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Abstract

Las fuentes de rúıdo en resonancia magnética son múltiples y variadas, los artefactos por

movimiento y la limitación espacial del captor constituyen las más conocidas. El problema

mejor documentado es el denominado volúmen parcial que consiste en que por la limitación

espacial del captor, el ĺımite entre dos tejidos distintos se almacena como una señal ponde-

rada enre los dos tejidos [3].Las técnicas de diagnóstico médico han variado en los últimos

años, una de las más usadas son las imágenes radiológicas debido a su fácil adquisición y

la suficiente información que contienen del tejido estudiado , sin embargo los protocolos de

adquisición son limitados y las imágenes obtenidas pierden información importante para el

diagnóstico [12]. Estas deficiencias en la adquisición de la información limita al radiólogo y

perjudica el diagnóstico y estudio de algunas enfermedades [46].

La resonancia magnética (RM) se usa ampliamente en la medicina hoy en d́ıa, pero una des-

ventaja importante es la cantidad de artefactos que afectan la imagen durante el proceso de

adquisición. Por ejemplo la resonancia magnética card́ıaca (CMR) requiere la sincronización

con el ECG para corregir muchos tipos de ruido. Sin embargo, el complejo movimiento del

corazón con frecuencia produce cortes desplazados que deben ignorarse o corregirse manual-

mente ya que la corrección de ECG es inútil en este caso. Este trabajo presenta, entre otros,

una metodoloǵıa novedosa que detecta los artefactos de movimiento en la CMR utilizando

un método de prominencia que resalta la región donde se ubican las cámaras del corazón.

Una vez que se establece la Región de interés (RdI), su centro de gravedad se determina

para el conjunto de cortes que componen el volumen. La desviación del centro de gravedad

es una estimación de la coherencia entre los cortes y se utiliza para descubrir los cortes con

cierto desplazamiento.

Otra imágen radiológica que también se ve afectada por pérdida de información, son las

imágenes de resonancia magnética por difusión, ampliamente utilizadas para estudiar la ar-

quitectura de la materia y comprender sus cambios. La resolución espacial de la imagen

ponderada por difusión cerebral (DWI, por sus siglas en inglés) está limitada debido a la

alta frecuencia de la imagen y las estructuras cerebrales como bordes o bifurcaciones cuando

se capturan los datos. En este enfoque, la idea principal es mejorar la resolución espacial

mediante una estrategia de aprendizaje de diccionario y, de este modo, utilizar la dependen-

cia estad́ıstica entre diferentes gradientes de la misma imagen para que mejore la resolución.

En el siguiente trabajo se realizaron diferentes validaciones para la detección automática de

anormalidades haciendo uso de estimadores probabiĺısticos, todo ello para tener como resul-

tado la detección automática de anormalidades y el incremento de resolución en diferentes

modalidades de imágenes médicas.

Palabras clave: pérdida de información, Resonancia magnética, artefactos por movi-
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miento, Super-Resolución, SVD. .

Abstract

The sources of noise in magnetic resonance are multiple and varied, the artifacts by mo-

vement and the spatial limitation of the captor are the best known. The best documented

problem is the so-called partial volume, which consists of the fact that due to the spatial

limitation of the captor, the limit between two different tissues is stored as a weighted signal

between the two tissues.[3]. Medical diagnostic techniques have changed in recent years, one

of the most widely used are radiological images due to its easy acquisition and sufficient

information contained in the tissue studied, however the acquisition protocols are limited

and the images obtained lose information important for diagnosis [12]. These deficiencies in

the acquisition of information limits the radiologist and impairs the diagnosis and study of

some diseases [46].

Magnetic resonance imaging (MRI) is widely used in medicine nowadays, yet a significant

disadvantage is the amount of artifacts that affect the image during the acquisition process.

As an example, Cardiac Magnetic Resonance (CMR) requires synchronization with the ECG

to correct many types of noise. However, the complex heart motion frequently produces dis-

placed slices that have to be either ignored or manually corrected since the ECG correction

is useless in this case. This work presents a novel methodology that detects the motion arti-

facts in CMR using a saliency method that highlights the region where the heart chambers

are located. Once the Region of Interest (RoI) is set, its center of gravity is determined for

the set of slices composing the volume. The deviation of the gravity center is an estimation

of the coherence between the slices and is used to find out slices with certain displacement.

Another type of acquisition technique that is affected by the missing information is the

Diffusion imaging (dMRI) is a magnetic resonance technique widely used to study the withe

matter architecture and to understand their changes. The spatial resolution of brain diffusion

weighted imaging (DWI) is limited due to high frequency of the image and brain structures

like edges or bifurcations when the data are captured. In this approach the main idea is

improved the spatial resolution using a dictionary learning strategy and for this way use the

statistical dependence between different gradients of the same image for create a prior that

improve the resolution. In the present work it has been different validation methods in order

to made automatic detection and the increase resolution of abnormalities using probabilistic

information estimation of the medical images.

Keywords: Missing information, Magnetic Resonance Images, motion artifacts, Super-

Resolution algorithm Singular Value Decomposition.
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1 Introduction

Magnetic resonance is an imaging technique that uses the magnetic properties of matter

to obtain detailed images of tissues and structures inside the human body. The magnetic

resonance images are captured when the radiation is reflected from the body, that is to say

that the body is magnetically stimulated so that the radiation is generated in the body, this

signal is captured and interpreted by different methods [6]. There are different acquisition

techniques such as Diffussion-weighted Image (DWI), where the distribution of gray intensi-

ties depends on the diffusion of water in the tissue, which provides great details of functional

and anatomical information that can be used in the differential diagnosis of pathological

conditions. [50] [12].

The signal acquired in magnetic resonance images and its different modalities can be affected

by different types of missing information, such as hardware limitations, patient movements

or internal tissues or magnetic susceptibility among others. [35]. Figure ?? shows how the

missing information in magnetic resonance images can affect the image in different ways, in

this section 3 different forms will be presented, how they are produced and works related to

the subject.

