandt’s drawings.

For instance, in Figure 4.14 the extracted images by using Algorithm 4.2.2
are presented. These images are extracted from others schemes, where the
process of noise elimination has not been realized.
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Figure 4.14: Extracted Images without noise elimination

In Figure 4.15, the extracted images by using Algorithm 4.2.2 are presented,
although they were processed by reduction of antichains of poset, which
means, the noise has been eliminated.

Figure 4.15: Extracted Images with noise elimination

The images of Figure 4.16 have been extracted by using Algorithm 4.2.2 and
after a filter has been applied. In the Appendix, we show more examples of
extracted images.
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Figure 4.16: Examples of extracted images using algorithm 4.2.2.

Theorem 4.2.15. The series of images type 32 (see Figure 4.17) are coded
with the perfect number 2756839−1(2756839 − 1).

Proof

From 01-tiled order is applied the algorithm 4.2.3 �.

Algorithm 4.2.3: Algorithm to generate images

1. Number sequencing.

2. Polygon-poset identification.

3. Noise filtering.
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In the Figure 4.17, we present some images obtained by means of the Algo-
rithm 4.2.3.

Figure 4.17: Series of images type 32.
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4.3 Emerging Equipped Posets

Emerging Equipped Posets allows us to order images arising from different
repositories encoded by a Brauer configuration associated to a large positive
integer.

Definition 4.3.1. A common subject associated to a collection of image-
repositories is said to be a source. Images given the same information in
different repositories are said to be profiles.

For instance, a classical book or fairy tale can be considered a source whereas
the different interpretations of a given personification can be considered pro-
files.

Definition 4.3.2. An Emerging Equipped Poset (EEP) denoted by P is a
partially ordered set induced by sources and profiles as follows:

1. Points x ∈ P and relations are either weak or strong. In this case

P = P◦ + P⊗.

2. Each weak point x ∈ P⊗ has only one profile associated Dx and only one
source associated.

3. Each strong point x ∈ P◦ has several sources and several profiles associ-
ated.

4. If x, y ∈ P⊗ then the relation between x and y is weak (denoted x � y
provided that Dx ⊆ Dy.

5. If x ∈ P⊗ and y ∈ P◦ then the relation between x and y is strong (denoted
x � y). If the profile Dx is contained in the set of sources Sy associated
to y. If x, y ∈ P◦ then the relation between x and y is also strong with
Sx ⊆ Sy.

Theorem 4.3.3. 1. For each point x ∈ P⊗, x � x holds. In other words,
each weak point has a weak relation with itself.

2. Each strong point in an EEP is maximal.
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Proof

1. By item 4 in definition 4.3.2, if x ∈ P⊗, the relation between x and x
is weak (x � x) from Dx ⊆ Dx.

2. Let z be a strong point, so that, z ∈ P◦. Assume that z is a strong
point in an EEP, which is not maximal. Then there exists m ∈ P such
that m� z. There exists a weak point x such that y would have some
strong points and some profiles associated. This is not possible, and
therefore it is a strong point.2

4.4 The associated problem

In the construction of emerging images, we use information of digits of irra-
tional numbers to generate schemes (see Figure 4.18). These schemes contain
great quantity of valuable information.

Figure 4.18: Examples of vectors χ ∈M600 (Z2).

According to Borwein et al. [21], within Number Theory, many problems
offer large amount of data that the human mind has difficulty assimilating
directly. These include distributions of digits in expansions. For instance, in
the 17th Century, Gottfried Wilhelm Leibniz asked in a letter to one of the
Bernoulli brothers if there might be a pattern in the binary expansion of π.



108 Emerging Images associated to Tiled Orders and Posets

Three hundred years his question remains unanswered. A far the numbers in
the expansion appear to be completely random. In fact the Leibniz’s question
can be generalized to all irrational numbers.

Research regarding digits of irrational numbers is related to that of normal
numbers, where an irrational number x is said to be normal in base b if

Lim
n→∞

B(n,j)
n

= 1
b

for each of the b possible values, j = 0, 1, 2 . . . b−1, where B(n, j) is the num-
ber of occurrences of j in the first n places of the b-ary expansion of x [16].