1.1. Information Affected by Sources of Movement

The particular effects of movement during capture represent a significant problem since the

image is totally or partially distorted by altered contrast or the appearance of so-called

echoes or ghosts [52]. Automatic detection of artifacts is a problem attractive due to the

low signal-to-noise ratios that are obtained when any of the different artifacts is present. In

addition, a detection strategy is obviously the first step of any correction strategy.

In practice, artifact detection is performed directly during the acquisition by the technician

who determines the level of distortion of the image and decides, if necessary, to carry out

another acquisition. Generally, this technician estimates the level of distortion of the acqui-

red data and determines if the effects of present artifacts can be eliminated or reduced or if

the image should be discarded. In this sense, some authors have introduced strategies that

quantify or at least compare the levels of distortion between images to include criteria for
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Figure 1-1: Summary of Related Works

discarding objectives in the acquisition protocols.

Super-Resolution (SR) approaches have many advantages for cardiac imaging, these methods

provide high resolution images and an understanding of the anatomy and complex function

in congenital heart diseases. However, the image damaged by the movement of the patient

is a problem in SR approaches. In [42] the authors mention how image misalignment affects

the performance of multiple image super resolution strategies.

Other approaches have been used to detect and correct the misalignment in IRM cinema,

in [51] the authors introduce a method of reconstruction by patch to exploit the geometric

similarities in the space-time domain, [4] the authors used a rigid register of body image in

the axial plane to align the position of the fetal heart. Finally, in [8] the authors relied on a

register of the local phase to correct the misalignment, in this approach long and short axis

cuts are combined.
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1.2. Incomplete Information Due to Limitations of the

Resonator

Other commonly observed artifacts are those related to the magnetic susceptibility caused

by the presence of ferromagnetic and diamagnetic elements that generate a variation of the

static magnetic fields and severely affect the image quality. [52, 14, 10]

1.2.1. Low Resolution Information

The study of diffusion images in several places has been used more and more to analyze brain

disorders, such as Alzheimer’s disease, Huntington’s disease and schizophrenia. However, the

variability between sites and between scanners of the acquired data poses a potential problem

for the joint analysis of MRI diffusion data (dMRI) [55]. This inter-site (or inter-scanner)

variability in measurements can come from several sources, including the number of coils

used (16- or 32-channel head coil), the sensitivity of the coils, the non-linearity of the image

gradient, the homogeneity of the magnetic field, the differences in the algorithms used to

reconstruct the data, as well as the changes made during the software updates and other

factors related to the scanner. [24]

In different works the resolution has been treated as a Sparse representation theme, that

is, with little information to reconstruct the complete image, for this there are two main

approaches: the first evaluates statistical methods to increase the resolution and the second

creates algorithms by learning of machine to recover lost information. For the first approach

there are several works, in [49], the authors use joint information of different gradients in

diffusion images to estimate a better reconstruction of the image, this type of approaches

that use information from neighborhoods is quite common [29] [47] [7], other authors such

as [33] [37] [53] [39] have used techniques such as creation of hosted dictionaries to increase

the resolution spatial of the images.

The second approach in super-resolution methods is using pattern training methods and

image patches, the authors create models based on patch dictionaries to learn the distribution

of information, in [18] [40] [48] the authors use convolved neural networks to pass an image

of low spatial resolution to a high resolution, the purposes are different for each approach as

a classification of a disease, create more reliable dictionaries among other objectives.
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Magnetic Resonance Signal

Presented on the 12th Ïnternational Symposium on Medical Information Processing and Analy-

sis”SIPAIM 2016, November 2016

Magnetic resonance imaging (MRI) is widely used in medicine nowadays, yet a significant disad-

vantage is the amount of artifacts that affect the image during the acquisition process. This paper

presents a strategy for automatic damage detection when the image is altered by movement or there

is a loss of information due to magnetic susceptibility. This approach uses a conventional SV D to

detect the variability between slices of the image and a region of damaged voxels within the volume.

Using a simple derivative algorithm, the method was tested in several cases automatically revealing

the distortionâTMs location with a performance of 74 % for slice damage and 55 % for the volume’s

damaged region.
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2.1. Introduction

Magnetic Resonance Imaging (MRI) is currently the reference in many different medical treatments.

The MRI signal capture may be affected by different types of noise such as hardware limitations,

physiological motion of patient or organs, or magnetic susceptibility among others [35]. The parti-

cular effects of motion during the capture represent a significant problem as the image is total or

partially distorted by altered contrast or the appearance of the so called “ echoes or ghostlike ”

[52]. Other artifacts commonly observed are those related with the magnetic susceptibility caused

by the presence of ferromagnetic and diamagnetic elements which generate a variation of the static

magnetic fields and severely involve the image quality [52, 14, 10]. Automatic detection of artifacts

is an appealing problem because of the low signal to noise ratios obtained when any of these noises

is present. Additionally, a detection strategy is obviously the first step of any correction strategy.

Metallic materials may be present during a MRI capture because the patient has previous treat-

ments with implants, surgical clips, dental fillings or surgical pins that create a distortion of the

acquired image. It is acknowledged that main distortions derived from metallic objects appear as

black zones where simple data are missing, in very few cases they look as displaced and/or blurred

intensities [27].

In practice, the detection of artifacts is performed directly during the acquisition by the technician

who determines the image distortion level and decides, if necessary, to carry out another acquisi-

tion. Usually, this technician estimates the corruption level of the acquired data and determines

whether artifact effects can be eliminated or reduced or if the image must be discarded. In that

sense some authors have introduced strategies that quantify or at least compare distortion levels

between images, at least to include objective discarding criteria in the acquisition protocols. For

example, some authors have analyzed 3D volumes corrupted in some slices by random rotations

and translations. These cases are then rigidly registered to quantify how much damage is estimated

within the stack of images when compared with a high resolution stack[30, 16, 19]. In [17], fetal

MRI brain and surrounding tissues are manually selected to construct a reference stack and the

corresponding regions from other stacks may then be located by matching against this reference.