For instance, the Copeland-Erdös constant CCE =
∞∑
n=1

pn

10
∑n
k=1
blog10pkc+n

=

0.23571113171923 . . . is normal for b = 10. So far, there is no proof of
the normality of constants as π, e, Ln2,

√
2, or any irrational square root.

In fact, these constants appear to be without pattern in the digits, and sta-
tistical tests done to date are consistent with the hypothesis that they are
normal. Furthermore, according to Beyer et al. [16], no number has been
proven to be absolutely normal, that is, normal in every base. Every nor-
mality proof so far is only valid in one based and depends on more or less
artificial construction.

In order to give some advances to the Leibniz’s question, we use digits of
irrational square numbers, perfect numbers and Mersenne primes (i.e., primes
of the form, 2n − 1) to construct emerging and multistable images. Such
images allow us to define different kind of image based-HIP’s in such a way
that automatic solutions of these tests allow us to give a positive answer to
the Leibniz’s question.



Chapter 5

Multistable Images Associated
to Brauer Configuration
Algebras

In this chapter, we present a Brauer configuration associated to multistable
images, from this mathematical structure allows a good representation of the
information contained in these images. We explain how is the relationship
between the Brauer configuration algebras and the process of extraction of
these images.

5.1 Brauer Configuration Associated to Mul-

tistable Images

From a tessellation B (see Figure 5.1) obtained by Cañadas et al. [26], we
define its associated Brauer configuration ΓB = (ΓB0 ,ΓB1 , µ, o), where:

• The vertices vx ∈ ΓB0 are clusters of basic elements. In fact,

vx =
∑
J

clJ(x).

• The polygons Vx ∈ ΓB1 consists of adjunct vertices.

If an image is in the repository R (I ∈ R), then

V 1
I < V 2

I < V 3
I < V 4

I < · · · < V t
I = I, where V r

I ∈ R.
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Figure 5.1: Tessellation [26]

Definition 5.1.1. An Image-Polygon is a polygon that has an interpretation
in a repository R (see Figure 5.2).

Figure 5.2: Example of Image-Polygon.

Remark 5.1.2. All polygons V I
x ∈ R do not correspond to some image.

Remark 5.1.3. x is a sequence of polygons where V i
x corresponds to the

parts and V r
I corresponds to the whole in the context of Emergence.

x :⇒ V r1
I < V r2

I < · · · < V rs
I = V r

I .
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Let χ be a representation of B, as we defined in Chapter 4. Then the
following result is obtained.

Theorem 5.1.4. The images obtained from χ by using Algorithm 3.2.1 are
realizations of polygons defined by the following Brauer configuration:

α1
1 : x1,1 < x1,2 < x1,3 = x1,4,

α1
2 : x1,1 < x2,2 < x2,3 = x2,4,

α1
3 : x1,1 < x2,2 < x3,3 = x3,4,

β2
1 : x2,1 < x1,2 < x1,3 = x1,4,

β2
2 : x2,1 < x2,2 < x2,3 = x2,4,

β2
3 : x2,1 < x3,2 < x3,3 = x3,4,

γ3
1 : x3,1 < x2,2 < x2,3 = x2,4,

γ3
2 : x3,1 < x2,2 < x1,3 = x1,4,

γ3
3 : x3,1 < x3,2 < x3,3 = x3,4.

(5.1)

Proof

Let the polygons be defined by

x1,1 = {α1
1, α

1
2, α

1
3},

x1,2 = {α1
1, β

2
1},

x1,3 = {α1
1, β

2
1 , γ

3
2},

x1,4 = {α1
1, β

2
1 , γ

3
2},

x2,1 = {β2
1 , β

2
2 , β

2
3},

x2,2 = {α1
2, α

1
3, β

2
2 , γ

3
1 , γ

3
2},

x2,3 = {α1
2, β

2
2 , γ

3
1},

x2,4 = {α1
2, β

2
2 , γ

3
1},

x3,1 = {γ3
1 , γ

3
2 , γ

3
3 , },

x3,2 = {β2
3 , γ

3
3},

x3,3 = {α1
3, β

2
3 , γ

3
3},

x3,4 = {α1
3, β

2
3γ

3
3},

where xi,j correspond to the polygons and αlk, β
l
k, γ

l
k correspond to the ver-

tices.
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x3,3

x3,2

x3,1

x2,3

x2,2

x2,1

x1,3

x1,2

x1,1

Figure 5.3: The quiver QΓB
associated to the Brauer configuration ΓB.
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The quiver QΓB
associated to the Brauer configuration ΓB is presented in

Figure 5.3.