The parameters of the rigid transformations between stacks are then used as an objective quantifi-

cation of the relative location and orientation of each slice. Likewise, a recently developed technique

identifies the amount of distortion in a given volume by using a singular value decomposition (SVD)

of the volume, with the Frobenius norm as the measure of the likeness between the original volume

and its singular decomposition [15]. These authors established a metric for determining the least

corrupted image along several stacks of images.

The present approach automatically detects two particular situations for which the Magnetic Re-

sonance signal is perturbed, specifically misplaced acquisitions or rotated slices and distortions

caused by magnetic susceptibility. These two cases are solved by linearly decomposing the whole

volume using a conventional SVD. If a slice is rotated the data inconsistency is discovered by the

SVD decomposition. If a particular region of the volume is not acquired, as is the case of magnetic

interferences, this defect is detected by the projection of the signal to the SVD space in different

resolutions. The correlation between different scales allows to highlight the specific slices in which
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the abnormality occurs.

2.2. Materials and Methods

The principle supporting this method is that there is an inevitable statistical dependence of the

spatial information, i.e. two neighbor voxels have a high probability of being alike. This makes

any perturbation produces different effects in the data structure that can be detected by searching

self-similarity patterns within data. In particular, the data projection to linear spaces is a first

order approximation that can be used to search different patterns of inconsistencies. Single Value

Decomposition is herein used as a linear model that approximates the data complexity into a

first order within which abnormal patterns are sought. The proposed method is able to determine

the damaged or distorted regions by any artifact in a series of parallel 2D MRI. The following

subsections describe main steps.

2.2.1. Matrix decomposition to obtain orthogonal projections of first

order.

The input to the proposed algorithm is a 3D volume composed by series of k 2D parallel slices.

Intensity values are organized as a matrix A where each row corresponds to a slice from the original

volume. This matrix is the input to the singular value decomposition (SVD) algorithm.

The SVD is a method that linearly represents the data variance of vectors arranged in a usually

non-squared matrix. Provided these data are distributed within a subspace with the A matrix di-

mensions, SVD constructs the representation bases of the data for the different data dimensions,

namely the two A dimensions, number of rows and columns. In practice, given the matrix A it can

be decomposed into a kind of quadratic form with 3 matrices U , S and V , where S is a diagonal

matrix of positive singular values listed in descending order and corresponding to the gains of A

when projecting a vector onto U and V . The columns of U and V are orthonormal vectors which

can be regarded as bases whose importance depends on the particular singular value, i.e. the lar-

gest the singular value the largest the variability along that corresponding axis. Explicitly, a SVD

decomposition is given by A = U × S × V T .

The variability caused by artifacts in a MR image is therefore detected by two different strategies.

The first strategy aims to detect changes affecting a complete slice, the second strategy is focused

in detecting damages in a particular volume neighborhood.

2.2.2. Measuring variability among slices

The proposed method looks for a relation between the singular values and the variability presented

in an image distorted by MR artifacts. When any distortion is present in the slices of the image,

the variability can be associated to the base U and the degree of the variability itself is given by
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the eigenvalues of S. In this case the matrix U represents the set of bases of slices, that is to say

this matrix has the dimensionality of the number of slices. The variability can be estimated as

ε =

k∑
i=r

U · S

k∑
i=1

U · S
(2-1)

where ε is the variability estimated within slices of the image, k is the total of columns of the

product U ·S, and r is a threshold value. In this case r has been set to 50, representing the 40 % of

slices of the volume approximately.

2.2.3. Measuring variability within stack neighborhoods

When any distortion is present in a region of voxels with different types of noise, the acquisition

of these voxels is missed and they appear as small black patches. The associated matrix for voxel

variability is V , so the amount of variability for each voxel projected onto the basis V is given by

the product:

ς = ||A · V || (2-2)

To obtain a representative value of this variability, the two columns of ς are considered because

them contains the highest variability

ϕj =

2∑
i=1

ςj,i (2-3)

ϕ contains the variability estimated within the same voxel for slice j, taking into account the first

two columns is possible to estimate how variable are the intensities along slices.

2.2.4. Automatic detection of MRI artifacts

Automatic detection of an affected region is carried out by approximating the central difference

for the second derivative of the estimated variability. Afterwards, the location of specific perturbed

slices are automatically recognized using a Threshold detection algorithm. The Eq.2-4 shows the

second derivative of ε for the variability among slices. In case of variability within stack neigh-

borhoods, the second derivative must be applied after calculating a weight function, where each ϕ

obtained from the multiresolution method has an associated weight depending on the corresponding

level of detail.

41(n) = ε(k + 1)− 2 ∗ ε(k) + ε(k − 1) (2-4)

42(n) = ϕ(k + 1)− 2 ∗ ϕ(k) + ϕ(k − 1) (2-5)
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2.3. Experimentation and Results

For implementing the proposed method it was used actual brain scans taken from the Open Access

Series of Imaging Studies (OASIS) data base [23]. Every scan is composed by a volume of 128 slices

and each one of those slices consists in 256x256 intensity. For testing the operation of the method

for different artifacts, two tests was performed (see Figure. 2-1). The first one shows the sensitivity

of the approach under different distortion degrees of some slices of the volume. The second one

determines the sensitivity of the method under damage in a set of voxels inside the volume.

2.3.1. Detecting rotated slices

The method will first be tested in artifacts which affect slices of the image. In this particular case

a rotation is applied on the plane of the image for ten randomly chosen slices. The rotation angle

for each slice is chosen randomly between -15 and 15 degrees; the main matrix’ dimensions are

128x16384, where rows represent the image’s slices and columns represent the corresponding inten-

sities. Once data is organized the SVD is applied to the final matrix and by means of the Eq. 2-1

the estimated variability of the slices is found.

Using Eq. 2-4 to find noticeable changes in variability, a threshold can be established to automati-

cally obtain damaged slices. In order to check the sensitivity and specificity of this approach, the

method was probed with 25100 different experiments, for each of which different rotation angles

were performed on different slices. To visualize the variability within each slice, the Figure. 2-1

shows the volumes’ slice-by-slice variability and its differences when compared to a volume wit-

hout damage. Table.2-1 presents method performance for detection of damage present in slices.