For the sake of clarity, we explicitly show the polygons x1,4, x2,4, x3,4, which
are maximal and they correspond to the Image-Polygons I1, I2, I3 (see Figure
5.4).

Figure 5.4: Example of maximal Image-Polygons

For example, α1
1 = x1,1 < x1,2 < x1,3 < x1,4 and β2

2 = x2,1 < x2,2 < x2,3 < x2,4

can be described by the sequences of the Figures 5.5, 5.6, 5.7.

Figure 5.5: Example: Realizations of polygons α1
1
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Figure 5.6: Example: Realizations of polygons γ1
1

Figure 5.7: Example: Realizations of polygons β2
2

The associated poset PΓ, which was used to define the Brauer configuration
5.1, is presented in Figure 5.8 2.
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Figure 5.8: Poset PΓB
associated to Brauer configuration ΓB.

5.2 Multistable and Emerging Images from

BCA

Let R1,R2, · · · ,Rs, be a collection of image-repositories. Then an image I

under the scheme of A.M. Cañadas et al. [25] is a system of the form:

i = (xi,1, xi,2, · · · , xi,s) =
∑
ai,jbi,j, ai,j ∈ {0, 1} where xi,j ∈ Rj.

Under these circumstances, image i is said to be a multistable image.

The collection (R1,R2, · · ·Rs), has a matrix representation χ, such that a
given image i has a defined fixed location in χ.

Each polygon in the Brauer configuration from i1 can be an emerging image,
where
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i1 = (xi1,1, xi1,2, xi1,3, · · · , xi1,s),

i2 = (xi2,1, xi2,2, xi2,3, · · · , xi2,s),

i3 = (xi3,1, xi3,2, xi3,3, · · · , xi3,s),
...

it = (xit,1, xit,2, xit,3, · · · , xit,s),

(5.2)

and where i1 is maximal, thus

it < · · · < i3 < i2 < i1,

and furthermore, xit,j < xit−1,j < xit−2,j < · · · , xi2,j < xi1,j, where xi1,j is
maximal and

it < it−1 < · · · < i2 < i1 corresponds to a maximal path in QΓ.

Thus, the number of images associated to the Brauer configuration is given
by the formula tsδ, where t is the number of maximal paths in Γ, s is the
number of image-repositories and δ is the length of the maximal chains in Γ.

The number of images associated to the Brauer configuration permits to
obtain the following important result.

Theorem 5.2.1. The number of images associated to a scheme χ is tsδ.

Proof

Let PΓ1 be the associated poset to the Brauer configuration ΓB (see Figure
5.9).



Multistable images associated to Brauer configuration algebras 117

Figure 5.10: Paths 1, 2, 3, 4, 5 from x1,1

Figure 5.9: Poset PΓ1 associated to ΓB

From x1,1, there are 5 paths as is shown in Figure 5.10, from x2,1 there are 6
paths (see Figure 5.11) and from x3,1 there are 6. The total number of paths
is 16.
The paths from x3,1 are analogous to x1,1

Therefore, the number of images of χ associated to Poset P1 is (16.53) = 2000.
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Figure 5.11: Paths 1, 2, 3, 4, 5, 6 from x2,1

We are done 2.



Chapter 6

Emerging Images from
Topological Data Analysis
Techniques

In this chapter, we analyze and use the tools from Persistent Homology
theory in order to generate emerging images. In particular, we use topological
techniques to generate space triangulations that allow us to generate random
masks for a number of images-template, which can be used in HIPs (see
experimental results).

6.1 Random masks construction

The construction starts with a cloud of points, then the simplicial complexes
that originate a triangulation of the topological space are generated. This
construction builds a random mask which is superimposed to the correspond-
ing image in order to remove boundary data.

Let I be an image, which is a matrix of m×n values, let be S = [1,m]×[1, n].
We will think of I as samples of a continuous function f : D −→ V .

Let A ⊂ R2 be a finite set called a point cloud, which is a sample of topolog-
ical space X ⊂ R2. We aim to study some topological features of X, in such
a way that only information arising from A will be used.

A sampling of the image points is taken, so that, these data constitute a

119
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point cloud. A topological Euclidean space, known as the simplicial complex
is associated with the point cloud. The simplicial complex becomes an object
of study. In this case the simplicial complex has been constructed as a
Vietoris-Rips complex, which allows us to extract topological features from
the object of study in order to obtain relevant information (see Figure 6.1).

Figure 6.1: Space triangulation

A triangulation of a topological space X is a simplicial complex K along with
a homeomorphism between |K| and X. Henceforth, we will often blur the
difference between a topological space and a simplicial complex bearing in
mind that we always are handling triangulations of noisy images. New trian-
gulations associated to the point cloud A, can be obtained by increasing the
radius ε > 0 of the different balls partitioning X. In the Figure 6.2 is showed a
triangulation which was obtained computationally with our algorithm MGA;
it will be explained in next section.

Remark 6.1.1. We note that establishing the suitable radius ε > 0 to obtain
a good triangulation, constitutes an open question.

In this section, we present a practical application of space triangulation from
a point cloud, in order to generate random masks whose main purpose con-
sists of building noisy images. Actually, this procedure is an image-analogous
of the ScatterType CAPTCHA introduced by Baird et al. [13]. In this appli-
cation, simplicial complexes are used to build random masks such which allow
vary the parameters in order to generate different models easy to recognize
by humans and hard to detect by different boundary detection algorithms.

After making a triangulation for an specific radius ε > 0, the process is
stopped and the extraction of images is made. This process also allows
rotations of the image to improve the perception.
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Figure 6.2: Triangulations obtained with our algorithm MGA

6.2 Masks Generating Algorithm (MGA)

In this section, we present the Masks Generating Algorithm (MGA), which
allows to construct random masks from simplicial complexes.

Algorithm 6.2.1: Algorithm MGA

1. Choose the number of points p.

2. Randomly generate the point cloud with p elements.

3. Choose a radius ε > 0 to construct balls whose center is each point.

4. If two balls intersect, connect the points (centers of the balls) with a
straight line segment.

5. If three balls intersect, connect the points (centers of the balls) with a
triangle.

6. Capture and record the simplicial complexes and triangulation obtained
in previous steps.

7. if necessary, modify the radius ε of the balls to obtain a greater number
of simplicial complexes and repeat steps 3 to 6.

In the following example, we present an application of how to use the space
triangulation to generate an image that has been hidden. In the Figure 6.3,
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an sequence obtained of the image is presented. These obtained images will
be used in Human Interaction Proofs (see Chapter 7).

Figure 6.3: Emerging Image obtained with a random mask.

In Chapter 7 others emerging images obtained are presented, which were
generated by using the exposed novel algorithm MGA.
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6.3 Comparison: Homological methods and

Tiled orders methods

In order to conclude this chapter, we present a comparison table about how
the information is studied from homological methods and tiled orders meth-
ods to generate emerging images.

Persistent Homology Tiled Orders

Points Cloud Points Cloud
Clusters Clusters
Construction of balls Construction of tesellation
Construction of simplicial complex Construction of Polygons
Homologies are studied Posets are studied
Representation of oriented quiver Q Representation of Poset
Intervals of Persistence and Images collection λ-submodules

Table 6.1: Comparison: homological methods and tiled orders methods to
generate emerging images.

The table shows that from two different mathematical objects, it is possible
to generate collections of emerging images.

Figure 6.4 shows examples of point clouds and other space triangulations.
These schemes will be used in experimental results that will be presented
later. The images obtained can be seen in the appendices.

Figure 6.4: Point clouds and space triangulations.





Chapter 7

Experimental Results

In this chapter, we present the main computational results and the performed
tests.

7.1 First Experiment

This first experiment uses a 01-matrix representation. A HIP named Emer-
CAPTCHA is applied and the results are presented in this section.

Matrix representations over Z2 (Z256, R) of the poset Q presented in Figure
7.1 are defined to model images extracted from galleries of fairy tales, (see
[88]), clowns, circus acts and the Bible books of Esther and Judith. To
model these images, we have used 360000 digits of the 32th, 34th,, 35th and
38th perfect numbers, digits corresponding to Mersenne primes and of the
decimals expansion of the irrational numbers

√
2 and

√
3 have been used as

well. Vectors χ ∈ M600 ( Z2) have been built and tessellated to generate
models of the databases via Algorithm 3.2.1.