The sensitivity of 74,4 % indicates the amount of slices with damage detected which correspond to

true positives, a notable result when considering the high amount of test cases (25100) affected by

several types of damage such as differences in the number of modified (damaged) slices and their

rotation angles. Since each image possesses a different range of intensities, one must consider that

said intensities can frequently generate high variability between slices, which SVD will incorrectly

identify as an error.

2.3.2. Detecting locally affected regions

In order to simulate the damage caused by the magnetic susceptibility in an image, a set of voxels

from the image were taken. In this particular case, intensity information for 10 slices of 50*10 pixels

each was distorted. By means of the multiresolution analysis a more precise approximation of the

damage’s location can be obtained. As shown in Figure 2-3 the volume was sliced in quarters to

magnify sectional damage, enabling its location by SVD: after applying SVD for each partition,

equations 2-2 and 2-3 are used to generate a difference in values obtained for affected versus non-

affected zones in each slice, as appreciated in Figure 2-4. After acquiring said partition values levels

are weighted, the deepest one (16×16 pixels) corresponding to the greatest significance in evaluating

the complete volume. Calculating the sum of each partition with its corresponding predecessors and

applying equation 2-4, the zone where damaged slices have been identified is obtained. The test
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Figure 2-1: Comparison of a volume with rotated slices versus a volume without dama-

ge,(a) illustrates the non-damaged volume’s variability after SVD application,

(b) illustrates the damaged volume’s variability after decomposition. One can

observe pronounced differences in variability are noticeable when an artifact

has taken place.

was performed for 1236 experiments varying the location of the damaged voxel to a different zone

within the volume. Table 2-2 presents the performance metrics when evaluating the method when

there is a damaged voxel within a volume. Taking into account that for each test case the portion

of the volume corresponding to the brain is different, a sensitivity of 0.5479 indicates considerable

performance, given that certain cases demonstrate high displacement of the important portion’s

location and consequently the damaged voxel falls within a high variability zone for which SVD’s

automatic detection does not function properly. The specificity in this experiment is significant since

the method suitably differentiates regions without damage; in future work in image reconstruction

this difference can be used to correct specific regions.

Table 2-1: Performance metrics for detection of slices affected by artifacts. Presented values

correspond to 25100 different test cases

Average Variance Std.Dev.

Sensitivity 0.7445 0.0103 0.1019

Specificity 0.9199 0.0003 0.0163

Accuracy 0.9037 0.0006 0.0241
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Figure 2-2: Comparison of a volume with rotated slices versus a volume without damage,(2-

2a) illustrates the non-damaged volume’s variability after SVD application, (2-

2b) illustrates the damaged volume’s variability after decomposition. One can

observe pronounced differences in variability are noticeable when an artifact

has taken place.

Figure 2-3: The leftmost image displays a volume’s portion which exhibits damage in the

slices. Each subsequent highlighted level represents a quarter of the previous

level. The rightmost image corresponds to the greatest level depth (16 × 16

pixels) where damage is most noticeable and the method can pinpoint the

damage’s precise location.

2.4. Conclusions and discussion

This chapter presents a method useful for detecting magnetic resonance signal disturbances genera-

ted during the capture process. In particular, detected situations correspond to two different types:

inconsistencies in slice alignment (specifically rotated slices) and regions of the volume in which

data is missing due to magnetic field interferences.

In this work two types of experimental methods were performed, each one oriented to detecting

different information damage. To detect slice misalignment, the SVD was performed in 25100 ex-

periments encompassing a wide variety of damage possibilities in order to expose the coherence
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Figure 2-4: Comparison of a volume with a damaged voxel versus a volume without

damage,(2-4a) is the variability estimated at the deepest level without

damage,(2-4b) presents the same quarter as (2-4a), however in this case there

is a damaged voxel in slices 40 to 51.

Table 2-2: Performance metrics for detection of voxel damage. Presented values correspond

to 1236 different test cases

Average Variance Std.dev.

Sensitivity 0.5479 0.079 0.281

Specificity 0.9974 0.0002 0.0127

Accuracy 0.9503 0.0009 0.0292

among slices. These experiments indicate considerable performance in artifact detection, although

the difficulty of discriminating damage in an image is dependent on the range of intensities and

the variability between slices. A sensitivity of 74,45 % indicates that this approach is a promising

method to automatically detect and localize corrupted data. When voxel damage is located within

a volume, the method’ corresponding sensitivity of 54,79 % demonstrates favorable results, taking

into account that the method is able to detect a region of (16× 16× 10) with damage and discri-

minate regions without damage. In this sense a reconstruction algorithm can be used afterwards

to recover lost data or diminish the undesired effects of distortions.



3 Detection of Cardiac MR Images

Artifacts Produced by Intrinsic Heart

Motion Using a Saliency Mode

Presented on the 13th Ïnternational Symposium on Medical Information Processing and Analy-

sis”SIPAIM 2017, November 2017

Cardiovascular Magnetic Resonance Imaging is a widely used technique to detect anomalies, eva-

luate proper function, among others. This imaging technique is susceptible to degradation due to

noise and acquisition distortions. Shift motion artifacts are a common distortion due to continuous

movement of the heart. This work presents a method to correct this kind of distortions based on the

coherence information estimation between two or more images acquired with different plane orien-

tations. To estimate the information coherence a metric is calculated using the intensity values of

voxels, after which the correction can be achieved using an optimization strategy. To evaluate the

proposed method misalignment was simulated with both artificial images and Cardiac Resonance

Images, the results are similar for the two tests taking into account that the movement in slice

plane was of 1 to 5 pixels in two directions (X and Y ). Misaligment in the resulting image after

applying the method was minimal (0,26 pixels in X direction and 0,32 pixels in Y direction).
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3.1. Introduction

Cardiovascular Magnetic Resonance Imaging allows evaluation of heart diseases. Different charac-

teristics may be observable, namely the anatomical heart structure, the blood pool, the papillary

muscles and their relation with the heart valves, among others. However, the capturing process

demands considerable periods of time since this examination requires synchronization with respect

to the cardiac cycle by electrocardiography (ECG).[54, 41] Despite this synchronization, the long

acquisition periods facilitate contamination with different types of noise. Overall, motion artifacts

result inevitable in heart images by the high complex dynamics. Essentially, the heart efficiency

depends on two types of complementary movements: a rotation around the short-axis and a twisting

motion along the long axis. During the cardiac cycle the base rotates clockwise during systole while

the apex rotates counterclockwise, a torsion effect that powers the blood out the left ventricle[36, 25].