Several emerging and multistable images have been obtained as consequence
of such construction. Experimental results with random blocks of digits in
the decimal expansion of

√
2 and

√
3 allow us to conjecture that an infinite

number of these models of arbitrary size can be obtained with the same
databases.

125



126

d
d
d
d

Q =

d
d
d
d

d
d
d
d

��
��

�
��

�
��

�
��
�

��
�
��

��

HH
H

HH
HH

HH
H
HH

HH
HH

H
HH

HH

HH
HH

H
HH

HH
HH

H
HH HH

HH
H
HH

��
�
��

��
��

��
�
��

�
��

�
��
�

Figure 7.1: Poset associated to a system of emerging and multistable images.
Actually, points in this poset can be considered weak or strong according to
the nature of the repositories.

These experimental results have been obtained by running C and MATLAB
programs in a Dell Precision M4400 PC (intel core 2 Quad Extreme Edition).

In the Figure 7.2 is presented a screen with the HIP called EmerCAPTCHA,
where is asked to the user the location of the eyes, mouth, nose, etc. Others
images used on the HIP, also are presented.

Figure 7.2: EmerCAPTCHA associated to Algorithm 3.2.1.

Different questions have been proposed to 1000 people aged between 3 to 80
years old, according to the type of CAPTCHA we have analyzed. For ex-
ample, in the case of questions of type ARTiFACIAL [78] and reCAPTCHA,
4, 7 seconds was the average time to solve the test, whereas for questions of
type BONGO, the average time to solve the challenge was 5.5 seconds. (See
the statistical results of the applied test in Figure 7.3).
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(a) (b) (c)

Figure 7.3: Figures (a)-(c) show respectively, the distribution of age, time
and average time required to solve the test.

7.2 Second Experiment: Random Masks for

HIPs

In this section, we present an practical application of space triangulation
from a point cloud, in order to generate a random mask that converts each
image of repository in a point cloud.

This procedure gives an analogous result to the images of text obtained by
Baird et al. in ScatterType CAPTCHA [13].

7.2.1 Algorithm to Tell Apart Humans and Machines
(ATTACH)

In this section, we present a human interaction proof based on emerging
images with the main purpose of separating human beings from machines.

We use random masks, which are generated from mathematical objects and
based on the Algorithm MGA, that allows us to change the parameters and
generate different models.

The algorithm ATTACH describes the process for which a query associated
to a masked image is presented and responded. The basic steps that should
be done are showed in Algorithm 7.2.1.
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Let β be a large set of images, where each image has a set of associated
generic words.

Algorithm 7.2.1: Algorithm ATTACH

1. Randomly select In from β.

2. Use the mask and refinement procedure to produce image I ′n.

3. Display I ′n to user.

4. Request the user to enter the wordW that best describes the object he/she
perceives in the display.

5. Capture, record W and compare it with all the words wj in the set Ln.

6. If W = wj for any j, then “user passes the test” else, user fails the test.

7.2.2 Human Interactive Proof

These experimental results have been obtained by running C + + and MAT-
LAB programs in a Predator 15 Acer (intel core i7, 7th generation). Figure
7.4 presents examples of the HIP generated by using the Algorithms MGA
and ATTACH.

A test with different images have been presented to 500 people aged between
15 to 60 years old, all images were obtained by using the Algorithms MGA
and ATTACH; 3, 8 seconds was the average time to solve the test.
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Figure 7.4: Examples: Human Interaction Proof.
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7.2.3 False Positives

A false positive occurs whenever images presented to the user has loss some
information about its edges or some clutter information has been added to
the image. In these cases, the experience of the user is not enough to identify
the model presented.

Once the experiment was conducted, 2% of the results were false positives.
It corresponds to unrecognizable images for the users.

Furthermore, we realized some segmentation tests using the Prewitt and
Canny algorithms. See Figure 7.5. These proofs show that the images become
point clouds after the implementation of the Algorithm MGA.

Figure 7.5: Proofs of segmentation-Prewitt and Canny.
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7.3 System REIADT

System REIADT have been developed in the C + + program in order to
generate computational results from the developed algorithms.