In addition, the acquisition protocol suggests the patient must remain breathe-hold for periods of

some seconds. This mixture of random movements make displacement between slices a frequent

artifact in cardiac MRI.

In practice, these artifacts or misalignments are commonly found in cine MRI[52]. Detection and

correction of these artifacts is a later step. Some authors in consequence have introduced strate-

gies that quantify the distortion level to correct this artifact. In [34] We demonstrated how the

information incoherence can be used to detect alterations or artifacts in magnetic resonance images

although this incoherence worked with MRI of brain, for cardiac MRI case, it is not enough due the

low-resolution of the Cardiac cine images and the significant changes between frames hence many

approaches are fixed the goal to improve the image quality and remove the artifacts reconstructing

the complete image, with different approaches (e.g. super-resolution techniques[42, 43], Adaptive

patch-based reconstruction, among others[51, 2]), these approaches have a limitation with motion

artifacts, these methods does not work when there are big misalignment between slices hence the

early detection of misalignment slices are very important before a super-resolution approach.

Likewise, a recently developed technique identifies the amount of misalignment of the slices with

the final goal of corrected the image and make a three-dimensional reconstruction, for this case,

the authors use the intersection lines between slices with the combination of short axes and long

axes images, the cross-correlation of local phases give a spatial coherence that is used to find the

misalignment and corrected it,due that this method works with different axes acquisition is neces-

sary to have the axes to detect the motion in the image that which is a great disadvantage [44].

A main contribution of the present approach is a fully automated detection of inconsistencies during

the capturing process. Specifically, inter-slice misalignment produced by motion in cardiac MRI.

This type of artifact is common during the acquisition process and eventually can misled heart

measurements performed by experts. The method starts by detecting the region of interest (ROI),

where the cardiac chambers are located, by a a saliency approach. Afterwards, the region is bina-

rized by a conventional isodata approach and the cardiac chambers are delimited. The center of

gravity of these chambers is slice-per-slice set. A consistency analysis consists then in establishing

how far is any individual centroid from the trajectory described by the whole set of centroids. Any
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misalignment is automatically detected since centroids usually are located at the same distance of

the inter-centroid trajectory.

3.2. Materials and Methods

The aim of this work was to automatically detect displaced heart slices that may occur in short-

axis cardiac MRI. The underlying hypothesis is that cardiac heart is a continuous structure and

therefore must keep certain coherence between the consecutive slices, i.e., abrupt shape changes

are not observed between consecutive slices. The method can be summarized as follows: a first

step is a coarse detection of the region where the heart is located, as previously described in

[5]. A conventional isodata approach delineates the cardiac chambers and their center of gravity is

computed for every slice in the volume. Finally, a minimum squared distance sets the best trajectory

that approximates the whole set of centroids, any misalignment is usually an outlier of this curve

along the stack.

3.2.1. Heart detection along the slice stack

A first task consists in finding the region where the heart is located, slice per slice. Assuming that

heart is the only object moving in cine MRI, motion saliency map (MSM) is computed.

A saliency map mimics the human visual system since local features are salient when there is a

certain contrast with their surroundings. Motion changes are estimated for every smoothed image I

at a particular location δ. Taking into account that one slice δ at the time t changes with respect to

rest of the frames, the ∆ stores these differences between the image It at the time t and the image

Ik at any other time k. Once these differences are calculated, a grid of patches p (5 x 5 pixels) is

superimposed to each σ and the entropy H is calculated to every patch p. Higher entropies represent

more motion and therefore, higher saliency. The MSM is defined as

MSM(δ)t,p =
N∑
k=1

H(|∆t(σt,p)|) (3-1)

3.2.2. Binarizing the ROI

In this step a binary 2D ROI enclosing the heart is obtained for each slice. A threshold is then

applied to the MSM and the ROI is delineated. The isodata algorithm [28] identifies the complete

location of the cardiac chambers. (Figure:??, center panel).

3.2.3. Measuring distance between gravity centers

Once a ROI is automatically set, the next step is to calculate the trajectory conformed by the

gravity centers (GC) of the whole volume, typically 8 to 15 slice centroids. Specifically, this curve is

approximated with a linear regression by minimizing the slice centroid distance to a line along the

heart structure in the basal-to-apex direction. Any misalignment is then detected by setting the
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Figure 3-1: Coarse heart localization. The left panel displays the obtained MSM, the cen-

ter panel shows the binarized MSM, and the right panel shows the final ROI

superimposed with the original image.

possible distance outliers. Figure:?? shows the different slices of a heart volume at the diastole time

of the cardiac cycle. The slice gravity center, in red, is drawn together with the line of centroids,

in blue. Observe how the misaligned slice (third panel from left to right in the bottom row) shows

the two points far apart.

Figure 3-2: Each of the panels corresponds to the coarse heart localization after binariza-

tion. The slice gravity center (in red) and the curve of centroids (in blue) are

drawn together. Third panel from left to right at the bottom row shows how

these two points are far when a misalignment by motion occurs.

3.2.4. Automatic detection of misalignment

A misalignment is automatically detected by a threshold of the second derivative of the distance

∇ between the gravity centers (the Euclidean distance d) as follows

5 = d(k+1) − 2(dk) + d(k−1) (3-2)
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3.3. Experimentation and Results

Quantitative experiments were performed using artificial misalignments in real images of cardiac

cine MRI. The used data set was composed of five CMR cases acquired in a 1,5 T scanner from

five different subjects. The used cases are composed of a variable number of series (between 8 to 14

series), Each series containing between 8 to 15 slices and an inter-slice separation varying between

8 in-plane resolution of 256× 256 and a pixel spacing of 1,8mm. The proposed method was proved

in two scenarios, the first with simulated misalignments and the second with real misalignment.

3.3.1. Detecting simulated misalignment slices

To simulate misalignment artifacts, the slice plane was displaced in X and Y axes. In this part of

the evaluation, 4 cases serve to perform 100 experiments with a random slice misalignment that

varied between 4 to 8 pixels.

Figure 3-3 shows the distance of gravity centers when there exists misalignments, red circle plots

the distance when no misalignments are present while green square illustrates how this metrics is

altered if a slice id displaced.

Table 3-1. shows the quantitative results for whole set of experiments.

Table 3-1: Performance metrics for detecting slice displacement. Presented values corres-

ponds to 100 different experiments per case and 4 different cases

Average ± Std Dev

Recall 0.84 ± 0.11

Fscore 0.68 ± 0.13

Precision 0.59 ± 0.10

3.3.2. Detecting real misaligned slices

The proposed method was evaluated with 2 cases with real misalignments, as illustrated in figu-

re 3-4 and figure 3-5.

3.4. Conclusions and discussion

This chapter presents a method to detect displacement in Cardiac Magnetic Resonance generated

during the capture process. The approach detect misalignment of a slice in a volume, this distortion

is very common in this type of image due to the way (breath-hold) acquisition and the long time
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Figure 3-3: Comparison of a volume with misaligned slices (green square) versus a volume

without displacement (red circle). Observe how the metric is altered in right

panel.

required.

The presented method is based on the shape coherence of the cardiac chambers through the volu-

me, each slice in an image corresponding to one part of heart, by structural coherence is feasible

to suppose that the gravity center of heart is an axis that cross the whole volume, when the cen-

ter of gravity of a slice is far of this axis, it is possible to determine that the slice has a displacement.

As part of the method a motion saliency map and an image binarization strategies were used [5].

Combination of this techniques demonstrate its applicability in an artifact detection use. We con-

sider that application exploration of this strategy have to be performed in future work.

The measuring of distances between local (slice) GC and global (volume) GC demonstrated its value

to determine the misalignment. Authors consider that this approach can be used as a metric (mea-

sure of the misalignment degree) into a future work oriented to misalignment correction algorithms.
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Figure 3-4: The proposal method applied in two real misalignments, in both cases the

detection was correct
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Figure 3-5: The proposal method applied in two real misalignments, in both cases the

detection was correct



4 Super-Resolution for Diffusion

Magnetic Resonance Imaging using

gradients’ dependencies

4.1. Introduction

Diffusion-weighted imaging (DWI) is a magnetic resonance imaging technique which measures the

random water motion (diffusion) in tissues. The diffusion process is affected by natural barriers

such as neuronal membranes in white matter, the effect on diffusion is observed using measures

like fractional anisotropy (FA), mean diffusivity (MD)and other which are directly calculated from

image data [45], other way to represent the diffusion process is using a predefined model of the

diffusion, the most widely used is the diffusion tensor model. All methods applied to that allows

highlights micro-organization of the white matter for posterior analysis[20, 13]. The white matter is

examined to study and diagnose some neurodegenerative illness, for this reason, is necessary a big

quantity of images from several radiological centers and high spatial resolution for each image. These

last reasons represent a problem for the experts and the resonance centers due to the variability

of the acquisition machine producing an image with a different source of noise, different and bad

resolution and finally uncomparable images as a result.

4.1.1. Super-resolution and sparse representation in diffusion images

Different image analysis approaches have presented many methods in order to increase the resolu-

tion of Magnetic Resonance images, some of them decompose the images in some semantic atoms

from the brain tissue, that allows constructing semantic-based dictionaries from brain MR images.

[33]

Super-Resolution (SR) techniques have been broadly used to increasing medical image resolution

[9]. At the beginning, these methods attempted to recover a high-resolution image by combining

multiple shifted low-resolution acquisitions. Two kinds of approaches can be identified: one works at

the acquisition level over raw data (frequency space), while the others act on the volumetric images

(spatial or image space) as an additional processing step. At the acquisition stage, the k-space data

can be manipulated and combined to obtain adequate spatial resolution while reducing acquisition

time [11]; or parameters can be configured to obtain multiple scans with different slice directions

which are then mixed up [38, 33]. Recent approaches have changed the classical SR paradigm with

multiple images, evolving towards the use of information from a single low-resolution image, but
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also improving the image information by combining different modalities. Patch-based approaches

with non-local regularization frameworks have been proposed by [31] and [7], which have also exten-

ded the formulation to super-resolve low-resolution T2w images using high-frequency information

from T1w images ([32]; [22]).

Different image analysis approaches, such as non-negative matrix factorization [21] or sparse and

redundant representations [26], use this assumption at their very base. These two methods, in par-

ticular, identify the constituent parts of a scene and then, using some of them, the same scene or

similar ones may be accurately reconstructed. These parts, denoted as basis functions or atoms, are

usually arranged in overcomplete dictionaries with a larger number of elements than the effective

dimensionality of the input space, thereby representing a wider range of image phenomena.[33]

4.2. Proposed Methodology

The proposed method consists of two different construction of the dictionaries, the high-resolution

dictionary is constructed using the different gradients of each diffusion image for the same patient.

Then the low-resolution dictionary is obtained by sub-sampling the high-resolution dictionary. In

order to find the sparse representation of the images set, it was used the local dependencies to

each gradient to obtain prior information to recover high frequencies in the image patches. The

K-SVD algorithm obtains the bases with a higher variance that represents the original image

creating a dictionary with a sparse base. Finally using both dictionaries the patch-based spatial

super-resolution is obtained.

4.2.1. Dictionary construction

The high-resolution dictionary construction was initialized using a set of high-resolution image Yj
and the corresponding low-resolution image was the down-sampling and blurred image from Yj , Uj .

Our approach creates two different dictionaries over complete, the high-resolution dictionary Dh is

constructed by collecting a fixed number of patches at the same image location but in the different

gradient image. The low-resolution dictionary is the down-sampling version of Dh, Dl.

In order to obtain the high frequencies that are missed in the image, the present approach uses

statistical dependence in the different gradient images per patient, to initialize the dictionary in

high resolution was used the original images of the patient, a random gradient was taken as Yj and

the different gradients of the same patch initialized the dictionary Di show in figure 4-1.