Figure 7.6 shows the main menu, which contains three options:

1 Sequencing.

2 Image generation.

3 Simplicial Complex.

Figure 7.6: System REIADT: Main menu.

7.3.1 Sequencing Menu

Figures 7.11 and 7.8 show screenshots with examples of outputs (sequencing
process of perfect number 2756838(2756839 − 1)). These outputs include:

A. Scheme, which shows vertices (Blocks originated by sequencing).

B. Vertex, occurrences of vertex (as white, black), length.

C. Array of distances.

D. Successor Sequences.
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Figure 7.7: Output: sequencing process.

Figure 7.8: Computational process of sequencing.

In Figures 7.9 and 7.10 the successor sequences of different vertices are
showed.
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Figure 7.9: Output: sequencing process.

Figure 7.10: Computational process of sequencing (truncated vertex) .
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7.3.2 Image Generation Menu

Figure 7.11: Computational process of image generation.

7.3.3 Simplicial Complex Menu

This process allows us to generate random mask from point clouds (see Fig-
ures 7.12 and 7.13).

Figure 7.12: Computational process of a simplicial complex.
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Figure 7.13: Computational process of a simplicial complex.

Figure 7.14: Computational process of a simplicial complex.





Chapter 8

Conclusions and Future work

Matrix problems and in particular matrix representations of partially ordered
sets (posets) are used to formally define and generate emerging and multi-
stable images. Images induced by such representations are mosaics which
can be used to design different types of Human Interaction Proofs.

Semimaximal rings known as tiled orders and some Brauer configurations are
mathematical structures that can be used to encode and decode emerging
image-repositories.

01-Tiled orders are used to interpret images as Posets. Associating an image
to the structure of poset allows us to generate a new filter to eliminate noise-
image . This filter is groundbreaking, because filters that exists these days
are based on statistical methods and other mathematical concepts.

Representations of posets induced by digits of large positive integers can be
processed in order to obtain mosaics, emerging and multistable images from
databases of fairy tales, circus acts and the Bible’s texts.

Due that solving Human Interactive proofs (HIPs) requires greater involve-
ment of the human visual system, we can conclude that different types of
Human Interaction Proofs can be enhanced, provided that the correspond-
ing questions concern emerging images and multistable images.

Using Brauer configurations to study the information (when it is crossed), is
not just better than using concepts of persistence Homology, but allows us
to explore more the images processing by mean of this technique.
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In particular, persistence Homology performs multi-scale analysis on a data
set and allows to identify clusters, holes and voids therein. These latter
topological structures complement standard feature extractor of the data
generating new open problems in Artificial Intelligence.

Since coherent information can be extracted from digits in the decimal ex-
pansion of the irrational number

√
3, we can conjecture a positive answer to

the Leibniz’s question in this case and that digits in the decimal expansion
of some irrational numbers generate an infinite number of emerging images,
which is currently one of the major concerns when using this type of images
to design HIPs.

A complete classification of irrational numbers, Mersenne primes and perfect
numbers according to the graphical information provided by these numbers
must be done in the future.



Appendix A

Examples of Extraction of
images

In this appendix, we show some experimental results obtained by applying
the Algorithms 3.2.1 and 4.2.2.
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Examples of Mosaic images

The following images were obtained from Cañadas’s Scheme by using Brauer
configurations.
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Appendix B

Examples of Sequences of
Polygons
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B.1 Sequences of Images

In the following examples the images sequences are presented.
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Appendix C

Examples of images obtained
by using Random Masks

The following figures were obtained by using the Algorithms MGA 6.2.1 and
ATTACH 7.2.1.
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The following images show images obtained by using the Algorithms MGA
6.2.1 and ATTACH 7.2.1, and which have been tested by the Canny algo-
rithm.



Bibliography

[1] L. Von Ahn, M. Blum, N.J. Hopper, and J. Langford, CAPTCHA:Using hard AI
problems for security, In: Biham E. (eds) Advances in Criptology - EUROCRYPT
2003 ; Lecture Notes in Comput. Sci. 2656 (2003), 294–311. Springer, Berlin, Hei-
delberg.

[2] L. Von Ahn, M. Blum, and J. Langford, Telling humans and computers apart auto-
matically, Commun. ACM 47 (2004), no. 2, 57-60.