The initialize dictionary was constructed using a patch size of 6x6x6 from the information of the

complete brain. To obtain the sparse information we used the K-SVD algorithm described by

Aharon et al.[1], the main idea is to obtain that of searching the best possible dictionary D for the

sparse representation of the training set Y . First, we fix and aim to find the best coefficient matrix

X.
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Figure 4-1: Illustration of high-Resolution dictionary initialization

mı́n
D,X

{
‖Y −DX‖2F

}
subject to ∀i, ‖xi‖0 ≤ T0 (4-1)

As finding the truly optimal is impossible as long as it can supply a solution with a fixed and pre-

determined number of nonzero entries T0, we use an approximation pursuit method, in this case,

we use the Orthogonal Matching Pursuit (OMP) algorithm. After that the SVD algorithm finds

the closest matrix (in Frobenius norm) that approximates the X and minimize the error between

Y and DX, we obtain a new dictionary D with atoms that represent the directions variance.

Finally, the high-resolution dictionary Dh is obtained. Down-sampling Dh we obtain the low-

resolution dictionary Dl whereby the number of atoms in the dictionary has not changed.

4.2.2. Local Reconstruction of the high-resolution DW image

Once the dictionaries Dh and Dl are constructed, the next stage is related with the estimation of a

high-resolution version given low-resolution image volume Yl. The reconstruction stage involves two

steps: first, a local reconstruction is made for each patch, and then, a global image regularization

is performed.

4.3. Experimentation and results

The whole dataset, for both training and validation, is composed of one high resolution DW images,

obtained from the Cardiff University Brain Research Imaging Center (Cubric). The DW image is
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acquired using a 3T MR General Electric scanner. A standard spin-echo EPI pulse sequence with

sensitivity encoding is applied to obtain the DWI data at 30 different diffusion directions, with the

following parameters: matrix size: 128 x 128 with 64 slices and spatial resolution of 1.8 x 1.8 x

1.8 mm. The super-resolution method has been implemented using MATLAB R2017a (Mathworks

Inc.), run in a Linux PC with Intel Core i5 and 4 GB of RAM.

Table 4-1: Comparison of PSNR and SSIM values achieved with a standard bicubic in-

terpolation, the Manhon et al. reconstruction method and the proposed super-

resolution reconstruction.

Bicubic interpolation Manhon et al. Proposed approach

PSNR 36.45 37.23 34.24

SSIM 0.963 0.972 0.834



5 Discussion and conclusion

This work has focused on the study of different medical images modalities in order to know their

limitations and how to correct them. The missing information is a normal problem that affects

any modality in resonance images hence we center in search of relevant information that allows

estimating this information and made an approximation in order to obtain an image with better

quality. Three main ideas were proposed in order to carry out the objectives of the research. In

the first modality of magnetic resonance, the main idea is to find automatically some perturbed

information specifically misplaced acquisitions or rotated slices and distortions caused by magnetic

susceptibility, the second approach was the automatic detection of inter-slice misalignment produced

by motion in cardiac MRI and the last approach was focus on the increase of resolution in diffusion-

weighted magnetic resonance imaging. All the previous approaches show the limitations of the

magnetic resonance and how these limitations corrupt the signal.

The first approach that we made in order to find missing information was the classical problem of the

magnetic resonance images, the artifacts. This work presents a noise detection method, particularly

two different kinds of MRI noise related with patient motion and magnetic susceptibility. As a pos-

terior step, other noise sources can be explored such us a“ghostlike” artifacts or echoes, in that case

some adaptations of basic technique proposed must be applied e.g. including a noise prior model to

detect it in the decomposition or different partitioning of data before decomposition. Other scenario

for promising future work is a work flow oriented to characterize the way information is altered,

in that sense, knowledge about statistical differences among characteristics of the affected region

and non-affected regions, a reconstruction method can be properly designed to achieve good results.

The second part of this approach was focused in detect some misalignment of the cardiac images.

As a part of the method a motion saliency map and an image binarization strategies were used

[5]. Combination of this techniques demonstrate its applicability in an artifact detection use. We

consider that application exploration of this strategy have to be performed in future work.In a

first approximation, it was simulated the misalign with four cases, each one with 100 different

experiments with different translation and slice displacement. The performance of this method was

of 84 % to detect the correct misalign slice, this result indicates the good performance of the method

taking into account that the image have a slice thickness of 8mm approximately in consequence the

variation in gravity center could be normal and not to represent a displacement. Then the algorithm

discriminate regions without damage and allows a posterior correction e.g. with a simple register

method. As a conclusion of this part, We estimated missing information successfully obtained an

automatic method that allows to find an image error for a posterior correction.
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[7] Coupé, Pierrick ; Manjón, José V ; Chamberland, Maxime ; Descoteaux, Maxime ;

Hiba, Bassem: Collaborative patch-based super-resolution for diffusion-weighted images. En:

NeuroImage 83 (2013), p. 245–261

[8] Grau, Vicente: Correction of Slice Misalignment in Multi-breath-hold Cardiac MRI Scans. En:

Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges:

7th International Workshop, STACOM 2016, Held in Conjunction with MICCAI 2016, Athens,

Greece, October 17, 2016, Revised Selected Papers Vol. 10124 Springer, 2017, p. 30

[9] Greenspan, Hayit: Super-resolution in medical imaging. En: The Computer Journal 52

(2008), Nr. 1, p. 43–63

[10] Hargreaves, Brian A. ; Worters, Pauline W. ; Pauly, Kim B. ; Pauly, John M. ; Koch,

Kevin M. ; Gold, Garry E.: Metal-induced artifacts in MRI. En: American Journal of



26 Bibliograf́ıa

Roentgenology 197 (2011), Nr. 3, p. 547–555. – ISBN 1546–3141 (Electronic)\r0361–803X

(Linking)

[11] Herment, A ; Roullot, E ; Bloch, I ; Jolivet, O ; De Cesare, A ; Frouin, F ; Bittoun,

J ; Mousseaux, E: Local reconstruction of stenosed sections of artery using multiple MRA

acquisitions. En: Magnetic Resonance in Medicine: An Official Journal of the International

Society for Magnetic Resonance in Medicine 49 (2003), Nr. 4, p. 731–742

[12] Holdsworth, Samantha J. ; Bammer, Roland: Magnetic resonance imaging techniques:

fMRI, DWI, and PWI. En: Seminars in neurology Vol. 28 NIH Public Access, 2008, p. 395

[13] Horsfield, Mark A. ; Jones, Derek K.: Applications of diffusion-weighted and diffusion

tensor MRI to white matter diseases–a review. En: NMR in Biomedicine 15 (2002), Nr. 7-8,

p. 570–577

[14] Jarraya, M. ; Hayashi, D. ; Guermazi, A. ; Kwoh, C. K. ; Hannon, M. J. ; Moore, C. E.