[3] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum, reCAPTCHA:
Human-Based Character Recognition via Web Security Measures, Science 321
(2008), 1465–1468.

[4] Altavista, Altavista’s ”add-url” site, protected by the earliest known captcha.
http://altavista.com/sites/addurl/newurl, 1997.

[5] M.A.O. Angarita, E. Izquierdo, and A.M.Cañadas, Human Interaction Proofs (HIPs)
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Éditions Diderot, arts et sciences, 1980/1997.

[58] E.J. Kartaltepe and S. Xi, Towards blocking outgoing malicious impostor emails, In
Proceedings of the 2006 International Symposium on a World of Wireless, Mobile
and Multimedia Networks, 5-pp. IEEE, 2006.

[59] M.M. Kleiner, Partially ordered sets of finite type, Zap. Nauchn. Semin. LOMI 28
(1972), 32–41 (in Russian); English transl., J. Sov. Math 3 (1975), no. 5, 607–615.

[60] K. Koffka, Principles of Gestalt Psychology, Routledge, 2005.



165

[61] Y.M. Kuo, H.K. Chu, M.T. chi, R.R. Lee, and T.Y. Lee, Generating Ambiguous
Figure-Ground Images, IEEE Trans. Vis. Comput. Graph. 23 (2017), no. 5, 1534-
1545.

[62] S. Lehar, Gestalt isomorphism and the primacy of subjective conscious experience:
A Gestalt Bubble model, Behav. Brain Sci 26 (2003), no. 4, 375-408.

[63] S. Ming-Shing, H. Wen-Liang, and C. Kuo-Young, Digital imaging for cultural Her-
itage preservation: Analysis, Restoration, IEEE Transactions on Images Processing
focuses and signal-processing aspects of image processing, imaging systems, and im-
ages scanning, display and printing ) 13, 952–959. IEEE, 2007.

[64] N. J. Mitra, H. K. Chu, T. Y. Lee, L. Wolf, H. Yeshurun, and D. Cohen-Or, Emerging
Images, ACM Trans. Graph. 28 (December, 2009), no. 5, 8 pp.

[65] P. Moore and Ch. Fitz, Using Gestalt Theory to Teach Document Design and Graph-
ics, Tech. Commun. Q. 2 (Fall 1993), no. 4, 389-410.

[66] G. Mori and J. Malik, Recognizing objects in adversarial clutter: Breaking a visual
CAPTCHA, Proc. Conf. Computer vision and pattern recognition (2003). Madison.

[67] M. Naor and A. Shamir, Visual Cryptography, Advances in Cryptography: EURO-
CRYPT’94; Lecture Notes in Comput. Sci. 950 (1994). Springer, Berlin, Heidelberg.

[68] M. Naor, Verification of a human in the loop or identifica-
tion via the Turing test (September 13 1996). Unpublished notes;
http://www.wisdom.weizmann.ac.il./naor/PAPERS/human.pdf.

[69] M. Nayeem, M. Akand, N. Sakib, and W. Kabir, Design of a Human Interaction
Proof (HIP) using human cognition in contextual natural conversation, 2014 IEEE
13th International Conference on Cognitive Informatics and Cognitive Computing
(2014), 146–154.

[70] L.A. Nazarova and A.V. Roiter, Representations of partially ordered sets, Zap.
Nauchn. Semin. LOMI 28 (1972), 5–31 (in Russian); English transl., J. Sov. Math.
3 (1975), 585–606.

[71] U. Onwudebelu, U. Ugwuoke, and I. Nkechi, A Review and Evaluation of Human In-
teractive Proof (HIP) Technique for Combating Malicious Automated Scripts, Com-
puter Science and Information Technology 1 (2013), no. 3, 202-207.

[72] A. Pinar Saygin, I. Cicekli, and V. Akman, Turing test: 50 years later, Minds Mach.
10 (2000), no. 4, 463–518.

[73] G. Reynaga, The usability of CAPTCHAS on mobile devices, Carleton University,
2015. Ottawa, Ontario.

[74] C. Rodriguez and A.G. Zavadskij, On corepresentations of equipped posets and their
differentiation, Revista Colombiana de Matemáticas 39 (2006).
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