; Jakicic, J. M. ; Green, S. M. ; Roemer, F. W.: Susceptibility artifacts detected on 3T

MRI of the knee: Frequency, change over time and associations with radiographic findings:

Data from the Joints on Glucosamine Study. En: Osteoarthritis and Cartilage 22 (2014), Nr.

10, p. 1499–1503. – ISSN 15229653

[15] Kainz, Bernhard ; Steinberger, Markus ; Wein, Wolfgang ; Kuklisova-Murgasova, Ma-

ria ; Malamateniou, Christina ; Keraudren, Kevin ; Torsney-Weir, Thomas ; Rut-

herford, Mary ; Aljabar, Paul ; Hajnal, Joseph V. ; Rueckert, Daniel: Fast Volume

Reconstruction from Motion Corrupted Stacks of 2D Slices. En: IEEE Transactions on Medical

Imaging 34 (2015), Nr. 9, p. 1901–1913. – ISBN 0278–0062

[16] Keraudren, K. ; Kuklisova-Murgasova, M. ; Kyriakopoulou, V. ; Malamateniou,

C. ; Rutherford, M. A. ; Kainz, B. ; Hajnal, J. V. ; Rueckert, D.: Automated fetal

brain segmentation from 2D MRI slices for motion correction. En: NeuroImage 101 (2014), p.

633–643. – ISBN 1095–9572 (Electronic)\r1053–8119 (Linking)

[17] Kim, Kio ; Habas, Piotr A. ; Rousseau, Francois ; Glenn, Orit A. ; Barkovich, Anthony J.

; Studholme, Colin: Intersection based motion correction of multislice MRI for 3-D in utero

fetal brain image formation. En: IEEE Transactions on Medical Imaging 29 (2010), Nr. 1, p.

146–158. – ISBN 1558–0062 (Electronic)\r0278–0062 (Linking)

[18] Kondo, Yuto ; Han, Xian-Hua ; Chen, Yen-Wei: Two-step learning based super resolution

and its application to 3D medical volumes. En: Consumer Electronics (GCCE), 2015 IEEE

4th Global Conference on IEEE, 2015, p. 326–327

[19] Kuklisova-Murgasova, Maria ; Quaghebeur, Gerardine ; Rutherford, Mary A. ; Haj-

nal, Joseph V. ; Schnabel, Julia A.: Reconstruction of fetal brain MRI with intensity

matching and complete outlier removal. En: Medical Image Analysis 16 (2012), Nr. 8, p.

1550–1564. – ISBN 1361–8415



Bibliograf́ıa 27

[20] Lebel, Catherine ; Treit, Sarah ; Beaulieu, Christian: A review of diffusion MRI of typical

white matter development from early childhood to young adulthood. En: NMR in Biomedicine

(2017), p. e3778–n/a. – ISSN 1099–1492

[21] Lee, Daniel D. ; Seung, H S.: Learning the parts of objects by non-negative matrix factori-

zation. En: Nature 401 (1999), Nr. 6755, p. 788
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reau, Russell M. ; Brummer, Marijn E.: A super-resolution framework for 3-D high-resolution

and high-contrast imaging using 2-D multislice MRI. En: IEEE transactions on medical ima-

ging 28 (2009), Nr. 5, p. 633–644

[39] Tang, Songze ; Guo, Haitao ; Zhou, Nan ; Huang, Lili ; Zhan, Tianming: Coupled dictionary

learning on common feature space for medical image super resolution. En: Image Processing

(ICIP), 2016 IEEE International Conference on IEEE, 2016, p. 574–578

[40] Umehara, Kensuke ; Ota, Junko ; Ishimaru, Naoki ; Ohno, Shunsuke ; Okamoto, Kentaro

; Suzuki, Takanori ; Shirai, Naoki ; Ishida, Takayuki: Super-resolution convolutional neural

network for the improvement of the image quality of magnified images in chest radiographs.

En: Medical Imaging 2017: Image Processing Vol. 10133 International Society for Optics and

Photonics, 2017, p. 101331P

[41] Usman, Muhammad ; Atkinson, David ; Odille, Freddy ; Kolbitsch, Christoph ; Vai-

llant, Ghislain ; Schaeffter, Tobias ; Batchelor, Philip G. ; Prieto, Claudia: Motion

corrected compressed sensing for free-breathing dynamic cardiac MRI. En: Magnetic resonance

in medicine 70 (2013), Nr. 2, p. 504–516

[42] Velasco, Nelson F. ; Rueda, Andrea ; Santa Marta, Cristina ; Romero, Eduardo: A sparse

Bayesian representation for super-resolution of cardiac MR images. En: Magnetic Resonance

Imaging 36 (2017), p. 77–85



Bibliograf́ıa 29

[43] Villalon-Reina, Julio E. ; Thompson, Paul M. ; Romero, Eduardo [u. a.]: Bayesian

super-resolution in brain diffusion weighted magnetic resonance imaging (DW-MRI). En:

12th International Symposium on Medical Information Processing and Analysis International

Society for Optics and Photonics, 2017, p. 101601J–101601J

[44] Villard, Benjamin ; Zacur, Ernesto ; DallâTMArmellina, Erica ; Grau, Vicente: Co-
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